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Abstract

In this thesis, the well-posedness of hyperbolic systems with dynamic boundary con-
ditions is studied. Such systems occur naturally when the dynamics on the boundary
interact with the waves in the interior. By using a priori estimates and the method
of Friedrichs, the L?-well-posedness of linear systems is established. It is shown that
weak solutions have a hidden regularity property, namely the L?-trace regularity at
the boundary. The a priori estimates are derived through symmetrizers and paradif-
ferential calculus. Regularity and compatibility of the data enhances the regularity
of the solutions. We also deal with a model describing the flow of fluid in an elastic
tube whose ends are attached to tanks. The stability and boundary controllability of
the linearized model are analyzed using semigroup theory and nonharmonic Fourier
analysis. Numerical solutions of the linear model are computed using Legendre tau
approximations. Next, local in time well-posedness of a class of PDE-ODE systems is
established by Picard iteration. Furthermore, the existence and uniqueness of global
in time smooth solutions of the two-tank model is proved for smooth data sufficiently
close to the equilibrium. The proof is based on energy estimates. It is shown that
solutions of the nonlinear model converge exponentially fast to the steady state. The
lower order energy estimate is derived using the relative entropy, while the higher
order estimates are obtained using appropriate entropy-entropy flux pairs.
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Hyperbolische Systeme auf einem Intervall mit
Dynamischen Randbedingungen

Gilbert Peralta

Kurzzusammenfassung

In dieser Dissertation wird die Gut-Gestelltheit hyperbolischer Systeme mit dy-
namischen Randbedingungen untersucht. Solche Systeme ergeben sich, wenn die
Dynamik an den Randern mit den Wellen im Inneren interagiert. Durch a priori
Abschitzungen und die Methode von Friedrichs wird die L?-Gut-Gestelltheit lin-
earer Systeme etabliert. Es wird gezeigt, dass schwache Losungen die Eigenschaft
der versteckten Regularitit haben, nédmlich die L?-Spur Regularitit am Rand. Die
a priori Abschéatzungen werden iiber Symmetrisierer und paradifferentiellen Kalkiil
hergeleitet. Regularitat und Kompatibilitdt der Daten erhoht die Regularitit der
Losungen. Wir beschéaftigen uns auch mit einem Modell, das die Stromung einer
Flissigkeit in einem elastischen Schlauch, dessen Enden mit Tanks verbunden sind,
beschreibt. Die Stabilitdt und Rand-Steuerbarkeit des linearisierten Modells wird
mit Hilfe von Halbgruppentheorie und nicht-harmonischer Fourier Analyse unter-
sucht. Nummerische Losungen des linearen Modells werden durch Legendre tau Ap-
proximationen berechnet. Sodann wird - durch Picard Iteration - die Gut-Gestelltheit
lokal in der Zeit einer Klasse von PDE-ODE Systemen nachgewiesen. Weiters wird
die Existenz und Eindeutigkeit global in der Zeit glatter Losungen des Zwei-Tank
Modells bewiesen, und zwar fiir glatte Anfangswerte,die hinreichend nahedem Gleich-
gewicht sind. Der Beweis basiert auf Energie Abschatzungen. Es wird gezeigt, dass
die Losungen des nicht-linearen Modells exponentiell schnell gegen das Gleichgewicht
konvergieren. Die Energie Abschéitzung niedriger Ordnung wird anhand der rela-
tiven Entropie abgeleitet, wihrend die Abschdtzungen héherer Ordnung mit Hilfe
geeigneter Entropie-Entropiefluss Paare erhalten wird.
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INTRODUCTION

Hyperbolic partial differential equations are recognized mathematical models in ar-
eas such as fluid dynamics, acoustics, electromagnetics, scattering theory and the
general theory of relativity. The methods used and developed to understand these
equations range from abstract functional analytic tools, e.g. pseudodifferential cal-
culus and microlocal analysis, to more intuitive geometric methods, e.g. the method
of characteristics and geometric optics. The prototype of hyperbolic partial differen-
tial equations is the second order wave equation modeling the vibrations of a string.
Other models arise in the theory of conservation laws. The inviscid Burgers equation,
the FEuler equations of compressible fluid flow and Maxwell’s equations of electromag-
netism are some well-known examples of conservation laws in continuum physics. A
historical account for the developments of conservation laws arising in continuum
physics is given in Dafermos [21].

Essential properties of hyperbolic equations are well-posed Cauchy problems, finite
speed of propagation and wave-like solutions. This means that for a given finite
time, local disturbances on the initial data have effects only on parts of the domain,
called the region of influence. Because information travels along characteristic curves,
discontinuities and oscillations propagate through time and space. Therefore, in
general, one might expect the same regularity for the initial data and the solution.
This is in contrast to parabolic partial differential equations, where perturbations of
the initial data have effects on the entire domain and solutions have more regularity
than the initial data. In other words, parabolic differential equations exhibit infinite
speed of propagation and smoothing.

The focus of this thesis is a class of hyperbolic systems of first order partial dif-
ferential equations on a bounded interval that are coupled with ordinary differential
equations at the boundary. These include linear systems with either constant or
variable coefficients and quasilinear systems. Such systems occur naturally when the
dynamics on the boundary interact with the waves in the interior.

The wave equation with oscillator boundary conditions in [6, 39] is one of the
examples according to the literature. Suppose that a fluid is contained in a bounded
domain, the evolution of the velocity potential is modeled by a second order linear
wave equation. Assuming that each point of the boundary reacts like a harmonic
oscillator forced by interior pressure, the normal displacement of the boundary can
be described by a second order differential equation. In this way, the boundary
conditions for the fluid are coupled to ordinary differential equations.

Another example is taken from multiscale blood flow models [27, 65, 66]. Start-
ing from the incompressible Navier-Stokes equations and assuming that the flow is
axisymmetric, hyperbolic models can be derived to study blood flow in the human
cardiovascular system. The hyperbolic equations have the same form as the Eu-
ler continuity and momentum equations in gas dynamics. Important parts of the
cardiovascular system such as the vessels can be described by patching several com-



INTRODUCTION

ponents modeled by hyperbolic equations. However, a realistic description cannot
be described solely by these equations, and several authors introduced lumped pa-
rameters. These parameters can be expressed by a system of ordinary differential
equations describing the mass and flow rate in a specific terminal compartment of
the circulatory system. They can be derived from the hyperbolic models by integra-
tion in space and linearization. The boundary conditions for the hyperbolic PDEs
are coupled to the ODEs by imposing continuity of pressure and flow rate. In the
two examples given above, the differential equations at the boundary are explicitly
given.

Finally, let us consider the dynamics of the sound in a compressible fluid whose
surface is made of a viscoelastic material [22, 62]. The acoustic pressure can be
modeled again by a second order wave equation, while the boundary condition is
of memory-type. One has to keep track of the memory by introducing an auxiliary
state. Under suitable conditions on the memory kernel, this state satisfies a differ-
ential equation on the boundary. Here, the differential equation at the boundary is
introduced in the analysis and not explicitly given by the model.

Well-posedness in the Hadamard sense, i.e. existence and uniqueness of solutions
and continuous dependence on the data, will be studied in appropriate function
spaces. With additional smoothness and compatibility of the data, the regularity of
solutions will be considered as well. Our well-posedness results are stated in Lebesgue
and Sobolev spaces. Other different function spaces such as the space of continuously
differentiable functions and the space of functions of bounded variation that include
discontinuous solutions have been used by several authors in the literature. The
advantage of using Lebesgue and Sobolev spaces is that they are Hilbert spaces. In
this setting, more functional analytic methods are available in the analysis. Although
we have more tools at our disposal, this limits the range of applicability of the results.
Nevertheless, the results still cover a large variety of systems and the ideas presented
here may be used to treat other problems.

The coupled PDE-ODE systems we consider is an initial-boundary value problem
(IBVP) of the form

(a(t) = f(u(t), su(t), t>0,
b(u(t),h(t),r(t)) =0, t>0,
h(t) = (h(t),u( ), sn(t)), t>0, (1.1)
u(0) =

[ h(0) = ho

where u is the state component in the domain and h is the state component on the
boundary. In (1.1), f is a differential operator, b and k are trace operators with
respect to u, and s,, s, and r are external sources.

Before looking at general systems, we study a specific physical system modeling
the flow of an incompressible fluid contained in an elastic tube where each end is
connected to a tank. In this particular set-up, the state component u consists of the
velocity of the fluid and the cross-sectional area of tube, and the state component h
consists of the level heights of the fluid in the tanks. Using mass conservation and
Newton’s second law, we will derive this system in detail in Chapter 2. From now
on, we shall refer to this model as the two-tank model, see (2.6.5). Similar models
have been considered in the literature in the context of valveless pumping [13, 60|
and in multiscale blood flow models [27, 68].

10
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Denoting by z = (u,h) the combined state components and ignoring external
sources for the moment, the system (1.1) can be written in the form

At) = F(2(t), t>0,
B(z(t) =0, t>0, (1.2)

In the two-tank model, F' and B are nonlinear. In studying systems of the form (1.2)
one may consider the dynamics near an equilibrium state as a first step. A state
ze is called an equilibrium or steady state of (1.2) if the equations F'(z.) = 0 and
B(z.) = 0 hold. The steady state in the two-tank model depends on the material
properties of the tube as well as those of the fluid. In general, the steady state is
not unique. But with an additional constraint, the system has a unique steady state.
The physical quantity to be conserved is the overall volume of the fluid.

To study the behavior of the system (1.2) near the steady state z, we linearize
it about z. by using a Taylor approximation and neglecting higher order terms.
Introducing the variable w = z — 2., which is the deviation of the state from the
steady state, one has the linear system

w(t) = Lw(t), t>0,
Gw(t) =0, t >0, (1.3)
w(0) = wy.

In this system, L and G tell us how the state w evolves in time and behaves at the
boundary, respectively, and wq is the deviation of the initial state from the equilib-
rium. The well-posedness of (1.3) will be established using the theory of strongly
continuous semigroups of bounded linear operators. This will be accomplished by
Lumer-Phillips’ Theorem.

Having the well-posedness of the linearized system, we are interested in the long-
time behavior of the solutions. Does the state converge to the equilibrium, or equiv-
alently, do the deviations tend to zero in some sense? If yes, what is the rate of
convergence? Using a spectral method it will be shown that indeed the state con-
verges exponentially fast to the equilibrium as long as damping is present and the
initial data lies in a factor space. The latter condition is needed since the lineariza-
tion (1.3) induces a one-dimensional linear manifold of equilibria, the span of the
zero eigenvector. By mass conservation, this factor space is the appropriate state
space for the deviations.

The spectrum of the generator is determined first in the absence of damping and
this information is used to see how the spectrum changes as the damping factor
increases. The generator stays spectral and thus the only elements of its spectrum
are generalized eigenvalues. It will be shown that all of the eigenvalues lie on a single
line determined by the damping coefficient, except for a finite number. If there is
no damping then the normalized eigenvectors form an orthonormal basis. If there is
damping then the eigenvectors are not orthogonal anymore, however, they still form
a Riesz basis. Except for a countable number, the eigenvalues are simple.

Riesz bases and orthonormal bases are related through bounded invertible lin-
ear transformations. The Riesz basis approach has been successfully used by Guo
and collaborators to prove the stability of certain beam equations [29, 30, 31, 32].
The basic idea of Riesz basis generation in these papers is the application of a re-
sult similar to Bari’s Theorem [81, Theorem 15], i.e. to prove that a sequence of

11
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generalized eigenvectors is quadratically close to a given Riesz basis. Unlike beam
equations, which have increasing spectral gap (distance between consecutive eigen-
values), wave equations have an asymptotically constant spectral gap. A refinement
of the Riesz basis generation theorem of Guo [29, Theorem 6.3] was given recently
by Xu and Weiss [79, Theorem 2.4|. The latter result will be used in proving
that the infinitesimal generator of our system is Riesz spectral, i.e. has a Riesz basis
consisting of generalized eigenvectors.

With Riesz bases at our disposal, we can express every element of the state space
as a nonharmonic Fourier series and in turn also for the semigroup. As a result,
we have a Fourier series representation of the solution that enables us to obtain a
tight decay rate. As the damping coefficient increases, the number of eigenvalues
approaching zero also increases. Thus increasing the damping coefficient will not
necessarily increase the decay rate. This should be expected because if the fluid is
viscous then it takes time to return to the steady state.

After studying the stability of the linearized two-tank model, a boundary control
system will be considered. By applying pressures on the top of each tank, the system
has the form

w(t) = Lw(t), t>0,
Guw(t) = q(t), t>0, (1.4)

where ¢ is the input. Is it possible to steer an arbitrary initial data to a desired
final state at finite time? The answer is yes provided that the controllability time is
sufficiently large. This reflects the finite propagation property for hyperbolic partial
differential equations.

In multidimensions, boundary controllability of the wave equation is not always
possible even for a large controllability time. It depends not only on the time but
on the region where the input is applied as well. This region should satisfy the
Geometric Control Condition stating that every ray of geometric optics should meet
the control region during the control period (see Bardos, Lebeau and Rauch [5]).
For linear symmetric hyperbolic systems in a bounded interval that generate groups,
boundary controllability can be achieved for sufficiently large times. This follows
from the fact that every characteristics will reach the boundary where the control is
applied after a finite number of reflections (see Russell [69]).

Because the control acts on the boundary, we have an unbounded input. The main
idea to prove the boundary controllability of (1.4) is to reformulate the abstract
IBVP as a pure initial-value problem in an extended space [70, 77]. We use the
Riesz basis approach to prove the exact controllability of the system. To do this,
we modify the arguments in Tucsnak and Weiss [77, Proposition 8.1.3] which
work with orthonormal bases. The spectrum is divided into lower and higher fre-
quencies. For the higher frequencies, the restricted system is controllable thanks to
Ingham’s Theorem. The uniform gap property of the spectrum plays an important
role here. For the lower frequencies, the restricted system is finite-dimensional and
the Hautus test is applied to show its controllability. By applying the simultaneous
controllability theorem in [76], the whole system is shown to be controllable.

A minimal time of controllability for single input controls will be given. However,
Ingham’s Theorem will not be applicable in this problem and we need to use other
perturbation results in non-harmonic Fourier analysis. In order to solve this, we
separate the lower and higher frequencies and replace the non-harmonic Fourier basis

12
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elements corresponding to the lower frequencies by some harmonic ones. With this
on hand, the problem will be solved by applying a generalized Kadec’s %—Theorem,
see e.g. [81, Corollary 2, p. 196].

An additional result obtained from the control problem is that the velocity admits
L?-traces at the boundary. This cannot be obtained directly from semigroup methods
and often called a hidden regularity property [44, 46, 50]. We will revisit this hidden
regularity property together with additional results later with a different perspective.
The results regarding the linearized two-tank model are given in Chapter 3.

The next step is to prove the well-posedness of the nonlinear two-tank model.
One of the classical methods in proving the existence of solutions of nonlinear partial
differential equations is to linearize the system by freezing some of the state variables
and then proceed with either a fixed-point argument or an iteration scheme. Instead
of working with the specific two-tank model, we draw our attention to a more general
system that includes the two-tank model. These systems are given by

([ wi(t, z) + A(u(t, 2))ug(t, z) = f(u(t, z)), t>0,0<z<1,
Bou(t,0) = bo(po(t), h(t)), t>0,
Biu(t,1) = bi(p1(t), h(t)), t>0, (1.5)
h(t) = H(h(t), q(t), u(t, 0), u(t, 1)), t>0,
u(0,x) = up(z), 0<z<l,
| h(0) = ho.

In principle, there are several ways to linearize systems of the form (1.5). The one
we use here is by freezing u and h in A, f and H. More precisely, we consider the
linearized system

,

ur(t, @) + A(v(t, x))ug (t,x) = f(u(t, )), t>0, 0<z<1,

Bou(t,0) = bo(po(t), h(t)), t>0,

Blu(t 1) - bl(pl(t)v (t))v t> 07 (1.6)
(1) = H(g(#), a(t), (0, 0), (1, 1)), 10,

u(0,x) = up(z), 0<z<l,

h(0) = ho.

for given frozen coefficients v and g. System (1.6) is semi-decoupled in the sense that
u depends in h but h does not depend on w.

The linerization of (1.5) into (1.6) leads us to linear hyperbolic systems with vari-
able coefficients. To analyze this, we follow the frameworks and methods in Benzoni-
Gavage and Serre [9], Chazarain and Piriou [15], Métivier [55] and Coulombel [17].
Most of the results in this part parallel those in multidimensions given in [9] and
many ideas of the proofs are borrowed from this reference. However, we deviate the
presentation and state further remarks. This is useful not only for the nonlinear
analysis but also in studying a linear hyperbolic system with linear ODE boundary
conditions for which the linearized two-tank model is a particular example. The
thesis will also serve as a venue to realize that the theory originally developed to
treat multidimensional problems simplifies in the case of one space dimension. We
hope that the extra details will be helpful in understanding these problems.

For IBVPs, one needs to determine what are the appropriate boundary conditions.
In the case of hyperbolic equations, because information propagate along character-
istic, care should be taken in imposing boundary conditions in order for the problem

13
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not to be underdetermined or overdetermined. Let us consider a simple transport
equation moving with unit speed

(1.7)

u(t,x) —ug(t,z) =0, t>0, 0<z<l,
u(0,z) = up(z), 0<z<l1.

The characteristics of this equation are the straight lines z + ¢ = constant. Hence,
information move from right to left. This observation tells us that a boundary
condition at x = 1 should be imposed while there is none at x = 0. For (1.7) to be
well-posed, the appropriate boundary condition is given by

u(t,1) = g(t),  t>0. (1.8)

For diagonal systems, the number of boundary conditions should be equal to the
number of incoming characteristics in that boundary. For systems that are not
diagonal, the Uniform Kreiss-Lopatinskii (UKL) condition gives the appropriate type
of boundary conditions. In the case of half-space, the UKL condition implies the
decay at infinity of solutions for linear hyperbolic systems of the form eMU(x) with
RA > 0, see [15].

We are interested in the well-posedness of the IBVPs with variable coefficients in
L?. The weak solutions in L? satisfiy a variational equation that takes the form

(u, Aw)x = (f,w)x + (g, Yw)z, VweW. (1.9)

for some spaces X, W, Z and operators A, ¥. This equation is obtained by multi-
plying the differential equation by appropriate test functions, integrating by parts
and using the boundary and initial conditions. With an abstract a priori estimate,
the variational equation (1.9) has a solution w € X. Its proof is based on the Hahn-
Banach and Riesz Representation Theorems. The idea of the proof can be traced
back to the work of Friedrichs [28] for symmetric systems. Therefore, proving an a
priori estimate is the first step in proving the existence of weak solutions.

Strong solutions of the intial-boundary value problems are also introduced. As
with weak solutions, they also belong to L?, however, they are limits of smooth
functions that satisfy a system that is an approximation or regularization of the
original problem. According to its definition, every strong solution is a weak solution.
Strong solutions satisfy an energy estimate which implies the uniqueness of strong
solutions. It will be shown using the so-called weak equals strong argument that every
weak solution is also a strong solution. Consequently, weak solutions are unique.

How does the weak solution satisfy the initial-boundary value problem? To answer
this, we need to consider the space of functions v € L? such Lu := dyu+ Ad,u € L?,
where A is at least Lipschitz. This space is similar to the space {u € L? : div u € L?}
used in studying the Navier-Stokes equation. These spaces are called graph spaces.
The usual trace operator in H! can be extended to define a generalized trace operator
for the graph space {u € L? : Lu € L?}, but the traces are now in H™3. To
treat IBVPs, we will also restrict the trace to the edges of the time-space domain.
With these considerations, it will be seen that weak solutions satisfy the partial
differential equation in the sense of distributions and the boundary conditions and
initial condition are satisfied in the sense of (generalized) traces.

The well-posedness of the IBVPs is based on the well-posedness of pure boundary
value problems (BVPs). It will be seen that an IBVP with homogeneous data can
be solved by extending the boundary data by zero and considering the associated
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BVP. For this reason, we need a well-posedness theory for BVPs. A weak solution
for the BVP satisfies a variational equation that has the form (1.9) as well. Thus,
deriving a priori estimates for the BVP is a crucial step.

If the system admits a functional boundary symmetrizer then a suitable a priori es-
timate can be shown. Symmetrizable systems with dissipative boundary conditions
have a natural functional boundary symmetrizer. There are also systems which ad-
mit functional boundary symmetrizers without the dissipativity condition. This was
initiated by Kreiss [45] for the case of constant coefficients and then later for vari-
able coefficients in [15]. The construction of the boundary symmetrizers is based on
Kreiss symmetrizers. With the help of the UKL condition, they can be first defined
locally. In the systems that we considered, the local symmetrizers can be taken in
diagonal form. The local Kreiss symmetrizers serve as building blocks in deriving a
global Kreiss symmetrizer. This is done by homogeneity and compactness arguments.
The passage from global Kreiss symmetrizers to functional boundary symmetrizers
relies on pseudodifferential calculus for smooth coefficients and paradifferential calcu-
lus for Lipschitz coefficients. In particular, a functional boundary symmetizer can be
obtained by symmetrizing the operator having the global Kreiss symmetrizer as its
symbol. A short survey on pseudodifferential calculus and paradifferential calculus
is provided in Appendix C.

The weak solutions for the IBVPs have L2-traces on the boundary even though
they are only in L? in the time-space domain. This can be attributed again to
the fact that information propagate along characteristics. To illustrate this, let us
consider the simple system (1.7)—(1.8). The solution of this problem given by the
method of characteristics is

t fo<z<l 0<t<l-—
u(,x):{u0<m+ )s i r <1, x, (1.10)

gt+xz—1), f0<z<l, 1—z<t.

Suppose that ug and g are both L?. Due to the boundary condition at z = 1 it is
clear that u has an L?-trace at this boundary. Likewise, from (1.10) it can be seen
that the profile at the boundary = 0 is given by the initial data if 0 < ¢ < 1 and by
the boundary data g if ¢ > 1. Hence, v admits an L?-trace at the boundary = 0 as
well. This resembles the hidden regularity property that we have mentioned earlier
for the linearized two-tank model.

In this work, we are also interested in smooth solutions of the system (1.5). We
will prove well-posedness in the Sobolev space H™ for integers m > 3. Because we
will do this using an iteration scheme through the linearization (1.6), we need to
prove the regularity of the weak solutions for the PDE part. It is not enough to have
smooth boundary and initial data, one also requires compatibility conditions. To
see this, let us again consider the system (1.7)—(1.8). Suppose that the boundary
data g and the initial data ug are both continuous. The the solution u, given by
(1.10), is continuous on (0,00) x (0,1) except possibly at those points on the line
x4+t = 1. This line is the characteristic emanating at the boundary x = 1. To have a
continuous solution, g and up must satisfy the compatibility condition g(0) = wug(1).
In order to have more regularity, one needs more regularity on ug and g and higher
order compatibility conditions.

The regularity theorems for the IBVPs are based on H™ for integers m > 3 in
the case of variable coefficients and for integers m > 1 in the constant coefficient
case. Again, these are obtained using a priori estimates in Sobolev spaces. We
follow the derivations in [9] and [55] with some modifications. As in the L? case,
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the regularity of the solutions at the boundary will be inherited from the regularity
of the boundary and initial data. Regularity theorems for hyperbolic systems with
smooth coefficients can be found in the paper of Rauch and Massey [64].

Before proceeding with the nonlinear system (1.5), we prove the well-posedness of
the linear hyperbolic system with variable coefficients coupled with linear ordinary
differential equations at the boundary

(9 + Alv(t, 2))0, +
f)

R(t,x))u(t,x) = f(t,x), 0<t<T, 0<ax<l,
(Hh(t), 0<t<T,

Bou(t,0) = go(t) + Qo )
Biu(t, 1) = g1(t) + Q(t)h(t), 0<t<T, (1.11)
B(t) = H(®)h(t) + Go(t)u(t, 0) + G1(Hu(t, 1) + S(t), 0<t<T, |

u(0,2) = up(zr), 0<z<l1,
h(0) = ho

The usual energy estimates imply well-posedness is used to prove well-posedness in
L? of this system. It will be shown that u satisfies a hidden regularity property, i.e.,
it has L%-trace at the boundary. This property implies that the ODE component h
does not lie only in L? but in H'.

In the constant coefficient case, this well-posedness result implies that the weak
solution generates a Cyp-semigroup. As a result, the weak solution is the same as the
solution given by the semigroup approach. In particular, we obtain the additional
regularity of u at the boundary and the regularity of h. Let us have a detour with the
linearized two-tank model. The linearized two-tank model is a particular example
of the constant coefficient case of (1.11). Thus, the remarks stated above can be
applied. Both the cross-section and the velocity have L?-traces at the boundary and
the state corresponding to the level heights lie in H'. This is an improvement of
the result that we mentioned earlier since by semigroup methods we only knew the
boundary trace for the velocity.

After dealing with the linear systems in Chapter 4, the nonlinear system (1.5) will
be discussed in Chapter 5. One way to prove the well-posedness of (1.5) is to prove
that the map (v, g) — (u, h) on a suitable function space, where (u, h) is the solution
of (1.6) for a given pair of frozen coefficients (v, g), has a fixed point. However, this
task is difficult to handle. Instead of using a fixed point theorem, we shall instead
utilize the contraction mapping principle, that is, using a Picard iteration scheme.
We start with an admissible initial pair of frozen coefficients (u’, h") and define
(ut, h') to be the solution of the system (1.6) where (v, g) is replaced by (u?,h°).
Then we define (u?, h?) to be the solution of (1.6) with the pair of frozen coefficients
(u', h'). We continue this procedure to obtain a sequence ((u?,h?));>1 and we hope
that this sequence converges in some sense and that the limit satisfies the system
(1.5).

The Picard iteration described above has a disadvantage, we need the time of
existence to be sufficiently small due to some absorption arguments used in deriving
energy estimates. This means that we are only able to prove a local-in-time well
posedness of (1.5). But this is the best we can expect for quasilinear systems due to
the nonlinearity. Smooth solutions may blow-up in finite time or break-up creating
shocks.
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Let us illustrate the discontinuities developing due to nonlinearity. We start with
the simple ODE with quadratic nonlinearity

{ w(t) +w(t)* =0, t>0, (1.12)

w(0) = wo,

where wy € R. The solution of (1.12) is given by w(t) = wo(wot + 1)~!. Note that
the steady state w = 0 of (1.12) is unstable. Indeed, if wy < 0 then |w(t)| — oo as
t — —1/wg. Therefore, no matter how the initial data is close to the steady state, if
it is negative then the solution will blow-up in finite time.

Our next example is the well-known (inviscid) Burgers’ equation

u(t, ) + u(t, z)ug(t,z) =0, t>0, —o00 <z < 00, (1.13)
u(0) = up. '
The characteristics for (1.13) are solutions of the differential equation
o' (t) = u(t, z(t)), z(0) = xo. (1.14)

Along characteristics we have

d
—ult, 2(1)) = wnlt 2(0) + a1, 2(0))2'(2) =0,
which implies that u is constant along characteristics. Thus 2/(¢) = constant and
therefore the characteristics are the straight lines x = z¢ + ug(zo)t.
Consider the nonlinear equation

F(zo;t,x) = — 20 — uo(xo)t =0 (1.15)

in the unknown xz( for fixed (¢,z). Suppose that wug is continuously differentiable.
Note that Oy, F(xo;t,2) = —1 — ug(zo)t. When ¢ is small enough so that —1 —
ug(zo)t # 0, we can use the implicit function theorem to conclude that the equation
(1.15) is solvable for z:g = xo(t, ) given (¢, z). Thus tracking back the characteristic
passing from (¢,z) through its intersection at zp on the x-axis we conclude that
u(t, ) = up(xo(t, x)).

If uf, > 0 then (1.15) is always uniquely solvable and we have a global-in-time
smooth solution provided that uy is smooth. The problem occurs if uf(zo) < 0 at
some point zo and then the system (1.15) is not solvable anymore. In this case the
state u will be multivalued and the first time where such situation occurs the state u
will have an infinite slope. This phenomenon is called shock formation. Suppose that
u is a smooth solution, say continuously twice differentiable, of the Burgers’ equation
and let w(t) = uy(t,2(t)) where x satisfies (1.14). Taking the derivative of w and
using Ug¢ + Uy, + ui = 0, which is obtained by differentiating the Burgers’ equation
with respect to z, it can be seen that w satisfies (1.12) with wy = uf(zo). According
to our preceding discussions, w blows-up in finite time if u/(zg) < 0. Therefore if
the initial data is decreasing at some point xg then the slope of the solution at some
point increases without bound in finite time.

Knowing that in general a global-in-time solution does not necessarily exist for
(1.5), what phenomena occur if the maximal time of smooth solution is finite? The
answer is already given by the two illustrations provided above. If the maximal time
of existence is finite then the state leaves every compact subset of the hyperbolicity
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region or its first order derivatives blow-up. The local-in-time existence and blow-up
criterion for our systems will be shown in Chapter 5.

It is known that the presence of a linear damping term can prevent shock formation
at least for small and smooth initial data, see Dafermos [21]. Let us illustrate this
in the case where there is damping for (1.12), that is,

wl0) (1.16)

{ W(t) +wt)2+w(t) =0, t>0,
The equation (1.16) has two steady states w = 0 and w = —1. A standard phase
plane analysis shows that w = —1 is unstable while w = 0 is stable. If wg > —1 then
(1.16) has a global solution w converging to the stable steady state exponentially.
Consider the Burgers’ equation with damping

w(0) = 1 (1.17)

{ ur(t, @) + u(t, x)uz(t, ) +u(t,z) =0, t>0, —co <z <00
Define w(t) = u,(t,x(t)), where x(t) are the characteristics of the Burgers’ equation
with no damping passing through (0, zp). Then a straightforward computation shows
that w satisfies (1.16). Hence, if /' > —1 then we have a global solution for (1.17).
Now, if we multiply the partial differential equation in (1.17) by u, integrate by parts
and assume that the solutions decay at infinity, we obtain

5 a0y + [u() ey =0, 0.
Thus [|u(t)|| 2) = e *lluoll 2(r) so that the solution decays to the steady state u = 0
of (1.17) exponentially fast

These two examples show that smooth data close to the steady state together with
damping imply global existence of solutions and its convergence to the steady state.
We will use these ideas to prove the same results for the nonlinear two-tank model.

Necessary and sufficient conditions for the existence of global solutions both for
general and physical quasilinear hyperbolic systems have been developed in the past
years, see [18, 33, 47, 49, 68]. However, there are only a few works dealing with
bounded domains. In one-space dimension, Ruan et al. [68] investigated the global
existence of smooth solutions of a network of 2 x 2 systems of balance laws in bounded
intervals under a dissipative condition on the boundary conditions. This condition
is similar to what has been considered in [47, Chapter 5]. However, the dissipative
condition is not satisfied for instance by the isentropic Euler system, systems with
relaxation, for boundary conditions arising in blood flow models, nor by the two-tank
model.

In this thesis, two main tools were used to prove the global existence of solutions,
namely, the entropy and energy methods. Any smooth solution u of a system of
conservation laws satisfies an additional conservation law of the form n(u);+q(u), =
0, called companion laws. The function 7 is called an entropy and the function ¢ is
the corresponding entropy flux. For the isothermal Euler equations this additional
conservation law is the conservation of mechanical energy. In general, one cannot
guarantee the existence of nontrivial companion laws.

The energy method was used by Nishida [59] and Kawashima [42] for hyper-
bolic and hyperbolic-parabolic equations. This was then used by several authors for
isothermal Euler equations [18], partially dissipative systems with convex entropies
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[7, 33, 80], relaxation models with nonconvex flux [52], systems arising in blood
flow models [68] and others. The main idea is to define an energy functional and to
derive an estimate for this functional. Lower order estimates can be obtained using
the relative entropy method [33]. The relative entropy associated with a strictly
convex entropy, loosely speaking, can serve as a distance between solutions, e.g.,
classical, strong, weak, of conservation laws or balance laws, cf. [21]. For higher
order estimates involving terms that do not have a dissipative term one useful crite-
rion, at least for Cauchy problems, is the Shizuta-Kawashima condition which was
formulated in [72]. However on a bounded interval, a different method was used in
[68], namely the construction of entropy-entropy flux pairs for the Riemann invari-
ants in deriving higher order estimates. In the case of bounded domains, boundary
terms arise and this causes some difficulty in obtaining the necessary estimates. The
dissipative condition plays a crucial role in the proof of the estimates in [68]. Most
of the existence results use the smallness assumptions on the initial data. Even with
this restriction the proofs are not trivial.

Here, we will also use the relative entropy method to obtain lower order estimates
for the energy functionals and use appropriate entropy-entropy flux pairs for higher
order estimates. The main idea is to construct entropy-entropy flux pairs (7, ¢) such
that

nt+Qm:M

for some source term M which is, roughly speaking, dominated by the damping term,
which is the velocity in the two-tank model, or its derivatives. We will not assume
the dissipative condition as in [68] but we use the special structure of the boundary
conditions of the two-tank model.

The energy estimates imply immediately that the global solution of the nonlinear
two-tank model with smooth and small data converges to the steady with respect
to the norm of H' x H' x R?. The rate of convergence is exponential if one uses
the norm of L? x L? x R2. To prove this we use some interpolation estimates, a
Growall-type lemma and the linear stability of Chapter 3.

1.1 NOTATIONS

The sets of positive integers, integers, real numbers and complex numbers are denoted
by N, Z, R and C, respectively. We denote by Ny = NU{0} the set of natural numbers.
The same notation | - | for the Euclidean norms in R and C is used throughout the
text. Given z € C, the real and imaginary parts of z are denoted by Rz and Sz,
respectively.

Let O € R?%, d € N, be an open set and k € Ny. The space of functions defined
in O that are continuously differentiable up to order k is denoted by €*(0O). We
let €(0) = €°(0) and €>*(0) = MNeen, €*(0). The elements in €>°(0) having
compact support in O is denoted by Z(0). The subset of €°°(O) that has bounded
derivatives of any order is denoted by €,°(0). Given a subset S C R? with nonempty
interior, we define 2(S) = {us : u € Z(R?)}.

The Schwartz class of rapidly decreasing functions is denoted by . (R%). The no-
tations 2(0), ' (RY), &'(R?) represent the space of distributions in O, tempered
distributions and distributions with compact support, respectively. The usual nota-
tions for the Sobolev spaces W*P(0), H*(0) = W*2(0) and LP(O) = W%P(O) for
s € R and 1 < p < oo are used. The product of m copies of W*P(0) is denoted by
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W#P(O)™. However, if the number of components is clear in the context, we will
remove the superscript m.

Given an open set O C R? = {(¢,7) : t,» € R}, v > 1 and a nonnegative integer m,
the space H'(O) is defined to be the usual Sobolev space with y-depending norm

[ull om0y = Z 10| 20y < 0.

|| <m
It follows from the definition that
V" wl g < Jwllmp,  0<k<m, weH™ (1.1.18)

It can be shown that there exist constants 0 < ¢ < C' independent of both u and
~ such that

¢ Y A" 0 20y < Ml ull oy < C Y AT e 0% 2 o)

laf<m laj<m

whenever e~ 7'y € H™(O). The norm ”'U/HHZ{L(RQ) is equivalent to || Op(Am’A)u|]L2(R2),
where Op(A\™?) is the pseudo-differential operator with symbol A™7(§,&) = (v2 +
62 +£2)™/2 see Appendix C.

Let O C R? be open and let CH™([0,T] x O) = Npeo CP([0,T]; H™P(0)) for
m € Ny be equipped with the norm

m 1
. 2
T ——— <Z sup ||azu<f>||§{m_j(o)> .

=0 T7€[0,T

We write CL?([0,T] x O) instead of CH([0, T] x O). For each m € No, CH™([0,T] x
O) equipped with the norm || - [|¢gm(j0,7)x0) is @ Banach space.

If X is a Hilbert space consisting of functions and v € R, we define the weighted
space 7' X = {e"u : u € X}. With the inner product (w, 2)gtx = (e "w, e 2)x,
w,z € X, the space €”* X becomes a Hilbert space.
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2

A MODEL OF FLOW IN AN ELASTIC TUBE

The goal of this chapter is to derive a model for the flow of an incompressible fluid
contained in an elastic tube. A tank or basin is connected at each end of the tube,
see Figure 2.1. All throughout, the variables ¢ and x designate for time and location,
respectively. Let A(t,x) be the cross section of a circular elastic tube of length ¢ that
is filled with incompressible fluid of constant density p. The reference cross section
at reference pressure py is denoted by Ay = 7r3. Denote by u(t, z) the velocity of the
fluid, and a positive velocity means flow in the positive x direction. In modeling the
flow of the fluid in the tube, we apply the law of conservation of mass and Newton’s
second law. In the derivation, it is assumed that the fluid is a continuum, that is,
physical properties associated with the fluid such as density, pressure and velocity
are defined at every point on a given domain. This hypothesis idealizes the property
that fluids are composed of discrete molecules.

Pyo o Pre

h
0 hy

f

Figure 2.1.: An elastic tube connected to two tanks.

2.1 EULER’S CONTINUITY EQUATION

First we derive the continuity equation from the law of conservation of mass. The left
end of the tube is located at the origin z = 0. The mass of the fluid in [z1, z2] C (0, ¢)
at time t is given by

M(t) = / ¥ At 1) da.

1
At time ¢, the flux of mass at position z is pA(¢, x)u(t,x). The rate of change of
mass in [x1, x| is given by

d [
M'(t) = / pA(t, ) du.
at /.,

However, this change corresponds to fluid flow across the boundary. Hence the rate
of change is the difference of the fluxes at 1 and z9, that is,
d [*

= [ pA(t) du = Atz )ult, 21) — pA(L22)ult, 32).
x1
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Integrating over a time interval [¢1,to] tells us that the mass within [z1, z2] at time
to is equal to the mass within [x1,x9] at the previous time t; plus the integrated
fluxes of mass across the boundaries x1 and x5, that is,

T2 €2 t2
/ pA(te,x) de = / pA(ty,x) dx+/ pA(t, x1)u(t,z1) dt

1 1 t1

to
— / pA(t, zo)u(t, z2) dt.
t1
This is the integral form of the law of conservation of mass. Cancelling p and
assuming that A and u are smooth, we can rewrite the integral form as

x2 prto to rx2

/ OiA(t,x) dt do = / / Oz (A(t, x)u(t,x)) dz dt.
x1 Ji1 t1 Jx1

Assume that the functions are well-behaved so that we can reverse the order of

the integration in the right hand side. As t1,%9, 21,22 are arbitrary, this gives the

differential form of the conservation law

Ot A(t, ) + 0z (A(t, x)u(t,z)) =0, t>0 0<z</. (2.1.1)

also known as Fuler’s continuity equation.

2.2 LAW OF BALANCE OF MOMENTUM

Let z(t) denote the position of a fluid particle at time ¢ so that the velocity is given
by
u(t,z(t)) = 2/ ().

Applying the chain rule, the acceleration at time t of the fluid particle is therefore
given by

a(t) = d—(:ltu(t, z(t)) = Ou(t, z(t)) + dpu(t, x(t))x'(t) = dyu + udyu = Du.
Here D = 9; + u - 0, denotes the material derivative.

To use Newton’s second law, we need to consider internal and external forces acting
on the fluid. The first one is stress (force per unit area). This is due to internal
forces that act on a part of the fluid across its surface by other parts of the fluid.
Assuming that the fluid inside the tube is ideal, there is a function p(¢,x) called the
pressure such that if S is a surface in the fluid then the force across S per unit area
is given by p(t,x)r, where v is the unit vector normal to S. Thus, forces only act
orthogonally to the surface and hence tangential forces are neglected. Intuitively,
this means that rotation in the fluid is not taken into account. The stress acting on
[x1,x2] due to pressure at time ¢ is given by

)
Fs =p(t,x1) — p(t,z2) = —/ Orp(t,x) dx.
Tl

External forces may include gravity and frictional forces. If b(¢,z) denotes the
given body forces per unit mass and F'(¢,x) is the friction (force per unit volume)
then the net external force acting on [z1, 2] is

@
F. = / pb(t,z) + F(t,z) dz.

1
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2.3 FRICTIONAL FORCE

The net force per unit area is therefore
€2

Fhet = Fs + Fe = / (_awp(t7m)+pb(ta x) +F(ta x)) da.

x1

Thus, on any part of the fluid, the net force per unit volume is —0d,p + pb + F.
According to Newton’s second law, the net force per unit volume is equal to the
product of the density of the fluid and its acceleration and so

p (Owu + udyu) = —0zp + pb + F. (2.2.1)
This is the differential form of the law of balance of momentum.
2.3 FRICTIONAL FORCE
The frictional force is modeled by Hagen-Poiseuille’s law for stationary laminar flow.

Loosely speaking, this law states that there is a decrease in pressure due to friction.
Using the model in Rath and Teipel [63] we have

where (i is the viscosity of the fluid. With this model, we can see from (2.2.1) that
the acceleration decreases if ug > 0. For example, if the fluid is flowing in the positive
direction then F'(t,z) < 0 and so the acceleration is decreased. We can think of F'
as dissipation.

2.4 EQUATION OF STATE

If the tube rests on solid ground, then the force due to gravity is cancelled by
the opposing force, the ground reaction force. This means that b = 0. From the
continuity equation (2.1.1) and the balance equation (2.2.1) we have the system

8710 (2.4.1)

u
pAo

1
Oy + ulpu + —0pp = —
p

In (2.4.1), there are three unknown variables u, p and A. To close the system, we
need an additional equation. This will be done by writing the pressure as a function
of the cross sectional area, that is, p = p(A). Such equation is called an equation of
state (EOS).

To obtain the equation of the state we follow [63]. The two main ingredients of
the derivation of the EOS are Laplace’s law of cylinders and Hooke’s law. Due to the
difference of pressures inside and outside of the tube, the wall of the tube is stretched
or compressed. If the pressure inside the tube is greater than the one outside the
tube, then the tube’s wall is stretched, otherwise it is compressed. We assume that
the deformed tube also has circular cross section. Laplace’s law of cylinders relates
this difference of pressure to the radius and thickness of the tube material. The
larger the difference of the inner pressure and from the outside pressure the larger
the tension is. If the inner radius is large then the tension is higher, however, if the
tube is thick then the tension is lower. Taking these considerations into account, if
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o, and s denote the tension in the wall and the thickness of the tube, respectively,

then
ot x) = TOAPS(t’x) - ro(p(t’? —po) (2.4.2)

To obtain another equation involving the tension, we can view the tube as a spring
and apply Hooke’s law. This law states that the extension or strain of a spring is
proportional to the load applied to it. In this case, the strain is the ratio of the
change in radii to the reference radius ro. Hence

B EAr(t,x)

T tv - =F
U( {E) To 7o

T’(t, .’I,') —To

(2.4.3)

where F is the proportionality constant, called the Young’s modulus of the tube
material. Suppose that the material is homogeneous so that E is constant. Solving
for r(t,z) in (2.4.3) and using the formula (2.4.2) we have

r(t,z) = %Oa.r(t,x) +719 =10 <1 + ;—Z(p(t,x) — p0)> )

Therefore the tube’s wall is stretched if p > pg while it is compressed if p < pp.
Because the cross section remains circular, we have

Aty ) = wr(t,)? = Ao (14 12 (p(t, ) - pg))2 . (2.4.4)

Assuming that A(t,z) > 0, solving for the pressure in (2.4.4) gives us an EOS

sk Alt,x
0 0

Using the equation of state (2.4.5) in (2.4.1) we obtain the system

A + 0y(Au) = 0
(2.4.6)

sE 1
Oy + udpu + ——==0,(A(t,z)2) +
T Vs (Alt, z)2) pAy

2.5 CONSERVATIVE AND NONCONSERVATIVE FORMS

The system (2.4.6) is called a hyperbolic system of partial differential equations. It
can be written in the form Uy + F(U), = G(U) where U = (A, u) is the state vector,

Au
FUY=| 1, sE (Atto))?
2 PTo AO

and
0

GU) = _87T,u0
pAo
Such systems are called balance laws and the terms F' and G are called the fluz

and the source term, respectively. If there is no source term, that is, G = 0, then
they are called conservation laws. The equation U, + F(U), = G(U) is said to

u
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be in conservative form while the form Uy + Fn(U)U, = G(U) is said to be in
nonconservative form. Assuming that the state vector U and the flux F' are smooth,
every system in conservative form can be written in nonconservative form by setting
Fn = DF where DF is the Jacobian of F. In the case of (2.4.6), it can be written
in nonconservative form with

U A

2,07"0\/ A()A

For smooth solutions with smooth fluxes the conservative and nonconservative forms
are equivalent.
The eigenvalues of the Jacobian are given by

1

sEVA \?
MAw)=ut | ——— | .
(4w =u <2P7’0\/Aio>

The speed of propagation in the nonlinear model is then given by

< sEr ) 2

a=(-—=],

2p1;

as in [63]. For small disturbances, r &~ r( so that the speed of sound of the linearized

sE

2pro)1/ > In [63] it is approximately equal to 12 meters per second.

system is a ~ (

2.6 INITIAL AND BOUNDARY CONDITIONS

In order for the system (2.4.6) to be well-posed, it should be supplied by initial and
boundary conditions. Denote by u? and A° the initial velocity of the fluid inside the
tube and the profile of the tube, respectively. If A > 0 then A\_ < 0 < Ay. Thus,
one wave propagates from left to right and one in the opposite direction. Therefore
there should be two boundary conditions, one at the left end and one at the right
end. For example, when the tube lies on a table and the ends are closed by rigid
lids, one could consider Dirichlet conditions for the velocity and cross section at both
ends, namely,

u(t,0) = u(t,€) =0,
A(t,0) = A(t, £) = Ao.

This seems to be an overdetermination. Introducing the characteristic variables
w = —u+ 4kAY* and z = u + 4k A4, where k = (sE/2pgy/Ag)'/? the system
(2.4.6) can be diagonalized. Assigning both u and A to each endpoints will give us
values for w and z at each of the endpoints, which clearly is an overdetermination.
Looking for net flow through the tube one would leave the ends open, but one could
fix the cross section, for example, A(t,0) = A(t,¢) = Ag. Or one could let the ends
open and elastic, but enforce flow, for example u(t,0) = wug(t) and u(t,€) = u(t).
In [75], boundary conditions are derived from the in-stationary Bernoulli equation.
The experimental setup in [63] seems to leave the ends open and elastic but have
conditions on p(t,0) and p(t, £), which is a function of A(t,0) and A(t, £), respectively.
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In the configuration of Figure 2.1, the ends of the tube are at the bottom of basins
that contain water, so there is hydrostatic pressure. The pressure at the left end is
then given by

p(t,0) = po + pso(t) + pgho(t),

where py is a control pressure applied to the surface of the water in the left tank, ho(t)
is the level height of water in the left tank and the term pgho(t) is the hydrostatic
pressure. Similarly, the pressure at the right end is given by

p(t, £) = po + pre(t) + pgha(t),

where pyy and h are the control pressure and level height of the right tank. Using
the equation of state (2.4.5) we arrive at the following boundary conditions for the
cross section at the left and right ends of the tube

A0) = Ao (1+ 2 (pgho(t) + pyol)) (26.1)
A0 = Ao (14 T2 (pghe(t) +ps(1))) (2.62)

These boundary conditions imply that the cross section is not fixed at the ends.
The rate of change of the level height of the fluid in the tank should be equal to
the flux at the boundary. Thus the rate of change for the level height hy is given by

d
where Ar is the cross section of the containers. Analogously, the evolution of the

level height of water in the left tank is given by

d
E(ATho(t)) = —A(t,0)u(t,0). (2.6.4)
The initial level heights are denoted by ho(0) = hY and he(0) = h).

From the nonconservative form of (2.4.6) together with the boundary conditions
(2.6.1)—(2.6.4), we have the coupled system of hyperbolic PDEs and nonlinear ODEs

(0, A(t, ) + u(t, )0, A(t, z) + A(t, 2)0pu(t, z) = 0

SE Aot 2) 3 0u At ) + Tyt 2) = 0

Ou(t, x) + u(t, z)0u(t,x) + u
) 2pr9 pAo

hi(t) = — A—A(t,O)u(t,O)

AT
Ri(t) = Al Du(r, 0 (26.5)
A(1,0) = Ao (14 T2 (pgho(t) + pyo(1)))
A(t, 0) = Ag (1 + S%(Pghe(t) +pfz(t)))2
A(0,z) = A%(x), uw(0,7) = u%(z)

ho(0) = A, he(0) = hY.

fort>0and 0 < x < /.
We can think of the tanks as a source term at the boundary, but this source
term depends on the state. The differential equations for hg and hy in (2.6.5) can
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be integrated and substituted into the boundary conditions for A to obtain the
nonlocal-in-time boundary conditions

2

Topg ! o
A(t,0) = Ay (1 — sEAT/O A(s,0)u(s,0) ds + SEpfo(t)>

T t T 2
A(t,0) = Ay <1 + SEOilgT /O A(s, l)u(s,l) ds + s]??pﬂ(t)> .

However, we will not dwell on this perspective but instead we will study the PDE-
ODE system (2.6.5).
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STABILITY AND CONTROLLABILITY OF THE
LINEARIZED MODEL

Before dealing with the nonlinear system (2.6.5), its linearization about a steady state
will be studied in the present chapter. The well-posedness of the linearized model is
established in Section 3.2 using Cp-semigroups. For convenience, a short summary of
results regarding Cp-semigroups is provided in Appendix A. The connection between
the semigroup solution and the linearized system will be discussed in Section 3.3.
In Section 3.4, the spectrum of the generator is determined and in particular it is
shown that the generator is Riesz spectral, that is, it has a Riesz basis consisting of
generalized eigenvectors. A boundary control system is considered in Section 3.5 and
it is shown using tools in Fourier analysis that the linearized model is boundary exact
controllable for sufficiently large times. For single input controls, a minimal time of
controllability will be given as well. As for the wave equation with either Dirichlet
or Neumann boundary control, the control can be characterize by minimizing a cost
functional with PDE constraints. Finally, numerical solutions of the linear model
are computed using Legendre tau approximations.

3.1 LINEARIZATION

Let us determine the equilibria of the system (2.6.5) when p¢y and pg do not depend
on t. Setting the derivative with respect to time to zero in (2.6.5), the first equation
will give (Au)/0z = 0 and so Au is constant on [0, £]. However, the third and fourth
equations will give A(t,0)u(t,0) = A(t,£)u(t,£) = 0 and assuming that A remains
positive for all t > 0 it follows that v must be identically zero on [0, ¢]. Using this
information in the second equation we obtain that 0A/dx = 0 and so A must be
constant on the domain, say A = A.. Because dho/dt = 0 and dhy/dt = 0 then
ho = hoe and hy = hy. for some constants hg. and hy.. Thus we have

70 )

A= A0 (14 "2 (pghoc + o))" = 40 (14 "2 (pghec +ps0))

and it follows that he —hge = %(p fo—py). We ignore the other possibility hoe+hee =
— prlog (2sE+ropso+ropse) since we are interested in the case where the level heights
in the tanks are both positive. If pyg = py¢ then the former equality coincides with
the fact that the level heights in the two tanks must be the same. Note also that this
is true even when the two tanks have different horizontal cross sections. If V' denotes
the volume of fluid in the tube and in the tanks, then V = Al + Arp(hoe + hee)-
Therefore po, pye and V uniquely determine the equilibrium point. Furthermore, it
is easy to see that we can choose prg and ps¢ such that ho. and hy. are both positive.

To linearize the above system about the equilibrium point z. = (Ae, U, (Ae)z, (Ue)z,
hoe, hee), where ue = (Ae)z = (ue)r = 0, we use Taylor series expansions about the
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STABILITY AND CONTROLLABILITY OF THE LINEARIZED MODEL

equilibrium z. and neglect the terms of order higher than one. From these equations
we let A=A, + A, u =1, hg = hge + hg and hy = hye + hy, which are the small
deviations from the equilibrium, to obtain the linearized system

oA i
Ay ‘e q 3 07 0 ea
ot O > <zr<
i A
?;::—ag—ﬂa, t>0,0<z<d,
x
i ) (3.1.1)
0 e ~
— = ——7%(t,0 t>0
@ = a0 -0
dhy _ A, _
— = —u(t, L t>0
dt ATU’( ) )7 > il
with boundary conditions
A(t,0) = vho(t),  A(t,0) = vhe(t),  t>0, (3.1.2)
and initial conditions
A(0,z) = A%x), w0,7) =a%z), 0<z</,
B ~ B . (3.1.3)
ho(0) = h, he(0) = hy
In the above system we used the following notations
sk 8
@ = 9 B =
2prov/ Ao Ae pAo
2pAogro To 2pAogro 70
A (1 s 100) = A (1 )
gl “E ( + 5 (Pghoe + pyo) “E + g (Pghee +pye)

since, for the linearization, we assume that pyo and py, are constants. We remark
that all the parameters rg, s, Ag, A., F are positive while p is nonnegative. As a
result, « > 0 and 8 > 0. The constants psg and py, can also be chosen to be small,
so that v > 0. The resulting linear system is the coupling of PDEs in one space
dimension with ODEs and sometimes such systems are referred to as hybrid systems.
By differentiation, a second order linear model, which is a wave equation with viscous
damping and Robin boundary conditions, was formulated and discussed by Bredow
[78].

3.2 WELL-POSEDNESS OF THE LINEAR SYSTEM

In this section we prove the well-posedness of the linear system (3.1.1)—(3.1.3). For
convenience, we will denote the state variables and the initial conditions for the
linearized system without the tildas. Our approach utilizes the theory of strongly
continuous semigroups. We will recast the system as a differential equation in an
infinite-dimensional state space. Consider the Hilbert space X = L?((0,¢),C)? x C?
equipped with the inner product

1 1 A
<(90171;Z)17a17b1)7 (s025¢27a27b2)>)( = Z <¢17§02>L2 + a <¢1)¢2>L2 + %(alag + b1b2)'

e

Notice that the norm induced by the above inner product is equivalent to the usual
product norm of X.
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3.2 WELL-POSEDNESS OF THE LINEAR SYSTEM

Define the linear operator A : D(A) — X with domain D(A) = {(A, u, ho, h¢) €
X2 Aue HY0,0), A(0) = vho, A(€) = yhe} by

A _Aeux
—aA, — Pu
Al Y=
ho —4=u(0)

Observe that the last two components of the state appear only in the domain of A.
The coupled system (3.1.1) can now be phrased as an abstract Cauchy problem

(ACP) d*dt(A»who,hg)(t) = A(A,uho he)(8),  £>0,

(A,U, h07h’€)(0) = (AO,UO,hg,h%)

on the state space X.

There are several ways to prove the well-posedness of (ACP). One possible ap-
proach is to split the PDE and the ODE. The PDE can be considered as a port-
Hamiltonian system and hence it is well-posed [40, Chapter 13], and the ODE,
being finite-dimensional, is also well-posed. Then one shows that the feedback inter-
connection of the two systems is well-posed [73, Section 7.2].

However, the approach presented here is based on the following lemma. It is a
recap of the proof of Theorem 3 in [22]. In the following, X’ denotes the dual space
of X and £(X,Y) is the space of bounded linear operators from X to Y.

Lemma 3.2.1 (Lax-Milgram-Fredholm). Let V' and H be Hilbert spaces such that
the embedding V' C H is compact and dense. Suppose that a1 : V xV — C and
as : H x H— C are two bounded sesquilinear forms such that aq is V -coercive and
F:V — C is a continuous conjugate linear form. The equation

ai(v,u) + az(v,u) = F(u), Yo eV (3.2.1)

has either a unique solution uw € V for all F € V' or has a nontrivial solution for
F=0.

Proof. Since a; is bounded, the operator T : V' — V' defined by (T'p,¢¥)yixy =
a1(p, ) for all p,1 € V is bounded. Furthermore, by the Lax-Milgram Lemma we
have 7=t € L(V',V). Define S : H — V' by (Sp, %)y« = az(p,1). Since for each
peH

ISellve = sup [(Sp,¥)pvixvl < sup Cllgllullln < Clleln
lwllvy=1 lwlly=1

it holds that S € L(H,V’) and in particular S € £(V, V") is compact. The equation
(3.2.1) is equivalent to (1 + 77 1S)v = T-'F in V. Since T-1S is compact the
Fredholm alternative implies that either —1 € p(T—1S) or —1 € 0,(T~1S), where
p(A) and o,(A) denote the resolvent set and point spectrum of a closed operator
A. O

Theorem 3.2.2. The operator A generates a strongly continuous semigroup of con-
tractions on X, and in particular, for every (A% u®, h), hY) € D(A) there exist unique
functions A,u € C1([0,00); L?(0,£)) and ho, hy € C1[0,00) such that (ACP) is satis-
fied.
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STABILITY AND CONTROLLABILITY OF THE LINEARIZED MODEL

Proof. We will use the Lumer-Phillips Theorem in reflexive Banach spaces, see The-
orem A.1.1. Integrating by parts and using the boundary conditions we have

<A(A7 u, hOa hf)a (Aa u, hOa h£)>)( = - §||u”%2 + 21y <U, Am>L2

for all (A, u,hg,h) € D(A). Taking the real part shows that A is dissipative. Next
we are going to show the range condition. Fix A > 0 and (B, v, go, g¢) € X and define
ay : HY(0,¢0) x HY(0,£) — C, as : L*(0,¢) x L*(0,¢) — C and F : H'(0,¢) — C by

al(p,9) = mw,wm + Ap(0)9(0) + Ap(£)3(€)
aled) = 1 (3= 225 e
_ 4. [
F) = /B (z d:c—i—A ()\4'5)/0 v(x))y(x) do

+ 7901 (0) + Y9t (€),

respectively. Note that the sesquilinear forms a1, as and the conjugate linear form
F satisfy the conditions of Lemma 3.2.1.
We claim that
(A — A)(A, u, ho, hy) = (B, v, 90, 9¢) (3.2.2)

has a solution (A,u, hg,hy) € D(A) if and only if there is an A € H'(0,¢) that
satisfies

a1 (A, ) + ag(A, ) = F(y), Vi € HY(0,0). (3.2.3)
Notice that (3.2.2) is the system of equations
M+ Au, = B
A+pPu+ad, = v
Mg + 42u(0) = g
feu) = g

Suppose that (3.2.2), and hence (3.2.4), has a solution (A, u, hg, hy) in D(A). Mul-
tiplying the first equation in (3.2.4) by ﬁ@ for p € H'(0,/), integrating by parts,
solving for u in the second equation of (3.2.4) and using the boundary conditions we
obtain (3.2.3).

Conversely, let A € H'(0,/) satisfy (3.2.3) for all » € H'(0,¢). Define

(3.2.4)

1
U= 3 (v—ady), (3.2.5)
h(] = % <go - jll;u(())> 5 (3.2.6)
he = % (gg + ﬁu(ﬁ)) . (3.2.7)

Notice that u solves the second equation of (3.2.4) and (3.2.6) and (3.2.7) are the
third and fourth. From (3.2.3) and (3.2.5) we have

ka ¢ - 7y ¢ - -
[ i@ - B@i@ s = - [ A e+ (o - 24070
+ (790 = MA0))u (0). (3.2.8)
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3.3 THE SEMIGROUP SOLUTION AND THE PDE

Since the above equation is true for all ¥» € H'(0,¢), it also holds in particular for
all test functions ¢ € C§°(0, ), and so the above equation gives us

YA YA
/<mm—wAu»wwdx=—/f%mm%mmu, Vi € G320, 0),
0 0

which implies that B — AA = (Acu), or u, = A (B — XA) € L?(0,£). As a conse-
quence, u € H*(0,¢) and the first equation in (3.2.4) holds. It remains to verify the
boundary conditions A(0) = yhg and A(¢) = yhy. The left hand side of (3.2.8) can

be written as

v [* — A [t
L [ oaw) - seyiae = -2 [ w @i

_ YAe rrull ——n . VAe ¢
= T (oD ) — w3 0) + 5= [ ut@yiw

and therefore, upon using (3.2.6), (3.2.7) and (3.2.8) and the fact that A > 0,

(vho — A(0)(0) + (vhe — A(£))p(€) = 0 (3.2.9)

for all 1 € H'(0,¢). Choosing appropriate functions v, this equation implies that
A(0) = yhg and A({L) = yhy. Therefore (A, u, hg, hy) € D(A) and (3.2.4) holds.

We prove that the second case in Lemma 3.2.1 does not hold. Suppose that
a1(A, ) + az(A, ) = 0 for all v € H'(0,¢). This condition is equivalent to the
system (3.2.2) with (B, v, go,g¢) = 0. From the first equation we get A = —%ux.
The rest of the equations will give us

<A7A>L2 = —/Ux

S - A, [t
= S OAT) - mmw+Aﬁuw&mm

o 4
= AP+ AOP) - 5555 | s < o

Hence A = 0. This proves the range condition and hence completes the proof of the
theorem. ]

3.3 THE SEMIGROUP SOLUTION AND THE PDE

Let A, u,ho and hy be the components of the semigroup solution z(t) = e**20 to
the abstract Cauchy problem and let 20 = (A% u°, h8, h?). We are interested how
the semigroup solution z = (A, u, hg, hy) satisfies the system of partial differential
equations (3.1.1)—(3.1.3). We will follow the discussion in Liu and Zheng [53]. First,
if A% u® e HY(0,¢) and hJ, h) € C satisfy the compatibility conditions A°(0) = vh{
and A%(¢) = ~h) then Theorem 3.2.2 already tells us that 4, u € C([0,00); H!(0,¢))N
C1(]0,00); L2(0,£)), ho, he € C*[0, 00), the differential equations (3.1.1) are satisfied
in X while the boundary conditions (3.1.2) are satisfied in the sense of traces. This
type of solution is sometimes referred as strong solutions.
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STABILITY AND CONTROLLABILITY OF THE LINEARIZED MODEL

For data that are merely in the state space X', the following notion of solution
can be used. Given A% u® € L?(0,¢) and hJ,h) € C, the quadruple (A, u, ho, hy) €
C([0,00); L%(0, £)? x C?) is called a weak solution of (3.1.1)—(3.1.3) if the equations

([ (A(t), )2 + VAT (ho(t),m0) + yAT(h(t), 7¢) t

= (A%, ) 2 + Y AP(hS o) + AT (W, me) + A, /0 (u(0), @a) 2 do
(ult), W)z = (0,012 + a / (A(0), ¥s) 12 do — / (u(0), ) 2 do
+a [ (ho(a).0(0) = (o). 9(6) do

(3.3.1)

\

hold for every t > 0, ¢,v € H'(0,¢) and ng,7, € C such that ©(0) = vyno and
©(£) = yne. See Sections 4.20 and 4.21 for an equivalent definition.

We will show that the components of the semigroup solution z comprise a weak
solution of (3.1.1)—(3.1.3). To prove this, first we recall that since D(.A) is dense
in X there exists a sequence (22), C D(A) such that z0 — 20 in X. Let 2, =
(Ap, tn, hon, hen) be the strong solution corresponding to 20 = (A%, u%, Al kY ).
For some M > 1 and o > 0 we have

Iz = znllcqoyay < Me®T]12° — 20|l x- (3.3.2)

Multiplying the equations in (3.1.1) by ¢, %, no and 7y in the respective order,
integrating by parts and using the boundary conditions (3.1.2) and initial conditions
(3.1.3), the equations in (3.3.1) with (A,u, ho, hy) and (Ao,uo,hg,hg) replaced by
(Ap, tn, hon, hen) and (A2, u® hS. K9 ), respectively, can be obtained. Thanks to
(3.3.2) we have (3.3.1) after passing to the limit n — oo. For the uniqueness of weak
solutions as well as the continuous dependence of the solution on the initial data, see
Theorem 3.5.7 below.

If the initial data A% u® € H?(0,¢) and hQ, hY € C satisfy the compatibility condi-
tions up to order one A°(0) = vhJ, A(¢) = vhY, Arul(0) = yu®(0) and —A7ul(¢) =
yu®(¢) then we have a classical solution A,u € C([0,00) x [0,€]) and hg,h €
C?[0, 0).

In this section, we have shown the existence of weak solutions for (3.1.1)-(3.1.3)
using Cop-semigroups. This existence will be demonstrated in Chapter 4 at a different
perspective and in a more general setting. In the latter approach, it will be shown
further that the weak solution satisfies additional regularity other the one given in
Theorem 3.2.2, namely, the L2-trace regularity of A and u at the boundary and
hence the H!'-regularity of hg and hy.

3.4 SPECTRAL PROPERTIES AND UNIFORM EXPONENTIAL STABILITY

At this point, we already know that o¢(A) C {# € C: Rz < 0} since A generates a
contractive Cp-semigroup on X. Furthermore, the adjoint operator A* also generates
a contraction Cy-semigroup, which is the adjoint semigroup, in other words, (e“%)* =
eA't for all t > 0.

Let us determine the X-adjoint of A. Define A : D(A) — X by

B Acvg
~ aB; — fv
Al V= ,
90 ,%U(O)
ge —4=v(l)
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For each (A, wu, ho, he), (B,v,g0,9¢) € D(A), a straight forward computation yields

<A(A7 u, ho, h€)7 (B7 v, go, gZ))X = <(A7 u, ho, hf)’ A(B’ v, 90, QZ»X

which implies that (B, v, go, g¢) € D(A*), and this proves that A* is an extension of
A. Using a similar argument as in the proof of Theorem 3.2.2, we can also show that
A generates a Cy-semigroup of contractions on X, and hence (0, 00) C p(A*) N p(A).
Applying [58, Lemma 1.6.14], we can see that A* = A and in particular D(A*) =
D(A) = D(A).

In the absence of friction, i.e. 8 =0, we have A* = —A and so A is skew-adjoint
and from Stone’s Theorem, see Theorem A.1.2, the operator A generates a unitary
Co-group. This will be used in the succeeding section. The operator A and A*
also generate Cp-groups even for 5 > 0. To see this, let us define C € L(X) by
C(A,u, ho,h) = (0,u,0,0). Then —A = A* 4+ 25C and —.A generates a Cy-semigroup
satisfying [le™| < 25 for all t > 0 (see, e.g. [25, Theorem II1.1.3]). From
Theorem 3.2.2 and [25, p. 79], A generates a Co-group on X satisfying [|e || < e8!
for all t € R. The case of A* is analogous. Tight decay rates will be given after we
have described the spectra of the generators.

The operators A and A* have compact resolvents and therefore their spectra con-
sist of eigenvalues only. This is a consequence of the compactness of the embedding
H'(0,¢) < L?(0,¢). We can now characterize the spectrum of A and its adjoint.
Due to the differential boundary conditions, namely the third and fourth lines in
(3.1.1), the eigenvalues appear on the boundary conditions of a two-point boundary
value problem, see (3.4.5) for instance. To describe the spectrum of the differential
operator for § > 0, we first describe the special case where 8 = 0 and use this to
investigate for the case § > 0. First, we state a lemma needed for the asymptotic
description of the eigenvalues.

Lemma 3.4.1. Let a,b,c > 0 and H(z) = z cosax — (bz* —c) sinax and let (fin)nen,
(n—1)m
(n=m

listed in strictly increasing order, be the positive zeros of H. Then p, = “—,

O(n=1Y asn — oo.

Proof. Define Hy(z) = tanaz and Hy(z) = z/(bz® — ¢). If (2n + 1)7/2a = \/c/Vb
for some n > 0 then 4+/c/v/b are zeros of H. The other zeros of H are precisely the
abscissas of the points of intersection of the graphs of H; and Ho. If (2n+ 1)7/2a #
V/¢/V/b for all n > 0 then the zeros of H are just the abscissas of the intersection
of H; and Hs. By looking at the graphs of Hy and Hs it can be seen that for large
indices n, we have u, = (n—1)w/a+ e, where e,, — 0. Multiplying by a and taking
the sine of both sides yields

et €Oso (0= Dnfa-+ O0) cosare
bu2 — ¢ b((n—Dr/a+0O(1))2—c’

sinae, = (—1) n — oo.

Taking the inverse sine and noting that sin™'2 = O(z) as  — 0 we obtain that

en = 0O(n71). O

Theorem 3.4.2. Let (puin)nez, listed in strictly increasing order, be the real solutions
of the equation,

2AT ul VA, ( A2, « ) b
J4COS - sin
’YAG V aAe \/a OéAe

’YQ Ag a Ae

=0, (3.4.1)
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where pg =0 and p—, = —p,. Then the spectrum of A is given by o(A) = (A\n)nez,
where

An = —g + %Sgn(n)\/BQ —4pu2, neZ* :=17Z\{0}, (3.4.2)

and Ag = 0, and the eigenvalues A, satisfy the asymptotic growth

VaAe(n —1 .
An = —g + (W + O(n1)> i, N — 0. (3.4.3)
In particular, o(A) = o(A*). An eigenvector z, of A associated with the eigenvalue
An s given by

oS HnX A iy, sin HnT
ale  YVaA. VoA,
©n _ (AT)\n cos UnT + \/a)\n sin HnX >
@/)n ’YAe V aAe V Aellzn Y\ OéAe
Zn = = , n € 7.

Tlon 1
Nen ¥

1 < :U'ng ATﬂn . ,U,nﬁ >

— | COS

oA, a vV aA, S VoA,
(3.4.4)

Similarly, an eigenvector z; of A* associated to the eigenvalue A, is given by z; =
(Sona —¢n, Ton, nfn) fOT every n € Z.

Proof. Note that A € o(A) if and only if there exists (A, u, ho,hy) € D(A) \ {0}
satisfying the boundary value problem

5 < A ) ( 0 M ) < A )
0z \ u - 0 U
v Ac (3.4.5)
A, A A, A
fou0) = 240, Geu) = 2awm
Consider the equation A(A, u, ho, hy) = 0 where (A, u, ho, hy) € D(A). Then we have
u = 0 and A is constant. Since A(0) = vho and A(¢) = vyhy we have hg = hy and
so (A, u, ho, h¢) = ¢(7,0,1,1) for some ¢ € C. Hence 0 € o(A). One can check that
—p € o(A) with g > 0 if and only if £ = —2A7 /v, hence we exclude this case under
the physically relevant assumption ¢ > 0.
Suppose that A\ # 0 and A # —S. By diagonalizing the 2 x 2 matrix in (3.4.5) we
can obtain that the solution of the ODE is given by

Aw) = creosh VXOEB _ VAVAOEE) (0 VOB
X C1 COS \/OE 02\/a h 4.

Va A . A+ B)z A+ B)x
—C1 W \/m sinh T + ¢ cosh T

for some (c1, co) € C?, where the square root denotes any fixed branch of the complex
square root; for definiteness we choose the principal branch where the nonpositive
real axis is the chosen branch cut.
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This and the boundary conditions yield the following homogeneous system of equa-
tions

(A VX )\+B€+ a A  VABEB)
Ay T VaA VA OB NGy !

(cosh" A+ B) ATF\/ A(A + B) sinh Y——=~— )\+B£> =0

Vade Ay Va
ArA
Ay

c1+c2 = 0
The above system in the unknowns ¢; and co has a nontrivial solution if and only

if the determinant of the corresponding matrix is zero and this is equivalent to the
equation

F(w):=

2AT w/ \/Ae ( Az, a) . wl
w cosh sw” + —— | sinh =0, (3.4.8
ok Va (3.4.8)

A, oA,
where we put w = \/A(X + ).

Let us consider the special case where § = 0. In this case, A\ € o(A) if and
only if F(A\) = 0. However, since A is skew-adjoint, its spectrum must lie on the
imaginary axis. This implies that all zeros of F' are purely imaginary. Letting
A = ip, where 4 € R, we can see that F'(iu) = 0 is equivalent to the equation (3.4.1).
Using this for the case 8 > 0, we can see from (3.4.8) that A € o(A) if and only
if \/A(A+ B) = ip for some p € R that satisfies (3.4.1). The asymptotic behavior
(3.4.3) of the eigenvalues follows from the asymptotic behavior of the solutions of
(3.4.1) given by the previous lemma

fn, = cw‘le(;z—l)Tr +0(n™), n— . (3.4.9)

The fact that the spectra of A and A* coincide comes from the symmetry of the
spectrum of A with respect to the real axis.

Choosing ¢; =1 and ¢3 = % in (3.4.6) and (3.4.7) gives the first and second
components of the eigenvector z,. The third and fourth components are due to
the boundary conditions 7g, = ,chn(()) and 1y, = %gpn(ﬁ). Finally, since z, is an
eigenvector of A corresponding to A, we have

- n¢n - ( ) ﬁd’n 0
n[ _ * * — — ,
(/\ A )Zn )‘n770n + wn( ) 0
AnMen — AT wn( ) 0
and so z) is an eigenvector of A* corresponding to the eigenvalue \,,. O

If B > 2uy,, then the eigenvalue A, is real and negative. This implies that z(¢, x) =
(e 2, (z) = e Pz, (x) monotonically decays to zero as time goes to infinity. This
means that when the fluid inside the tube and tanks is sufficiently viscous, then there
are solutions which decay to the equilibrium state without oscillations.

With or without viscosity, we have seen in Theorem 3.4.2 that 0 € o(A) and
this means that the system is not stable in X. The eigenspace associated with the
eigenvalue 0 is the one-dimensional subspace Xy := {¢(7,0,1,1) : ¢ € C}. More-
over, N(A*) = A) and so A and its adjoint have the same kernel. The state
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(Ae, 0, hge, hee) + c(7,0,1,1) for ¢ # 0 is also an equilibrium of the nonlinear sys-
tem but corresponds to different parameters V', pro and pyy.

It is easy to check that the space Ay is invariant under the action of the group
(e)er and its adjoint group. If z € X5t and w € Xy then (ez, w)y = (z, e w)y =
0 by the invariance of Xy under (eA*t)te]R. Hence XOL is invariant under (eAt)teR, ie.,
e X5 C Ag- for all t € R. From Theorem A.2.4 the restricted group (e| Xd_)te]R is

a Co-group on Xg- whose generator is given by the part of A in A3, denoted by A,,.
A similar argument shows that e4'?| Xt = et for all t € R where Aj is the part

of A* in Xj. It is easily seen that A5 = (Ap)*, which means that taking the part
in a closed invariant subspace and taking the adjoint commute, see Theorem A.2.3.
Since A, and Ay also have compact resolvents we have 0(A,) = o(Ay) = o(A)\ {0},
p(Ap) = p(Ay) = p(A) U {0}. The semigroup generated by A, will be used in the
next section.

Let us characterize the nonzero eigenvalues of A as the viscosity [ increases. In
the following discussions the equality (3.4.2) is used. If § € [0,2u1) then all the
nonzero eigenvalues have nonzero imaginary parts and |A,| = |u,| for all n € Z.
Therefore as  increases on this interval, the eigenvalues are rotated positively (that
is, counterclockwise) around the origin and all the eigenvalues lie on the line Rz =
—f3/2. If B = 2u; then the two eigenvalues Ay; coincide and both are equal to
—[(3/2. Suppose that 5 € [2u1,2u2). As [ increases in this interval, A, for [n| > 2 is
again rotated in the same manner as before. However, the eigenvalue A\; now goes
to the right along the real axis while A\_; goes to the left along the real axis, faster
than RALo. When 8 = 2u9, the eigenvalues Aio coincide while A_; is on the left
of Ayro. The same behavior holds for the other intervals [2pup, 2n+1), 7 > 2. Thus
the larger 3, the more eigenvalues there are on the interval (—3/2,0) and there are
eigenfunctions which decay slower than those for smaller 5. The eigenvalues that
move to the right approach 0 as § increases.

If we denote by (, the eigenvector of A corresponding to A\, = iy, when § =0
and by z, the eigenvector of A when 8 > 0 then for all n such that 8 < 2|u,| we
have [An| = |1tn],

lznlla = Iz50x = Iallac = =il (3.4.10)

and a straightforward calculation gives

A2.0,2 Ar A n Arpin n
rhin £ AT T<cosufl—\/T'uTsin\77j
ae fyae ae

2 _
HCn”X - ’7201142 Ae ’YAe ’YAe
Theorem 3.4.3. Let 8 > 0. Then we have the following:

)2. (3.4.11)

1. If B # 2uy for all n € N then the normalized eigenvectors (zn/|znllx)nez
of A form a Riesz basis for X. If 3 = 0 then this Riesz basis is in fact an
orthonormal basis.

2. If B = 2py, for some n € N then the sequence (zn/||znllx)nez\{—ny ULZ/ | Z ]| x },
where Z = (0, —=\-",,0,0) 7 is a generalized eigenvector of A corresponding
to A, satisfying (A — A)Z = z,, forms a Riesz basis for X.

Similar results for the generator A* hold, however, in (2) the vector Z should be
replaced by the generalized eigenvector Z* := —Z of A* corresponding to Ay,.

Proof. First consider the case where 5 = 0. Applying [8, Proposition III.6.1] to
the operator A,, the normalized eigenvectors (2, /|2y ||x )nez- forms an orthonormal
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basis for XOL. Therefore combined with the normalized eigenvector associated with
the eigenvalue 0, the sequence (z,/||zn||x)nez form an orthonormal basis for X' =
Xo @ XOL. Now suppose that § > 0 and S # 2u, for all n € N. Again, let (,, be the
eigenvector of A corresponding to the eigenvalue A\, = iu, for the case where there
is no viscosity, i.e., 8 = 0. The first part of (1) follows from Theorem A.3.1 once we
have shown that (z,/||zn||x)nez and (¢,/||Cnllx)nez are quadratically close in the
sense that

z ¢ 2
- = < oo0. (3.4.12)
lznlla [1Callx Il v
Let N be the largest integer such that § > 2ux. From (3.4.4) and (3.4.10)
I
G <0, n = o _Gn2 ,0,0), In| > N. (3.4.13)
Iznlle lICnllx i [l

where (2 is the second component of (,,. It can be seen from (3.4.2) that |\, —iu,| —
B/2 as |n| — oo and in particular the sequence (A, — ifin)nez is bounded. Because
ICn2ll2(0,0) < VallGallx it follows from (3.4.13) that

> e winl s X
Feullx ~ Teallelle = 2, 12
for some constant C' > 0. The last sum is finite because of (3.4.9). As a consequence,
(3.4.12) is satisfied.

Finally, consider the case where 8 = 2u,, for some n € N. Let us verify that Z
satisfies (A, — A)Z = z,. Indeed,

2

[n|>N

Ae(_A;1¢n)x — ¥n
An(= )\ﬁ ¥) — 5/\711/% ¢n
(_ 1%)( )

T( A n) (€) = nen

_)‘El()‘ngpn + Ae(Pn)z)
_wn + 21/}71 wn
_)‘7;10‘%77071 + 7 wn( )
_)\;I(Annfn - ATwn( ))

and this is zero because z, is an eigenvector of A corresponding to A\, = —(3/2. The
same argument as in the previous case shows that the sequences (2,,/|2n || ¥ )nez) {—n}U
{Z/||Z||x} and (¢n/||¢nll 2 )nez are quadratically close and hence part (2) also follows
from the Riesz basis generation result Theorem A.3.1. O

Ol = AV Z — 2, =

Let (Z,)nez be the sequence biorthogonal to the Riesz basis (2} /||2} || x)nez if
B # 24y for all n € N or to the Riesz basis (2}, /25|l x)nez\ (—ny ULZ* /127 x} if
B = 2uy, for some n € N. The result we have just proved implies that every z € X
can be expressed uniquely as a Fourier series

*

=Y ( zn>XHi7", (3.4.14)

ne”L ZnHX

whenever [ # 2u, for all n € N and a similar equation holds for the other case. For
all square-summable sequences (a,,),cz we have

c<Z|an\2)1/2 Z anzt

nez nez ‘ ””

(Z ]an]2) v (3.4.15)

ne”
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for some ¢, C' > 0 independent of (ay,)ncz. Furthermore, the sequence ((z, Z,,) x )nez*
is square-summable for each z € X. Since eA"tz¥ = eMiz* for all n € Z it follows
from (3.4.14) and the continuity of eA"* that when 3 # 2y, for all n € N the group
generated by A* can be written as

*

A*t Ant = Zn
= E "z, _— 3.4.16
e z P e <Z Zn>X ||z;’;” ( )

for every z € X and t € R. If 8 = 2u, for some n € N then the group is given by

X . . 5 2x
ey = (2, F_ ) (M2 — teMntE) + Z etz ) HZ*T’ (3.4.17)
neZ\{—n} nllX

for every z € X and t € R. Similar characterizations for the group generated by .4
hold. The reason why we choose to expand the adjoint semigroup is that we will
use a duality argument in the proof of Theorem 3.5.6. Now we have the following
stability result.

Theorem 3.4.4. Let 5 > 0. The Cy-semigroups (eAPt)tzo and (eA;t)tzo generated
by Ay, and A are uniformly exponentially stable, i.e., there exist constants M > 1
and w > 0 such that

HeA”tHL(X(%) = ||€A;t||£(xoi) < Me ¥t t>0. (3.4.18)

Furthermore, w(Ap) = s(Ap) where s(Ap) is the spectral bound of A, and w(Ap) is
the growth bound of the semigroup generated by A,,. For every zo € X, if z = etz €
C([0,00), X) is the mild solution of (ACP) corresponding to the initial data zy then
l2(t) — Pzolly < M||z0|lxe™*" for all t > 0, where P is the orthogonal projection of
X onto A).

Proof. The first and second parts follow immediately from (3.4.16) and (3.4.17). For
the last part, let @ be the orthogonal projection of X' onto XOJ- so that every 2y € X
can be written uniquely as zg = Pz + Qzo. Since the restriction of e to Xj is just
the identity operator on Xy we have z(t) = Pzy+ et Qzo, and the required estimate
follows from (3.4.18) and the fact that ||Q| < 1. O

The eigenvalue 0 is removed by restricting the state space to the orthogonal com-
plement of the eigenspace corresponding to the eigenvalue zero. Define the volume
functional V : X — C by

14
V(A, u, ho, h) = / A(IL’) dz + ATh() + AThg.
0

It is clear that V is a bounded linear functional on X. Recall that z = 2, + 2
where z = (A, u, ho, h), ze = (Ae, 0, hoe, hee) and Z = (A, @, ho, h) are the state, the
equilibrium state and the deviation of the state from the equilibrium, respectively.
By the conservation of mass we must have V(z) = V(z.) = V and this is equivalent
to V(%) = 0, i.e., Z € N(V). One can check that N(V) = X;-. This means that
X~ is the natural state space for the deviations. Also, if z(t,x) = e®20(x) is the
solution of the system then V(z(t,-)) = 0 for every ¢t > 0 whenever 2z € X;-. For
this reason, we consider XOL to be the state space in the next section.
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3.5 A BOUNDARY CONTROL SYSTEM

Consider time varying control pressures pfo(t) and pys(t) applied to the left and the
right tank, respectively. Linearizing about the numbers p%, and p%, we have

A(t,0) = Vﬁo(t)Jr%ﬁfo(t),
Alt,0) = vﬁz<t>+plgzaﬂ<t>

where pro(t) = pro(t) — pf0 and pr(t) = pfg(t) — pj,- Again for simplicity, we ignore

the tildas and we let pg = —p ro and p; = p r¢. In this scenario, we have the system
(3.1.1) with the boundary “conditions
A(t,0) =vho(t) +po(t),  A(t, ) =~he(t) +pi(t),  t>0. (3.5.1)

Definition 3.5.1. For A% u® € L%(0,¢), h),h° € C and po,p1 € L2 .([0,0),C),
the tuple (A, u, ho, h) such that A,u € C([0,00), L*(0,¢)) and hg, hy € C([0, ), C)
is called a weak solution of the system (3.1.1) with initial conditions (3.1.3) and
boundary conditions (3.5.1) if

[ (A(t),9) 12 + YAT(ho(t),m0) + VAT (he(t), me)
<A07 SO>L2 + 'YAT(hO’UD) + 'YAT(hg,ﬁé + A / QP:(/‘)LQ do

(w(t), W)z = (W, )12 + a /0 (A(0), )2 dor — B / g do
ta / (vho() + po(0), $(0)) — (vhe(0) + pr(0), ¥(£)) do

for every t > 0, p,1 € H'(0,£) and ng,n, € C such that ¢(0) = yno and p(£) = yn;.

To prove the existence of such weak solutions, the system will be expressed as a
boundary control system using well-known results in control theory. Because the
velocity component of the eigenvector corresponding to the eigenvalue 0 vanishes,
the system is not approximately controllable in X', cf. the observation operator B*
in Theorem 3.5.2 below. For this reason the system is restricted to the state space
Xt

Denote by Z = (H*(0,£) x H(0,¢) x C%) N X" the solution space endowed with
the product norm of H'(0,¢) x H(0,¢) x C2. Our input space is C? and the state
space is Xg-. Note that Z is continuously embedded in X5-. Let D(A;) be endowed
with the graph norm. Then D(A}) C X C D(Ay)" with continuous and dense
embeddings and we have

(2, C>D(A;;)’><D(A;) = (0> Vz € Xo{ QS D(A;)- (3.5.2)

Furthermore, we can see that A% € L(D(A}), Xg-) so that (A%)* € L(XG, D(A3)),
where the state space Xg is identified with its dual. The operator (A})* can be
viewed as an extension of A, to Xol. For more details on the interpolation and

extrapolation spaces for semigroups the reader may consult [25, p. 123—-127].
Let]::Z—>./YOL and G : Z — C? be given by

’F(A7u7h07h€) = A
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and

A(l) = vhy

Note that F € L(Z,X3"), G € L(Z,C?), N(G) = D(A,), R(G) = C? and Flpa,) =
Ap. As a consequence, (F,G) is a boundary control system. Then according to
Theorem B.4.2, there exists a unique operator B € £(C?, D(A3)"), called the control
operator, such that Fz = ((A5)* 4+ BG)z for all z € Z. A characterization of this
control operator is given in the following theorem.

G(A, u, ho, hy) = ( A(0) = vho ) |

Theorem 3.5.2. The input control operator B € E(CQ,D(A;)’) is given by

K K
B(Cl, CQ) = _(Ap) l(li _ 1) c1 + l/{ Cc2 s (353)
gl gl
%/{ %(m -1)
where (c1,ca) € C? and k = vff#ﬁ Its adjoint B* € L(D(A5),C?) is given by
* v(0 *
B*(B,v, g0, 9¢) = < _1()(;) > ) (B,v,90,9¢) € D(A). (3.5.4)

Proof. Given (c1,c2) € C2, consider the problem F(A,u, ho, hy) = 0 with boundary
conditions G(A, u, hg, hy) = (c1,c¢2). This implies u = 0, A is constant, A —yhy = ¢1
and A — yhy = ca. Since (A, u, ho, hy) € X5 = N(V), Al + Arhg + Arhy = 0. Note
that the unique solution of Fz = 0 with Gz = (c1, ca) is given by —(A7)*z = B(ci, c2).
Solving the linear system for (A, ho, hy) € C? in terms of ¢; and ca we can see that
B:C? = D(A3) is given by (3.5.3).

For z = (A,u, ho,hy) € Z and ¢ = (B,v,90,9¢) € D(A;) we obtain from (3.5.2)
that

<Qz, B*C>(C2 = <Bg2, C>D(A;§)/><D(A;) = <IZ - (A;)*Z7 €>'D(A;)’><'D(A;‘,)
= (Fz,0x — (540
Integrating by parts and using the surjectivity of G we obtain (3.5.4). O

In the above theorem, we have a representation of the control operator B in terms
of the extension of the operator 4,. However, the more important item to use in the
controllability of the boundary control system, at least in our case, is the adjoint B*
of the control operator.

We shall make use of the Riesz basis approach to study the above boundary control
system. We refer to [43] for various examples in this direction. From Theorem 3.4.2,
the eigenvalues of A satisfy

VaAer

liminf SN, — SApp1| = (3.5.5)
and, in particular the uniform gap property
Yo 1= inf A—pu|l>0. 3.5.6
i A (3.5.6)
AZp

The following theorems in non-harmonic Fourier analysis [37, 43|, which is a
generalization of Parseval’s equality, plays a crucial role in the proof of the exact
controllability of our boundary control system.
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Theorem 3.5.3 (Ingham). Let J C Z and (An)mes be a family of real numbers
satisfying the gap condition

vo = inf |An — Am| >0,
n,meJ
n#m

and let I be a bounded interval in R. Then, there exists C = C(vo,1) such that for
every sequence (an,) € £2(J,C) we have

/ E :amez)\mt
I

meJ
In addition, if the the length of I satisfies |I| > 2777 then there exists ¢ = ¢(yo,1) such

that
N /’ > apetnt
I

meJ meJ

2
At < C Y Jaml®.

meJ

2
dt.

Ingham’s Theorem is used when the Riesz basis consists of only eigenvectors. In
the case when the Riesz basis contains a generalized eigenvector, the following gener-
alization of Ingham’s Theorem will be used. For the proof we refer to [43, Theorem
4.5].

Theorem 3.5.4 (Haraux). Let (An)mes, J C Z, be a family of complex numbers
such that sup,,c ; |RA\m| < 0o and for some my € J the gap condition

inf [ Am — Amg| > 0

m#£mo

1s satisfied. If for some interval Iy we have

c Z |93m|2§/ Z et
0

2
d<C > |oml
meJ\{mo} ol e\ {mo}

meJ\{mo}

for some C > ¢ > 0 and for all (xm)mep(mo} € €*(C) then for all interval I with
length |I| > |Iy| we also have

5<ygz|2 +)° |xmy2) < /1

meJ

Ftedmt + E xmeAmt
meJ

2
dt < C‘(W +)° |xm|2>

meJ

for all & € C and for all (zm)mes € 2(C), for some constants C > &> 0.

For single input controls the critical time of controllability will be establish with
the help of the following generalization of the Kadec’s %—Theorem in [81, Corollary
2, p. 196].

Theorem 3.5.5 (Generalized Kadec 1-Theorem). If (pn)nez is a sequence of com-

1
plex numbers for which

1
n| < - and sup |Rpp| < o0,
2m

su
) 4 neL

neL

TSpn '

then the system (e'Pn'),cz is a Riesz basis for L*(0,T).
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Now we are ready to state and prove the main result of this section. A direct
application of Ingham’s Theorem yields the exact controllability of the boundary
control system for any time 7 > 2’; where 7 is the gap of the eigenvalues of A}
given by (3.5.6). However, in general this gap is less than that of the asymptotic
distance between consecutive eigenvalues. To provide a smaller lower bound for the
time of exact controllability we will separate the low and high frequencies as in
[77, Proposition 8.1.3]. However, we need to modify the arguments in the said
proposition since the eigenvectors are not orthogonal anymore, i.e., we generalize
the proposition in such a way that it is still true for the case where the orthonormal
basis is replaced by a Riesz basis.

Theorem 3.5.6. Suppose that f > 0. Then the boundary control system (F,G) is

exactly controllable in time T, if T > 7% 1= \/nge' That means, for any 2°, 2 € X3

there exists (po,p1) € L%([0,7],C?) such that the weak solution z € C([0,7],Xs")

of the system (3.1.1) with initial conditions (3.1.3) and boundary conditions (3.5.1)

satisfies z(T) = 2*.

Proof. The proof of the existence, uniqueness and regularity of the weak solution
will be provided later (see Theorem 3.5.7 below). We divide the proof into several
steps for ease of reading. Moreover, we first assume that £ # 2u,, for all n € N.
Step 1. Let us prove that B is an admissible control operator for (eAPt)tZO, or
equivalently, B* is an admissible observation operator for the adjoint semigroup
(eA Yi>0. The latter means that for each ¢t > 0 there exists C; > 0 such that
fo |B*er¥2)2 ds < Cy||2||% for all 2 € D(A}). According to (3.4.10), (3.4.11) and the

2
asymptotic behavior of y, given in (3.4.9) we have M%Hzﬁ”f\, — WfaiTAeQ as |n| — oo.

Using this, we can see that
2 2
p @B _ )
s NaxlE T nez 2005

Let M = M(f3) the largest integer such that 8 > 2ups. Thus A, is real whenever
|n| < M. From (3.4.16), Ingham’s Theorem, (3.5.7) and (3.4.15) we have

0<dy:= =: D, < o0, y=0,¢ (3.5.7)

¢ A* A Un(y) 2
/ IB*eoz?ds = Z / Z e (2, Zn)x ds
0 . enllx
y=0,¢ nez
< 2 Z (/ 2>\n5|<2 > |2|wn£ )|
y=0,¢ 0 0<|n|<M HZ HX
2
Z e(—ﬂ/2+z‘%xn)s<z’2n>x %1(1'4) ds)
o [Ecrq | PY
2
<Gy ) \(%%M\QM < Ci(Do+ De)e™?||2]1%
L AL

for all z € D(A;) and t > 0. Hence B* is an admissible observation operator for
()0

Step 2. Now we separate the eigenfunctions into two parts. From (3.5.5), for
arbitrary e > 0, there exists a positive integer N = N (¢) such that R\, = —/3/2 for

all [n] > N and
VaA,
|SA, — S| > a

Iml, |n|> 14
m#n

T — €. (3.5.8)
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Consider the subspace X} = span (2;,)o<|n|<n Of Xg. Tt is clear that (23 )o<n|<N 18
linearly independent and so it forms a basis for X;. For each ¢t € R, let T'(¢)* be the
restriction of e»! to X;. We note that by construction o(Aplay) = (M)o<inj<n-

Let x> = clos span (2, /|2 || x)jnj>n and Aj be the part of Ay in Az. Notice
that A7 have also compact resolvent and o(Ay) = o(A}) \ (An)o<jnj<n- Since
span (2, /|| 2| 2)jn|>n is invariant under the Co-group generated by A7, its closure
is also invariant under this Cp-group. Thus A7 also generates a Co-group on Xz and

e?ot|y, = el for all t € R.

Step 3. From the discussions in the previous step, we can see that the normalized
eigenvectors (2, /|2 [|x)jnj>n of Ay form a Riesz basis for X3. Let B; be the restric-
tion of B* to D(A;). A similar application of Ingham’s Theorem as above shows
that B; is an admissible observation operator for the semigroup generated by Aj7.
Moreover, from Ingham’s Theorem and (3.4.15) we have the inverse estimate

T A*t 12 RPN =~ ¢n(y) ?
[ st ar = Y e [ S ez )0t
0 — o izl
3 Un(y))? _
S S DY CEN ML S 3’ > el + d)C el
o N 125511 %

for every z € D(A;) and 7 > #ﬁ%[ Thus, the pair (A7, By) is exactly observable
: : 27l
in time 7 > VoA et

Step 4. Because Ax|x, € L(X1) ~ L(CH), B*|x, € L(X1,C?) ~ L(C*N,C?) and
B*|x,2) # 0 for every 0 < |n| < N, the Hautus test for finite-dimensional systems
implies that (Aj|x,, B|x;) is observable. Since o(A%|x,) N o (A}) = 0, according to
[77, Proposition 6.4.2] (see also [76]), the pairs (Ay|x,,B*|x,) and (A7, B;) are
simultaneously exactly observable, in other words, there exists a constant ¢; > 0
such that for all (v, w) € X1 x D(Ay) it holds that

/ |B* [ T(t)* 0 + Byetitw|? dt > & (||vll3 + [[wllZ) (3.5.9)

for every 7 > \/Tj%ﬁ_d. For k > N define the kth truncation of z € D(A}) b

*

P PRCES

0<|n|<k

Then z*¥ — z in X. Since 2V € &y and 2F — 2V ¢ span(Hz’Z”X
follows from (3.4.15) and (3.5.9) that for any k£ > N we have

T T
/yB*eAiétszdt—/ B T(6) 2N + Bretit (% — NP ar
0 0

> &G(INE 125 = 2NR) 2 & Yo Al 2 &0 R
0<|n|<k

Jinj>N C D(AY) it

Because B* is an admissible observation operator for the semigroup generated by A7,
letting £ — oo in the last inequality we obtain the inverse estimate

)
/ B Atz dt > 620252
0
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% %\ . . ol . .
Therefore (A, B*) is exactly observable in time 7 > Nk and since € > 0 is

arbitrary, this pair is exactly observable in time 7 > \/ieTe‘

If B = 2uy, for some n € N then one applies the above argument to the closure
of the span of the normalized eigenvectors of A7. Notice that B*Z* # 0. Then
the series representation (3.4.17) together with Haraux’s Theorem imply the exact
observability in the state space 2‘(0L for any time 7 > 7*. In any case, the conclusion
of the theorem now follows from the well known duality of exact controllability and
exact observability, see Theorem B.3.5. ]

Now we address the existence and uniqueness of weak solutions of (3.1.1) under
the boundary conditions (3.5.1). Let po,p1 € L2 ([0,00),C) and z € X5-. Since B
is an admissible control operator for the semigroup generated by A,, then using the

variation of parameters formula, the function

t
2(t) = et20 + / M) = B(po(s), pi(s)) ds in D(AL) (3.5.10)
0

is the unique function that satisfies z € C([0,00), Xs") and

2(t) — 2(0) = / ((A)2(3) + Blpo(s), p1(5))) ds

for all t > 0 (cf. [77, Remark 4.2.6]). The integral is computed in D(A)". There-
fore, for each ¢ € D(A}) we have from (3.5.2)

(2(t) = 2(0),C)y = /O ((2(5), A5, + ((0(5), p1(5)), B*C)g2) ds

and using definition of B* provided in Theorem 3.5.2, we can see that the components
of z comprise the unique weak solution of (3.1.1) with boundary conditions (3.5.1).

Theorem 3.5.7. If zo € X5~ and po,p1 € L2 .([0,00),C) then (3.1.1), (3.1.3), (3.5.1)
has a unique weak solution z € C([0,00), X5-) N HE ((0,00), D(A%)') and for every

loc
T > 0 there exists C' = C(T) > 0 such that
120l 1 (0,7),D0a5)) + 12l eo.0,20) < C(I12°lx + [lpos P r20.yc2))  (3.5.11)

for all 2° € X" and (po,p1) € L*((0,T);C?). Moreover, if 2° € Z and po,p1 €
H((0,7T),C) satisfy the compatibility condition Gz° = (po(0), p1(0)) then the solution
z is in C([0,T), Z) N CL([0,T], Xs").

Proof. The first statement was already explained above and the estimate (3.5.11)
can be shown from (3.5.10) and Theorem B.3.1, while the second statement is a
direct application of [77, Proposition 10.1.8]. O

Remark 3.5.8. As in the proof of Theorem 3.5.6, it can be shown that B* is an
admissible observation operator for the semigroup generated by A,. This implies
the following: For any zg € D(A,) the solution of the (unforced) system satisfies

[u( 0)ll 20,1y + 1u(, Ol 20,y < Crll20lx-

By a standard density argument, one can use this to define the traces u(-,0), u(-,¢) €
L%(0,T) for the solution corresponding to the initial state zg € X;-. Note that these
traces do not make sense by the usual trace theorem for Sobolev spaces because
in general u € C([0,T],L?(0,¢)). This is sometimes referred as a hidden reqularity
property of solutions, see [44, 46, 50]. The hidden regularity property will be
revisited in Chapter 4 using different tools and methods.
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3.6 SYSTEM WITH DISTRIBUTED CONTROL

The controllability result Theorem 3.5.6 still holds even if there is only one forcing
function that is applied to either of the tanks. In this case, the control operator
would be either the first or second component of B according to where the control
pressure is applied. The results can be also extended for two tanks with different
horizontal cross sections. Now let us consider the case where the forcing is applied
only at the left tank. In this case, the boundary operator Gy : Zy — C is defined by
QO(A,% ho, hz) = A(O) vho, where Zy := {(A,u, ho,h) S Hl(O,E) x C? : A(ﬁ) =
yhe} N Xg- is the corresponding solution space.

Theorem 3.5.9. In the situation of Theorem 3.5.6, where G is replaced by Go, the
pair (Ap, Bo) is not approzimately controllable for any time 0 < 7 < 7*, where
By is the control operator associated with the boundary control system (F,Gp). In
particular, (Ap, Bo) is not exactly controllable for any time 0 < 7 < T*.

T \s)\n+1
27

Proof. From (3.4.3), there exists a positive integer M such that | —n| <%

whenever n > M. By symmetry of the eigenvalues we have \L/\”l —n| < i for all

n < —M. Now according to the Generalized Kadec f—Theorem [81, Corollary 2,
p. 196], the system of exponentials (eiZ””t/T*)ogmgM U (e’\"+1t)|n|>M forms a Riesz
basis for L%(0,7*). Let (gn)nez be the sequence biorthogonal to this Riesz basis.
Given 0 < 7 < 7*, let us take a nonzero element Fy € L?(0,7* — 7) such that

*

T*—T
/ Fi(t)gn(r+t)dt =0, 0<|n| <M,
0

that is, F} is in the orthogonal complement of the subspace of L?(0,7* — 1) spanned
by the functions (gn(T + -))o<|nj<m- Define the nonzero element F € L*(0,7*) by
Ft)=0if0<t<7and F(t)=Fi(t—7)if 7 <t <7*=20/\/aA..

Define 12 .
“nt1llx A4l
= Z <<F gn>L207* wn 1( )) ||z*n H :
In|>M nt nt1llX

Z+1|’Xwn+1(0)71)|n|>M is
nonzero element in ¢2. Note that by the uniqueness of the coefficients in a series
of the elements of the Riesz basis, we must have (F, gn) 2 (o 1+ 251 [latng1(0)7 =

(2, Zn41)y for all |n| > M and so

This is a nonzero element of X~ because ({F, g, L2(0,7

BSeAth = Z e)‘"“t (z s Zn41) v H%ZZLH( ) =

|n|>M

HX Z <F7 gn)LQ(O,T*) 6)‘n+1t = F(t)
n+1 n|>M

The terms with indices 0 < |n| < M vanish by construction of F. Hence there exists
z € X3\ {0} such that Bie™*")z = 0 in L2(0,7). Therefore N'(Bier()) # {0} so
that the adjoint system (.A;, B;) is not approximately observable in time 7 for any
0 < 7 < 7*. The theorem follows from the duality of approximate observability and
approximate controllability. O

3.6 SYSTEM WITH DISTRIBUTED CONTROL
One could also consider external control pressure applied to a part of the elastic
tube, e.g. [63, 78, 13]. In this case, the linearized momentum equation becomes

ou 0A
rT aa— — Bu+ PeXap); (3.6.1)
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where P. € L2 _([0,00),L%*(0,£)), 0 < a < b < £. In the literature, the control has
to vanish at the endpoints of the subinterval [a,b] where it is applied, however, we
consider the general case where this vanishing condition is not assumed.

In the present situation, the control operator By : L?(0, () — X(f- is bounded and
given by B1P. = (0, Pex[q4,0,0). For each z = (A, u, ho,h) € Xj- and P. € L*(0,0)
we have (B1 P, z), = é(PC,uX[%bDLz(O,g). Thus, the operator B : X3~ — L%(0,4)
is given by Bj(A,u, ho,h) = éux[a,b]. We have the following result, whose proof is
similar as in the previous section, and hence it is omitted.

Theorem 3.6.1. The pair (Ay, B1) is exactly controllable in time T if T > \/iLAe'

3.7 CHARACTERIZATION OF CONTROLS

In this section we present a theorem which characterizes the control (pg, p1) described
in Theorem 3.5.6. This problem has been considered for wave equations with either
Dirichlet or Neumman boundary control using variational techniques, see [82] for
instance. Instead of working with the specific case stated in Theorem 3.5.6, we
consider a more general framework that includes the particular set-up of the said
theorem. We prepare with a lemma.

Lemma 3.7.1. Let X and U be complex Hilbert spaces. Suppose that A : D(A) C
X — X generates a Cy-group on X and B € LU, D(A*)') is an admissible control
operator for (e™)ier. Given T > 0, 20,2 € X and u € L*((0,T);U), the solution
z € C([0,T],X) in D(A*)" of the initial-value problem

2(t) = Az(t) + Bu(t), 2(0) = 2°, (3.7.1)

satisfies z(T; 29, u) = 2! if and only if

T
/ (w(t), ey dt 4+ (20 —e AT O =0, V(e (3.7.2)
0
where W¢ € L(X;L([0,00);U))) is the unique extension of the output map ¥; €
L(D(A*); L*([0,00);U)) defined by (V:C)(7) = Lyg<r<pyB e 7¢ for ¢ € D(AY).

Proof. Recall from Proposition B.3.3 that the linear map ¥¢ exists and it is bounded
due to the admissibility of the observation operator B* under the semigroup gener-
ated by A*, and hence also for (—A)* = —A*. Multiplying (3.7.1) by e~A"¢ for
¢ € D(A*?) we get

(2(), e M) piary xpar) = (2(t), Ae V) x + (u(t), B'e )y

Integrating from 0 to 7', the above equality implies that

T
((T), e AT — (O = / L), e A ey wpiany dt

dt
g oAt d oA
=/ C)prary ><D(.A*)+< (1), 3¢ C> dt
0 X
T
:/ < —A*tC+A* A t<> + (u(t), B*e A () dt
0 X

T
/ B* —A* tC>M dt

o
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3.7 CHARACTERIZATION OF CONTROLS

Thus (3.7.2) holds for all ( € D(A*?) and by density this holds for all { € X.
Suppose that the solution of (3.7.1) satisfies 2(T; 2%, u) = 2! then according to what
we have shown (3.7.2) holds. Conversely, suppose that (3.7.2) holds. Then the above
calculations imply that (z(T) — z',e ™4 T()x = 0 for all ( € X and since e A7 is
bijective we have z(T) = 2. O

The set-up of the following theorem takes place in complexified Hilbert spaces.
Given a real Hilbert space Ag we let X = {x1 + iz : x1, 29 € Ar}. The space X can
be equipped with the inner product

(x1 + iz, y1 + 1y2) x = (T1, Y1) a + (T2, Y1) — 1T, y2) a0 + (T2, Y2) a

with corresponding norm ||z1 + ixs||% = ||$1||%(R + H:L‘2||%(R. This makes X a Hilbert
space called a complexified Hilbert space.

Theorem 3.7.2. Let X and U be complexified Hilbert spaces. Suppose that A :
D(A) € X — X generates a Co-group, B € L(U,D(A*)) is an admissible control

operator for (eAt)teR and 2°,2' € X. Assume that the following three conditions
hold.

(1) The pair (A, B) is exactly controllable in time T > 0.

(i1) The real Hilbert space Xg is invariant under (e”)icr.

(iii) It holds that W¢C € L*((0,T);Ug) for every ¢ € Xg.

For each fiz w°,w' € Xg, define the cost functional J(-,w’, w') : Xg — R by

1 T

j@y—j@ﬂ&wU—Q/|WKMm+@w—eM@RQm
0

Let ¢* and V* be the unique minimizers of the J (-, Rz, RzY) and J(-, 320, 321),

respectively. Then u*(t) = WE(C* + i9*) satisfies z(T; 2°,u*) = zt. Moreover, u* is

optimal in the L?-sense, i.e.,

[u* || r20,my20) = min{[[o]l 2o myae) v € L*((0,T);U) and 2(T;2°,v) = 2'}.

i

Proof. We begin by noting from the antilinearity of (3.7.2) in ¢ that (3.7.2) is equiv-
alent to the same statement but with X replaced by Ar. First we consider the case
where 2°, 2! € Ag. By this assumption together with (ii) we have (20 —e=AT2! () y €
R for all ¢ € Ag. If ¢* is the unique minimizer of 7, then

0 = L& FO-J

e—0 €

T
- / (W (8), W50 dt + (20 — AT ()
0

« T
- /0 ROECH, Wi dt + (20 — e AT Ox

for all ( € Ar and the last equality is due to assumption (iii). According to Lemma

3.7.1 and the previous remark, we conclude that u*(t) = W¢(* satisfies z(T; 2%, u) =
1
zh

Let us prove that J has a unique minimizer. The proof is standard but we include

it here for the sake of completeness. Because (A, B) is exactly controllable in time
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STABILITY AND CONTROLLABILITY OF THE LINEARIZED MODEL

T > 0 and (e),cg is a group then the pair (—A, B) is also exactly controllable in
time 7' > 0 and thus there exists ¢ > 0 such that

T2 (FUCle = 112" = e ) icle, V¢ € A

and so J is coercive, that is, limj¢|,—00 J(¢) = o0o. For A € (0,1) and distinct
C1,¢ € Arlet ¢ =¢ — (2 #0. Then

B T
TG +1-0G) = - 20 [ Az + 0= N7 @)

A1 =X
AL ey o

< AJ(GQ)+ (1T=N)T(¢2)
for which strict convexity of J follows. Moreover,

[T (G) = T(G)

1 _
<SG B0 myan) — NGl om0 + 1120 = €Tt Gt - Gl

AN

IN

1, . .
<2||‘I’t 172 22 ((0.00y20n (I + N1 Galle) + 112° — e ATZIHX) ¢ — Cllx

for every (1,(o € Ag. Thus J is a continuous, coercive, strictly convex functional
and therefore it has a unique minimizer.
If v € Up(2') then taking ¢ = ¢* in Lemma 3.7.1 we get

T
I 1oz = /0 IeC |z dt = —(20 — e ATZL M)y

T
- /0 (0(®), TNt < (ol izomyen letllzzcomen

and so [[u*||z2¢0,7)20) < IIvllz2((0,7)20)- Now suppose that 20,21 € X and ¢* and ¥*
are the unique minimizers of the cost functionals J (-, Rz Rz1) and J( -, 320, 321),
respectively. Since u*(t) = W§¢* € L?((0,T);Ug) and v*(t) = W§9* € L2((0,T);Ug)
are the optimal controls steering R2° to Rz' and 320 to Jz!, respectively, then
u* + fv* is a control steering z° to z! according to Lemma 3.7.1. Let us prove that
u* + 4v* is optimal. Suppose that w € L?((0,7);U) is a control steering 20 to z!.
Since Rw, Sw € L?((0,T);Ugr), using conditions (i), (iii) and Lemma 3.7.1 it follows
that Rw and Jw are controls steering Nz to Rz' and F2° to Iz!, respectively. By
the optimality of controls u* and v* we must have [|u* || z2(0,7)24) < IR £2((0,7):04)

and ||[v*[| 20, 1)) < ISW| z2((0,7)240) and s0

)12 2 2 2
[[w* + ZU*HL2((0,T);M) = HU*HLQ((O,T);MR) + ”U*”LQ((O,T);L{]R) < H’me((o,T);u)
proving the optimality of u* 4 iv*. O

Now, we apply the abstract result Theorem 3.7.2 to our problem. It can be shown
that all assumptions of the previous theorem hold for our particular problem for any
T > \/2676. For our model with boundary control, the cost functional 7 : (X" )r — R
is given by

1 T
T = 2/0 ([o(t,0) + Ju(t, O)%) dt + (w, %) — (w', ¢(T))x
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3.8 LEGENDRE TAU APPROXIMATION OF THE LINEARIZED SYSTEM
where w®, w! € (X§)r, ¢ = (B, v, go, g¢) is the solution of the adjoint problem

QB(t, x) = —Aeaiv(t,x), 0<t<T, 0<z<l{,

ot
é(t )=— QB(t Y4+ Bu(t,z), 0<t<T,0<zx</
atv ’:E — aax 7:1: v ’x s , T ,
Ae
90(t) = _TTU(t’O)’ 0<t<T,
A, (3.7.3)
g(t) = LU0, 0<t<T,

B(t,0) =vgo(t), B(t,€) =~g(t), 0<t<T,

B(0,z) = B%z), v(0,2)=1"z), 0<ux</,

90(0) = g3,  9e(0) = gf

and (B%, 1%, g0, ¢?) € (X )R If ¢* € (X5 )R and 9* € (X5 )R are the unique minimiz-
ers in the conclusion of Theorem 3.7.2 and (B*,v*, g3, g7) is the corresponding solu-
tion of the adjoint problem (3.7.3) with initial data ¢* 4 * then po(t) = v*(¢,0) €
L2((0,T);C) and pi(t) = —v*(t,¢) € L?((0,T);C) is a pair of control satisfying
2(T; 2%, (po,p1)) = ' and the pair is optimal in the L?-sense.

For the model with interior control, 7 : (X;-)r — R takes the form

1 T rb
IO =5 [ [ )P dedit (2. - LT
where ( is the solution of (3.7.3). Using similar notations as in the previous para-
graph, P(t) = v*(t,-) € L%*((0,T); L?((a,b);C)) is an L?-optimal control for which
2(T; 2% P) = 2L.

3.8 LEGENDRE TAU APPROXIMATION OF THE LINEARIZED SYSTEM

For the rest of this chapter, we are interested in computing numerically the solution
of the linearized system

0A ou
E__AE%, t>0,0<z<d,
ou 0A
a——a%—ﬂu, t>0,0<$<£,
dho - —ﬁu(t,o), t>0,
dt Ar
(3.8.1)
he _ Ae i) £>0
dt - ATU y V) )
A(H0) =vho(t),  A(t,0) =yhe(t), >0,
A(0,7) = A%(z), u(0,z) = u’(z), 0<z <,
ho(0) = he(0) = hy.

The scheme in [39] using Legendre tau approximations will be used. To do this,
the system is diagonalized by using an appropriate transformation decomposing the

53
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wave components that propagate to the left and to the right. The solution of the
original problem can be obtained by using the fact that the semigroups generated
by the two systems are similar up to a suitable time scaling.

3.8.1 Diagonalization

The state space that we consider is the real Hilbert space X = L?((0,¢); R)? x R2.
Define the map 5 : X — X

(@<¢+_¢ VA" +07), Yt - )

S(¢_7¢+7770a77€) = AT

1
V2
The map S is clearly invertible and its inverse S~! : X — X is given by

-1 u 1 u A u A 2AT 2AT
7 (A ho, he) = f(f VA Va T VA VA r)

Recall the generator A : D(A) C X — X for the semigroup associated with the
system (3.8.1) defined in Section 3.2. Define B: D(B) C X — X by

¢y — (6T +07)
—oF — 2%<¢+ +¢7)
—(¢7(0) +¢7(0))
—(@7(0) + o7 (0))
) (
) —

B(¢_a ¢+7 770)”@) =

where ¢ = y/aA, and D(B) = {z € X : Sz € DA} = {(¢7, 0T, m0,m0) € X : ¢T €
HY(0,£),m0 = 22(¢+(0) — ¢7(0),me = —22(¢F(¢) — ¢~ (£))}. A direct calculation
shows that

eB=S5"1AS.

From [25, pp. 60-61] the operator B generates a strongly continuous group and is
similar to the group generated by rescaling A, more precisely,

Bt _ g-lec ! Atg  yyeR.

Moreover, their spectra are related by o(A) = co(B). Thus, the original system can
be solved using the new generator B and the transformation S via

ez = SePts 1z (3.8.2)

for any zp € X and t € R.

3.8.2 The Numerical Scheme

Let pr : [-1,1] = R, k = 0,1,2,..., be the Legendre polynomial of degree k and
N > 2 be fixed. The goal is to derive a finite-dimensional system associated to the
approximate functions

S
-
&
I
Mz

¢r () (22 /€ — 1) (3.8.3)
v

¢t (t,x) = o (O)pr(2x/ — 1) (3.8.4)
k=0
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3.8 LEGENDRE TAU APPROXIMATION OF THE LINEARIZED SYSTEM

such that the system

d
%(¢_7¢+,U0777£)T :B(¢_>¢+7770377€)T (385)

is satisfied as well as the compatibility conditions for ¢=, 19 and 7, in the definition
of D(B). Take note that the degrees of freedom for ¢~ and ¢ are different. This
choice will be justified later.

Define the rescaled kth degree Legendre polynomial py : [0,¢] — R by pi(x) =
pr(2z/¢ — 1). Using the orthogonality property of the Legendre polynomials

(Pks D) 2(—1,1) = 2015/ (2k + 1),
one can deduce the following orthogonality property of the basis functions py

14

0 / 1
| a@is@rae =5 [ n@n a6 = 5

2

The derivatives of the Legendre polynomials can be written as linear combinations
of the lower order Legendre polynomials. More precisely,

k/2—1
Z (47 + 3)p2j4+1, if k is even,
’ J=0
Pe =3 oy
> (45 +1)py, if ks odd.
\ Jj=0

Taking the inner product in L?(0,¢) of the first equation of (3.8.5) with j; for | =
0,...,N —1 and the second equation with p; for l =0,..., N —2, and using the fact
that p, = %p;, we obtain the finite-dimensional system

%wa,--.,qb;v,lf(t) = Dn(g,---,08) () = Mu(dg, - 8y 1) (1)

— My (g, bk )T () (3.8.6)
d
a(ﬁbg, s ¢E—2)T(t) = _DNfl(ﬁbg’ AR ¢JJ(7—1)T(75) - MNfl(éf)Srv s vﬁbE—z)T(t)
— My 1(655 - Oy_o) | () (3.8.7)

where Dy is the N x (N 4 1) matrix given by

o1 o0 1 - 0 1 0
o o 3 0 -- 3 3
o o0 o0 5 -- 0 5 0
DN_% ) if N is even
2N -5 0 2N -5
; 0 2N -3 0
0 ... ... .. .. 0 0 2N -1
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or
01 0 1 1 0 1
0 0 3 0 0 3 0
00 0 5 5 0 5
DN:% 5 SRR : : . if Nisodd
: ' 2N —5 0 2N —5
: 0 2N—-3 0
0 o i 0 0 2N-1

and My is the N x N diagonal matrix
My = ﬁdiag(l 1,...,1).
26 )

To treat the boundary conditions, we impose that (¢~ (t), ™ (t),n0(t), ne(t)) €
D(B) for every t > 0. Using py(£1) = (£1)* this means that

N N-1
Ap _
mw(t) = — <— D (=D, (1) + Z(—l)%;(t)) (3.8.8)
" k=0 k=0
A N N-1
T .
ity = 2F (Z o5 (1) — ¢z<t>> . (3.89)
v k=0 k=0
Solving for ¢ and ¢, in (3.8.8) and (3.8.9) gives us the linear system
O _
() =Tnan(t) (3.8.10)
N1
where zn = (¢g .-, Oy_1s bd - ,¢}72,n0, n¢) " and Ty is the 2 x (2N + 1) matrix
-1 0 ... =1 0/1 0 ... 0 1|—-5& &
TN — 2AT QAT
(0 1 ... 0 10 -1 ... -1 O—2A7T —ﬁ
if N is even while
Ty = 0 -1 ... =10/ 0 1 ... 0 1| g4
1 0o ... 0 1}|]-1 0 ... =1 0 Ay —ﬁ

if N is odd. This is the place where we need the degrees of freedom of ¢~ and ¢™
to be distinct. Not only that, we need that the sum of their degrees should be odd.
Otherwise, if either the degrees are both even or both odd, then (3.8.8) and (3.8.9)
is not uniquely solvable in ¢, and gb}_l.

When ¢~ and ¢™ are given by (3.8.3) and (3.8.4), respectively, then the differential
equations for 7y and 7 in (3.8.5) are

d?]o N L N—-1 -

=M = =3 (Do - Y (D) (3.8.11)
k=0 k=0

dny N - N-1 .\

B = = o= el (3.8.12)
k=0 k=0
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3.8 LEGENDRE TAU APPROXIMATION OF THE LINEARIZED SYSTEM
Introducing the variable zy = (z;\—,,d)]*v,qbfv_l)—r the differential equations (3.8.11)

and (3.8.12) can be combined into a single system given by

d

&(770, n0) " (t) = Knzn(t) (3.8.13)

where Ky = [Ry Ry—1 Oa2x2 Tn] is a 2 X (2N + 3) matrix with

_ -1 1 =1 ... (=N 9% N
By = <—1 1 -1 . -1 >ER

and ry is the 2 X 2 matrix consisting of the last two columns of Ry. Combining
(3.8.6), (3.8.7), (3.8.10) and (3.8.13) we obtain the system of differential equations

é’N(t) = ANEN(t), < ?_N )(t) = TNZN(t) (3.8.14)
PN-1
where the (2N + 1) x (2N + 3) matrix Ay is given by

AN = FEny—Fn

Dy Onx(n-1)  Onx2 dn Onx1
En = Own-nxy —Dn-1 Ow-_nx2 Ow-1x1 —dn-1
Ky
My My OnNx3 my
Fy = Ly-1 Myx-1  Ow-1x3 Ow-1)x1
Ozx (2N +3)

where Dy = (DN dn), My = (MN mp), dy,my are the last columns of Dy and
My, respectively, and Ly_—1 = (Mn—1 Op—1yx1)-

To solve the system (3.8.14) numerically, it is convenient to rewrite it as a system
in terms of zy . This can be done by partitioning the matrix Ay. Partitioning Ay
as Ay = (A A%), where AL is (2N +1) x (2N + 1) and A% is (2N + 1) x 2, and
using the second equation in (3.8.14), the right hand side of the differential equation
in (3.8.14) is given by

AnzZy = A]lVZN + A%\/’( iN > = (A}V + A?VTN)ZN-
PN-1
Therefore the system (3.8.14) can be expressed as an ODE in zy by
in(t) = (AN +A3Twn)zn(t),  t>0. (3.8.15)

Algorithm
Input: Initial Data 2z = (A% u%, A, hY) and N > 2.
Output: Approximate solution of the system 2(t) = Az(t), z(0) = 2°.

(1) Compute S7120 = (¢, ¢, 1m0, 10).

(2) Determine ¢, = (¢~,pr)r2(0,¢) for k =0,...,N — 1 and gbl': = (¢+,ﬁk)L2(07€)
fork=0,...,N —2.

(3) Set 2% = (B s s Oy 1y DL -+ » Phes 1105 700)-

57



STABILITY AND CONTROLLABILITY OF THE LINEARIZED MODEL

4) Assemble the matrices Dy, My, Tn and K.

(4)
(5) Set By = A}V + A?\/TN‘

(6) Compute the solution of the IVP 2y (t) = Byzn(t), 25 (0) = 2%
(7) Compute z(t/c) = Szn(t).

3.8.3 Convergence Analysis

In this subsection we review the variational form of the Trotter-Kato Theorem in
Ito, Kappel and Salamon [38] and apply it to prove the convergence of the numerical
scheme presented in Section 3.8.2. However, the following discussion is a simplified
version of the more general setting given in [38].

Let V' be a real Hilbert space equipped with an inner product (-, -). Suppose that
A generates a Co-semigroup such that [|e|| < e for ¢ > 0. Denote by U the space
D(A) equipped with the graph norm |ully = (||ul|? + ||Au||*)"/2. Let UN c U and
VN C V be subspaces for all N € N and =V € £(UY, V") be an isomorphism.
In applications, UY and V!V are finite-dimensional and hence the existence of ZV
implies that dim UN = dim VN. Let AN € £(UN, V") and define AN € £L(VY) by

AN = AN @EN)L

Then AN generates a strongly continuous semigroup on V¥ for all N € N.

Let 7% : V' — V¥ be the canonical orthogonal projection of V onto V satisfying
m™v = v for all v € VN, Thus, ||[7V| < 1 for all N € N so that the projections
(7¥)n are uniformly bounded. To approximate the solution of the Cauchy problem
2(t) = Az(t), t > 0, 2(0) = v, first we project v onto VV via the projection 7 and
then solve the finite-dimensional system Zy(t) = ANz(t), t > 0, 25 (0) = 7™¥v. For
large N, we hope that zy is close to z in some sense. Sufficient conditions for this
to happen is given by the following stability and consistency conditions.

(S) Stability. There exists w € R such that (ANv™, o) < w2 for all vV € V.

(C) Consistency

(a) For any v € V there exists vV € V¥ for all N € N such that

lim ||vN —v|| =0.
N—o

(b) There exists D C U such that (\gI — A)D =V for some \g > w where
w is the constant in (S). For any u € D there exists u’¥ € UV for N € N
such that

lim [|ZNVuY —u| =0
N—o00

and
lim [|AVNENuY — Au|| = 0.
N—oo

For the proof of the following theorem, we refer to [38].

Theorem 3.8.1. If the stability (S) and the consistency (C) conditions are satisfied
then Hmy_yo e tnlNo = ety for all v € V' uniformly on [0,T] for all T > 0.
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Let Py be the space of polynomials on (0,/) of degree at most N and V¥ =
Py_1 x Py_o x R?2 C X. Denote by II"V the orthogonal projection of L?(0,¢) onto
Py and by 7V : X — V¥ the orthogonal projection of X onto V!V given by

ﬂ—N(d)_v ¢+7 Mo, TM) = (HN_1¢_a HN_2¢+7 1o, 774)

Let UYN be the subspace of all (<Z~>_, <Z~>+,7]0,m) € VN+1 such that there exist unique
real numbers o« and (3 satisfying

o~ = V19 + apn

ot = TV 28" + Bhnoa
A - -

o = 7T<—<z>—<0>+¢+(0>>
Ar

o= (67 (6) = o7 (0)).
It is clear that U" is a subspace of D(A). We claim that =V : UV — V¥ defined by
EN(¢7, 0T, mo,me) = V167, TN 2 g, me)
is an isomorphism. First let us show that =N is injective. For this purpose, suppose
ch}t EN(¢3¢+,7707"7£) = (0707070); This 1mp11es that ¢7 = aﬁN: ¢+ = 6ﬁN—17
—¢~(0) + ¢7(0) = 0 and ¢~ (£) — ¢ (¢) = 0. The first two equations imply that
57(0) = (~1)Va, §+(0) = (~1)N1B, ¢ (¢) = o and G*(£) = f. Plugging these
into the remaining two equations we obtain « + B =0 and a — § = 0, which imply
a = 3 = 0. Therefore (¢, 0™, 10, 7¢) = (0,0,0,0) and hence =N is injective. Next

let us show that =V is surjective. Let (¢~, ¢+, m0,m¢) € VY and let (o, B) solve the
system

a+5= (17 (L + 50 -50)).
a=f=-Ln—d (0)+3(0).
T
If we take ¢~ = ¢~ + apn and ¢F = ¢t + Bpn_1 then we have (¢—, T, n9,n) € UN
and ZN (¢, 0T, n0,m0) = (67, T, m0,m¢), and so ZV is surjective. Hence =V is an
isomorphism.

Define BV : UN — VN by
(On)e — 20k + TN 16y)
—(08)e — (V2% + TN 24y)
—(64(0) + ¢ (0))
—(65(0) + on(0)

and BN : VN — VN by BN = BN(2V)~!. The approximate system (3.8.15) can be
rewritten in terms of the operator BV as

BN(Q;;Vv 95%7707774) =

sn(t) = BN zn(t), 2n(0) = 7V §710
where 20 = (A% w0, K, hY) € X.
Theorem 3.8.2. For every z € X and T > 0 we have

A}gn ts[l(l)%“] etz — SeCBNtﬂNSfleX =0. (3.8.16)
20 4]0,
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Proof. Let yy = (g?)fv, g?)ﬁ, no,m¢) € UYN. Define a new inner product on X by

(&, 0" mo,me), (™, %,00,00)1 = (67,9 )20 + (0,9 ) 12000

+ ﬁ(ﬁoeo + n¢by).

Similar to the proof of dissipativity of A in Theorem 3.2.2, it can be checked that
B is dissipative with respect to the inner product (-,-);. Similarly, (BNzV, 2V); <
0 ||zV||2 for all 2V € VN and this proves stability.

It remains to show consistency. In this case we choose D = D(B) and Ay =
1. Condition (C,a) is guaranteed Slnce H7r z—2z|p = 0forall z € X. Let y =
(6=, ¢* .m0, ne) € D(B) and define yV = ($, o}, mow, men) € UN by

dy(x) = ¢ (0)+ /0 Vg, (€) d¢

B = oo+ | TVt () de
0
oy — AT( (0) + 3% (0))
N = 7(@_\/(5)—@3}(5))

Let 2V = =2NyN = (TN~ 1¢) - 2¢N>770N7WN) V. For each z € [0, /] we have
by Cauchy—Schwarz mequahty

) ¢
16n(@) — 6~ (2)] < /0 TIN5 (€) — 65 (©)] dé < 2TV 165 — 67 L1200

Therefore ”(ZB]_V ¢ |loo — 0. Similarly, [|¢}, — ¢*[loc — 0. In particular we have
NN — AT (qb (¢) — ¢T(¢)) = np. By definition, noy = ng for all N. Moreover, since
(TIV) y is uniformly bounded

TN 165 = 67 2,0 < TV by = 67200 + TN 6™ = ¢ [l120,0) — O

Similarly, ||TIV *QQE} — ¢ |l 12(0,0) — 0. Consequently,

=YY —yll = [=Y —ylls = 0.

Because (py)z = IV 15 and (¢f), = IV =247 it follows that (¢ ), — ¢, and
(¢%)x — ¢F both in L?(0,¢). These imply that
IBYEN Y™ — By|ly = | BYy™ — Byl1 — 0
Thus, the consistency condition (C) holds. Invoking Theorem 3.8.2 we have

BV Nyl =0 (3.8.17)

lim sup ||eBy
N—00te(0,7]

for every y € X and 7 > 0. From (3.8.2) and the equivalence of the norm || - ||; and
the norm in X', the following estimate

HeAtz — SeCBNtWNSfleX = HS@CBtS*lz — SeCBNtﬂNSfleX
_ N _
< OlSlleulle®'s s — BtV 51z,

holds for some constant C' > 0. Taking the supremum over all ¢ € [0, 7] and using
(3.8.17) with 7 = ¢T" we conclude that (3.8.16) is satisfied. This completes the proof
of the theorem. O
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3.8 LEGENDRE TAU APPROXIMATION OF THE LINEARIZED SYSTEM

3.8.4 Numerical Results

In our simulations, the parameters listed in the following table were used. Typical
values were taken from [60].

name meaning typical size unit in cgs

S thickness of the tube material 0.1 cm

0 inner rest radius of the tube 1 cm

Ag rest cross section of the tube T cm?

E  Young’s modulus of the material ~ 4.1x10% g/s?/cm
po  ambient pressure 106 g/s?/em
g gravitational constant 0.981 cm /s?

P constant density of the fluid 0.998 g/cm?
fo  viscosity of the fluid 0.009 g/cm/s

The length of the tube and the overall volume of water are given by £ = 180 ¢m and
V = 10* cm?, respectively. Each tank has a cross sectional area Ay = 504y and for
simplicity we suppose that there are no forcing pressures applied on the top of each
tank, i.e., pro = py¢ = 0. With these parameters we have o = 6.5380 x 104, 3 = 0.0721
and v = 1.5005 x 10~°. Consequently, the equilibrium cross section and equilibrium
level heights are approximately given by A, ~ 3.1420 and hge = hy. =~ 30.0288,
respectively.

a0 o]
60+
40 -
20+
ﬁ 0

=20k

B E B

40
—60}

80+ ]

_100 1 1 1 1 1 1
-0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 i 0.0l

A

Figure 3.1.: Eigenvalues of the matrix ¢Bs (o) and the generator A (x).

It can be seen in Figure 3.1 that the eigenvalues of the approximating matrix cBy
lie on a single line except for those three that lie on the real axis. For comparison we
plotted the first 11 eigenvalues of the generator A using the one we have computed
theoretically, see (3.4.2). We can see the first 7 out of 11 eigenvalues of ¢Bs and A
are close to each other.

In the implementation, we use the trapezoidal rule to compute the inner products
in Step 2 of the algorithm. The differential equation in Step 6 is solved using the
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ODE solver ode45 in MATLAB. It can be observed that by increasing the number
of Legendre polynomials we get more oscillations in the numerical solution. This is
due to the fact that the matrix ¢By will have more eigenvalues with large imaginary
part. It can be seen that the deviations of the level heights converge to zero. Also,

Ares Velocity

A, x)
ult, x)

205 o

200 200

x [position)

Level Height fq Level Height ke

1

t (time)

$ (time)

Figure 3.2.: Approximate solution (deviations from the equilibrium) of the linearized
2-tank model with the initial conditions A°(x) = 0.25(2x/¢—1), u®(z) =
—50sin(mz /¢ + 1), h = —0.25 and h) = 0.25 using 5 Legendre polyno-
mials: area (upper left), velocity (upper right), level height in the left
tank (lower left) and level height in the right tank (upper right).

we have [[u(T,-)|| s (0,0 = 0.0021 and ||A(T, -)|| oo (0,¢) = 1.3568 x 1076 for T" = 2000.
These confirm the theoretical result Theorem 3.4.4.
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LINEAR SYSTEMS WITH VARIABLE
COEFFICIENTS

To establish the well-posedness of the nonlinear system (2.6.5) using an iteration
scheme, as a first step one has to linearize it by freezing some of the coefficients.
Therefore linear systems with variable coefficients will be studied. This chapter
is devoted to the existence, uniqueness and regularity of solutions of a hyperbolic
system of first order linear differential equations on a bounded interval as well as a
hyperbolic system with dynamic boundary conditions.

First, we deal with a hyperbolic system with variable coefficients. Two usual
notions of solutions are considered, weak and strong. The weak solutions are defined
in Lebesgue space L? or a weighted version of it. The strong solutions are also
defined in L? but are the limit of smoother functions that satisfy a system that is a
regularization of the original system. The existence and uniqueness of weak solutions
will be established based on a priori estimates that hold for smoother functions
and the Hahn-Banach and Riesz Representation Theorems. This procedure can be
dated back to Friedrichs. The strong solutions satisfy the energy estimates and as
a consequence will have more regularity. In particular, it will be shown that they
have L2-trace at the boundary. By an approximation or mollification argument, the
weak solutions are actually strong solutions. This is sometimes called the weak equals
strong argument.

After dealing with existence and uniqueness of weak and strong solutions, the
regularity of the solutions will be considered. In particular, the weak solutions will
be in the Sobolev space H* for some positive integer k as long as the data are
sufficiently regular and satisfy appropriate compatibility conditions. This will be
done using a priori estimates in Sobolev spaces.

Finally, we will consider a linear hyperbolic system with variable coefficients cou-
pled with an ordinary differential equation at the boundary and prove well-posedness
in L?. In the case where the coefficients are constant, it will be shown that the weak
solution obtained from the variational method coincides with the one given by the
theory of Cy-semigroups.

4.1 A VARIATIONAL EQUATION

In this section we prove the existence and uniqueness of solutions of a variational
problem. The framework introduced here will include the problems we consider in
this chapter, i.e., boundary value problems, initial boundary value problems and
coupled PDE-ODE systems with variable coefficients.

Let X and Z be real Hilbert spaces and Y be a subspace of X. Suppose that
AY > X, 0:Y - Zand ®:Y — Z are linear operators. Let W = ker ® and we
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LINEAR SYSTEMS WITH VARIABLE COEFFICIENTS
assume that W and A(W) are both nontrivial. Given F' € X and G € Z we consider
the variational problem: Find u € X such that

(u, A\w)x = (F,w)x + (G, Yw) 2, VweW. (4.1.1)

For the differential equations we consider, ¥ is a trace operator while A and ® are
the differential and trace operators associated with the adjoint problem. We note
that the space of test functions W need not be dense with respect to the topology
of the space X. For the examples in the succeeding sections, X will be the dual of
the solution space.

Theorem 4.1.1. Suppose that there exist v > 0 and C > 0 such that
\|2\112<01A2<1>2 YweY. 4.1.2
el + ol < (SlAwlk +eul}). Ywey. (41.2)

Then the variational equation (4.1.1) has a solution u € X satisfying

1
Tl < € (,yIIFH% T HG||22> . (4.13)

In addition, the solution is unique if A(W) is dense in X.

Proof. By assumption, the restriction A : W — X of A to W is injective, and
therefore it has a left inverse A=! : A(W) C X — W. According to (4.1.2)

_ _ C
YA ollk + 1PA 0% < ;IISOII%« Vo e AW). (4.1.4)

Define the linear map ¢ : A(W) — R by
lp = (F A )x + (G, WA )z,

for ¢ € A(W). We equipped A(W) with the norm || - ||x. The Cauchy-Schwarz
inequality and (4.1.4) imply that

ol < IFIEIA el% + IGIZ 1A 0l

1 _ -
“IIFI% +1G1Z ) (VIAT ek + WA )1Z)
gl

C<1 2 2) 2
— | =IIF% + |G @
- (GIFI 1612 ) lielx

for all ¢ € A(W). Thus ¢ € [A(W)]" and

IA

IN

1
APy < C (,YHFH?X T \Gn%) .

According to the Hahn-Banach Theorem, ¢ admits an extension £ € X’ such that

10l x = [1€llja(wyy - From the Riesz Representation Theorem there is a unique u € X
such that ||lul|x = ||f||x and (u,v)x = fv for all v € X. In particular, for every
weW

(u, Aw)x = lAw = (Aw = (F,w)x + (G, Tw) 2.

Thus w is a solution of the variational equation (4.1.1) and it satisfies the estimate
(4.1.3). Suppose that u; and ug solve (4.1.1). Then (u; — ug2, Aw) = 0 for every
we W. If A(W) is dense in X then u; —ug = 0 and thus the solution of (4.1.1) is
unique. [
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The idea of the proof of Theorem 4.1.1 can be traced back to the work of Friedrichs
[28]. The same idea has been used in [9, 15, 41]. The constant v is introduced
because the a priori estimates will be derived in weighted Lebesque spaces. This
parameter is useful as well for the nonlinear analysis.

In the context of differential equations, the variational equation (4.1.1) can be
derived by multiplying the differential equation by appropriate test functions and
formally integrate by parts. To prove the existence of solutions of the variational
equation (4.1.1), one has to prove the abstract a priori estimate (4.1.2). For hyper-
bolic partial differential equations, the a priori estimates can be obtained with the
help of symmetrizers. This will be the topic of Sections 4.5, 4.6 and 4.7. Before
dealing with partial differential equations, we will first illustrate how Theorem 4.1.1
can be used to prove well-posedness of a system of ordinary differential equations.
This will be done in the succeeding section.

To prove uniqueness, a sufficient condition is to show that for each v € X there
exists w € Y with Aw = v and ®w = 0. This corresponds to a homogeneous dual
problem. In most cases, the well-posedness of the dual problem follows from the
primal problem after time reversal. However, the criterion that the solution lies in
the space Y is not known a priori. In the context of PDEs a different approach in
proving uniqueness will be provided.

4.2 LINEAR ORDINARY DIFFERENTIAL EQUATIONS

Consider the ordinary differential equation

{ W(t) = H(t)h(t) + f(t), te(0,T), (4.2.1)

h(0) = ho

where T > 0, h : (0,7) — R™, hy € R™, H € L*°((0,7);R™™) and f €
L?((0,T);R™). The goal is to determine the existence and uniqueness of a func-
tion u € H'(0,T) satisfying (4.2.1). This can be done in several ways. We only
discuss the fixed-point method and the variational method based on Theorem 4.1.1.
The first method is classical. The ordinary differential equation (4.2.1) is rewritten
as an integral equation. The existence and uniqueness of a solution of the integral
equation can be obtained using the so-called Banach Fixed-Point Theorem. In the
energy method, the ordinary differential equation is rewritten in variational form.
One acquires the existence and uniqueness of a solution of the variational equation
by proving an a priori estimate and using Theorem 4.1.1.

4.2.1 The Fixed-Point Method
Suppose that h € H'(0,T) satisfies (4.2.1). Integration yields
t
h(t) = hy —|—/ H(s)h(s) + f(s)ds, te (0,7). (4.2.2)
0

On the other hand, a function h € L?(0,T) satisfying the integral equation (4.2.2)
is absolutely continuous and its weak derivative is given by the integrand in (4.2.2).
Thus h € H'(0,T) satisfies (4.2.1) in L?(0,T). The integral equation enables us
to reduce the problem of determining the existence of a solution of (4.2.1) to the

65



LINEAR SYSTEMS WITH VARIABLE COEFFICIENTS

problem of determining a fixed point of the map M : L2(0,T) — L?(0,T) defined
by

t
(Mh)(t) = ho —|—/ H(s)h(s) + f(s)ds, te(0,7)
0
It can be easily checked that M is well-defined, i.e., it maps L?(0,T) into itself.
Given t € [0,T7], the Cauchy Schwarz inequality implies

2

/0 |(Mh)(s) — (Mhy)(s)]*ds = 7)(h1(7) — hao(7)) dr| ds

< THH| 2o omyllh1 = 2l 220 1)

for hi,hy € L?(0,T). By induction, we show that for every ¢ € [0,7] and positive
integer NV

(T)

MYy — MV B2, <

OT)th h2||%2(O,T)' (423)

The case where N = 1 has been already shown. Suppose that (4.2.3) holds for some
N. Applying the Cauchy Schwarz inequality and the induction hypothesis we have

2

t s
||MN+1h1 _MN+1h2||%2(0,t) — / H(T)(MNhl(T) —MNhQ(T)) dr| ds

(TS) N 1
/0 TS S s — ol ds

°(0,T)
(Tt) (N+1) 2
= (N+ 1) HH”LOO 0,7) th h2HL2(07T)'

Taking t =T in (4.2.3) we get

TN
MY by — M bl 207y < WHHHJLVOO(O,T)th — hallz2(0,1)-

As a consequence, the map M is continuous and M¥ is a strict contraction for N
large enough. Now the existence of a unique fixed point of M follows immediately
from the following theorem.

Theorem 4.2.1 (Banach Fixed-Point Theorem). Let T': X — X be a map on a
complete metric space X with metric d. If there exists a positive integer N such
that TN is a strict contraction, i.c., there exists a constant ¢ € (0,1) such that
d(TNz, TNy) < cd(x,y) for all z,y € X, then T has a unique fized point.

The proof can be found in [58, Theorem 1.1.3].

4.2.2 The Energy Method

A function h € L%(0,T) is called a weak solution of (4.2.1) if the variational equation

(hyn + H™n) 200y = — ho - 1(0) — (1) 120,17 (4.2.4)

holds for every n € H'(0,T) such that n(T) = 0. If h is a weak solution of (4.2.1)
then necessarily h € H1(0,T) and h' = Hh + f in the weak sense. This can be seen
immediately from (4.2.4) by taking n € 2(0,T). In addition, integrating by parts
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we obtain h(0) = hg. As a result, the variational equation (4.2.4) is equivalent to
the ordinary differential equation (4.2.1).

The existence and uniqueness of a weak solution of (4.2.1) relies on an a priori
estimate that will be derived using the following proposition. For the proof we refer
to [9, p. 283].

Proposition 4.2.2. For each n € "' H'(—00,T) and v > 1 we have
T —2vt 2 1 4 —2~vt,./ 2
e Mn@)"dt < — [ em Ty (B)|7 dt.
— 0o 7 — 0o

As a consequence we have the following estimate.

Corollary 4.2.3. For each v > 1 and n € H'(0,T) such that n(T) = 0 we have

T 1 T
/O eNtnt))?dt < 72/0 X0/ (¢)|? dt. (4.2.5)

Proof. Extending n by zero for t > T we have n € H'(0, 00). Define ¢ € e?*H!(—o0,T)
by ((t) = n(T — t). Proposition 4.2.2 and the change of variable s = T — t imply

T T
| etmopa = [ e
0 —

o

LT ) o2
— e 7 I¢"(s)|” ds. (4.2.6)
7" J -0
Using ('(s) = —n/(T — s) and the change of variable t = T — s we have

T T
[ e mic@pas = [ e - )P s

— oo —o0
T
_ / 2 (1)]2 di. (4.2.7)
0
The estimate (4.2.5) now follows from (4.2.6) and (4.2.7). O

With the estimate (4.2.5), it is now possible to derive an a priori estimate needed
in the well-posedness of (4.2.4). This a priori estimate will be also used in the
PDE-ODE systems of Section 4.20.

Theorem 4.2.4. Let A € L*°((0,7);R™*™). There exist constants C > 0 and
Yo > 1 depending only on ||Al|peeo,r) such that for all n € H'(0,T) and for all
v > o we have

¢

O+ A a0y < 7O + An) oy + C @R (128

Proof. First, suppose that n € H'(0,T) satisfies (T) = 0. According to Corollary
4.2.3 and the triangle inequality we have

2 2
M nllzaor) < 210 + Al + ZIAlL= @l 020y (429)
For sufficiently large ~, the second term on the right hand side of (4.2.9) can be

absorbed by the term on the left hand side. Thus there are constants C' > 0 and
0 > 1 both depending only on the L>®-norm of A such that for all v > g

C
e 720, < ;Hevt(ﬁl + An)[|72 (0.7 (4.2.10)
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Define n(t) = 0 for t > T and w(t) = T y(T —t) for —oco < t < T. Then
w € H'(—00,T) and therefore it satisfies the weighted Sobolev estimate

1
[l Foo(—oory < VMWlIF2( ooy + 5”“””%2(—00,T) (4.2.11)

for all 4 > 0, see the proof of Proposition 4.16.1. Since w'(t) = —ye?T (T —t) —
eYT=9/(T — t) the above estimate implies that for some C' > 0 there holds

3 1
TN (1 — )P < C (fyue'ﬂn\%z(om + 7\6“77/“%2@@) (42.12)

for all ¢ € [0, T]. Choosing t = T in (4.2.12), writing ' = (7' + An) — An and using
the same argument as before we obtain, by increasing ~q if necessary, that for all
Y=

1
o) < C (wevtnn;m,n Lo+ An>uiQ<O,T)) (1.2.13)
for some C > 0. The estimate

1" (0 + An)l[720.1 (4.2.14)

c
[n(0)* + ylle ™ nll72(0.7) < =

follows from (4.2.10) and (4.2.13).

Now suppose that n € H*(0,T). Define ¢ € HY(0,T) by ((t) = n(t) — n(T) for
0 <t < T. Applying (4.2.14) to (, using the triangle inequality and the fact that
2’y||e”/t|]%2(0’T) = e — 1 we obtain (4.2.8). O

We are now in position to use Theorem 4.1.1 in proving that (4.2.4) is well-posed.
We take X = e 7' L2(0,T), Y = H'(0,T) and Z = R™. The operators A, ¥ and ®
are given by An = (n' + H 'n), ¥n = n(0) and ®n = n(T) for all n € Y, respectively.
Thus the variational equation (4.2.4) can be written in the form

(e7"h, An)x = (—e " f,n)x + (=ho, ¥n)z, VneWw (4.2.15)
where W = {n € Y : n(T) = 0}. Note that the set X coincides with L?(0,T).

Theorem 4.2.5. Let hg € R™, H € L>(0,T) and f € L*(0,T). Then (4.2.1) has
a unique weak solution h € L*(0,T). Furthermore, h € HY(0,T) and it satisfies the
energy estimates

_ I, _
e sy < € (S e Bao ) + ol (4.2.16)
and
le™ a0y < Clle™ F 220 + lhol?) (12.17)
for all v > ~o for some C >0 and yo > 1 both depending only on || H || e (0,7)-

Proof. Using the notations of the paragraph preceding the theorem, the a priori
estimate (4.1.3) follows directly from Theorem 4.2.4. Hence Theorem 4.1.1 implies
the existence of g € X such that

(9. An)x = (—e "' f,n)x + (=ho,¥n)z, VneW,
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and it satisfies .
Vgl < C (7\|e—27ffu%( " |ho|2> | (4218)

Then h = €?''g € L?(0,T) is a weak solution of (4.2.1) and it satisfies (4.2.16)
due to (4.2.18). From the discussion at the beginning of this section, we already
know that the weak solution h lies in H'(0,7") and it satisfies ' = Hh + f in
L?(0,T). The estimate (4.2.17) follows from the differential equation b’ = Hh + f
and (4.2.16). Given f € X, the dual problem ' + H'n = f, n(T) = 0 admits
a solution n € H'(0,T), which was just shown for the forward problem. Hence
A(W) = X and therefore the weak solution is unique by Theorem 4.1.1. O

The fixed point method takes less effort than the energy method. However, the
advantage of the latter is that it shows directly from the a priori estimate the contin-
uous dependence of the solution with respect to the data. We would like to extend
the energy method presented above to a hyperbolic system of partial differential
equations on a bounded interval. Of course the derivation of the a priori estimates
will now be more technical. This will be the goal of the succeeding sections.

4.3 LINEAR HYPERBOLIC SYSTEM OF PDES

Consider the hyperbolic system of first order linear partial differential equations with
variable coefficients

Owu(t, z)+ A(t, ) Opu(t, z) + R(t, x)u(t,x) = f(t,x), (t,z) € (0,T)x(0,1), (4.3.1)

where u takes values in R™. The system (4.3.1) is supplied with the boundary
conditions

Byu(t,0) = go(t), te (0,7), (4.3.2)
Biu(t,1) = ¢g1(t), te (0,7), (4.3.3)

and initial condition
u(0,z) = up(x), z € (0,1). (4.3.4)

The data f, go, g1, uo and the coefficients A, R, By, By are contained in appropriate
function spaces that will be specified precisely in the succeeding sections.

The aim is to prove the well-posedness of the system (4.3.1)—(4.3.4) in L? and the
regularity of the solutions under additional smoothness and compatibility conditions
on the initial data, boundary data and the coefficients. Following the framework in
[9] the first step is to provide well-posedness for the pure boundary value problem

Owu(t, ) + A(t, x)0pu(t, x) + R(t, z)u(t,x) = f(t,z), (t,x) € R x(0,1),
Bou(t,0) = go(t), teR,
Blu(t, 1) =31 (t), t e R,

where A and R are infinitely differentiable. Afterwards, the initial value problem
(4.3.1)—(4.3.4) with homogeneous initial data ug = 0 will be considered. This is
done by extending the data f, gg, and g1 by zero outside the interval (0,7) and
analyzing the associated boundary value problem. Thanks to a causality principle
the restriction of the solution of the boundary value problem is the solution of the
homogeneous initial boundary value problem. Finally, the well-posedness of the
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LINEAR SYSTEMS WITH VARIABLE COEFFICIENTS

general initial boundary value problem will be established from the homogeneous
case using lifting and approximation arguments.

In the previous section, we have seen that a weak solution of the ordinary differ-
ential equation (4.2.1) automatically satisfies the differential equation in the sense
of L? and the initial condition is satisfied. However, for the initial value problem
(4.3.1)—(4.3.4) this is not immediate. In order to show that the weak solution, which
is in L? initially, satisfies the partial differential equation in some sense we need to
consider the space of L? functions u for which the left hand side of (4.3.1) also lies
in L? in the sense of distributions. Furthermore, it will be shown that such functions
admit traces on the boundary in certain spaces and this information will help us
explain how the weak solution satisfies the boundary and the initial conditions in
some sense.

For simplicity, we rewrite the boundary conditions in a single equation. Setting

Q= (07 1)7 wefine u|89(t) = (u(t70)7 u(t7 1))> 9= (90791)7

BD (@) Xn ) 2
B = b € RMxm, 4.3.5
( O(n—p)xn By ( )

Here Ojx; denotes the k x j zero matrix. The boundary conditions (4.3.2) and
(4.3.3) can be written as Bujgp = g. Whenever there are matrices defined at the
boundaries, we combine them into a single matrix using the same form as (4.3.5).

4.4 GRAPH SPACES AND THEIR TRACES

Let O be a non-empty open subset of R?, A € W1(0) and R € L>®(0O). Consider
the linear operator L : H'(O) — L?(0O) defined by

Lu = dyu + Adu + Ru.

By duality, we can extend the definition of L for u € L _(O) in the sense of distri-
butions. Define L : LL (O) — 2(0)’ by

loc
Lu(p) = (Lu, p) 20y x2(0) = /OU Lrpdxdt, YV yee2(0)
where L* denotes the formal adjoint of L given by
Lo =—0p— AT0pp — (8, A) T+ R . (4.4.1)
By the definition of distributional derivatives, it can be seen that
Lu = 0yu+ 0, (Au) — (0, A)u + Ru

for all u € L{ (O) in the sense of distributions.

loc

Given u € L?(0), we have

[Lu(p)| < lullp2(oy 17 ¢l 20y < Cllull2o0)llell z10)

for all ¢ € 2(0) and for some constant C' > 0 independent of u and ¢. Therefore Lu
has a unique extension, denoted by the same notation, to a bounded linear functional
from H§(O) to R. Furthermore, || Lu|| g-1(0) < Cllul|12(0) for all u € L*(0), showing
that L € £(L*(0); H1(0)).
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Given u € L?(0), suppose that there exists C' > 0 such that
[Lu(p)| < Cllellrze), Ve € 2(0). (4.4.2)

The density of 2(0O) in L?(0O) implies that Lu can be extended to a linear functional
in L?(0)" and denote this extension by Lu at the moment. It can be seen that
E{q HY(O) = Lu where L is regarded as a bounded linear operator from L?(0) to
H~1(0). This equality follows immediately from the fact that it holds for all u €
2(0) and that both operators Lu and Lu are continuous. For this reason, we simply
write Lu for Lu.

From the Riesz Representation Theorem, there exists a unique f € L?(Q) such
that Lu(p) = (f,¢)12(0) for all ¢ € L?(O) whenever (4.4.2) holds. Identifying L*(O)
with its dual, we write Lu = f. Thus, Lu = f for some f € L?(0), with u € L?*(0O),
is equivalent to

(u, L*¢) 20y = (f, 0)12(0), ¥ ¢ € Z2(0).
If u € H'(O) then from the definition of weak derivatives it follows that
(u, L*0) 12(0) = (Opu+ Adpu+ Ru, ©) 120y, YV 0 € 2(0).

Therefore Lu = dyu + A0,u + Ru in the weak sense. Thus, the operator L defined

in the sense of distributions and the differential operator 0; + AJ, + R coincide in
HY(0).
For 6 € €°°(O;R) the distribution §Lu € 2(0) is defined by

0Lu(p) = Lu(fp) = (u, L*(00)) 12(0), Vo € Z(0).
The product rule for smooth functions implies

(u, L*(09)) 1200y = (u,0L*¢0 — (0,0 + AT 0:0)9)12(0)
(0u, L*0) 12(0) — ((0:0 + (9:0) A)u, ) 2(0)-

Therefore § Lu = L(6u) — (0:0 + (0.0)A)u in the sense of distributions.
Consider the following subspace of L?(QO)

E(0) = {u € L*(0): Lu € L*(0)}.

Induced by the graph norm
1
lllpo) = (lulZa(o) + 1 ZulZz0)?

E(O) becomes a Hilbert space, called a graph space. Furthermore, the zero order
terms of L is immaterial in the definition of E(O), that is,

E(0) = {u € L*(0) : dyu + 0,(Au) € L*(0)}.

The space E(O) is closed under multiplication of functions in 4>°(O; R) and if u; — u
in E(O) then fu; — 6u in E(O) for every 0 € 6°(O; R).

Theorem 4.4.1. Let Oy be a nonempty open subset of O. If u € E(O) then ujp, €
E(01) and
L(up,) = (Lu)o,- (4.4.3)

If (uz); C E(O) satisfies uj — u in E(O) then ujjo, = ujo, in E(O1).
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Proof. 1t is clear that we, € L?(O1). Every ¢ € 2(O)) can be considered as an
element of Z(0) by defining ¢ to be zero outside @;. With this, we have

(o L™ ) r20,) = /u|ol'L*tpd:rdt = /u-L*tpdxdt
01 o
= /Lu-apdxdt = / (Lu)jo, - pdrdt.
@) 0,

Thus L(ujp,) = (Lu)jp, and therefore ujp, € E(O1). If uj — u in E(O) then
ujjo, = U)o, in L*(O1) and from (4.4.3)

L(uj|(91) - (Luj)|(91 - (Lu)\(91 = L(U’K’)l)

in L?(0y). Therefore uji0, = Ujo, in E(O1). O]

The trace operator I' : H'(R x (0,1)) — H: (Rx{0,1}) can be extended to E(R x
(0,1)) thanks to Theorem 4.4.2 below. Identifying the elements of H%(R x {0,1})
and H%(R) X H%(R) we sometimes write I'u = (uj;—¢, ujz=1) for u € H'(R x (0,1)).
Before proving the following trace theorem, we need to construct a continuous right

inverse of the trace operator. Since the trace operator I' is onto, it follows that
I'T* > 0 and hence I'T* is invertible, see [77, Proposition 12.1.3]. Here, I'* €

E(H%(R x {0,1}); HY(R x (0,1))) denotes the adjoint of I'. Define
Tp =D IT%) ! e L(H2(R x {0,1}); HY(R x (0, 1))). (4.4.4)

By definition, I'T'r = id, where id is the identity map of H2 (Rx{0,1}). The operator
I'r is sometimes called a lifting operator because functions defined on the boundary
are lifted in the domain in a continuous way. An alternative way of proving the
existence of lifting operators is presented in Adams [1].

Given two pair of functions (f1, f2) and (g1, g2) we define the componentwise prod-
uct

(f1, f2) @ (91, 92) = (f191, f2, 92) (4.4.5)

whenever the products fig1 and fogs are meaningful. This definition will be applied
to pairs of traces at x = 0 and = = 1.

Theorem 4.4.2. Suppose that A € WL2(R x (0,1)) is invertible and constant
outside a compact subset of R x (0,1) and R € L*(R x (0,1)).

1. The set (R x [0,1]) is dense in E(R x (0,1)).

2. For each u € E(R x (0,1)) define I'gu : H%(R) X H%(R) — R by

Lyu(po, p1) = lim (T'uy, (90, 1)) 2(R)x L2(R) (4.4.6)

j—o0
where (u;); C HYR x (0,1)) satisfies uj — u in E(R x (0,1)). Then Tyu €
[H2(R) x H2(R)] ~ H™3(R) x H 2(R) and Ty € L(E(R x (0,1)); H™2(R) x

H 3 (R)). Furthermore,

Fou=Tu, VYuecH(Rx(01)). (4.4.7)
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3. If0 € €.°(R x [0,1;R) and u € E(R x (0,1)) then I'g(6u) = I'0 @ I'gu where
([0 © Lgu)(po, ¢1) = Tgu(l'0 @ (po, ¢1)) (4.4.8)
for (¢0, 1) € H2(R) x H3(R).

Proof. (1) follows using mollifiers, see [9, p. 258]. Let v € H'(R x (0,1)) and
v = (po, 1) € H%(R) X H%(R) By Green’s Formula

(Co,p)apereimy = [ Dot )0t = [ To(t,0)- (—pa(0)de
// A7 Ly - Tr(—¢0, o1 dxdt—// AT L) T R(—y0, 1) dz dt

(AT'L)*o = —0(A™Tp) — 0o+ RTA™ T (4.4.9)

where

Thus there exists a constant C' > 0 independent of v and ¢ such that

[(Tv, @) r2wyx2@)| < Cllvllpex oy llell (B)xHE ®)’ (4.4.10)

Therefore the limit in (4.4.6) exists and from (1) the limit is independent of the
approximating sequence (u;j); C H'(R x (0,1)) as long as u; — u € E(R x (0,1)).
From (4.4.6) and (4.4.10) we have I'yu € H_%(R) X H_%(R) and I'y € L(E(R x
(0,1)); H_%(R) X H_%(]R)) The equality (4.4.7) follows immediately from the defi-
nition of I'y and the inclusion L?(R) x L*(R) C H_%(R) X H_%(R).

If u € H'(R x (0,1)) then (4.4.7) implies

Fy(0u) =T(0u) =TO@Tu =TT u. (4.4.11)
Now (4.4.8) follows from property (1), (4.4.11) and the continuity of T'y. O

If a € WH°(0O) and u € H%(C’)) then au € H%((’)) We extend this definition of
product for u € H _%((’)) by duality.

Definition 4.4.3. Let u € Hfé(O) and a € WhH(O;R™"). The product au €
H~2(0) is defined by
¢ € Hz(O).

(00,0) 4 om0y = (0 )y

2(0)xH2(0) 3(O)xHE (0)

For each u € E(Rx (0,1)), define the trace operators I';u : H: (R) > Rfori=0,1
by
1
Then I, € L(E(R x (0,1)); H 3(R)) for i = 0,1. If u € H'(R x (0,1)) then

I'yu = T'ujp—; for ¢ = 0,1. By a standard density argument, we have the generalized
Green’s identity

// Lu-vdxdt — // w- L*vdzdt (4.4.12)

A\x IF u, Fv\m 1> <A|m 0F u Fv|m 0>

H™5 (R)x H 2 (R) H™3(R)xH? (R)
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for all u € E(R x (0,1)) and v € H(R x (0,1)).

We also need traces of functions in E(Qr) where Q7 = (0,7) x (0,1) which
will be used for initial boundary value problems. This has been done in [3] for
general Lipschitz domains in [41] for general graph spaces. It is shown in [3] that
2(Qr) is dense in E(Q7). This information allows us to extend the trace operator

: HYQr) — H%(QQT) to functions in F(Qr) as we have done in the case of the
graph space E(R x (0,1)). Given u € E(Qr) define I'gu : H%(aQT) — R by

1
Lyu(p) = lim (Tuj, Agp)r200,), ¢ € H2(Qr),

]—)OO

where
Ay = 1m0y +1pe=1y — AiTl{tZO} + AiTl{t:T}, in 0Qr

and (uj); C HY(Qr) and u; — u in E(Qr). Here, 1g denotes the indicator
function of a set S. As in the previous theorem we have I'yu € H 7%(8QT) and
ry € E(E(QT);Hfé(aQT)). Moreover, if u € HY(Q) then Tyu = AjTu and
Ly(0u) = 09, Lgu for every 6 € €°(Qr;R) and u € E(Qr).

The next step is to localize the trace defined in the previous discussion. Given a
nonempty ¥ C 0@ we define

V(E)={pe€ H%((‘)QT) :supp ¢ C X} (4.4.13)

It is known that V(X) is dense in L?(%), see [77, Theorem 13.6.10]. Denote by

V() the completion of V(X) with respect to the norm of H %((%QT). Thus we have
the Gelfand triple

V(Z) c LA(%) c V(D). (4.4.14)

If ¢ € V() then there exists a sequence (¢;); C V(X) such that ||¢; _SDHH%(aQ )7
T

0. Ifa € Wh*(X) then we have a’¢; € V(X) and |la"p;—a g0HH2 0on 0. Hence

a' € V(X). As a result, we can define the product au € V(X)" where u € V(X)’
and a € WhH* (%) by

(au, <P>V(2)/xv(2) = (%GT@)\/(E)'xv(E), p e V(X). (4.4.15)

Let us denote ¥y = {0} x (0,1), ¥; = (0,7) x {0}, ¥o = (0,7) x {1} and
Y3 = {T}x(0,1). Given u € E(Qr) we define the generalized trace us, : V(X1) = R
of w on X1 by
peV(X), (4.4.16)

upn () = —jli)rgo(I‘gu, SDj>hr—%(8QT)XH%(8QT)’

where (¢;); C V(31) and |[¢; — ¢|| — 0. By definition, we have

H2(0Qr)

g, ()] = Mgl o 1904

Thus wy, € V(1) and [lus, ly s,y < HFQUHH‘%(aQT)' In particular, u — )z, €

L(E(Qr); V(21)") because I'y is bounded. It follows from the definition that

(wsp @veyxve) = —Te )y 1 0001 oo (4.4.17)
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for all u € E(Qr) and ¢ € V(X1). Also,
up, = Tw)y,,  VueH(Qr) (4.4.18)

The other trace operators are defined as follows

<U\22,902>V(22)'xv(22) = jlggowgu’¢2j>H_%(8QT)xH%(8QT)
_ T AT Ao
(Ui P0)v(Soyxv(ze) = = Hm (Tgu, A0,) "0} 4 o0 3 ik om)
. T
<u\23,903)V(23)'xv(23) - jlggo(l“gu,A(T,-) (p3j>H_%(3QT)XH%(8QT)

where ¢; € V(5;), ¢i; € V(5;) and ||pi; — ('DiHH%(aQT) — 0 for i = 0,2,3. The
properties of the trace ujx, are carried by these traces as well.

Let us simplify the notation for the traces we have introduced in this section. For
functions u in E(R x (0,1)) we shall also use the notations u|sq, Uj;— and wu),—; for
Iyu, Fgu and F;u, respectively. If v € E(Qr) then similarly we also denote u|,—o,
Ujz=1, U=o and up—p for ux,, us,, Uz, and ux,, respectively. Moreover, setting
Q= (0,1) we let ujgq = (U|z—0, Ujz—1) for u € E(Qr).

4.5 A PRIORI ESTIMATES IN €12 WITH SMOOTH COEFFICIENTS
4.5.1 Functional Boundary Symmetrizers

Consider the first order differential operator
L =0+ A0, + R.

The goal of this subection is to prove an a priori estimate necessary for well-posedness
under the following assumptions on the coefficients A and R.

(H1) A € €°(R x [0,1];R™ ") has a bounded inverse and is constant outside a
compact set of R x [0, 1]

(H2) R € €°(R x [0,1]; R™*™)
We also assume that the boundary matrices By and B; satisfy

(H3) By € €°(R; RP*™) and By € 6°(R; R(""P)*") are constant outside a compact
set of R and have full ranks

The a priori estimates are derived in the weighted space L?(R x (0,1); e~ dt dz)
where v > 1 is sufficiently large. For this reason, we also introduce the differential
operator L, = L +~I,, where v > 1. Let P7(z) = —A(t,2) 10 — vA(t,z)~*. Then
P7 is a first order partial differential operator in the variable ¢ with parameters
x € [0,1] and v > 1. From (H1) it can be shown that for all z € [0, 1], {P7(x)},>1 is
a family of pseudo-differential operators of order 1 in the variable ¢ and their symbols
are p(t,d,v;x) = —(i6 + v)A(t,z)"'. Here, & is the frequency associated with the
Fourier variable t.

Definition 4.5.1. A functional boundary symmetrizer for (A, B) is a family {R” :
v >} C €H([0,1]; L(L*(R))), where 79 > 1, such that
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1. there exists M > 0 such that

sup [|R7|l¢r(o,1:022R))) < M, (4.5.1)
Y270

2. RY(xz) is self-adjoint for all x € [0,1] and v > o,
3. R(RY(z)P7(x)) € L(L*(R)) and there exists C > 0 such
R(RY(x)PY(x)) > Cv (4.5.2)
holds for all = € [0,1] and y > 9, and
4. there exist a, 8 > 0 such that
(@) (B (@), w) o) > allulfag — Bl Boulagy  (453)
for all z = 0,1, t € R and u € L*(R), where v(0) = —1 and v(1) = 1.
The condition (4.5.3) allows us to control the trace ujgq.

Theorem 4.5.2. If (A, B) has a functional boundary symmetrizer then there exist
70 > 1 and C > 0 such that for all v > o and u € ' H'(R x (0,1)) we have

1
y / / 2yt 2)2 da di + / eI u(t) o dt (4.5.4)
RJO R

1 1
<C <// e 2| (Lu)(t, x)IdedtJr/6_2”t|BU(t)|aﬂ\2dt>~
Y Jr Jo R

Proof. Tt is enough to prove the estimate in the case where R = 0. Indeed, if (4.5.4)
holds for R = 0 then by the triangle inequality

1
7// e—htyu(t,z)ﬁdxdm/e‘”lu(t)m?dt
R JO R
1 o, 2 [1R]|7 b 2
§C<// (L)t dea+ I et 2 v
Y Jr Jo v R JO
—|—/€2fyt’Bu(t)|Cf)Q’2dt>.
R

for every v > 79 and u € e H*(R x (0,1)). The second term on the right hand side
can be absorbed by the first term on the left hand side for sufficiently large . For
if v1 = V2C||R||p>~ then for every v > max(yo,71) there exists a C' > 0 such that

(4.5.4) holds for R # 0.
By a standard density argument, it is enough to prove the estimate (4.5.4) for all
u € Z(R x [0,1]). Since R”(z) is self-adjoint

di/Rﬂ/( Yu(t, x) - u(t,z)dt

:/(?(x)u(t,x)-u(t,x) dt+2/%R7(x)GIU(t,m)-U(t,ib) dt
r dx
:/ P yut.x) -utt. dt+2/mm )P ()t @) - u(t, ) dt

+ 23?/ RY(x)A(t,z) ' Lyu(t, ) - u(t, ) dt
x) + Iz(x) + I3(). (4.5.5)
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According to (4.5.1) we have

I (2)] < M/R\u(t,x)ﬁdt, vze ] (4.5.6)
From (4.5.2), the term I can be estimated from below

Ir(x) > QCV/R lu(t,z)|*dt, YV azel0,1] (4.5.7)
By Young’s inequality and (4.5.1) we obtain

Ls(x)] < Cy (iy/R|L7u(t,:c)]2dt+eq//R]u(t,x)\th>, Vre01]. (458)

for some C7 > 0 independent of z and u and € > 0.
Therefore from (4.5.5)—(4.5.8)
d

i ) R (z)u(t,x) - u

(t,z)dt
2 Gy 2
> ((QC—Cle)v—M)/R]u(t,xﬂ dt—w/R|L7u(t,x)| dt

Chossing € = C'/C1, integrating over [0, 1] and rearranging the terms
1
(Cv — M)/ / lu(t, z)|? da dt — / RY(1)u(t,1) - u(t,1)dt
R Jo R

2 1
+/R7(0)u(t,0)-u(t,0) dt < Cl// |Lyu(t, )| de dt.
R Cvy Jr Jo

Using (4.5.3) and choosing v > max (7o, 2M/C') we can see that

1
C”y// |u(t,x)|2d$dt—|—a/ ’U(t)\ag|2dt
2 R JO R
C? 1
< 1// ‘Lvu(t,x”?dxdt—i—/@’/ ’Bu(t)\ag|2dt. (4‘5.9)
Cv JrJo R

Replacing u by e~ 7"u, which is also an element of 2(R x [0, 1]) provided that u is,
and using L (e "u) = e~ Lu, the a priori estimate (4.5.4) follows from (4.5.9). O

4.5.2 Kreiss Symmetrizers

For boundary value problems with Friedrichs symmetrizer and dissipative bound-
ary conditions, there is a natural functional boundary symmetrizer induced by the
Friedrichs symmetrizer. However, there are boundary value problems that do not
have dissipative boundary conditions but still admit a functional boundary sym-
metrizer, for example the system that we are considering here.

In 1970, Kreiss [45] introduced a class of symmetrizers for which energy estimates
can be also obtained. The author considered the case of constant coefficients and
proposed that it also can be done for the variable coefficient case. Later on, it has
been verified that this holds [9, 15, 55]. In this section, we define the global and
local Kreiss symmetrizers and see how global Kreiss symmetrizers induce a functional
boundary symmetrizer. Our approach follows from Benzoni-Gavage and Serre [9].

Define Ct = {2 € C: Rz > 0}, Cf = CT\ {0}, X = R x [0,1] x C} and
Xo =R x {0,1} x C}. For X = (t,z,7) € X we let A(X) = —TA(t,z)"L.
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LINEAR SYSTEMS WITH VARIABLE COEFFICIENTS

Definition 4.5.3. A matrix-valued map R : € (X;C"*") is called a global Kreiss
symmetrizer for (A, B) if R(X) is Hermitian for all X € X, ¢t — R(¢,z, ) is constant
outside a compact subset of R, (t,d) +— R(t,z,v + i) € S°(R; x Ry), there exist
constants «, 5,C > 0 such that

R(R(X)AX)) > (CRT),, VX =(t,z,7)eX, (4.5.10)
and
—v(2)R(X) + BB, (t) ' B,(t) > ol,,, VX =(t,z,7) e Xp. (4.5.11)

Theorem 4.5.4. If (A, B) has a global Kreiss symmetrizer then it has a functional
boundary symmetrizer.

Proof. For the sake of completeness, we include a proof of this theorem which ba-
sically follows from the one given in [9]. By assumption R(z) := R(-,z,y +i-) €
SO(R; x Ry) for v > 1. Therefore {Op”(R(z))}4>1 is a family of pseudo-differential
operators of order 0.

There is no reason for Op”(R(x)) to be symmetric. For this reason we symmetrize
it. We claim that

s R(z) = ROpY(R(z)) = %(opV(R(x)) + Op"(R(2))") (4.5.12)

defines a functional boundary symmetrizer. The operator R”(z) is clearly symmetric
for every = € [0,1] and v > 1. According to [2, Exercise 5.3], there exists C' > 0
independent of x and  such that

10D” (R(@))ll 2y < C Y 0R ()] oo mxr) (4.5.13)
1,5€{0,1}

Therefore, there exists a constant M; > 0 such that || Op”(R())||z(z2(r)) < M for
every z € [0,1] and v > 1. In particular, ||RY(z)||z(z2r)) < M1 from (4.5.12).

It can be seen from the dominated convergence theorem that % Op"(R(z)) =
Op” (%R(m)) and as in (4.5.13) there exists My > 0 such that

d
= Jov (@me)
L(L2(R)) dz

for every x € [0,1] and v > 1. Thus R? € ¢1([0,1]; L(L%(R))) satisfies (4.5.1) with
v =1 and M = max(M;, My).

It remains to verify (4.5.2) and (4.5.3), which is possible if we take 7y large enough.
From Theorem C.2.1 and the fact that R(z) is Hermitian, there exists a family
{q(z)}y>1 of order —1 symbols such that

< M, (4.5.14)

d
— Op”(R(x))
H dz L(L2(R))

Op”(¢(z)) = Op”(R(z)) — Op”(R(z))" = —2(R"(x) — Op"(R(x)))-

Hence RY(z) = Op”(R(z) — 1q(x)).
Because B is independent of the frequency 0 it follows

—v(z)R(x) — V(Qx) Op”(q(z)) + BB B, = Op” (—v(z)R(x) + 8B, B.)
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for z € {0,1}. Applying (4.5.11) and Garding’s inequality Theorem C.2.2 yield
R (—v@R (@) + BB B — Y oprglanun) > Ll (@45.15)

for all u € L*(R). Since {g(z)},>1 is a family of order —1, (C.2.1) implies that

C
(0P (¢(2))u, w) L2y | < 1| OPY (q(2))ull L2y ull L2y < ;HUH%%R) (4.5.16)

for some C' > 0 independent of 4. Therefore choosing 7 large enough so that
T % > ¥, we have from (4.5.15) and (4.5.16) that
o
_I/(IL')(R’Y([L')U,U)LQ(R) + ﬁHBa?uH%Q(R) > gHUH%Q(R)

for all z € {0,1}, v > 40 and u € L?*(R), which verifies (4.5.3) in Definition 4.5.1.
It remains to verify that (4.5.2) is satisfied. From Theorem C.2.1 there exists a
family {s(z)},>1 of order 0 such that

RY(z)P7(x) = Op”(R(x)A(z) + s(z)) (4.5.17)

Using (4.5.10), (4.5.17) and sharp Garding’s inequality Theorem C.2.3, it holds that

R(AR (2) P () = Cyln = Op” (s(z))]u, w) 1

Hy, 2(R) xHé (R)

> = Cilull7z@) (4.5.18)

for some C7 > 0 and for all u € H%(R) Because s(x) is of order 0 it holds that

(Op”(s(x))u, u) = (Op™(s(2))u, u) 2y < Cllulfaw) — (4.5.19)

Hy ®)<HE (R)

for all u € H %(]R) for some constant C' > 0 independent of x, v and w. Similarly,
since RR"(x)P7Y(x) is of order 0, for 7 sufficiently large we have from (4.5.18) and
(4.5.19) that

(RE (@) P (&), )2y > Ol ey (45.20)

for all u € H %(R) and for some C' > 0 independent of u. Since H %(R) is densely
embedded in L?(R) and the operator RR?(z)P?(z) is bounded in L?(R) it follows
that (4.5.20) also holds for all u € L*(R). O

The symmetrizers in Definition 4.5.3 are defined on the whole time-space-frequency
set X. In the following we introduce a local version of this symmetrizer. These local
symmetrizers can be used as building blocks in obtaining global symmmetrizers, cf.
Lemma 4.5.6 below.

Definition 4.5.5. A [ocal Kreiss symmiterizer for (A, B) at X € X is a Hermitian
matrix-valued map r € €°°(¥(X); C"*"), where ¥ (X) is some neighborhood of X
in X, such that there exists a map 7" € €°°(7#(X),C"*") satisfying the following
conditions

1. T(Y) € GL,(C) for all Y € 7 (X)
2. there exists C' > 0 such that for all Y = (¢t,z,7) € ¥(X)

R(r(Y)T(Y) TAY)T(Y)) > C(RT) 1, (4.5.21)
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3. if in addition, Y € #(X)NXy, there exist a,, 8 > 0 independent of Y such that
—v(x)r(Y)+ B(B:(t)T(Y))"B(t)T(Y) > alp. (4.5.22)

The inequalities (4.5.21) and (4.5.22) can be viewed as local versions of (4.5.10)
and (4.5.11), respectively.

Lemma 4.5.6. Suppose that A and B satisfy (H1) and (H3), respectively. If (A, B)
has a local Kreiss symmetrizer at every point in X1 :={X = (t,z,7) € X: |7| =1}
then (A, B) has a global Kreiss symmetrizer.

Proof. Suppose that A is constant in By := {(t,2) € R x [0,1] : |[¢| > M} and B is
constant in {¢t € R : || > M}. By homogeneity it is enough to construct the global
symmetrizer R on the compact set K := {(¢t,z,7) € X : [t| < M,|7| = 1} C X|.
Indeed, we can define

R(=M,x,7/|7]), ift<-—M,
R(t,z,7) = { R(t,x,7/|T]), if [t] < M,
R(M,z,7/|T]), ift>M,

for z € [0,1] and 7 € C}.

By assumption, for each X € K there exists a pair (rx, ? (X)) such that ¥ (X) is
a neighborhood of X in X and rx € €°°(7(X); C"*") is a local Kreiss symmetrizer
for (A,B) at X. The collection {#(X) € K : X € K} forms a covering of K
consisting of open sets in X. By compactness of K, there exists a finite sequence
Xi,...,.Xre{XeK:ze(0,1)} and X741,..., X545 € {X € K: 2z =0,1} such
that {#(X;) : 1 < i < I+ J} still covers K. Let {p; : 1 <1i < I+ J} denote a
partition of unity subordinate to this subcover, i.e., ¢; € 2(¥(X;)), 0 < ¢; <1 and
Zfil‘] w; =1 on K.

Let Tx, be the invertible matrix-valued map associated with rx,. Then the map

I+J
R(X) =" i X)(Tx, (X)) 'rx, (X)Tx,(X)7!, X €K, (4.5.23)
=1

after extending it to the whole of X by homogeneity, is the required global Kreiss
symmetrizer for (A, B). See [9, pp. 231-232] for details. O

The remaining task is to derive a local Kreiss symmetrizer at every point in X;.
For this, we need the following additional hypothesis on the coefficient matrix A.

(H4) A is smoothly diagonalizable with p positive eigenvalues and n — p negative
eigenvalues.

For each X € X such that ®7 > 0 the matrix-valued map A(X) = —7A(t,z) "}
is hyperbolic, i.e., its eigenvalues have nonzero real parts. This follows immediately
from (H4) and o(A(X)) = {-7A"t: X\ € 0(A(t,7))}. Given X = (¢,7,7) € X such
that R > 0, consider the Dunford-Taylor integral

1

P_(X) = 5 C(zIn —A(X))tdz
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where C is a positively oriented Jordan curve in the left-half of the complex plane
enclosing all the eigenvalues of A(X) with negative real parts. Then F_(X) :=
E*(A(X)) =ran P_(X) and

Ei(X):=E"(A(X)) =ker P_(X) =ran Py(X)

where Py = I, — P_. The spectral projectors Py are € in (t,x) and analytic in 7.
Now, we extend F_ and E; up to points in X where R7 = 0. For each X =
(t,z,i9) € X we define
Py(t,x,i0) = Py(t,x,1 +1i0)

By definition, we have the following continuity of P+ up to the boundary of X

Py(X)= lim Py(Y), VXeX (4.5.24)

Define Ey (t,x,id) = ran Py(t,x,id). Thus Ey(t,z,i0) = Ey(t,z,0+10) for every
o >0and (t,z,0) € R x[0,1] x (R\ {0}).

4.5.3 UKL and Local Kreiss Symmetrizers

In order to derive local Kreiss Symmetrizers we need an additional assumption on the
boundary matrices. The following condition is called the Uniform Kreiss-Lopatinskii
condition, abbreviated as UKL.

(H5) There exists C' > 0 such that for all ¢ € R we have
V| < C|Bo(t)V], vV V e E*(A(t,0)), (4.5.25)

and
V| < C|Bi(t)V], V'V e E(A(t,1)). (4.5.26)

Let X € X; with 7 > 0 and #(X) be a neighborhood of X in X such that the
spectral projections P_(X) and P, (X) of C" onto E_(X) and F,(X), respectively,
are well defined. Denote by A\i (¢, ), ..., \,(t, ) the positive eigenvalues of A(t, z)™!
and by Ap+1(t,2), ..., Ay(t, z) the negative eigenvalues. Let z;(t, z) be an eigenvector
of A(t,z)~"! associated with the eigenvalue \;(t, ).

Writing each z; as column vectors we denote the change of basis matrix by

TO = (Zl Zn).

Define T': 7(X) — C*" by T(Y) = To(t,z) for all Y = (¢t,z,7) € #(X). Then
T € € (¥ (X);C"™") and we have

1) awyre) = (gE T Onen ) s

where X1 = diag(\1,...,\p) and ¥7 = diag(M\pt1, ..., Ap).
Consider the Hermitian matrix-vaued map r € €°° (¥ (X); C"*™) defined by

-1 O
Y) = P px(n—p) ) , Y € ¥(X), 4.5.28
R P CONNNCERS
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where > 1. From (4.5.27) and (4.5.28)

>t (t,z) O

) AT = (5

pX(n—p)
n—p)Xp _MTZ_(ta:L‘) ) ’ (4529)

for every Y € #(X). Therefore, there exists C' = C(u) > 0 such that
R(r(Y)T(Y)TAY)T(Y) = C(RT) 1,

forall Y = (t,z,7) € ¥(X).

Now consider the case where x = 0 and 7 > 0. Each vector v € C" is decomposed
intov = (Z; ) where v~ € CP consists of the first p entries of v and v € C*P consists
of the rest. Since E_(Y) = span{z;(t,z) : 1 < j < p} we have

P_(Y)T(Y)v =) P-(Y)vjz(t,z) = Y vjz(t,x) = T(Y) <v0>'
j=1 =1

Therefore
TP (VT )] < o] < [T() Y|P (V)T (Yol (45.30)
Similarly, using the fact that E(Y) = span{z;(t,z) : p+ 1 < j < n} we have
TP (VT )] < o] < [T [Py (V)T (Yol (45.31)
By the UKL condition (H5) we have for each v € C" and Y € 7' (X)

PL(Y)T(Y)| < CIBy()P-(Y)T(Y)o

C|Bo(t)(In — P (Y))T(Y)v|
C(IBo(t)T(Y)v| + [Bo(t)||[ P+ (V)T (Y)v]).  (4.5.32)

~— —

ININ TN

Using (4.5.30)—(4.5.32) we obtain

r(Yo-v = =2 P4+ plt 2+ v
= 2(T(Y) PIP-(V)T(Y)o? + p|T(YV)|7*| P (Y)T(Y )o]?
+[TY) " PIP-(Y)T(Y)o]?
— ACIT(Y) (I Bo()T(Y)v[* + |Bo(8) *| Py (Y)T (Y )v[?)
+ uTYV) [P (V)T (Y o + |T(Y) P IP-(Y)T (Y )
> — Ci[Bo()T (Y )ol* + Co| P-(Y)T (Y )v|?

+ (G = Co) [P (V)T (Y v,

Vv

v

Choosing p > 1 large enough, applying the Pythagorean identity and the fact that
T is invertible yield

r(Y)v - v+ B|Bo(t)T(Y)v|* > alv|?, YoeC" Y e ¥(X)

for some «, 8 > 0 independent of v and Y.
In the case where x = 1, then the local Kreiss symmetrizer can be chosen to be

r(Y) = “Hp Opxnp) )| Y € ¥(X). (4.5.33)
Om—rpyxp  In—p
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The details are the same as in the case where x = 0 and therefore we omit them
here. Thus, (4.5.22) holds.

Suppose that X € X; and 7 = 0. If 0 < & < 1 then r can be taken to be the
local Kreiss symmetrizer at X. If z = 0 then passing to the limit of the projections,
see (4.5.24), we still have

[P-(Y)T(Y)o| < C(|Bo(t)T(Y)v| + [Bo(8)[| P4 (Y)T (Y)])

for all Y € ¥ (X). The procedure of constructing local symmetrizers are now the
same with the help of the latter inequality. Therefore we have shown the following
theorem.

Theorem 4.5.7. If (H1), (H2), (H4) and (H5) hold, then (A, B) has a local Kreiss
symmetrizer at every point in X.

Combining Theorem 4.5.2, Theorem 4.5.4, Lemma 4.5.6 and Theorem 4.5.7 we
have the following theorem.

Theorem 4.5.8. Assume that (H1)—(H5) hold. Then the a priori estimate (4.5.4)
holds for all u € *HY(R x (0,1)) and all v > ~o for some vo > 1.

4.6 A PRIORI ESTIMATES IN €2 WITH LIPSCHITZ COEFFICIENTS

The a priori estimate (4.5.4) applies to problems with smooth coefficients. In this
section, we would like to prove this a priori estimate in the case where A and B are
only Lipschitz. More precisely, we suppose that the coefficients are compositions of
¢*°-matrix fields and a function in W%, All throughout this section, we assume
the following hypotheses.

(FS) Friedrichs Symmetrizability. Let U C R™ open and convex. The differential
operator
Lw = Gt + A(w)@m

is Friedrichs symmetrizable for all w € U, i.e., there exists a symmetric positive-
definite matrix-valued function S € €°°(U; R™*™), called the Friedrichs sym-
metrizer, that is bounded as well as its derivatives, S(w)A(w) is symmetric for
all w € U, and there exists a > 0 such that S(w) > I, for all w € U.

(D) Diagonalizability. It holds that A € €°(U;R"*"™) and for each w € U, A(w)
is diagonalizable with p positive eigenvalues and n — p negative eigenvalues. In
particular, A(w) is invertible and has n independent eigenvectors.

(UKL) Uniform Kreiss-Lopatinskii Condition. The boundary matrices satisfy By €
E°(U;RP*™), By € €°(U; RMP)X") are of full rank and there exists C' > 0
such that for all w e U

V| < C|Bo(w)V],  forall V € E%(A(w))

and
V| < C|Bi(w)V], for all V e E*(A(w))

where E%(A) and E*(A) denote the unstable and stable subspaces of a matrix
A, respectively.
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Friedrichs symmetrizability is used in deriving pointwise in time estimates. The
diagonalizability assumption implies that we are in the non-characteristic case. Fi-
nally, the Uniform Kreiss-Lopatinskii Condition tells us what forms of the boundary
conditions are appropriate.

Let X =U x C} and X3 = {(w,7) € X : |7| = 1}. In nonlinear analysis we also
need to consider the range of the frozen coefficient and how it is involved in the a
priori estimate. For this reason we introduce the following set. For each compact
subset K of U and for each K > 0 let

W(K,K) :={ve WH®(R x (0,1)) : tan v C K, [|v][ypree < K}.

By replacing the (pseudo)-differential operator P?(z) = Op”(A(X)) in Definition
4.5.1 by its paradifferential version, we can similarly define a functional boundary
symmetrizer for coefficients with limited regularity. Let A, = A(v) and B, = B(v).

Definition 4.6.1. Let v € W(K,K). A functional boundary symmetrizer for (A,, By)
is a two-parameter family of self-adjoint operators { R} (z) : v > 7o, = € [0,1]}, where
Yo > 1, such that

1. R} € Wh>([0,1]; L(L*(R))) is uniformly bounded in v > ~o,
2. there exists C' > 0 such that for all € [0,1] and v > ~,

R(R)(z)Ty 7@)) > Cy (4.6.1)

where A, (z) = —(y+1i0)A(v(-, )7L, 6 € R, and TX:Y(I) is the paradifferential
operator with parameters = € [0, 1] and v associated to the symbol A,(z) € I'}
and an admissible frequency cut-off function y;,

3. and there exist «, 8 > 0 such that
(@) (RY (&), u) agmy + BIT oy ull ey > allulage, (46.2)
for x € {0,1} and u € L*(R)", where v(0) = —1 and v(1) = 1.

We note that the constants «, 8 and C' appearing in Definition 4.6.1 may depend
only on K and K but are independent of v € W(K,K). As in the smooth case, a
functional boundary symmetrizer induces an a priori estimate in a weighted Lebesgue
space.

Theorem 4.6.2. Suppose that (Ay, By) has a functional boundary symmetrizer. Let
v e W(K,K). There exist C = C(K,K) > 0 and vo = v (K,K) > 1 such that for
every u € Z(R x [0,1]) and v > 9 we have

Ml 2 0,1y + ol Fary

1
< (000 = Ty ulmony + TR ol ) - (463)

Proof. With the aid of the equality

/R’y u(w) dz

dxm( 2)u(z) - u(z dx+2/%m )Ty u(e) - ulx) d

42 /R RE)(2)(Opu(e) — T, u(@)) - u(w) da
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the proof uses the same method as in Theorem 4.5.2 but using Definition 4.6.1 instead
of Definition 4.5.1. O

The following tells us that in order to prove (4.6.4), it is enough to replace P) =
—A(v)Y(yI, + ;) and B, by their paradifferential version.

Corollary 4.6.3. In the situation of Theorem 4.6.2, suppose in addition that R €
L>®(Rx(0,1); R™*™) satisfies |R|| L~ < 0. Then there are constants C = C(o, K,K) >
0 and vo = v0(0, K,K) > 1 such that the a priori estimate

’YHG_WUH%Q(RX(O,I)) + ||e_’YtU‘[«)QH%2(R)
1 - —
S C <’7”6 ’ytLqu%P(RX(O,l)) + H@ ’YtBUuaﬂHiz(R)> (464)

holds for every u € e*H (R x (0,1)) and v > 7.

Proof. Using a usual absorption argument, we can assume without loss of generality
that R = 0, see the proof of Theorem 4.6.2. Note that from (C.3.4) we have

XY J— XY p— XY XY
Th ) = T risyane) 1 = ~ VT4 w)-1 — Ta ()10t

Thus, for each = € (0,1) we have according to [Theorem C.20, GS]

1Py ul@) = T yu@) 2wy < Yl Au(@) () = T w(@)ll 2w
+ | Au(z) " Bpu(z) — TYT, 1 Ovu(@) | 12wy
CllAv]| Lo [u(@) | L2 (r) (4.6.5)

IN

for all u € Z(R x (0,1)). Upon squaring both sides of (4.6.5) and integrating over
x € (0,1) we see that

P u — Tﬁ?””%ﬂ(Rx(O,l)) < CHuH%Q(Rx(O,l))‘ (4.6.6)

for some C = C(K,K) > 0. Similarly, from Theorem C.3.3 there exists C =
C(K,K) > 0 with

C
| Buwjoe — T wjaal| 72wy < ;Hu\ag\\%z(m (4.6.7)
By the triangle inequality, (4.6.6) and (4.6.7) we have
1 X, |12 X, |12
;H&Eu = T3 ullz2@x 0,0y + 15, woellz2 g
1 Yo, 112 1 2
<C ;Hazu — Plullf2mx0,1)) T §HUHL2(Rx(0,1))

+ |Buupnlam + r\u|mui2(R)) (4.6.8)

1
Y
From (4.6.3), (4.6.8) and 0, — P) = A;'LJ, there exist constants vy = 70 (K, K) > 1
and C = C(K,K) > 0 such that if v > 7o then
el + lluonl3a) < € (1L} +[Bugall?
L2(Rx(0,1)) loQllLz®) = by o UIL2(Rx(0,1)) U902 (Rr)

for all u € 2(R x (0,1)). Replacing u by e and using the density of Z(R x (0, 1))
in e H(R x (0,1)) we obtain (4.6.4). O
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For the existence of functional boundary symmetrizers for (A,, B, ), sufficient con-
ditions are the smooth diagonalizability of A and the uniform Kreiss-Lopatinskii
condition. As in the case of smooth coefficients, the functional boundary symmetriz-
ers can be constructed from Kreiss symmetrizers, and these can be obtained first
locally and then globally after homogeneity and compactness arguments. As before
we introduce the following local symmetrizers.

Definition 4.6.4. Let A € € (U;R™ ™), By € €= (U; RP*™), B; € €°(U;R"—P)xn)
and v € W(K,K). A local Kreiss symmetrizer for (A,,B,) at X = (t,z,7) €

R x [0,1] x C is a Hermitian matrix-valued function r € €U x O; C**"), where

U x O is open in U x C} and v(V(t,z)) C U for some neighbourhood V(t,z)

of (t,z) in R x [0,1], such that there exists an invertible matrix-valued function

T € €°(U x O; GL(n,C)) with the following properties

(a) there exists C' > 0 such that
R(r(X)T(X)LAX)T(X)) > (CRT)I,, (4.6.9)

where A(X) = —7A(v(t,2))~ !, for all X = (v(t,z),7) with (t,z,7) € V(t,z) x
(@)

(b) and if in addition, X € R x {0,1} x C, then there exist a, 3 > 0 such that
for all (¢,z,7) € V(t,z) x O we have

—v(z)r(X) + BT(X)*By(z) " By(2)T(X) > o, (4.6.10)
where X = (v(t,z), 7).

Theorem 4.6.5. Suppose that (D) and (UKL) hold and let v € W(K,K). Then
(Ay, By) has a local Kreiss symmetrizer at every point in Xy := [—M, M| x [0,1] x
{reCt:|r| =1} for every M > 0.

Proof. The construction is the same as in Subsections 4.5.2 and 4.5.3. For the sake
of completeness we provide the main ideas. We start with the case where o7 > 0.
The matrix A(w,7) = —7A(w)~! is hyperbolic for all w € . Indeed, we have

E_(w,7) = E*(A(w, 7)) = B(A(w)), E4(w,7) = E"(Aw, 7)) = E*(A(w)).

These show that F_(w,7) and E(w,7) are independent of 7 as long as &7 > 0.

Let X = (t,z,7) € Xj; be such that Rz > 0 and U x O be an open set in
U x C} containing (v(t, z), 1), where U and O are open sets in I and C N {Rr > 0},
respectively. By continuity of v, there exists an open set V(¢,z) in R x [0, 1] such
that v(V(t,z)) C U. For each w € U we let Ty(w) € €°(U; GL(n,C)) be the matrix
consisting of the eigenvectors of A(t,z)~!, arranged in such a way that the first p
columns correspond to the p positive eigenvalues and the rest correspond to the n—p
negative eigenvalues. Then A(w)~! can be diagonalized as

o) Ay ) = (o @ o) e

where X7 (w) = diag(A1(w), ..., \p(w)) and I (w) = diag(Ap+1(w), ..., Ay (w)) are
the diagonal matrices with the positive eigenvalues and negative eigenvalues of
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A(w)~! as entries, respectively. Define T(w,7) = To(w) for all (w,7) € U x O.
Then we have

(7)Ao )T () = (1) Ot ) (1.6.12)

Suppose 0 < z < 1. Then the Hermitian matrix

r(w,T) = < o O > (4.6.13)
Otm—pyxp  Hln—p

can be chosen to be a local Kreiss symmetrizer at X for any p > 1 and 7' defined

above is the associated invertible-matrix valued function.

If £ = 0 the same form of r(w, 7) given by (4.6.13) is possible for sufficiently large
. This is the place where one requires the Kreiss-Lopantiskii condition. Reducing
U if necessary, we can assume without loss of generality that the spectral projections
P_(w,7) and Py(w,7) onto E_(w,7) and E,(7,w), respectively, are well-defined.
These projections can be written as Dunford-Taylor integrals and by a classical
argument in Kato they can be chosen so that they are €°° in w and analytic in 7.
Since E_(w,T) and Ey(w, ) are independent of 7 then P_(w,7) and Py (w, ) are
also independent of 7. By (UKL), for all V € C" and (w,7) € U x O we have

|P_(w,T)V]| < ClBoP-(w,7)V]| = C|[Bo(V = Py(w,r)V)]
< CUlBoVI| + |Ps(w, 7)V])- (4.6.14)

With this estimate it can be shown, as in Subection 4.5.3, that for sufficiently large
i,  given by (4.6.13) is a local Kreiss symmetrizer at X. If z = 1 then analogously,
one can choose
r(w,7) = < o o Orxio > (4.6.15)
(n—p)xp n—p
where p is again sufficiently large.

The next step is to construct symmetrizers at points with ®7 = 0 of the frequency
set Cf N{|r| = 1} = {+i}. However, for nonzero real number §, F_(w,id) is not
the stable subspace of A(w,i0) anymore. Note that E_(w,id) is the zero subspace.
Instead, we extend the definition of E_(w,7) by continuity, or equivalently, the
definition of the spectral projections P_(w, 7). For each (w,d) € U x (R\ {0}) we
define

Py (w,id) = Py(w, o + id)
where ¢ > 0. This definition of Py is independent on ¢ as long as it is a positive
real number. Moreover, one immediately have the continuity of the projections up
to the boundary of the frequency set
lim Py(z,7) = Py(w,id).
X3 (z,7)—=(w,id)
We define Fy(w, ) :=ran Py(w,7), for RT = 0.

Suppose that X = (t,z,7) € Xpy where Rz = 0. The neighborhoods U,0, and V

along with matrices r and 7" are the same as in the construction above. If 0 < z < 1

then we choose r as in (4.6.13). If x = 0, by passing to the limit of projections in
(4.6.13) we still have the estimate

1P (w, ")V < C|[BoV|| + [| Py (w, ) V]|

for all V € C" and (w,7) € U x O. Once we have this estimate we can proceed in
exactly the same manner as before. The case x = 1 is analogous. O
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We are now in position to state and prove the main theorem of this section.

Theorem 4.6.6. Assume that (D) and (UKL) hold. Let v € W(K,K) and R €
L>*(R x (0,1);R™™) be such that ||R| L~ < o. Then (Ay, By) has a functional
boundary symmetrizer and hence the a priori estimate (4.6.4) holds for every u €
e HY (R x (0,1)).

Proof. Fix M > 0 sufficiently large. Given (¢,z,7) € Xy let r, be the local Kreiss
symmetrizer at (f,x,7) and as in Lemma 4.5.6 we construct a global symmetrizer
R, which is homogeneous degree 0 in 7. With the construction provided by the
partition of unity, see (4.5.23), we have

o(t, @, 7) ZP P;(X) (4.6.16)

with X = (v(t,z),7) and Pj(X) = ¢;(X)>2 1Tj(X)*l. From the construction this sum
is finite. It can be shown that S= P] ’ is uniformly bounded from below.
The matrix-valued function

Ry(x) : (t,7) = (t,y + 1) — Ry(t, z,v + id)

for all z € (0,1) satisfies Ry(x) € T9(R; x Rs) with parameter v > 1 since v €
Wh*(R x Q) and R, is homogeneous degree 0 in 7. As in [9, pp. 231-232], the
local estimates (4.5.21) and (4.5.22) can be extended to a global estimate in the sense
that there are some constants «, 3, C > 0 depending only on (g, K, K) such that

—v(2)Ry(t,z,7) + BB (v(t, ) By (v(t,z)) > al,, (4.6.17)
for every (t,x) =R x {0,1} and
R(Ry(t,x,7)Ay(t, 2, 7)) > (CRT) 1, (4.6.18)

for every for (,x) =R x (0,1). It follows that for each z € (0,1), {Tx’ (w }721 is a

family of paradifferential operators of order 0, and their operator norm in £(L?(R))
is uniform in v > = and as well in « € [0, 1] since their symbols are Lipschitz in the
parameter z, see [17, Theorem 4.4] and [54, Chapter 5].

Let us construct the functional boundary symmetrizer. The symmetrizer is the
paradifferential version of the one constructed in Theorem 4.5.4, cf. (4.5.12). Con-
sider the operator

1 *
(@) = 5Ty + (TR,

It follows that R7(x) is a self-adjoint bounded operator in £(L?(R)). As in the proof
of Theorem 4.5.4, there exists My = M;(K,K) > 0 such that

Slilf TR oo o,1)cz2 @) < M, (4.6.19)
vz

see [17, Theorem 4.4] and [54, Chapter 5|.
From Theorem C.3.4, {R}(z)—T %’:@)}721 is a family of paradifferential operators

of order —1. According to (C.2.1), for every u € L?(R) we have

Q

| Ry (z)u — T%?@)“HLQ( ;HUHB(R) (4.6.20)
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for some C' > 0 independent of u, z and . If
Q(z) = —v(@)Ry(t,2,7) + BB (v(t, x)) " By (v(t, 7))

then from (4.6.17) we have Q(x) + Q(x)* > 2al, for = € {0,1}, where we used the
fact that R) = R,. Also, we have

Q) b)) Tp (T < (), =€{0,1}, (4.6.21)

where {Q7(z)}y>1 is a family of operators of order —1. By Garding’s inequality
Theorem C.3.5 and a standard absorption argument

(6%
R(—v ()T us ) 2 () + BITE yullFomy = ZHUH%z(R) (4.6.22)

for v large enough. Using (4.6.20), (4.6.22) and the fact that R (z) is self-adjoint
we obtain

(_V(IE)RZ(:L')Q% U)LQ(R) + B”Tgﬁx)uH%z(R)
= —v(@){R((RY () — TR 1) w) 2y + RTY pyus ) 2@y} + BITE Lyl Fowy

a C «
> (§- ) ey 2 §hulie

for z € {0,1} and ~y large enough. Therefore for x € {0,1} and v > vy, where 7 is
large enough

(6%
(—v(@) Ry (x)u,u) g2y + BITY Ly ullf2) 2 §HU||%2(R)

This proves (4.6.2) after renaming the constant «.

It remains to prove (4.6.1). From (4.6.16) and the form of the local symmetrizers
(4.6.13) and (4.6.15) we have

Ro(z,t,v)Ay(t, z,7)
=D @i (OO0 ™5 (X ()2 T;(X) T ACO T (X)T(X)

= ZPj(X)*(Tj(X)Tj(X)_IA(X)TJ(X))PJ'(X)

_ZP )*(720;( X)) Pj(X) (4.6.23)

where Ag; are diagonal matrices independent of 7 and RAg;(X) > C;I,, for each j.
Hence Agj; is homogeneous degree 0 in 7 = y+id, and we have Ag;(X) = Agj(w, T) €
IY(R; x Rs). From Ag;(X) 4+ Agj(X)* > 2C;1,, and Garding’s inequality Theorem
C.3.5 we have

C.
%(ngua u) 2Ry > 7jHu”%2(R) (4.6.24)
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for every u € L?(R). Now the symbol of RyTY" differs from the symbol R, A, by
a symbol of order 0 as in (4.5.17), so by (4.6. 23) (4.6.24), Theorem C.3.4 and a
standard error estimate

?R(RZ(w)Tj{;”u, u) 2 (R)

v

Z% (TR, s w) 2m) — CllulZ2gg

v

bl 9 9 2
278‘% TI’J‘J_“’) TXOZTEVU,U)LQ(R) = Cllullzz g
J
> Y RIAT TR u, TR ) gy — Cllulla g,
;

Cy
> S I ullfam — Cllullia. (4.6.25)
J

However we have, since Zj PrP; > oln for some o > 0, by Garding’s inequality
C.3.5

o
Z%(nggpﬂ,u)m(m) =T pep s w)12(r) 2 5”“”%2(11@)- (4.6.26)
J
Because the symbol of (Tﬁj’w)*T I>§j’7 differs from the symbol of ngﬁpj by a symbol of
order —1 we have
% C
HT;D(;WUH%,%R) = ((ngﬂ) Tgvuau)LQ(R) > %(Téﬁju, U)L?(R) - ;HUH%?(R)- (4-6'27)

Choosing 7y sufficiently large, we obtain from (4.6.25)—(4.6.27) that
R ()T 0,0 2y > Clulgey

for all v > ~. Thus (4.6.1) is satisfied. This completes the proof that R} is a
functional boundary symmetrizer for (A,, B,). Consequently, the a priori estimate
(4.6.4) follows from Corollary 4.6.3. O

4.7 A PRIORI ESTIMATES IN e "L? FOR THE ADJOINT OPERATOR

The weak solutions of the partial differential equations we consider satisfy a vari-
ational equality where the test functions lie in a space associated with the dual
problem. For this, we need to prove the a priori estimates on a subspace of the dual
of the solution space. The goal of this section is to derive such a priori estimates
using the same assumptions in the previous sections.

We begin with the case where the coefficients are smooth.

Lemma 4.7.1. Let (H1) and (H3) be satisfied. Then there exist matriz-valued maps
Ny, Co, My € ‘K”(R;R(”*p)xn) and Ny,Cy, My € €°(R; RP*™), which are constant
outside a compact subset of R, such that

At,z) = My(t)" Bo(t) + Co(t) "NL(t), V¥ (t,z) e R x {0,1}. (4.7.1)

Proof. We only prove the case where z = 0. Since By is of full rank, there exists
another full rank matrix Ny € €°°(R; R(»~P)*") such that

(ﬁg) € €(R; R™") (4.7.2)
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is invertible. Let us decompose its inverse into two blocks (Yy D) where Yy €
€>°(R; R™P) and Dy € € (R; R™("~P)). Thus

B
YoBo + DoNo = (Yo D0)< °> =1I,. (4.7.3)

Multiplying both sides by A(t,0), it can be seen that (4.7.1) with 2 = 0 holds where
Mo(t) = (A(t,0)Yo(t))" and Co(t) = (A(t,0)Do(t))". Because the matrices By and
A(-,0) are constant outside a compact subset of R, the matrices Ny, Yy, Do, My and
Cy can also be chosen to be constant outside a compact subset of R. O

In the following discussions, we will show that if (A, B) satisfies the UKL condition
(H5) then (—AT,C) also satisfies the UKL condition, i.e., there exists C' > 0 such
that for all ¢ € R we have

Ul < C|Co(t)U|, VY UeE“(—A(0)7"), (4.7.4)
and
Ul <ClCi(t)U|, Y UeE(-A@t,1)"). (4.7.5)
Suppose that ¢ € R. By (H5) there exists a constant C' > 0 such that
V| < C|By(t)V|, VV eE“A(t0))=FE“A(t0)1). (4.7.6)

Let U € E%(—A(t,0)7) = E*(A(t,0)"7) and V € E“(A(t,0)71). Define v(s) =
esAETY and u(s) = e*AG0) 7 U, By assumption, we have v(s) — 0 and u(s) — 0
as s — 0o. Note that

d—i(u(s) CA(t,0)v(s)) = a(s) - A(t,0)v(s)) + A(t,0) Tu(s) - 9(s)

= A(t,0)" Tu(s) - A(t,0)v(s) — A(t,0) Tu(s) - A(t,0) " v(s)
0.
Thus u(s)-A(t,0)v(s) = u(0)- A(t,0)v(0) = U-A(t,0)V for all s > 0. Letting s — oo
it follows that U - A(t,0)V = 0 whenever U € E%(—A(t,0)") and V € E“(A(t,0)).
From Lemma 4.7.1 there exists C' > 0 independent of U and ¢ such that
|U| < C(|Mo(t)U| + |Co(t)U]). (4.7.7)

Since By(t) : E*(A(t,0)) — CP is an isomorphism we have

|Mo(t)U - W| |Mo(t)U - Bo(t)V|
My()U| = sup ——F—— = sup
ML = s = ver(heo)  Bo@V)
M, - B
< C sup | O(t)U 0(t)V| (478)
VERU(A(L0)) 14

according to (4.7.6). However, if V € E%(A(t,0)) and U € E*(A(t,0)") then by
(4.7.1)

Moy(t)U - Bo(t)V = (A(t,0)TU — No(t) " Co(t)U) - V
= —Co(t)U - No(t)V.
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Thus by the Cauchy-Schwarz inequality

[Mo(t)U - Bo(t)V| _ [Co(t)U - No()V'|
V| V]

< [Co@)U[[No(t)]]- (4.7.9)

Now, (4.7.4) follows from (4.7.7)—(4.7.9). The proof of (4.7.5) is analogous.

Using Theorem 4.5.8 and changing the time variable ¢ by —t one obtains the
following a priori estimate in terms of the formal adjoint L* of L given by (4.4.1)
and a boundary matrix C' in Lemma 4.7.1. Recall that

C = < CO O(Tl—p)Xn ) .

pXn CYl

Theorem 4.7.2. Assume that (H1)—(H5) hold. Then there exist C* > 0 and 5 > 1
such that the a priori estimate

e ol a@mx 0.1y + 1700172 )

* 1 *
<C (7”6th ellT2@x(o,1) + |V€7t080|89||%2(m)) (4.7.10)

holds for all p € e ""HL(R x (0,1)) and v > .

The previous theorem gives us an a priori estimate of the adjoint operator L* in
the case where the coefficients are smooth. In the case where the coefficients have
limited regularity we have the following analogous results.

Lemma 4.7.3. Assume that (D) holds and suppose that the boundary matrices By €
E°(U;RP*™) and By € €°U; R™P*") have full ranks at each point of U. Then
there exist matriz-valued maps Ng,Cy, M1 € ‘KOO(Z/{;R("*”)X”) and N1,Cq, My €
> (U; RP*™) such that

A(w) = My(w) " By(w) 4+ Cop(w) " Ny (w), V (w,z) el x {0,1}. (4.7.11)
Theorem 4.7.4. In the framework of Theorem 4.6.6, there exist constants C* =

C*(0, K,K) > 0 and v = v5(0, K,K) > 1 such that for every ¢ € e " ""H' (R x (0,1))
and vy > 7 we have

e el 2mx 01y + 1”00l 72 )

1 .
<C <7H67’5LUSO‘%2(Rx(0,1)) + He'thv@WQH%Q(R)) : (4.7.12)

4.8 WEAK AND STRONG SOLUTIONS FOR THE BVP

Two types of solutions of the pure boundary value problem

Bujgn = g, —o00 < t < 00,

in the weighted Lebesgue space e?* L?(R x (0,1)) will be defined in this section. This
definition applies to systems where the coefficients A and B are at least Lipschitz
and the coeflicient R is bounded.
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Definition 4.8.1. Let f € ¢L*(R x (0,1)) and g € "' L?*(R) where v € R. A
function u € L3R x (0,1)) is called a weak solution of the BVP if for every
¢ € e "H(R x (0,1)) such that Cipjgq = 0 we have

1 1
// u-L*pdexdt = // f'SOdCCdt—/gl'MNOx:ldt
R JO R JO R

+ / 90 - Mopja—o dt, (4.8.2)
R

where Cy, C1, My and M; are the matrices in Lemma 4.7.1.

Since 2(R x (0,1)) is contained in the space of test functions {¢ € e” 7" H'(R x
(0,1)) : Cpjpq = 0}, the space of test functions in Definition 4.8.1 is dense in the
solution space 7' L?(R x (0, 1)). The following theorem tells us how the weak solution
satisfies the BVP (4.8.1) in some sense.

Theorem 4.8.2. If u € "' L?(R x (0,1)) is a weak solution of (4.8.1) then u €
e"E(Rx(0,1)), and in particular, ugo € e”tH_%(R). The equation Lu = f holds in
e L2(R x (0,1)) in the sense of distributions and the boundary conditions Boujp—g =
go and Biujy,—y = g1 hold in e'ytH_%(R).

Proof. The fact that Lu = f in the sense of distributions follows immediately from
(4.8.2) by taking ¢ € Z(R x (0,1)). Furthermore,

Le M) = —~ye Mu+e M f e L*(R x (0,1)).

Thus e v € E(R x (0,1)). By Green’s identity (4.4.12), Lemma 4.7.1 and (4.8.2)
we have

(Brujz—1, M1p|p—1) — (Boujz=0, Mow|e—0)

1 1 1 1
e H™ 2 (R)xe~ " H2 (R) e H™ 2 (R)xe— " H2 (R)

—/91~M1<Px:1 dt—/go-Mowpg:odt (4.8.3)
R R

for every ¢ € e " H'(R x (0,1)) be such that Cip|gq = 0.
Let ¢ € e_VtH%(R) and ¢ € e H' (R x (0,1)) such that ¢|,—o = 1) and ¢|,—; = 0.

Define o
- (5 (562

where Yy and Dy are the matrices in the proof of Lemma 4.7.1. Then ¢ € e "' H 1(R X
(Oa 1)) satisfies M090|2:=0 = YVOTA(tvO)TQO\:EZO = 1/}7 COSD|:E=0 = D(—]FA(t,O)TQO|x:0 =0
and ¢|,—; = 0. With this ¢ in (4.8.3) we have

(Bou|z—0, ¥) go -y dt

e H™E (R)xe—"HI(R) /R

for all ¢ € e Hz(R). This means that Boujz—o = go holds in e*H~2(R). The
other boundary condition is similar. O

A stronger type of solutions for the boundary value problem (4.8.1) is given in the
following definition.
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Definition 4.8.3. A function u € ¢"'L?(R x (0,1)) is called a strong solution of

(4.8.1) if there exist sequences (f;); C e™L?(R x (0,1)), (g;); C thH%(]R) and

(uj); C e"*HY (R x (0,1)) satisfying

Luj = f;, —o<t<oo, 0<x <, (4.8.4)
BU]"QQ = gj, —o00 < t < 00,

where f; — fin e L%*(R x (0,1)), g; — ¢ in "' L*(R) and u; — u in e?*L?(R x
(0,1)).

The reason why the above definition is stronger than the one given in Definition
4.8.1 is because every strong solution is a weak solution. Indeed, if u is a strong
solution of (4.8.1) and (u;);, (f;);, and (g;); are the corresponding sequences then
Green’s identity implies that

1 1
// uj- L'pdedt = // fj-goda:dt—/glj-Mlcpledt
R Jo R Jo R

+ /QOj'MosOxo dt (4.8.5)
R

for every ¢ € e”"H'(R x (0,1)) such that Cpj9q = 0. Passing to the limit j — oo
in (4.8.5) shows that u is a weak solution. It will be shown later that for sufficiently
large v, weak and strong solutions coincide.

Theorem 4.8.4. Let u be a strong solution of the boundary value problem (4.8.1)
and (uj); C e HY(R x(0,1)) be the corresponding sequence given in Definition 4.8.5.
Then uj — u in " E(R x (0,1)), and in particular w;jpq — ujaq in e”’tHfé(R).

Proof. The limit u; — u in €7 E(R x (0,1)) follows immediately from the fact that
L(e_vtuj) = — 'ye_wuj + e_vtfj — —ye Tu+ e f = Lie ")

in L?(R x (0,1)). The convergence of the traces follows from the continuity of the
generalized trace operator. O

Note that in this section we exhibit basic properties of weak and strong solutions
without proving any existence nor uniqueness. This will be done however in Section
4.10 for smooth coefficients and in Section 4.12 for coefficients that are at least
Lipschitz.

4.9 WEAK AND STRONG SOLUTIONS FOR THE IBVP

In this section we define the weak and strong solutions in L?(Qr) of the initial
boundary value problem

Lu = 0w + A0yu + Ru = f, 0<t<T, 0<z<1
BU‘aQ =g, 0<t<T, (491)
Ujg=0 = U0, O<z <l
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Definition 4.9.1. Let f € L*(Q7), g € L*(0,T) and uyp € L?(0,1). A function
u € L*(Qr) is called a weak solution of the initial-boundary value problem (4.9.1) if

T 1 T 1 T
/ / u-L'odxdt = / f~g0d:cdt—/ g1 - Mipp,— dt
o Jo o Jo 0

T 1
+ / 9o - Mopjz—o dt + / up * Plp—o dw (4.9.2)
0 0

holds for all ¢ € H'(Qr) such that Cijgq = 0 and @j_7 = 0.

Since 2(Qr) C {¢ € HY(Qr) : Cpjgq = 0,7 = 0}, it follows that the space
of test functions in Definition 4.9.1 is dense in the solutions space L?(Qr). Recall
from (4.4.1) and (4.4.9) that the formal adjoint of L and A~!L are given by

L*v = —9w — 0,(ATv) + R"w

and
(A7 L)y*v = —9y(A"Tw) —dv+ RTA™T

Thus for each v € H'(Qr) we have L*(A~Tv) = (A7'L)*v and the Green’s identity

T /1
// Lu- A" Tvdzdt

// u-L*(A dwdt—i—<Fgu,Fv>H7%(aQT)XH%(aQT) (4.9.3)

for all u € E(Qr) and v € H'(Qr). With this version of the generalized Green’s
identity we are able to prove the following theorem stating how the weak solution
satisfies the IBVP (4.9.1) in some sense.

Theorem 4.9.2. If u € L*(Qr) is a weak solution of (4.9.1) then u € E(Qr). The
equation Lu = f holds in L*(Qr) in the sense of distributions and the boundary and
initial conditions are satisfied in the following sense

Bouje—o = go in V(%1), (4.9.4)
Biuj,—1 = g1 in V(22), (4.9.5)
Up—g = ug i V(Xo)". (4.9.6)

Proof. By taking ¢ € Z(Qr) in the definition, the equation Lu = f holds in the
sense of distributions and hence u € E(Qr). Given ¥ € V(X1), let ¢ € H'(Qr) be

such that I'¢ = v and
_ (N0 i)
elhro) = (Do(t)T> (O(np)xl>.

Then ¢ € HY(Qr) and Co(t)A(t,0)"T¢(t,0) = Do(t) " A(t,0)TA(t,0)~ Tp(¢,0) = 0
for a.e. t € (0,7). Furthermore Cy(t)A(t, 1)~ T(t,1) = 0 for a.e. t € (0,1) and

©(0,2) =0 and (T, x) =0 for a.e. x € (0,1) since the support of ¢ lies in 3. From
(4.4.16), (4.9.2) and the generalized Green’s identity (4.9.3) we have

(Bouis, V)visyxvs) = —(Lgu, By Tb)H 3 (60r)xHE (6Qr)

T
_ /0 g0(t) - Mo(t)A™T (£,0)Bo(t) (, 0) dt

T
- /0 golt) - (t,0) dt.
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for each ¢ € V(31) since By(t)A(t,0)" 1 My(t)T = Bo(t)Yo(t) = I,. Therefore (4.9.4)
holds. A similar argument shows that (4.9.5) holds as well.

Let us prove (4.9.6). For ¢ € V(Xg) we let ¢ € H'(Qr) such that Plao = ¢- Then
Colp =0, ¢jy—r = 0 and so

.
(Uzes @IV () xV(se) = — (Lgu, A0, ) ¢>H’%(8QT)><H%(8QT)
1
— [ o) (0.0 ds
0

from (4.9.2) and (4.9.3). Thus uy, = ugp in V(2)". O
We can also introduce a stronger notion of solution for the IBVP (4.9.1).

Definition 4.9.3. A function u € L?*(Q7) is called a strong solution of (4.9.1)
if there exist sequences (uj); € HYQr), (f;); € L*(Qr), (g;); € H%(O,T) and
(uoj); € H%(O, 1) such that

Luj=f;, 0<t<T, 0<z<l1,
Buj‘ag = gj, 0<t<T,
Uj|t=0 = U0y O<z <,

with u; — u and f; — f in L*(Q7), g; — ¢ in L*(0,T) and up; — up in L?(0,1).

It can be easily seen that every strong solution of (4.9.1) is also a weak solution.
The convergence of the sequence approximating a strong solution can be improved
to E(Qr). The proof of the following theorem is similar to the proof of Theorem
4.8.4 and therefore we omit the details.

Theorem 4.9.4. If u is a strong solution of (4.9.1) and (u;); C H(Qr) is a
corresponding approzimating sequence of w then w; — w in E(Qr). In particular,
ujis, — ups, i V(%) fori=1,2,3,4.

4.10 BVP WITH SMOOTH COEFFICIENTS

In order to apply Theorem 4.1.1, we take X = e *L?(R x (0,1)), Y = e " H(R x
(0,1)) and Z = e L%(R). Define A:Y - X, ®:Y - Zand ¥:Y — Z by

Ap=L"p,  Pp=Cyppq, Vo = (Mop|p—0, —M1p|e=1),
for all ¢ € Y. The variational equation (4.8.2) can now be written in the form
(e™u, Ap)x = (e f,0)x + (790, 91), Pp)z, Vg Eker®.  (4.10.1)
Theorem 4.10.1. Assume that (H1)—(H5) hold. Then there exists vy > 1 such that

for all v > o, f € 'L2(R x (0,1)) and g € e L*(R) the boundary value problem
(4.2.7) has a weak solution u € Y L?(R x (0,1)) satisfying the energy estimate

_ I, _ _
7lle wUH%Z(Rx(O,l)) <C <,yHe Wf”%%ﬂ@x(o,l)) + [le ’YtgH%2(R)> (4.10.2)

for some C > 0.
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Proof. With the notations in the paragraph preceding the theorem, the estimate
(4.1.2) holds for all ¢ € Y according to Theorem 4.7.2. Thus, according to Theorem
4.1.1, taking supremum norms of My and Mj, there exists v € X such that

(U7 A@)X = (6_2’%]0, SO)X + (6_2’%(90791)7 \IISD)Za v Y e ker ®.

Then v = 20 € 27X = " L*(R x (0,1)) satisfies (4.10.1), and so u is a weak
solution of (4.8.1). The energy estimate (4.10.2) is a consequence of (4.2.8). O

We define E(R x (0,1)) to be the set of all functions ¢ € E(R x (0,1)) such that
Pl € L*(R) and there exists a sequence (p;); C HY(R x (0,1)) satisfying

Jim luj — ull pexo.n) + 00 = woallLa@) = 0.

It is clear that H*(R x (0,1)) C &(R x (0,1)). It can be shown that (R x (0,1)) is
the completion of H*(R x (0,1)) with respect to the norm

1
lulle@x0.1)) = (el BExo,1)) + lwoallZem)?-

The proof is similar to Theorem 4.13.4 below. The space £*(Rx (0, 1)) can be defined
similarly by replacing L by L* in the definition.

Remark 4.10.2. The a priori estimate (4.7.12) in Theorem 4.7.4 is valid for all
functions ¢ € e ME*(R x (0,1)). Indeed, (4.7.12) holds for ¢; where ¢; is the
approximating sequence for ¢, and hence for ¢ by passing to the limit j — oc.

Theorem 4.10.3. For all u € e"'E(R x (0,1)) and w € e "'E*(R x (0,1)) we have

AAzW@L%WﬂM&_AAHMWWw@@M&

_/Ammmu»wmm&—/A@nmmyw@na. (4.10.3)
R R

Proof. Using integration by parts, (4.10.3) holds for all u,w € Z(R x (0,1)). By a
density argument, (4.10.3) holds for all u € "' HY(R x (0,1)) and w € e " H*(R x
(0,1)). The conclusion now follows from the definition of the spaces e"'&(R x (0,1))
and e " E*(R x (0,1)). O

The following theorem implies that strong solutions have L?-traces at the boundary
and the convergence of the traces given in Theorem 4.8.4 can be improved.

Theorem 4.10.4. Assume that (H1)—(H5) hold. There exists o > 1 such that if
u € eL2(R x (0,1)) is a strong solution of (4.8.1) then U € e L2(R) and u
satisfies the energy estimate

e ullZomxo,1)) + le " woallTom)
1. _ _
<C <7H€ "I 20,1y + e 7t9HZL2(R)> (4.10.4)
for some C > 0 and for all v > 9. If (uj); C e*HY(R x (0,1)) is the sequence

associated with u then uj 50 — ujgq in e L2(R). In particular the strong solution is
unique and u € e"'E(R x (0,1)).

97



LINEAR SYSTEMS WITH VARIABLE COEFFICIENTS

Proof. Let u be a strong solution of (4.8.1) and (u;);, (f;); and (g;); be the corre-
sponding sequence stated in Definition 4.8.3. Applying the a priori estimate (4.5.4)
to u; — ug and the fact that Lu; = f; and Bujjpq = g; for all n we have

y]le ™" (uj — Uk)”%ﬂ(]Rx(O,l)) + Heﬂt(uﬂaﬂ - Uk|BQ)H%2(R)
1 - p—
<C (7He (i = e @oy + e (g5 — gk)\@z(R))

for some C' > 0 and for all v > 9 where = is the constant in the statement of
Theorem 4.5.2. Thus (u;); and (u;jg); are Cauchy sequences in €' L*(Rx (0,1)) and
" L*(R), respectively. By definition we already have u; — w in e?*L?(Rx (0,1)). Let
v € e’ L*(R) such that u;jpo — v in €' L*(R). From Theorem 4.8.4 we have w190 —
ujpo in e”tH_%(R). Since the embedding e L?(R) C thH_%(]R) is continuous we
must have ujgo = v. Applying the a priori estimate (4.5.4) to u; and passing to the
limit, we can see that the energy estimate (4.10.4) is satisfied. The uniqueness of
the strong solution follows from (4.10.4). O

Theorem 4.10.5. Suppose that that (H1)—(H5) hold. There exists 79 > 1 such that
for all v > 7, a weak solution u € ' L?(R x (0,1)) of (4.8.1) is a strong solution.
In particular, this weak solution is unique, has a trace upg € e L?(R), and the
energy estimate (4.10.4) is satisfied by the weak solution w. The boundary condition
Bujgg = g holds in e’ L*(R).

Proof. The first statement will be proved even in the case where the coefficients are
only Lipschitz, c¢f. Theorem 4.12.2. An alternative proof is to use the regularity
result Theorem 4.10.6 below and apply a standard approximation argument, see [9,
pp. 260—262] for details. The rest of the theorem follows from Theorem 4.10.4. [

The following regularity theorem can be shown as in [9, 15].

Theorem 4.10.6. In the situation of Theorem 4.10.5, for all k € Ng there exists
Ve > 1 such that for all v > v, if f € e"H*¥(R x (0,1)) and g € " HF(R) then
the weak solution u of the BVP (4.8.1) lies in ' H*(R x (0,1)) and satisfies ujpq €
' HE(R). There exists Cj, > 0 such that

7||U|’3thI;(RX(071)) + ||U|aQ||gth5(R)

1
< Gk <7”ngth§(@(0,1)) + ||9||§th§(R)> : (4.10.5)

Furthermore, there exists a sequence (uj); C thH$+1(R x (0,1)) such that u; — u
in e”tHf(R % (0,1)), Luj; — Lu in e’VtHﬁ(R x (0,1)) and ujjaq — ujaq in thHé“(R).

4.11 IBVP WITH CONSTANT COEFFICIENTS

In this section we study the well-posedness of the IBVP (4.9.1) and we restrict
ourselves to the case where the coefficient are constants. We refer the readers to the
paper of Rauch and Massey [64] for the case of smooth coefficients. The results of
this section will be used in a PDE-ODE system that we consider in Section 4.21.
All throughout this section, we suppose that the A € R™ "™ is invertible with p
positive eigenvalues and n — p negative eigenvalues, R € R"*" By € RP*" B; €
R("=P)*" By and By have full ranks and the UKL condition (H5) is satisfied. We
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begin with L2-well-posedness. This theorem will be shown even in the case where
the coefficient is Lipschitz, cf. Theorem 4.13.10.

Theorem 4.11.1. For each f € L*(Q1), g € L?(0,T) and ug € L?(0,1) the initial-
boundary value problem (4.9.1) has a unique weak solution v € L*(Qr). This weak
solution is a strong solution, ujpq € L?(0,T) and u satisfies the energy estimate

6_27T||UH20L2(QT) + 7||€_7tu”%2(QT) + ||€_7tu|89||%2(0,T)
1. _
<c <uuo||%z<o,1) + 2 1e  agr + I ”tgriam,m)

for all v > ~y for some C > 0 and some vy > 1. Furthermore, there exists (u;); C
HY(Qr) such that uj — u in CL*(Qr) N E(Qr) and Ujlpn — Ujaq N L2(0,7).

Now we prove additional regularity of the solution of the IBVP (4.9.1) under the
assumption that the data are also regular and satisfy compatibility conditions. The
argument relies on the following a priori estimate.

Theorem 4.11.2. Let k € Ny. There exists v, > 1 and Ci, > 0 such that the a
priori estimate

_ ke _ _
e Y 2D sup 100 a0 + e ul B 0y + e o0 B oy
o<k T€[0,T7] v

k
. 1 _ _
< C Z Haguﬁ:()”%{kfj(o,l) + ;He wLU”%ﬂ;(QT) + e 7tBU|aQ||§1r§(07T)
=0

holds for all w € H*1(Qr) and v > .

The proof of this theorem can be done as in the case of variable coefficients, cf.
Section 4.19. The proof is therefore omitted. We begin in the homogeneous case.

Theorem 4.11.3. Suppose that f € H*(Qr) and g € H*(0,T) satisfy 8gf‘t:0 =0
and g9 (0) =0 for all 0 < j < k — 1. The weak solution of

Lu=f,  Bupg=g,  up==0 (4.11.1)

lies in CH*(Qr) and has trace U € H¥(0,T). Furthermore, there exists a sequence
(uj); € H*Y(Qr) such that u; — w in CH*(Qr), Lu; — Lu in H*(Qr) and
Um|on — U|o0 m H’“(O, T).

Proof. Let f € e H*(Rx(0,1)) and § € Y H*(R) be extensions of f and g such that
f|t<0 =0 and g;<o = 0. Such extensions exist due to the assumptions on f and g at
t = 0. From Theorem 4.10.6, the solution of the BVP Li = f, Bipn = g satisfies
@ € eHFR x (0,1)) and Upn € e’ H*(R). Moreover, there exists a sequence
(4j); C €"HF(R x (0,1)) such that 4; — @ in ?HY(R x (0,1)), Li; — L in
thHﬁ(R x (0,1)) and ijjp0 — Ujpo in e'ytHﬁ(R). Let u; = ;.. Applying the a
priori estimate to uj —wuy in Theorem 4.11.2 shows that (u;); and (u;5q); are Cauchy
sequences in CH*(Qr) N H*(Qr) and H*(0,T), respectively. If u = U, then u is
the weak solution of the IBVP and satisfies the conclusion of the theorem while the
sequence (u;); is the required sequence in the statement of the theorem. O
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We say that the data (ug, f,g) € HF(0,1) x H¥(Qr) x H*(0,T) satisfies the
compatibility condition up to order k — 1 if

Byui(y) = D'g,(0), i=0,....k—1, y=0,1, (4.11.2)

where

U; = —Ac‘)xui_l — Rui_l — 8§_1f|t:0, 7= 1, e ,k‘. (4.11.3)

Theorem 4.11.4. Let k be a positive integer. If f € H*(Qr), g € H*(0,T) and
ug € H*(0,1) satisfy the compatibility condition up to order k — 1 then the weak
solution of the IBVP

Lu=f, Bujpg = g, Uj— = Uo (4.11.4)

satisfies u € CH*(Qr) and ujpq € H*(0,T). There is a sequence (u;); C H*(Qr)
with the properties u; — u in CH*(Qr), Luj — Lu in H*(Q7) and Ujlpn — U|sQ
in H*(0,T). Moreoever, u satisfies the energy estimate

e T Z 7?1l sup ”aau(T)H%%og) + ”YHe_wu”%;c(QT) + He_vtwaQHfH;c(o,T)
la|<k 7€[0,T

k
1
2 —t £)12 —t 112
< Cg E - H’U’jHH’f—j(OJ) + ;He ! fHHg(QT) +[le™ 9HH§(07T) : (4.11.5)
=

for all v > v, for some Cy, > 0 and v > 1.

Proof. First suppose that ug € Hk+%(0, 1). From [1, pp. 216-217], there exists a
function u, € H*(R x (0,1)) such that 0} (ua)t=o = u; for every i = 0,...,k — 1.
Let f, = f — Lu, € H*(Qr) and g, = g— Bugjpq € H*(0,T). From (4.11.3) we have
8§fa|t:0 =0fori=0,...,k—1 and from the the compatibility conditions (4.11.2) it
holds that D'g,(0) =0 for : = 0,...,k — 1. According to Theorem 4.11.3, the weak
solution of the homogeneous IBVP

Lup, = fa, Bupjga = ga; Upjt=0 = 0

satisfies u, € CH*(Qr) and uplon € H*(Qr). Then the solution of the IBVP
(4.11.4) is given by u = up, + u, and therefore v € CH*(Qr) and ujgq € H*(0,T).
The sequence (ujn, + ug); C H¥(Qr), where (ujp,); is the sequence in Theorem
4.11.3 corresponding to up, has the desired properties.

For the case where ug € H*(0,1), one can find a sequence (ujg); C H* 2 (0,1) such
that (ujo, f, g) is still compatible up to order k — 1, see [64] or the proof of Theorem
4.21.2 below. Thanks to the a priori estimate in Theorem 4.11.2 the desired results
can be shown, see the proof of Theorem 4.19.5 and Remark 4.19.7. 0

4.12 BVP WITH LIPSCHITZ COEFFICIENTS
We turn to the boundary value problem where the coefficients are Lipschitz. As in

Theorem 4.10.1, one can prove the following theorem using the a priori estimate in
Theorem 4.7.4 instead of Theorem 4.7.2.
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Theorem 4.12.1. In the framework of Theorem 4.6.6, there exists vy = vo(0, K, K) >
L such that for all v > v, R € L®(R x (0,1); R™™) with ||R[ 1 ecmx(0,1)) < 05
v € W(K,K), f € LR x (0,1)) and g € e L*(R), the boundary value problem
(4.8.1) has a weak solution u € eY*L?(R x (0,1)) satisfying the energy estimate

— 1 - -
Vel g 0.1)) < C(vue "z + Nl wQH%Q(R))

for some C = C(p, K,K) > 0.

We show that the weak solution of (4.8.1) is actually a strong solution provided
that v is large enough.

Theorem 4.12.2. Suppose that the hypotheses of Theorem 4.6.6 hold. Then every
weak solution u € eV L?(R x (0,1)) of (4.8.1) is a strong solution and u € e"'E(R x
(0,1)). In particular, (4.8.1) has a unique weak solution satisfying the energy estimate

el Zomx(0,1)) + e waallZo )
1 - —
<c (Wue T 122 oy + le vfguiz@m) (4.12.1)

for every v > v, for some o = vo(0, K,K) > 1 and C = C(p, K,K) > 0.

To prove this we need a few lemmas. Let p € Z(R) be a mollifier with support in
(=1,1) and [, p(t)dt = 1. Define pc(t) = ¢ 'p(t/€). Denote by R, the convolution
operator corresponding to pe, that is,

Reu = pe x u = Op(.Z pe)u.

Then R, € L(H"(R), H*(R)) for all r,s € R and € € (0,1). However (R¢)o<e<1 is
uniformly bounded only as operators of order m > 0.

The first lemma tells us that the trace operator and the convolution operator R,
commute when applied to elements of the graph space ' E(R x (0, 1)).

Lemma 4.12.3. Let u € € E(R x (0,1)). Then (Re(e "u))ja0 = Re(e M ujpq) €
HT®(R) for every e € (0,1).

Proof. Fix € € (0,1). The fact that Rc(e " ujgq) € HT®(R) for every e € (0,1)
follows from R, € L(H"(R), H*(R)) for all 7,s € R and ¢ € (0,1). Since e "u €
E(R x (0,1)), there exists a sequence (u}); € Z(R x [0,1]) with the property u; —
e u in E(R x (0,1)). Because u] is smooth one has (Reu)) o = Re((u])an) for
all 7. By continuity of the generalized trace operator we have (u})‘ag — 6_7t'LL‘aQ

in H_%(R) and since R, € E(H_%(R)) it follows that Re((u})mg) — Re(e M upq)
in H_%(]R). Since R. € L(L*(R), H*(R)) we have Reu; — Re(e™u) in HY(R) and
by the continuity of the trace operator it follows wthat (Reu;-’)m — (Re(e ")) 90
in H2(R). Finally the continuity of the embedding Hz(R) C H~2(R) implies that
(Re(e™""u)) 90 = Re(e™ M ujpq). O

The second lemma shows that differentiation with respect to space and convolution
with respect to time associated with the mollifier p. commute for elements of the
graph space E(R x (0,1)).
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Lemma 4.12.4. For each u € E(R x (0,1)) it holds that O, (pe x u) = pe * (Ozu) in
H YR x (0,1)).

Proof. For simplicity we let O =R x (0,1). Take ¢ € 2(0). By Fubini’s Theorem
and the change of variable 0 =t — s we have

1
Orlpex ) eusopagor = = | [ [ ot = 9uls.dsptt. ) dsdeda

_ —/(]I/R/Rpg(a)f)x%@(a+8,x)u(s,x)dadsdx

= /pe(0)<axu790(a+'v')>H1(O)><Hé((9) do

Recall that O,u = A, Lyu — 0;(A; tu) + (9, A, 1)u. Computations similar as above
show that

/Rﬂe(U)WySO(U + ')>H*1((’))><H5(O) do = <p6*w790>H*1((’))><H01((’))
for all w € L?(0). Thus
[ 0001000+ Dr-s 0oy do (4122)
= (per 0D openyio) — [ PONOAT 60 + g1 0o o
where w = A, Lyu + (0;A;)u € L2(0). Let us consider the integral on the right

hand side of (4.12.2). Integrating by parts and using the fact that R, is a convolution
operator with respect to t, so that R. and 0; commute, we obtain

/ () (O 0), 00+ ) g1 oyt o) 4

/ / / pe(0) A us, 2)rp(s + 0, ) dor ds da
——///pe(a)Aglu(t—a,x)@tgo(t,x)dtdadx
-/ / pex (A7) (1, 2)yp(t, ) it da
-/ / Oulpe » (A3 ") (t, )t ) dt da
/ / pex Db Ay W) (1, 2)p(t, @) di d

(pe* BL(AL M), ) 10y 3 0)
Therefore using d,u = w — 0;(A; 'u) we have
[ rc@0r.6(0 + ) sg-10)130) 47 = (o Or), -1 0y

Since 2(0) is dense in HE(O) it follows that 9, (pe *x u) = pe x (9pu) in H-1(0). O

The following lemma is a generalization of Friedrichs Lemma, see Theorem C.1.1
and (C.1.4).
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Lemma 4.12.5. For eachu € "' E(Rx(0,1)) and € € (0,1) we have [P), RJe " €
L2(R x (0,1)), [By, Rle ujp0 € H3(R),

. —t
lim [|[P7, Rele™ " ull 12(zx (0,1)) = 0

and
lim ||[By, Rele™ " wjpq | r2r) = 0.
e—0

To prove Theorem 4.12.2, we regularized the weak solution using the smoothing
operator R.. This will give us more regularity in time. Using the PDE and Lemma
4.12.5 we can obtain additional regularity in space. The sequence of regularizations
satisfy a boundary value problem that is an approximation of the original boundary
value problem, and hence, the weak solution is a strong solution. This is the main
idea of the proof below.

Proof of Theorem 4.12.2. Let us define the following regularized functions
ul = Re(e7Mu),  FY=R(A7'ef), gl =Re(ey),

where u is the weak solution of the BVP (4.8.1). For each € > 0, we have u! €

L2((0,1); HT**(R)), F? € L?*((0,1); HT°(R)), g/ € H™(R) and as € — 0 we have

ug — e My in L2(R x (0,1)), F? — Ajle ™ f in L?*(R x (0,1)) and g/ — e g in

L?(R). According to Theorem 4.8.2, the weak solution u lies in e?*E(R x (0,1)).
We claim that u¢ € H'(R x (0,1)). Recall that

e Mu = Ple My + Ajte £, (4.12.3)
From Lemma 4.12.4 and (4.12.3)
Opul = RePYe "'u+ F) = FY 4+ PJu] — [Re, P)]le "u. (4.12.4)

By construction F., PJul € L?*(R x (0,1)). According to the previous lemma
[P),RJe "'u € L?(R x (0,1)). Therefore d,ul € L*(R x (0,1)) and as a result
ul € H'(R x (0,1)). Applying Theorem 4.6.6 to e’ (u! —u],) € "H'(R x (0,1))
and using Lemma 4.12.3 and (4.12.4) we have

Y (ud — UZf)H%?(Rx(o,U) + [ (wd = uZ’)|BQH%Q(R)
1
<c (Wu@ — B ) Bagaiony + 1 Bolu - ubmuig(R))

1 1 _
<C (7||F] _ FJH%Q(RX(O,I)) + ;||[P;’, R. — Role ’Ytu||%2(R><(0,1))
+[|[Bo, Re = Rele™ " upq |72 + llo? — 93'”%2(R)>'

Using Lemma 4.12.5, we conclude that (ul)eso and ((u!)jan)e>0 are Cauchy se-

quences in L2(R x (0,1)) and L?(R), respectively. We already know that ul — e~ 7'u
in L2(R x (0,1)). From (4.12.4)

Lyul = AyFY —yul — Ay[Re, Ple™ " u. (4.12.5)

Passing to the limit in (4.12.5) we have Lyu! — e 'f — ve "'u = L,(e "u) in
L*(R x (0,1)). Thus u¢ — e "u in E(R x (0,1)). The continuity of the generalized
trace operator implies that (u!)j9q = € "ujgq in Hfé(]R), and hence in L?(R).
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We see from (4.12.4) and Lemma 4.12.4 that w, := e"'ul € e"H'(R x (0,1))
satisfies the system

Lywe = e’YtAUFE’Y - eWtAv [Rea Pz’)Y]e—’Ytu =: fe
B, (we)|89 = e’yt[va Re]e_’ytu\[“)ﬂ + €7t92 =: Re.

Since f. € eML2(R x (0,1)), he € e H2(R), f. — f in e L2(R x (0,1)) and he — g
in e7*L2(R), it follows that u is a strong solution of (4.8.1). The energy estimate
(4.12.1) follows from the a priori estimate (4.6.4) applied first to u. and then passing
to the limit € — 0. The uniqueness of weak solution of (4.8.1) is a consequence of
the energy estimate (4.12.1).

The above arguments show that there exists a sequence (u;); C e H(R x (0,1))
such that u; — u in eE(R x (0,1)) and ujjpq — upq in €*L*(R). Therefore
u € eER x (0,1)). O

In studying initial-boundary value problems, the following causality principle will
be used. For the proof, we refer to [9, Theorem 9.13|.

Theorem 4.12.6 (Principle of Causality). Let 7 € R. If f € L*(R x (0,1)) and
g € L*(R) satisfy fit<r = 0 and gy, = 0 then the weak solution of (4.8.1) also
satisfies uj < = 0.

4.13 IBVP WITH LIPSCHITZ COEFFICIENTS

The proof of existence and uniqueness of weak solutions for the IBVP (4.9.1) is
slightly different from the one we have already done for the BVP (4.8.1). Theorem
4.1.1 is not applicable at the moment since a suitable a priori estimate is not available
at this point. If the initial data in (4.9.1) is zero, then (4.9.2) is similar to (4.8.2).
With this observation, one can prove well-posedness of the homogeneous IBVP by
using results for the BVP and the Causality Principle Theorem 4.12.6. Thanks to
this procedure we obtain an a priori estimate for the IBVP with homogeneous initial
data. By a duality argument, an a priori estimate for the IBVP will be proved, and
with this estimate, Theorem 4.1.1 can now be applied to prove the well-posedness of
the general IBVP (4.9.1).

The passage from initial-boundary value problems to pure boundary value prob-
lems requires a technical step of extending a function in W1°(Q7) to a function
in W5H°(R x (0,1)). This is possible thanks to a standard reflection argument, see
Adams [1, p. 84].

Theorem 4.13.1. For each v € Wh®(Qr) there ewists V € WH(R?) such that
[vllwiee(@r) = IV Iwieo 2y and v and V' have the same range.

With abuse of notation, we denote by the same notation v the extension V of
v stated in Theorem 4.13.1. In this section, we let W(K, ) denote the set of all
functions v € WH*°(Qr) such that ran v C K and [vllwree @) < K.

Theorem 4.13.2. Suppose that (D) and (UKL) hold. Let f € L*(Qr), g € L*(0,T),
veW(K,K) and R € L>®(Qr) with |R||p~ < 0. The homogeneous initial-boundary
value problem

Lyu = f, Byujpa = g, Upy—o = 0 (4.13.1)
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has a unique weak solution. Furthermore, the weak solution is a strong solution and
it satisfies ujpq € L?(0,T) and the energy estimate

e ullBa g + e up0 2201

1 — —
<C <,y||€ PthH%Q(QT) + ”6 7tg||%2(07T)) (4132)

for all v >~ for some vy = vo(0, K, K) > 1 and C = C(p, K,K) > 0. In particular,
the boundary condition Byujgg = g holds in L2(0,7).

Proof. Let f and g be the extensions of f and g by zero outside (0,7) and let
@€ eE(R x (0,1)) be the unique weak solution of the BVP L,i = f, Byiijpn = §-
We know that this weak solution is strong and by Theorem 4.12.6 uj;o = 0. Let
(@j); € "HY(R x (0,1)) be the sequence of functions approximating % in the proof

of Theorem 4.12.2. In particular, u; satisfies a BVP
Lyij = fj, By = g (4.13.3)

where f; — fin e L*(Rx(0,1)) and §; — § in e L?(R). By replacing the mollifiers
pe by € 1p((z — a)/e) for some a > 0 small enough in the proof of Theorem 4.12.2,
so that they are supported in {t > 0}, we have ;<o = 0 for each j.

From (4.13.3) and integration by parts we have

T r1 T 1 T
/ / ;- Lipdzdt = / / fj-pdrdt — / gij - Ml(U)SO\x:l de
0 Jo 0 Jo 0

T
+ / goj - Mo(v)p)z=o dt (4.13.4)
0

for all ¢ € H'(Qr) such that Coplpn = 0 and ¢ —p = 0. Passing to the limit in
(4.13.4) yields

T 1 T 1 T
/ / u-Lipdrdt = / / fredrdt - / g1 - My (v)pp—1 dt
0 Jo 0 Jo 0

T
+/ 9o - Mo(v)p|z=o dt
0

where u = 1g,. Thus u is a weak solution of the initial boundary value problem
(4.13.1).

Because @; — @ in € E(R x (0,1)) we also have u; := i, — v in E(Qr) from
Theorem 4.4.1 and in particular ujj,—g — Ujz—o in V(X1)" and wjj,—; — ujp—; in
V(X2)". However we already have ujjpq — ujgq in L?(0,T). Thus up0 € L?(0,7)
since the second inclusion in (4.4.14) is continuous. Likewise, uj;—o = 0 for all
j so that uy_g = 0 in L*(0,1). Because (u;); € H'(Qr), (fj); € L*(Qr) and
(g95); C H%(O,T) satisty Lyu; = fj, Bujon = gj, uj—o = 0, the weak solution
constructed above is a strong solution.

As the function 4; satisfies the boundary value problem (4.13.3), it also satisfies
the energy estimate

i i L, 4z -
e |22 0p + lle " 00l 20 < C (7H€ " FillE 0,1y + ngH%Q(R)) :
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according to Theorem 4.12.2. Letting j — oo and recalling that f and § vanish for
t € (—00,0) U (T, 00), it follows that the energy estimate (4.13.2) is satisfied by the
weak solution that we have constructed.

It remains to prove that the weak solution of the IBVP is unique. For this, we
suppose that u; and ug are any weak solutions and let w = u; —u9 € LQ(QT). Then
w is a weak solution of the homogeneous IBVP

Lyw =0, Byw)jgq =0, wig—g = 0.
This means that
T 1
/ / w-Lipdedt =0 (4.13.5)
0 Jo

for all ¢ € H'(Qr) such that Cypjpn = 0 and _p = 0. Fix 7 € (0,7). Let
0r € Z(R) be a cut-off function such that 6,(t) = 1 for ¢t <7 and 6,(t) =0 fort > T.
Let @ be the extension of w by zero outside (0,7'). Take ¢ € e ""H'(R x (0,1))
with Cy9j9q = 0. From the equality L;(0-1) = 0. L3y — 074 we have

1 T rl T rl
// 0.0 Ly dedt = // w.L;(eT¢)dxdt+// 0w - dz dt
RJO 0 JO 0 JO

1
= // 0.4 - dz dt (4.13.6)
RJO

where the second equality is based on (4.13.5) with ¢ replaced by 6;¢. This is
possible since 0,1 € H'(Qr), C(0:¢)190 = 0 and (0;);—p = 0. Therefore, from
(4.13.6) we can see that z := 0,w satisfies the boundary value problem L,z = 0.,
Byzjpo = 0. By construction, 0/ = 0 for t < 7 and therefore z = 0 for t < 7 by
Theorem 4.12.6. Consequently, w = 0 a.e. in Q. Since 7 € (0,T) is arbitrary, we
have w = 0 a.e. in Q7 and thus the uniqueness of weak solutions for (4.13.1). O

Using Friedrichs symmetrizability we can prove an a priori estimate which includes
terms that are pointwise-in-time.

Theorem 4.13.3. In the framework of Theorem /.15.2, suppose in addition that
(FS) holds. For all w € HY(Qr) satisfying u—o = 0 there exist constants C' =
C(o,K,K) >0 and vy = (0, K,K) > 1 such that

6_27T||U||20L2(QT) + 7”6_7%”%2(@@ + ||6_7tu\8§2\|%2(0,T)

1 - —
<C (fylle vtLUuH%Q(QT) + |le ’YthU|8Q||%2(O,T)) (4.13.7)

for all v > .

Proof. We use the same notation as in the proof of Theorem 4.13.2. Take u € H'(Qr)
satisfying uj;—o = 0. Thanks to Theorem 4.13.2 we already have

e ulloigp + lle waallF20m)

1 - p—
<C (,yHe T Lyul72 g + e 'thv“f’ﬂH%Q(OvT)> (4.13.8)

by taking f = Lyu and g = Byupq.
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Denote by S, the Friedrichs symmetrizer of A, and let 0 = o(K,K) > 0 be a
constant independent of v such that oI, < S, < ¢~ 'I,. Define Uy = e "y so that
Ljuy = e " Lyu. Since S, is symmetric we have

T rl
d / / Syl - Uy dz dt (4.13.9)

T rl
= / / (04Su) Uy - Uy 4 SyOstiy - Uy + Syt - iy dar dit
0 J0
T rl
= / / (0¢Su) Uy - Uy + 2RS,0ptiy - Uy da di
0 J0
T rl
= / / (01Su)ty - Uy 4 2R[Sy (L) — 7))ty - uy] — 2R[Sy Ay Oruy - uy| da dt.
0 J0

Integrating by parts gives us

// SpApOptty - uydadt = /S (t, 1) Ay (t, Duqy(t, 1) - uy (¢, 1) de
/S (t,0)A4(t,0)u(t,0) - uvtOdt—// Uy - Op( Ay Syury) da dt

However we have 9, (A} Syuy) = (9x(A) Sy))uy + A} SpOyu, and thus

T rl
2// R[Sy ApOzuy - uy] dadt

/ Su(t, 1) Au(t Vs (1) - s (8, 1) dt—/ Su(t,0) Ay (t, 0)us (£, 0) - s (£, 0) it

/ / ))uy - uy dadt (4.13.10)

Therefore from (4.13.9) and (4.13.10) we obtain

d T rl T
/ / Sy -y dzdt — —/ Su(t, 1) Au(t, Vs (£, 1) - s (£, 1)t
dt Jo Jo 0
+/ Su(t,0)Ay(t, 0)uy(t,0) - uy(t,0)dt
0
T rl
+// (0050 + O (AT S - 1y + 2RISo (LY — ey - w ] dadt.  (4.13.11)
0 Jo
By Cauchy-Schwarz inequality and Young’s inequality and o[, < S, we have
lur (M)l Z2(0,1) (4.13.12)
1
< C((l + )l l2g,) + ;HLZUWH%Q(QT) + H(%)|09H%2(o,7)>
for every 7 € [0,T]. Therefore (4.13.7) follows from (4.13.8) and (4.13.12). O

With Friedrichs symmetrizability, additional regularity in time is possible for the
weak solution of (4.13.1). Furthermore, the solution lies on a subspace of the graph
space E(Qr).
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We let £(Qr) be the space of all functions ¢ € E(Qr) such that ¢jsg, € L*(0Qr)
and there exists a sequence (¢;); C H'(Qr) with the property that

Jim luj — ullpQr) + llusio0r — woarllz@ar =0- (4.13.13)

Obviously, we have HY(Q7) C £(Qr). The space £*(Q7) is also defined in a similar
manner where L is replaced by L*.

Theorem 4.13.4. The space £(Q7) is the completion of H*(Qr) with respect to the
norm

1
lullei@ry = (el @) + lwor 2002 (4.13.14)

Proof. Denote by £(Qr) the completion of H'(Qr) under the norm || - le@r)- Let
u € E(Qr) and (u;); C HY(Qr) be its corresponding sequence. From (4.13.13) it
follows that (u;); is a Cauchy sequence in £(Qz). Thus, u; — w in £(Qr) for some
w € £(Qr). In particular, u; — w in E(Qr). By uniqueness of limits in E(Q7) it
follows that u = w and so u € £(Qr).

Conversely, suppose that u € £(Qr) so that there exists (u;); C H'(Qr) such
that u; — u in £(Qr). Thus (4.13.13) holds and v € E(Qr). It remains to show
that upq, € L*(0Qr). It follows from (4.13.13) that there exists v € L*(0Qr) such
that ujjag, — v in L%(0Qr). Since uj — u in E(Qr) we have Ujjg=0 = Ujp—p N
V(£1)". Because the inclusion L*(0,T) C V(X1)" is continuous we have uj,_o = vjs, .
Similarly, we have uy;, = vy, for i = 0,2,3. Therefore upg, = v on dQr and so
uog, € L?(0Qr). Hence u € £(Qr) and this proves the other inclusion. O

As in the proof of Theorem 4.10.3, we have the following generalized Green’s
identity.

Theorem 4.13.5. For every u € E(Qr) and ¢ € E*(Qr) we have

T 1 T 1 T
// u-L'pdxdt = // Lu-cpdxdt—/ A(t, Du(t,1) - p(t, 1) dt
0 JO 0 Jo 0
T 1

+ /O A(L, 0Yu(,0) - (£, 0) dt — /O (T, 3) - (T, 2) dz

1
+/O (0, 2) - 0(0, 7) da. (4.13.15)

Corollary 4.13.6. In the situation of Theorem 4.13.3, the solution u of (4.13.1)
lies in CL?(Q7) NE(Qr) and satisfies the energy estimate

6_27T||U||20L2(QT) + 'YHE_W,LLH%?(QT) + ||e_7tu\6§2||%2(0,T)
1, _ -
< (11 B + I 0l ) - (113,15
Moreover, there exists a sequence (uj); € HY(Qr) such that uj — u in CL*(Qr) N
E(Qr) and ;g — ujsg i L*(0,T).

Proof. We know from Theorem 4.13.2 that the weak solution u of (4.13.1) is a
strong one. Let (uj); C H*(Qr) be a sequence corresponding to the strong solution
u. Applying the a priori estimate (4.13.7) to uj; — ug, we can see that (u;); and
(ujia0); are Cauchy sequences in CL*(Qr) and L?(0,T), respectively. Since we
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already know that u; — u in L2(Qr) we must have u; — u in CL?(Qr) as well since
the inclusion CL*(Qr) C L*(Qr) is continuous. From Theorem 4.9.4, u; — u in
E(Q7) and ujjp, — upx, in V/(X;)’ for every i = 0,1,2,3. According (4.4.14) we have
ujio0 — ujgq in L?(0,T). Finally, since uj — u in CL*(Qr) we have wjj—r — U—,
in L?(0,1) for every 7 € [0,7] and so u € £(Qr). O

With a duality argument, the a priori estimate in Theorem 4.13.3 can be improved
to all functions u € H*(Qr).

Theorem 4.13.7. In the situation of Theorem 4.13.8, there are constants C =
C(o, K,K) >0 and v = v(0, K,K) > 1 such that the a priori estimate

6_27TH’U'”?JL2(QT) + ’YHe_VtUH%%QT) + He_WUWQH%%o,T)
1, _ —
S C <||Ut0‘|%2(071) —|— ;He 'ytLrUUH%Q(QT) —|— He ’YtBUu(r)QH%2(O,T)> (41317)

holds for all uw € HY(QT) and v > .

Proof. Suppose that F € e L?(Q7), G € e "*L?(0,T) and u € H(Qr). Let z be
the solution of the IBVP

L’T}'Z =F, CUZ\BQ = G7 Rlt=T = 0.
The dual version of Corollary 4.13.6 implies that z satisfies the energy estimate
2 2 2
||Z|t=oHL2(o,1) + ’Y|’€7t2”L2(QT) + He'ytZIaQHL?(O,T)

1
<c (,y”e’YtFH%P(QT) + He’th”%ﬁ(O,T)) (4.13.18)

and z € £*(Qr). Using the generalized Green’s identity (4.13.15) for u and z
T T
/ u - Fdxdt+ / Nh,’qu:l -G dt — / N(]UU|:C:0 -Godt
T 0 0
T T
= / Lyu-zdxdt — / Biyujp—1 - Miy2jp— dt + / Boyujz—o - Mowz|z—o dt
Qr 0 0

1
+/ Ujy—p * 2|¢=0 AT (4.13.19)
0

Taking Gop = G; = 0 in (4.13.19), using the Cauchy-Schwarz inequality and the
estimate (4.13.18) we have

/ w- Fdzdt < Oz 2omlle™ Loull 2(op)

T

+ Hewt2|aﬂ||L2(o,T)HeﬂthUwQHB(o,T) + Hz\t:0HL2(O,1)”U\t:OHLQ(O,l))

C
< THGWFHB(QT)Q(U) (4.13.20)
where

1 _ _
Q(w) := lJup=ollL2(0,1) + 7“8 A/tLvUHL?(QT) + [le va“\&QHL‘A’(o,T)

Nai
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Dividing by the norm involving F' and taking the supremum over all F' € "' L?(Qr)
in (4.13.20) yields

VAlle ™ ull 2oy < CQ(u). (4.13.21)
Similarly, letting /' = 0 and G arbitrary in (4.13.19) we have

le™ " Nywjaoll 1207 < CQ(u). (4.13.22)

Define the 2n x 2n matrix-valued function

BO’U Op><n
Ny O(p—
P— v (n—p)xn
Om—p)xn B
Op><n va

where N1, are the matrices in Lemma 4.7.1. Note that P is invertible and hence

le " wpaallrzor = Clle™ " P~ Pupqllr201)
< C(He_’thUU|(‘)QHL2(07T) + He_Fythu\(‘?QHLQ(O,T))- (4.13.23)

Revisiting the proof of Theorem 4.13.3, we have
le w20 < CQE+Alle MulZag,)  (413.24)

for all 7 € [0, T]. The main difference here is the occurrence of the tern uj_, which
does not appear in Theorem 4.13.3 due to the assumption on u there. The conclusion
now follows form (4.13.21)—(4.13.24). O

There is also a corresponding a priori estimate for the dual problem. We leave the
details of this estimate to the reader. The proof of the following corollary follows
from the dual version of (4.13.17) and the definition of £*(Qr).

Corollary 4.13.8. In the situation of Theorem 4.13.3, there exist C = C(o, K,K) >
0 and vo = v (0, K,K) > 1 such that a priori estimate

”U\t=0\|i2(o,1) + ’YHevtuHiz(QT) + Hevtu\aQH%Q(o,T)

1 *
<C (ewTHuH:TH%Q(OJ) + ﬂevtLqu;(QT) + Hevtcvulag@(w)) (4.13.25)

holds for all uw € E(Qr) and v > 7.

For the coupled PDE-ODE system that will be discussed in Section 4.20, the a
priori estimate (4.13.25) will be used.

Theorem 4.13.9. Suppose that the hypotheses of Theorem 4.13.3 hold. Then the in-
homogeneous IBVP (4.9.1) has a unique weak solution and there exist C = C(o, K,K) >
0 and vo = v(0, K,K) > 1 such that

_ 1, - _
e ulZ2 g,y < C (”UOH%2(0,1) + gﬂe "7z + e 7t9HQL2(0,T)> - (4.13.26)

holds for every v > vo.
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Proof. We apply Theorem 4.1.1. Let X = e "L%(Qr), Y = HY(Qr) and Z =
e "L2(0,T) x e L2%(0,T) x L?(0,1). Defne A :Y - X, U:Y - Z &:Y = Z
by

Ao =Ly, Vo= (Moypjz—0, —Miv@z=1,Pli=0), P = (Cpjan, Pu=r)-
for ¢ € Y. The variational equation (4.9.2) can be written as

(e7*"u, Aw)x = (72" f,w)x + ((e7*" g0, =791, u0), Yw) 7 (4.13.27)

for all w € W = ker ®. The existence of a solution for (4.13.27) satisfying (4.13.26)
follows the same lines of argument as in the proof of Theorem 4.10.1 thanks to the
dual version of the a priori estimate (4.13.17). The uniqueness of weak solutions
follows from the uniqueness of weak solutions for homogeneous problems stated in

Theorem 4.13.3. O]

To close this section, we show that the weak solution of (4.9.1) given in Theorem
4.13.9 is a strong solution.

Theorem 4.13.10. In the situation of Theorem 4.13.3, the weak solution u is a
strong solution, uw € CL*(Qr) N E(Qr). There exists a sequence (u;); C HY(Qr)
such that uj — u in CL*(Qr) N E(Qr) and ujjoq — ujpq in L*(0,T). Furthermore,
there exist o = Y0(0, K,K) > 1 and C = C(o, K,K) > 0 such that u satisfies the
energy estimate

6_27T||U”20L2(QT) + ’YHB_wUH%%QT) + ||e_7tu|80||%2(0,T)
1, _ _
<€ (ol + 2l A + I ol ) (4.13.28)

for every v > 7.

Proof. Suppose that ug € L?(0,1). Let (ugj); C H'(0,1) be such that ug; — ug in
L*(0,1). Let uj be the weak solution of the Cauchy problem

LUjC = O, ch|t:0 = Uojy,

where ug; is extended to the whole of R. From Theorem [9, Theorem 2.9], u;. €
CHY(Qr) ¢ H'(Q7), and so Bujean € H%(O, T). Using Green’s identity we have

T T
/ Uje L;@dx dt = _/0 Blvujc|m:1 - Myyp dt + /0 BOquc|m:0 - Moy dt

T

1
+/ ugj * Ple—o dw (4.13.29)
0

for all o € H'(Q7) such that Cyjaa =0 and pj—p = 0.
Consider the homogeneous initial-boundary value problem
Lyujp = f, Byujpjon = 9 — Bujeaq, Ujp|t=0 = 0.

From Corollary 4.13.6 this problem has a strong solution and hemce1 for each positive
integer j there exists w;, € HY(Qr), F; € L*(Qr) and G; € Hz(0,T) such that
Lywjn = Fj, Bywjpjaq = Gj, wipji—o = 0,

1
lwin = winllB@Qr)yncr2@r) + 1Wjnon — winoall20r) < ;
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and

1
1E5 = fllz2@r) + 1G5 — (9 — Bujgaa)l 2201y < 5

Thus wj;, satisfies the variational equality

T
/ wjp, - Lipdedt = / Fj-goda;dt—/ Gij - Miypdt
T T 0
T
n / Goj - Mowp i (4.13.30)
0

for all ¢ € H'(Q7) such that Cyjan = 0 and @j—7 = 0.
Define w; = wjj, + uje. From (4.13.29) and (4.13.30), it can be seen that w; €
H'(Q7) solves the initial-boundary value problem

Lyw; = Fj, vaj\aﬂ =Gj+ Bujc|6flu Wj|t=0 = Uoj-

Applying the a priori estimate (4.13.17) for w; —wy, and using F; — f in L*(Qr) and
Gj+ Bujco — g in L?(0,T) show that (w;); is a Cauchy sequence in CL?(Qr). Let
w be the limit of (w;); in CL?*(Qr). Thus w is a strong solution of the inhomogeneous
IBVP (4.9.1). Because strong solutions are weak and weak solutions are unique,
we must have u = w where u is the weak solution of (4.9.1). It can be checked
that (w;); C HY(Qr) is an approximating sequence for u satisfying all the desired
properties stated in the theorem. Applying the a priori estimate (4.13.17) to w; and
then passing to the limit proves (4.13.28). O

We end this section with a simple remark that will be used in Section 4.20.

Remark 4.13.11. According to Green’s identity (4.10.2) and Theorem 4.13.10, the
weak solution u of the IBVP (4.9.1) satisfies

T 1 T 1 T
// u-Lypdrdt = / f-gpdmdt—/ Ay(t, Du(t, 1) - (t, 1) dt
0 Jo 0 JO 0
T 1

4 /0 Ayt 0)u(t,0) - o(t, 0) dt — /0 (T, 3) - (T, z) dz

1
—I—/O uo(z) - (0, x) dz.

for every ¢ € £(Qr) . In particular, (4.9.2) holds for every ¢ € £*(Qr) with the
properties Cpjaq = 0 and @—p = 0. On the other hand, if u satisfies (4.9.2) for
every ¢ € £*(Qr) such that Cyjpq = 0 and @—r = 0 then v must be the unique
solution of (4.9.2).

4.14 SOME CLASSICAL SOBOLEV ESTIMATES

Our next goal is to prove the regularity of weak solutions for boundary value problems
and initial-boundary value problems where the coefficients are smooth. Again the
results rely on a priori estimates, but now in the setting of Sobolev spaces. In
preparation we state the following various results on Sobolev spaces.

Proposition 4.14.1. Let Q be an open cube or a strip in RE. For all real numbers
s,t > 0 such that s+t > 0, if u € H*(Q) and v € HY(Q) then uwv € H"(Q)
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for all 0 < r < min(s,t) such that r + d/2 < s+ t. Furthermore, there exists
C=C(r,s,t,Q) > 0 such that

lwollgr ) < Cllullgs@ vl g @)
In particular, H*(Q) is a Banach algebra for all s > d /2.

Proof. The proof follows from a well-known result in the case Q = R%, e.g. [9,
Theorem C.10]. Indeed, we recall that given a real ¢ > 0 there exists a continuous
operator F, : H1(Q) — H(R?) such that (Equ)jq = v and

[ Equll praray < Cyllull e

for some constant C;, = Cy(Q) > 0 independent of u € HI(Q), see e.g. [1, p.
207-208]. Then wv = (Esu Ew)q € H"(2) and

|wollgr@) < |Esu Byl grgay < CllEsul| s mayl| Eevl| geray < Cllullgs @ 1ol g ()
This proves the proposition. O

By induction, if s1,...,sy > 0 are real numbers such that s; +---+ sy > 0 and if
u; € H%(Q) forall 1 <4 < N then ug ---uny € H"(2) whenever 0 < r < minj<;<y $;
and 7+ d/2 < s1 + - -+ + sy, and moreover, we have the estimate

s+l < Clut sy -+ N o (4.14.2)

for some C' > 0 independent of u; for 1 <i < .
In a similar way the following commutator estimate can be shown.

Proposition 4.14.2. Let Q be an open cube or a strip in R, s > [d/2]+2, a € H*(Q)
and v € H*"1(Q). Then for all 1 < |a| < s we have

1[0%, alul| p2(q) < Cllallms o) lull groi-1(0)-

Proposition 4.14.3. Let Q be an open cube or a strip in RY, s > d/2 and F €
¢ (R) such that F(0) = 0. If u € H*(Q2) then F(u) € H*(Q2) and there exists a
continuous function C : [0,00) — [0,00) such that

1F' ()l s @) < Cllull Loo ) 1l 75 (0)-

Proof. The proof uses the same ideas as in the proof of the Proposition 4.14.1. We
note that the extension operator E, : H4(Q) — H9(R%) can be chosen, e.g. successive
application of Seeley’s reflection argument [1, p. 84], in such a way that ||ul| ;e (ray <
C(q, Q)||ul|Lo(q). Using the same extension argument as above and [9, Theorem
C.12] one can prove the proposition. ]

Similarly, using [9, Corollary C.3] one can prove the following.

Proposition 4.14.4. Let Q be an open cube or a strip in R%, s > d/2 and F €
¢ (R). Then there exists a continuous function C : [0,00) — (0,00) such that for
all u,v € H*(Q2) we have

| F(u) = F ()| s ) < Clmax(||ull s s [[0] s () ) | — [ s ()
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4.15 A PRIORI ESTIMATES IN SOBOLEV SPACES WITH TIME INTERVAL R

The proof of the regularity of solutions also relies on an a priori estimate, but now
in weighted Sobolev spaces. All throughout this section we let Q = (0,1). Let v €
H™(Rx ) taking values on a compact set K C U, [[v][yy1.00mx0) < K, [|[0]|gmmxo) <
R and u € 2(R x Q). First we estimate in terms of the norm || - | e, where m >3
is an integer. We divide the derivation of the estimates into pure time derivatives
and mixed derivatives.

4.15.1 Estimates on Time Derivatives
Applying the a priori estimate (4.6.4) to w = 0fu for a = 0,1,...,m one obtains
VNOFull 22 my) + 1105 w) 00l L2 (r)

1
<c <HL381?UHL2(Q;L2(]R)) + HB(atau)aQ\N(R)) . (4.15.1)

ﬁ

Since B is a constant matrix, the boundary terms on the right hand side of (4.15.1)
are given by

> A B W el = YY" I07 (Buo)llram)
a=0 a=0

= |[Bujgallum®)- (4.15.2)

Here the trace and the derivative commute since u is smooth. The term L30{u is
more involved. We rewrite it as

LY0%u = A(v)OX(A(v) 1 f) + A(w)[A(v) 1LY, 0 u (4.15.3)

where f = Lju.
For the first term on the right hand side of (4.15.3) we write

A9 (A() 71 f) = A(0)97 (A(v) f) + A(v) A(0) 05 (4.15.4)

where A(v) = A(v)~! — A(0)~! satisfies A(0) = 0. Taking the L?-norm in (4.15.4)
and applying the triangle inequality

1A (A@) ™ )l z2mx0) < ClOE(A@)Fll2@xa) + Cllf e @xa). (4.15.5)

Here and below, C' is a generic positive constant which depends only on m, K and
K. Let us estimate the first term on the right hand side of (4.15.5). Since the case
a = 0 is nothing but the L2-estimate (4.6.4) we only need to consider the case where
a>1. If a =1 then 0;(A(v)f) = (0LA(v))f + A(v)0,f for which can be estimated
immediately

Y H0WA@) Pl 2exa) < CY™ Il @xo) < Cllf b rx0)-
Suppose that o > 2. Then using Proposition 4.14.1 and (1.1.18)

YN0 (A ) 2 ®x) CY" ol o @ 1f Lo ®x0)

<
< Clollae@xo)lflae @xo)
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Therefore it holds that for all a = 0,1,...,m
AW (AW) T Pl 2@x) < O+ [vllam @) | fllam@xa) — (415.6)

We can rewrite the commutator in (4.15.3) in terms of derivatives with respect to
t only. Indeed, a straightforward computation gives us

A()[A(W)ILY, 0Mu = A(v) [0, A(v) Mo + yA(W)[0%, A(v) Hu.  (4.15.7)
Writing A(v) ™! = (A(v) "= A(0)~1)+A(0)~!, applying commutator estimate Propo-

sition 4.14.2 (and this is the place where we need the assumption m > 3) in each
term of (4.15.7) together with (1.1.18) and Propsition 4.14.3 we have

YN AW)[A(W) LY, 0 ull 2 rxq) < Clivllam®xoyllull gm@xa)- (4.15.8)

Applying (4.15.6) and (4.15.8) in (4.15.3) and then taking the sum yields
> A LI ull 202 r)) (4.15.9)
a=0

< O+ [|vll pm@xe)) (Ll mm rxa) + [[ull gm@x0))-

Thus according to (4.15.1), (4.15.2) and (4.15.9) we have the following estimates on
the time derivatives

VAl L2 ) + lwgpallmm w)

C
< 7(1 + [0l @) | L3l <) + CllBujoall )
C
+ ﬁ(l + [[ollam @xo))llull gm@x0) =: ON(u,v).

It is important to note that on the right hand side, the norms of v are independent
of ~.

4.15.2 Estimates on Spatial and Mixed Derivatives

To obtain estimates involving derivatives with respect to & we use the operator L.
We show by strong induction that

’Ym_k_aH/Z”afa?UHL?(RxQ) < CN(u,v)

holds for all k and « such that £ + @ < m. The case k = 0 only involves time-
derivatives and hence the basis step was already established. Suppose we have shown
that for all 5 and a such that j =0,...,k and j + o < m we have

YU g gy < ON () (4.15.10)

We show that this also holds for £ + 1 and « such that k + 1 + a < m. First, by
applying 0% to the equality

e = A()(f — Opu — yu) + A0) "L f — dyu — yu), (4.15.11)
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one obtains
o = BOPTAW)(f — du— )]
+ A0)"H(0kor f — dFor Ty — ok oru). (4.15.12)
The first term in (4.15.12) may be expanded using the Leibniz’s rule as

k «
OO AW)(f — 0w — )] = 33 endh 07 Aw) B0L(f — Bu — yu) (4.15.13)

§=0 1=0

for some nonnegative constants cj;. By the induction hypothesis (4.15.10) one has
already an estimate for the second term in (4.15.12)

ymh—a=1/2) A(0) L (9RO f — ooty — ’Ya];atau)HL?(RxQ) < CN(u,v). (4.15.14)

Next we estimate the terms appearing in the sum (4.15.13) and for this we consider
different cases.
Case 1. If k—j+a—1 < 1 then one has the estimate |5 792" A(v) M oo (mx0) < C,

while the terms 4™+~ 1/28%0,l;+1u and ™k O‘H/z&jﬂ@éu can be estimated using
the induction hypothesis: Since j <k, k4+a > j+land v > 1

kT2 9k 9 A(v) 9201 (f — Oy — yu) || r2(rxa)
< Oy (| fll iy + 10900 ull 2 mxay + V1020l 2 rx0))

1 NN ,
<C’<ﬁ7m DN £l s sy + 7™~ 9D D2 90904 | 2y

A0l sy ) € CN o)

Case 2. If k —j+ a—1 = 2 then we first estimate with respect to time and
then integrate with respect to space. In the following, for simplicity we write u, v, f
for u(-,z),v(-,x), f(-,x), respectively. Using an L? — L™ estimate, the embedding
HY(R) < L®(R) and v > 1

’mek*a*l/Qnaffja?_lA(U) QLOL(f — Opu — yu)| 2 (R)

< Clloll @™ 2100 f |l ) + 1020, ull i gy + Y 1020kull 12 ()
< Wl + Il )
and integrating with respect to = over  and applying the embedding H3(R x Q) —
L>(Q; H*(R))
YR 2 9k op A(v) 030K — D — yu) || e (RxQ)

f||UHH3(R><Q (Hf”Hm(]RxQ) + HUHH’"(RXQ)) < CN(u,v).

Case 8. If k—j4+a—101>3then j+1+3 < k+a<m and we have

i A (L s P

< Ol g xayy™ 20200 | oo ()
< Clollgmrxeyy™ T2 ul| s )

m—(j+l+3)—1/2’

< Clvllam@xo)y |ul| 143 (R % 0)

C C
< 7||UHH’"(R><Q)HUHHIY"(]RXQ) < ﬁN(uv v)

ﬁ
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and similar for the other terms 85 79~ A(v) 220 f and 045792~  A(v) d0lu. Com-
bining the three cases in (4.15.13) one has

AR 20k 0P (AW (f — D — w2y < CN(wv)  (115.15)
and taking the sum of (4.15.14) and (4.15.15) in (4.15.12) we have
'Ym_k_a_l/QHalg—i_latau”L%RxQ) < CN(“? 1))

which establishes the induction step.

4.15.3 Weighted-in-Time Estimates

The above estimates give us finally the estimate
\ﬁ”“”H;ﬂ(RxQ) + ||u|89||H1;1(R)

1
<C <ﬁ(1 + |0l @) | L3l e rxe) + ||B“89HH4”(R>)

C
+ ﬁ(l + [[ollm @xao))llull gm(rx0) (4.15.16)
for all u € 2(R x Q) where C = C(K, K) > 0 is independent of u. Choosing v large
enough, the last term on the right hand side of (4.15.16) can be absorbed by the
first term on the left hand side and therefore

1
Allull i xsy + lpellig ) < C <WHLZUHH¢(RW> ; HBumHHm))u.m

where the constant C' > 0 also depends only on the W1*°-norm and H™-norm of
v and the compact set K. The passage from (4.15.17) from (4.15.16) by absorption
would not be possible if we have the H'-norm of v in (4.15.16) instead of its H™-
norm.

Replacing u by e~ "u, which is still in Z(R x ) provided that u is, noting that
L} (e ") = e " L,u, and then by a density argument we have the following a priori
estimate.

Theorem 4.15.1. Let v € H™(R x Q) taking values on a compact set K C U,
[vllwremxo)y < K and ||v]|gm@xq) < R. Then there exist Cp, = Cnpn(K, K, R) >
0 and Vm = Ym(K,K,R) > 1 such that for every v > =, and for every u €
e H™ (R x Q) it holds that

\ﬁ”eﬂtUHH;n(RxQ) + He_%uwQHng(R)

1, _ _
S Cm <ﬂ|‘€ ’ytLvUHH"ryn(]RXQ) + ||€ ’th’LLwQHHZ;n(R)) . (41518)

The proof of Theorem 4.15.1 given above follows the ideas given in the proof of
Theorem 9.7 in [9]. However, we have a different estimate in (4.15.6). In [9, p. 252],
the authors seem to use the estimate

lofll 2 @ertmm @) < Cllvllz;mm @)1l 2@t Hm(r))

which does not hold in general. We resolved this by estimating in terms of the norm
in H'(R x Q).
The a priori estimate (4.15.18) will be used in pure boundary value problems.
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4.16 A PRIORI ESTIMATES IN SOBOLEV SPACES WITH TIME INTERVAL
(—OO,T]

While the a priori estimate derived in the previous section is intended to boundary
value problems, the a priori estimate in this section is designated to solve homoge-
neous initial-boundary value problems. All throughout this section 2 = (0, 1).

Suppose that v € H™((—o00,T] x Q) and u € Z((—o0,T] x ) such that ujo = 0.
Then thanks to (F'S) the a priori estimate

lu®)llz20) + VI lull 202 (—o0,)) + Wl L2 (—00,m)
1
<C 7LZ’LL 2(0:L2(—oco + [|Bu 2(_oo >
(\ﬁ” I 22(s02(—00,1]) + 1Bl £2(—00,1]

holds for all v > ~o(K,K) > 1, see Theorem 4.13.7. The same procedure as in
Section 3.1 gives us the inequality

Z’Ym NoFu®)l @) + Vllull m((—co,m1x0) + lwoall B (—00 1)

( + [[oll 5 ((—o0, Ty x ) IL3 Ul 1 ((—00,11%02) + ClIBuppq | o (—o0, 1)

%\

C
+ — @+ ol am (o rix) Ul o (00 m1x0) =t CN(u,v).  (4.16.1)

val

We proceed by induction for the pointwise in time estimates for the spatial deriva-
tives. Assume that for k£ with £+ o < m we have already shown that (the basis step
k = 0 is nothing but the L2-estimate, which is already given by (4.16.1))

,ymfkfaual‘gata ( )HL2 < CN(U U) te (—OO,T].

We show that this is true for k+1 when k+ 1+« < m. Recall our formula (4.15.12),
and let J denote the first term, i.e., J := 980 [A(v)(f — dyu — yu)]. The following
weighted Sobolev estimate will be used.

Proposition 4.16.1. For every w € H'((—oo,T] x Q) and v > 0 we have

1
[l F oo (o200 < YNWIT2((—n0m1x) + gHatw||%2((_oo,T}xQ)' (4.16.2)

Proof. By a standard density argument we may suppose that w € 2((—oo, T| x Q).
Let Rg < 0 be such that w vanishes for all ¢ < Ry. For simplicity we assume that w
is scalar-valued. Let R < 2Ry — T and M <71 < T. Using Young’s inequality

(7, 2)? :(/awwtx>

t, x)w(t, x)dt

IN

/ wt,
R
T 1 T
7/‘m@mﬁa+/\mwmﬁa
R Y JR

Letting R — —oo we have

T T
1
\w(r,x)]z < 'y/ \w(t,x)\Q dt + 'y/ |wt(t,x)]2dt

—00 —00

for all 7 € (—o0,T] and x € €. Integrating the previous inequality over Q and taking
the supremum over all 7 € (—o0, T] proves (4.16.2). O
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Using (4.16.2) together with the induction hypothesis yields an estimate for the
second term in (4.15.12)

oD R0 f (1) — 0507 T u(t) — 10507 w(t) |l 2oy < ON(u,0).  (4.16.3)
As in the computation of mixed derivatives one obtains
RO T 2 coorixy < CN(u,0)
A D=2 9, T 2 (oomixg) < CN(u,v).
Thus by the weighted Sobolev estimate (4.16.2) we have the estimate
YD) 120
<C <7m_(k+1)_a+1/2||J||L2((foo,T]><Q) + vm_(k—‘rl)_a_lm||8tj||L2((foo,T}><Q)>
< CN(u,v) (4.16.4)

Combining (4.16.3) and (4.16.4) proves the induction step.
Therefore we have the full estimate

> N0 u(t)]| 2oy + VAl (oo, <0 + wja0ll o (—c0,1)
1B|<m

C
< ﬁ(l + [0l zm ((—o0 Ty IIL3U 0 ((—00,71%0) + CllBujg | mom (oo 1)
c
+ ﬁ(l + [0l zm ((—o0, Ty x ) [l F20 ((~ 00,71 92)

for all t € (—oo,T]. Now replacing u by e 7u, choosing v large enough, so that
the last term on the right hand side can be absorbed by the second term on the left
hand side, and finally using the norm-equivalence

> AN e u) ey = D APl 0% u(t) ] 2o

|8]<m [B]<m
we have the following a priori estimate.

Lemma 4.16.2 (A Priori Estimate in Weighted Sobolev Spaces). Let m > 3 be an
integer. For each v € H™((—00,T) x Q) satisfying ranv C K, [|[v|ly1,00 (=00, 7]x0) <
K and ||v]| gm((—so,r1x0) < R and for all u € H™((0,T) x Q) such that uj—g = 0,
there exist C = C(KC, K, R) > 0 and v, (K, K, R) > 1 such that for all v > 7, and
for all T € [0,T] the following a priori estimate holds

Yo e 0% ()| 2y + VANl w0,y x62) + lujoallamo.7)

laj<m

1, _ _
< Cn, (\ﬁle " Lyull g (0.1 <) + lle 7tBU|BQ||H§”(0,T)> : (4.16.5)

The a priori estimate (4.16.5) is different from those in [9] and [55] because in
(4.16.5) the constants C,, and ., depend only on the H™-norm of v and not on its
HZ"-norm.
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4.17 GAGLIARDO-NIRENBERG TYPE ESTIMATES

For initial boundary value problems with zero initial conditions the a priori estimate
(4.16.5) will be used. The next step is to derive an a priori estimate that can be
used for problems that are not starting initially from zero. In preparation we borrow
the Gagliardo-Nirenberg type estimates in [55, pp. 69—71]. In this section, we let
Q=(0,1).

Theorem 4.17.1 (Gagliardo-Nirenberg). Let m be a positive integer and T > 0.
Then there exists C' > 0, independent of T, such that for all u € H™((—o00,T) x Q)
and 1 < |a| < m we have

1- |a\/m || |||C¥|/m

107 ull 2m/1a1 (oo x) < Cllullpoe (oo ryxa) 00, T)x )"

A similar estimate also holds for uw € H™(—o00,T).
The following is a modification of Proposition 4.5.5 in [55].

Theorem 4.17.2. For allm € N there exists C = C(m) > 0 such that for all T >0
and ¢ € H™(0,T) and 1 < j < m we have

W(j)HLM/j(o,T) < C(Km,T(w)l_m/j(WHHM(O,T) + KmI(lb))m/j + K7 (¥))
where .
Ko (¥) = 1/l om + > [#7(0)
i=0

In particular, .

Proof. We adjust the proof in [55]. Given ¢» € H™(0,T), let 1 € H™(R) be such

that wgi)(O) = ¢@(0) for all i = 0,...,m — 1 and using the fact that the trace
operator has a continuous right inverse

m—1
41 grmmy < C Z W) =0 Y [wD(0)], (4.17.1)
7=0 =0

where C' > 0 is independent of 9. Let 19 = ¢ — 11 € H™(0,T). Then (4.17.1) and
the Sobolev embedding theorem H™(R) — L°*°(R) imply

[l Loopo,ry + o1l oo ()

2l Locfo, ) <
< [l peoqo,m) +CHw1HHm < CKpr(¥) (4.17.2)

and
l2llem 0,0y < 1m0,y + 11l Em o) < 1YIEm 0 + CKmr().  (4.17.3)

By construction it holds that wéi)(()) =0for:=0,...,m—1 and therefore extending
19 by 0 for t < 0 we have 19 € H"™(—00,T). By the Gagliardo-Nirenberg inequality

1—j5/m m
Cllall 2 102l (4.17.4)

19 omsimy < cuwluzos{gwlu”m < cuwluHm(R). (4.17.5)

IN

195”1l Lo (—oom)
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Thus (4.17.2)—(4.17.5) imply that

16D omisory < 190 2misory + 1657 | amss 0.1y
< Cloall iy elim oz + Clln lm ey
< CEmar )™ (¢l im0y + Kma ()™ + K (1))

This proves the first part. The second part follows immediately using the elementary
inequality a'™"(a +b)" <a+b for a,b >0and 0 <r < 1. O

Theorem 4.17.3. For all positive integers m there exists C = C(m) > 0 such that

Jor all T >0, w € H™((0,T) x Q) N L>((0,T) x Q) such that &]uy—g € H™ ()
for 0 <j <m—1 we have

10%wl| 2101 (0,1)x2)
< C(Kmr ()™ ([ g 0,7y x02) + Kon (W)™ + Ko (u))
for 1 < |a] < m where
m—1
Konr(u) = [|ull pe 0,y x) + D 107(0)]] grm-i(ay.
i=0
In particular,

||aau||L2m/|a\((o,T)xQ) < C(H””H’”((O,T)XQ) + f{m,T(u))'

Proof. The proof is similar as in the previous theorem, see [55, Proposition 4.5.6]
for the details. O

A function F' is said to be a nonlinear function of u of order & if
N
Flu)=> Y Fape@0™u,...,0%
=1 |ai|++|ai|=k

where a; € Ng and F) o, . o, are multilinear mappings depending smoothly on u and
there exists (a1, ..., o) such that |oq| + -+ |oy| =k and Fjq, . o #0.

Theorem 4.17.4. Let m be a positive integer and F' be a nonlinear function of order
k < m. There exists C' > 0, which depends continuously on its arqgument, such that
for allT >0 and v € H™((0,T) x Q)NL>®((0,T) x Q) such that & uy_q € H™ ()
for0<ji<m-1

1F (@) g2/ (07 x62) < CEonr () ([l rm (0.7 x2) + Ko, (w))F™.
In particular,

IF ()| om0y x0y < CEma@)(lull gm o)) + 1)-

where C > 1. A similar statement holds for ¢ € H™(0,T) where m € N.
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Proof. For simplicity we assume that u is scalar valued. First note that we have
[0 (w) || oo 0,7y x2) < C(llull oo (0,1)x))- Suppose that |a1|+ -+ |ay| = k. Define
p; = @—T_l, where we use the convention that p; = oo if a; = 0. Then Zl 1

i=1 p;
S ol — k- By Hglder’s inequality and Theorem 4.17.3

i=1 2m

[0% w0 ul| am/k 0.1y ) < 10 ull o1 0.1y %) -~ 10% ]| Lo (0,1 <)

l
< [T CRrr ) 2P ((lull gm o1y <) + Kir(w)P + Ky (u)*7)
=1

l
< C'Ki () M TT(Null 0.0y x) + K (w))/Pe + Ko (u) /)
1=1

!

< (QC)lKk,T(U)lfk/m H(HUHH’"((O,T)XQ) + Kk,T(U))Q/m
-1

< C (K (w) ([ull gre o,y + EKrr(w)™.

Taking the sum of all terms we obtain the estimate of the theorem. O

Using classical Sobolev embedding theorems and the identity u(t) = u(0)+ fg u'(T)dr
for a.e. t € [0, T] and for u € W1([0,T]; X) where X is a Banach space, the following
estimates can be shown by induction.

Theorem 4.17.5. Let m be a nonnegative integer and T' > 0. There exists a C' > 0
independent of T such that for all u € H™2((0,T) x Q) we have

m

im0y < D N0Fw—ollwm—r.oo ) + CVT ||ull grmsz(o,1)x0)-
k=0

Theorem 4.17.6. Let m be a positive integer. There exists C' > 0 such that for all
T >0 andue H™(0,T) we have

m—1
ull rm—10,7) < C <Z VT (0)] +T||U||Hm(0,T)> .

=0

Also, there exists C > 0 such that for all T >0 and w € H™((0,T) x Q) we have

m—1
[l gm—1(0,7yx02) < C (Z VT |0} ujgoll grm-i-1(q) + THUHHm((o,T)xQ)> :
1=0

4.18 REGULARITY OF SOLUTIONS FOR BVP

Thanks to the a priori estimates in Sobolev spaces, we can show additional regularity
of weak solutions for the pure boundary value problems under additional smoothness
conditions of the data as well. In this section, we assume that the boundary matrices
By and B; are constant.

Theorem 4.18.1. Consider the framework of Theorem 4.6.6. Suppose in addition
thatv € H™(R x (0,1)) for somem > 3. If f € e""H™(Rx (0,1)) and g € " H™(R)
then the weak solution of the boundary value problem

Lyu=f, Bujgg =g (4.18.1)
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lies in " H™(R x (0,1)) and satisfies ujgo € €' H™(R) and the energy estimate
\FYH@_WUHH;n(Rx(o,U) + ||€_7tu\a§z||H;n(R)

1 _ _
<Cp <ﬁ||e *Flapsoan + I sl (1182

for every v > v, where the constants v, and Cy, are as in Theorem 4.15.1.

Proof. We follow the proof in [9, pp. 281-282]. Let (vj); C Z(Rx (0,1)) such that
vj = v in H™(R x (0,1)) and that for each j the range of v; lies on a §-neighborhood
of the range of v for some fixed § > 0. From Theorem 4.10.6 the weak solution of
the boundary value problem

Lyu; = f, Bujian =g (4.18.3)

satisfies u; € e H™(R x (0,1)) and u;jpo € H™(R). Moreover, for every j there
exists a sequence (uj;); C €7 HJ*"1(Rx (0, 1)) such that uj; — u; in ¥ H*(Rx (0, 1)),
Ly;uj; — Ly;uj = fin e”/tHfY”(R % (0,1)) and uj;90 — ujjaq in thHfY”(R). Applying
Theorem 4.15.1 to uj; and passing to the limit 7 — oo we obtain the energy estimate

\ﬁ||€_7tuj”H;n(Rx(o,1)) + ||e_7tuj|8Q”HI/”(R)
1 _ _
< o (I M ony + e olapm ) (@15

This implies that (e”"u;); and (e "ujpq); are bounded in HI*(R x (0,1)) and
H (R), respectively. Therefore, up to a subsequence we have e*Wtuj — @ in Hg”(]R X
(0,1)) and e "u;j9q — w in HJ*(R) for some @ € HJ*(R x (0,1)) and w € HI"(R).

Now, we deviate the proof from [9]. From (4.18.3) the difference u; — u;, satisfies
the boundary value problem

Ly, (uj —ug) = —(A(vj) — A(vg))Ozug,  B(uj — ug)jan = 0. (4.18.5)

According to (4.10.4) there exists constants 79 > 1 and C' > 0 both depending only
on the range of v; and ||vj[yy1.00(mx (0,1)) Such that

Ve (g — w) |l 2 rxa) + lle™ " (uj100 — wron) 2 )

c . _
< ﬁ”e Y Dy || Loo mx (0,1) 1A (v7) — A(vr) | L2 @ (0,1) (4.18.6)

for every v > 9. By construction of the sequence (v;);, we can see that vy and C can
be made independent of j and the mean value-theorem implies that A(v;) — A(v)
in L2(R x (0,1)). Moreover, the sequence (e~ 0,uy )y is a bounded in L>(R x (0, 1))
by the Sobolev Embedding Theorem. Thus, it follows from (4.18.6) that (e "u;);
and (e "u;9q); are Cauchy sequences in L*(R x (0,1)) and L*(R), respectively.

By interpolation we have e™"u; — @ in H*(R x (0,1)) and e u;jpq — W in
H?*(R) for every s € [0,m). In particular, the trace theorem implies that @ = 0.
From (4.18.3)

Ly, (e " uj) +ve Muy = e, Be_wuj‘ag =e g, (4.18.7)
Passing to the limit j — oo in (4.18.7) gives us

Lyi+~yi=e"f,  Bljgg=eg. (4.18.8)
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Setting u = e € Y H™(R x (0,1)) we have ujgo € e H™(R) and from (4.18.8),
u satisfies (4.18.1). The energy estimate (4.18.2) follows by taking the limit inferior
in (4.18.3) and using the inequalities

o —t —t
thgg}fHe Tuillam ) = e ullHm @ (0,1))
lim inf [[e ™" u; m > 7t m(R)-
im in le” " woallamm®) = e woal mm )
This completes the proof of the theorem. O

4.19 REGULARITY OF SOLUTIONS FOR IBVP

We would like to extend the regularity results in the previous section to initial-
boundary value problems. The first step is to prove additional time regularity in
Theorem 4.13.9 in the homogeneous case under additional smoothness assumptions
on the frozen coefficient v and on the data f and g. As before we extend the data
f and g by zero for negative times and consider the corresponding pure boundary
value problem and this enables us to use the results of the previous section. However,
we need to extend the frozen coefficient to all times. This is possible thanks to the
following lemma.

Lemma 4.19.1. Let m > 3 be a positive integer and v € H™((0,T) x ) be such that
lvllem(0,1yx0) < R, [[vllwieeo,r)x0) < K and the range of v lies on a compact and
convez set KC containing 0. Then there exist © € H™(R?) and (¥¢)e=o C € (R?) such
that Oy, ryxq = v, [V — Ol|gmwey — 0 as € — 0", and for every e > 0 sufficiently
small we have ||| gm @2y < C(T, R), ||[Uellwr.omz) < C(K) and the range of ¥, lies
on a d-neighborhood of K, for a fixed § > 0.

Proof. Let 8 € €5°([0,00);[0,1]) be such that #(0) = 1 and 6 (0) = 0 for every
1 <j<m-—1. For a > 0 define 6, : R — [0, 7] by

0(—s), 5 <0,
Oa(s) = { 1, 0<s<a,
6(s—a), s> a.

By construction 6, € H™(R). Let v € H™(|-T,2T] x [—1,2]) be the extension
of v using Seeley’s reflection argument [1, p. 84]. The construction of ¥ implies
that H27||W1,oo((,T72T)><(,1,2)) < C(K) Define ﬁ(t,ﬂj) = HT(t)(gl(I)ﬁ(t,l‘), where v is
extended by zero outside [—T,27T] x [—1,2]. Reducing the support of 6 it can be
shown that ¥ € H™(R?) and the range of © lies on §/2-neighborhood of K. Let
Ue = pex ¥ € €°(R?) where p, is a standard mollifier in the variable (¢,z). By
definition, ¥ = v on (0,T) x Q and ||¥c — || gmg2) — 0 as € — 0*. The remaning
properties can be easily checked using the Sobolev embedding theorem. ]

In this section we suppose that the boundary matrices By and By are constant.

4.19.1 The Homogeneous Case

Theorem 4.19.2. In the framework of Theorem 4.13.3, suppose in addition that the
function v € H™((0,T) x Q) for some integer m > 3 and ||v|| gm0 r)x0) < R. If
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fe H™((0,7) x Q) and g € H™(0,T) satisfy (aff)“:() =0 and (Btjg)‘t:o =0 for
0 <j<m-—1 then the solution u of the IBVP

Lyu = f, Bujpg = g, Upy—g = 0 (4.19.1)

lies in CH™ ([0, T]x Q) with trace ujpn € H™(0,T) and (8gu)|t:0 =0for0<j<m-—
1. Furthermore, there ezist Cy, = Cp, (K, K, R,T) > 0 and vy = v (K, K, R, T) > 1
such that for all v > 7y and for all T € [0,T] we have

> ymlele [ 0%u(7) | 2oy + Ve ull g 0.y x) + e wjaall o)

laj<m

1 _ _
<Cn <WH€ "l xe) + e VtQHH:,n(o,T)) : (4.19.2)

Proof. Let f € H™(R x ) and § € H™(R) be extensions of f and g both vanishing
for t < 0. Such extensions are possible due to the assumptions on f and g at ¢t = 0.
Let @ be the solution of the pure boundary value problem

Lyi=f mRxQ,  Blipg=g nR,

where ¥ is the extension of v in Lemma 4.19.1. From Theorem 4.18.1 this BVP
has a unique weak solution @ € L*(R x Q) with trace ipq € L?(R). Furthermore
i€ H™(R x Q) and )9 € H™(R). From the proof of Theorem 4.13.2 u := 1o 1) €
H™((0,T) x ) is the solution of the homogeneous IBVP (4.19.1) and it satisfies all
the conclusions of the theorem except the energy estimate (4.19.2) and the additional
regularity in time, see for instance the proof of Theorem 4.11.4 with Theorem 4.16.2
in place of Theorem 4.11.2. To see this we use the usual weak = strong argument
as suggested in in [9]. We will do this step because this will reveal some important
remarks that are required in the proof of Theorem 4.19.5 below. Let p. be a standard
mollifier with respect to ¢ chosen in such a way that p. x @ =: u vanishes for ¢ < 0.
The notation Rceu = p * u will also be used. Then u. € H™(Q; HT>(R)) where
HY(R) = (,,c5 H"(R)
The next step is to show additional regularity in . Note that

A Ly = A7 oy + 9,0 = A f

Let o € N2 be a multiindex with || < m. Applying 9% to both sides of the latter
equality gives

ATL0,(0%1) + 0,(0°1) = 0°(A; ' f) + [A; "0y, 0%t (4.19.3)

Since the commutator [A}'d;, 0% is of order |a| and % € H™(R x ), it follows
[A510;, 0% € L*(R x Q). Mollifying both sides of (4.19.3) with respect to time
yields

AS101(0%e) + 0y (0%u) = Re(0°(A5 1 f) + [A; 0y, 0%)0) + [A5 10y, RJO%11.(4.19.4)

Let F, be the right hand side of (4.19.4). Solving for 9, (0%u.) shows that 0, (0%u,) €
L*(R x Q). Therefore u. € H™ (R x ). In other words, mollification in time
gives additional regularity in time, and together with the PDE one has additional
regularity in space.
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As ¢ — 0 it holds that
L30%u — Ly0™a, in L*(R x Q). (4.19.5)
Indeed, we have R (9%(A; ' f) + [A; 10y, 0%i) — 0%(A;'f) + [A; 19y, %]t and also
[A5'0, R0t — 0 both in L2(R x Q), where we used Theorem C.1.1 for the latter.
Now (4.19.5) follows from
(A5 10, 0% = [A ' Ly, 01t = A7 Lyd®u — 0°(A5' f)

since [0y, 8%]it = 0 and Lyt = f.
Applying the a priori estimate (4.16.5) to u — ue € thH;”H(]R x 1) one obtains

Yo e sup (0% (ue — wer) (7)) + (e = ue) el om)

la|<m T7€[0,T

1 _ _
< Cm (\ﬁ”e VtL;}(ue — UGI)HH’ryn((O’T)XQ) + H€ ’YtB(Ue - Ue’)l@Q”HZY"(O,T)) . (4'19'6)
Since g = R.g vanishes for t < 0 and B(ue)jaq = Re(Bijpq) = ge we have

”e*VtB(ug _ ue')|aQHH§"(0,T) < He*’yt(ge - ger)|aQHH;”(R) —0

as €,¢ — 0. On the other hand, since u. — u vanish for ¢ < 0 and the function
t > e~ is uniformly bounded on compact intervals we have

e Ly (ue — ue )| m((0,m)x0) < CllAs H;n(RxQ)HAgILTJ(Ue — ue )| m(Rx9)-

Using commutators we can rewrite
8Q(A;1L{,(u€ —ue)) = [0%, A;lLﬁ](ue — Ugr) — Agngaa(ug — Uer).

Because u, — % in H™(R x Q) and [0%, A} L] is of order |a| < m, the commutator
term on the right hand side tends to zero in L?(R x ) as €,¢ — 0. On the other
hand the second term also tends to zero in L?(R x §2) according to (4.19.5). There-
fore from (4.19.6) we can see that (uy/;); and ((uy/;)90); are Cauchy sequences in
CH™([0,T] x ) and H™(0,T), respectively, and their limits are u and u g since
Uy/j —u in CLQ([O,T] X Q) and (ul/j)‘ag — Ujp0 in LQ(O,T).

It remains to establish the energy estimate (4.19.2). First let us note that

9% Lyue = [0%, Lyuc + Lyd%ue — [0%, Lyt + Ly0%t = 8°f. (4.19.7)

in L2(R x Q). Thus Lyuc — f in e'ytHIY”(R x Q). Applying the a priori estimate
(4.16.5) to uy/; € ' H" (R x Q) and letting j — oo proves (4.19.2). O

4.19.2 The Non-homogeneous Case

Now we will consider the IBVP with nonzero initial condition. For this one needs
compatibility conditions which we are now going to state. Given sufficiently smooth
functions f and wug define recursively the functions wu; : 2 — R"™ by

i—1 /.
wi(z) = 9L F(0,2) — l; (Z _z 1) NAW(0,2)dpui—1_1(z), z€Q.  (4.19.8)
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The data (ug, f, g) are said to be compatible up to order p if
Bujjpn = dig(0), 1=0,...,p.
By the embedding
H™((0,T) x Q) = HTH((0,T); H"77H(Q)) = C7([0,T]; H™ 7 7H(2))

for 0 < j < m — 1, we have agv|t:0 € H™J=1(Q). However, stronger assumptions
are needed for these traces in the general IBVP as included in the following theorem.

Theorem 4.19.3. Consider the framework of Theorem 4.15.5 and suppose that v sat-
isfies the conditions of Theorem 4.19.2. Suppose in addition that 8§v|t:0 € H™1(Q)
for all 0 < 7 <m — 1. If the data

(uo, f.g) € H™V2(Q) x H™((0,T) x Q) x H™(0,T)
18 compatible up to order m — 1 then the initial boundary value problem
Lyu=f, Bujsa =g, Uj—p = Uo (4.19.9)
has a unique solution uw € CH™([0,T] x Q) and ujpn € H™(0,T).

Remark 4.19.4. The proof of this theorem is similar to the proof of Theorem 4.11.4.
These is where the additional regularity for ug is needed. The proof shows that the
solution takes the form u = w, 7] + up where u, € H™ (R x Q) and uy, is a
solution of an IBVP with zero initial data. Therefore, according to the proof of
Theorem 4.19.2, there exists (u;); C H™1((0,7) x ) such that

uj = u, in CH™([0,T] x Q)
(uj)pa = oo, n  H™(0,T) (4.19.10)
Lyuj — Lyu, in  H™(0,T).
The extra regularity imposed on the data ug is not necessary since one can have

the same result even when it is only in H™(2). This is the content of the following
theorem.

Theorem 4.19.5. The conclusions of the Theorem 4.19.3 still hold even for initial
data ug € H™(Q).

To prove this theorem one requires the following a priori estimate. This is similar
to the one given in Lemma 4.16.2 but with additional terms for the nonzero initial
condition.

Lemma 4.19.6. For every v € H™((0,T) x Q) satisfying the conditions in Theorem
4.19.8 and for every u € H™T((0,T) x Q) we have

|ullcamo,r1x0) + llwaall mmo.r)

<C (HLUUHHm((O,T)XQ) + | Bujgqll grm (o,m) + Z HatiutonHm—i(Q)>
=0

where C > 0 depends only on T, K, K, R and ||8‘tjvlt:0HHmfj(Q) for0<j<m-—1.
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Proof. In the following proof C' > 0 will be a generic constant as in the statement
of the lemma independent of 7 € [0,7]. As before, let f = L,u and g = Bujsn. We
will use the following a priori estimate
1
Jw(T)l2) + 7||U1||L2 0,mx2) T lwaallL2 0,0
< O([lwye=oll 20y + VTN Lvw|l r2¢0.7)x0) + [Bwpall20,-)  (4.19.11)

which holds for all 7 € (0,7] and for all w € H((0,T) x ), where C = C(K, K) > 0
This follows from the a priori estimate (4.13.17) by taking v = C/7 for some C' =
C(T) > 0. By a standard density argument it is enough to prove the a priori estimate
for u € 2([0,T] x Q). Applymg 8] for j = 0,...,m to the equality L,u = f we
obtain L,d{u = f; := A(v)d] (A(v)~ 1f) A(v )[8{,A(U)_1Lv]u and B(0]u)jpn = 0}y
for j =0,...,m. Taking w = & u in (4.19.11) we have

187 u(7) || 2 () + \fHajuHL'A’ ©0.mx) + 18 (o)l 2(0,7)

< C(|0] wp—ollz2() + VT Fill L20myxe) + 1879l L20.)) (4.19.12)

We are going to estimate each term on the right hand side of this inequality. Ex-
panding the commutator in f; for j > 1 we have

A0, A(w) " LyJu = A(v) Y c;;0 (dAw) o) o (Bhu),

1<I<j

where dA is the first order differential of A and ¢;; are constants. Let us estimate
the L?-norm of each term in the above sum. If j = 1 then we immediately have
the estimate [[(dA(v) ™' 0ww)dsull 2((0.r)x0) < ClldullL2((0,7)x0)- Suppose that j > 2.
Then Hélder’s inequality implies that

105 (dA(0) ™ 0r0)3] " (el 20,y <)
< (10~ (dA®) ) 261701 (0.1 18] @) L2160 (0.7 <)

Since 8!} (dA(v)~'8;v) is a nonlinear function of dyv of order I — 1 the first factor
can be estimated using Theorem 4.17.4 by

Hai_l(dA(”)flatv)HL2<J>1>/(1—1>((0,T)XQ) < C(Kj—m(atv))(HaszHHj—l((o,T)XQ) +1)
On the other hand, the term involving u can also be estimated using Theorem 4.17.3
”@jil@tu)||L2(J'71)/<J‘fl)((o,7)><g) < C(HatuHHj*l((()ﬂ—)xQ) + Kjfl,ﬂ'(atu))
Theorem 4.17.5 and the Sobolev embedding H**1(Q) < W*>(Q) imply
Kj-1:(0u) <C (\EHU||H3((O,T)><Q) +) ||3§Ut=o||Hmi(Q)> :
i=0
Furthermore, we have HA(U)@{(A(U)*lf)||L2((0’T)XQ) < Clfllam(o1)x0)- Combining

all our estimates we deduce that, using 7 < T,

I £ill2(0,r)x0) < C <HfHHm((0,T)><Q) + [[ull fm (0,7 x0) + Z ||8fut=oHHm—i(Q)> :
=0
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Therefore,

NE

10/u(T) | 2@ + lwoel 0. (4.19.13)

<.
Il
o

m
<C (Hf”Hm((O,T)xQ) +1lgll gm0,y + Z 10 wji=oll gm0y + ||U||Hm((0,r)x9)>
i=0

For convenience we denote by N(u) the term on the right hand side of (4.19.13).
The next step is to estimate the mixed derivatives. We proceed by an induction
argument to prove that '
1050] u(T) || 12(q) < N(u) (4.19.14)

for all k + j < m. The basis step k = 0 is given by (4.19.13). Before proceeding to
the induction step, we prove the estimate in the separate case where k = j = 1. The
PDE gives us

0x0u(r) = 0(A(v(7)) ' f(7)) = 0(A(v(7)) ") deul(r) — A(v(r)) ' 0 u(r).

The estimates on time-derivatives we have shown above and the Sobolev embedding
theorem imply
10:0ru(T) || L2(0) < N (). (4.19.15)

Now we go to the induction step. Suppose that (4.19.14) is true for k and j such
that k£ + j < m. The PDE gives us

0] = 001 (A(v) ') = 0,0] (A(v) "' O)
for k+14 j <m and k > 0. On one hand, by the Sobolev embedding theorem

10507 (A(w(m) " F () e2() < ClIFllrm (0.1 %9)

for all 7 € [0,T]. On the other hand, Leibniz’s rule gives us

E g
1050 (A(v() " Osu(r) I r2g) < DD cullds ™o A(o(7) 71 0L u(r) | 12 )

1=0 =0
for some constants ¢;;. Let us consider separate cases. If K — [+ j — 7 < m — 2 then
for all 7 € [0,7]
o5 ~' 0] Alu(r)) 1950 u(T) | L2
< 10510 T A (7)) oo 1950 () | 2y
< CO5 0] A) 2o,y xe 10507 u(7) | L2y < N (w)
where the last inequality is due to the induction hypothesis. If k—[+j—i=m —1
then k+j=m — 1 and i = [ = 0 and therefore applying (4.19.15)
5~ o T Alu(r) L0 u(T) | L2y
< (105710 T A () M 2@ 107 [l L= o)

< 10y 710] 7 AW) Ml o.my:20)) (100l 20y + 10200u(7) | £2(02)
< N(u)
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for all 7 € [0,7]. Taking the sum completes the proof of the induction. Combining
the estimates for the time derivatives and the mixed derivatives gives us

> 10%u(m)lr2) + lwoellamor) < N(w). (4.19.16)
[Bl<m

Squaring this inequality and applying Gronwall’s inequality give the estimate stated
in the lemma. O

Proof of Theorem 4.19.5. Tt can be shown that there exists a sequence of more reg-
ular functions (uf), C H™FY2(Q) such that uf — wug in H™(Q) and the data
(uk, f,g) is still compatible up to order m — 1 for all k, see for instance [64] or the
proof of Theorem 4.21.2. Let u; be the solution of the corresponding initial bound-
ary value problem with data (u§, f, g) given by Theorem 4.19.3. Then the difference
w = uy — u; satisfies

Low=0 in(0,T)xQ,  Buwgg=0 in(0,7), wy—o=uf—u inQ.

Then according to Remark 4.19.4 there exists a sequence w; € H™1((0,T) x Q) such
that w; — w in CH™([0,T] x Q), Lyw; — 0 in H™((0,7) x Q) and B(w;)jpq — 0
in H™(0,T). Thus applying the a priori estimate in the previous lemma to w; and
passing to the limit [ — co we have

lur — wjllormqorxe) + [1(ur)pa — (w))aall #m o,

< O 10fui(0) = By (0) | zm-+(0y.
=0

However, by recursion we have 9ju(0) = Ui — Uj in H™~4(Q), where ug,; are the
functions defined recursively in (4.19.8) where uf is the initial term. Thus (uz)g
and ((ug)ja0)x are Cauchy sequences in CH™([0,T] x Q) and H™(0, T, respectively,
and let v and @ be their limits. Since ux — u in H'((0,T) x Q), the continuity of
the trace operator implies (uy)g0 — ujsq in L?(0,T) and thus @ = u|pq- Passing
to the limit & — oo in the IBVP satisfied by ug we can see that u is the required
solution. O

Remark 4.19.7. Given a positive integer k, using Remark 4.19.4, there exists a
function uf € H™+L((0,T) x Q) such that Huz_U]{;HCHm([(LT]XQ) < % and H(u],j)wﬂ—

(ur)joallEm 0.1 < % where wy, is the solution corresponding to the initial data uf in

the proof of the previous theorem. By the triangle inequality we have u],j — u in
CH™([0,T] x ) and (uf)s0 — ujaq in H™(0,T). Moreover, since Lyu} — Lvu§ =
Fy, — Fj where Fj, — f in H™((0,7T") x ), see (4.19.7) for instance, it follows that
(Lyuf)g is a Cauchy sequence in H™((0,T) x ). Since Lyuf — Lyuin L?((0,T) x Q)
we have Lyuf — Lyu in H™((0,7) x §2). This implies that the a priori estimate in
Lemma 4.19.6 holds for the solution u of the initial boundary value problem (4.19.9).

4.20 WEAK SOLUTIONS OF A LINEAR HYPERBOLIC PDE-ODE SYSTEM

In this section we prove the existence, uniqueness and regularity of weak solutions to
a linear hyperbolic system of partial differential equations coupled with a differential
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equation at the boundary. We are interested in the L%-well-posedness of the following
system

Lyu(t,x) = f(t,x), 0<t<T,0<z<l,
Bou(t,0) = go(t) + Qo(t)h(t), 0<t<T,
t,1) =g1(t) + Qi(t)h(t), 0<t<T,
(4.20.1)
Yh(t) + Go(t)u(t,0) + G1(H)u(t,1) + S(t), 0<t<T,

(t
u(0,z) =up(z), 0<z<l,

\

where
Lyu(t,x) = Opu(t, ) + A(v(t, z))0zu(x) + R(t, x)u(t, z)

and v € Wh*(Qp;R™). All throughout this section we assume that By € RPX",
By € R(n=p)xp,

R e L™(@QnR™™), Qo€ L((0,T);RP*™), Q€ L¥((0,T); RI*P)>*m)
H € L®((0,T);R™™), Go,G1 € L™((0,T);R™™), S e L*(0,T);R™).

Furthermore, we suppose that By and B; have full ranks and that (FS), (D), and
the UKL condition (H5) hold.

Definition 4.20.1. Given f € L?(Qr), go € L?(0,T), g1 € L*(0,T), S € L?(0,T),
ug € L%(0,1) and hg € R™, a pair of functions (u, h) € L*(Qr) x L?(0,T) is called
a weak solution of the system (4.20.1) if the variational equality

// (t,x) - Lyo(t,z)dxdt

" / Bt) - (' (6) + B(E)n(t) + Qu(t) My (D)a(t, 1) — Qot) T Mo(t)ip(t,0)) dl
/ / F(t,2) - plt, x) d di — /0 g1(t) - (Mi () p(t, 1) + (G (6)¥2) Tn(8)) dt

b [ w0 o0)gt0.0) — (@oer e~ [ st
+ [ (o) 9(0.2)do = ho - 0) (420.2)
where

H = (H+ GY1Q1 + GoYoQo) T,
holds for all ¢ € £*(Qr) and for all n € H(0,T) such that ¢(T,-) = 0, n(T) = 0,
C1pjz=1 = —(G1D1) "n and Cogj,—o = (GoDo) 'n

In Definition 4.20.1, the matrices M;, Y; and D; are those given in Lemma 4.7.3.
The definition of a weak solution is obtained by multiplying the system (4.20.1) with
appropriate test functions and integrating by parts. The space of test functions in
the above definition is denoted by

W= {((pa 77) € g*(QT) X Hl(O’T) “Mit=1 = 0, Pit=T = 0,
C1pm1 = —(G1D1) ", Copjeo = (GoDo) "1}
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Because Gy and Gy are in L®, the functions (G1D;)'n and (GoDg)'n may be
only in L?(0,T) even for n € H'(0,T). In order for the compatibility conditions
Crpjp=1 = —(G1D1) "y and Copla—o = (GoDo) 'y to be meaningful, we take the
space £*(Qr) to be the space for the first component instead of the space H'(Qr)
which was used in Definition 4.9.1.

Theorem 4.20.2. The space W is dense in L*(Qr) x L*(0,T).

Proof. Take (u,h) € L?*(Qr) x L?(0,T) and € > 0. Let n € H'(0,T) be such that
n(T) = 0 and ||n — hl|r2¢1) < €. Take w € Hj(Qr) satisfying [Ju — wl|12(g,) < €.
Consider the IBVP

Lz@b =0, COTzZ)|;B:U = (GODO)TU, Cl¢\x:1 = _(GlDl)Tn7 w\t:T =0. (4203)

This IBVP has a unique solution ¢ € L?(Qr) and furthermore ¥ € £*(Qr) according
to the dual version of Theorem 4.13.10.

By the absolute continuity of the Lebesgue integral, there exists 6 = d(e) > 0 such
that if O C Qr has Lebesgue measure less than or equal to § then [|u — 9| 12(0) < €.
Without loss of generality, we can assume that § < 47. Let 6 € 2[0, 1] be such that
0<@<1lon[0,1],0=1o0n (0,6/4T)U (1 —§/4T,1) and 0 = 0 on (5/2T, 1 — §/2T).
Define ¢ = 09 + (1 — 0)w. Since £*(Qr) is closed under addition and multiplication
with smooth functions it holds that ¢ € £*(Qr). From (4.20.3) and the definition
of 6 we have (p,n) € W. Furthermore,

lu—ollz2@r) < N0l @mlle — Yllz2(rs ) + 11— OllLoc(@pyllu — wllL2(gr) < 26
where Rs7 = (0,7) x ((0,6/2T)U (1 — §/2T,1)). Therefore

[(us 1) = (@, M) L2(@pyx L20) < Ve
and consequently W is dense in L?(Qr) x L?(0,T). O

We would like to apply Theorem 4.1.1 to prove the well-posedness of (4.20.1).
Therefore the crucial step is to prove an a priori estimate. But first we need to rewrite
(4.20.2) in the form (4.1.1). For this purpose, we set X = e "'L3(Qr) x e 7 L?(0,T),
Y =&(Qr) x HY(0,T) and Z = e "' L?(0,T) x e " L%(0,T) x L?(0,1) x R™. Define
AY—->X, U:Y > Zand &:Y — Z as follows

A7) = e meomng, )
7 0+ Hn+ Qf Mipp,—1 — Qg Mogj.—o
Co®je—o — (GoDo) '
@(90) _ | Cipp=1 +(GiD1) Ty
n Plt=T
n(T)
Mop|—o — (GoYo) '
v <90> _ —(Mipe—1 + (G1Y1) ")
n Plt=0
—n(0).

for every (p,n) € Y. With these notations, the variational equation (4.20.2) can be
rewritten as

(€™ (u, h), A(p,m))x = (e727(f.=5), (¢, m)x
+ ((6_2tho, G_Q’Ytgl? Uo, ho), \IJ(Q)O’ 77))Z (4204)

for all (¢,n) € W = ker ®.
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Theorem 4.20.3. In the notation of the previous paragraph, there exist yo > 1 and
C > 0 such that

1
e mlx + 1.l < C <7HA(90777)\§¢ + H‘P(%n)\%)

holds for all (p,m) €Y and v > 7o.

Proof. Let (p,n) € Y. From the priori estimate (4.13.25) and the triangle inequality
it follows that there is a constant C' > 0 such that

||80\t:0||%2(0,1) + ’YHeW@H%%QT) + ||67t<p|89”%2(0,T)
1€ (Mogplamo — (GoYo) )220z + 1™ (Mipracs + (G1Y1) 02207,

1
<0 (GQ”THwt:Trim + Sl Ll p + 1€ (Coppemo = (GoDo) ') Z2(0.7)

1€ (Captams + GOy + 110 ) (120,

for all v > ~9 where 7 is the constant in Theorem 4.13.7. From the a priori estimate
(4.2.8) in Theorem 4.2.4 and the triangle inequality we obtain

C -
O+l e ry < e + Hn -+ Q Migiams — Q3 Mopiom) 2o
C
+ =l gtoal Fagry + T In(T)P. (4.20.6)

From (4.20.5) and (4.20.6) and upon choosing 7, large enough, the estimate in the
theorem follows after an absorption argument. O

It is now possible to prove the existence and uniqueness of weak solutions of the
system (4.20.1).

Theorem 4.20.4. Let f € L*(Qr), go € L*(0,T), g1 € L*(0,T), S € L*(0,T),
ug € L?(0,1) and hg € R™. With the assumptions in the beginning of this section, the
system (4.20.1) has a unique weak solution (u,h) € L*(Qr) x L?(0,T). Furthermore,
(u,h) € [CLA(Qr) N E(Qr)] x HY(0,T) and in particular wpq € L*(0,T). The
function u is the weak solution of the IBVP

Lyu(t,z) = f(t,x), 0<t<T, 0<ux<l,
Bou(t,o) = gO(t) + QO(t)h(t)v 0<t<T, (4 20 7)
Buu(t,1) = g1 (t) + Qi(t)h(t), 0<t<T, o
u(0,2) =up(z), 0<z<l,
and h is the solution of the ODE
{ R (t) = H(t)h(t) + Go(t)u(t,0) + G1(t)u(t, 1) + S(t), 0<t<T, (4.20.8)
h(0) = hg

The weak solution (u,h) satisfies the energy estimate
6727T”“”%L2(QT) + ’YHeﬂtUHQB(QT) + Heﬂtwaﬂ”%%o,cp) + WvathH%?(QT)
1. _ 1, _
<cC (HUOH%%OJ) + [hol* + ;He wJCH%‘Z(QT) + [le 7t9‘|%2(0,T) + ;He wSH%?(O,T))

for all v > ~o for some C' >0 and v > 1.
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Proof. The existence of a weak solution is a direct consequence of Theorem 4.1.1
and Theorem 4.20.3. The next step is to show that if (u,h) is any weak solution
of (4.20.1) then wu is the weak solution of (4.20.7) and h is the solution of (4.20.8).
Suppose that (u, h) is a weak solution of (4.20.1). Taking n = 0 and ¢ € HY(Qr)
with Cpjaq = 0 and pj,—7 = 0 we have (¢,n) € W. With this (¢,7) in (4.20.2) we
can see that u is the weak solution of the (4.20.7). Therefore from Theorem 4.13.10,
u € CL*(Qr) N E(Qr) and in particular uyg € L*(0,T). Moreover, from Remark
4.13.11 and Lemma 4.7.3 u satisfies the variational equation

T 1
// u(t,x) - Lyp(t,z) de dt
0 Jo
T 1 T
= [ [ st ety dede— [ (@) + Qo) - Mr(e)o(e, 1
0 Jo 0
T T
+/ (90(t) + Qo(t)ho(t)) - Mo(t)e(t,0) dt—/ Niu(t, 1) - Ci(t)e(t, 1) dt
OT X 0
+/O Nou(t,0) - Co(t)p(t,0) dt—/o uw(T,z) - (T, z)dx

1
+/0 up(x) - p(0,2) dx (4.20.9)

for all p € £X(Qr).
Given nn € H'(0,T) with n(T) = 0 consider the IBVP

Lo =0, Cople—o=(GoDo)"n, Cipjeey = —(G1D1)"n, @uep =0. (4.20.10)

The dual version of Theorem 4.13.10 implies that (4.20.10) has a unique weak solution
¢ € L*(Qr) such that p € £*(Qr). Thus (p,n) € W. From (4.7.3), (4.7.11), (4.20.2)
and (4.20.9) we can see that

T
/0 B(t) - (' (8) + H(®) Tn(t)) dt

T
= — hoy - 1(0) /0 (Go(B)u(t,0) + Gy (t)u(t, 1) + S(t)) - n(t)dt.  (4.20.11)

According to (4.20.11) and Theorem 4.2.5, h is the solution of the ordinary differential
equation (4.20.8) and h € H'(0,7).

The energy estimate in the statement of the theorem follows from the energy esti-
mate (4.13.28) for u, the energy estimate (4.2.16) for h and an absorption argument.
Thus, any weak solution of (4.20.1) satisfies the energy estimate. Consequently,
(4.20.1) has a unique weak solution. O

4.21 LINEAR HYPERBOLIC PDE-ODE SYSTEMS WITH CONSTANT COEFFI-
CIENTS

In this section, we show that in the case where the coefficients in (4.20.1) are constant,
the weak solution defined in the previous section coincides with the one given by
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semigroup theory. Consider the weak solution (u,h) € C([0,00); L?(0,1) x R™) of
the system

Owu(t,x) + Adzu(t,x) + Ru(t,z) =0, t>0,0<x <1,
Bou(t,O) = Qoh(t), t>0,

Biu(t,1) = Q1h(t), t>0,

R (t) = Hh(t) + Gou(t,0) + Gyu(t,1), t>0,

u(0,2) =up(z), 0<z<1,

h(0) = ho

(4.21.1)

The boundary conditions for u and the ODE for h can be viewed as a nonlocal
boundary condition for u

¢
Byu(t,z) = Quethg + / Qe (Gou(s,0) + Giu(s,1))ds, = =0,1.
0

This can be derived by using the variation of parameters formula for the differential
equation for A and substituting it to the boundary conditions for u. However, we
will not treat the boundary conditions in this way.

Let k be a positive integer. For each ug € H*(0,1) we define

u; = —A0dyu;—1 — Ru;_1, i=1,...,k. (4.21.2)
The data (ug, ho) € H*(0,1) x R™ is said to be compatible up to order k — 1 if
Byu;(y) = Qyhi, i=0,....,k—1land y =0,1, (4.21.3)
where
hi = Hhi_y + Goui1(0) + Gyui_1(1),  i=1,... .k (4.21.4)

Theorem 4.21.1. Let k € N. If the data (ug, ho) € H*(0,1) x R™ is compatible up
to order k — 1 then the weak solution (u,h) of (4.21.1) satisfies (u,h) € CH*(Qr) x
HEYH0,T) and waq € H*(0,T).

Proof. From Theorem 4.20.4, h € H*(0,T) and u is the weak solution of the system

Owu(t,x) + Adu(t,x) + Ru(t,z) =0, t>0,0<x <1,
B =
Biu(t,1) = Q1h(t), t>0,

From (4.21.3) it can be seen that the data (ug,0,Qoh,Q1h) is compatible up to
order 0 for the system (4.21.5). Thus Theorem 4.11.4 implies that v € CHY(Q7)
and ujgq € H'(0,T). On the other hand, h satisfies the ODE

{ W (t) = Hh(t) + Gou(t,0) + Giu(t,1), >0, (4.21.6)

h(0) = ho

still from Theorem 4.20.4. Since upo € H'(0,T), it follows from (4.21.6) that
h € H?(0,T). Consequently, Theorem 4.11.4 and (4.21.3) imply that u € CH?*(Q7)
and ujpg € H 2(0,T). Repeating this process, one eventually arrives at u € CH*(Qr),
ujpn € H*(0,T) and h € H*(0,T). O
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Theorem 4.21.2. Let k € Ng. If (ug, ho) € H¥(0,1) x R™ is compatible up to order
k —1 when k > 1, then there exists a sequence (uf), C H¥T1(0,1) such that (u§, ho)
is compatible up to order k for each v and |lug — uo|| gr(o,1) — 0.

Proof. The proof follows the ideas presented in [64] for hyperbolic systems. Pick a
sequence (v,), C HF1(0,1) satisfying v, — ug in H¥(0,1). Define u§ = v, — w,
where w, € H*1(0,1) satisfies w, — 0 in H¥(0,1) and to be constructed below.
The compatibility conditions for ug is given by

Bywy,i(y) = Byvu,i(y) - thu,i7 0<:< k‘, y=0,1, (4217)
where
Wy,0 = Wy, Vv,0 = Vv, hl/,O = ho,
wy; = —AOw,i—1—Rw,;—1, 1<i<k+1
Vyi = —Algvyi1—Ruyiq, 1<i<k+1

hyi = Hhyi1+ Go(vy,i—1(0) — wy,i—1(0)) + Gi(vyi—1(1) —wyi-1(1)), 1 <i <k
The compatibility conditions (4.21.7) can be rewritten as

Bywy(y) = Byvu(y) — Qyho (4.21.8)
ByAiain(y) = ByAiafcvy(y) + 4y i(ho, vy —wy, ..., o, — 9wy,
0,(0) — w,(0),v,(1) —w,(1),...,05 0,(0) — 95w, (0),
0L oy (1) = 95wy (1)) (4.21.9)

fory=0,1and 7=1,...,k, where ¢, ; is linear in all its arguments.
Recall from Lemma 4.7.1 that exits a matrix Y, such that B,Y, = I where I is
the identity matrix I, if y = 0 and I,,_, if y = 1. Consider the following equations

wy(y) = Yy (Byou(y) — Qyho) (4.21.10)
Opw (y) = AT'Yy(By A0, (y) + Lyi(ho, vy — wy, ..., 05 vy — 8, wy,

0,(0) — w, (0),v,(1) —w,(1),...,05 v, (0) — 8- 1w, (0),

9, o, (1) — 85w, (1)) (4.21.11)

for y = 0,1 and i = 1,...,k. By multiplying ByA and ByA" to both sides of
(4.21.10) and (4.21.11), respectively, we obtain (4.21.8) and (4.21.9), respectively.
For this reason we construct w, that satisfies (4.21.10) and (4.21.11) in addition to
the property w, — 0 in H*(0,1).

For i =0,...k and v € N, let 0,;(y) denote the right hand side of (4.21.10) and
(4.21.11). Since v, — up and w, — 0 both in H¥(0,1), we have div,(y) — duo(y)
and 9Lw,(y) — 0 for all 0 < i < k — 1 by the Sobolev embedding. Thus, by the
compatibility conditions for (ug,h) we have o,;(y) — 0 for 0 < i < k —1 and
y =0,1. Now given (0,,0(0),0,,0(1),...,0,k-1(0),0,%-1(1),0,0) € R2nx(k+1) there
exists 9, € H¥*1(0,1) such that 9.9, (y) = 0,(y) for 0 <i < k—1, 9,(y) =0

and
k—

B0l 241 0,1y < C Zm )| + o (1)]) — 0 (4.21.12)
=0

for some C' > 0 independent of v. Define w, = @, + @, where @, € H*1(0,1)
satisfies 910, (y) = 0 for 0 < i < k — 1, 9%, (y) = o,x(y), and |00 || g0,y = O-
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Then w, satisfies the desired properties w, — 0 in H*(0,1) and diw,(y) = 0.,.i(y)
for0<i<kandy=0,1.

Thus the last step is to construct the function w,. Set ¢, = 0,1(0). Because it
is enough to consider each component of ¢, separately, we may assume without loss
of generality that ¢, is scalar. Let us consider the two cases |¢,| < 1 and |c,| > 1
separately. Suppose that |c,| < 1. Let ¢ € Z(R) be such that ¢(x) = 1 for |z| < e
for some € > 0 small enough and supp ¢ C [—1, 1]. Define

k
Uy () = %(l)(l/x)cy

Then by Leibniz’ formula we have for 1 < j <k

b s E—i
Ol () = <Z> (lf_ i)'uj—iag—%(ux)c,,. (4.21.13)
=0 ’

It can be seen from (4.21.13) that &1, (0) = 0 for 1 < j < k — 1 and 9%, (0) = c,.
Moreover, using the change of variable y = vz we obtain

o sy < Z - [ ok gt P

— . i dy
~ cmy [ Pl
=0

% : 2(k—i)| qj—i 2 C(k, )
S [ eeway <

IA

for 0 <j<k.
If |cy| > 1 then we take

zF

Uy (x) = o (]c,,]QV:c)c,,.

For 1 < j <k, applying Leibniz’ rule yields

by k—i
Vi _ Jy_ * 2 \j—iqj—i 2
dlap, () g (Z) (k_i)!(|cy| V) (e, [Pra)e,. (4.21.14)
From (4.21.14) we obtain &, (0) = 0 for 1 < j < k — 1, 9¥¢*(0) = ¢, and
0002y < Z / 12057, 21267003 [2) P, 2
. d
- / 91240 e )20 3 ()

k NP C(k
*)Z [k awpay < S8
1=0

since j —k < 0 and |c,[?v > 1. Therefore in any case we have [l ey <
C(k, ¢)r=12

IN
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For 0,,(1) we can also do the same construction by replacing ¢ by a smooth
function that is equal to 1 in an e-neigborhood of x = 1. By taking the sum of
the functions 1, constructed for x = 0 and x = 1 and choosing € small enough so
that their supports do not intersect we obtain an appropriate w, satisfying all the
required properties. O

Using a diagonalization argument, the following result can be shown.

Corollary 4.21.3. For every (ug,ho) € L?(0,1) x R™ and k € N, there exists a
sequence (uf), C H¥(0,1) such that (uf,ho) is compatible up to order k — 1 and
lug — wollr2(0,1) = O-

For each t > 0, define the operator T(¢) : L?(0,1) x R™ — L2(0,1) x R™ by
T(t)(u(b h‘O) = (u(t7 ')7 h(t)>a >0, (u07 hO) € L2(07 1) x R™,

where (u, h) is the unique weak solution of the system (4.21.1). The linearity of 7 (¢)
follows from the linearity of the system (4.21.1) and the uniqueness of weak solutions.
The boundedness follows from the energy estimate in Theorem 4.20.4. Also, 7(0) = I
and (T (t));>0 is strongly continuous since (u,h) € C([0,T]; L?(0,1) x R™) for any
T > 0. Finally, since the system (4.21.1) is autonomous, (7 (t)):>o0 satisfies the
semigroup property.

The goal is to determine the generator of the Co-semigroup (7 (¢))e>0, which we
denote by A. A candidate generator is given by the linear operator A : D(.,[l) —
L?(0,1) x R™ defined by

A(Z) = (Hh +_G§Zf())_félu(1)) (4:21.15)

where
D(A) = {(u,h) € H'(0,1) x R™ : Byu(0) = Qoh, Biu(1) = Q1h.}

To prove that A = A we proceed using the method in [19] applied to delay equations.
This requires the following three steps: (1) characterize the resolvent R(\,A), (2)
show that A — A is injective and (3) the resolvent of A and A at A coincide. It is
sufficient to prove these three steps for large enough A.

Step 1. Suppose that (ug, hg) € H'(0,1) x R™ satisfies the compatibility condition
up to order 0, in other words, (ug, ho) € D(A). Then u € CH'(Qr) and h € H?(0,T)
from Theorem 4.21.1. For A > wy, where wy is the growth bound of 7 (), the resolvent
of A at \ is given by the Laplace transform of the semigroup 7 (t), i.e.,

R(\, A)(uo, ho) = /OOO e T (t)(uo, ho) dt = /Ooo e M(ul(t,-), h(t)) dt.
Define w : (0,1) — R” and g € R™ by
w(z) = /Ooo e Mu(t, x)dt
g = /OOO e Mh(t)dt

so that R(A, A)(uo, ho) = (w, g).
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Because 0, : H'(0,1) — L?(0,1) is a closed operator, u € C([0,T]; H*(0,1)) and
t = e Mu,(t, ) is integrable for A > 71 according to (4.11.5), (4.2.16) and (4.2.17),
we can interchange differentiation and integration to obtain

w'(x) :/ e Mug(t,x)dt,
0

see [34, Theorem 3.7.12] and [23, Chap. II, Theorem 6]. Thus we take
A > max(wo,Y0,71). Integrating by parts

t=o00

w(z) = — e_)‘tu(t,x)’ +/OOO e Muy(t,z) dt

= wug(z) — /OO e M(Aug(t, ©) + Ru(t, z)) dt
0
= wo(z) — Aw'(z) — Rw(z). (4.21.16)

Because we already know that w € L?(0,1), (4.21.16) implies that w € H'(0,1).
Furthermore, for y = 0,1 we have

Byw(y) = /OO e_’\tByu(t, y)dt = /OO e_)‘toh(t) dt = Qyug.

0 0

Similarly,
Ag = Hg+ hy + Gow(0) + Grw(1).

Therefore the resolvent of A at A > max(wo,Y0,71) is given by R(X)(ug, ho) =

(w,g), for (ug, hg) € D(A), where w and g satisfy the system

Aw'(z) + (M, + R)w(z) = up(x)

Bow(0) = Qog (4.21.17)
Biw(1l) = Q19
(M, — H)g = ho + Gow(0) + Grw(1)

and in particular (w, g) € D(A).

Step 2. In this step we wish to show that AI — A is injective for sufficiently
large A. However, we only consider the case where R = 0 and H = 0 in this
step. Let us denote the operator A by Ag when R = 0 and H = 0. We even
prove the stronger property that Al — Ap is bijective for A large enough. Given
(ug, ho) € L?(0,1) x R™ we show that there exists a unique (w, g) € D(Ap) such that
(M — Ao)(w, g) = (uo, ho). This is equivalent to the system

Aw'(z) + Aw(z) = up(x)
Bow(0) = Qog

Biw(1l) = Q19

Ag = ho + Gow(0) + Giw(1).

(4.21.18)

Thus w satisfies the two-point boundary value problem

Aw'(x) + w(x) = up(z)
ABow(0) = Qo(ho + Gow(0) + Grw(1)) (4.21.19)
)\Blw(l) = Ql(ho + G()’U)(O) + le(l)).
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Therefore to show that there exists a unique (w, g) satisfying (4.21.18) it is enough
to prove that the two-point boundary value problem (4.21.19) has a unique solution.
Due to the assumption on the matrix A, there exists an invertible matrix 7" such
that T-'AT = A where A = diag(\1, ..., \,). By rearranging the columns of 7' we
can assume without loss of gener~ality that A\ < - < A\ p <O < Appy1 < -0 A
Let v =T 'w, vg = T~ 'ug and B, = B,T for y = 0,1. Then (4.21.19) is equivalent
to
v+ Av, = g
AByv(0) = Qoho + QoGoTv(0) + QoG1Tv(1) (4.21.20)
AB1v(1) = Q1ho + QoGoTv(0) + Q1G1Tv(1)
Note that (A, B) still satisfies the uniform Lopatinskii condition. Thus By is injective
on the unstable subspace of A which is {0}""P@RP, while B; is injective on the stable
subspace of A which is R""P@{0}P. We will decompose a vector v in R"” by v = (Z;)
where v~ € R*? and vt € RP. Partitioning By = (By Bg) we have
Bov(0) = By v~ (0) + By v™(0). (4.21.21)
where BJ € RP*P and Bo_ e RP*("=P) The matrix BJ is invertible and so from
(4.21.21) the boundary condition at = 0 in (4.21.20) can be written as
(AL, + R1)v"(0) = (ARa + R3)v~(0) + Ryv~ (1) + Rsv™ (1) + Rgho  (4.21.22)
for some matrices R;. Similarly, the boundary condition at z = 1 is equivalent to

(AL—p + S1)v™ (1) = (AS2 + S3)vt (1) + Sqv™ (0) + S50 (0) + Seho ~ (4.21.23)

for some matrices 5;.
By the variation of parameters formula, the function v in (4.21.20) is given by

_aeAA-T c z C(z— -1, _
v(z) = e M <c+> +/0 e~ @M A0 (y) dy (4.21.24)
and from (4.21.22) and (4.21.23) the vectors ¢~ and ¢ satisfy the equations
(AL, + R1)ct = (ARy + R3)e™ + Ry(e A7) e 4d7)
+ R5(6_/\(A+)7lc++d+)+R6h0

(Mp + S (e XA 4d7) = (ASy + S3) (e A et 4 at)
+ Sic” + 550+ + Sgho

(4.21.25)

where A~ = diag(A1, ..., A\n—p), AT = diag(Ap—pt1,...,\n) and
1
d= / e~ (=M1 () dy. (4.21.26)
0

The system (4.21.25) can be written in matrix form as

( Rse MAD™ _ R A, ARy + Rs+ Rge A7 > ( ct )
1

(ASy + S3)e A 4L Go Sy — (A, + Sp)e AT c

—Rgho + R7d
= . 4.21.2
( *S(;ho + S7()\)d ) ( 7)

Therefore to show that (4.21.20) has a unique solution, we must prove that the 2 x 2
matrix on the left hand side of (4.21.27) is invertible. To prove this, we need the
following result in linear algebra.
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Lemma 4.21.4. Let A, B, C and D be m x m, m x (n —m), (n—m) x m and
(n —m) x (n —m) matrices, respectively. If A and D — CA~'B are invertible then

the block matrix
A B
( c D > (4.21.28)

Proof. Since A is invertible, we can express the block matrix as a product of a lower
triangular matrix and an upper triangular matrix as follows

A BN _( In  Opxinm A B
( C D ) N ( CA_I In—m > ( O(n—m)Xm D_CAilB ) . (42129)

The lower triangular matrix in (4.21.29) is clearly invertible. The upper triangular
matrix in (4.21.29) is invertible as well because A and D — CA~!'B are invertible.
Therefore the block matrix (4.21.28) is invertible. O

1s invertible.

For sufficiently large A > 0, the matrix
- _ ZA(AF)!
Ex = A Y (Rse M Ry — 1,
is invertible and so A=) is invertible. Consider the matrix

Sy = Si— (Mp_p+Sy)e MO
— [(ASy + S3)e XA 1 SIATIET ARy + Ry + Rye M)

—1

].
It can be seen that the matrix

AT T = AT (5 )T ) — T,
— (S 4+ A7183)e AT L ATLG S R AT 1 AT Ry M) T L AR

is invertible for large A > 0. Consequently X, is invertible for sufficiently large A > 0.
Therefore from Lemma 4.21.4, the system (4.21.27) has a unique solution (¢t ¢7)
and so (4.21.20) has a unique solution v. As a result, (4.21.17) has a unique solution

(w, g).
From (4.21.24), (4.21.26) and (4.21.27) there exists a constant Cy > 0 such that

lwllz2(0,1) = 1T 20,1y < Ca(lluollz2(0,1) + [hol)-

The last equation in (4.21.18) together with (4.21.24), (4.21.26) and (4.21.27) imply
that
19l < Cx(lluollz2(0,1) + hol)

for some Cy > 0. Therefore R(\,.Ag) € £(L?(0,1) x R™) so that A has a nonempty
resolvent. Hence Ay is closed.

Step 3. In this step we show that the resolvents of A and Ay at A are the same
for sufficiently large . Let (ug, ho) € D(Ap). From (4.21.17) and (4.21.18) we have

(A = Ao)R(A, A)(uo, ho) = (M — Ag)(w, g) = (uo, ho).
Thus (A — Ag)R(\, A) = I in D(Ap). Since R(\, A) € L(L?(0,1) x R™), A is

closed and D(Ap) is dense in L?(0,1) x R™ according to Corollary 4.21.3, we have
(A — Ag)R(\, A) =T in L%(0,1) x R™.
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Let z € D(Ap) and y = R\, A)(M — Ap)z. Then (M — Ag)y = (M — Ap)z.
Since A\l — Ay is injective for sufficiently large A > 0 it follows that y = z and hence
R\, A)(AI — Ap)z = z for all z € D(Ap). Therefore R(\, Ayg) = R(\,.A) and also
the domain of A is D(Ap). Since

M —A = (M —Ag)R(\, Ag)(M — A)
= (M — AR\, AN — A) = M — Aq.

we conclude that A = Aj.

Now let us turn to the general case where R and H are not necessarily zero. We
can write the operator A defined by (4.21.15) as A = Ay + B where Ag : D(A) —
L?(0,1) x R™ and B : L*(0,1) x R™ — L%*(0,1) x R™ are given by

U —Auy
Ao =
<h) <G0U(0) +G1U(1))
i —Ru
o) - ()

Since Ajg is closed and B is bounded, A is closed. We know from above that Ao
generates a Co-semigroup on L2(0,1) x R™. Tt follows from the bounded perturbation
theorem of semigroups that A generates a Co-semigroup on L?(0,1) x R™. Therefore
M — A is invertible for sufficiently large A > 0. Similar arguments as in Step 3 show
that A = A.

Therefore, the solution of the system (4.21.1) given by semigroup theory coincides
with the weak solution given in Definition 4.20.1. An alternative way of proving
that the weak and semigroup solutions are the same is to prove that the operator A
generates a Co-semigroup. For initial data in D(A?) we have a classical solution and
so we can multiply the system with the appropriate test functions and use integration
by parts to show that the semigroup solution is the weak solution. By the density
of D(A?) in L?(0,1) x R™, this also true for every initial data in L2(0,1) x R™, see
Section 3.3. However, proving that A is a generator is a difficult task, specifically it
is hard to show that A — I is dissipative for some A € R.

If (u,h) is the weak solution of (4.21.1) then ujgq € L*(0,T) and h € H*(0,T)
for every T' > 0 according to Theorem 4.20.4. These properties are called hidden
reqularity. Note that these cannot be obtained directly from standard semigroup
methods because in general the solution given by semigroup theory only satisfies
(u,h) € C([0,00); L%(0,1) x R™). In the literature, hidden regularity property for
weak solutions of partial differential equations were established using Fourier analysis

and multiplier methods.
If we define the operator C : D(A) — R® by

uo(0)
C hg) =J
(uos ) =1 ( )
where D(A) is the domain of the generator A of the semigroup (7 (t))i>0 defined
above and J € R¥*?" then C is an admissible observation operator for (7 (t))i>0-

Indeed, the direct inequality (B.3.5) follows immediately from the energy estimate
in Theorem 4.20.4.

4.22 EXAMPLES

Example 4.22.1 (Linearized Flow in an Elastic Tube). The two tank model in
Chapter 3 can be put in the form (4.21.1). It can be easily checked that all the
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properties that are required in Theorem 4.20.4 are satisfied. The hidden regularity
on the velocity component was shown using methods in control theory. This was
established by proving the direct inequality using the Fourier representation of the
semigroup, cf. Remark 3.5.8. In this section we have shown this with a different
method and in addition we also established that the cross-section admits traces in
L? and the level heights are in H'.

Example 4.22.2 (Wave Equations with Oscillator Boundary Conditions). Consider
the one-dimensional undamped wave equation with oscillator boundary conditions,
(6, 39]

([ Outb(t,x) — Dpetp(t,2) =0, t>0,0< <4,
Ve (t,0) = —8(t), t>0,
Vo (t,0) = 8)(t), t>0,
mody (t) + dody(t) + kodo(t) = —pdpy)(t,0), t >0,
mgdy () + ddy(t) + kede(t) = —pdyp(t, €), ¢ >0, (4.22.1)
¥(0,2) =o(z), 0<z <Y,
(0, ) = 1 (), 0<z</,
5:(0) =489, i=0,¢,
§H0) =Y, i=0,¢

The system (4.22.1) models the velocity potential 1 of the acoustics in a homogeneous
fluid with nominal density p contained in a wave guide of length ¢ and terminated by
oscillators. In this model it is assumed that the fluid does not penetrate the surface
of the oscillators.

As in Ito and Propst [39], we introduce the variables ¢~ = %(521/} + 0z0), o7 =
%(@@Z) — 0z1), vo = &) and v, = 0;. The system (4.22.1) can be put in the form

O~ (t,x) — 0z (t,z) =0, t>0,0<z<Y,
Ot (t,x) + 0,0 (t,2) =0, t>0, 0<x <Y,
¢~ (t,0) — ¢7(t,0) = —wo(t), t>0,

6™ (t.0) — T (8, 0) = vylt), >0,

5(t) = wo(t), t>0,

5y(t) = wve(t), t>0,

, p i - (4.22.2)
vp(t) = =5 vo(t) — 2 00(t) — £-(¢7 (¢, 0) + ¢7(¢,0)), >0,
V(1) = =iy (t) — 1L 84(t) — (¢ (8,0) + &7 (1,0), t>0,
¢~ (0,2) = ¢g (v), O<az <,
¢t(0,z) = ¢f (z), O0<z<H{,
5:(0) =69, i=0,¢,
v;(0) =29, =0,/

\

where ¢, = %(11}1 + 1) and ¢f = %(1/)1 — ). It can be checked that all the require-
ments in Theorem 4.20.4 are satisfied by the system (4.22.2). Therefore for every
(00 5 (;Sar, 80, 0¢,v0,v¢) € L2(0,£)? x R* the system (4.22.2) has a unique weak solution
(6=, 07T, 00,00, v0,v¢) € C([0,00); L2(0,£)? x R*) and it satisfies ¢~ (-,0), = (-, £) €
L?(0,T) and &g, d¢, v, ve € HY(0,T) for every T > 0. The well-posedness of (4.22.2)
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was established in [39] using semigroup methods. Here, we improved this result by
showing that the solutions admit traces in L? and that the oscillator components
are more regular.

Example 4.22.3 (Wave Equations with Exponential Memory Kernel). The next
example is the normalized damped wave equation with memory boundary conditions
62]

Oud(t,x) — Opad(t,x) + O4p(t,z) =0, t>0,0<z <1,

(ao * ¢ (+,0))(t) — #2(t,0) =0, ¢ >0,

(a1 % ¢(-, 1)) (t) + ¢ (t, 1) =0, t>0, (4.22.3)
#(0,2) = ¢po(z), 0<z<1,

¢1(0,2) = d1(x), O0<z<l1.

where a x u© is the convolution

(axu)(t) = /0 a(t — s)u(s) ds.

Suppose that the kernels ag and a1 take the form ag(t) = ket and a1 (t) = k1et?

for some nonzero real numbers kg, K1, ag, @1. Introducing the state vector

t t
(, 0, g)(t) = (@(t,o,%(t,-), / €209, (5, 0) dis, / eaﬂt—%t(s,nds)
0 0

at time ¢, the system (4.22.3) can be written in the form of (4.21.1) as

(

Opu(t, x) — Oyv ,3:)+u(t:c) 0, t>0,0<z<1,

(t
(t

O(t,z) — Oyu(t,z) = t>0, 0<z<l,
v(t,0) = koh(t), t> O
o(t,1) = —r1g(t), t>0,

W() = ah(t) + u(t,0), >0,

g(t) = arg(t) +u(t,1), t>0, (4.22.4)

u(0,z) =up(z), 0<z<l1,
v(0,z) =vo(x), 0<z<l1,
h(0) = ho,
9(0) = go.

where ug = ¢1, vg = ¢ and hg = go = 0. The conditions for Theorem 4.20.4 are satis-
fied by the system (4.22.4). Thus, for each initial data (uo, vo, ho, go) € L%(0,1)% x R?
the system (4.22.4) admits a unique weak solution (u, v, h, g) € C([0,00); L?(0,1)? x
R?), and moreover, u(-,0),v(-,0),u(-,1),v(-,1) € L?>(0,T) and h,g € H'(0,T) for
every T > 0.
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LOCAL EXISTENCE AND BLOW-UP
CRITERION FOR NONLINEAR PDE-ODE
SYSTEMS

The aim of this chapter is to obtain a well-posedness result for a hyperbolic system of
first order quasilinear partial differential equations in the bounded interval Q = (0, 1)
with dynamic boundary conditions

;

ur(t, @) + A(ult, z))ug(t, x) = f(u(t, x)), 0<t<T, 0<z<1,
Boyu(t,0) = bo(po(t), h(t)), 0<t<T,

Blu(t 1) - bl(pl( )a h(t))v 0<t< Tv (5‘0.1)
R'(t) = H(h(t),q(t),u(t,0),u(t, 1)), 0<t<T,

u(0,x) = up(x), 0<z<l,

h(0) = ho.

\

The unknown state variables are u : [0, 7] x [0,1] — R™ and h : [0, 7] — R? taking
values in the open and convex sets U and H, respectively. We assume for simplicity
that 0 € U and 0 € ‘H. This is not restrictive since one can shift a general problem
to this case. The coefficients appearing in (5.0.1) are assumed to have the following
properties. The flux matrix A : i — R™*"™ and the source term f : &/ — R™ are both
infinitely differentiable. The boundary matrices By € RP*"™ and B; € RP~)*" are
of full rank, where p is the number of incoming characteristics from the left boundary,
or equivalently, the number of positive eigenvalues of the flux matrix. According to
the diagonalizability assumption (D) in Chapter 4, n — p is the number of incoming
characteristics from the right boundary. This assumption further implies that we
are in the non-characteristic case. It should be noted that unlike in multidimensions,
cf. [9, Chapter 11], for which the boundary matrix should be of constant maximal
rank along the boundary, in the case of one space dimension the boundary matrices
can have different ranks. However, the sum of their ranks should be the same as the
number of components of u.

The boundary data pg, p1, and g are given by pg : [0,7] — R™, p; : [0,T] — R™,
q:[0,T] — R" while by : R0 xH — RP, by : R xH — R" P and H : HxR"2+2n
R?. Again for simplicity we assume that by, by and H are all infinitely differentiable.
If by and by are independent of h then (5.0.1) includes systems of balance laws that
are decoupled from the h-dynamics. If H is independent of A then (5.0.1) includes
balance laws with nonlocal boundary conditions of the form

Byu(t,y) = <py /H )u(s,l))ds), 0<t<T, y=0,1.

We assume that f(0) =0, H(0) = 0, and b(0) = 0. Again these are not restrictions
since one may consider affine shifts of the state spaces. Other assumptions, for
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example on the initial and boundary data, will be stated later. According to our
hypotheses, we include the case of non-symmetric fluxes with symmetrizers. The
diagonalizability assumption though would give us a new diagonal system through
a change of variables, and thus the flux matrix will be trivially symmetric. However,
the cost of this diagonalization would be that the boundary matrices will be time-
dependent. For this reason, we do not diagonalize the system.

One possible generalization of (5.0.1) is to consider nonlinear boundary conditions,
e.g. B(u, h) = 0 where B satisfies the condition B(0) = 0. To deal with the nonlinear-
ity, one first studies the linearized problem. The linearized boundary condition takes
the form B(v, g)u = § for which the boundary matrix B depends on t through the
frozen coefficients v and g. We shall not pursue this generalization and consider the
simpler case where the boundary matrices are constant. Regarding time-dependent
boundary matrices we refer to [9, Chapter 9]. We believe that the method used in
this thesis will work on these types of problems.

Systems of the form (5.0.1) occur in multiscale blood flow models [14, 27, 65, 66,
67, 68] and in valveless pumping [13, 60, 63]. Our well-posedness results are based
on Sobolev spaces. The motivation for studying the well-posedness in Sobolev spaces,
rather than spaces of continuous functions [27, 47, 48], lies in the later study of
global-in-time existence of smooth solutions for which energy estimates formulated
in Sobolev norms are used. The presence of a damping term, the bounded space
domain and the ODE boundary conditions will not cause much technical difficulty,
we will address methods on how to treat them. Broadly speaking, we will follow the
frameworks in Benzoni-Gavage and Serre [9] and Métivier [55] to prove our result.

However, there will be differences specifically when it comes to the full nonlinear
PDE-ODE system where an appropriate linearization and a modified a priori esti-
mate will be used. Recent results regarding the mixing of conservation laws and
balance laws with ODEs on the boundary, but with another notion of solutions and
on a semi-infite interval, are given in [11] and [12], respectively.

As in the linear case, to prove the existence of solutions in Sobolev spaces, the
initial and boundary data should be compatible. These compatibility conditions are
given in Section 5.1. Using the well-posedness theory in Section 4.19 and a Picard
iteration scheme, the local-in-time well posedness of (5.0.1) is discussed in Section
5.2. In the event that the local solution cannot be continued for all times, a blow-up
criterion will be proved in Section 5.3. To close this chapter, some examples that
have the form (5.0.1) will be given in Section 5.4.

5.1 COMPATIBILITY CONDITIONS

The existence of smooth solutions requires, and also implies, compatibility conditions
between the initial data and the boundary data. These are additional constraints
for the initial and boundary data. The compatibility conditions are obtained by
(a) formally differentiating the PDE with respect to time, (b) evaluate the time
derivatives at t = 0 and use the initial data to compute the spatial derivatives and
(c) differentiate the boundary conditions, use the information in (b) and evaluate
them along the boundary. The result in (c¢) will be the compatibility conditions.
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Suppose that u and h are CP-functions satisfying dyu+ A(u)0yu = f(u) in (t,2) €
(0,T) x Q and h = H(h,q,ujpq) in t € (0,T), respectively. Then by Leibniz’s rule

i—1 .

) -1 L i )

Ou=-> :<’ z )ag(A(u))axa; Uy 07 f(w),  i=1,...,p.
=0

The terms 0}(A(u)) and 9/~ ' f(u) can be expanded with the aid of Fag di Bruno’s
formula. If u is continuous up to the boundary then

Byu(07 y) = by(py(()), h(O)), y=0,1.

In general, if u is C* up to the boundary then we must have

By0yu(0,y) = Diby(py(t), h(t)j=0, ¥ =0,1.

We can use Faa di Bruno’s formula to expand the right hand term and then use the
ODE satisfied by h. Thus, we are led to the following definitions. Given a sufficiently
smooth function ug : 2 — R™ with values in U, recursively define u; : © — R" as

w = —A(ug)dpuo + f(uo)
i—1 1

U; = — Z Z (Z _l 1> Cly,.. g (dkA)(uo)[ull, Ce ,ulk]8$ui,1,l (5.1.1)

1=0 k=114 +l,=l

1—1
—A(u())amui_1 + Z Z Cly, e (dkf)(uo)[ull, RN ulk]’

k=111 ++lp=i—1
fori=2,...,p

where d*F denotes the kth order differential of a smooth function F viewed as
multilinear form. Here, ¢;, ;, are nonnegative coefficients which depend only on i.

Given hy € H define n = (ho, q(0),uo(0),up(1)),

mo= H) (5.1.2)

i—1
hi o= > > e @H)W)E,.. .z, fori=2,. p—1.
k=11l1+4+l=i—1

where z; = (hj,¢%)(0),u;j(0),u;(1))" and the u; are defined according to (5.1.1). For
y = 0,1, define

Cy’U = by(py((]),hg)

Cyi = Z Z €Ly i (A70y ) (Py (0), ho) [w1y 1y, - - - s Wiy ]

k=11l1+4+lp=i

where wy,, = (pz(/k) (0),ht)". With these notations we are now in position to state
the necessary compatibility conditions.

(CC,,) Let m > 1 be an integer and T' > 0. The data
(uo, ho,p,q) € H™(0,1) x H x H™(0,T) x H™(0,T)

are said to be compatible up to order m — 1 if Byu;(y) = Cy; for all i =
0,....m—1land y=0,1.
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We are going to state the regularity properties of the functions u;, ¢ = 1,...,m,
defined in (5.1.1) for a given ug € H™(S2).

Lemma 5.1.1. Let s > 1 be an integer. Let ug € H*(SY) such that the range of ug lies
in a compact subset K of U and uy, . .., us be defined as in (5.1.1). Thenu; € H*~H(12)
for all 1 < i < s. Moreover, there ezist continuous functions C; : [0,00) — [0, 00)
such that

[willgs-i(q) < Cillluollms)),  1<i<s. (5.1.3)

Proof. We follow the proof in [9, pp. 322—323] and proceed by strong induction on
i. In this proof, all Sobolev spaces are defined in 2 = (0,1). By redefining A and f
in (5.0.1) outside a neighborhood of K one can assume without loss of generality that
A and f are €°° on R”. From the assumption that f(0) = 0 we have f(ug) € H® by
Proposition 4.14.3. We rewrite

Propostion 4.14.3 can now be applied so that A(ug) — A(0) € H?, since 2 is bounded.
Thus (A(ug) — A(0))d,up € H*~! by Proposition 4.14.1. Moreover we have

[A(u0)Opuollgs—r < Cl|A(uo) — A(0)|[ s [|Ozuo || =1 + [A0)[[|Ozuol| pra—
Clluollzee)lluol s | Ozuoll -1 + [A0)[[|Ozuol| pra—
C(lluollz)
by the Sobolev embedding H® < L. The H* '-norm of f(ug) can be estimated
similarly. Thus u; € H*"! and (4.14.1) holds for i = 1.

Now suppose that for 1 <4 < s we have uy € H* ™% and ||ug||gs—r < Ck(|luol z+)
holds for k = 0,1,...,7 — 1. We show that u; € H*% and (5.1.3) holds. A similar

argument as above yields A(ug)0u;_1 € H*~*. The triple sum in u; contains terms
of the form

VANVA

Q(uo)ull,ﬁ v 'ulk,jkaxuiflfl,cr (5.1.4)
where [y + -4+l =1lfor k=1,...,], withl =1,...,7 — 1 and for some g € €.
Here u, j, denotes the jith component of the vector u;,. By the induction hypothesis
Uy 5, € Hs_ll, ces Ul gy € Hs_l’“, axui_l_lﬁ e Ho—(=1-0) « gs—itl and o(ug) € H".
Since

min(s,s —l1,...,s = lg,s —i+1) >min(s —l,s —i+ 1) =s—i+ L.
and since ks > s > 1/2
s+(s—l)+ 4+ s—lp)+(s—i+l)=(k+2)s—i>s—i+1/2

it follows from the remark succeeding Proposition 4.14.1 that (5.1.4) lies in H*%
Similarly, the double sum in u; contains terms of the from

ﬁ(UQ)ulel e ulw-k (515)
where {1 + -+ + I, = i — 1 for some ¢} € €°°. Because
min(s,s —l1,...,s =) >s—(i—1)=s—i+1

and

st+(s—l)++(s—lp)=k+Ds—(i—1)>s—i+1/2
the terms of the form (5.1.5) belong to H*™%. Collecting all our observations, we
obtain that u; € H*%. The estimate luill frs—i) < Ci([luollgs (o)) can be shown
from the definition of u;, the induction hypothesis, and (4.14.1). O
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5.2 LOCAL-IN-TIME EXISTENCE

Now we are ready to state and prove one of the main results of this chapter.

Theorem 5.2.1 (Local Existence). Let m > 3, Tp > 0 and (ug, ho,p,q) € H™(Q) x
H x H™(0,Ty) x H™(0,Ty). Assume that the range of ugy lies in a compact and
conver set Ko C K1 C U, hg € Gy C G C H where K1 and Gy are also compact
and convex sets containing neighborhoods of Ko and Gy, respectively, and moreover
luoll gm(y < M. Suppose that (FS), (D), (UKL) and (CCy,) hold. Then there
exists T € (0,Tp) depending only on (K1,G1, M) such that the nonlinear system
(5.0.1) has a unique solution (u,h) € CH™([0,T] x Q) x H™(0,T). Furthermore,
upq € H™(0,T) and consequently h € H™0,T).

Proof. The proof is a Picard iteration scheme using the linear well-posedness theory
of Chapter 4.

Step 1. Ewistence of initial functions for the iteration scheme. In this step we
find v € CH™([0,Tp] x Q) such that d/v(0) = u; for all 0 < 5 < m — 1. The
following construction is inspired by [20, 71]. Let g € H™(0,7p) be such that
d1g(0) = h; for all 0 < j < m — 1 where h; are the constants defined from (5.1.2)
and gl gm0, < C Z;n:_ol |hj|. This is possible by the trace theorem. Consider the
initial-value boundary value problem

v+ A(uo)vy = f(uo) + G, Bupa =b(p,g9),  v(0) = uo (5.2.1)

for some G € H™((0,Tp) x ) to be specified below. The local existence result
Theorem 4.19.5 for linear systems shows that the system (5.2.1) has a unique solution
v € CH™([0,Tp] x Q) with vjpn € H™(0,Tp) provided that the data (uo, f(uo) +
G, b(p, g)) is compatible up to order m — 1 for the linear system (5.2.1). To ensure
this, let v; for 0 < j < m — 1 be 8§v|t:0 that is obtained from (5.2.1) by formal

differentiation. Similarly, let o; be &7 Ujt—o that is obtained from
0 + A(uo)tg = f(uo), 0(0) = ug (5.2.2)
by differentiating formally. The equation v; = u; holds if
HGO) =uj — o€ H"I(Q) c H™1HY2(Q), 0<j<m—1. (52.3)
By the trace theorem there exists G € H™((0,Tp) x ) such that (5.2.3) hold and

Gl 1m0y x0) < Clluollgm(e)) (5.2.4)

for some continuous function C : [0,00) — [0,00). This estimate follows from the
trace theorem and a result similar to Lemma 5.1.1 applied to the PDEs (5.2.1) and
(5.2.2). Since Byvj(0,y) = Byu;(0,y) = Cy; for y = 0,1 and 0 < j < m — 1,
due to the compatibility condition for the nonlinear system, it follows that the data
(uo, f(up) + G,b(p, g)) is compatible up to order m — 1 for the linear system (5.2.1).

Step 2. An invariant set. Let R,K,T > 0. Define V]  to be a subset of
CH™([0,T] x Q) x H™(0,T) such that (v,g) € Vi p if and only if

(V1) Compatibility: 8g”|t=0 =wu; forall 0 < j <m—1 and 859(0) = h; for all
0 <j <m —1 where u; and h; are defined by (5.1.1) and (5.1.2)

(V2) Range condition: ran(v,g) C K1 X G;
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(V3) Wh-bound: [|v|lyr.e((o,r)x0) + 1glwieoor) < K
(V4) H™-bound: [[v||gm(0,ryxq) + lvjeallzmor) + |9llamo,r) < R.

Consider the function (v,g) € CH™([0,To] x ) x H™(0,Tp) constructed in the
previous step. By construction of g we already know that ||g|| gmo,m,) < C(G1, M).
According to Remark 4.19.7

vl rm om0 %) + V00l #m (0,70)
<C (Hf(uo) + Gl (0,10 x) + 16, )l rmo, ) + ||3§Uto\|Hm—i(Q)>
1=0

where C' depends on the range of ug, which lies in Ko, and on |lug || gm(0,7)x0) <
C(Ty, M). From this, it can be seen that

vl 5 (0,10)x2) + Ivj00ll m(0,10) < C(K1,G1, M) =: Ry

where we removed the explicit dependence of C' on T} since it is fixed from the
beginning. By Theorem 4.17.5 and the PDE (5.2.1)

[vllwee (0,10 x02) < Nluollzoe () + 11 f (wo) + G(0, ) — A(uo)dzuol| o) + v ToRa.

Applying the Sobolev embedding theorem and (5.2.4) we have ||v||y1.00(0,1)x0) <
C(Ry, M). One can do the same procedure for the W1*-norm of g. Hence

v[lw.e0(0,10)x2) + 9llwro0,1) < C(K1,G1, M) =: K.

Finally, for the range condition, Theorem 4.17.5 and v~y = wuo imply that ||v —
uo || oo ((0,7)x0) < T'Ry. Therefore there exists 71 = T1(R1) > 0 such that the range
of v lies in Ky for all T € (0,71]. Using the same argument, it can be shown
that the range of g also lies in Gy for all T € (0,73 by reducing 7T if necessary.
Therefore V:,TK, r is nonempty for all K > K, R > R; and for T' € (0,7T1] for some
T = Tl(lCl,Ql,M) > 0.

We will show that there exist K > Kj, R = R(K) > Ry and T'= T(R) > 0 such
that given (v,g) € VI'k g the solution of the system

;

ur + A(v)ug = f(v), t>0 0<z<1,
Bujagq = b(p, h), t>0,
W =H(g,q,vp0), t>0, (5.2.5)
Ujt=0 = U0, O0<z<l,
[ 2(0) = ho

satisfies (u,h) € Vi p. Let us verify the regularity of (u,h). Note that (9,{ v €
CH™(]0,T] x Q) it follows that &v € C™9-1([0,T] x Q) c C(]0,T] x [0,1]) for
all 0 < j7 <m — 1. Therefore

0] (v90) =0 = (8]v)|(1=0yxo0 = (B} V=) o0 = Ujjo0, 0 <j<m—1.

Together with (V1) it can be shown that the compatibility conditions are satisfied
by (u,h). Since

B(t) = ho + /0 H(g(s), 4(5), vjpa(s)) ds
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we have h € H™1(0,T) and therefore u € CH™([0,T] x ) with upq € H™(0,T)
according to Theorem 4.19.5 . Furthermore, u and h satisfies (V1) since v and g
satisfy the same property. Thus by Theorem 4.17.5

[ullwroe (o,1)x0) + 1Rllwre ) < C(K1, M) + RVT.

Take K = 2max(K;,C (K1, M)). Letting T = T(R,K1,G1, M) > 0 small enough,
condition (V3) is satisfied by (u,h). A similar argument using the same Theorem
4.17.5 implies that (u,h) satisfies (V2) by reducing 7' if necessary. It remains to
prove that (u, h) also satisfies (V4). Indeed, as in [55], one can prove the following
additional a priori estimate

[l o,71x0) + lwaallamor) + 1Al amo0r < R (5.2.6)

for some R = R(K) > R;. The proof of this estimate is straightforward but lengthy.
For this reason we postpone its proof. In summary, V1%  is invariant under the
map (v,g) — (u,h) where (u, h) solves (5.2.5) for some T,K,R > 0.

Step 3. Emistence and Higher regularity. Let V = V" p where the parameters
T, K, and R are those given in the previous step. Let (u", h°) € V be given and for
each nonnegative integer k, define (u*+1, R¥*1) recursively to be the solution of

w4+ Ak )ub Tt = f(ub), t>0,0<z <1,

Buftl = b(p, hF1), t>0,

(REHY = H(h*, g, ufyq), t>0, (5.2.7)
uj s = uo, 0<xz<l1,

W H1(0) = ho

Note that the boundary condition in (5.2.7) depends on A*+! which is possible
because h**1 does not depend on u**! and at the same time couples the PDE
to the ODE. Then according to Step 2, (ukH,hk“) € V for all £k = 1,2,...
Thus (u”, (u¥)9q, h*) is bounded in H™((0,T) x Q) x H™(0,T) x H™(0,T) and
one can extract a weakly convergent subsequence. By compact embedding and
by extracting an appropriate subsequence (u*, (uk)|39, h*) converges in L%((0,T) x
Q) x L?(0,T) x L?(0,T) and let (u,,h) be the limit. The limit is necessarily
in H™((0,T) x Q) x H™(0,T) x H™(0,T). Since (u¥, (u*);s0,h*) is bounded in
H™((0,T) x Q) x H™(0,T) x H™(0,T), by interpolation theory for Sobolev spaces,
(uF, (uF) 190, B*) = (u, @, h) in H*((0,T) x Q) x H*(0,T) x H*(0,T) for all s € [0,m).
The continuity of the trace operator implies that (u*)j9g — wjgq in L*(0,T) and
therefore 5o = @ by uniqueness of limits in L?(0,T). By passing to the L2-limit in
the system satisfied by (u”, h¥), we can see that the pair (u, h) satisfies the nonlinear
system (5.0.1). Note that d/uj—o = u; € H™7(Q) for 0 < j < m — 1 from Lemma
5.1.1. Finally, Theorem 4.19.5 implies the additional regularity v € CH™ ([0, T] x §2).

Step 4. Uniqueness. Let (u1, hy) and (usg, he) be two solutions of the system (5.0.1)
on the time interval [0,7]. Introducing the variables w = u; — ug and n = hy — hs
we have the system

Ly,w= f(ur) — f(uz) — (A(u1) — A(ug))0pug, 0<t<T, 0<x<1
Bwjgq = b(p, h1) — b(p, ha), 0<t<T,

n' = H(hi,q u1jp0) — H(h2,q,uzp90), 0<t<T,

W= = 0, 0<x<l1,

Mt=0 = 0.
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Let £ x G C U x H be a compact set both containing the ranges of (u1,hi) and
(u2, h2) and let K > 0 be such that the W1 *°-norms of (ui,h;1) and (ug,ho) are
bounded above by K. According to (4.19.11), there exists C' = C(K, K) > 0 such
that forall 0 <7 < T

lwllEr2o.mx0y + ol Fa@ry < OTlf(ur) = flu2) 20 xa) (5.2.8)
+ C7([(A(w) — A(u2))dzuz| %2((0,7—)><Q) + Cllb(p, h2) — b(p, hl)H%Q(O,T)

By the mean value theorem

16(p, h1) = b(p, ha) 720,y < CllnllZ2(0,ry- (5.2.9)

A similar argument proves that

1f () = fu2) T2 (0.yxey + [(Alur) = Au2))Brtz||72 (0 ryx0y
< CllwliZz(omxa) < CTIwIZ 1207162 (5.2.10)

The differential equation for n gives us the following pointwise estimate

O < Cr(lnlZen + lwealieon)  te0,7]
Integrating the last inequality and choosing 7 = 7(K, K') > 0 small enough

2
2200 < —C7 wionll (5.2.11)
Mirz0,m) = 7 gz Woeliz o) 4

From (5.2.8)—(5.2.9) and reducing 7 > 0 if necessary it can be seen that w = 0 on
[0, 7] and from (5.2.11) n = 0 as well on [0, 7]. Repeating the process on intervals of
the form [k, (k + 1)7] for positive integers k shows that w = 0 and n = 0 on [0, T
and therefore the uniqueness of solutions. O

Now we prove the estimate (5.2.6) used in the third step of the proof of the
previous theorem. The proof of this estimate is similar to the proof of Lemma
4.19.6, however, the difference is that the source terms appearing on the PDE and
the boundary condition now depend on the frozen coefficients v and g. From the
proof of Lemma 4.19.6 we already have the estimate

1
ﬁHuHLQ(Q;Hm(O,T)) + llwaall zm0.1)
<Cc|> ||agu|t:0H%2(Q) VT Il zomyxe) + 6@, bl mo,r) | (5.2.12)
=1 =1

for all T € (0,Tp], where f; = A(v)d) (A(v) ™' f(v)) — A(v)[8, A(v) ' LyJu. For the
rest of the proof C will denote a positive constant depending only on Tgy, K, Ky, Gy, M
HpHHm(O,TO), HqHHm(O,TO)’ and is independent on R and T'. The commutator has been
estimated uniformly in 7" in the proof of Lemma 4.19.6. Let us consider the first

term of f;. Note that it is a nonlinear function of order at most m and thus by
Theorem 4.17.4 we have

1A)3] (A(0) 7' F ()l 20.myx) < CUvllam (o) <0) + 1)
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Because (u,h) € Vi p we have afu‘tzo = u; for all 0 < j < m — 1. Using this in
(5.2.12) and recalling Lemma 5.1.1 we have

1
ﬁ”uHLZ(Q;HW(O,T)) + lwaallzmo,r) (5.2.13)

< C(L+ VTl gm(o.1r)x0) + VI + R)||ull grm(omyxe) + 160 )l zrm(0,7))

where R is a positive constant to be chosen below. Next we will estimate the bound-
ary terms on the right hand side of (5.2.12). By Theorem 4.17.4 once more

6(p, W) zrm0,7) < C(Kmx(p, 1) Ulp 5 0.7y + Bl 2rm 0,7y + 1)

The fact that (u,h) € V implies that A9 (0) = h; for all 0 < j < m — 1. The
differential equation b’ = H(q, g,vjsq) for h gives us the estimate

1Al zm 0.y < C(Km—1,1(4: 9,v180)) 4]l zm-10.1) + 9l zm—10,7) + 1)
With these, together with Theorem 4.17.6 we have

16(p, B)|| m 0,1y < C(Tl|gll zrm 0,1y 4 1)- (5.2.14)

Using (5.2.14) in (5.2.13) we have

\}T‘UHLQ(Q;H’”(O,T)) + llwoall zmo,r) (5.2.15)
<C(l+ \/THUHH’”((O,T)XQ) +VT(1+ R)[[ul| grm 0,yx0) + Tllgll 5m(0,1))-

It remains to estimate the mixed derivatives. As usual we proceed by an induction
argument. Suppose that Ha;lvagUHL2((0,T)XQ) < N(u) foralll =0,1...,k—1 and j
such that [ + j < m, where N(u) is the right hand side of (5.2.15). Let k and j be
integers such that £ + j < m. The PDE implies that

O50ju = 0519 (A(v) ™ f(v)) — 9510 (A(v) " Dpu).

The first term on the right hand side is a nonlinear function of v of order at most
m — 1, and therefore using Theorem 4.17.4, Theorem 4.17.6 and (V1) we have

185720] (A(0) "L F ()l 2 (0.myxy < C(T N0l grm(omyxe) + 1)-

We can expand the second term using Leibniz’s rule and estimate each term in the
sum. Let 0 <[ <k—1and 0<j <i. Ifl+7<m— 3 then Theorem 4.17.4 implies

105 10] T (A(0) D50, ull 2 01y xey
< O O (AW) M 2o, <) 1050l oo (0, <)
< CA + |l gm0,y x ) lullwm—2(0,1)x0)-

According to Theorem 4.17.6 we have

—2

3

IN

||atku|t:0HWm—2—k(Q) + C\/THUHH’”((O,T)XQ)
=0
C > N0Fu—oll grm—r-1() + CVTIul gm0,y x52)
k=0

[wllwm=—2(0,1)x0)

Eol
[\

IN
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Thus [|95~1710] 7 (A(v) ™)L ull L2 0.ryxay < N(u). Suppose that |+ = m —
2,m—1then k—1—1+4j—4=1,0. Thus we can have a standard L> — L? estimate
to obtain

105 10] 7 (A(v) ™)L ul| o 0.y <y < CHOLI ™ ull L2 (o myxay < N ()

where the last inequality is due to the induction hypothesis. This completes the
proof of the induction step. Therefore we have

1
(<~ OVTW+ B lulln ooy + lonllmco

< CL+ VTl gmo1yxe) + VTlgllamom) < C(1+ VTR).

Choosing R = max(5C, Ry) where C' is the constant in the last inequality and choos-
ing ' = T'(R) > 0 small enough so that ﬁ —CVT(14+R) > } and VTR < 1 finally
proves (5.2.6).

5.3 BLOW-UP CRITERION

We prove the following standard blow-up criterion for first order quasilinear PDEs.
The idea of the proof is the following. Boundedness in W% of the local solution
implies boundedness in H™, which can be further improved to show boundedness in
CH™. If this is known, then a standard argument shows that the solution can be
extended.

Theorem 5.3.1 (Blow-up Criterion in Finite Time). Let (u,h) € CH™([0,T]x Q) x
H™(0,T) be a solution of (5.0.1) having a trace ujpq € H™(0,T), where m > 3 is
an integer, and T be the mazimal time of existence. If T* < oo then the range of
(u,h) on [0,T] x [0,1] leaves every compact subset of U x H as T — T*, i.e. for
every compact set IC x G in U x H there exists € > 0 and (t,x) € (0,7 — €] x [0, 1]
such that (u(t,z),h(t)) ¢ K x G, or

lim sup |0z u(t)|| Loofo,1] = 00-
T

Proof. Suppose that the range of (u, h) on [0, 7] x §2 lies in a compact subset Ky x Gy
of U x H and [[ully1.00(jo,mx[0,1]) < Ko for some constant Ko > 0 and (u,h) €
CH™([0,T] x Q) x H™(0,T) for all T € (0,7*). We show that there exists a 7 > 0
such that the solution can be extended to a solution (u,h) € CH™([0,T* 4+ 7] x ) x
H™(0,T* + 7) satisfying ujpo € H™(0,T* + 7).

Step 1. Uniform boundedness in CH™ x H™. The following estimates are again
in the same spirit as before, but now, the frozen coefficients are the solutions of the
PDE. For completeness we include their proof. According to (4.13.17), we have for
all u € HY((0,T) x Q) and for all v > 7o

VAllullzzo,myxa) + lweellz2o,r)

<C <\%HLMUHL2((O,T)><Q) + [[Bujgall2(0,m) + ||ut0||L2(Q)> :
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for some constants C' > 0 and g > 1 depending only on (Ko, Go, Ko). Applying this
estimate to 87u, for j =0,1,...,7 where k =0,1,...,m we have

VAllull L2 smx 0,1y + llwoall mx0.1)
Lk

<Ol —= j +lo(p, h +1
77 2 Wllacorse + 10te: )l

where f; = A(u)d (A(w) L f () — A(w) [0, A(w) " LyJu. For j > 1, fj is a nonlinear
function of d;u of order at most j — 1. Thus, using Theorem 4.17.4 we have
1 fill2 0,7y <) < CUOwul -1 0,myx0) + 1) < CUlullmsoryxa) +1)-

The case of fy = f(u) can be done merely by the mean-value theorem. On the other
hand, by a similar argument we also have |[b(p, h)|| gr 0,7y < C([|Allgr o1y +1). The
differential equation for h gives us ||kl 12(0,r) < C and ||Al| gror) < C([|hll gr—10,1) +
lwall gr-1(0,ry + 1) for 1 < k < m. Combining all of these in a recursive manner,
we obtain

1
VAUl L2 .m0, + llweall am o,y + 1Bl mmo,r) < C <ﬁ||u||Hm((O,T)xQ) + 1> :

From the PDE we note that d,u = A(u)~'f(u) — A(u) " *du. Therefore &0Fu can
be written in terms of derivatives of u with respect to ¢ only, and is a nonlinear
function of u of order at most k + j. Fixing z € 0, we apply Theorem 4.17.4 to the
function u(-,z) € H™(0,T) to obtain

1070Fu(-, @) 20,1y < Clul, @) |l gmory + 1)
Integrating over the bounded domain €2 yields
Ha%aquB((o,T)xQ) < C(lullp2(;m0,r)) + 1)-
Combining this with our estimates above and choosing ~ large enough we have
1wl zrm 0,7y x2) + 1Bl 0,1y < C, forall0 < T < T*. (5.3.1)

for some constant C' > 0 independent of T € (0, 7).

Let ¢ € Z(R) be a cut-off function such that ¢(¢) = 0 if ¢t < T%/4 and ¢(t) =1
if t > T*/2. Multiplying the system (5.0.1) by this cut-off function we have the new
homogeneous system for w = pu and g = ph

w + A(w)w, = of (u) + pu, 0<t<T, 0<x<l1,

Bwjagq = ¢b(p, h), 0<t<T,

g = @H(h,q,upq) + $h, 0<t<T, (5.3.2)
wit= = 0, O<z<l,

gjt=0 = 0.

Applying the energy estimates for the initial boundary value problem with homoge-
neous data (4.19.2) together with the previous result (5.3.1) shows that there exists
an M > 0 such that

lullcrmo,r1x0) + 1Rllgm o) < M, forall0 <T < T".
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Step 2. FExtension. According to the previous step there exist an M > 0 and a
sequence (t,), C (0,7T) such that ¢, — T* and ||u(t,)||gm + |h(tn)] < M for all n.
Consider the initial boundary value problem

;

v+ A(v)vg = f(v), t>0, 0<x<1,

Bujgg = b(p, g), t>0,

9" = H(g,4,v)90); t>0, (5.3.3)
V)= = u(tn), 0<z<l,

gjt=0 = h(tn).

The local existence result Theorem 5.2.1 implies that the exists 7 > 0, depending
only on M and in some neighborhoods of Ky and Gy but independent of n, such that
(5.3.3) has a unique solution on [0,7]. Choose n large enough so that ¢, + 7 > T*.
Then the functions w and n defined by

(u, h)(t), 0<t<t,
(’U,g)(t_tn), t’fl StStn+Ta

(w,n)(t) = {

lies in CH™([0, t,, + 7] x ) x H™(0,t, + 7) since (u, h) and (v, g) must coincide in
[tn, (tn + T7)/2] by uniqueness. Thus (w,n) satisfies (5.0.1). Therefore the solution
can be extended up to the time t, +7 > T*. This completes the proof of the
theorem. O

5.4 EXAMPLES

In this section we cite some examples that fit in the general system (5.0.1).

5.4.1 Flow in an elastic tube revisited

Consider the following system modelling the velocity v of an incompressible fluid
contained in an elastic tube of length ¢, cross-section a that is connected to a tank
at each end having cross-section ar and level height hg, hy, respectively,

ai(t,z) +v(t,x)ag(t,x) + a(t,v)vy,(t,x) =0, 0<t<T, 0<z </,
2

ve(t, ) + ﬁam((:’x)) +ou(t, x)vg(t,z) = —pou(t,z), 0<t<T, 0<z </,

a(t,x
t) = —a(t,0)v(t,0), 0<t<T, (5.4.1)
t)=a(t,Ov(t,l), 0<t<T,
a(t,0) = ap(1 + po(t) + bho(t))?, 0<t<T,
a(t, €) = ao(1 + pe(t) + bhe(1))?, 0<t<T,

see (2.6.5). Here ag is the rest cross-sectional area of the tube, b, k > 0 are parameters
incorporating the material properties of the tube and 8 > 0 is a parameter modeling
linear tube friction. The tanks are subjected from above to external forcing pressures
represented by pg and py. Letting u = (u1,u2) = (a,v), h = (h1, h2) = (ho, h¢), and
p = (p1,p2) = (po,pe) we can transform (5.4.1) into (5.0.1) with

A(u) — ( 2u2_% U1 >’ f(u) = (%u>, By =By = (1 0),
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. ao(l +p1 + bh1)2 . —éull@
b(p7 h’) - < ao(l +p2 +bh2)2 ) H(h’u u7w) - $w1w2 .
1

The eigenvalues of the flux matrix A(u) are given by A(u) = ug — ku{ and p(u) =
1

ug + kui with corresponding eigenvectors

ex(u) = ( o ) e,xu)—( " )
KUy K

respectively. Let U = {(u1,uz) € R? : uy > 0, |ug| < K;ul} It follows that A(w)
has one negative and one positive eigenvalue for every w € Y. Thus E* (A(w)) =
span{ey(w)} and E*(A(w)) = span{e,(w)}. The estimate |le,(w)| < C|Boey(w)]|
is equivalent to

— e

up < kHC? —1)%u]. (5.4.2)

Let U, = {w € U : dist(w,dU) > €} for € > 0. By continuity it can be seen

from (5.4.2) that there exists Ce > 1 such that ||e,(w)| < C¢||Boey(w)|| for all

w € U,. By positive homogeneity of the norm it follows that [|[V[| < Ce[|BoV|| for all

V € E*(A(w)) and for all w € U.. Similarly, |V|| < Cc||B,V| for all V € E*(A(w )
for all w € U.. Therefore the uniform Kreiss-Lopatinskif condition holds for w € U..

It remains to verify Friedrichs symmetrizability. It can be easily seen that the

matrix .
S(w) = K*uy 2 0
0 1

is a Friedrichs symmetrizer of the system. For R > 0 define i = {w € U, : ||w| <
R}. It is clear that there exists @ = a(e, R) > 0 such that S(w) > aly for all
w € U. Therefore if the the initial data for the system (5.4.1) and the boundary
data p satisfy the conditions of Theorem 5.2.1 then (5.4.1) has a unique solution
(a,v, ho, he) € CH™([0,T] x [0,4])? x H™1(0,T)? for some T > 0. Moreover, if the
maximal time 7% > 0 of existence is finite then either the range of (a, v, hg, h¢) leaves
every compact set of i x R? or

limsup ([|0za(t)]|zoepo,q + 1020 (8] Loej0,) = 00

t—T*
5.4.2 Multiscale blood flow model

Consider the following system [27, 67]

at(ta l‘) + Qx(t7 fL‘) 2: 0,
@t x) + (q(t’x) > + ll)a(t,x)px(t, z) = _gﬁpyq(t’ z)

a(t,x) a(t, z)

with 0 < ¢ < T and 0 < x < £. This models the flow rate ¢ of the blood in a vessel
of cross-section a and length ¢. The pressure p is given by the constitutive law

 JThE
ao(l —02)

All the parameters are positive and they represent various physical quantities de-
picting the properties of the blood and the vessel. Here, ag, E, h, o denote the rest

(5.4.3)

(Va = /o). (5.4.4)

p:

159



LOCAL EXISTENCE AND BLOW-UP CRITERION FOR NONLINEAR PDE-ODE SYSTEMS

cross-section, Young’s modulus, thickness and Poisson coefficient of the vessel wall,
respectively, whereas p is the blood density and v is the kinematic blood viscosity.

To have a more realistic description of the cardiovascular system, lumped param-
eter models based on ordinary differential equations were introduced. These ODEs
can be derived by linearizing and integrating the hyperbolic models with respect to
space. Following [27] we have

vo(t) = Aoyo(t) + rro(t,yo(t)) + so(t,yo(t)) (5.4.5)
Ue(t) = Agye(t) + rre(t, ye(t)) + se(t, ye(t)) (5.4.6)

where yo(t),ye(t) € R™, Ay, Ay are m x m matrices and 7o, rge, So, S¢ are source
terms. The coupling of the hyperbolic PDE (5.4.3) and the ODEs (5.4.5) and (5.4.6)
is done by imposing the pressure at the boundaries to be equal to a specific entry of
the ODE, i.e.,

p(t,0) = yoi(?), p(t,€) = ye;(t) (5.4.7)

for some 1 < 4,57 < m. Writing the system in terms of a and ¢ only by using the con-
stitutive law (5.4.4) it can be shown as in the previous example that (5.4.3)—(5.4.6)
can be written in the form (5.0.1) and satisfies (F'S), (D) and (UKL) with appropri-
ate U. Alternatively, one can diagonalize the system as in [27], and thus Friedrichs
symmetrizability is easily checked. The boundary matrices will be transformed, how-
ever, the UKL condition is preserved. This can be verified in the same manner as in
the previous example and for this reason we omit the details.

5.4.3 1-Tank model

Consider a 1-D tank of length /¢ filled with inviscid incompressible irrotational fluid
which is subjected by a horizontal force. Then using the Saint-Venant equation one
can derive the following system [16]

(

Hi(t,z) +v(t,x)Hy(t,x) + H(t,z)v.(t,2) =0, 0<t<T, 0<z<{,
ve(t,x) + gHy(t, ) +v(t, x)vg(t,z) = —u(t), 0<t<T, 0<z </,

v(t,0) =v(t,L)=0, 0<t<T, (5.4.8)
st) =wu(t), 0<t<T,
| D(t) =s(t), 0<t<T,

where ¢ is the gravitational force, H is the height of the fluid in the tank, v is the
referential horizontal velocity of water, s is the horizontal velocity of the tank, D is
the horizontal displacement of the tank and w is the horizontal acceleration of the
tank in the absolute referential and is viewed as the control. Note that the PDE
part is not of the same form as the PDE part in (5.0.1), but instead, it is of the form

u(t,x) + A(u(t, z))ug(t, z) = F(t,x).

The results given in the previous sections extend to the case where there is an extra
source term F on the right hand side of the PDE part.
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We know already from Chapter 5 that the two-tank model (2.6.5) has at least a local-
in-time smooth solution. Can we extend this smooth solution to all positive times?
It is known that in general, quasilinear systems do not have global-in-time solutions
and blow-up in finite time may occur. So at the very least, sufficient conditions
should be given to guarantee that a global smooth solution exists. In the event
that this global solution exists, what can we expect about its long-time behavior?
We have seen that for the linearized version of the system, the solution tends to
the steady state exponentially fast. Can we expect the same result for the original
nonlinear system (2.6.5)7 One might expect that this is true for dynamics near the
steady state, i.e., the nonlinear system behaves like the linear system if the data is
close enough to the steady state. With the results of Chapter 5 together with energy
and entropy methods, we will show in the present chapter that as long as a smooth
data is close enough to the steady state, (2.6.5) has a global-in-time solution and
this solution tends to the steady state.

To simplify notation, we rename the parameters in (2.6.5). The system (2.6.5) can
be rewritten as

A + uA, + Auy = 0, t>0,0<x <,
up + K2AT3 Ay + g = —Bu, t>0,0<z<¢,
Arhly(t) = —A(t, 0)u(t, 0), t>0,
Arhy(t) = A(t, O)u(t, 0), t>0,
(6.0.1)
A(t,0) = (ap + bho(t))?, t>0,
A(t, 0) = (ag + bhy(t))?, t >0,
A(0,z) = A%(z), u(0,z) = u’(z), 0<z<l,
ho(0) =1, he(0) = h

where
o sE 5= 8w b ropgv Ao
2proN/ Ag ’ pAg’ sE 7
aoz\/f<1+mg°), ag:\/f(lJrTOZfé),

The main result of this chapter will be stated in Section 6.1. The energy method
is used to prove the existence of global solutions for (6.0.1). In deriving the energy
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estimates we shall make use of entropies. Relative entropies and entropy-entropy
flux pairs relevant to the proof of the main result will be tackled in Section 6.2. The
relative entropy gives an entropy dissipation identity which will be useful in zero
order estimates [33]. The entropy-entropy flux pairs on the other hand are used
in deriving first order and second order estimates, cf. [68]. These estimates will be
proved in Section 6.3. The proof of the global existence using energy estimates will
be provided in Section 6.4. Thanks to the energy estimates, it immediately follows
that the solution tends to the equilibrium in H! x H' x R?. With respect to the norm
of L? x L? x R? it will be shown in Section 6.5 that this convergence is exponential.

6.1 STATEMENT OF THE MAIN RESULT

The volume of the fluid inside the tube and the tanks at time ¢ > 0 is given by
¢
V() = [ Alt,z)do+ Arho(t) + Arh(e). 6.1.1)
0

If (A,u,ho,hy) is a smooth solution of (6.0.1) on [0,7] then V(¢) is conserved on
[0,T], i.e., V(t) = V(0) for all ¢ € [0,7]. This can be seen immediately by taking
the derivative of V' and using the first, third and fourth equations in (6.0.1). In this
chapter, by a smooth solution we mean that each state component is at least con-
tinuously differentiable. The equilibrium state of (6.0.1) is given by (A, 0, hoe, e )
where

Ae = (ap + bhoe)2 = (a¢ + bh@e)2. (6.1.2)

For a given fixed volume and with the assumption that the pressures pyo or py, are
given (not too large), the equilibrium is uniquely determined. Indeed, if Vj denotes
the fixed volume then we have Vj = Al + Arhoe + Arhge. The latter equality
together with (6.1.2) provide explicit expressions for A., hoe and hg. in terms of Vj.
In Chapter 5, the mth order compatibility condition of the initial data wass defined
and the following local-in-time existence result and blow-up criterion was shown.

Theorem 6.1.1 (Local Existence and Blow-up Criterion). Let (A%, u® hd,hY) €
H™(0,¢) x H™(0,£) x R? be compatible up to order m — 1 for some integer m > 3.
Suppose that the range of (A°,u®) lies on a compact and convex subset of U :=
{(A,u) € (0,00) xR : |u| < kAY4}. Then there exists T > 0 such that (6.0.1)
has a unique solution (A,u, ho, he) such that A,u € N, ,C™*([0,T]; H™(0,£)) and
ho, he € H™L(0,T). Furthemore, if the mazimal time T* of existence is finite then
either (A,u, ho, hy) leaves every compact set of U x R? or

}Tijrg(HAx(t)HLoo[o,z] + [Juz () || oo jo,g) = +o0.

If the maximal time is finite, the first scenario is typical for ODEs while the second
one is called shock formation. For the first one, the state approaches the boundary
of U and as a result the flux matrix will become singular. In the region U, there
is one negative eigenvalue and one positive eigenvalue for the flux matrix and the
flow in this case is subsonic. On the other hand, the shock formation is a typical
behavior for first order quasilinear PDEs where waves are compressed within finite
time and therefore wave profiles can have arbitrary large slope. However, for data
close enough to an equilibrium state and with dissipative terms these will not happen.
This assertion with regard to (6.0.1) is the main result of this chapter.
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Theorem 6.1.2 (Global Existence). In the framework of Theorem 6.1.1, there exists
b0 > 0 such that if Ey := ||A° — Ac||3s + [[u®[|F,2 + [h§ — hoe|® + [h) — hee|* < 0o then
there is a unique global solution (A,w,ho, he) of (6.0.1) such that

A,u € C([0,00); H*(0,£)) N C*([0,00); H'(0,€)),  ho, he € C2[0, 0),
and

sup (JA(®) = A + [u(®)l + hol®) = hocl® + [he(®) = hecl?)
T / 1Ae ()20 + u(®)]20 dt < CEo
0
for some C > 0.

6.2 ENTROPY-ENTROPY FLUX PAIRS

Entropies of the system (6.0.1) can be obtained by solving a wave equation as shown
in the following. For a more general result of a similar model and in the case of
f = 0 we refer to the paper of Lions, Perthame and Tadmor [51].

Proposition 6.2.1. Letn € C?((0,00)xR)NC([0, 00) xR) satisfy the wave equation

0? 0?

a—AZ(A, u) = HQA_%auZ(A,u), in (0,00) x R. (6.2.1)
Then any smooth functions A and u satisfying the first two equations in (6.0.1) also
satisfy the entropy dissipation identity

0 0 0 .
Sn(A )+ —a(Au) = —fun(Aw), i (0,00 xR, (622)

where q € C?((0,00) x R) is given by

U A
q(A,u) = / vnu(A,v) + Ana(A,v)dv + / /iza_%nu(a, 0) da. (6.2.3)
0 0

Proof. The regularity of ¢ stated above follows immediately from the regularity of 7.
Since u and A satisfy the first two equations in (6.0.1), the PDE (6.2.2) is equivalent
to

Ug (qu — uny — Ana) + Az(qa — ﬁQA_%nu —uny) = 0. (6.2.4)

The first term vanishes due to the construction of ¢ since g, = un, + Ana. We show
that the second term also vanishes. Differentiating the latter equality with respect
to A and using (6.2.1) we have

1
QAu = Qua = UNua +na + Anaa = (una + k2A721,),. (6.2.5)

Integrating (6.2.5) twice, first with respect to u and then with respect to A, we have

A 1
q(A,u) = /0 una(a,u) + k2a"2n,(a,u) da + F(A) (6.2.6)

for some function F'. Taking v = 0 in (6.2.3) and (6.2.6) shows that /' = 0. Thus,
differentiating (6.2.6) with respect to A shows that the second term in (6.2.4) is
identically zero. Hence (6.2.4) is satisfied and so is (6.2.2). O
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The function 7 is called an entropy and ¢ is the corresponding entropy flur. The
entropy dissipation identity (6.2.2) is commonly called a companion law to the first
two equations in (6.0.1). Let n, = aju+asA+aguA+ay where the a;’s are constants.
Notice that the wave equation is invariant under perturbations of the form n,, i.e.,
if n satisfies (6.2.1) then so does 1 + 7,,.

A common entropy of the above system is

n(A,u) = %Au2 + §R2A%,

called the mechanical energy and it is strictly convex in the variables (A, Au) €
(0,00) x R. T his particular entropy satisfies the boundary conditions 7(0,u) = 0
and 74 (0,u) = 1u®. Such entropies are called weak entropies [51]. However, for our
purpose we will modify this entropy. We want an entropy 7y such that 79(Ae,0) =0
and Dng(Ae,0) = (0,0). This can be done by choosing

no(A,u) = (A u) —n(Ae,0) — (Dn(Ae, 0), (A — A, u))
— fAu + 35 2043 — A2)— 262 AZ(A— A,). (6.2.7)

In the literature, 7 is referred to as the relative entropy with respect to the state
(Ae,0). Notice that the difference of the mechanical energy n and its modified version
1o is a function of the form 7, stated above. By invariance, 1y also satisfies the wave
equation (6.2.1) and therefore if (A, u) satisfies the first two equations in (6.0.1), n
also satisfies the entropy dissipation identity (6.2.2) with the corresponding entropy
flux

1 1
ao(A,u) = SAu + 2k2(A2 — A2)uA. (6.2.8)

obtained from (6.2.3). Moreover, 7 is also strictly convex in the variables (A, uA).
This entropy-entropy flux pair will be used in the next section to obtain zero order
estimates. By a second order Taylor expansion we can see that there exist constants
ci,Cg > 0 such that

cr([uA]? +|A = A ) < no(A,u) < Cr(Judl* +|A — A?) (6.2.9)

for every (A,u) € K where K C (0,00) xR is a compact set containing (4., 0). Thus
the relative entropy serves as a distance between the smooth solutions of the system
and the constant equilibrium state.

The next step is to develop entropy-entropy flux pairs to deal with first order
and second order estimates as done by Ruan et al. [68]. This will be done using
an appropriate diagonal form of the system. The elgenvalues of the associated flux
matrix of (6.0.1) are A= u — kAT and o= u + kAT, Multiplying the first two
equations in (6.0.1) by (KA~ 1 1) and by (KA~ 1 ,—1) we obtain a diagonal system

Wy + N0, 2)b, = g(,%—uv)
A5 = ()

where w = —u +4I€A%, Z= u—|—4/<aAi, A= —gw + 32 and i = %u? + %2. If (A, u)
1 1
is close to the equilibrium state (Ae,0) then (w, z) is close to (4kAé,4xkA¢). With
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1
this in mind, we shall consider the shifted Riemann invariants w = @ — 4kA¢ and
1
z =2 —4KkA2 so that

1 1
w=—-u+ 4/€(Ai —A2), z=u+ 4/{(14i — Ad). (6.2.10)

Therefore the state variables (A,u) and the shifted Riemann invariants (w, z) are

related by
1 1
uzi(z—w), AT — Al = —(z +w). (6.2.11)

Using the Riemann invariants, the system (6.0.1) can be written in diagonal form

wt—i—)\(w,z)wm:g(z—w), t>0, 0<z<{,
zt—i-u(w,z)zggz—g( w), t>0, 0<z</,
/ _ _
Bo(0) = ~0(w(t,0), 2(,0))(2(1,0) ~ w(t,0), >0, 621
() = O(wi(t, €), 2(t, ) (=(t, £) — w(t, 0)), £>0,
Z(t, 0) + w(t, 0) = Co(ho(t>)(h0(t> — hoe), t >0,
Z(tag) + w(tvg) = (g(h@(t))(hg(t) - hﬁe)a t>0,
where the coefficient functions are given by
Mw,z) = —§w + §z - 1C’ C. = 4/1A% (6.2.13)
I - 8 8 4 € e — € .
3 5 1
wlw,z) = —g¥ + i + ZCG (6.2.14)
1 4
G(h) = b(ag+bh+ Vay +bhy)™t, k=0, (6.2.16)

Differentiating the first two equations in (6.2.12) with respect to x once and twice
we have

(OFw)s + Mw, 2)(0Fw), = F (6.2.17)
(0%2): + p(w, 2)(0F2), = Gy (6.2.18)
for k = 1,2 where
_ p
P = —Mwy+ g(zx — wy) (6.2.19)
Gi = —pgpzy — g(zr — wy) (6.2.20)
Fy = 2 \;Wep — AppWy + g(zm — Wyy) (6.2.21)
Gy = —2UpZpy — Mozle — g(zm — Wyy). (6.2.22)
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Consider differentiable functions ¢ = ¢x(t,z, W) and ¢y = ¢(t,z, Z) for k = 1,2.
Using the equation (6.2.17) we have for a smooth solution (w,z) of the system
(6.2.12),

Orpr(t, , Ofw(t, ) + 0 (A(t, 2)dx(t, m, Oyw(t, x)))

= G (t, z, Mw(t, x)) + dpw (£, 2, 05w(t, )0y (O5w(t, z))
+ Mgt @)1 (t, @, Dgw(t, ) + At @) dha (t, 7, D (t, )
+ At @) g (t, @, Ow(t, )0z (Fyw(t, )

= dre(t, 2, 0Fw(t, z)) + Ao (t, 2) o (t, 2, OFw(t, 2)) + A(t, ) ry (t, z, OXw(t, )
+ o (t, 2, Ofw(t, ) Fi(t, o) (6.2.23)

for k = 1,2. Similarly, using (6.2.18) we get
Otpr(t, @, 05 2(t, ) + D (u(t, 2) by (t, @, 85 2(t, x)))

= pe(t, 2,0 2(t, 1)) + pa(t, 2)n(t, @, 05 2(t, ) + plt, ©)pe (¢, x, 05 2(t, )
+ Yrz(t, x, 8§Z(7§,$))Gk(t,x) (6.2.24)

for k = 1,2. Subtracting (6.2.23) from (6.2.24) we obtain the partial differential
equation

O (V1 — 1) + Oz (phr, — M) = My (v, dr) (6.2.25)

where

MWk, o) = (Yt — drt) + (Ba¥r — Aadr) + (ks — APka)
+ (YrzGr — Grw F). (6.2.26)

Integrating (6.2.25) over [0,¢] x [0, ¢] and using Fubini’s theorem we have

t

¥
/ m(t, ) — (0, 2) da + / a(.0) — qu(, 0) dr
0 0

t L
:/ / My (Vg o) de dr (6.2.27)
o Jo
where

nk(tvx) = ¢k<t7x7a§w(t7$))_(Zsk(t?x?a]ajw(t?x))
Qk(tax> = M(tvx)wk(t7mva§w(t7x))_A(t7$)¢k(t7x78£w(tﬂx))'

The point is that solutions (w,z) of (6.2.12) that are sufficiently smooth satisfy
(6.2.27) for k = 1,2. Equation (6.2.27) will be of great importance in deriving the
energy estimates. This is done by choosing appropriate functions ¢ and ¢ such that
the term My, will be, in some sense, dominated by the velocity u or its derivatives.

6.3 ENERGY ESTIMATES

For T' > 0 define the solution space
X = (C([0,T); H*(0,0)*) N ([0, T]; H(0,£)%) N C*([0, T; L*(0,£)%)) x C2[0, T]*.

By using classical embedding results we can see that X7 is continuously embedded
in C1([0,T] x [0,£])? x C?[0,T)?. All throughout this section (A,u, hg, hy) will be
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a smooth solution to the system on the time interval [0,7], provided that such
solution exists on such interval. Define the energy functionals Ny : [0,00) — [0, 00)
for k=0,1,2 by

1 1
Ni(t) = Sl[lopt(HU( e + 1A% (r) = A& |3 + [ho(T) = hoel? + [he(T) — Tee]?)
TE

1
[ s+ 1A e
In the following estimates, and Cs and C;s will denote generic positive constants that
depend on the system parameters and may depend on § > 0, and
Cs and Cjs remain bounded as long as ¢ stays on a bounded set in (0, 00). (6.3.1)

Before we proceed we state the following equivalence of norms of the state variables
u, A and the Riemann invariants

1 1
20|05u(t)]|72 + 326205 (A1 (1) — A)| 72 = 10fw(®)IZ2 + [1052(@)II72.  (6.3.2)

for k = 0,1,2 and for ¢ € [0,7]. This follows immediately from the identity 2w? +
222 = (z —w)? + (z + w)? in R and the transformations given in (6.2.11). This
norm equivalence will be used in converting an estimate involving the Riemann
invariants into an estimate involving the state variables and vice versa. Furthermore,

if 0 < § < Ae then |A — A.| < implies that
1
CrslA — Ae| < |AT — AZ| < Cas|A — Aq|. (6.3.3)
1 1 1
This can be seen from the elementary identity A— A, = (Ai —A¢ )(Ai +A2 )(A% +A2)

whenever A, A, > 0.

6.3.1 Zero Order Estimates

Lemma 6.3.1 (Zero Order Estimate). There exist § > 0 and Cs > 0 such that
for any solution (A,u,ho,hy) € Xr satisfying N2(T) < § also satisfies the energy
estimate

Ni (1) <C§( 5(0) + sup Ju(r ||H1/ lu(m) 117 dT) (6.3.4)

T€[0,t]
for allt € [0,T].

Proof. Recall that ny and ¢p given in (6.2.7) and (6.2.8), respectively, satisfy the
entropy dissipation identity (6.2.2). Integrating (6.2.2) over [0,¢] x [0,¢] and using
Fubini’s Theorem yield

¥
/0 no(A(t, x),u(t,x)) — no(A(0,z),u(0,z)) dx (6.3.5)
t t ¥4
= — u?)(r, x) dz dr.
+AqMAUJ%Mﬂ@%wmAﬁﬂ%Mﬂ®ﬁh— 5[;4@4><,>dd

Let us estimate the left hand side of (6.3.5) from below and its right hand side
from above. According to (6.2.9) and (6.3.3) it holds that, choosing § > 0 sufficiently
small,

¢
/0 no(A(t, z), u(t,x)) — no(A(0, z),u(0,z)) dx (6.3.6)

> Colll(uA) )22 + AT (1) — AT |22 — [ (wA)(O)[[2: — | A (0) — AF|12.)
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Using (6.1.2) and the last four equations of (6.0.1) in (6.2.8) we have
1
@ (A(T,0),u(r,0)) = §(Au3)(7', 0) + 2A7k2b(he(T) — hge)hy(T)

qo(A(7,0),u(r,0)) = %(Au?’)(T, 0) — 247K2b(ho(T) — hoe) (7).

Plugging these in the second integral in (6.3.5) and using the Sobolev embedding
theorem we have

/0 qo(A(1,0),u(t,£)) — qo(A(7,0),u(r,0))dr

> Cho(t) — hoel® + [he(t) — heel® — B — hoe® — [ —hee?)  (6.3.7)
G5 sup u(r) / ()2 dr
T7€[0,t]

Moreover, the Sobolev embedding theorem again implies that

_ﬁ// (Au?)(r, z) dz dr < 505/ Ju(r)|%s dr. (6.3.8)

Now it can be seen that (6.3.4) follows from (6.3.5)—(6.3.8) and the fact that the
L?- norm of (uA)(t) and u(t) are equivalent for each t provided that 6 > 0 is small
enough. O

6.3.2 First Order Estimates

The next step is to derlve estimates involving the spatial derivatives of the state
components u and A%, To this end we recall two classical inequalities frequently used
in deriving estimates. The first one is Young’s inequality: For each real numbers
a,b and € > 0 we have ab < §a2 + 5 = b2 The second one is the following modified
Sobolev embedding.

Proposition 6.3.2. Let a < b. For every ¥ > 0 there exists C(a,b,¥) > 0 such that

ullF o0 0,y < Ozl T2 0,0y + Cla b, 9)l|ull72(qy, (6.3.9)

for all uw € H'(a,b).

Proof. Let a < zp < “T‘H’. Consider the linear multiplier m(z) = b—2x0 (r —xp) — 1

satisfying ||m||zeo[z,,5 = 1. Thus

b ) b b
lu(xo)|? + |u(d)* = /(mu2)xdx =3 /u2d$+2/ mu, dz
T Zo o

0 o xo
4 1

where we use Young’s inequality in the last step. A similar process can be done

for the case 2 < 2y < b, now using the multiplier n(z) = x02_a (x — z9) + 1 and
integration over [a, zp]. These estimates imply (6.3.9). O

The proposition is useful when dealing with higher order estimates. For example,
in obtaining estimates for z, and w, we will put a small factor, if necessary, to these
terms, but the drawback is the occurrence of a large factor to lower order terms.
However, this will not cause problems when we have already derived estimates for
the lower order terms, specifically, the one given in Lemma 6.3.1.
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Lemma 6.3.3 (First Order Estimate). There exist § > 0 and Cs > 0 such that for
any solution (A, u, ho, hy) € X7 satisfying N3(T) < & we have

!!um(t)H%erH(Ai)x(t)\liﬁ/o lua(7)[[72 dr < C5N7(0) (6.3.10)

1 1 t 1
+ Cs Sl{lg)t](\lu(T)Hm + (|43 (7) —Aéllm)/o lu()[F + [(AT)o (7|72 dr
T7€|0,

for allt € [0,T1].

Proof. To prove the lemma we will utilize the system satisfied by the (shifted) Rie-
mann invariants (6.2.12). Let us consider the entropy 71 = ¥ — ¢1 where

Oi(tx, Z) = O(w(t,x),2(tz))u(t,z) 2>
o1t z, W) = O(w(t,z),z(t, x))\(t, z)W2.

We will estimate each integral in (6.2.27) with these particular functions.

Suppose that N2(T) < 6. If 6 > 0 is sufficiently small then there exist positive
constants Cjs such that Ci5 < (i(hg(t)) < Cos for k = 0,4, —Css < A(t,z) < —Cys,
Css < pu(t,x) < Cgs and Crs < O(w(t, x), z(t,x)) < Cgs for all (t,z) € [0,T] x [0, £].
We shall use these properties all throughout without mentioning them anymore.

We estimate each of the integrals on the left hand side of (6.2.27) from below
and estimate the integral on the right hand side from above. For ease of reading,
we divide the process into three steps. To make the terms more compact we also
introduce the variable V' = (w, 2).

Step 1. Estimate from below. The preceding remarks about 6, A and u show that

Crs(wi(t,z) + 22(t,2)) < m(t,z) < Cos(w2(t, ) + 22(t, ) (6.3.11)
for all (¢,z) € [0,T] x [0,£]. Thus

l
/0 m(t,x) —m(0,2)dz > Cs(|[Va(r) 172 = [V (0)[I72)- (6.3.12)
Next, we deal with boundary terms. Let us note the identity

Q= 2)((p2ze)? wa) )

- st (o)
2

= 2)(22 — w? +ﬁ(zt+wt)(2—w))

obtained from the first two equations in (6.2.12). Each term of the above equality is
evaluated at either (¢,0) and (¢, ¢). Consider the case where it is evaluated at (¢,0).
Differentiating the fifth equation in (6.2.12) and using the third equation we arrive
at

2(t,0) +wi(t,0) = [((ho(t))(ho(t) — hoe) + Co(ho(t))]ho(t)  (6.3.13)
= —Si(t)((t,0) — w(t,0)). (6.3.14)
where S1(t) = 0(w(t, 0), z(t,0))[¢)(ho(t)) (ho(t) — hoe) + Co(ho(t))]. Thus we have

—qu(t,0) = —6(w(t,0), 2(t,0)) (=2(t, 0) — w?(t,0))
— BO(w(t,0), 2(t,0))S1(8) (=(t, 0) — w(t, 0))> = Wy (t) + U(t). (6.3.15)
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Using the estimate in Propostion 6.3.2, the Sobolev embedding theorem and the
equality 2u = z — w we have

t t t
/ Uy(r)dr > —0519/ o (7|12 df—cw/ lu()|Padr.  (63.16)
0 0 0
Differentiating the third equation in (6.2.12) gives
hg(t) = - Hl(w(t7 0)7 Z(t, 0))(zt(t7 0) + wt(ta 0))(Z(t7 0) - w(t7 0))
= 0(w(t,0), 2(¢,0))(2¢(t,0) — we(t,0)) (6.3.17)
where 01 (w, z) = 211,@4 (w + z + 2C.)3. Multiplying the left hand side of (6.3.13)

with the right hand side of (6.3.17), rearranging the terms and then using (6.3.14)
we obtain

W1 (1) = S2(0)(2(1,0) — w(, 0))° + 1 (1) 5 W (1) (6.3.18)
where Sy(t) = 61 (w(t, 0), 2(t, 0))S2(t) and Ss(t) = Ch(ho(t))(ho(t) — hoe) + Go(ho(D)).

/—\

Let us integrate (6.3.18) from 0 to t. The first term of the integral can be estimated
as follows
t
[ saoete.0) = w00 = =5 s ) [ e et (019
0 T€(0,t

For the remaining term we integrate by parts, use the the third equation in (6.0.1),
apply the Sobolev embedding and Proposition 6.3.2 to obtain

3 [ SO S R dr= LSOO - 50107

- / (€ (ho(P)) (hol(7) — hoe) + 2Gh (o (7)) (r)? dr
0
Syer (ﬁnux(t)r%? + Collu(®)]2s + [u(0)]2

+ sup |u(r ||H1/ [u(7) |3 dr) (6.3.20)
T€[0,¢]

Therefore, (6.3.15) and the inequalities (6.3.16), (6.3.19) and (6.3.20) give us the
estimate

—/thl(r,o)dr = /Otll’l(T)dT—F/Ot\IJQ(T)dT

t t
> 05<ﬁ|rux<t>\|%2+ﬁ / e (7)]12 d7 + Colu(t)|22 + Ci / lu(r) |2, dr
0

IO+ sup )l / Ju(r qudT)

In an analogous manner we can obtaln the same form of estimate from below for
the integral fg q1(1,£) dr. Combining the estimates that we have obtained so far, we
have the following estimate from below for the left hand side of (6.2.27)

YA t
/ m(t,z) —m(0,z)dx + / q1(7,0) — q1(7,0) dr
0 0
> @((1 =DV = 9 [ sl dr - CollV O (6.3.21)

t
e /0 ) dr = VO~ s, ) / Ju(r HHldT)
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Step 2. FEstimate from above. First we will express the derivative of the eigen-
values A and p with respect to ¢ in terms of the Riemann invariants w and z. A
straightforward calculation and application of the two PDEs in (6.2.12) gives us

3C, 5C, B

5C 3C, I3
)\t = 32 3722x—§(2_w)+R2

where Ry = cpiwwy + crozWy + Cp3wzy + crazzz, k = 1,2, for some constants cy;.
Therefore, each term of u; and A\; contains at least one factor among z — w, wy, 2,
Consequently, the same is true for w; and z; according to the PDE and in turn for
0t (w, z) = 01 (w, z) (w4 2¢). This observation is important because we want to avoid
1
the term fot HA%(T) — A&|| ;2 d7 which is not present in the energy functional Ns.
Now the first three pairs appearing in (6.2.26) for kK = 1 are given by

Vre — b1 = (Opp+ Opg) 22 — (O + OX)w?
tatll — A1 = Oppzz? — OANw?
[h1e — Apre = Ozt + Opz)zs — (O X + OX )W
From the previous remarks we notice that the factors of 22 and w? appearing on
the right hand sides of the last three equations are polynomials of degree at least 1

in z,w, zz, w,. Applying the Sobolev embedding theorem for these factors and then
taking the supremum over [0, ¢] we have

t ol
//erwmwme—Amn+wmx—wumﬂm
0 J0

< Cs sup ||[V(r HHz/ Vo ()12 dr (6.3.22)

T€(0,t]

The last term in M; is more delicate since it contains second order terms. Indeed,
we have

Y17G1 — drwF1 = 20pz,G1 — 20w, Fy

= 20uz, (—umzm — g(zm — wx)> — 20w, (—)\xwz + é(zm — wm)>

2
_ 90265 (20 — we)? + Ry (6.3.23)

where 6. > 0 is the constant term of §. Here R3 are terms of degree at least 3 that
contain either 22, w2, or w,z,. Hence

t b t
// VisCh — b Frdrde < —c/ lua (722 dr (6.3.24)
0JO0 0

+@wMW|m/Mprw
T€[0,t]

where C = W > 0, if 8 > 0, independent of §. Adding (6.3.22) and (6.3.24) we
arrive at

t L ot
/ / Mi(¢r,é1)drde < —C / o ()22 dr (6.3.25)
0 JoO 0

+Co s Ve [ 1)l
T€[0,t]
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Step 3. Let us combine the estimates obtained from Step 1 and Step 2. Choosing
¥ > 0 small enough so that C' — Cs9 > 0 we have

t
HVx(t)II%2+/O lua (7|72 d7 < Cs||V ()72 + CslIV(0) 172 (6.3.26)

t t
e /0 o)l dr+ Cs sup IVl /0 IVa(P)I22 + lu(r)]2 dr.

TE

We can use Lemma 6.3.1 to bound the first and third terms on the right hand side
of (6.3.26) from above. Consequently, (6.3.10) follows from (6.3.26), (6.3.4) and
(6.3.2). O

To complete the estimate for the energy functional N; we need the following
additional estimate.

Lemma 6.3.4. There exist § > 0 and Cs > 0 such that for any solution (A, u, ho, hy) €
Xr satisfying N3(T) < § we have

[ 1t mliar < cavio (63.27)

1 1 t 1
+ Cs sup ([[u(7)l| > +[|A%(7) = A64HH2)/0 lu(r) I + 1(AT)2(T) 172 d7

T€[0,t]
for all t € [0,T7].
Proof. The proof of the lemma is basically the same as the proof of Lemma 6.3.3
and the main difference is the particular choice of the entropy appearing in (6.2.27).

In the current situation we consider the entropy 71 = ¢1 — ¢1 with corresponding
entropy flux q; = p1 — Mgy where

It 0 ) ) 2
itz w) = AeEh ) <A<t,x>w et - w(t,a:»)
2
bi(t,z,2) = e(w(i’ﬁ”;@’x)) (u(t,a:)Z + et - w(t,a:)))
Let Fy = g(z — w). Using Young’s inequality
m o= Out (,u2zg23 + 2uFyz, + Fg) - 9)\_1()\211)% — 2\ Fyw, + FOZ)

0 (nz2 — Mo + 2Fpzy + 2Fyw, + (= — A1 FY)
Cs(w? + 22) — Cs(e2? + 2 ' F3 4 ew?) + C5F¢
Cs(w? + 22) — Cs(w® + 2?)

for some € € (0,1) small enough. Similarly, ij; < Cs(w? + 22 + w? + 22). Thus

AV,

0
/0 i(t ) — 710, 2) do > Cs(|Va(@)lI72 = IVOIZ2 = IV(O)7).  (6.3.28)

From (6.2.12), (6.3.18), (6.3.19) and (6.3.20) and according to the statement fol-
lowing (6.3.20) we immediately get

/ Gi1(1,4) — q1(7,0)dr = —/ O(w(r,0), z(T, 0))(753(7, 0) — U)Z(T, 0))dr
0 0

e (ﬁuux(t)r; T Gl + [[u0) 30

t
+ sup ()l [ u(r)l; df). (6.3.29)
T7€[0,¢] 0
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The remaining task is to obtain estimates from above. As in the previous lemma,
we need to look carefully at each pair appearing in M; since some of them contain
terms of degree only 2. For the rest of the proof R; will denote terms that are degree

at least 3 and contain at least two factors among z — w,w,, z,. Note that using
(6.2.12) we have

_Ce

4

where Ro = CQWWg + CoZWy + C3WZy + C427, for some constants ¢;. Thus have
2 ,uGt — H,ut 20

(22 +wy) — B(z — w) + Ro (6.3.30)

2t — Wt =

i — g = (nze + Fo) T =+ ;(sz + Fo)(pezz + For)
A0y — O 20
— (Awy — Fp)222 22— 2wy — Fy)(Meze — For)
A2 A
1 1 1
= 20|z +wz+ PRl Fo F0t+WR4
50
= - Cf (2e +wp)? — B20(2p + we)(z — w)
Cep?0 (11 (1 1
1
+ 7)\2'[‘2 Rs

By Young’s inequality and the Sobolev embedding theorem we have

~ ~ 0.C. 1

Py — P1e < (—45 + Cgﬁ) (Zm -+ ’wgc)2 + Cg}e(z — w)2 + )\QMQ Rs. (6.3.31)
For the second pair we can see that

~ ~ 60 0 1
Hatht = Aar = (nze + Fo)” = S Aa(Mwy — Fp) o (6.3.32)

The third pair can be computed as in the first pair and we get

7 7 91 -0 T

b1z — A1z = (pze + FU)Q% + 20(pze + Fo)(Ha2e + Foz)
A0y — OA,
— (\wg — FO)Qf — 20 \w, — Fy)(M\pwe — Foy)

= 20 ( (et 5 -w) + (- 5 -w) ) B -

1
—R
+ v 7
_ 0.CepB 9, 1
= 4 (Z:Jc - wx) + )\MRS (6.3.33)
Finally, for the last pair we use (6.2.19) and (6.2.20) to obtain
~ ~ 20 20
12G1 — piw k1 = ;(/'sz + Fo)uGy — T(wa — F))\Fy

= 20 <szx + g(z —w) + ]:21) (—,ul,% — g(zx — wx)>

—20 <—C41€wm — g(z —w) + f?g) <—)\mwx + g(zx — wx)>
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where Rl, RQ are of degree 2 and have the same form as RO. 3
Taking the sum of (6.3.31)—(6.3.34), choosing € > 0 small enough so that C; =
% — Cse > 0, using the Sobolev embedding theorem and the transformations

(6.2.11) we obtain

/Ot/OZMWZl,le)dJ?dT < —él/OtH(A

t
+ Gy sup V()2 /O V()22 + u(r) 22 dr.

T€[0,t]

=

)2 (7)1 72 d7 (6.3.35)

Now it can be seen that (6.3.27) follows from (6.3.28), (6.3.29), (6.3.35), Lemma
6.3.1, and from the equivalence of norms in (6.3.2). O

Remark 6.3.5. It is worth pointing out that by an appropriate modification of the
entropy-entropy flux pair we saw in the proof of Lemma 6.3.4 that the term u2, or
equivalently (z, —w)?, which appears on the right hand side of (6.2.27) cancels when
adding (6.3.33) and (6.3.34). Moreover it was replaced by a term involving (Ai)i,
or equivalently (z; 4+ w,)?. The appearance of (Ai)% is precisely what we want in
order to prove Lemma 6.3.4. This observation will also be used in the following two

lemmas.

6.3.3 Second Order Estimates

Before we proceed in obtaining estimates for the second spatial derivatives of the
state variables, we will derive some identities from the two PDEs in the diagonal
system (6.2.12). In the following, we concentrate on the linear terms and state only
the properties of the higher degree terms. Differentiating the first equation in (6.2.12)
with respect to t we get

AWy = —wy — AWz + g(zt — wy). (6.3.36)

However, we note from (6.2.17) for k = 1 that
Mgy = —Nwg, + MFY. (6.3.37)

Thus, according to (6.3.36), (6.3.37) and (6.2.19) we have

A
Wi = N Wy + g(zt —wy) — %(zz —wz) + MWz — \wy. (6.3.38)
In a similar way we have the equation for zy
2 = Y2y — g(zt —wy) + %M(zw —Wy) + Py Ze — 2 (6.3.39)

Taking the derivative with respect to x of both sides of (6.3.30) we have

%(er + wzx) - ﬁ(zz - wz) + R3 (6340)

2ty — Wiy = —
where Rz = D k=2 cjk(agw)(aiz) for some constants c;. Subtracting (6.3.38) from
(6.3.39) and using (6.3.30) we have
C? BCe -

16 (Foe = wre) + 577+ B2(z —w) + Ry (6.3.41)

2t — Wit =
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where R4 are terms of degree at least 2 and contain at least one factor among
Z — W, Wy, 2z, Zex, Wez, however, each term has at most one factor among wyz, Zzz-
Lemma 6.3.6 (Second Order Estimate). There exist 6 > 0 and Cs > 0 such that
for any solution (A, u,ho, hy) € X7 satisfying N3(T) < § it holds that

t
||um(t)H%2+ ||(Ai)m(t)”%2 "’/0 Hum(T)‘&? dr < C5N22(0) (6.3.42)

1 1 t 1
+ Cs St[lopt](HU(T)HHz + [|A1(r) - Aé‘llm)/0 ()32 + 1[(A7)o (7) 72 d7
7€|0,

for all t € [0,T].

Proof. Again we will proceed in the same manner, now with the entropy 72 = 12 — @2
where

2
wnltez) = A0 (/ﬂz D)+ P ) 4 - mzz>
2
Go(t,x, W) = Q(I;’ ?) ()\2W + g(zt —wy) — %(Z:c —Wy) + AApwy — /\twm) )

We estimate (6.2.27) with these particular functions and as before we divide the
procedure in three steps, namely, the derivation of estimates of the left hand side
of (6.2.27) from below, estimates of the right hand side of (6.2.27) from above and
finally to combine the two.

Step 1. Estimate from below. For brevity let us set

N = —g(zt — wt) + %(zz — ’LUz) + e Ze — U2 (6343)
- A
P = g(zt — U)t) — %(ZJ: - waz) + A)\a:u}a: - Ath- (6344)

Using Young’s inequality we have, for § > 0 small enough,

Vot @, 220 (t, 2)) = 9#_1(N4Z?@x + 2N2sz + NQ)
> O0pPzy, — Op(ezs, + CN?) + 0~ N?
= (01° = Ope)z;, — (OpCe — 6p~ )N,

for every e > 0, we removed the arguments (¢, z) on the right hand sides for simplicity.
Using the definition of Ny and replacing the term z; — wy by the right hand side of
(6.3.30) we can see that

N(t,z)? < Cs(w(t,z)? + 2(t, 2)? + wa(t, )% + 2z (t, 2)?).

This follows immediately from the fact that N consists of terms that are at least
degree 1 in w, z, wy, 2, and so N2 will have at least degree 2 terms in these variables.
Then we retain two factors and take the supremum of the rest, employing the Sobolev
embedding theorem to estimate the supremum and finally use the assumption that
N3(T) < 6, for § > 0 small enough.

Now, choosing € > 0 sufficiently small we have

Vo(t, T, 2ee(t, ) > Cs522, (t,2) — C5(|V (¢, 2)|* + |Va(t, )|?). (6.3.45)
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for all (t,z) € [0,7] x [0,¢]. Recall that V' = (w, z). Similarly, we have the upper
bound

Dot 2, 2 (t, 7)) < Csz2, (8, 2) + C5(|V (£, 2)|2 + |Va(t, 2) ). (6.3.46)

for all (t,z) € [0,7] x [0,4]. Doing the same process with ¢2 and recalling that X is
negative for small enough § > 0 we have

—Cswi, — C5([VI* + [Val?) < g2 < —Csw?, + Cs([V[* + Vo) (6.3.47)

From (6.3.45)—(6.3.47) we have

0
| ) = m0.2)de = oIV~ IV O (6.3.43)

According to (6.3.38) and (6.3.39) we have

—/ ¢2(T,0) dT——/ 0(w(t,0), 2(7,0))(22 (7,0) — w2 _(7,0)) dr. (6.3.49)
0 0

Let us use the boundary conditions to rewrite the integrand in terms of w, z and their
first derivatives with respect to x. For convenience, the functions in the following
discussions are to be evaluated at (¢,0) or t, or with other variables representing
time, where they make sense. First, we notice from (6.3.13) that

2zt +we = S(ho)f(w, 2)(z — w) (6.3.50)

where S(ho) = —C(/)(ho)(ho — hge) — Co(ho). Let

~

Ce
p1(w, 2, Wy, Z:Jc) = _Z(Zz + wz) — B(Z — w) + Ry (6.3.51)

and from (6.3.30) we have z; —w; = p1(w, 2, Wy, 2;). Using (6.3.50) in (6.3.17) yields

hf)’ = —=S5(ho)bi(w, z)0(w,2)(z — w)3 — O(w, 2)p1(w, 2, Wg, 2)
=: po(w, z,wy, 25). (6.3.52)

Taking the derivative of both sides of (6.3.13) gives us

et wy =[G (ho)(ho — hoe) + 265(ho)](ho)* + [¢o(ho) (ho — hoe) + Co(ho)]hg
= S1(ho)(hy)? + Sa(ho)hy. (6.3.53)

Thus, (6.3.52) implies that

z+wy = Si(ho)0(w,2)?(z — w)? + Sa(ho)p2(w, 2, Wy, 25)
= p3(w, z, Wy, 2zz). (6.3.54)

We also take the derivative of (6.3.17) and apply (6.3.50) and (6.3.54) to obtain

h((]g) = —bo(w,2)(z +w)*(z — w) — 01 (w, 2) (26 + Wi ) (2 — W)
=201 (w, 2) (2t + wy) (2 — wy) — O(w, 2) (24 — wye)
= pa(w, z, Wy, 2z) — O(w, 2) (21 — Wwyt) (6.3.55)
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where 03(w, z) = %(w + 2+ 2C,)? and
pa(w, 2wy, 2) = —S(ho)*02(w, 2)8(w, 2)*(z — w)?
= 01w, 2)(z — w)ps(w, 2, Wy, 2) (6.3.56)
— 201 (w, 2)S(ho)f(w, 2)(z — w)p1(w, 2, Wy, 2z).

Note that p;, p2 and p3 contain terms that are degree at least 1 and have at least
one factor among z —w, w,, 2, while ps has terms with degree at least 2 that contain
at least two factors among z — w, wy, 2. Moreover, we note that each .S; is bounded
as long as its arguments stay on a bounded subset of (0,00), which is the case due
to the assumption that |ho(t) — hoe|?> < 6 for small enough 6 > 0.

From (6.3.53), (6.3.54) and (6.3.55) we can now rewrite (6.3.49) as

- / ‘(0 dr = / (D) pa(uw, 2, 1w, 22))(S1 (ho) (H)? + Sa (o)l dr
0 0

t (3) 1 t d
= /Sl(ho)(h6)2ho dT+/ Sa(ho)— |hg|* dr

_/ p4(waz7wmaZx)p3(waz7wmazx)d7—
0
= J1+ o+ Js.

Integrating by parts and using (6.3.52)

Ji = Si(ho(m))ho (7)o (7

/S’ (ho)(h))? +251(h0)h’(h”) dr

= Si(ho(r)0(w, 2)(z = w)*pa(w, 7, w4, )| _

=0
t
+ [ 1080w, 27 — ) + 281 (h)0(w.2) (2 — w)sB
0
Applying Proposition 6.3.2 to the terms having either z,(7,0) or w,(7,0) appearing

in the first term of the above last expression and using the Sobolev embedding
theorem for the rest we obtain the inequality

Ji > _0579”‘/” )HLZ_

Ol = CsllV (017

—@wMW|m/M/nmﬂwmmw
T€[0,]

In the above computations it is important to note the properties of po.
In a similar way we can integrate by parts and use the same techniques to obtain

3 — CsllV(0)| 3

—@mpW|m/MfumHMmﬂw

T€[0,t]

Jo > = CJﬂHVM( )”%2 -

Furthermore, invoking the properties of p3 and ps we have

h><%$ﬂV\W/WmeHMNm&
7€[0.t

Adding the lower bounds for Ji, Js and J3 gives us a lower bound of — f(f q2(1,0)dr,
which has essentially the form of the lower bound for J;. We can repeat the same
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process for fot q2(1,¢) dT and obtain a lower bound having the same form as stated
above. With these we finally obtain

t
/0 ¢2(7, €) = 42(7,0) A7 > — Cs9||Vau (6) |72 — Co0 |V ()71 — Cs 1V (0)]172
t
= 05 s V)l | Ve + (o) (6.3.57)
7€|(0,t

Inequalities (6.3.48) and (6.3.57) give us the desired estimate from below.

Step 2. Estimate from above. In this step R; will denote terms of degree at least 3
containing at least two factors among z — w, W, 2z, 22z, Wz and containing at most
two among 2., wy,. First, we have

<o ply — 0 20
Yor — o = (M2Zm + N)QLQM + ; <M22m - g(zt —w) + @(Zz — wy)

o 2
+ Uz 2 — :U’tZ:L‘) <2:U':utzx:c - g(ztt - wtt) + gut(zx - w:c) + %(th - wt:c)
~ S A0 — O 20
—+ (:U'Marzx - Mtzx)t - ()\waac + PV% - N A2wac:c + é(Zt - wt)
A A 2
A
- %(zx — Wg) + A\gwy — Ath> <2)\/\twm + g(zﬁ — wy) — g)\t(zx — wy)
A
— %(th — wm) + ()\)\xwx — )\th)t>
082 (1 1
= - eﬁ(ﬂzzz + /\wm)(ztt - wtt) + % (M - )\) (Zt - wt)(ztt - wtt)
632 R
+ eﬁ(ﬂzzxx + Azwxx)(zt:c - wtac) + %(H - )\)(ZCC - w:c)(ztx - wtr) + )\T:LQ
. Rl
=: 11+IQ+13+I4+W. (6.3.58)

Consider each I;. According to (6.3.41) and Young’s inequality we have

_ 0.Cp C? 80, )
Il - - 4 (Zxx_wxx) <16(Zm—wm)—|— 5 Zm"’ﬁ (Z—’U)) +R2
3
< (_9c§fe + 056) (220 — War)? + Cse(22+ (2 —w)®) + Ry (6.3.59)

Also, from (6.3.30) and (6.3.41)
081 1\ [ G c?
I, = 9 (M - A) <_4(Zx + wm) - ﬁ(z - ’U))> <16(Z:cm - wmz)

Bge Ze + 52(2 — w)) + Rg

< Cs€(zan — wea)® + Cse(27 + Wi + (2 — w)?) + Ra. (6.3.60)

+

From (6.3.40) we see that

05C2 C.
I3 = f6 (Zxx + wm«) (—4(ngc + wm) — B(Zx — wx)) + R4
0. Cg 0. 2062
= — 54 (Zz + Wea)® — 516 (220 + Wea) (22 — wgz) + Ry (6.3.61)
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and
6.5%C C
Iy = 64 - (Zz - 7.Uz) <_ 46 (Zx:r =+ www) - B(fo B 'LU;L«)> + 1
0,8202 0.53C.
_ /81606 (Z$x + wa:x)(zcc _ wx) _ %(zx — wx)z + R (6362)

Adding (6.3.59)—(6.3.62) we have

0.5C3 0.5C3
th - ¢2t < - B €+ 056 (Z:):x - wxm)Q - 5 = (sz + wxz)Q (6363)
64 64
0,.8%2C?
_ ﬁ8 © (2o + wna) (20 — w5) + Cse(22 + w2 + (2 — w)?)
Ry
+ Cs(zp — wy)? + N2
It can be checked that
1
W2 — Appo = — Rg. .3.64
a2 b2 )\HRS (6.3.64)
Similarly for the third pair we have
~ 0, — Oy
l“/’Qac - )\¢21 = (Ngz:m + NV% + 26 </«422xag - g(zt - wt)

+ %(Zx - wx) + U Ze — thx> (2HMJ:Z:L‘1‘ - g(ztac - wtx) + é,ux(zx - w:c)

2
~ SN0 — O,
+ %(Z:m: - wxm) + (M,U':cz;r - Utzw)ac) - ()‘2w;tw + Pﬁf
A
— 20 <)\2wm + g(zt —wy) — %(zx —wy) + Agw, — )\th> (2)\)\mwm
A
+ g(ztaz - wtx) - g)\x(zx - wx) - %(zxx - wxx) + ()\)\xwaz - )\th)az)
2 2 03>
= =081 220 + NwWaz) (20 — Wiz) — 7(“ = M) (22 — wg)(2tz — Wia)
3 3 03
+ 06(,“/ Zyx T A w:ca:)(zx:c - wa::c) - T(M - A)(Zt - wt)(zxx - wxac)
05° 5 1o Ry
+ T(M - A )(Z:p - wx)(zzz - wmx) + )\Tlﬂ
R
=: I5+16+I7+Ig+fg+)\27'32. (6.3.65)

From (6.3.30), (6.3.40) and Young’s inequality we have

0,802 C.
Is = 1[; (Z:):x + wxw) <_4(Zz:v + wx:p) - B(Z:v - wx)) + Rio
00/803 2 6062062

= (Z:v:c + w:c:r) +

” (zzz + Wez) (22 — wy) + R1o (6.3.66)

16
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90 20@ Ce
Ise = — 64 (Zx - wz) <4(sz + wxaz) - ﬁ(zx - wx)) + Ry
0,.58%2C? 0.83C.
- 516 < (Zxx + wxm)(zm - wz) + BT(Z:E - wx)Q + Rll (6367)
0. 3
I; = g%@m—wmf+Rm (6.3.68)
0. 206
Iy = — 58 (2t — wt)(Zea — Wez) + Ra3
9.8°C., Ce
= — B8 (Zpx — Way) <—4(zx+wx)—ﬁ(z—w)> + Ry
< Cse(zun — War)? + Cs (2 +we)? + (2 — w)?) (6.3.69)
Iy = Ry, (6.3.70)

The last equation is due to the fact that the terms in u? — A2 are of degree at least
1. Therefore from (6.3.66)—(6.3.70) we have

3 0 3
wQI - ¢2x < BC + C(;é (Za::c - wxx)2 + cﬁce (Zxx + wxl’)2 (6371)
64 64
6202
+ = 3 < (2pa + Wez ) (22 — wz) + Cé,s((zx + wx)2 + (2 — w)g)

+ Cs(2z — wz)* + Ry

Finally for the last pair in Ms we use (6.2.21) and (6.2.22) to obtain

YozGo — awFo = Zf(ﬁzm + N)p? <_§(Zxx — Wey) — 2z 2z — umzx>
0P+ PN (5 e = ) — 2Avty = At
= 0B(—1 200 (200 — Ww) = N Wiy (200 — W) + Rio
_ _&Zg@m—me+Rn (6.3.72)
=: Iio+ Ry7.

Adding (6.3.63), (6.3.64), (6.3.71), (6.3.72), choosing ¢ > 0 small enough so that

Cy = Cﬂ e — Cse > 0, where the first term is independent of § and e, using the
Sobolev embedding for the terms R; and finally invoking (6.2.11) yields

t L
//M2(¢2,¢2)d.%'d7'
<= O [ Nuas( s ar+ Gs{ [ Tl ar+ [ Jab ) ar

+sup V() a2 / Vo) + (e >\L2d7) (63.73)

T€[0,¢]

Step 3. The estimate (6.3.42) immediately follows from (6.3.48), (6.3.57), (6.3.73),
Lemmas 6.3.1-6.3.4, (6.3.2) and by choosing ¢ > 0 in Proposition 6.3.2 sufficiently
small enough. O

As in the case of first order estimates, we shall also need the following estimate in
order to complete an estimate for the full energy functional Ns.
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Lemma 6.3.7. There exist 6 > 0 and Cs > 0 such that for any solution (A, u, ho, he) €
X7 satisfying N3(T) < 6 it holds that

/ J(A ()22 d7 < CsNZ(0) (6.3.74)
1 3 1
+ G Sl[lopt](Hu(T)Hm+HAZ(T)—Ae4||H2) [ e+ 1AD o
7€]0,
for allt € [0,T].

Proof We modlfy the entropy of the previous lemma. We consider the entropy
Ny = ¢2 — qbg with corresponding entropy flux ¢ = /M/Jg — )\QSQ where

2

~ 4
1/]2(75’ z, Z) = [ ( °Z + BN( wx) + UlzZy — Nt2x>
2
gZ;g(t,:z:, W) = % ()\2W — %(zx — W) + AA\pwy — /\th> )

Doing the same process as in the first step of the Lemma 6.3.6 we can show that

¢
[ t2) = a0.2)de > CollViu) 2~ VO (6373
Using (6.3.39) and (6.3.38), a simple computation gives us
G = 0(w,2)((zer + (8/2) (2 — wi)* = (wir — (8/2) (2 — wy))?)

= 0w, 2)(z; — wiy) + BO(w, 2) (21 + wir) (2 — wr)

= g2+ B0(w, 2)ps(w, z, Wy, 22 )p1 (W, 2, Wy, 2z ). (6.3.76)
where g9 is the entropy flux in the previous lemma and p; and p3 are defined by
(6.3.51) and (6.3.54), respectively. A straightforward calculation gives

p3(wavaxazﬁ)pl(waszxazx) — _e(waz)p%(wazawwazz) +R3
> = Cs(z +wy)? = Cs(z — w)® + Ry

where R3 and Ry are terms of degree at least 3 and contain at least two factors
among z — w, Wy, z;. By the estimate Proposition 6.3.2 and (6.3.2) we have

t
/ B(Opsp1) (7, £) — B(Bpspy) (7, 0) dr

l l
>cm/ 1A e >||L2dfcm/|| 5)a(r) 2 + u(r) |2 dr
= Cs s V)l / V() + ()2 dr. (6.3.77)
TE

Integrating (6.3.76) from 0 to ¢ and using (6.3.57) and (6.3.77) we have
t
/ @(7,0) = @2(7,0) d7 = — Cs9||Vaa(t)l[72 — Coo |V (D) 171 — CslIV (0)I72
0
1

e / (A% ) (7) 22 d7 — Cp / 1A ) (7) 22 + [fu(r)| 20 dr

- Cs s?op]uv 7)) 12 / Ve Bn + lu(r)]32 dr. (6.3.78)
7€|0,¢
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Observe that the deviation of ¥y and ¢ from 122 and d~>2, respectively, is that

the former terms contain g(zt — wy) while the latter terms do not. This means

that My will consist of the same terms as My but without those that stem from
g(zt — wy). Thus, crossing out the terms that appear due to the said extra term, a
careful analysis in the second step of the proof of Lemma 6.3.6 shows that

~ R

M, 213+I4+I7+19+I10+%

A

where Rig is again terms of degree at least 3 containing at least two factors among
Z— W, Wy, Zz, 2oz, Wee and contains at most two among 2z, ws,. Therefore we have,
according to Young’s inequality,

i < bBCE 0.3°C2
2= 64 8

< - 63(%&: + wxﬂc)Q + C (22 — wx)2 + Rig.

(Zxx + wxz>2 - (Za:x + wa:x)(zx - wx) + Ri9

for some C3 > 0. With the same explanations as above we have

/Ot /OZMz(lzz,q;z)d%dT <-Cj /Ot 1(A

t t
+ o [ Muatr)laar+ swp [V [ V) + (o)l dr

T€[0,t]

NI

From (6.3.75), (6.3.78), (6.3.79), choosing ¥ > 0 in Proposition 6.3.2 small enough
and using Lemmas 6.3.1-6.3.6, the estimate (6.3.74) follows. O

6.4 PROOF OF THE GLOBAL EXISTENCE AND STABILITY IN H! x H! x R2

An immediate consequence of the results in the previous section is the following
estimate for the energy No.

Corollary 6.4.1. Let T > 0 be such that (6.0.1) has a solution that belongs to Xr.
Then there is a § > 0 such that if N2(T) < § then N2(t) < Cs(N2(0)+ N3 (t)) for all
t € [0,T] and for some Cs > 0 independent of T. In particular, there exists a § > 0
such that if N3(T) < & then N3(T) < C5N3(0) for some Cs > 0 independent of T

Proof. According to Lemmas 6.3.1, 6.3.3—6.3.7, there is a § > 0 such that N2(t) <
Cs(N32(0) + N3(t)) for all t € [0,7] whenever N2(T) < §. In particular, N3(T) <
C5(N2(0) + v/6N3(T)). Since (6.3.1) holds, one may choose § > 0 small enough so
that Cs := C5(1 — C5v/6)~ > 0 and thus N3(T) < C5N3(0). O

Proof of Theorem 6.1.2. The proof is standard, however, we include it here for com-
pleteness. According to Corollary 6.4.1 we have a § > 0 such that N3(T') < C5N3(0)
for some Cs > 0 whenever N2(T) < §. Take dy = min(6/(2Cjs),5/4) > 0. Suppose
that the maximal time of existence 7 > 0 is finite. Then either (A, u) leaves every
compact subset of U or |[(Az,us)(t)|[ Lo, — 00 as t T T*. Classical embedding
results imply that

[(Asu) — (Ae, 0)[[wree (o, [0,g)2 < CsNa(t).
In any case, by continuity there exists 0 < 77 < T* such that N2(T}) = g and

N2Z(t) > § for all t € (T1, Ty + €) where € > 0 and T} + € < T*. Because N3(T}) < 4,

182
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there exists Ty € (11, Ty + €) satisfying NJ(T3) < 6. Corollary 6.4.1 implies that
N3(Ty) < C5N3(0) < ¢, which is a contradiction. Therefore we must have T* = +o0
and this proves that a global-in-time solution exists. Furthermore, we have the
estimate N2(t) < CsN2(0) for all t > 0. O

By applying the PDEs, the estimate in Theorem 6.1.2 implies the following esti-
mate on the time-derivatives of the state.

Corollary 6.4.2. In the situation of Theorem 6.1.2. there exists a Cs > 0 such that

sup ([ Aq(t Win + 1Au@I72 + lue®) 7 + lue (#)]172)
+/0 (A (D)1 + [Arr ()72 + lur (Dl + urr (7)[72 d7) < CsEo.

Now we are ready to prove the following asymptotic behaviour of the solutions.

Theorem 6.4.3 (Asymptotic Stability). In the framework of Theorem 6.1.2 we have
T (JA() ~ Aclli o + [u(ll10.) + o(t) — hocl + [e(t) — heel) = 0. (6.4.1)

Proof. As functions of time |ju(- )HH1 0,0 and | Az ()HL2 0,0 belong to W0, 00)
according to Theorem 6.1.2 and Corollary 6.4.1 . Hence

m ([[w(®)|| z10,0) + 1Azl 2(0,6) = O (6.4.2)

t—o0

Using a Gagliardo-Nirenberg-Moser interpolation, see [74], we have

1A®#) = Acllze(0) < CelOeAD ogo | AE) = Acll g o
Theorem 6.1.2 implies that || A(t) — Ael|£2(0,¢) is uniformly bounded in ¢ € [0, 00) and
thus from (6.4.2) we get || A(t) — Ael[ L (0,¢) — 0 ast — co. In particular, this implies
that [|A(t) — Aellz2(0,0) — 0, A(t,0) — Ae and A(t,£) — Ae as t — oco. The latter
two further imply that ho(t) — hoe and he(t) — hge as t — oco. Combining these
with (6.4.2) we obtain (6.4.1). O

The decay rate at which the state converges to the equilibrium can be shown to
be exponential, however, if one uses the norm in L?(0,£)? x R?. This is the goal of
the next section.

6.5 EXPONENTIAL CONVERGENCE TO THE EQUILIBRIUM IN L2(0,¢)? x R?

The exponential stability result for (6.0.1) is based on linear stability and treating
the higher order terms as perturbation of the linearized system. The basic ingre-
dients are the exponential stability derived from semigroup theory, the variation of
parameters formula and interpolation estimates. However, care should be taken since
the linearization yields a nontrivial kernel and therefore stability for the linearized
problem is only possible in a factor space. The smallness of the data and the order
of nonlinearity play an important role in the proof, specifically the applicability of a
Gronwall-type estimate. In this way the decay rate for the nonlinear system is the
same as the decay rate for the linearized system.
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First, we revisit the stability result in Chapter 3. Define the following constants

I<L2

727 Y=

Let X = L%(0,/)? x R? be equipped with the weighted norm

o =

2b(ag + bhoe) = 2b(ag + bhye).

’YAT
(

1
1(A, u, ho, he) |5 = T 1Al Z20.0) + ||UHL2(0 o+ (hol? + [he[?).
e

Consider the linear operator A : D(A) — X with domain D(A) = {(A,u, ho, hy) €
H(0,0)? x R? : A(0) = ~vho, A(£) = vh,} defined by

A —Acu,

U _aAz - ﬁu
A =

ho —4=u(0)

hy Z=u(l)

This operator is obtained by linearizing the system (6.0.1) including its boundary
conditions about the equilibrium state (A, 0, hoe, hee). The operator A has a non-
trivial kernel N'(A) = {¢(7,0,1,1) : ¢ € R}. The orthogonal complement N (A)* of
N (A) coincides with the kernel of the volume functional V : X — R

l
V(A, u, ho, hg) = / A(x) dx + ATho + AThg.
0

In the following theorem o(A) will denote the spectrum of A, which consists of
eigenvalues since the operator is discrete. For the proof and explicit values of o and
k we refer to Chapter 3.

Theorem 6.5.1. The operator A is a discrete spectral operator that genmerates a
strongly continuous group T(t), t € R, on X. If § > 0 then there exists M > 1 such
that

1T prayty € MA+ ), t>0,

where 0 = — supyey(4) RA > 0 and k is either 0 or 1.

To use this result for the nonlinear system (6.0.1), we need further tools. The first
one is the following Gronwall-type lemma whose proof can be found in [26].

Lemma 6.5.2. Let u € Lip([0,00),R4) and suppose that for some C > 0
t
u(t) < C(1+ tF)e 7w (0) + C’/ (14 (t—s)F)e7=y(s)2ds, ¢>0,
0
for some 0 > 0, p > 1 and nonnegative integer k. Then there exists € > 0 and C > 0
such that if u(0) < € then
u(t) < C(A+the o, t>0.

The next tool is a simple interpolation estimate obtained from the well-known
Gagliardo-Nirenberg inequality, see [74] for example.

Theorem 6.5.3 (Gagliardo-Nirenberg). Let m be a positive integer. There exists
Cy > 0 such that for all w € H™(0,¢) and j < m we have

1 |
109 p2m i 0,0 < Collull 2y lullFm o o)
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As a consequence, we have the following estimate.

Corollary 6.5.4. There exists C > 0 such that for all u € H?(0,£) it holds that

7/8 H H1/8

[tz Loo0,0) < Cllull gz pllll 20 0)-

Proof. Using the Gagliardo-Nirenberg-Moser estimate in [74], Holder’s inequality
and Theorem 6.5.3 with m = 2 and j = 1 we have, for generic constants C' > 0,

ltallooe < Clltasll o g lluall oo,
< Clluall g g el 0
< Clluaallagg o Il 2 0.0 1l o 0.0)
< Cllaal o700 Ut | ot o 14l Lo, el 0 )2
This clearly implies the estimate given in the corollary. O

Now we are in position to prove the following stability result.

Theorem 6.5.5 (Exponential Stability). Consider the framework of Theorem 6.1.2.
There exists 69 > 0 such that if Ey < 0¢ then the solution of (6.0.1) satisfies

1A() = Acll2(0,0) + Iu()2(0,0) + 70 (t) = hoel + [he(t) = hee < O(1 + t*)e™"

for all t > 0 and for some constant C = C(Ep) > 0. The constants k and o are
those of Theorem 6.5.1.

Proof. Let z = (B,v,n0,m¢) = (A — Ae, u, hg — hoe, he — hge) denote the deviation of
the state from the equilibrium. The system (6.0.1) can be rewritten in terms of the
deviations as

By = —Acvy — (A — Ac)uy — uAy,,

1
v = —aBy — fu+ aA 2 (A2 + AZ)"H(A — A Ay — uug,

77(,)(t) = - Aev(tao) A (A(t O) Ae)u(t,()),
772 t) (t E) + A ( ( ) Ae)u(tvav

sy

(
(t7 0) = ’Yﬁo(t) + bQ(hO(t) - hOe)za
B(t,0) = yn(t) + b*(h(t) — hee)*.

\

In order to use the results for abstract homogeneous linear time-invariant systems
via semigroup theory, we consider a new state variable w := z — (¢,0,0,0) where
{—x

14

(ho(t) = hoe)® + S0 (he(t) — hee)?.

gb(t,l‘) = ;

This is introduced in order to compensate for the nonlinearity in the boundary con-
ditions. It is easy to see that w(t) € D(A) for all t > 0 and it satisfies the system

W(t) = Aw(t) + F(t), >0, (6.5.1)
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where
(A(t) 1_ Ae) :c(t) - ’LL( )Ax(t) - ¢t(t)
| ADTHAM + A3 AW — A As(t) — u(t)us(t) — ada(!)
o= A (AL0) ~ Au(r,0)

(A, 0) = Ac)u(t, 0).

Because u € C1([0,00); H'(0,¢)) it follows that uu, € C([0,00); L?(0,¢)). Using
the regularity of A,u,hg and hy stated in Theorem 6.1.2 together with a similar
argument as in the previous statement one can show that F € C1([0,00); X). A
standard result in semigroup theory, see [61, Section 4.2] for example, shows that
(6.5.1) has a unique solution in X’ and it is given by the variation of parameters
formula

w(t) = T(t)w(0) + /0 T(t — s)F(s) ds. (6.5.2)

By uniqueness, this function w must coincide with the function z — (¢, 0, 0,0) above.

Since the semigroup T'(¢) is exponentially stable only in N/ (A)J‘, we will decompose
the solution w into two parts. First decompose F' as a sum F = F| + (Fy); where
Fy = (—=¢,0,0,0). By construction, Fi(s) € N(A)" for all s > 0. This can be
easily seen since Fi(s) lies in the kernel of V for all s > 0. Let IT : X — N (A)
be the orthogonal projection of X onto N(A). Conservation of volume implies that
V(AJ, u®, b, hY) = V(Ae, 0, hoe, hee) or equivalently z(0) € N(A)*. Furthermore, we
have Fy(s) + (I — II)(Fy)i(s) € N(A)* for all s > 0. We write

w(t) = w1 (t) + wa(t)

w(£) = T(8)(2(0) + (I — N F,(0)) + /0 T(t - )(Fi(s) + (I — T)(Fy)y(s)) ds

wo(t) = T(t)ITF2(0) + /Ot T(t — s)II(Fy)¢(s) ds.

Because T'(t)II = II and II(F3).(s) = (I1F»(s)); we actually have wa(t) = IIFy(t).
Using (6.5.2) and Theorem 6.5.1 we have

lo@)llx < ML+ t")e7[2(0) + (I - ) E(0)||x + [ILE(t)] 2

—|—M/ (t — )5t Fi(s) + (I — T)(F)u(s)| v ds.  (6.5.3)

The next task is to estimate each term of (6.5.3) in terms of the norm ||z(¢)||x of
the deviation z(t). Since ||[I — I|[z(x) < 1 it holds that for all £ > 0

1/2
I = Ea(t)]|x < Cllé®) [ 2(0.0) < CllzIF < CEy?|l2(t) ]2 (6.5.4)
for some C' > 0 independent of Ey. Similarly, for all t > 0
1/2
lw(®)llx = 12() + Fa()|x > (1= CEY®)|l2(2)] x. (6.5.5)
From Corollary 6.5.4 we obtain

lu@ a2, < Nu®llz20.0) [ (@) Lo 0,0

Cllu®)|l a0 0 1O a0 < CE 12@) 2500

IN
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The other terms in the first and second rows of F} can be estimated similarly. Now
we estimate the third and fourth rows of F;. By Sobolev embedding we have

(A(t,y) = Ae)u(t, y)| < C([(A(E) — Ae)u(®)lL2(0,0) + [[(A#) = Ae)u(®)]allL2(0,0));
for y = 0,¢. Expanding the term [(A(t) — Ae)u(t)]s = Az(t)u(t) + (A(t) — Ac)ux(t),

it can be seen that each term can be estimated in the same manner as we esti-

mated wu(t)u,(t) above. For the first term, we apply the Gagliardo-Nirenberg-Moser
interpolation once more to get

I(A®) = Adu®) 200 < [IAR) - )20
< ClAW) = Al 2ol (] g o 1O ot o
< CE) 0 < CE)|=®IF,

Combining all of our estimates yields

IF ()] < C(Eo)|=()1%°. (6.5.6)

The next step is to estimate [[(1 — IT)(F2).(t)||x. Using the differential boundary
conditions, the derivative of ¢ with respect to ¢ is given by

bi(t,x) = — 2A70%071(0 — z)(ho(t) — hoe) A(t, 0)u(t,0)
+ 247020 (g (t) — hee) A(t, £)u(t, £)
and by interpolation we can estimate its L?-norm by
loe® 200 < Clho() = hoel + [he(t) = hee)) | A@) o 0,0)[1u(t) | L= 0,0
< CEy*(ho(t) — hoel + [he(t) = hee N ADN 50 ) u(®)] o

L2 OZ L2 OZ
9/8
< C(Bo)ll=(t)]%°.

Consequently,
(1 — I (F2)e(t) | v < C(Eo)|=(t)IY°. (6.5.7)
Using (6.5.4), (6.5.5), (6.5.6), (6.5.7) in (6.5.3) we have
MC(Ey ot
I2(®)le < 1_0(1/’2(<1+t’“> 2(0)llx
! —Skefgtzs 9/88
[ -9l d) (658)

whenever C’El/2 < 06(1)/2 < 1.

Finally, we check the Lipschitz continuity of the map ¢ — ||z(¢)||x. From the
continuity equation, it holds that

1A®) = Aellz2(0,0) — 1A(s) =
< JA®) = A(3)ll2(0,0)

/ Cu(r) Ay () + A(r)ua(7) dr
t £2(0,0)
sl () A4 () + A ()01

Clt — s| max([|u(r) (T 220,0) + 1A L1 0,014 (T) [ £2(0,0))

S ’

IN

A

< C(Eo)[t — s|.
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GLOBAL EXISTENCE AND NONLINEAR STABILITY

for all s,t > 0. The same estimate can be obtained for w and hg, hy using the
momentum equation and the ODE boundary conditions, respectively. Therefore
lz(-)]]lx € Lip([0,00),R;). The result now easily follows from (6.5.8) and the
Gronwall-type estimate Lemma 6.5.2. O
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SEMIGROUPS AND RIESZ SPECTRAL
OPERATORS

In this section, we state the basic facts in the theory of strongly continuous semi-
groups of bounded linear operators and in particular those that have Riesz spectral
generators. We restrict ourselves to the case of Hilbert spaces. All throughout this
chapter, unless otherwise stated, we let X be a complex Hilbert space equipped with
the inner product (-,-) and the corresponding norm is || - ||.

A.1 STRONGLY CONTINUOUS SEMIGROUPS

A family (T'(t))i>0 of bounded linear operators in X is called a strongly continuous
semigroup or Co-semigroup if T(0) = I, T'(t)T'(s) = T'(t+s) for all t, s > 0 (semigroup
property) and |[|T(t)z — z|| — 0 as t — 0 for every x € X (strong continuity). If
t > 0 is replaced by t € R then the family is called a Co-group. The infinitesimal
generator, or generator in short, of a Cp-semigroup (7'(¢));>0 is the linear operator
A:D(A) = X, where

D(A) = {z € X : lim ~(T(t)z — ) exists in X},

t—0t+ ¢
defined by
1
Az = lim —(T(t)z — z).
Jim 3 (T(0)z =)
The generator of a Cyp-semigroup is necessarily closed and its domain D(A) is dense
in X. If (T(t))¢>0 is a Co-semigroup with generator A then the notation ‘4 is also
used for 7'(¢). It is well known that for a Cy-semigroup (7'(¢))+>0 there exist constants
M >1 and w € R such that ||T(¢)| < Me*t for t > 0.
If 29 € D(A) then z(t) := e!4 2y solves the initial-value problem in X

{ i) = Az(t), t>0,

) — e (A.1.1)

Semigroup theory is therefore a suitable tool in studying the well-posedness of the
initial-value problem (A.1.1). This is also the motivation in writing the semigroup
T(t) as e! because ez is precisely the solution of (A.1.1) in the finite-dimensional
case. Later in Appendix B we also consider nonhomogeneous differential equations.

In applications, the operator A is the one that is known and the question is whether
it generates a strongly continuous semigroup. The two main generation theorems are
the Hille-Yosida Theorem and the Lumer-Phillips Theorem. However, we only state
here the Lumer-Phillips Theorem in reflexive Banach spaces, see e.g. [25, Corollary
IT1.3.20]
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Theorem A.1.1 (Lumer-Phillips). A closed linear operator A : D(A) — X in a
reflexive Banach space X generates a Co-semigroup of contractions if and only if A
is dissipative, i.e., R(Az,z) <0 for every z € D(A), and R(A] — A) = X for some
A > 0.

Let A: D(A) — X be a linear operator in X with dense domain. Suppose that
z € X satisfies [(Aw, z)| < Cljw|| for some C' > 0 and for all w € D(A). For such z,
define the linear operator ¢, : X — C by

Lyw = lim (Awy, z)
n—o0

where (wy,)neny € D(A) and wy, — w in X. It is clear that the limit on the right hand
side exists and is independent of the sequence used to approach w. By assumption,
¢, € X' and it is the unique bounded linear functional defined in X such that
lw = (Aw, z) for all w € D(A). By the Riesz Representation Theorem there exists
a unique y € X such that

Low = (w,y), Vwe X.
Define the operator A* : D(A*) — X, where
D(A*) ={z € X : 3C > 0 such that |(Aw, z)| < Cllw| Yw € D(A)}

by A*z = y where y is the Riesz representor of ¢,. The operator A* is called the
adjoint of A. By definition, we have

(Aw, z) = (w, A*z), Vwe D(A), z € D(AY).

If A: D(A) — X is a densely defined closed linear operator then its adjoint is
also a densely defined closed linear operator. If A generates a Cy-semigroup then A*
generates a Co-semigroup as well and e*4” = (eAt)* where the star on the right hand
side denotes the adjoint of a bounded linear operator.

A densely defined operator is called skew adjoint if A* = —A. Using Lumer-
Phillips Theorem the following generation theorem for skew-adjoint operators can
be shown. For a proof, see [25, Theorem 3.24].

Theorem A.1.2 (Stone). A closed linear operator A : D(A) — X generates a
Co-group of unitary operators if and only if A is skew-adjoint.

A.2 PART OF GENERATORS AND INVARIANT SUBSPACES OF SEMIGROUPS

In certain situations, it is also important to look at the restriction of an operator to a
subspace. Let V' be a subspace of X. The part of an operator A : D(A) — X in V is
the operator Ay : D(Ay) — X, where D(Ay) ={z € D(A)NV : Av € V}, defined
by Ayz = Az. In other words, Ay is the restriction of A to D(Ay). A subspace V/
is said to be invariant under a linear operator 7' : X — X if TV C V and it is said
to be invariant under a family (7;);er of linear operators if V' is invariant under 7;
for all 4 € I. Invariant subspaces of semigroups and parts of generators are related
in the following theorem. The proof can be seen in [77, Proposition 2.4.4].

Theorem A.2.1. Let X be a Hilbert space and V' C X with continuous embedding.
Suppose that A generates a strongly continuous semigroup in X. If V is invariant
under (e*);>o and ((etA)‘V)tzo is strongly continuous in V then ((etA)W)tZg is a
Co-semigroup with generator Ay . On the other hand, if Ay generates a Co-semigroup
then etV = (etA)W for allt > 0.
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By taking V to be a closed subspace of X we have the following corollary.

Corollary A.2.2. Suppose that A : D(A) — X generates a Co-semigroup and Y is
a closed subspace of X that is invariant under (e!4)i>o. Then Ay : D(Ay) — Y
generates a Co-semigroup in' Y and ety = (etA)|y for allt > 0. In particular, if A
generates a semigroup of contractions then so is Ay .

The following theorem states that the adjoint of the part of A in Y is the same as
the part of the adjoint of A in Y, whenever Y satisfies certain properties.

Theorem A.2.3. Let A : D(A) — X generate a Co-semigroup and Y be a closed
subspace of X that is invariant under (e!);>o and (€1 );>o. Then (A*)y = (Ay)*.

Proof. From Corollay A.2.2, e!d|y = !4y and e |y = ety for all t > 0. For
each w, z € Y, using the fact that (e!4)* = e'4", we have

(w, (e4Y)*2) = (MY w, 2) = (Mw, 2) = (w, e 2) = (w, A7 2).

Therefore (e!4v)* = etA")v for all ¢ > 0. The generator of ((e!Y)*);>q is (Ay)*
while the generator of (eX47)Y),;5q is (A*)y, and since the generator is uniquely
determined by the semigroup we conclude that (4*)y = (Ay)*. O

These results can be extended to the case of groups.

Theorem A.2.4. Suppose that A generates a Cy-group on X and Y is a closed
subspace of X invariant under the group (e!4)icr. Then Ay generates a Cy-group
on'Y and ety = (etA)|y for allt € R. If the group generated by A is unitary in X,
then the group generated by Ay is unitary in Y.

Proof. The first conclusion follows from the fact that Y is invariant under the semi-
groups (e);>0 and (e7*);>¢ and we have e!]y = ey and e *|y = ety for
all t > 0. Suppose that A generates a unitary group on X. Then by Stone’s The-
orem A is skew-adjoint. Also, Y is invariant under (e/4”);>q since et4” = 74 for
t > 0. From Corollary A.2.2, Ay is a generator of a Cp-semigroup on Y and hence
Ay : D(Ay) — Y is closed and D(Ay) is dense in Y. Because A is skew-adjoint,
Az €Y if and only if A*z € Y. Therefore D((A*)y) = D(Ay) and from Theorem
A23
(Ay)'z2=(A")yz=A"2=—-Az=—-Ayz

for all z € D(Ay), that is, (Ay)* = —Ay. Thus Ay is skew-adjoint and therefore it
generates a unitary group in Y according to Stone’s Theorem. O

A.3 RIESZ BASES AND RIESZ SPECTRAL OPERATORS

Let X be a separable Hilbert space and (ey,),en be an of orthonormal basis in X. A
sequence (zp )nen in X is called a Riesz basis in X if there exists an invertible bounded
linear operator @ : X — X such that @)z, = e, for every positive integer n. Two
sequences (wy)nen and (yn)nen in X are said to be biorthogonal if (wy, Ym) = dpm,
where 0y, is the Kronecker delta symbol. If (z,),en is a Riesz basis in X then
(zn)nen and (Q*Qzn)nen are biorthogonal.

Just like orthonormal bases, Riesz bases can be used to express an element in X
as a Fourier series. Indeed, each z € X can be uniquely written as

z= Z(z, Q" Qzn)zn (A.3.1)

neN
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and there exist constants C > ¢ > 0 independent of z such that

cll=l* <Y (2 Q" Qz) > < C2|1*.

neN

The series in (A.3.1) is called the Fourier series representation of z with respect to the
Riesz basis (zp)nen and (z, Q*Qzy,) are the Fourier coefficients. Fourier series with
respect to a Riesz basis and square summable sequences are closely related. In fact,
(an)nen € €%(C) if and only if >, .y anz, € X. For the proofs of these statements,
see Young [81].

The resolvent set and the spectrum of a closed linear operator A are denoted by
p(A) and o(A), respectively. If A € p(A) then R(\, A) := (A — A)~! is called a
resolvent of A. An element z € X is called a generalized eigenvector of A if there
exist A € C and m € N such that (Al — A)™z = 0. If m = 1 then z is simply
called an eigenvector and A is the corresponding eigenvalue. The point spectrum of
A, denoted by o,(A), is the set of all eigenvalues of A.

An operator A is called Riesz spectral if it has a Riesz basis consisting of generalized

eigenvectors. Let A be a Riesz spectral operator and {z,m :n €N, m=1,...,my}
be a Riesz basis consisting of generalized eigenvectors where z, 1 is an eigenvector
associated with the eigenvalue \,, of A and (A, J — A)zp = 2p k-1 for k=2,...,my,.

Suppose that |A,| — 0o as n — 0o, (RA,)nen is bounded from above and (1m,)nen
is bounded. If in addition, A generates a Cp-semigroup (7'(t))s>0 then T'(t) can be
written as a Fourier series. To see this, we express an element z € X by its Fourier

representation
Mmn
z = § § <Zaén,m>zn,m
neNm=1

where Zp, ;m, = Q*Qzpm, and use the continuity of the operator T'(t) to obtain

T(t)z=)_ Z (2, Znm) T (8) 2.

neNm=1

The next task is to determine the action of the semigroup on the generalized
eigenvectors z, ,, for each n and m. Let us start in the case of eigenvectors. Because
zn1 € D(A) it holds that

d
aT(t)ZnJ = T(t)AZml = /\nT(t>2n71.

Therefore wy, 1 (t) := T(t)zn,1 solves the initial-value problem

{ W(t) = Aw(t), ¢>0,

w(0) = zp,1.

Therefore T(t)2,1 = e*'2, 1. We prove by induction that

—$)J
( j‘) e)‘”tzmk_j, k=1,...,mp. (A.3.2)

The basis step k = 1 has been already shown above. Suppose that (A.3.2) is true for
k < m,—1. We show that it also true when k is replaced by k+ 1. By differentiation

d
aT(t)Zn’k+1 = T(t)AZn7k+1 = )\nT(t)zn,k+1 — T(t)Znyk
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Thus wy, g4+1(t) = T(t)2n,k+1 solves the initial-value problem

w(t) = AMw(t) = T(t)znk, t>0,
w(O) = Zn,k+1-

Using the variation of parameters formula and the induction hypothesis we have

t
Ant An (t—
Wn k1 (t) = € zp ki —/ el S)T(s)zmk ds
0
j+1
= 6 Zn Jk+1 + Z n,kfj
k
= Z ez, K+1—j-

|
=0 T

This proves the induction step. Therefore, T'(¢) has the Fourier representation

mnml ;

=YY Y C

neNm=1 j=0

]' z znm>znm —j-

If (RA\n)nen is both bounded from above and below then it follows from this repre-
sentation that A generates a Cp-group.

A sufficient condition for a sequence of generalized eigenvectors to form a Riesz
basis in a separable Hilbert space is the following improvement of the theorem of
Guo [29, Theorem 6.3] by Xu and Weiss [79, Theorem 2.4]. The proof is based
on properties of discrete spectral operators [24] and Bari’s Theorem [81]. Recall
that a sequence of vectors is called linearly independent if every finite subsequence
is linearly independent.

Theorem A.3.1 (Guo-Xu-Weiss). Let A be a densely defined linear operator in
a separable Hilbert space X with a nonempty resolvent set and compact resolvents.
Suppose that (zp)nen is a Riesz basis in X and (wp)nen is a sequence of linearly
independent generalized eigenvectors of A such that for some m € No, (Zntm)neN
and (wp)nen are quadratically close in the sense that

Z wn — Zngml|* < oo.

neN

Then there ezist generalized eigenvectors yi, . .., Ym of A such that (yn)p'— U (Wn)nen
1s a Riesz basis in X.

By taking m = 0 in the preceding theorem, we see that a sequence of linearly
independent generalized eigenvectors of A that is quadratically close to a Riesz basis
in X is a Riesz basis in X as well.
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All throughout this chapter, X will denote a complex Hilbert space. To distinguish
the inner products and norms between different Hilbert spaces, they are usually
denoted with a subscript. For example, the inner product and the corresponding
norm in X are denoted by (-,-)x and || - || x, respectively. Our main references in
this chapter are Salamon [70] and Tucsnak and Weiss [77] .

B.1 GELFAND TRIPLES

Let V and X be Hilbert spaces such that V' is a dense subset of X and the embedding
V C X is continuous. The functional defined on X

(2, v)x|

|||« = sup , VzelX,
veV\{0} [vlv
is a norm on X. Denote by V* the completion of X with respect to the norm || - ||..

The map J : V* — V', where V' is the space of bounded conjugate linear functionals
on V', defined by

(Jz,v)yixy = li_>m (zn,V)x, YVzeV*' vel,

where (2, )nen is a sequence in X such that ||z, — z|[« — 0, is a well-defined isometric
isomorphism. By identifying elements of V* and V' through the isomorphism J, we
have

vcXcV

with continuous and dense embeddings. Such triple is called a Gelfand triple. The
space V* is called the dual of V' with respect to the pivot space X and || - ||« is the
dual norm. Finally, we have

(z,0)yrxy = (z,0)x, VzeX, veV.

Assume that A : D(A) — X is a densely defined operator in X with nonempty
resolvent. Then A is closed and its adjoint A* : D(A*) — X is also a densely defined
closed operator with nonempty resolvent. If D(A*) is equipped with the graph norm,
then D(A*) is a Hilbert space, A* € L(D(A*),X) and we have the Gelfand triple
D(A*) ¢ X C D(A*). Taking the adjoint of A* as a bounded linear operator and
identifying X with its dual, we have A, := (4*)* € L(X, D(A*)"). The operator A,
is an extension of A. Indeed, if z € D(A) then for all w € D(A*)

<Aez,w>D(A*)/XD(A*) = <z,A*w>X = <Az,w>X = <Azaw>D(A*)’><D(A*)'

Therefore Aoz = Az for all z € D(A).
It can be shown that if A generates a Cyp-semigroup in X then A, generates a
Co-semigroup in D(A*)" and (etAe)|X = ¢! for all t > 0, [77, Proposition 2.10.4].

197



ABSTRACT BOUNDARY CONTROL SYSTEMS

B.2 NONHOMOGENEOUS INITIAL VALUE PROBLEMS

Let A: D(A) — X be a generator of a Cy-semigroup in X and A, be the extension
of A constructed in the previous section. Suppose that f € L{ ([0,00); D(A*)") and

loc
20 € D(A*)". Consider the following nonhomegeneous initial value problem in the

extended space D(A*)’

{ z’ig)) :z;lOe.Z(t) +f(t), t>0, (B.2.1)

loc

A function z € Li ([0,00); X)NC([0,00); D(A*)') is called a weak solution in D(A*)’
of (B.2.1) if for every w € D(A*)

we have

t
(2(t) = 20, W) p(A*) x D(A*) = /0 (2(s), A"w) x + (f(8), w) p(ay xD(A*) ds

for every t > 0. If z is a weak solution, then
t
z(t) = 2o +/ Acz(s) + f(s)ds, t>0, (B.2.2)
0

where the integral is computed with respect to the norm of D(A*)". As a consequence,
z is absolutely continuous with values in D(A*) and has a derivative, computed with
respect to the norm of D(A*), for a.e. t > 0 and it is given by the integrand in
(B.2.2).

Weak solutions defined above is adapted from Tucsnak and Weiss [77]. This con-
cept is stronger than the one in the literature due to the additional local integrability
condition with respect to the norm in X, see [19, Definition 3.1.6] for example. If
z is a weak solution of (B.2.2) in D(A*)’ then necessarily it is given by the variation
of parameters formula

t
z(t) = etle —i—/ e(t_S)Aef(s) ds. (B.2.3)
0

In particular, weak solutions are unique. The function z defined by (B.2.3) is called
the mild solution of (B.2.1). Thus, every weak solution is a mild solution. However,
the converse it not necessarily true.

A sufficient condition for the existence of a weak solution of (B.2.1) is that zg € X
and f € H} ([0,00); D(A*)') and, moreover, the weak solution has the regularity
z € C([0,00); X) N CY([0,00); D(A*)'), see [77, Theorem 4.1.6]. In other words,
for initial data in X the trajectories lie in X even though the forcing functions have
values in the extended space D(A*)" and the differential equation is posed in D(A*)’.

B.3 CONTROL AND OBSERVATION OPERATORS

In this section, we are interested in the existence of a weak solution in D(A*)" for
the initial-value problem

{ zzg)) :fsz(t) + Bu(t) + F'(t), t>0, (B.3.1)
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where 29 € X, u € L% _([0,00);U), U is a Hilbert space, B € L(U, D(A*)") and
F € H} ([0,00); D(A*)'). The function u is called an input, U is the input space
and B is called a control operator.

Formally, if (B.3.1) has a weak solution in D(A*)" then it must be given by the

variation of parameters formula
¢ ¢
z(t) = etz +/ eSAeBu(s) ds —i—/ eSAEF(s) ds.
0 0

With this observation, we are led to the following definition. Given an operator B €
L(U, D(A*)") and 7 > 0 we define the controllability map ®, € L(L?([0,00);U), D(A*))
by

-
@Tu:/ e*e Bu(s) ds.
0
The control operator B € L(U, D(A*)) is said to be an admissible for (et)io
if ran &, C X for some 7 > 0. For admissible control operators, the associated

operator @, can be regarded as a bounded operator into X. For a proof, see [77,
Proposition 4.2.2].

Proposition B.3.1. If B € L(U,D(A*)") is an admissible control operator for
(e")y>0 then @, € L(L?([0,00);U), X) for everyt > 0.

Admissibility of the control operator is sufficient for the existence and uniqueness
of a weak solution in D(A*)" for the problem (B.3.1) as stated in the succeeding
theorem.

Theorem B.3.2. Let B € L(U, D(A*)') be an admissible control operator for (€/4);>.
For every zo € X, u € L% _([0,00);U) and F € H} ([0,00), D(A*)),

loc
t
2(t) = ez + Ppu + / e*AeF(s) ds.
0

is the unique weak solution of (B.3.1) and it satisfies
2 € O([0,00); X) N Hye ([0, 00); D(A*)').

Proof. Consider the initial-value problems

and
{ ZEB)) ::gl'ew(t) + F(t)v t>0, (B.3.3)

Then according to [77, Proposition 4.2.5], y(t) = !4 25+ ®;u is the weak solution
of (B.3.2) and y € C([0,00); X) N H} ([0,00); D(A*)"). According to Appendix B.2,

loc

(B.3.3) has a weak solution w € C([0,00); X) N C([0,00); D(A*)") and it is given by
the mild solution

w(t):/o e F(s)ds

It is easy to see that z = y + w is the weak solution in D(A*)" of (B.3.1) and has
the desired regularity. O
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Let Y be a Hilbert space and C' € £(D(A),Y) where D(A) is equipped with the
graph norm. Consider the system

y(t) =Cxz(t), t>0, (B.3.4)

where zg € D(A). Here, y is called the output, Y is the output space and C' is an
observation operator. The output y can be easily solved and it is given by y(t) =
Cetz.

For each 7 > 0, define the observability map ¥, € L(D(A), L*([0,);Y)) by

(Ur2)(t) =1 (t)Ce 2, t>0,

where 1 - is the indicator function of [0, 7]. The observation operator C' € L(D(A),Y)
is said to be admissible for (etA)tzo if there exist 7 > 0 and M, > 0 such that

/0 ICez|2 dt < M,||z|%, ¥ = € D(A). (B.3.5)

Therefore, C is admissible for the semigroup generated by A if and only if the
operator ¥, can be extended to a bounded linear operator ¥¢ € £(X, L?([0,00);Y)).
By density of D(A) in X, this extension is unique. The definition of admissibility of
observation operators is independent of the time 7 > 0. This is the content of the
following proposition. A proof can be found in [77, Proposition 4.3.2].

Proposition B.3.3. If C € L(D(A),Y) is an admissible observation operator for
(e")i>0 then Wy has a unique extension W§ € L(X, L%([0,00);Y)) for every t > 0.

Admissibility of control and observation operators are dual to each other. More,
precisely we have the following theorem. For a proof, see [77, Theorem 4.4.3].

Theorem B.3.4. The operator B € L(U, D(A*)) is an admissible control operator
for the semigroup generated by A if and only if B* € L(D(A*),U) is an admissible
observation operator for the semigroup generated by A*.

This means that the set-theoretic condition ran @, C X is equivalent to the alge-
braic condition

)
/0 B e 22 dt < M,||2[%, ¥ 2 € D(A%), (B.3.6)

for some M, > 0 independent of z. For concrete systems, the inequality (B.3.6) is
easier to verify. For example, if the semigroup (etA*)tZO can be expressed as a Fourier
series then (B.3.6) can be verified using tools from nonharmonic Fourier analysis.
Let B € L(U,D(A*)") be an admissible control operator for the semigroup gen-
erated by A. The pair (A, B) is said to be exactly controllable in time 7 > 0 if
ran &, = X. Exact controllability is equivalent to the statement that for every
20,21 € X there exists u € L2((0,7); U) such that the weak solution of the system
{ 2(t) = Aez(t) + Bu(t), 0<t<r, (B3
2(0) = 2o,
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in D(A*) satisfies z(7) = z1. The pair (4, B) is said to be approzimately controllable
in time 7 > 0 if ran @ is dense in X. This is equivalent to the following: For every
20,21 € X and for every e > 0 there exists u € L?((0,7);U) such that the weak
solution of (B.3.7) satisfies ||z(7) — z1]|x < e.

Suppose that C' € L£L(D(A),X) is an admissible observation operator for the Cy-
semigroup (et4);>0. The pair (4, C) is said to be ezactly observable in time T > 0 if
there exists m., > 0 such that

/0 ICe 2|2 dt > mo|z|%, V¥ 2 € D(A). (B.3.8)

The inequality (B.3.8) holds if and only if ¥, is bounded from below. Therefore
exact observability is equivalent to the statement that any initial state zg € X can
be recovered continuously through the observation y(¢) = Cz(t), 0 < t < 7, through
20 = (VW) 1W*y. The pair (A4,C) is said to be approzimately observable in time
7 > 0 if ker ¥, = {0}. Approximate observability means that the the only initial
data with zero output in [0, 7] is the zero initial data.

The controllability and observability concepts defined above are dual to each other,
see [77, Theorem 11.2.1]

Theorem B.3.5. Assume that B € L(U, D(A*)") is an admissible control operator
for the semigroup generated by A and T > 0. The pair (A, B) is exactly controllable
in time T if and only if (A*, B*) is exactly observable in time T. The pair (A, B) is
approximately controllable in time 7 if and only if (A*, B*) is approzimately observ-
able in time T.

B.4 NONHOMOCGENEOUS BOUNDARY CONTROL SYSTEMS

Let Z, X and U be Hilbert spaces and Z C X with continuous embedding. Consider
the abstract initial-boundary value problem in X

2(t) = Lz(t) + F(t), 0<t<T,
Gz(t) =u(t), 0<t<T, (B.4.1)
2(0) = 2o,

where 29 € X, F € HY((0,T); X), w € L*((0,T);U), L € L(Z,X) and G € L(Z,U).
The spaces Z, X and U are called the solution space, state space and input space,
respectively. The system (B.4.1) arises in the control of partial differential equations
where the control acts on the whole or a part of the boundary and in ordinary
differential equations with delay in their input, see Salamon [70] for examples.

Definition B.4.1. Let L € £(Z,X) and G € L(Z,U). The pair (L,G) is called a
boundary control system if ker G is dense in X, ran G = U and there exists § > 0
such that ker (5 — L) Nker G = {0} and (81 — L)(ker G) = X.

If (L,G) is a boundary control system then the linear operator A : D(A) — X,
where D(A) = ker G, defined by Az = Lz is a densely defined operator on X and
A € L(D(A),X). Thus 8 € p(A) by the Banach Inverse Theorem. Therefore A
is closed and from Appendix B.1 the operator A admits a unique extension A, €
L(X, D(A*)"). For the proof of the following theorem, see [77, Proposition 10.1.2].
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Theorem B.4.2. Let (L,G) be a boundary control system. Then there exists a
unique operator B € L(D(A*)',U), called the control operator associated with (L,G),
such that

L=A.+ BG.

For boundary control systems, the IBVP (B.4.1) in X can be written as a pure
IVP in the extended space D(A*)'. Using Theorem B.4.2, the following theorem can
be shown, see [77, Remark 10.1.4] for the homogeneous case, i.e. F' = 0.

Theorem B.4.3. Let (L,G) be a boundary control system and F € H'((0,T); X).
A function z € C1([0,T]; X)NC([0,T); Z) satisfies the abstract initial boundary value
problem (B.4.1) in X if and only if it satisfies the following pure initial value problem
in D(A*)
2(t) = Aez(t Bu(t) + F(t), 0<t<T,
{zgo)) )+ Bu(t) + F(t), 0<t< (B42)
2(0) = zo,

20
where B is the control operator associated with (L, Q).

Sufficient conditions for the existence of solution of (B.4.1) are given in the follow-
ing theorem. The proof of this theorem is similar to the homogeneous case in [77,
Proposition 10.1.8].

Theorem B.4.4. Let (L, G) be a boundary control system such that A generates a Co-
semigroup in X and the corresponding control operator B is admissible for (etA)tZO.
Then for every T > 0, 2o € Z, u € H'((0,T);U) and F € H'((0,T); X) such that
Gzo = u(0), the system (B.4.1) has a unique solution z € C1([0,T]; X)NC([0,T); Z).
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PSEUDODIFFERENTIAL AND
PARADIFFERENTIAL CALCULUS

In this section we present a short survey of results in pseudodifferential and parad-
ifferential calculus that will be needed in deriving symmetrizers for boundary value
problems. For the proofs and details we refer the readers to [2, 4, 9, 10, 15, 17,
36, 54, 57, 56, 74|.

C.1 PSEUDODIFFERENTIAL OPERATORS

One of the motivations of studying pseudodifferential calculus is due to the obser-
vation that a partial differential operator can be written in terms of the Fourier
transform through an appropriate symbol. To illustrate this, consider the differen-
tial operator

L= Z a(z)0*

|| <m

where a, € 6°(R?). Using the properties of the Fourier transform we obtain

(Lu)@) = Y aa@)du(z) = Y aa@)[F((i-)* Fu)(x)

|laj<m laj<m

= (2;61 /R € a(z, ) Fu(€) dé

for every u € .#(R?), where

a(e,&) = 3 (i€)aa(a) (C.1.1)

laf<m

and Zu is the Fourier transform of w. Thus the differential operator L can be
written in terms of the Fourier transform and the function a, called the symbol of L.
Pseudodifferential calculus aims to generalize this to symbols that are not necessarily
polynomial in &.

Let m € R and N € N. Denote by S™ the set of all a € € (R? x R%; CV*N) such
that for all a, 8 € N4 there is Ca,3 > 0 such that

sup [030¢ a(w, £)] < Cay(1+ [¢[*) 19072,
TeR

The elements of S™ are called symbols of order m. In light of the motivation discussed
above, we call the variable x the Fourier variable and £ its associated frequency. This

is a special class of the more general type of symbols 5%, 0 <6 < ¢ <1, in [36].
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The set S}’ consists of all a € € (RY x R%; CN*N) with the property that for every
a, B € Ng there is C g > 0 such that

sup 0202 alz, €)] < Cap(L + |¢[?)0m+olel-alsD/2,
zeR

Indeed, we have S™ = ST, We let S™%° =, S™ and 5% = J,,,cp 5™
If n < m then S™ C S™. If a € S™ and b € S™ then ab € S™™ and 8?8?@ €

Sm=IAl. In other words, the product of two symbols is again a symbol having an
order equal to the sum of the orders of the symbol. Likewise, differentiation with
respect to the frequency £ reduces the order of the symbol by the same order as that
of the differentiation.

Let us cite some examples of symbols. The function a defined by (C.1.1) is a
symbol of order m. These symbols are called differential symbols. It is clear that
A(E) := (1 + |€]?)™/2 € S™ for any m € R and these are called Sobolev symbols. Tt
can be checked that .7 (R%) C §—°.

Our last example deals with homogeneous functions. A function f : R? — CV is
said to be homogeneous degree m if f(t§) = t™f(&) for all £ # 0 and t > 0. If f is
differentiable at all points except at 0 and it is homogeneous degree m then 0; f is also
homogeneous of degree m—1 for all 1 < j < d. To see this, define g(s) = f(t({+se;))
and h(s) = t™f(£ + se;), where e; denotes the canonical unit vector in R in the
jth direction. Because f is homogeneous, g(s) = f(s) whenever £ # 0, t > 0 and |s]
is small enough. The chain rule implies that ¢’'(0) = V f(t) - (te;) = t0; f(t&) and
R(0) =tV f(&) - e; = t™0; f(£). Hence 8;f(t) = t™19; f(€), which proves that
0; f is homogeneous degree m — 1.

Assume that a € € (R? x R?\ {0}; CV*¥) is bounded as well as all derivatives
with respect to x and homogeneous degree m in £. Then there exists a € S™ such
that a = @ in |¢] > 1. Indeed, let us introduce a frequency cut-off function y € Z(R?)
such that y vanishes in a neighborhood of 0 and x = 1 for |£| > 1. Then the function

C~L(IL‘, f) = x(f)a(m, 6)

satisfies the requirement. If x; is another frequency cut-off function which vanishes
in a neighborhood of 0 and is equal to 1 for || > 1 and a; = x1a then @ = a = a;
for [¢] > 1 so that @ — a; € 2(R?) € S~°. Therefore @ is unique modulo S~>°. We
say that a property of a symbol is unique modulo S™ for some m € RU {£o0} if for
any other symbol having the property their difference is a symbol in S™.

For each a € S™, the operator Op(a) : .7(R%) — .7 (RY) defined by

- ! e Ca(z, ) Fu
(O(a)u)(w) = gz [ e Fala. O Fule) de

is well-defined and continuous. The map Op : S™ — (7 (R9)) is injective. Here,
A(.7(R?)) denotes the space of continuous linear operators from .7 (R%) into itself.
The operator Op(a) is called a pseudodifferential operator of order m and a is called
its symbol.

For each a € S™ it can be shown that Op(a)* € Op(S™). However, the symbol
of Op(a)* is not the same as the adjoint a* of a but it differs from a* by a lower
order symbol. More precisely, Op(a)* — Op(a*) = Op(b) for some b € S™~ 1. With
this information, the operator Op(a) which is originally defined in .(R?) can be
extended to .#/(R?) by duality. The map Op(a) : .#'(R?) — ' (R?) is defined by

(Op(a)t, ©) 1 (ray . (may = (1, OP(a)* Q) o1(rayx r(rays  u € S (RY), v € S (RY).
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This extension maps Sobolev spaces into Sobolev spaces continuously, i.e., Op(a) €
L(H*(RY); H~™(R%)) for every s € R whenever a € S™. In particular, operators
associated with symbols of negative order are regularizing.

Given two operators F' and G, we define the commutator [F, G] = FG — GF when-
ever the products F'G and GF are well-defined. For pseudo-differential operators
corresponding to mollifiers, the following result will be used. For a proof, see [9,
Theorem C.14].

Theorem C.1.1. Let p.(z) = e %p(x/€) be a mollifier with the properties p € Z(RY),
p>0and [zap=1. Let Rc = Op(Fp.). For alla € WH*(RY), u € L*(R?) and
j=1,...,d there exists C > 0 independent of u, a, and € € (0,1) such that

1Re, a8Jull 2 gy < Clallnos ey el 2 (C.12)

and
lgI(l) ||[RE, a(?j]uHLg(Rd) =0. (0.1.3)

The previous theorem is used in proving that weak solutions of boundary value
problems are strong solutions. This is done thanks to the regularizing operator
R.. However, we also need an analogous result for the generalized trace of weak
solutions, which have less regularity than the solution. For this, we need the following
generalization of Theorem C.1.1: If @ € Wh*°(R?) and u € H~1(R%) then

lim ||[R6, G]UHLQ(Rd) =0. (014)
e—0

Indeed, given u € H~1(R?) there exist k; € C and u; € L*(RY) for j = 0,1,...,d
such that

d
u = koug + Z kjajuj.
j=1
Since aug,ug € L*(R?) we have [R.,aluy = Re(aug) — aRcug — 0 in L?(RY). For
each j the commutator [R., a]Oju; can be rewritten as follows
[Re, a]ajuj = Re(aﬁjuj) - (ZREajUj
= Re(adjuj) — adj(Reuy) — a(ROjuj — 0j(Reuy))
= [Rﬁ, CLBJ‘]UJ‘ - CL[RE, 8j]u]'.

Because the constant identity matrix Iy is in W1*°(R%) and u; € L*(R%), according
to Theorem C.1.1 we have

1R, aldjuslzz < N[Readyluzll e + lallz N[Re S5l 2 — 0, as € 0.

Taking the sum for j we obtain (C.1.4).

C.2 PSEUDODIFFERENTIAL OPERATORS WITH PARAMETER

In deriving a priori estimates for boundary value problems with smooth coefficients,
the weighted Lebesgue spaces L?(R x (0,1); e~ dt dx) with v > 1 will be used. For

this reason we need a parameter version of the pseudodifferential calculus that was
introduced above.
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Without confusion, we use the same notation S™ to denote the set of all functions
a: R xR x [1,00) = CV*N with a(-,-,v) € €°(R? x RYCV*N) and for every
~ > 1 and for each o, 5 € Ng there exists C 3 > 0 such that

sup [090 a(w, &,7)| < Cap(y? + €2 18D/,
zcRd
The space S™ is a Fréchet space by taking the best constants C, g in the above
inequality as seminorms.
A family {P7},>,, C Op(S™), where vy > 1, is said to be of order m if for each
s € R there exists Cs > 0 such that

P’Y Ss—m < .
SUP 27l a1y ey ey < O

If {P7},>+, is a family of order m < 0 then we have
[P ull 2y < O™ |[ullp2(w)- (C.2.1)

This estimate is important in absorption arguments, cf. [9, Remark C.2].
Given a € S™ the operator Op”(a) : .7 (R%) — . (R?) defined by

1

Op” (CL) = (27T)d

| e Sata & Fule) ag

after extending to .’ (R?) defines a bounded linear operator from Hj (RY) to H:j_m(]Rd)
for each s € R and for a fixed v > 1. The following theorem states that for each
fixed s € R the operator norms of Op”(a) are uniformly bounded in .

Theorem C.2.1. Let m,n € R, a € ™ and b € S™.
1. {Op7(a)}y>1 is a family of order m.
2. {Op7(a)* — Op7(a*)}y>1 is a family of order m — 1.
3. {Op”(a) Op?(b) — Op”(ab)}>1 is a family of order m +n — 1

4. if either a or b is scalar-valued then {{Op”(a), Op”(b)] — Op?([a,b])}y>1 is a
family of order m +n — 1.

Next, we state two parameter versions of the Garding’s inequality.

Theorem C.2.2 (Garding’s Inequality). Suppose that a € S?™ satisfies 2Ra(x, &, 7) >
a(y? + €)™ N for some a > 0 and for all (z,€,7) € RY x RY x [1,00). Then for
every ¥ € (0, ) there exists vo = Y0(9) > 1 such that

§R<Op’y(a)u7u>H§’"(Rd)><H;"(Rd) > ﬂ”uHilgﬂ(Rd)

for ally > vy and u € Hl;”(Rd).

Theorem C.2.3 (Sharp Garding’s Inequality). If a € S?™ satisfies 2Ra(z,&,v) > 0
for all (x,€,7) € RY x R? x [1,00) then there exist C > 0 and vo > 1 such that

%(Opy(a)u, U)H;m(Rd)XH’ryn(Rd) Z _CHuHi]m—%(Rd)

for every v > 79 and u € H;”(]Rd).
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C.3 PARADIFFERENTIAL OPERATORS WITH PARAMETER

The concepts introduced in the previous section apply to problems with smooth
coefficients. These definitions can be also extended to symbols with limited regularity
in the variable x and such formulations are useful for problems with coefficients
having limited regularity.

We begin by a defining a symbol. Given m € R and k € Ny we denote by I'* the
set of all functions a : R x R? — CV*N satisfying the following properties.

1. a(x,-,7) € €°(R?) for almost all z € R% and for every v > 1

2. For every (£,7,8) € R% x [1,00) x N, 8?&(-,5,7) € Wk (R?) and there exists
Cs > 0 such that

”a?a('7€7/y)HWk,oo(Rd) < C(7? + |e2)m180 /2,

It is clear that S™ C I'}J* for every k € Ng. The elements of I']"* are called symbols of
order m and reqularity k.

In contrast to symbols in S™, symbols in I'}*, in general, are not associated with
bounded operators between Sobolev spaces. However, this is possible for the class of
symbols in I'}* with some spectral properties. Let ¥ be the set of all a € I'}* such
that for some € € (0, 1) independent of (§,~) we have

supp F (al-£,7)) € B(0;e(v* + [€]%)?) (C.3.1)

for all £ € R and v > 1. The symbols in ¥ are necessarily €°° with respect to x,
see [35, Theorem 7.1.14] for example.

Symbols in ¥} can be associated with bounded operators between weighted Sobolev
spaces. For the proof of the following theorem, we refer to [17].

Theorem C.3.1. For all a € X', k > 0, one can associate a family of operators
{Op(a)},>1, where Op™(a) : F~H&'(RY)) — €2°(RY) is defined by

(O™ (a)u)(z) = (2;)d<<w )y U o e ()

This definition of Op”(a) coincides with the one defined when a € S™. For all s € R
and~y > 1, Op”(a) extends in a unique way into an element in E(H:j(Rd), Hi_m(Rd))
and there exists Cs > 0 such that

SUP || OP™ (@) a1y ey 115 gty < Cs

It can be shown that X" C ST where ST is the class of symbols defined in
Appendix C.1. For a proof see [9] or [17].

The next step is how to obtain a symbol in ¥}* from a given symbol in I'}*. We can
do this by multiplying an appropriate cut-off function on the Fourier side so that the
spectral condition (C.3.1) is satisfied. The idea is to cut-off the higher frequencies
associated to the variable of limited regularity, i.e., with respect to the variable x.

A function x € € (R? x R? x [1,00);[0,00)) is called an admissible frequency
cut-off function if there exist 0 < €1 < eo < 1 satisfying

1, if nl <ea(®+[€?)
0, if [n] > ea(v2+ €2

Nl= N=

x(n,€,7) :{
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and if for all o, 5 € Ng there exists C g > 0 such that
10907 x(1,€,7)| < Cap(7? + [€[3) 7 1IFIEN2 (e 9) e R x [1,00).  (C.3.2)

An example of an admissible frequency cut-off function based on the parameter
version of the Littlewood-Paley decomposition can be found [9, p. 489].

By taking the convolution of the inverse Fourier transform of an admissible fre-
quency cut-off function and a symbol in I'}* one obtains a symbol in ¥}*. This is the
content of the following proposition, see [17] for a proof.

Proposition C.3.2. Let x be an admissible cut-off function. The operator RX :
I — X7 given by

(RX(a))(-,&,7) = F 1 (X( &) * a(-,€,7) (C.3.3)
is well-defined and

RX(T}) C S = {a € T} : supp F(a(-,&,7)) C B(0;e2(v* + [¢[%)2}.

If k > 1 then a — RX(a) € F?__ll for all a € T'. In particular, if x1 and x2 are
two admissible frequency cut-off functions then RX'(a) — RX2(a) € F?:ll for every

a €'t with k > 1.

Suppose that x is an admissible frequency cut-off function. For each element
a € I'" we define the operator T,°" for v > 1 by

T = Op? (RX(a)).

The operator 17 is called a paradifferential operator with parameter v > 1 asso-
ciated with the symbol a and the cut-off function y. For each b € W*>(R%) with
k > 1 one can show that
XY XY
Ti\algab =T;70%. (C.3.4)
In deriving a priori estimates for partial differential operators with coefficients that
are at least Lipschitz, it is enough to consider their paradifferential version and use

the following error estimate in [17].

Theorem C.3.3. There exists C > 0 such that for all a € WH*(RY), u € L?(R?)
and v > 1 we have

|adju — T3 0jul| L2 (may + llau — TgCWUHH}/(Rd) < Cllallw.o0 ey lull L2 (gay-

Finally, we also have the following results similar to pseudodifferential operators
with parameter.

Theorem C.3.4. For all a € T and b € I'} we have ab € T, Moreover,
(L o, (T = T Yo, AT 1 and {TXVTYT = T35} are families
of paradifferential operators of orders m, m —1, m+n, and m+n — 1, respectively.

Theorem C.3.5 (Garding’s Inequality). Assume thata € T'?™ satisfies 2Ra(x, &, 7y) >
a(y? + €)™ N for some a > 0 and for all (x,&,7) € R x RY x [1,00). Then there
exist vo > 1 and C > 0 such that for all v > vy and u € H;"(Rd) we have

) a 2
R u, “>H;m(Rd)xH;"(Rd) = ZHUHHZ,”(R"Z)'
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