CONTACT US

PUBLICATIONS




  1. Orlove, B., Sherpa, P., Dawson, N., Adelekan, I., Alangui, W., et al. 2023. Placing diverse knowledge systems at the core of transformative climate research. Ambio, Vol. 52, 1431–1447. DOI: https://doi.org/10.1007/s13280-023-01857-w

  2. Mina, R. J. S. and Bacani, J. B. 2023. On the Diophantine equation p^x+(p+5)^y=z^2 where p is odd prime. Thai Journal of Mathematics, Vol. 21 (1), 67-75. URL: https://thaijmath2.in.cmu.ac.th/index.php/thaijmath/article/view/1441/1451

  3. Mina, R.J.S. and Bacani, J.B. 2023. Elliptic curves of type y^2=x^3-3pqx having ranks zero and one. Malaysian Journal of Mathematical Sciences, Vol. 17 (1), 67-76. DOI: https://doi.org/10.47836/mjms.17.1.06

  4. Gayo, W.S. Jr. and Bacani, J.B. 2023. On the solutions of some Mersenne prime-involved Diophantine equations. International Journal of Mathematics and Computer Science, Vol. 18 (3), 487-495. URL: http://ijmcs.future-in-tech.net/18.3/R-MathTech22-Gayo-Bacani.pdf

  5. Mina, R.J.S. and Bacani, J.B. 2023. On nonsolvability of exponential Diophantine equations via transformation to elliptic curves. Italian Journal of Pure and Applied Mathematics, Vol. 49, 196-205. URL: https://ijpam.uniud.it/online_issue/IJPAM_no-49-2023.pdf#page=215

  6. Calabia, E.X.P. and Bacani, J.B. 2023. On the Solutions of the Diophantine Equation u^a +v^b=z^2 for some prime pairs u and v. In: Giri, D., Gollmann, D., Ponnusamy, S., Kouichi, S., Stanimirović, P.S., Sahoo, J.K. (eds) ICMC 2023. Lecture Notes in Networks and Systems, Vol. 697. Springer, Singapore, 209-221. DOI: https://doi.org/10.1007/978-981-99-3080-7_16

  7. Llenos, L.C.P., Miranda, I.L.G., Domogo, A.A. and Collera, J.A. 2023. Mathematical modeling of antibiotic resistance in hospital with dysbiosis, Chiang Mai Journal of Science Vol. 50 (3), Article ID e2023027. DOI: https://doi.org/10.12982/CMJS.2023.027

  8. Hafdane, M., Collera, J.A., Agmour, I. and Foutayeni, Y.E. 2023. Hopf bifurcation for delayed prey-predator system with Allee effect, Communications in Mathematical Biology and Neuroscience Vol. 2023, Article ID 36. URL: https://scik.org/index.php/cmbn/article/view/7921

  9. Alindayu, R.C., Licnachan, L.O.C., Luzadas, R.L., Ignacio, P.S.P. and Onda, D.F.L. 2023. Moving towards open data, public access, and information sharing to combat marine plastics pollution in the Philippines and the Southeast Asian region, Ocean & Coastal Management, Volume Vol. 243, 106771. DOI: https://doi.org/10.1016/j.ocecoaman.2023.106771

  10. Ignacio, P.S. 2023. Detection of fibrillatory episodes in atrial fibrillation rhythms via topology-informed machine learning. In Proceedings of the 2023 6th International Conference on Machine Vision and Applications (ICMVA '23). Association for Computing Machinery, New York, NY, USA, 2023, 22–27. DOI: https://doi.org/10.1145/3589572.3589576

  11. Manongsong, S.M. and Capco, J. 2023. Inverse kinematics of six-joint special manipulators, 8th International Conference on Control and Robotics Engineering (ICCRE), Niigata, Japan, 2023, 172-176. DOI: https://doi.org/10.1109/ICCRE57112.2023.10155593

  12. Peralta, G. 2023. Optimal Borel measure-valued controls to the viscous Cahn–Hilliard–Oberbeck–Boussinesq phase-field system on two-dimensional bounded domains, ESAIM Control, Optimisation and Calculus of Variations, Vol. 29, Article No. 32, 43 p. DOI: https://doi.org/10.1051/cocv/2023025

  13. Peralta, G. 2023. Stability properties of multidimensional symmetric hyperbolic systems with damping, differential constraints and delay. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 1-43. DOI: https://doi.org/10.1017/prm.2023.93


  1. Mina, R.J.S. and Bacani, J.B. 2022. Families of Mordell curves with non-trivial torsion and rank of at least three. In: Rushi Kumar, B., Ponnusamy, S., Giri, D., Thuraisingham, B., Clifton, C.W., Carminati, B. (eds) Mathematics and Computing. ICMC 2022. Springer Proceedings in Mathematics & Statistics, Vol. 415. Springer, Singapore, 155-162. DOI: https://doi.org/10.1007/978-981-19-9307-7_13

  2. Alcantara, N.L.M.T., Addawe R.C. and Addawe, J.M. 2022. A particle swarm optimization algorithm using gamma distribution function. Matimyas Matematika Vol. 45 (2), 1-24. URL: http://mathsociety.ph/matimyas/images/vol45/AlcantaraMatimyas.pdf

  3. Oryan, R.R., Addawe, J.M., Addawe, R.C., Viernes, J.T.V. and Panes, D.T. 2022. Time-area-household-case network modelling of the COVID-19 cases in Baguio City. Matimyas Matematika Vol. 45 (2), 25-48. URL: http://mathsociety.ph/matimyas/images/vol45/OryanMatimyas.pdf

  4. Orlove, B., Dawson, N., Sherpa, P., Adelekan, I., Alangui, W., Carmona, R.,Coen, D., Nelson, M., Reyes-García, V., Rubis, J., Sanago, G. and Wilson, A. 2022. ICSM CHC White Paper I: Intangible cultural heritage, diverse knowledge systems and climate change. Contribution of Knowledge Systems Group I to the International Co-Sponsored Meeting on Culture, Heritage and Climate Change. Discussion Paper. ICOMOS & ISCM CHC, Charenton-le-Pont, France & Paris, France, 103p. ISBN 978-2-918086-71-0. [Book]

  5. Alangui, W. 2022. Stone Walling Practice in the Cordillera Region, Northern Philippines (Case Study). In Morel H., Megarry, W. et. al. Global Research and Action Agenda on Culture, Heritage and Climate Change. Charenton-le-Pont & Paris, France: ICOMOS & ICSM CHC, 2022 (released online in September 2022).

  6. Angeles, G.M. and Peralta, G. 2022. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 11 (1), 199-224. DOI: https://doi.org/10.3934/eect.2020108

  7. Aquino, R.L. and Bacani, J. 2022. On the exponential diophantine equation p^x + q^y = z^3: theorems and conjectures. Proceedings of the Seventh International Conference on Mathematics and Computing: ICMC 2021, 711-723. DOI: https://doi.org/10.1007/978-981-16-6890-6_52

  8. Collera, J. 2022 Bubbling, bistable limit cycles and quasi-periodic oscillations in queues with delayed information. Symmetry. DOI: https://doi.org/10.3390/sym14020376

  9. Collera, J. and de la Cruz, R.R.B. 2022. Dynamics of a delayed kaldor-kalecki model of mutually linked economies. Mathematics in Industry, 83-89. DOI: https://doi.org/10.1007/978-3-031-11818-0_12

  10. Domogo, A. and Collera, J. 2022. Classifying relative equilibria and relative periodic solutions in two mutually delay-coupled Stuart-Landau oscillators. Matimyas Matematika, Vol. 45 (2), 49-64. URL: https://mathsociety.ph/matimyas/images/vol45/DomogoMatimyas.pdf

  11. Javellana, L. J.2022. A landslide model using a 3D ultradiscrete Burgers' equation. Novel & Intelligent Digital Systems: Proceedings of the 2nd International Conference (NiDS 2022), Vol. 556, 190 - 199. DOI: https://doi.org/10.1007/978-3-031-17601-2_19

  12. Marigmen, J.L.D.C. and Addawe, R.C. 2022. Climatic influences on dengue incidence in Baguio city, Philippines: A multiple linear regression approach. AIP Conference Proceedings, 2472(1), 050017. DOI: https://doi.org/10.1063/5.0092781

  13. Manzanares, J. R. and Ignacio, P.S. 2022. Stable homology-based cycle centrality measures for weighted graphs. arXiv preprint arXiv:2208.05565. DOI: https://doi.org/10.48550/arXiv.2208.05565

  14. Marigmen, J.L.D.C. and Addawe, R.C. 2022. Forecasting and on the influence of climatic factors on rising dengue incidence in Baguio City, Philippines. Journal of Computational Innovation and Analytics, Vol. 1 (1), 43–68. DOI: https://doi.org/10.32890/jcia2022.1.1.3

  15. Mina, R.J.S. and Addawe and Rizavel C. 2022. A social network analysis of COVID-19 transmission in Rosales, Pangasinan, Philippines. AIP Conference Proceedings, 2472(1), 050018. DOI: https://doi.org/10.1063/5.0092746

  16. Omadlao, Z.R., Cabrales, J.M., Cristobal, S.C., Dee, M.V., Tadeo, J.R., Marigmen, J.L., and Pajarillo, R. 2022. Machine learning-based dengue forecasting system for Irisan, Baguio city, Philippines. AIP Conference Proceedings, 2472(1), 040019. DOI: https://doi.org/10.1063/5.0092930

  17. Orlove, B., Dawson, N., Sherpa, P., Adelekan, I., Alangui, W., Carmona, R., Coen, D., Nelson, M., Reyes-García, V., Rubis, J., Sanago, G. and Wilson, A. 2022. ICSM CHC white paper I: Intangible cultural heritage, diverse knowledge systems and climate change. Contribution of knowledge systems group I to the international co-sponsored meeting on culture, heritage and climate change. ICOMOS & ISCM CHC. URL: http://openarchive.icomos.org/id/eprint/2717/

  18. Orlove, B., Dawson, N., Sherpa, P., Adelekan, I.., Alangui, W., Carmona, R., Coen, D., Nelson, M., Reyes-García, V., Rubis, J., Sanago, G. and Wilson, A. 2022. Intangible cultural heritage, diverse knowledge systems and climate change. ICSM CHC White Paper I. UNSPECIFIED. ISBN 78-2-918086-71-0. URL: https://ueaeprints.uea.ac.uk/id/eprint/88690/

  19. Peralta, G. 2022. Error estimates for mixed and hybrid FEM for elliptic optimal control problems with penalizations. Advances in Computational Mathematics, Vol. 48 (6), Paper No. 70, 35 p. DOI: https://doi.org/10.1007/s10444-022-09980-0

  20. Peralta, G. 2022. Optimal Borel measure controls for the two-dimensional stationary Boussinesq system. ESAIM: Control, Optimisation and Calculus of Variations, Vol. 29, Paper No. 32, 43 p., 2023. DOI: 29, Paper No. 32, 43 p., 2023.

  21. Peralta, G. 2022. Weak and very weak solutions to the viscous Cahn–Hilliard–Oberbeck–Boussinesq phase-field system on two-dimensional bounded domains. Journal of Evolution Equations, Vol. 22 (1), Paper No. 12, 71 p. DOI: https://doi.org/10.1007/s00028-022-00765-y

  22. Peralta, G. and Kunisch, K. 2022. Mixed and hybrid Petrov–Galerkin finite element discretization for optimal control of the wave equation. Numerische Mathematik, Vol. 150 (2), 591–627. DOI: https://doi.org/10.1007/s00211-021-01258-9

  23. Taclay, K.D., Taclay, R.J., Dizon, W.T. Jr. and Addawe, R.C. 2022. COVID-19 pandemic in Baguio City, Philippines: A spatio-temporal analysis AIP Conference Proceedings, 2472(1), 020005. DOI: https://doi.org/10.1063/5.0092722


  1. Addawe, R.C., Viernes, J. P.T., Dizon, W.R., Domilies, S.G.S., Libatique, C.P., Gueco, R.E.N. and Panes, D. T. 2021. Exploratory data analysis of COVID-19 cases in Baguio City, Philippines. AIP Conference Proceedings, 2423(1), 070018. DOI: https://doi.org/10.1063/5.0075437

  2. Addawe, R., Angeles, G.M. and Balolong, M. 2021. Spatio-temporal analysis of measles cases in Baguio City, Philippines from 2010–2018. In M. H. Mohd, M. Y. Misro, S. Ahmad, & D. Nguyen Ngoc (Eds.), Modelling, Simulation and Applications of Complex Systems (pp. 283–292). Springer. DOI: https://doi.org/10.1007/978-981-16-2629-6_15

  3. Ascaño, J.P. and Gueco, E.N. 2021, The bi-periodic Fibonacci-Horadam matrix, Integers, 21. URL: http://math.colgate.edu/~integers/v29/v29.pdf

  4. A Tribute to Ubiratan D'Ambrosio. 2021. APEduC Revista/ APEduC Journal, Vol. 2 (2), 224-226 URL: https://apeducrevista.utad.pt/index.php/apeduc/article/view/225

  5. Balangcod, K.D. and Balangcod, A.K.D. 2021. Gunnera macrophylla blume gunneraceae. In F. M. Franco (Ed.), Ethnobotany of the Mountain Regions of Southeast Asia (pp. 539–543). Springer International Publishing. DOI: https://doi.org/10.1007/978-3-030-38389-3_241

  6. Balangcod, T.D. and Balangcod, A.K.D. 2021. Tithonia diversifolia (Hemsl.) a. Gray asteraceae. In F. M. Franco (Ed.), Ethnobotany of the Mountain Regions of Southeast Asia (pp. 1079–1083). Springer International Publishing. DOI: https://doi.org/10.1007/978-3-030-38389-3_243

  7. Balangcod, T.D., Balangcod, A.K.D. 2021. Lilium philippinense baker liliaceae. Ethnobotany of the Mountain Regions of Southeast Asia, 605-611. DOI: https://doi.org/10.1007/978-3-030-38389-3_245

  8. Balino, L.V.A., Caasi, K.S. and Addawe, R.C. 2021. Spatio-temporal distribution of dengue infections in Baguio City, Philippines. In M. H. Mohd, M. Y. Misro, S. Ahmad, & D. Nguyen Ngoc (Eds.), Modelling, Simulation and Applications of Complex Systems (pp. 273–282). Springer. DOI: https://doi.org/10.1007/978-981-16-2629-6_14

  9. Bersamin, A.T., Tayaben, J.L., Balangcod, K.D., Balangcod, A.K.D., Cendana, A.C., Dom-Ogen, E.T., Licnachan, L.O.C., Siadto, B., Wong, F.M. and Balangcod, T.D. 2021. Utilization of plant resources among the Kankanaeys in Kibungan, Benguet Province, Philippines. Biodiversitas Journal of Biological Diversity, Vol. 22 (1). DOI: https://doi.org/10.13057/biodiv/d220144

  10. Collera, J.A. 2021. Dynamics of an IS-LM macroeconomic model with delay-dependent coefficients. AIP Conference Proceedings, 2423(1), 020028. DOI: https://doi.org/10.1063/5.0075277

  11. Collera, J.A. 2021. Spontaneous symmetry-breaking in deterministic queueing models with delayed information. In D. M. Kilgour, H. Kunze, R. Makarov, R. Melnik, & X. Wang (Eds.), Recent Developments in Mathematical, Statistical and Computational Sciences (pp. 15–25). Springer International Publishing. DOI: https://doi.org/10.1007/978-3-030-63591-6_2

  12. Domogo, A.A. and Ottesen, J.T. 2021. Patient-specific parameter estimation: Coupling a heart model and experimental data. Journal of Theoretical Biology, Vol. 526, 110791. DOI: https://doi.org/10.1016/j.jtbi.2021.110791

  13. Gayo, W.S. Jr. and Bacani, J.B. 2021. On the Diophantine Equation Mp^x + (Mq + 1)^y = z^2. European Journal of Pure and Applied Mathematics, Vol. 14 (2), 396–403. DOI: https://doi.org/10.29020/nybg.ejpam.v14i2.3948

  14. Ignacio, N., Liwag, R. and Addawe, R. 2021. Spatiotemporal analysis of typhoid cases in Baguio City, Philippines. In M. H. Mohd, M. Y. Misro, S. Ahmad, & D. Nguyen Ngoc (Eds.), Modelling, Simulation and Applications of Complex Systems (pp. 293–308). Springer. DOI: https://doi.org/10.1007/978-981-16-2629-6_16

  15. Ignacio, P.S. 2021. Intrinsic hierarchical clustering behavior recovers higher dimensional shape information. 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC), 0206–0212. DOI: https://doi.org/10.1109/CCWC51732.2021.9376079

  16. Ignacio, P.S. 2021. Leveraging period-specific variations in ecg topology for classification tasks. 2021 Computing in Cardiology (CinC), Vol. 48, 1–4. DOI: https://doi.org/10.23919/CinC53138.2021.9662895

  17. Macansantos, P. and Tullao, J. 2021. Analysis and control of an seiqr epidemic model with application to Ebola disease vaccination. Vaccine Research, 23–35. DOI: https://doi.org/10.52547/vacres.8.1.23

  18. Marigmen, J.L.D.C. and Addawe, R.C. 2021. Analysis on the onset of dengue outbreaks in Baguio City. AIP Conference Proceedings, 2423(1), 070012. DOI: https://doi.org/10.1063/5.0075339

  19. Marigmen, J.L.D.C., Balino, L.V.A. and Addawe, R.C. 2021. Analysis of dengue incidence in Baguio, Philippines. AIP Conference Proceedings, 2423(1), 070011. DOI: https://doi.org/10.1063/5.0075342

  20. Mina, R.J.S. and Bacani, J.B. 2021. On the solutions of the Diophantine equation $p^x +(P+4k)^y=z^2$ for prime pairs $p$ and $p+4k$. European Journal of Pure and Applied Mathematics, Vol. 14 (2), 471–479. https://doi.org/10.29020/nybg.ejpam.v14i2.3947

  21. Oryan, R.R., Addawe, J.M. and Tubera-Panes, D. 2021. Modeling and analysis of the dengue activity in Baguio City using two-mode and one-mode networks. In M. H. Mohd, M. Y. Misro, S. Ahmad, & D. Nguyen Ngoc (Eds.), Modelling, Simulation and Applications of Complex Systems (pp. 253–271). Springer. DOI: https://doi.org/10.1007/978-981-16-2629-6_13

  22. Peralta, G. 2021. Distributed optimal control of the 2D Cahn–Hilliard–Oberbeck–Boussinesq system for nonisothermal viscous two-phase flows, Applied Mathematics and Optimization 84, Suppl. 2, 1219-1279. DOI: https://doi.org/10.1007/s00245-021-09759-7

  23. Peralta, G. and Simon, J.S. 2021. Optimal control for the Navier–Stokes with time delay in the convection: analysis and finite element approximations, Journal of Mathematical Fluid Mechanics 23 (3), Paper No. 56, 49 p. DOI: https://doi.org/10.1007/s00021-021-00577-z

  24. Ronoh, M., Chirove, F., Pedro, S.A., Tchamga, M.S.S., Madubueze, C.E., Madubueze, S.C., Addawe, J., Mwamtobe, P.M. and Mbra, K.R. 2021. Modelling the spread of schistosomiasis in humans with environmental transmission. Applied Mathematical Modelling, Vol. 95, 159–175. DOI: https://doi.org/10.1016/j.apm.2021.01.046

  25. Viernes, J.P.T., Addawe, R.C., Domilies, S.G.S., Libatique, C.P., Dizon, W.T., Gueco, R.E.N. and Tubera-Panes, D.L. 2021. Contact tracing and expanded testing of COVID-19 cases in Baguio City, Philippines. AIP Conference Proceedings, 2423(1), 070021. DOI: https://doi.org/10.1063/5.0075439

  26. Yap, F.E., Estrada, T.J.B. and Macansantos, P. 2021. On dihedral flows of generalized Petersen graphs cellularly embedded in closed orientable surfaces. Matematica Contemporanea, Vol. 48, 181–190. DOI: http://doi.org/10.21711/231766362021/rmc4818


  1. Addawe, R.C. and Magadia, J.C. 2020. Stability analysis of desa optimization algorithm. In Y. D. Sergeyev & D. E. Kvasov (Eds.), Numerical Computations: Theory and Algorithms (pp. 17–31). Springer International Publishing. DOI: https://doi.org/10.1007/978-3-030-40616-5_2

  2. Alangui, W.V. 2020. Beyond songs and dances: Ethnomathematics and the challenge of culture. Revista Latinoamericana de Etnomatemática, Vol. 13 (3), 88–107. URL: https://www.redalyc.org/journal/2740/274065861006/html/

  3. Alangui, W.V. and Domite, M. 2020. Do Carmo on mutual interrogation and Freire’s listening to and speaking with the “Other.” In J. Valle, A. Conrado and C. Coppe (Eds.). o florescer da Grumixama: Raizes, sementes e frutos dad pequisas em Etnomatematica em 20 anos de GEPEm/Feusp. Jundiai, SP: Paco Editorial, pp. 279-307.

  4. Alangui, W.V. 2020. Synthesis. In Alangui, W. V., et. al. Indigenous Concepts and Values on Sustainability among Indigenous Peoples in Tanzania, Nepal and the Philippines. Baguio: Tebtebba Foundation, Inc., pp. 1-26.

  5. Bacani, J.B. and Rabago, J.F.T. 2020. Techniques on solving systems of nonlinear difference equations. In S. Baigent, M. Bohner, & S. Elaydi (Eds.), Progress on Difference Equations and Discrete Dynamical Systems (pp. 165–200). Springer International Publishing. DOI: https://doi.org/10.1007/978-3-030-60107-2_7

  6. Balangcod, A.K.D. and Pabico, J.P. 2020. Automatic Identification of Selected Dicot Plant Species Using Graph Properties from Leaf Venations. Proceedings of the 20th Philippine Computing Science Congress (PCSC 2020), 146-152.

  7. Hill, R., Adem, Ç., Alangui, W.V., Molnár, Z., Aumeeruddy-Thomas, Y., Bridgewater, P., Tengö, M., Thaman, R., Adou Yao, C.Y., Berkes, F., Carino, J., Carneiro da Cunha, M., Diaw, M.C., Díaz, S., Figueroa, V.E., Fisher, J., Hardison, P., Ichikawa, K., Kariuki, P. and Xue, D. 2020. Working with Indigenous, local and scientific knowledge in assessments of nature and nature’s linkages with people. Current Opinion in Environmental Sustainability Vol. 43, 8–20. DOI: https://doi.org/10.1016/j.cosust.2019.12.006

  8. Ignacio, P.S., Bulauan, J.-A. and Manzanares, J.R. 2020. A topology informed random forest classifier for ecg classification. 2020 Computing in Cardiology, 1–4. DOI: https://doi.org/10.22489/CinC.2020.297

  9. Ignacio, P.S., Bulauan, J.-A. and Uminsky, D. 2020. Lumáwig: An efficient algorithm for dimension zero bottleneck distance computation in topological data analysis. Algorithms, Vol. 13 (11), 291. DOI: https://doi.org/10.3390/a13110291

  10. Macansantos, P. S. 2020. Modeling dynamics of political parties with poaching from one party. Journal of Physics: Conference Series, 1593(1), 012013. DOI: https://doi.org/10.1088/1742-6596/1593/1/012013

  11. Peralta, G. 2020. Uniform exponential stability of a fluid-plate interaction model due to thermal effects. Evolution Equations & Control Theory, Vol. 9 (1), 39-60. DOI: https://doi.org/10.3934/eect.2020016

  12. Peralta, G. and Kunisch, K. 2020. Analysis and finite element discretization for optimal control of a linear fluid–structure interaction problem with delay. IMA Journal of Numerical Analysis, Vol. 40 (1), 140–206. DOI: https://doi.org/10.1093/imanum/dry070


  1. Addawe, J., Baoanan, Z. and Addawe, R. 2019. Modeling and experimental data on the dynamics of predation of rice plants and weeds by golden apple snail (Pomacea canaliculata). In M. H. Mohd, N. A. Abdul Rahman, N. N. Abd Hamid, & Y. Mohd Yatim (Eds.), Dynamical Systems, Bifurcation Analysis and Applications (pp. 51–65). Springer. DOI: https://doi.org/10.1007/978-981-32-9832-3_4

  2. Addawe, J.C. and Javellana, L. 2019. A hybridized method for clustering datasets using principal components, selection and rejection methods. AIP Conference Proceedings, 2138(1), 050002. DOI: https://doi.org/10.1063/1.5121107

  3. Addawe, R.C. 2019. Analysis of the SA-like selection operator in differential evolution-simulated annealing (Desa) optimization algorithm. AIP Conference Proceedings, 2184(1), 060067. DOI: https://doi.org/10.1063/1.5136499

  4. Bacani, J.B. and Rabago, J.F.T. 2019. Behaviour of two-dimensional competitive system of nonlinear difference equations of higher order. International Journal of Dynamical Systems and Differential Equations, Vol. 9 (1), 14–43. DOI: https://doi.org/10.1504/IJDSDE.2019.098409

  5. Capco, J. and Manongsong, S.M. 2019. Implementing hupf algorithm for the inverse kinematics of general 6r/p manipulators. Computer Algebra in Scientific Computing, 78–90. DOI: https://doi.org/10.1007/978-3-030-26831-2_6

  6. Collera, J.A. 2019. Numerical continuation and bifurcation analysis in a harvested predator-prey model with time delay using dde-biftool. In M. H. Mohd, N. A. Abdul Rahman, N. N. Abd Hamid, & Y. Mohd Yatim (Eds.), Dynamical Systems, Bifurcation Analysis and Applications (pp. 225–241). Springer. DOI: https://doi.org/10.1007/978-981-32-9832-3_12

  7. Collera, J.A. 2019. Queues with choice from a symmetry perspective. In I. Faragó, F. Izsák, & P. L. Simon (Eds.), Progress in Industrial Mathematics at ECMI 2018 (pp. 537–542). Springer International Publishing. DOI: https://doi.org/10.1007/978-3-030-27550-1_68

  8. Addawe, R.C. 2019. Analysis of the indicators of students’ performance in undergraduate mathematics program. AIP Conference Proceedings, 2184(1), 050004. DOI: https://doi.org/10.1063/1.5136392

  9. Ignacio, P.S., Dunstan, C., Escobar, E., Trujillo, L. and Uminsky, D. 2019. Classification of single-lead electrocardiograms: Tda informed machine learning. 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA), 1241–1246. DOI: https://doi.org/10.1109/ICMLA.2019.00204

  10. Ignacio, P.S., Dunstan, C., Escobar, E., Trujillo, L. and Uminsky, D. 2019. Classification of single-lead electrocardiograms: Tda informed machine learning. 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA), 1241–1246. DOI: https://doi.org/10.1109/ICMLA.2019.00204

  11. Macansantos, P.S. 2019. Mathematical models of heterogeneity in cancer cell growth: A review. Journal of Physics: Conference Series, 1366(1), 012010. DOI: https://doi.org/10.1088/1742-6596/1366/1/012010

  12. Padilla, J.R.F., Pilar, K.C.N., Bitanga, C.A.G., Bumengeg, L.N. and Addawe, R.C. 2019. Incidence of food and water-borne diseases in Baguio City. AIP Conference Proceedings, 2138(1), 050024. DOI: https://doi.org/10.1063/1.5121129

  13. Pasion, A.M. and Collera, J.A. 2019. Delay-induced stability switches in an SIRS epidemic model with saturated incidence rate and temporary immunity. Journal of Physics: Conference Series, 1298(1), 012006. DOI: https://doi.org/10.1088/1742-6596/1298/1/012006

  14. Pasion, A.M. and Collera, J.A. 2019. Stability and Hopf bifurcation analysis of an SIS epidemic model with latency and nonlinear incidence rate. AIP Conference Proceedings, 2184(1), 060013. DOI: https://doi.org/10.1063/1.5136445


  1. Alangui W.V. 2018. Synthesis. In: Tamayo A.L, de Chavez, R. (eds) Customary Tenure Systems and REDD+: Ensuring Benefits for Indigenous Peoples. Tebtebba Foundation, Philippines.

  2. Alangui W.V., Tauli-Corpuz V., Riamit K.O., Mairena D., Moreno E., Muller W., Lakon F., Unjing P., Andi V., Ngiuk E., Alloy S. and Efraim B. 2018. Indigenous knowledge for climate change assessment and adaptation. Indigenous knowledge of climate change assessment and adaptation, D. Nakashima, I. Krupnik and J. RUbis, eds., Cambridge: Cambridge University Press. DOI: https://doi.org/10.1017/9781316481066.008

  3. Alangui, W. 2018. Building Stone Walls: A Case Study from the Philippines. In A. Rogers, B. Street, K. Yasukawa & K. Jackson (Eds.). Numeracy as Social Practice: Global and Local Perspectives. Abingdon: Routledge.

  4. Bacani, J.B. and Rabago, J.F.T. 2018. An analytical approach in solving a system of nonlinear difference equations. Nat. Res. Counc. Philippines Res. J, Vol. 17 (3), 37-51.

  5. Bacani, J.B. and Rabago, J.F.T. 2018. Class of admissible perturbations of special expressions involving completely monotonic functions. Italian Journal of Pure and Applied Mathematics, (40), 410–423. URL: https://ijpam.uniud.it/online_issue/201840/36-Bacani-Rabago.pdf

  6. Bacani, J.B. and Soriano, J.M. 2018. Statistics and probabilty: Mathematics for grade 11. (A. E. C. Domingo, Ed.). EPHESIANS Publishing, Inc.

  7. Balilo, A.T. and Collera, J.A. 2018. Stability and bifurcation analysis of three-species predator-prey model with non-monotonic delayed predator response. AIP Conference Proceedings, 1937(1), 020003. DOI: https://doi.org/10.1063/1.5026075

  8. Buono, L. and Collera, J.A. 2018. Discrete rotating waves in neutral functional differential equations: Symmetric centre manifolds and bifurcations. Journal of Abstract Differential Equations and Applications, Vol. 9 (1), 1-29

  9. Collera, J.A. and Balilo, A.T. 2018. Dynamics of a delayed intraguild predation model with harvesting. AIP Conference Proceedings, 1937(1), 020006. DOI: https://doi.org/10.1063/1.5026078

  10. Collera, J.A. and Magpantay, F.M.G. 2018. Dynamics of a stage structured intraguild predation model. In D. M. Kilgour, H. Kunze, R. Makarov, R. Melnik, & X. Wang (Eds.), Recent Advances in Mathematical and Statistical Methods (pp. 327–337). Springer International Publishing. DOI: https://doi.org/10.1007/978-3-319-99719-3_30

  11. Diza, H.M.R. and Addawe, J.M. 2018. Leslie gower type predator prey model with constant-effort predator harvesting. COMPUSOFT, Vol. 7 (11), 2898-2903.

  12. Domogo, A.A. and Collera, J.A. 2018. Symmetric solutions to a system of mutually delay-coupled oscillators with conjugate coupling. Journal of Physics: Conference Series, 1123, 012028. DOI: https://doi.org/10.1088/1742-6596/1123/1/012028

  13. Fernandez, F.R.Q., Montero, N.B., Po III, R.B., Addawe, R.C. and Diza, H.M.R. 2018. Forecasting manila south harbor mean sea level using seasonal arima models. Journal of Technology Management and Business, Vol. 5 (1), 1–7. DOI: https://doi.org/10.30880/jtmb.2018.05.01.001

  14. Peralta, G. 2018. Feedback stabilization of a linear fluid–membrane system with time delay. In C. Klingenberg & M. Westdickenberg (Eds.), Theory, Numerics and Applications of Hyperbolic Problems II (pp. 437–449). Springer International Publishing. DOI: https://doi.org/10.1007/978-3-319-91548-7_33

  15. Peralta, G. 2018 . Stabilization of the wave equation with acoustic and delay boundary conditions. Semigroup Forum, Vol. 96 (2), 357-376. DOI: https://doi.org/10.1007/s00233-018-9930-9

  16. Rabago, J.F.T. and Bacani, J.B. 2018. Shape optimization approach for solving the Bernoulli problem by tracking the Neumann data: A Lagrangian formulation. Communications on Pure & Applied Analysis, Vol. 17 (6), 2683. DOI: https://doi.org/10.3934/cpaa.2018127

  17. Rabago, J. and Collera, J. 2018. Hopf bifurcation in a delayed intraguild predation model. Southeast Asian Bulletin of Mathematics, Vol. 42 (5), 691-709.


  1. Addawe, J. and Gabriel, P. 2017. Parameter optimization of vertical decomposition with genetic algorithm for multiple sequence alignment. Proceedings of the 17th Philippine Computing Science Congress (PCSC2017), 152-157.

  2. Addawe, J.M. and Javellana, L. (2017) Air Pollution Simulation in Baguio City, Philippines using Genetic Algorithm. In PCSC Conference Proceedings 2017. CSP Inc.

  3. Addawe, R.C., Addawe, J.M., Sueño, M.R.K. and Magadia, J. C. 2017. Differential evolution-simulated annealing for multiple sequence alignment. Journal of Physics: Conference Series, 893, 012061. DOI: https://doi.org/10.1088/1742-6596/893/1/012061

  4. Alamag, K.M.N.B. and Addawe, J.M. 2017. Parameter optimization of differential evolution algorithm for automatic playlist generation problem. AIP Conference Proceedings, 1905(1), 040005. DOI: https://doi.org/10.1063/1.5012193

  5. Alangui W.V. (2017) Ethnomathematics and Culturally Relevant Mathematics Education in the Philippines. In: Rosa M., Shirley L., Gavarrete M., Alangui W. (eds) Ethnomathematics and its Diverse Approaches for Mathematics Education. ICME-13 Monographs. Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-59220-6_8

  6. Alangui, W.V. and Shirley, L. 2017. Some conclusions about ethnomathematics: Looking ahead. In M. Rosa, L. Shirley, M. E. Gavarrete, & W. V. Alangui (Eds.), Ethnomathematics and its Diverse Approaches for Mathematics Education (pp. 357–362). Springer International Publishing. DOI: https://doi.org/10.1007/978-3-319-59220-6_15

  7. Alangui, W.V., Ichikawa, K. and Takahashi, Y. (Eds.). (2017). Report of the IPBES-JBF sub-regional dialogue workshop on indigenous and local knowledge (ILK) for south-east and north-east asia sub-region (14–17 Oct. 2016 in chiang Mai). Institute for Global Environmental Strategies.

  8. Aquino, R.L., Alcantara, N.L.M.T. and Addawe, R.C. 2017. A hybrid ARIMA and neural network model applied to forecast catch volumes of Selar crumenophthalmus. AIP Conference Proceedings, 1905(1), 050006. DOI: https://doi.org/10.1063/1.5012225

  9. Bacani, J.B. and Soriano, J.M. 2017. Business mathematics for senior high school. C & E Publishing, Inc.

  10. Bacani, J.B. and Soriano, J.M. 2017. General mathematics: Mathematics for grade 11. (A. E. C. Domingo, Ed.). EPHESIANS Publishing, Inc.

  11. Bacani, J.B., Padilla, J.R.C. and Domingo, A.E.C. 2017. Empowering through math (grade 10). EPHESIANS Publishing Inc.

  12. Cawiding, O.R., Natividad, G.M.R., Bato, C.V. and Addawe, R.C. 2017. Forecasting typhoid fever incidence in the Cordillera administrative region in the Philippines using seasonal ARIMA models. AIP Conference Proceedings, 1905(1), 050012. DOI: https://doi.org/10.1063/1.5012231

  13. Collera, J.A. 2017. Classification of codimension-one bifurcations in a symmetric laser system. In P. Quintela, P. Barral, D. Gómez, F. J. Pena, J. Rodríguez, P. Salgado, & M. E. Vázquez-Méndez (Eds.), Progress in Industrial Mathematics at ECMI 2016 (pp. 569–576). Springer International Publishing. DOI: https://doi.org/10.1007/978-3-319-63082-3_88

  14. Fernandez, F.R., Po, R., Montero, N. and Addawe, R. 2017. Prediction of South China sea level using seasonal ARIMA models. AIP Conference Proceedings, 1905(1), 050018. DOI: https://doi.org/10.1063/1.5012237

  15. Karki, M., Hill, R., Xue, D., Alangui, W., Ichikawa, K. and Bridgewater, P. (Eds.). 2017. Knowing our lands and resources: indigenous and local knowledge and practices related to biodiversity and ecosystem services in asia (Knowledges of Nature ed., Vol. 10). UNESCO.

  16. Libatique, C.P., Pajimola, A.K.J. and Addawe, J.M. 2017. Bifurcation analysis of dengue transmission model in Baguio City, Philippines. AIP Conference Proceedings, 1905(1), 030023. DOI: https://doi.org/10.1063/1.5012169

  17. Magsakay, C.B., De Vera, N.U., Libatique, C.P., Addawe, R.C. and Addawe, J. M. 2017. Treatment on outliers in UBJ-SARIMA models for forecasting dengue cases on age groups not eligible for vaccination in Baguio City, Philippines. AIP Conference Proceedings, 1905(1), 050028. DOI: https://doi.org/10.1063/1.5012247

  18. Natividad, G.M.R., Cawiding, O.R. and Addawe, R.C. 2017. An application of seasonal ARIMA models on group commodities to forecast Philippine merchandise exports performance. AIP Conference Proceedings, 1905(1), 050031. DOI:L https://doi.org/10.1063/1.5012250

  19. Rabago, J.F.T. and Bacani, J.B. 2017, Shape optimization approach to the Bernoulli problem: A Langragian formulation. IAENG International Journal of Applied Mathematics, Vol. 47 (4), 417-424. URL: https://www.iaeng.org/IJAM/issues_v47/issue_4/IJAM_47_4_07.pdf

  20. Rabago, J.F.T. and Bacani, J.B. 2017. On two nonlinear difference equations. Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis, Vol. 24 (6), 375-394.

  21. Rosa M., Shirley L., Gavarrete M. and Alangui W.V. (eds) 2017. Ethnomathematics and its Diverse Approaches for Mathematics Education. ICME-13 Monographs. Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-59220-6_8

  22. Rosa, M., Shirley, L., Gavarrete, M.E. and Alangui, W.V. 2017. Topic study group no. 35: Role of ethnomathematics in mathematics education. In G. Kaiser (Ed.), Proceedings of the 13th International Congress on Mathematical Education (pp. 543–548). Springer International Publishing. DOI: https://doi.org/10.1007/978-3-319-62597-3_62


  1. Addawe, J., Pajimola, A.K. 2016. Dynamics of climate-based malaria transmission model with age-structured human population. AIP Conference Proceedings, 1782(1), 040002. DOI: https://doi.org/10.1063/1.4966069

  2. Addawe, R.C., Addawe, J.M. and Magadia, J. C. 2016. Alternative robust estimators for autoregressive models with outliers using differential evolution algorithm. AIP Conference Proceedings, 1787(1), 020009. DOI: https://doi.org/10.1063/1.4968058

  3. Addawe, R.C., Addawe, J.M. and Magadia, J.C. 2016. Optimization of seasonal ARIMA models using differential evolution—Simulated annealing (Desa) algorithm in forecasting dengue cases in Baguio City. AIP Conference Proceedings, 1776(1), 090021. DOI: https://doi.org/10.1063/1.4965385

  4. Alangui, W.V. 2016. Framing the Ethnomathematical Process. In B. Tapang & GC Subido (Eds.) Hoy, Boy! A Festschrift for Delfin L. Tolentino, Jr., Baguio: Cordillera Studies Center.

  5. Alangui, W.V. and Rosa, M. 2016. Role of Ethnomathematics in Mathematics Education. In M. Rosa, U. D’Ambrosio, D. Clark Orey, L. Shirley, W. V. Alangui, P. Palhares & ME Gavarette. (Eds.). Current and Future Perspectives of Ethnomathematics as a Program. Cham: Springer International Publishing AG, pp. 31-37. DOI: https://doi.org/10.1007/978-3-319-62597-3_62

  6. Bacani, J.B. and Peichl, G. 2016. The second-order Eulerian derivative of a shape functional of a free boundary problem. IAENG International Journal of Applied Mathematics, 46(4), 425-436 URL: https://www.iaeng.org/IJAM/issues_v46/issue_4/IJAM_46_4_04.pdf

  7. Bacani, J.B. and Rabago, J.F.T. 2016. Some characteristics of the closed-form solutions of two nonlinear difference equations. AIP Conference Proceedings, 1739(1), 020004. DOI: https://doi.org/10.1063/1.4952484

  8. Bacani, J.B. and Rabago, J.T. 2015. On two nonlinear difference equations. Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis, Vol. 24 (6), 375-394.

  9. Bacani, J. B., Sumera, S., Gavina, B. and Soriano, S. 2016. Basic calculus (for senior high school). Books Atbp. Pushlishing Corp.

  10. Blas, N.T., Addawe, J.M. and David, G. 2016. A mathematical model of transmission of rice tungro disease by Nephotettix Virescens. AIP Conference Proceedings, 1787(1), 080015. DOI: https://doi.org/10.1063/1.4968154

  11. Collera, J.A. 2016. Harvesting in delayed food web model with omnivory. AIP Conference Proceedings 1705, 020033. DOI: https://doi.org/10.1063/1.4940281.

  12. Collera, J.A. 2016. Symmetry-breaking bifurcations in laser systems with all-to-all coupling. In: Belair J., Frigaard I., Kunze H., Makarov R., Melnik R., Spiteri R. (eds) Mathematical and Computational Approaches in Advancing Modern Science and Engineering. Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-30379-6_8.

  13. Domogo, A.A. and Collera, J.A. 2016. Classification of codimension-one bifurcations in a tetrad of lasers with feed forward coupling. AIP Conference Proceedings 1787, 080002. DOI: https://doi.org/10.1063/1.4968141

  14. Garces, I.J.L., Bacani, J.B., Eden, R.B., Estrada, G.R.A., Francisco, F.F. and Vidallo, M.A.J. 2016. Teaching guide for senior high school: Precalculus. Commission on Higher Education, Philippines.

  15. Ignacio, P.S., Addawe, J. and Nable, J. 2016. P-adic Qth Roots Via Newton-Raphson Method. Thai Journal of Mathematics.14(2): 417-429. URL: http://thaijmath.in.cmu.ac.th/index.php/thaijmath/article/viewFile/937/817

  16. J. Ascaño, J.L.L Martin Jr., A.D. Olofernes and M.A.C. Tolentino. 2016. Precalculus Leaner's Material, Department of Education, Philippines, 290 p.

  17. Lapaan, R. D., Collera, J.A. and Addawe, J.M. 2016. Mathematical analysis of tuberculosis transmission model with delay. AIP Conference Proceedings, 1787(1), 080022. DOI: https://doi.org/10.1063/1.4968161

  18. Padilla, J.R.C., Bay, L.O. and Bacani, J.B. 2016. Amazing maths (grade 5). EPHESIANS Publishing Inc.

  19. Peralta, G. 2016. Stabilization of viscoelastic wave equations with distributed or boundary delay. Zeitschrift fuer Analysis und Ihre Anwendungen Vol. 35 (3), 359-381. DOI: https://doi.org/10.4171/zaa/1569

  20. Peralta, G. 2016. A fluid–structure interaction model with interior damping and delay in the structure. Zeitschrift Für Angewandte Mathematik Und Physik, Vol. 67 (1), Article ID 10, 20 p. DOI: https://doi.org/10.1007/s00033-015-0611-1

  21. Peralta, G. and Propst, G. 2016. Existence of local-in-time classical solutions of a model of flow in a bounded elastic tube. Mathematical Methods in the Applied Sciences, Vol. 39 (18), 5315–5329. DOI: https://doi.org/10.1002/mma.3917

  22. Peralta, G. and Propst, G. 2016. Global smooth solution to a hyperbolic system on an interval with dynamic boundary conditions. Quarterly of Applied Mathematics, Vol. 74 (3), 539–570. DOI: https://doi.org/10.1090/qam/1432

  23. Peralta, G. and Propst, G. 2016. Nonlinear and linear hyperbolic systems with dynamic boundary conditions. Bulletin of the Brazilian Mathematical Society, New Series, Vol. 47 (2), 671–683. DOI: https://doi.org/10.1007/s00574-016-0177-3

  24. Peralta, G. and Propst, G. 2016. Well-posedness and regularity of linear hyperbolic systems with dynamic boundary conditions. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, Vol. 146 (5), 1047–1080. DOI: https://doi.org/10.1017/S0308210515000827

  25. Rabago, J.F.T. and Bacani, J.B. 2016. Steffensen’s analogue for approximating roots of p-adic polynomial equations. AIP Conference Proceedings, 1776(1), 090038. DOI: https://doi.org/10.1063/1.4965402

  26. Rosa, M., D’Ambrosio, U., Orey, D.C., Shirley, L., Alangui, W.V., Palhares, P. and Gavarrete, M.E. 2016. Current and future perspectives of ethnomathematics as a program. Springer International Publishing. DOI: https://doi.org/10.1007/978-3-319-30120-4

  27. Sueno, M.R.K. and Addawe, J.M. 2016. Optimizing genetic algorithm parameters for multiple sequence alignment based on structural information. Advanced Studies in Biology Vol. 8, 9–16. DOI: https://doi.org/10.12988/asb.2016.51250


  1. Ignacio, P.S., Addawe, J.M. and Nable, J.A. 2015. P-adic qth roots via Newton-Raphson method. Thai Journal of Mathematics, 14(2). URL: http://thaijmath.in.cmu.ac.th/index.php/thaijmath/article/view/937

  2. Addawe, R.C. and Baoanan, Z.G. 2015. Ensembling classifiers: An application to food type classification of genus Conus. International Journal on Applied Mathematics and Statistics, 53(4). URL: http://www.ceser.in/ceserp/index.php/ijamas/article/view/3679/0

  3. Bacani, J.B. and Rabago, J.T. 2015. The complete set of solutions of the Diophantine equation px + qy = z2 for twin primes p and q. International Journal of Pure and Applied Mathematics, Vol. 104 (4), 517-521. DOI: http://doi.org/10.12732/ijpam.v104i4.3

  4. Bacani, J.B. and Rabago, J.T. (2015). On the zeros of a family of polynomials and an application in integer sequences. Global Journal of Pure and Applied Mathematics, Vol. 11 (5), 3229-3239.

  5. Bacani, J.B. and Rabago, J.T. 2015. On generalized Fibonacci numbers. Applied Mathematical Sciences, Vol. 9 (73), 3611-3622. DOI: https://doi.org/10.12988/ams.2015.5163

  6. Bacani, J.B. and Rabago, J.T. 2015. On linear recursive sequences with coefficients in arithmetic-geometric progressions. Applied Mathematical Sciences, Vol. 9 (52), 2595-2607. DOI: http://doi.org/10.12988/ams.2015.5163

  7. Bacani, J.B. 2015. On the shape gradient and shape Hessian of a shape functional subject to Dirichlet and Robin conditions. Applied Mathematical Sciences, Vol. 8 (108), 5387-5397. DOI: https://doi.org/10.12988/ams.2014.47583

  8. Bacani, J.B. and Rabago, J.T. 2015. On the second-order shape derivative of the Kohn-Vogelius objective functional using the velocity method. International Journal of Differential Equations, Vol. 2015, Article ID 954836. URL: https://doi.org/10.1155/2015/954836

  9. Collera, J.A. 2015. Stability and bifurcations in delayed three-species model with generalized Holling-type functional response. Proceedings of 10th Taiwan-Philippines Symposiumon Analysis, Airiti Press Inc., Taipei, 179-183. DOI: http://10.6140/AP.9789860438437.022

  10. Collera, J.A. 2015, Symmetry-breaking bifurcations in two mutually delay-coupled lasers. International Journal of Philippine Science and Technology, Vol. 1 (1), 17-21. URL: http://philscitech.org/2015/1/1/005.pdf

  11. Buono, P-L., and Collera, J.A. 2015, Symmetry-breaking bifurcations in rings of delay-coupled semiconductor lasers. SIAM Journal on Applied Dynamical Systems, Vol. 14 (4), 1868-1898. DOI: https://doi.org/10.1137/140986487

  12. Macansantos, P.S. 2015. A stability result for fixed point iteration in partial metric space. International Journal of Mathematical Analysis, Vol. 9 (52), 2591-2597. DOI: http://doi.org/10.12988/ijma.2015.58188

  13. Peralta, G. and Propst G. 2015. Stability and boundary controllability of a linearized model of flow in an elastic tube. ESAIM: Control, Optimisation and Calculus of Variations, Vol. 21 (2), 583-601. DOI: http://doi.org/10.1051/cocv/2014039


  1. Addawe, R.C. and Magadia, J.C. 2014. Differential Evolution-Simulated Annealing (DESA) algorithm for fitting autoregressive models to data. International Conference on Engineering and Applied Sciences Optimization, 434-451. DOI: http://doi.org/10.13140/2.1.2391.3289

  2. Bacani, J.B. and Peichl, G. 2014. Solving the exterior Bernoulli problem using the shape derivative approach. In: Mohapatra, R., Giri, D., Saxena, P., Srivastava, P. (eds) Mathematics and Computing 2013. Springer Proceedings in Mathematics & Statistics, Vol 91. Springer, New Delhi. DOI: https://doi.org/10.1007/978-81-322-1952-1_17

  3. Bacani, J.B. 2014. Another class of admissible perturbations of special expressions. International Journal of Mathematical Analysis, Vol. 8 (1), 1-8. DOI: https://doi.org/10.12988/ijma.2014.311287

  4. Bacani, J.B. and Rabago, J.T. 2014. On the Diophantine equation 3^x + 5^y + 7^z = w^2. Konuralp Journal of Mathematics, Vol. 2 (2), 64-69. URL: https://dergipark.org.tr/tr/download/article-file/275599

  5. Bacani, J.B. and Peichl, G. 2014. The second-order shape derivative of Kohn–Vogelius-type cost functional using the boundary differentiation approach. Mathematics, Vol. 2 (4), 196-217. DOI: https://doi.org/10.3390/math2040196

  6. Collera, J.A. 2014. Stability switch and periodic solutions in delayed three-species model with Holling type III functional response. Philippine Science Letters, Vol. 7 (1), 67-72. URL: http://philsciletters.org/2014/PSL%202014-vol07-no01-p067-072%20Collera.pdf

  7. Collera, J.A. 2014. Bifurcations in selayed Lotka-Volterra intraguild predation model. Matimyas Matematika, Vol. 37 (1-2), 11-22. URL: http://mathsociety.ph/matimyas/images/Collera.pdf

  8. Macansantos, P.S. and Quaranta V. 2014. Quantitative approaches to heterogeneity and growth variability in cell populations. In: Delitala, M., Ajmone Marsan, G. (eds) Managing Complexity, Reducing Perplexity. Springer Proceedings in Mathematics & Statistics, Vol 67. Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-03759-2_2

  9. Macansantos, P.S. 2014. A generalized Nadler’s theorem in dislocated quasi-metric spaces. International Journal of Mathematical Analysis, Vol. 8 (49), 2445-2450. DOI: https://doi.org/10.12988/ijma.2014.49275

  10. Peralta, G. and Propst G. 2014. Local well-posedness of a class of hyperbolic PDE–ODE systems on a bounded interval. Journal of Hyperbolic Differential Equations, Vol. 11 (4), 705-747. DOI: https://doi.org/10.1142/S0219891614500222


  1. Ignacio, P.S., Addawe, J.M., Alangui, W.V. and Nable, J.A. 2013. Computation of square and cube roots of p-adic numbers via Newton-Raphson method. Journal of Mathematics Research, Vol. 5 (2). DOI: https://doi.org/10.5539/jmr.v5n2p31

  2. Bacani, J.B. and Peichl, G. 2013. On the first-order shape derivative of the Kohn-Vogelius cost functional of the Bernoulli problem. Abstract and Applied Analysis, Vol. 2013, Article ID 384320. DOI: https://doi.org/10.1155/2013/384320

  3. Collera, J.A. 2013. Stability and bifurcations in delayed three-species model. Advanced Studies in Biology, 5(11), 455-464 DOI: https://doi.org/10.12988/asb.2013.31042

  4. Roque, M.P. and Collera, J.A. 2013. Admissible perturbations of differential expressions with exponentially decaying coefficients preserving the nullities. International Journal of Mathematical Analysis, Vol. 7 (57), 2803-2810. DOI: https://doi.org/10.12988/ijma.2013.310250

  5. Ignacio, P.P. 2013. On the square and cube roots of p-adic numbers. Journal of Mathematical and Computational Science, Vol. 3 (4), 993-1003. URL: http://scik.org/index.php/jmcs/article/view/1079

  6. Macansantos, P.S. 2013. A generalized Nadler-type theorem in partial metric spaces. International Journal of Mathematical Analysis, Vol. 7 (7), 343-348. URL: http://www.m-hikari.com/ijma/ijma-2013/ijma-5-8-2013/macansantosIJMA5-8-2013.pdf

  7. Gregorio, R.O. and Macansantos, P.S. 2013. Fixed point theorems and stability of fixed point sets of multivalued mappings. Advances in Fixed Point Theory, Vol. 3 (4), 735-746. URL: https://scik.org/index.php/afpt/article/view/1242