CONTACT US

PUBLICATIONS




  1. Marigmen, J.L.D.C., Addawe, R.C. 2024. Modelling Baguio City COVID-19 trend during Alert Level 1 using Non-Homogeneous Poisson Process. AIP Conference Proceedings. 3016(1), 70003. DOI: https://doi.org/10.1063/5.0192501

  2. Garcia, D.B.A., Addawe, R.C. 2024. Bayesian Hierarchical Models in Estimating Relative Risk of HIV Prevalence in Ilocos Region. AIP Conference Proceedings. 3016(1), 70007. DOI: https://doi.org/10.1063/5.0192483

  3. Padilla, J.R.F., Baniaga, E.D., Addawe, R.C., Viernes, J.P.T. 2024. An Application of the Lotka-Volterra Model with Time Series Analysis to Forecast Spotify Streams of Two Genres. AIP Conference Proceedings. 3016(1), 70001. DOI: https://doi.org/10.1063/5.0192499

  4. Pilay, J.G., Werdenberg, A.J.M. 2024. Forecasting Vegetable Production in Benguet, Philippines Using SARIMA Process With Mathematical Transformations. AIP Conference Proceedings. 3016(1), 70009. DOI: https://doi.org/10.1063/5.0192466

  5. Arista, M.J.C., Gaudillo, S.D. 2024. Spatio-temporal Analysis of Rice Yield and Volume of Rice Production in Cagayan, Philippines. AIP Conference Proceedings. 3016(1), 70010. DOI: https://doi.org/10.1063/5.0192606

  6. Bitanga, C.A.G., Addawe, R.C., Viernes, J.P.T. 2024. A mathematical model for the control of COVID-19 by vaccination in Baguio City. AIP Conference Proceedings. 3016(1), 20008. DOI: https://doi.org/10.1063/5.0192625

  7. Peralta, G. 2024. Optimal control for non-isothermal binary viscoelastic and incompressible flows with stress diffusion. Communications on Pure and Applied Analysis, pp. 1-78. DOI: https://doi.org/10.3934/cpaa.2024068

  8. Peralta, G. 2024. Partially Dissipative Viscous System of Balance Laws and Application to Kuznetsov-Westervelt Equation. Acta Applicandae Mathematicae, 193, 8. https://doi.org/10.1007/s10440-024-00686-7


  1. Taclay, R.J., Bacani, J.B. 2023. On the fermat quartic 2 px 4+ y 4= z 4. AIP Conference Proceedings. 2896(1), 30006. DOI: https://doi.org/10.1063/5.0177129

  2. Taclay, K.D., Taclay, R.J., Sardon, J.L. 2023. Spatio-temporal analysis of animal bite cases in Nueva Vizcaya, Philippines. AIP Conference Proceedings. 2896(1), 50019. DOI: https://doi.org/10.1063/5.0177127

  3. Alindayu, R.C., Licnachan, L.O.C., Luzadas, R.L., Ignacio, P.S.P., Onda, D.F.L. 2023. Moving towards open data, public access, and information sharing to combat marine plastics pollution in the Philippines and the Southeast Asian region. Ocean and Coastal Management. 243, 106771. DOI: https://doi.org/10.1016/j.ocecoaman.2023.106771

  4. Domogo, A.A., Reinstrup, P., Ottesen, J.T. 2023. Mechanistic-mathematical modeling of intracranial pressure (ICP) profiles over a single heart cycle. The fundament of the ICP curve form. Journal of Theoretical Biology. 564, 111451. DOI: https://doi.org/10.1016/j.jtbi.2023.111451

  5. Llenos, L.C.P., Miranda, I.L.G., Domogo, A.A., Collera, J.A. 2023. Mathematical Modeling of Antibiotic Resistance in Hospital with Dysbiosis. Chiang Mai Journal of Science. 50(3), e2023027. DOI: https://doi.org/10.12982/CMJS.2023.027

  6. Ignacio, P.S. 2023. Detection of Fibrillatory Episodes in Atrial Fibrillation Rhythms via Topology-informed Machine Learning. ACM International Conference Proceeding Series. 22-27. DOI: https://doi.org/10.1145/3589572.3589576

  7. Mina, R.J.S., Bacani, J.B. 2023. On the Diophantine Equation px + (p + 5)y = z2, where p is Odd Prime. Thai Journal of Mathematics. 21(1), 67-75.

  8. Maza, G.G., Zante, K.J.G., Pagunsan, C.K.L., Doctolero, A.R.A., Alanas, R.P.B., Libatique, C.P., Addawe, R.C. 2023. Spatial Analysis: Cases of Acute Bloody Diarrhea in Baguio City, Philippines from 2015 to 2018. Lecture Notes in Networks and Systems. 855 LNNS, 125-133. DOI: https://doi.org/10.1007/978-3-031-50158-6_13

  9. Balangcod, A.K.D., Pabico, J.P. 2023. Extracting Graphs from Plant Leaf Venations Using Image Processing. Lecture Notes in Networks and Systems. 798 LNNS, 131-143. DOI: https://doi.org/10.1007/978-981-99-7093-3_8

  10. Alindayu, R., Samuel Ignacio, P., Licnachan, L.O., Luzadas, R., Onda, D.F. 2023. Learning from the field: practical and technical learnings in implementing a national research and training program for quantifying and classifying marine plastics pollution in the Philippines. OCEANS 2023 - Limerick, OCEANS Limerick 2023. . DOI: https://doi.org/10.1109/OCEANSLimerick52467.2023.10244569

  11. Calabia, E.X.P., Bacani, J.B. 2023. On the Solutions of the Diophantine Equation ua+ vb= z2 for Some Prime Pairs u and v. Lecture Notes in Networks and Systems. 697 LNNS, 209-221. DOI: https://doi.org/10.1007/978-981-99-3080-7_16

  12. Taclay, R.J., Dizon-Taclay, K. 2023. The Sum of Lorentz Matrices in M2(Zn). Lecture Notes in Networks and Systems. 697 LNNS, 379-384. DOI: https://doi.org/10.1007/978-981-99-3080-7_28

  13. Mina, R.J.S., Bacani, J.B. 2023. Elliptic Curves of Type y2 = x3 − 3pqx Having Ranks Zero and One. Malaysian Journal of Mathematical Sciences. 17(1), 67-76. DOI: https://doi.org/10.47836/mjms.17.1.06

  14. Peralta, G. 2023. Stability properties of multidimensional symmetric hyperbolic systems with damping, differential constraints and delay. Proceedings of the Royal Society of Edinburgh Section A: Mathematics. . DOI: https://doi.org/10.1017/prm.2023.93

  15. Mina, R.J.S., Bacani, J.B. 2023. On nonsolvability of exponential Diophantine equations via transformation to elliptic curves. Italian Journal of Pure and Applied Mathematics. (49)196-205.

  16. Manongsong, S.M., Capco, J. 2023. Inverse Kinematics of Six-Joint Special Manipulators. 2023 8th International Conference on Control and Robotics Engineering, ICCRE 2023. 172-176. DOI: https://doi.org/10.1109/ICCRE57112.2023.10155593

  17. Mohd, M.H., Nguyen-Huu, T., Park, J., Addawe, J.M., Haga, H. 2023. Editorial: Advances in data-driven approaches and modeling of complex systems. Frontiers in Applied Mathematics and Statistics. 9, 1215077. DOI: https://doi.org/10.3389/fams.2023.1215077

  18. Gayo, W.S., Bacani, J.B. 2023. On the Solutions of Some Mersenne Prime-Involved Diophantine Equations. International Journal of Mathematics and Computer Science. 18(3), 487-495.

  19. Peralta, G. 2023. Optimal Borel Measure-Valued Controls to the Viscous Cahn-Hilliard-Oberbeck-Boussinesq Phase-Field System on Two-Dimensional Bounded Domains. ESAIM - Control, Optimisation and Calculus of Variations. 29, 32. DOI: https://doi.org/10.1051/cocv/2023025

  20. Javellana, L. 2023. A Landslide Model Using a 3D Ultradiscrete Burgers’ Equation. Lecture Notes in Networks and Systems. 556 LNNS, 190-199. DOI: https://doi.org/10.1007/978-3-031-17601-2_19


  1. Peralta, G. 2022. Error estimates for mixed and hybrid FEM for elliptic optimal control problems with penalizations. Advances in Computational Mathematics. 48(6), 70. DOI: https://doi.org/10.1007/s10444-022-09980-0

  2. Taclay, K.D., Taclay, R.J. 2022. Spatio-temporal analysis of crime-related incidents in Bayombong, Nueva Vizcaya. AIP Conference Proceedings. 2472, 50024. DOI: https://doi.org/10.1063/5.0092708

  3. Marigmen, J.L.D.C., Addawe, R.C. 2022. Climatic influences on dengue incidence in Baguio city, Philippines: A multiple linear regression approach. AIP Conference Proceedings. 2472, 50017. DOI: https://doi.org/10.1063/5.0092781

  4. Mina, R.J.S., Addawe, R.C. 2022. A social network analysis of COVID-19 transmission in Rosales, Pangasinan, Philippines. AIP Conference Proceedings. 2472, 50018. DOI: https://doi.org/10.1063/5.0092746

  5. Omadlao, Z.R.D., Cabrales, J.M.A., Cristobal, S.C.M., Dee, M.V.A., Tadeo, J.R.V., Marigmen, J.L.D.C., Pajarillo, R.R. 2022. Machine learning-based dengue forecasting system for Irisan, Baguio city, Philippines. AIP Conference Proceedings. 2472, 40019. DOI: https://doi.org/10.1063/5.0092930

  6. Taclay, K.D., Taclay, R.J., Dizon, W.T., Addawe, R.C. 2022. COVID-19 pandemic in Baguio city, Philippines: A spatio-temporal analysis. AIP Conference Proceedings. 2472, 20005. DOI: https://doi.org/10.1063/5.0092722

  7. Peralta, G. 2022. Weak and very weak solutions to the viscous Cahn–Hilliard–Oberbeck–Boussinesq phase-field system on two-dimensional bounded domains. Journal of Evolution Equations. 22(1), 12. DOI: https://doi.org/10.1007/s00028-022-00765-y

  8. Collera, J.A. 2022. Bubbling, Bistable Limit Cycles and Quasi-Periodic Oscillations in Queues with Delayed Information. Symmetry. 14(2), 376. DOI: https://doi.org/10.3390/sym14020376

  9. Angeles, G.M., Peralta, G. 2022. Energy Method for Exponential Stability of Coupled One-Dimensional Hyperbolic PDE-ODE Systems. Evolution Equations and Control Theory. 11(1), 199-224. DOI: https://doi.org/10.3934/eect.2020108

  10. Peralta, G., Kunisch, K. 2022. Mixed and hybrid Petrov–Galerkin finite element discretization for optimal control of the wave equation. Numerische Mathematik. 150(2), 591-627. DOI: https://doi.org/10.1007/s00211-021-01258-9

  11. Mina, R.J.S., Bacani, J.B. 2022. Families of Mordell Curves with Non-trivial Torsion and Rank of at Least Three. Springer Proceedings in Mathematics and Statistics. 415, 155-162. DOI: https://doi.org/10.1007/978-981-19-9307-7_13

  12. Collera, J.A., de la Cruz, R.R.B. 2022. Dynamics of a Delayed Kaldor-Kalecki Model of Mutually Linked Economies. Mathematics in Industry. 39, 83-89. DOI: https://doi.org/10.1007/978-3-031-11818-0_12

  13. Gayo, W.S., Bacani, J.B. 2022. On the solutions of the Diophantine equation Mx + (M - 1)y = z2. Italian Journal of Pure and Applied Mathematics. 47, 1113-1117.

  14. Peralta, G. 2022. Optimal Borel measure controls for the two-dimensional stationary Boussinesq system. ESAIM - Control, Optimisation and Calculus of Variations. 28, 22. DOI: https://doi.org/10.1051/cocv/2022016


  1. Peralta, G. 2021. Distributed Optimal Control of the 2D Cahn–Hilliard–Oberbeck–Boussinesq System for Nonisothermal Viscous Two-Phase Flows. Applied Mathematics and Optimization. 84, 1219-1279. DOI: https://doi.org/10.1007/s00245-021-09759-7

  2. Addawe, R.C., Viernes, J.P.T., Dizon, W.R., Domilies, S.G.S., Libatique, C.P., Gueco, R.E.N., Panes, D.T. 2021. Exploratory data analysis of COVID-19 cases in Baguio City, Philippines. AIP Conference Proceedings. 2423, 70018. DOI: https://doi.org/10.1063/5.0075437

  3. Viernes, J.P.T., Addawe, R.C., Domilies, S.G.S., Libatique, C.P., Dizon, W.T., Gueco, R.E.N., Tubera-Panes, D.L. 2021. Contact tracing and expanded testing of COVID-19 cases in Baguio City, Philippines. AIP Conference Proceedings. 2423, 70021. DOI: https://doi.org/10.1063/5.0075439

  4. Domogo, A.A., Ottesen, J.T. 2021. Patient-specific parameter estimation: Coupling a heart model and experimental data. Journal of Theoretical Biology. 526, 110791. DOI: https://doi.org/10.1016/j.jtbi.2021.110791

  5. Peralta, G., Simon, J.S. 2021. Optimal Control for the Navier–Stokes Equation with Time Delay in the Convection: Analysis and Finite Element Approximations. Journal of Mathematical Fluid Mechanics. 23(3), 56. DOI: https://doi.org/10.1007/s00021-021-00577-z

  6. Ignacio, P.S. 2021. Intrinsic Hierarchical Clustering Behavior Recovers Higher Dimensional Shape Information. 2021 IEEE 11th Annual Computing and Communication Workshop and Conference, CCWC 2021. , 9376079206-212. DOI: https://doi.org/10.1109/CCWC51732.2021.9376079

  7. Ignacio, P.S. 2021. Leveraging Period-Specific Variations in ECG Topology for Classification Tasks. Computing in Cardiology. 2021-09-01 00:00:00. DOI: https://doi.org/10.23919/CinC53138.2021.9662895

  8. Collera, J.A. 2021. Spontaneous Symmetry-Breaking in Deterministic Queueing Models with Delayed Information. Springer Proceedings in Mathematics and Statistics. 343, 15-25. DOI: https://doi.org/10.1007/978-3-030-63591-6_2

  9. Oryan, R.R., Addawe, J.M., Tubera-Panes, D. 2021. Modeling and Analysis of the Dengue Activity in Baguio City Using Two-Mode and One-Mode Networks. Springer Proceedings in Mathematics and Statistics. 359, 253-271. DOI: https://doi.org/10.1007/978-981-16-2629-6_13

  10. Ignacio, N., Liwag, R., Addawe, R. 2021. Spatiotemporal Analysis of Typhoid Cases in Baguio City, Philippines. Springer Proceedings in Mathematics and Statistics. 359, 293-308. DOI: https://doi.org/10.1007/978-981-16-2629-6_16

  11. Balino, L.V.A., Caasi, K.S., Addawe, R.C. 2021. Spatio-Temporal Distribution of Dengue Infections in Baguio City, Philippines. Springer Proceedings in Mathematics and Statistics. 359, 273-282. DOI: https://doi.org/10.1007/978-981-16-2629-6_14

  12. Addawe, R., Angeles, G.M., Balolong, M. 2021. Spatio-Temporal Analysis of Measles Cases in Baguio City, Philippines from 2010–2018. Springer Proceedings in Mathematics and Statistics. 359, 283-292. DOI: https://doi.org/10.1007/978-981-16-2629-6_15

  13. Mina, R.J.S., Bacani, J.B. 2021. On the solutions of the Diophantine equation px+ (p + 4k)y= z2for prime pairs p and p + 4k. European Journal of Pure and Applied Mathematics. 14(2), 471-479. DOI: https://doi.org/10.29020/NYBG.EJPAM.V14I2.3947

  14. Gayo, W.S., Bacani, J.B. 2021. On the diophantine equation Mxp+ (Mq+ 1)y= z2. European Journal of Pure and Applied Mathematics. 14(2), 396-403. DOI: https://doi.org/10.29020/NYBG.EJPAM.V14I2.3948

  15. Bersamin, A.T., Tayaben, J.L., Balangcod, K.D., Balangcod, A.K.D., Cendana, A.C., Dom-Ogen, E.T., Licnachan, L.O.C., Siadto, B., Wong, F.M., Balangcod, T.D. 2021. Utilization of plant resources among the Kankanaeys in Kibungan, Benguet Province, Philippines. Biodiversitas. 22(1), 362-372. DOI: https://doi.org/10.13057/biodiv/d220144


  1. Ignacio, P.S., Bulauan, J.-A., Uminsky, D. 2020. LUMÁWIG: An efficient algorithm for dimension zero bottleneck distance computation in topological data analysis. Algorithms. 13(11), 291, 1-15. DOI: https://doi.org/10.3390/a13110291

  2. Ignacio, P.S., Bulauan, J.-A., Manzanares, J.R. 2020. A Topology Informed Random Forest Classifier for ECG Classification. Computing in Cardiology. 2020-09-01 00:00:00, 9344253. DOI: https://doi.org/10.22489/CinC.2020.297

  3. Macansantos, P.S. 2020. Modeling Dynamics of Political Parties with Poaching from One Party. Journal of Physics: Conference Series. 1593(1), 12013. DOI: https://doi.org/10.1088/1742-6596/1593/1/012013

  4. Peralta, G. 2020. Uniform exponential stability of a fluid-plate interaction model due to thermal effects. Evolution Equations and Control Theory. 9(1), 39-60. DOI: https://doi.org/10.3934/eect.2020016

  5. Bacani, J.B., Rabago, J.F.T. 2020. Techniques on Solving Systems of Nonlinear Difference Equations. Springer Proceedings in Mathematics and Statistics. 341, 165-200. DOI: https://doi.org/10.1007/978-3-030-60107-2_7

  6. Peralta, G., Kunisch, K. 2020. Analysis and finite element discretization for optimal control of a linear fluid-structure interaction problem with delay. IMA Journal of Numerical Analysis. 40(1), 140-206. DOI: https://doi.org/10.1093/imanum/dry070

  7. Addawe, R.C., Magadia, J.C. 2020. Stability Analysis of DESA Optimization Algorithm. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 11974 LNCS, 17-31. DOI: https://doi.org/10.1007/978-3-030-40616-5_2


  1. Addawe, R.C. 2019. Analysis of the SA-like selection operator in differential evolution-simulated annealing (DESA) optimization algorithm. AIP Conference Proceedings. 2184, 60067. DOI: https://doi.org/10.1063/1.5136499

  2. Pasion, A.M., Collera, J.A. 2019. Stability and Hopf bifurcation analysis of an SIS epidemic model with latency and nonlinear incidence rate. AIP Conference Proceedings. 2184, 60013. DOI: https://doi.org/10.1063/1.5136445

  3. Corsino-Addawe, R. 2019. Analysis of the indicators of students' performance in undergraduate mathematics program. AIP Conference Proceedings. 2184, 50004. DOI: https://doi.org/10.1063/1.5136392

  4. Ignacio, P.S., Dunstan, C., Escobar, E., Trujillo, L., Uminsky, D. 2019. Classification of single-lead electrocardiograms: TDA informed machine learning. Proceedings - 18th IEEE International Conference on Machine Learning and Applications, ICMLA 2019. , 89990811241-1246. DOI: https://doi.org/10.1109/ICMLA.2019.00204

  5. Ignacio, P.S.P., Darcy, I.K. 2019. Tracing patterns and shapes in remittance and migration networks via persistent homology. EPJ Data Science. 8(1), 1. DOI: https://doi.org/10.1140/epjds/s13688-018-0179-z

  6. Peralta, G., Kunisch, K. 2019. Analysis of a nonlinear fluid-structure interaction model with mechanical dissipation and delay. Nonlinearity. 32(12), 5110-5149. DOI: https://doi.org/10.1088/1361-6544/ab46f5

  7. Macansantos, P.S. 2019. Mathematical models of heterogeneity in cancer cell growth: A review. Journal of Physics: Conference Series. 1366(1), 12010. DOI: https://doi.org/10.1088/1742-6596/1366/1/012010

  8. Pasion, A.M., Collera, J.A. 2019. Delay-induced stability switches in an SIRS epidemic model with saturated incidence rate and temporary immunity. Journal of Physics: Conference Series. 1298(1), 12006. DOI: https://doi.org/10.1088/1742-6596/1298/1/012006

  9. Padilla, J.R.F., Pilar, K.C.N., Bitanga, C.A.G., Bumengeg, L.N., Addawe, R.C. 2019. Incidence of food and water-borne diseases in Baguio City. AIP Conference Proceedings. 2138, 50024. DOI: https://doi.org/10.1063/1.5121129

  10. Simon, J.S., Po, R. 2019. Optimal control on a discrete time model for tuberculosis. Thai Journal of Mathematics. 17(1), 193-204.

  11. Collera, J.A. 2019. Numerical Continuation and Bifurcation Analysis in a Harvested Predator-Prey Model with Time Delay using DDE-Biftool. Springer Proceedings in Mathematics and Statistics. 295, 225-241. DOI: https://doi.org/10.1007/978-981-32-9832-3_12

  12. Addawe, J., Baoanan, Z., Addawe, R. 2019. Modeling and Experimental Data on the Dynamics of Predation of Rice Plants and Weeds by Golden Apple Snail (Pomacea Canaliculata). Springer Proceedings in Mathematics and Statistics. 295, 51-65. DOI: https://doi.org/10.1007/978-981-32-9832-3_4

  13. Bacani, J.B., Rabago, J.F.T. 2019. Behaviour of two-dimensional competitive system of nonlinear difference equations of higher order. International Journal of Dynamical Systems and Differential Equations. 9(1), 14-43. DOI: https://doi.org/10.1504/IJDSDE.2019.098409


  1. Rabago, J.F.T. 2018. On the diophantine equation 4x − py = 3z2 where p is a prime. Thai Journal of Mathematics. 16(3), 643-650.

  2. Domogo, A.A., Collera, J.A. 2018. Symmetric solutions to a system of mutually delay-coupled oscillators with conjugate coupling. Journal of Physics: Conference Series. 1123(1), 12028. DOI: https://doi.org/10.1088/1742-6596/1123/1/012028

  3. Rabago, J.F.T., Bacani, J.B. 2018. Shape optimization approach for solving the bernoulli problem by tracking the neumann data: a lagrangian formulation. Communications on Pure and Applied Analysis. 17(6), 2683-2702. DOI: https://doi.org/10.3934/cpaa.2018127

  4. Rabago, J.F.T. 2018. On an Open Question Concerning Product-Type Difference Equations. Iranian Journal of Science and Technology, Transaction A: Science. 42(3), 1499-1503. DOI: https://doi.org/10.1007/s40995-017-0427-2

  5. Bacani, J.B., Rabago, J.F.T. 2018. Class of admissible perturbations of special expressions involving completely monotonic functions. Italian Journal of Pure and Applied Mathematics. (40)410-423.

  6. Peralta, G., Kunisch, K. 2018. Interface stabilization of a parabolic-hyperbolic PDE system with delay in the interaction. Discrete and Continuous Dynamical Systems- Series A. 38(6), 3055-3083. DOI: https://doi.org/10.3934/dcds.2018133

  7. Rabago, J.F.T. 2018. On the closed-form solution of a nonlinear difference equation and another proof to Sroysang’s conjecture. Iranian Journal of Mathematical Sciences and Informatics. 13(1), 139-151.

  8. Peralta, G.R. 2018. Stabilization of the wave equation with acoustic and delay boundary conditions. Semigroup Forum. 96(2), 357-376. DOI: https://doi.org/10.1007/s00233-018-9930-9

  9. Balilo, A.T., Collera, J.A. 2018. Stability and bifurcation analysis of three-species predator-prey model with non-monotonic delayed predator response. AIP Conference Proceedings. 1937, 20003. DOI: https://doi.org/10.1063/1.5026075

  10. Collera, J.A., Balilo, A.T. 2018. Dynamics of a delayed intraguild predation model with harvesting. AIP Conference Proceedings. 1937, 20006. DOI: https://doi.org/10.1063/1.5026078

  11. Haddad, N., Touafek, N., Rabago, J.F.T. 2018. Well-defined solutions of a system of difference equations. Journal of Applied Mathematics and Computing. 56(1-2), 439-458. DOI: https://doi.org/10.1007/s12190-017-1081-8

  12. Alangui, W.V., Tauli-Corpuz, V., Riamit, K.O., Mairena, D., Moreno, E., Muller, W., Lakon, F., Unjing, P., Andi, V., Ngiuk, E., Alloy, S., Efraim, B. 2018. Indigenous Forest Management as a Means for Climate Change Adaptation and Mitigation. Indigenous Knowledge for Climate Change Assessment and Adaptation. 93-105. DOI: https://doi.org/10.1017/9781316481066.008

  13. Diza, H.M.R., Addawe, J.M. 2018. Leslie Gower type predator prey model with constant-effort predator harvesting. Compusoft. 7(11), 2898-2903.

  14. Collera, J.A., Magpantay, F.M.G. 2018. Dynamics of a Stage Structured Intraguild Predation Model. Springer Proceedings in Mathematics and Statistics. 259, 327-337. DOI: https://doi.org/10.1007/978-3-319-99719-3_30

  15. Alangui, W.V. 2018. Building stone walls: A case study from the Philippines. Numeracy as Social Practice: Global and Local Perspectives. 40-58. DOI: https://doi.org/10.4324/9781315269474

  16. Peralta, G. 2018. Feedback stabilization of a linear fluid–membrane system with time delay. Springer Proceedings in Mathematics and Statistics. 237, 437-449. DOI: https://doi.org/10.1007/978-3-319-91548-7_33


  1. Cawiding, O.R., Natividad, G.M.R., Bato, C.V., Addawe, R.C. 2017. Forecasting typhoid fever incidence in the Cordillera administrative region in the Philippines using seasonal ARIMA models. AIP Conference Proceedings. 1905, 50012. DOI: https://doi.org/10.1063/1.5012231

  2. Magsakay, C.B., De Vera, N.U., Libatique, C.P., Addawe, R.C., Addawe, J.M. 2017. Treatment on outliers in UBJ-SARIMA models for forecasting dengue cases on age groups not eligible for vaccination in Baguio City, Philippines. AIP Conference Proceedings. 1905, 50028. DOI: https://doi.org/10.1063/1.5012247

  3. Natividad, G.M.R., Cawiding, O.R., Addawe, R.C. 2017. An application of seasonal ARIMA models on group commodities to forecast Philippine merchandise exports performance. AIP Conference Proceedings. 1905, 50031. DOI: https://doi.org/10.1063/1.5012250

  4. Fernandez, F.R., Po, R., Montero, N., Addawe, R. 2017. Prediction of South China sea level using seasonal ARIMA models. AIP Conference Proceedings. 1905, 50018. DOI: https://doi.org/10.1063/1.5012237

  5. Alamag, K.M.N.B., Addawe, J.M. 2017. Parameter optimization of differential evolution algorithm for automatic playlist generation problem. AIP Conference Proceedings. 1905, 40005. DOI: https://doi.org/10.1063/1.5012193

  6. Bueno, A.C.F. 2017. On r -circulant matrices with Fibonacci and Lucas numbers having arithmetic indices. AIP Conference Proceedings. 1905, 30010. DOI: https://doi.org/10.1063/1.5012156

  7. Libatique, C.P., Pajimola, A.K.J., Addawe, J.M. 2017. Bifurcation analysis of dengue transmission model in Baguio City, Philippines. AIP Conference Proceedings. 1905, 30023. DOI: https://doi.org/10.1063/1.5012169

  8. Aquino, R.L., Alcantara, N.L.M.T., Addawe, R.C. 2017. A hybrid ARIMA and neural network model applied to forecast catch volumes of Selar crumenophthalmus. AIP Conference Proceedings. 1905, 50006. DOI: https://doi.org/10.1063/1.5012225

  9. Rabago, J.F.T., Bacani, J.B. 2017. Shape optimization approach to the Bernoulli problem: A Lagrangian formulation. IAENG International Journal of Applied Mathematics. 47(4), 417-424.

  10. Rabago, J.F.T. 2017. An intriguing application of telescoping sums. Journal of Physics: Conference Series. 893(1), 12005. DOI: https://doi.org/10.1088/1742-6596/893/1/012005

  11. Addawe, R.C., Addawe, J.M., Sueno, M.R.K., Magadia, J.C. 2017. Differential evolution-simulated annealing for multiple sequence alignment. Journal of Physics: Conference Series. 893(1), 12061. DOI: https://doi.org/10.1088/1742-6596/893/1/012061

  12. Haddad, N., Touafek, N., Rabago, J.F.T. 2017. Solution form of a higher-order system of difference equations and dynamical behavior of its special case. Mathematical Methods in the Applied Sciences. 40(10), 3599-3607. DOI: https://doi.org/10.1002/mma.4248

  13. Rabago, J.F.T., Bacani, J.B. 2017. On two nonlinear difference equations. Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis. 24(6), 375-394.

  14. Rabago, J.F.T., Halim, Y. 2017. Supplement to the paper of halim, touafek and elsayed: Part II. Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis. 24(5), 333-345.

  15. Rabago, J.F.T. 2017. Effective methods on determining the periodicity and form of solutions of some systems of non-linear difference equations. International Journal of Dynamical Systems and Differential Equations. 7(2), 112-135. DOI: https://doi.org/10.1504/IJDSDE.2017.085825

  16. Rabago, J.F.T. 2017. Forbidden set of the rational difference equation xn+1 = xnxn-k/(axn-k+1+xnxn-k+1xn-k). Buletinul Academiei de Stiinte a Republicii Moldova. Matematica. 83(1), 29-38.

  17. Macansantos, P.S. 2017. A fixed point theorem for multifunctions in partial b-metric spaces. Far East Journal of Mathematical Sciences. 101(10), 2133-2142. DOI: https://doi.org/10.17654/MS101102133


  1. Peralta, G., Propst, G. 2016. Existence of local-in-time classical solutions of a model of flow in a bounded elastic tube. Mathematical Methods in the Applied Sciences. 39(18), 5315-5329. DOI: https://doi.org/10.1002/mma.3917

  2. Blas, N.T., Addawe, J.M., David, G. 2016. A mathematical model of transmission of rice tungro disease by Nephotettix Virescens. AIP Conference Proceedings. 1787, 80015. DOI: https://doi.org/10.1063/1.4968154

  3. Addawe, R.C., Addawe, J.M., Magadia, J.C. 2016. Alternative robust estimators for autoregressive models with outliers using differential evolution algorithm. AIP Conference Proceedings. 1787, 20009. DOI: https://doi.org/10.1063/1.4968058

  4. Domogo, A.A., Collera, J.A. 2016. Classification of codimension-one bifurcations in a tetrad of lasers with feed forward coupling. AIP Conference Proceedings. 1787, 80002. DOI: https://doi.org/10.1063/1.4968141

  5. Lapaan, R.D., Collera, J.A., Addawe, J.M. 2016. Mathematical analysis of tuberculosis transmission model with delay. AIP Conference Proceedings. 1787, 80022. DOI: https://doi.org/10.1063/1.4968161

  6. Addawe, J., Pajimola, A.K. 2016. Dynamics of climate-based malaria transmission model with age-structured human population. AIP Conference Proceedings. 1782, 40002. DOI: https://doi.org/10.1063/1.4966069

  7. Addawe, R.C., Addawe, J.M., Magadia, J.C. 2016. Optimization of seasonal ARIMA models using differential evolution - Simulated annealing (DESA) algorithm in forecasting dengue cases in Baguio City. AIP Conference Proceedings. 1776, 90021. DOI: https://doi.org/10.1063/1.4965385

  8. Rabago, J.F.T., Bacani, J.B. 2016. Steffensen's analogue for approximating roots of p-adic polynomial equations. AIP Conference Proceedings. 1776, 90038. DOI: https://doi.org/10.1063/1.4965402

  9. Peralta, G., Propst, G. 2016. Well-posedness and regularity of linear hyperbolic systems with dynamic boundary conditions. Proceedings of the Royal Society of Edinburgh Section A: Mathematics. 146(5), 1047-1080. DOI: https://doi.org/10.1017/S0308210515000827

  10. Ignacio, P.S., Addawe, J., Nable, J. 2016. P-adic Qth roots via newton-raphson method. Thai Journal of Mathematics. 14(2), 417-429.

  11. Bacani, J.B., Rabago, J.F.T. 2016. Some characteristics of the closed-form solutions of two nonlinear difference equations. AIP Conference Proceedings. 1739, 20004. DOI: https://doi.org/10.1063/1.4952484

  12. Peralta, G., Propst, G. 2016. Nonlinear and linear hyperbolic systems with dynamic boundary conditions. Bulletin of the Brazilian Mathematical Society. 47(2), 671-683. DOI: https://doi.org/10.1007/s00574-016-0177-3

  13. Peralta, G. 2016. A fluid–structure interaction model with interior damping and delay in the structure. Zeitschrift fur Angewandte Mathematik und Physik. 67(1), 10. DOI: https://doi.org/10.1007/s00033-015-0611-1

  14. Collera, J.A. 2016. Harvesting in delayed food web model with omnivory. AIP Conference Proceedings. 1705, 4940281. DOI: https://doi.org/10.1063/1.4940281

  15. Bacani, J.B., Peichl, G. 2016. The second-order eulerian derivative of a shape functional of a free boundary problem. IAENG International Journal of Applied Mathematics. 46(4), 425-436.

  16. Rabago, J.F.T. 2016. Olver's method for solving roots of p-Adic polynomial equations. Italian Journal of Pure and Applied Mathematics. 36, 739-748.

  17. Peralta, G. 2016. Stabilization of viscoelastic wave equations with distributed or boundary delay. Zeitschrift für Analysis und ihre Anwendungen. 35(3), 359-381. DOI: https://doi.org/10.4171/ZAA/1569

  18. Peralta, G., Propst, G. 2016. Global smooth solution to a hyperbolic system on an interval with dynamic boundary conditions. Quarterly of Applied Mathematics. 74(3), 539-570. DOI: https://doi.org/10.1090/qam/1432

  19. Rabago, J.F.T. 2016. Halley's method for finding roots of p-adic polynomial equations. International Journal of Mathematical Analysis. 10(9-12), 493-502. DOI: https://doi.org/10.12988/ijma.2016.6218

  20. Rabago, J.F.T. 2016. On second-order linear recurrent functions with period k and proofs to two conjectures of Sroysang. Hacettepe Journal of Mathematics and Statistics. 45(2), 429-446. DOI: https://doi.org/10.15672/HJMS.20164512497


  1. Say-Awen, A.L.D., De Las Peñas, M.L.A.N., Rapanut, T.A. 2015. On color fixing groups associated with colored symmetrical tilings. AIP Conference Proceedings. 1660, 50012. DOI: https://doi.org/10.1063/1.4915645

  2. Peralta, G., Propst, G. 2015. Stability and boundary controllability of a linearized model of flow in an elastic tube. ESAIM - Control, Optimisation and Calculus of Variations. 21(2), 583-601. DOI: https://doi.org/10.1051/cocv/2014039

  3. Macansantos, P.S. 2015. A Stability result for fixed point iteration in partial metric space. International Journal of Mathematical Analysis. 9(49-52), 2591-2597. DOI: https://doi.org/10.12988/ijma.2015.58188

  4. Bacani, J.B., Rabago, J.F.T. 2015. On the second-order shape derivative of the Kohn-Vogelius objective functional using the velocity method. International Journal of Differential Equations. 2015, 954836. DOI: https://doi.org/10.1155/2015/954836

  5. Buono, P.-L., Collera, J.A. 2015. Symmetry-breaking bifurcations in rings of delay-coupled semiconductor lasers. SIAM Journal on Applied Dynamical Systems. 14(4), 1868-1898. DOI: https://doi.org/10.1137/140986487

  6. Bacani, J.B., Rabago, J.F.T. 2015. The complete set of solutions of the diophantine equation px + qy= z2 FOR Twin Primes p and q. International Journal of Pure and Applied Mathematics. 104(4), 517-521. DOI: https://doi.org/10.12732/ijpam.v104i4.3

  7. Bacani, J.B., Rabago, J.F.T. 2015. On generalized fibonacci numbers. Applied Mathematical Sciences. 9(73-76), 3611-3622. DOI: https://doi.org/10.12988/ams.2015.5299

  8. Bacani, J.B., Rabago, J.F.T. 2015. On linear recursive sequences with coefficients in arithmetic-geometric progressions. Applied Mathematical Sciences. 9(49-52), 2595-2607. DOI: https://doi.org/10.12988/ams.2015.5163


  1. Peralta, G., Propst, G. 2014. Local well-posedness of a class of hyperbolic PDE-ODE systems on a bounded interval. Journal of Hyperbolic Differential Equations. 11(4), 705-747. DOI: https://doi.org/10.1142/S0219891614500222

  2. Bacani, J.B., Peichl, G. 2014. The second-order shape derivative of Kohn-Vogelius-type cost functional using the boundary differentiation approach. Mathematics. 2(4), 196-217. DOI: https://doi.org/10.3390/math2040196

  3. Bacani, J.B. 2014. Another class of admissible perturbations of special expressions. International Journal of Mathematical Analysis. 8(1-4), 1-8. DOI: https://doi.org/10.12988/ijma.2014.311287

  4. Rabago, J.F.T. 2014. On second-order linear recurrent homogeneous differential equations with period k. Hacettepe Journal of Mathematics and Statistics. 43(6), 923-933. DOI: https://doi.org/10.15672/HJMS.2014437531

  5. Macansantos, P., Quaranta, V. 2014. Quantitative approaches to heterogeneity and growth variability in cell populations. Springer Proceedings in Mathematics and Statistics. 67, 15-27. DOI: https://doi.org/10.1007/978-3-319-03759-2_2

  6. Bacani, J.B. 2014. On the shape gradient and shape hessian of a shape functional subject to dirichlet and robin conditions. Applied Mathematical Sciences. 8(105-108), 5387-5397. DOI: https://doi.org/10.12988/ams.2014.47583

  7. Macansantos, P.S. 2014. A generalized Nadler's theorem in dislocated quasi-metric spaces. International Journal of Mathematical Analysis. 8(49-52), 2445-2450. DOI: 10.12988/ijma.2014.49275

  8. Addawe, R.C., Magadia, J.C. 2014. Differential Evolution-Simulated Annealing (DESA) algorithm for fitting autoregressive models to data. OPT-i 2014 - 1st International Conference on Engineering and Applied Sciences Optimization, Proceedings. 434-451.

  9. Bacani, J.B., Peichl, G. 2014. Solving the Exterior Bernoulli Problem Using the Shape Derivative Approach. Springer Proceedings in Mathematics and Statistics. 91, 251-259. DOI: https://doi.org/10.1007/978-81-322-1952-1_17

  10. Taganap, E.C., De Las Peñas, M.L.A.N., Rapanut, T.A. 2014. Crystallographic flat origami with three flat foldability types of the generating unit. AIP Conference Proceedings. 1602, 662-667. DOI: https://doi.org/10.1063/1.4882556


  1. Vidar, E.A., Alvindia, S.K. 2013. SVD based graph regularized matrix factorization. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 8206 LNCS, 234-241. DOI: https://doi.org/10.1007/978-3-642-41278-3_29

  2. Collera, J.A., Roque, M.P. 2013. Admissible perturbations of differential expressions with exponentially decaying coefficients preserving the nullities. International Journal of Mathematical Analysis. 7(57-60), 2803-2810. DOI: https://doi.org/10.12988/ijma.2013.310250

  3. Bacani, J.B., Peichl, G. 2013. On the first-order shape derivative of the Kohn-Vogelius cost functional of the Bernoulli problem. Abstract and Applied Analysis. 2013, 384320. DOI: https://doi.org/10.1155/2013/384320

  4. Magtoto, L.M., Mones, D.G., Ballada, K.A., Austria, C.M., Dizon, R.M., Alangui, W.V., Reginaldo, A.A., Galvan, W.M., Dizon, K.T., Hetterscheid, W.L.A. 2013. Amorphophallus adamsensis (Araceae), a new species from Ilocos Norte, Philippines. Blumea: Journal of Plant Taxonomy and Plant Geography. 58(3), 267-270. DOI: https://doi.org/10.3767/000651913X676673

  5. Macansantos, P.S. 2013. A Generalized nadler-type theorem in partial metric spaces. International Journal of Mathematical Analysis. 7(5-8), 343-348. DOI: https://doi.org/10.12988/ijma.2013.13029


  1. Addawe, J.M., Lope, J.E.C. 2012. Sensitivity analysis of the age-structured malaria transmission model. AIP Conference Proceedings. 1482, 47-53. DOI: https://doi.org/10.1063/1.4757436


  1. Indong, D.J.L., Peralta, G.R. 2008. Inversions of permutations in symmetric, alternating, and dihedral groups. Journal of Integer Sequences. 11(4), 08.4.3.


  1. Nievergelt, J., Perez, A. 2007. CS talent scout - A self-assessment aptitude test for computer science. Proceedings of the IADIS International Conference e-Learning, EL 2007 - Part of the IADIS Multi Conference on Computer Science and Information Systems, MCCSIS 2007. 1, 307-312.


  1. Addawe, R.C., Adorio, E.P., Addawe, J.M., Magadia, J.C. 2006. DESA: A hybrid optimization algorithm for high dimensional functions. Proceedings of the Eight IASTED International Conference on Control and Applications. 2006, 316-321.


  1. Raquel, C.R., Naval Jr., P.C. 2005. An effective use of crowding distance in multiobjective particle swarm optimization. GECCO 2005 - Genetic and Evolutionary Computation Conference. 257-264. DOI: https://doi.org/10.1145/1068009.1068047