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Abstract

In this thesis, the well-posedness of hyperbolic systems with dynamic boundary con-
ditions is studied. Such systems occur naturally when the dynamics on the boundary
interact with the waves in the interior. By using a priori estimates and the method
of Friedrichs, the L2-well-posedness of linear systems is established. It is shown that
weak solutions have a hidden regularity property, namely the L2-trace regularity at
the boundary. The a priori estimates are derived through symmetrizers and paradif-
ferential calculus. Regularity and compatibility of the data enhances the regularity
of the solutions. We also deal with a model describing the flow of fluid in an elastic
tube whose ends are attached to tanks. The stability and boundary controllability of
the linearized model are analyzed using semigroup theory and nonharmonic Fourier
analysis. Numerical solutions of the linear model are computed using Legendre tau
approximations. Next, local in time well-posedness of a class of PDE-ODE systems is
established by Picard iteration. Furthermore, the existence and uniqueness of global
in time smooth solutions of the two-tank model is proved for smooth data su�ciently
close to the equilibrium. The proof is based on energy estimates. It is shown that
solutions of the nonlinear model converge exponentially fast to the steady state. The
lower order energy estimate is derived using the relative entropy, while the higher
order estimates are obtained using appropriate entropy-entropy flux pairs.
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Hyperbolische Systeme auf einem Intervall mit
Dynamischen Randbedingungen

Gilbert Peralta

Kurzzusammenfassung

In dieser Dissertation wird die Gut-Gestelltheit hyperbolischer Systeme mit dy-
namischen Randbedingungen untersucht. Solche Systeme ergeben sich, wenn die
Dynamik an den Rändern mit den Wellen im Inneren interagiert. Durch a priori
Abschätzungen und die Methode von Friedrichs wird die L2-Gut-Gestelltheit lin-
earer Systeme etabliert. Es wird gezeigt, dass schwache Lösungen die Eigenschaft
der versteckten Regularität haben, nämlich die L2-Spur Regularität am Rand. Die
a priori Abschätzungen werden über Symmetrisierer und paradi↵erentiellen Kalkül
hergeleitet. Regularität und Kompatibilität der Daten erhöht die Regularität der
Lösungen. Wir beschäftigen uns auch mit einem Modell, das die Strömung einer
Flüssigkeit in einem elastischen Schlauch, dessen Enden mit Tanks verbunden sind,
beschreibt. Die Stabilität und Rand-Steuerbarkeit des linearisierten Modells wird
mit Hilfe von Halbgruppentheorie und nicht-harmonischer Fourier Analyse unter-
sucht. Nummerische Lösungen des linearen Modells werden durch Legendre tau Ap-
proximationen berechnet. Sodann wird - durch Picard Iteration - die Gut-Gestelltheit
lokal in der Zeit einer Klasse von PDE-ODE Systemen nachgewiesen. Weiters wird
die Existenz und Eindeutigkeit global in der Zeit glatter Lösungen des Zwei-Tank
Modells bewiesen,und zwar für glatte Anfangswerte,die hinreichend nahedem Gleich-
gewicht sind. Der Beweis basiert auf Energie Abschätzungen. Es wird gezeigt, dass
die Lösungen des nicht-linearen Modells exponentiell schnell gegen das Gleichgewicht
konvergieren. Die Energie Abschätzung niedriger Ordnung wird anhand der rela-
tiven Entropie abgeleitet, während die Abschätzungen höherer Ordnung mit Hilfe
geeigneter Entropie-Entropiefluss Paare erhalten wird.
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1
INTRODUCTION

Hyperbolic partial di↵erential equations are recognized mathematical models in ar-
eas such as fluid dynamics, acoustics, electromagnetics, scattering theory and the
general theory of relativity. The methods used and developed to understand these
equations range from abstract functional analytic tools, e.g. pseudodi↵erential cal-
culus and microlocal analysis, to more intuitive geometric methods, e.g. the method
of characteristics and geometric optics. The prototype of hyperbolic partial di↵eren-
tial equations is the second order wave equation modeling the vibrations of a string.
Other models arise in the theory of conservation laws. The inviscid Burgers equation,
the Euler equations of compressible fluid flow and Maxwell’s equations of electromag-
netism are some well-known examples of conservation laws in continuum physics. A
historical account for the developments of conservation laws arising in continuum
physics is given in Dafermos [21].

Essential properties of hyperbolic equations are well-posed Cauchy problems, finite
speed of propagation and wave-like solutions. This means that for a given finite
time, local disturbances on the initial data have e↵ects only on parts of the domain,
called the region of influence. Because information travels along characteristic curves,
discontinuities and oscillations propagate through time and space. Therefore, in
general, one might expect the same regularity for the initial data and the solution.
This is in contrast to parabolic partial di↵erential equations, where perturbations of
the initial data have e↵ects on the entire domain and solutions have more regularity
than the initial data. In other words, parabolic di↵erential equations exhibit infinite
speed of propagation and smoothing.

The focus of this thesis is a class of hyperbolic systems of first order partial dif-
ferential equations on a bounded interval that are coupled with ordinary di↵erential
equations at the boundary. These include linear systems with either constant or
variable coe�cients and quasilinear systems. Such systems occur naturally when the
dynamics on the boundary interact with the waves in the interior.

The wave equation with oscillator boundary conditions in [6, 39] is one of the
examples according to the literature. Suppose that a fluid is contained in a bounded
domain, the evolution of the velocity potential is modeled by a second order linear
wave equation. Assuming that each point of the boundary reacts like a harmonic
oscillator forced by interior pressure, the normal displacement of the boundary can
be described by a second order di↵erential equation. In this way, the boundary
conditions for the fluid are coupled to ordinary di↵erential equations.

Another example is taken from multiscale blood flow models [27, 65, 66]. Start-
ing from the incompressible Navier-Stokes equations and assuming that the flow is
axisymmetric, hyperbolic models can be derived to study blood flow in the human
cardiovascular system. The hyperbolic equations have the same form as the Eu-
ler continuity and momentum equations in gas dynamics. Important parts of the
cardiovascular system such as the vessels can be described by patching several com-
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ponents modeled by hyperbolic equations. However, a realistic description cannot
be described solely by these equations, and several authors introduced lumped pa-
rameters. These parameters can be expressed by a system of ordinary di↵erential
equations describing the mass and flow rate in a specific terminal compartment of
the circulatory system. They can be derived from the hyperbolic models by integra-
tion in space and linearization. The boundary conditions for the hyperbolic PDEs
are coupled to the ODEs by imposing continuity of pressure and flow rate. In the
two examples given above, the di↵erential equations at the boundary are explicitly
given.

Finally, let us consider the dynamics of the sound in a compressible fluid whose
surface is made of a viscoelastic material [22, 62]. The acoustic pressure can be
modeled again by a second order wave equation, while the boundary condition is
of memory-type. One has to keep track of the memory by introducing an auxiliary
state. Under suitable conditions on the memory kernel, this state satisfies a di↵er-
ential equation on the boundary. Here, the di↵erential equation at the boundary is
introduced in the analysis and not explicitly given by the model.

Well-posedness in the Hadamard sense, i.e. existence and uniqueness of solutions
and continuous dependence on the data, will be studied in appropriate function
spaces. With additional smoothness and compatibility of the data, the regularity of
solutions will be considered as well. Our well-posedness results are stated in Lebesgue
and Sobolev spaces. Other di↵erent function spaces such as the space of continuously
di↵erentiable functions and the space of functions of bounded variation that include
discontinuous solutions have been used by several authors in the literature. The
advantage of using Lebesgue and Sobolev spaces is that they are Hilbert spaces. In
this setting, more functional analytic methods are available in the analysis. Although
we have more tools at our disposal, this limits the range of applicability of the results.
Nevertheless, the results still cover a large variety of systems and the ideas presented
here may be used to treat other problems.

The coupled PDE-ODE systems we consider is an initial-boundary value problem
(IBVP) of the form

8
>>>>>><

>>>>>>:

u̇(t) = f(u(t), su(t)), t > 0,

b(u(t), h(t), r(t)) = 0, t > 0,

ḣ(t) = k(h(t), u(t), sh(t)), t > 0,

u(0) = u
0

,

h(0) = h
0

(1.1)

where u is the state component in the domain and h is the state component on the
boundary. In (1.1), f is a di↵erential operator, b and k are trace operators with
respect to u, and su, sh and r are external sources.

Before looking at general systems, we study a specific physical system modeling
the flow of an incompressible fluid contained in an elastic tube where each end is
connected to a tank. In this particular set-up, the state component u consists of the
velocity of the fluid and the cross-sectional area of tube, and the state component h
consists of the level heights of the fluid in the tanks. Using mass conservation and
Newton’s second law, we will derive this system in detail in Chapter 2. From now
on, we shall refer to this model as the two-tank model, see (2.6.5). Similar models
have been considered in the literature in the context of valveless pumping [13, 60]
and in multiscale blood flow models [27, 68].
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Denoting by z = (u, h) the combined state components and ignoring external
sources for the moment, the system (1.1) can be written in the form

8
><

>:

ż(t) = F (z(t)), t > 0,

B(z(t)) = 0, t > 0,

z(0) = z
0

.

(1.2)

In the two-tank model, F and B are nonlinear. In studying systems of the form (1.2)
one may consider the dynamics near an equilibrium state as a first step. A state
ze is called an equilibrium or steady state of (1.2) if the equations F (ze) = 0 and
B(ze) = 0 hold. The steady state in the two-tank model depends on the material
properties of the tube as well as those of the fluid. In general, the steady state is
not unique. But with an additional constraint, the system has a unique steady state.
The physical quantity to be conserved is the overall volume of the fluid.

To study the behavior of the system (1.2) near the steady state ze, we linearize
it about ze by using a Taylor approximation and neglecting higher order terms.
Introducing the variable w = z � ze, which is the deviation of the state from the
steady state, one has the linear system

8
><

>:

ẇ(t) = Lw(t), t > 0,

Gw(t) = 0, t > 0,

w(0) = w
0

.

(1.3)

In this system, L and G tell us how the state w evolves in time and behaves at the
boundary, respectively, and w

0

is the deviation of the initial state from the equilib-
rium. The well-posedness of (1.3) will be established using the theory of strongly
continuous semigroups of bounded linear operators. This will be accomplished by
Lumer-Phillips’ Theorem.

Having the well-posedness of the linearized system, we are interested in the long-
time behavior of the solutions. Does the state converge to the equilibrium, or equiv-
alently, do the deviations tend to zero in some sense? If yes, what is the rate of
convergence? Using a spectral method it will be shown that indeed the state con-
verges exponentially fast to the equilibrium as long as damping is present and the
initial data lies in a factor space. The latter condition is needed since the lineariza-
tion (1.3) induces a one-dimensional linear manifold of equilibria, the span of the
zero eigenvector. By mass conservation, this factor space is the appropriate state
space for the deviations.

The spectrum of the generator is determined first in the absence of damping and
this information is used to see how the spectrum changes as the damping factor
increases. The generator stays spectral and thus the only elements of its spectrum
are generalized eigenvalues. It will be shown that all of the eigenvalues lie on a single
line determined by the damping coe�cient, except for a finite number. If there is
no damping then the normalized eigenvectors form an orthonormal basis. If there is
damping then the eigenvectors are not orthogonal anymore, however, they still form
a Riesz basis. Except for a countable number, the eigenvalues are simple.

Riesz bases and orthonormal bases are related through bounded invertible lin-
ear transformations. The Riesz basis approach has been successfully used by Guo
and collaborators to prove the stability of certain beam equations [29, 30, 31, 32].
The basic idea of Riesz basis generation in these papers is the application of a re-
sult similar to Bari’s Theorem [81, Theorem 15], i.e. to prove that a sequence of
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generalized eigenvectors is quadratically close to a given Riesz basis. Unlike beam
equations, which have increasing spectral gap (distance between consecutive eigen-
values), wave equations have an asymptotically constant spectral gap. A refinement
of the Riesz basis generation theorem of Guo [29, Theorem 6.3] was given recently
by Xu and Weiss [79, Theorem 2.4]. The latter result will be used in proving
that the infinitesimal generator of our system is Riesz spectral, i.e. has a Riesz basis
consisting of generalized eigenvectors.

With Riesz bases at our disposal, we can express every element of the state space
as a nonharmonic Fourier series and in turn also for the semigroup. As a result,
we have a Fourier series representation of the solution that enables us to obtain a
tight decay rate. As the damping coe�cient increases, the number of eigenvalues
approaching zero also increases. Thus increasing the damping coe�cient will not
necessarily increase the decay rate. This should be expected because if the fluid is
viscous then it takes time to return to the steady state.

After studying the stability of the linearized two-tank model, a boundary control
system will be considered. By applying pressures on the top of each tank, the system
has the form

8
><

>:

ẇ(t) = Lw(t), t > 0,

Gw(t) = q(t), t > 0,

w(0) = w
0

.

(1.4)

where q is the input. Is it possible to steer an arbitrary initial data to a desired
final state at finite time? The answer is yes provided that the controllability time is
su�ciently large. This reflects the finite propagation property for hyperbolic partial
di↵erential equations.

In multidimensions, boundary controllability of the wave equation is not always
possible even for a large controllability time. It depends not only on the time but
on the region where the input is applied as well. This region should satisfy the
Geometric Control Condition stating that every ray of geometric optics should meet
the control region during the control period (see Bardos, Lebeau and Rauch [5]).
For linear symmetric hyperbolic systems in a bounded interval that generate groups,
boundary controllability can be achieved for su�ciently large times. This follows
from the fact that every characteristics will reach the boundary where the control is
applied after a finite number of reflections (see Russell [69]).

Because the control acts on the boundary, we have an unbounded input. The main
idea to prove the boundary controllability of (1.4) is to reformulate the abstract
IBVP as a pure initial-value problem in an extended space [70, 77]. We use the
Riesz basis approach to prove the exact controllability of the system. To do this,
we modify the arguments in Tucsnak and Weiss [77, Proposition 8.1.3] which
work with orthonormal bases. The spectrum is divided into lower and higher fre-
quencies. For the higher frequencies, the restricted system is controllable thanks to
Ingham’s Theorem. The uniform gap property of the spectrum plays an important
role here. For the lower frequencies, the restricted system is finite-dimensional and
the Hautus test is applied to show its controllability. By applying the simultaneous
controllability theorem in [76], the whole system is shown to be controllable.

A minimal time of controllability for single input controls will be given. However,
Ingham’s Theorem will not be applicable in this problem and we need to use other
perturbation results in non-harmonic Fourier analysis. In order to solve this, we
separate the lower and higher frequencies and replace the non-harmonic Fourier basis

12



introduction

elements corresponding to the lower frequencies by some harmonic ones. With this
on hand, the problem will be solved by applying a generalized Kadec’s 1

4

-Theorem,
see e.g. [81, Corollary 2, p. 196].

An additional result obtained from the control problem is that the velocity admits
L2-traces at the boundary. This cannot be obtained directly from semigroup methods
and often called a hidden regularity property [44, 46, 50]. We will revisit this hidden
regularity property together with additional results later with a di↵erent perspective.
The results regarding the linearized two-tank model are given in Chapter 3.

The next step is to prove the well-posedness of the nonlinear two-tank model.
One of the classical methods in proving the existence of solutions of nonlinear partial
di↵erential equations is to linearize the system by freezing some of the state variables
and then proceed with either a fixed-point argument or an iteration scheme. Instead
of working with the specific two-tank model, we draw our attention to a more general
system that includes the two-tank model. These systems are given by

8
>>>>>>>>><

>>>>>>>>>:

ut(t, x) +A(u(t, x))ux(t, x) = f(u(t, x)), t > 0, 0 < x < 1,

B
0

u(t, 0) = b
0

(p
0

(t), h(t)), t > 0,

B
1

u(t, 1) = b
1

(p
1

(t), h(t)), t > 0,

ḣ(t) = H(h(t), q(t), u(t, 0), u(t, 1)), t > 0,

u(0, x) = u
0

(x), 0 < x < 1,

h(0) = h
0

.

(1.5)

In principle, there are several ways to linearize systems of the form (1.5). The one
we use here is by freezing u and h in A, f and H. More precisely, we consider the
linearized system

8
>>>>>>>>><

>>>>>>>>>:

ut(t, x) +A(v(t, x))ux(t, x) = f(v(t, x)), t > 0, 0 < x < 1,

B
0

u(t, 0) = b
0

(p
0

(t), h(t)), t > 0,

B
1

u(t, 1) = b
1

(p
1

(t), h(t)), t > 0,

ḣ(t) = H(g(t), q(t), v(t, 0), v(t, 1)), t > 0,

u(0, x) = u
0

(x), 0 < x < 1,

h(0) = h
0

.

(1.6)

for given frozen coe�cients v and g. System (1.6) is semi-decoupled in the sense that
u depends in h but h does not depend on u.

The linerization of (1.5) into (1.6) leads us to linear hyperbolic systems with vari-
able coe�cients. To analyze this, we follow the frameworks and methods in Benzoni-
Gavage and Serre [9], Chazarain and Piriou [15], Métivier [55] and Coulombel [17].
Most of the results in this part parallel those in multidimensions given in [9] and
many ideas of the proofs are borrowed from this reference. However, we deviate the
presentation and state further remarks. This is useful not only for the nonlinear
analysis but also in studying a linear hyperbolic system with linear ODE boundary
conditions for which the linearized two-tank model is a particular example. The
thesis will also serve as a venue to realize that the theory originally developed to
treat multidimensional problems simplifies in the case of one space dimension. We
hope that the extra details will be helpful in understanding these problems.

For IBVPs, one needs to determine what are the appropriate boundary conditions.
In the case of hyperbolic equations, because information propagate along character-
istic, care should be taken in imposing boundary conditions in order for the problem
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not to be underdetermined or overdetermined. Let us consider a simple transport
equation moving with unit speed

(
ut(t, x)� ux(t, x) = 0, t > 0, 0 < x < 1,

u(0, x) = u
0

(x), 0 < x < 1.
(1.7)

The characteristics of this equation are the straight lines x + t = constant. Hence,
information move from right to left. This observation tells us that a boundary
condition at x = 1 should be imposed while there is none at x = 0. For (1.7) to be
well-posed, the appropriate boundary condition is given by

u(t, 1) = g(t), t > 0. (1.8)

For diagonal systems, the number of boundary conditions should be equal to the
number of incoming characteristics in that boundary. For systems that are not
diagonal, the Uniform Kreiss-Lopatinskĭı (UKL) condition gives the appropriate type
of boundary conditions. In the case of half-space, the UKL condition implies the
decay at infinity of solutions for linear hyperbolic systems of the form e�tU(x) with
<� > 0, see [15].

We are interested in the well-posedness of the IBVPs with variable coe�cients in
L2. The weak solutions in L2 satisfiy a variational equation that takes the form

(u,⇤w)X = (f, w)X + (g, w)Z , 8 w 2 W. (1.9)

for some spaces X, W , Z and operators ⇤,  . This equation is obtained by multi-
plying the di↵erential equation by appropriate test functions, integrating by parts
and using the boundary and initial conditions. With an abstract a priori estimate,
the variational equation (1.9) has a solution u 2 X. Its proof is based on the Hahn-
Banach and Riesz Representation Theorems. The idea of the proof can be traced
back to the work of Friedrichs [28] for symmetric systems. Therefore, proving an a
priori estimate is the first step in proving the existence of weak solutions.

Strong solutions of the intial-boundary value problems are also introduced. As
with weak solutions, they also belong to L2, however, they are limits of smooth
functions that satisfy a system that is an approximation or regularization of the
original problem. According to its definition, every strong solution is a weak solution.
Strong solutions satisfy an energy estimate which implies the uniqueness of strong
solutions. It will be shown using the so-called weak equals strong argument that every
weak solution is also a strong solution. Consequently, weak solutions are unique.

How does the weak solution satisfy the initial-boundary value problem? To answer
this, we need to consider the space of functions u 2 L2 such Lu := @tu+A@xu 2 L2,
where A is at least Lipschitz. This space is similar to the space {u 2 L2 : div u 2 L2}
used in studying the Navier-Stokes equation. These spaces are called graph spaces.
The usual trace operator inH1 can be extended to define a generalized trace operator
for the graph space {u 2 L2 : Lu 2 L2}, but the traces are now in H� 1

2 . To
treat IBVPs, we will also restrict the trace to the edges of the time-space domain.
With these considerations, it will be seen that weak solutions satisfy the partial
di↵erential equation in the sense of distributions and the boundary conditions and
initial condition are satisfied in the sense of (generalized) traces.

The well-posedness of the IBVPs is based on the well-posedness of pure boundary
value problems (BVPs). It will be seen that an IBVP with homogeneous data can
be solved by extending the boundary data by zero and considering the associated
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BVP. For this reason, we need a well-posedness theory for BVPs. A weak solution
for the BVP satisfies a variational equation that has the form (1.9) as well. Thus,
deriving a priori estimates for the BVP is a crucial step.

If the system admits a functional boundary symmetrizer then a suitable a priori es-
timate can be shown. Symmetrizable systems with dissipative boundary conditions
have a natural functional boundary symmetrizer. There are also systems which ad-
mit functional boundary symmetrizers without the dissipativity condition. This was
initiated by Kreiss [45] for the case of constant coe�cients and then later for vari-
able coe�cients in [15]. The construction of the boundary symmetrizers is based on
Kreiss symmetrizers. With the help of the UKL condition, they can be first defined
locally. In the systems that we considered, the local symmetrizers can be taken in
diagonal form. The local Kreiss symmetrizers serve as building blocks in deriving a
global Kreiss symmetrizer. This is done by homogeneity and compactness arguments.
The passage from global Kreiss symmetrizers to functional boundary symmetrizers
relies on pseudodi↵erential calculus for smooth coe�cients and paradi↵erential calcu-
lus for Lipschitz coe�cients. In particular, a functional boundary symmetizer can be
obtained by symmetrizing the operator having the global Kreiss symmetrizer as its
symbol. A short survey on pseudodi↵erential calculus and paradi↵erential calculus
is provided in Appendix C.

The weak solutions for the IBVPs have L2-traces on the boundary even though
they are only in L2 in the time-space domain. This can be attributed again to
the fact that information propagate along characteristics. To illustrate this, let us
consider the simple system (1.7)�(1.8). The solution of this problem given by the
method of characteristics is

u(t, x) =

(
u
0

(x+ t), if 0 < x < 1, 0 < t < 1� x,

g(t+ x� 1), if 0 < x < 1, 1� x < t.
(1.10)

Suppose that u
0

and g are both L2. Due to the boundary condition at x = 1 it is
clear that u has an L2-trace at this boundary. Likewise, from (1.10) it can be seen
that the profile at the boundary x = 0 is given by the initial data if 0 < t < 1 and by
the boundary data g if t > 1. Hence, u admits an L2-trace at the boundary x = 0 as
well. This resembles the hidden regularity property that we have mentioned earlier
for the linearized two-tank model.

In this work, we are also interested in smooth solutions of the system (1.5). We
will prove well-posedness in the Sobolev space Hm for integers m � 3. Because we
will do this using an iteration scheme through the linearization (1.6), we need to
prove the regularity of the weak solutions for the PDE part. It is not enough to have
smooth boundary and initial data, one also requires compatibility conditions. To
see this, let us again consider the system (1.7)�(1.8). Suppose that the boundary
data g and the initial data u

0

are both continuous. The the solution u, given by
(1.10), is continuous on (0,1) ⇥ (0, 1) except possibly at those points on the line
x+t = 1. This line is the characteristic emanating at the boundary x = 1. To have a
continuous solution, g and u

0

must satisfy the compatibility condition g(0) = u
0

(1).
In order to have more regularity, one needs more regularity on u

0

and g and higher
order compatibility conditions.

The regularity theorems for the IBVPs are based on Hm for integers m � 3 in
the case of variable coe�cients and for integers m � 1 in the constant coe�cient
case. Again, these are obtained using a priori estimates in Sobolev spaces. We
follow the derivations in [9] and [55] with some modifications. As in the L2 case,
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the regularity of the solutions at the boundary will be inherited from the regularity
of the boundary and initial data. Regularity theorems for hyperbolic systems with
smooth coe�cients can be found in the paper of Rauch and Massey [64].

Before proceeding with the nonlinear system (1.5), we prove the well-posedness of
the linear hyperbolic system with variable coe�cients coupled with linear ordinary
di↵erential equations at the boundary

8
>>>>>>>>><

>>>>>>>>>:

(@t +A(v(t, x))@x +R(t, x))u(t, x) = f(t, x), 0 < t < T, 0 < x < 1,

B
0

u(t, 0) = g
0

(t) +Q
0

(t)h(t), 0 < t < T,

B
1

u(t, 1) = g
1

(t) +Q
1

(t)h(t), 0 < t < T,

h0(t) = H(t)h(t) +G
0

(t)u(t, 0) +G
1

(t)u(t, 1) + S(t), 0 < t < T,

u(0, x) = u
0

(x), 0 < x < 1,

h(0) = h
0

(1.11)

The usual energy estimates imply well-posedness is used to prove well-posedness in
L2 of this system. It will be shown that u satisfies a hidden regularity property, i.e.,
it has L2-trace at the boundary. This property implies that the ODE component h
does not lie only in L2 but in H1.

In the constant coe�cient case, this well-posedness result implies that the weak
solution generates a C

0

-semigroup. As a result, the weak solution is the same as the
solution given by the semigroup approach. In particular, we obtain the additional
regularity of u at the boundary and the regularity of h. Let us have a detour with the
linearized two-tank model. The linearized two-tank model is a particular example
of the constant coe�cient case of (1.11). Thus, the remarks stated above can be
applied. Both the cross-section and the velocity have L2-traces at the boundary and
the state corresponding to the level heights lie in H1. This is an improvement of
the result that we mentioned earlier since by semigroup methods we only knew the
boundary trace for the velocity.

After dealing with the linear systems in Chapter 4, the nonlinear system (1.5) will
be discussed in Chapter 5. One way to prove the well-posedness of (1.5) is to prove
that the map (v, g) 7! (u, h) on a suitable function space, where (u, h) is the solution
of (1.6) for a given pair of frozen coe�cients (v, g), has a fixed point. However, this
task is di�cult to handle. Instead of using a fixed point theorem, we shall instead
utilize the contraction mapping principle, that is, using a Picard iteration scheme.
We start with an admissible initial pair of frozen coe�cients (u0, h0) and define
(u1, h1) to be the solution of the system (1.6) where (v, g) is replaced by (u0, h0).
Then we define (u2, h2) to be the solution of (1.6) with the pair of frozen coe�cients
(u1, h1). We continue this procedure to obtain a sequence ((uj , hj))j�1

and we hope
that this sequence converges in some sense and that the limit satisfies the system
(1.5).

The Picard iteration described above has a disadvantage, we need the time of
existence to be su�ciently small due to some absorption arguments used in deriving
energy estimates. This means that we are only able to prove a local-in-time well
posedness of (1.5). But this is the best we can expect for quasilinear systems due to
the nonlinearity. Smooth solutions may blow-up in finite time or break-up creating
shocks.
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Let us illustrate the discontinuities developing due to nonlinearity. We start with
the simple ODE with quadratic nonlinearity

(
ẇ(t) + w(t)2 = 0, t > 0,

w(0) = w
0

,
(1.12)

where w
0

2 R. The solution of (1.12) is given by w(t) = w
0

(w
0

t + 1)�1. Note that
the steady state w = 0 of (1.12) is unstable. Indeed, if w

0

< 0 then |w(t)| ! 1 as
t ! �1/w

0

. Therefore, no matter how the initial data is close to the steady state, if
it is negative then the solution will blow-up in finite time.

Our next example is the well-known (inviscid) Burgers’ equation

(
ut(t, x) + u(t, x)ux(t, x) = 0, t > 0, �1 < x < 1,

u(0) = u
0

.
(1.13)

The characteristics for (1.13) are solutions of the di↵erential equation

x0(t) = u(t, x(t)), x(0) = x
0

. (1.14)

Along characteristics we have

d

dt
u(t, x(t)) = ut(t, x(t)) + ux(t, x(t))x

0(t) = 0,

which implies that u is constant along characteristics. Thus x0(t) = constant and
therefore the characteristics are the straight lines x = x

0

+ u
0

(x
0

)t.
Consider the nonlinear equation

F (x
0

; t, x) = x� x
0

� u
0

(x
0

)t = 0 (1.15)

in the unknown x
0

for fixed (t, x). Suppose that u
0

is continuously di↵erentiable.
Note that @x0F (x

0

; t, x) = �1 � u0
0

(x
0

)t. When t is small enough so that �1 �
u0
0

(x
0

)t 6= 0, we can use the implicit function theorem to conclude that the equation
(1.15) is solvable for x

0

= x
0

(t, x) given (t, x). Thus tracking back the characteristic
passing from (t, x) through its intersection at x

0

on the x-axis we conclude that
u(t, x) = u

0

(x
0

(t, x)).
If u0

0

� 0 then (1.15) is always uniquely solvable and we have a global-in-time
smooth solution provided that u

0

is smooth. The problem occurs if u0
0

(x
0

) < 0 at
some point x

0

and then the system (1.15) is not solvable anymore. In this case the
state u will be multivalued and the first time where such situation occurs the state u
will have an infinite slope. This phenomenon is called shock formation. Suppose that
u is a smooth solution, say continuously twice di↵erentiable, of the Burgers’ equation
and let w(t) = ux(t, x(t)) where x satisfies (1.14). Taking the derivative of w and
using uxt+uuxx+u2x = 0, which is obtained by di↵erentiating the Burgers’ equation
with respect to x, it can be seen that w satisfies (1.12) with w

0

= u0
0

(x
0

). According
to our preceding discussions, w blows-up in finite time if u0(x

0

) < 0. Therefore if
the initial data is decreasing at some point x

0

then the slope of the solution at some
point increases without bound in finite time.

Knowing that in general a global-in-time solution does not necessarily exist for
(1.5), what phenomena occur if the maximal time of smooth solution is finite? The
answer is already given by the two illustrations provided above. If the maximal time
of existence is finite then the state leaves every compact subset of the hyperbolicity
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region or its first order derivatives blow-up. The local-in-time existence and blow-up
criterion for our systems will be shown in Chapter 5.

It is known that the presence of a linear damping term can prevent shock formation
at least for small and smooth initial data, see Dafermos [21]. Let us illustrate this
in the case where there is damping for (1.12), that is,

(
ẇ(t) + w(t)2 + w(t) = 0, t > 0,

w(0) = w
0

,
(1.16)

The equation (1.16) has two steady states w = 0 and w = �1. A standard phase
plane analysis shows that w = �1 is unstable while w = 0 is stable. If w

0

> �1 then
(1.16) has a global solution w converging to the stable steady state exponentially.

Consider the Burgers’ equation with damping
(

ut(t, x) + u(t, x)ux(t, x) + u(t, x) = 0, t > 0, �1 < x < 1
u(0) = u

0

.
(1.17)

Define w(t) = ux(t, x(t)), where x(t) are the characteristics of the Burgers’ equation
with no damping passing through (0, x

0

). Then a straightforward computation shows
that w satisfies (1.16). Hence, if u0 � �1 then we have a global solution for (1.17).
Now, if we multiply the partial di↵erential equation in (1.17) by u, integrate by parts
and assume that the solutions decay at infinity, we obtain

1

2

d

dt
ku(t)k2L2

(R) + ku(t)k2L2
(R) = 0, t > 0.

Thus ku(t)kL2
(R) = e�tku

0

kL2
(R) so that the solution decays to the steady state u = 0

of (1.17) exponentially fast
These two examples show that smooth data close to the steady state together with

damping imply global existence of solutions and its convergence to the steady state.
We will use these ideas to prove the same results for the nonlinear two-tank model.

Necessary and su�cient conditions for the existence of global solutions both for
general and physical quasilinear hyperbolic systems have been developed in the past
years, see [18, 33, 47, 49, 68]. However, there are only a few works dealing with
bounded domains. In one-space dimension, Ruan et al. [68] investigated the global
existence of smooth solutions of a network of 2⇥2 systems of balance laws in bounded
intervals under a dissipative condition on the boundary conditions. This condition
is similar to what has been considered in [47, Chapter 5]. However, the dissipative
condition is not satisfied for instance by the isentropic Euler system, systems with
relaxation, for boundary conditions arising in blood flow models, nor by the two-tank
model.

In this thesis, two main tools were used to prove the global existence of solutions,
namely, the entropy and energy methods. Any smooth solution u of a system of
conservation laws satisfies an additional conservation law of the form ⌘(u)t+q(u)x =
0, called companion laws. The function ⌘ is called an entropy and the function q is
the corresponding entropy flux. For the isothermal Euler equations this additional
conservation law is the conservation of mechanical energy. In general, one cannot
guarantee the existence of nontrivial companion laws.

The energy method was used by Nishida [59] and Kawashima [42] for hyper-
bolic and hyperbolic-parabolic equations. This was then used by several authors for
isothermal Euler equations [18], partially dissipative systems with convex entropies
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[7, 33, 80], relaxation models with nonconvex flux [52], systems arising in blood
flow models [68] and others. The main idea is to define an energy functional and to
derive an estimate for this functional. Lower order estimates can be obtained using
the relative entropy method [33]. The relative entropy associated with a strictly
convex entropy, loosely speaking, can serve as a distance between solutions, e.g.,
classical, strong, weak, of conservation laws or balance laws, cf. [21]. For higher
order estimates involving terms that do not have a dissipative term one useful crite-
rion, at least for Cauchy problems, is the Shizuta-Kawashima condition which was
formulated in [72]. However on a bounded interval, a di↵erent method was used in
[68], namely the construction of entropy-entropy flux pairs for the Riemann invari-
ants in deriving higher order estimates. In the case of bounded domains, boundary
terms arise and this causes some di�culty in obtaining the necessary estimates. The
dissipative condition plays a crucial role in the proof of the estimates in [68]. Most
of the existence results use the smallness assumptions on the initial data. Even with
this restriction the proofs are not trivial.

Here, we will also use the relative entropy method to obtain lower order estimates
for the energy functionals and use appropriate entropy-entropy flux pairs for higher
order estimates. The main idea is to construct entropy-entropy flux pairs (⌘, q) such
that

⌘t + qx = M

for some source term M which is, roughly speaking, dominated by the damping term,
which is the velocity in the two-tank model, or its derivatives. We will not assume
the dissipative condition as in [68] but we use the special structure of the boundary
conditions of the two-tank model.

The energy estimates imply immediately that the global solution of the nonlinear
two-tank model with smooth and small data converges to the steady with respect
to the norm of H1 ⇥ H1 ⇥ R2. The rate of convergence is exponential if one uses
the norm of L2 ⇥ L2 ⇥ R2. To prove this we use some interpolation estimates, a
Growall-type lemma and the linear stability of Chapter 3.

1.1 notations

The sets of positive integers, integers, real numbers and complex numbers are denoted
by N, Z, R and C, respectively. We denote by N

0

= N[{0} the set of natural numbers.
The same notation | · | for the Euclidean norms in R and C is used throughout the
text. Given z 2 C, the real and imaginary parts of z are denoted by <z and =z,
respectively.

Let O ⇢ Rd, d 2 N, be an open set and k 2 N
0

. The space of functions defined
in O that are continuously di↵erentiable up to order k is denoted by C k(O). We
let C (O) = C 0(O) and C1(O) =

T
k2N0

C k(O). The elements in C1(O) having
compact support in O is denoted by D(O). The subset of C1(O) that has bounded
derivatives of any order is denoted by C1

b (O). Given a subset S ⇢ Rd with nonempty
interior, we define D(S) = {u|S : u 2 D(Rd)}.

The Schwartz class of rapidly decreasing functions is denoted by S (Rd). The no-
tations D(O)0, S 0(Rd), E 0(Rd) represent the space of distributions in O, tempered
distributions and distributions with compact support, respectively. The usual nota-
tions for the Sobolev spaces W s,p(O), Hs(O) = W s,2(O) and Lp(O) = W 0,p(O) for
s 2 R and 1  p  1 are used. The product of m copies of W s,p(O) is denoted by
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W s,p(O)m. However, if the number of components is clear in the context, we will
remove the superscript m.

Given an open set O ⇢ R2 = {(t, x) : t, x 2 R}, � � 1 and a nonnegative integer m,
the space Hm

� (O) is defined to be the usual Sobolev space with �-depending norm

kukHm
� (O)

:=
X

|↵|m

�m�|↵|k@↵ukL2
(O)

< 1.

It follows from the definition that

�m�kkwkHk  kwkHm
�
, 0  k  m, w 2 Hm. (1.1.18)

It can be shown that there exist constants 0 < c < C independent of both u and
� such that

c
X

|↵|m

�m�|↵|ke��t@↵ukL2
(O)

 ke��tukHm
� (O)

 C
X

|↵|m

�m�|↵|ke��t@↵ukL2
(O)

whenever e��tu 2 Hm(O). The norm kukHm
� (R2

)

is equivalent to kOp(�m,�)ukL2
(R2

)

,

where Op(�m,�) is the pseudo-di↵erential operator with symbol �m,�(�, ⇠) = (�2 +
�2 + ⇠2)m/2, see Appendix C.

Let O ⇢ Rd be open and let CHm([0, T ] ⇥ O) =
Tm

p=0

Cp([0, T ];Hm�p(O)) for
m 2 N

0

be equipped with the norm

kukCHm
([0,T ]⇥O)

=

✓ mX

j=0

sup
⌧2[0,T ]

k@jt u(⌧)k2Hm�j
(O)

◆ 1
2

.

We write CL2([0, T ]⇥O) instead of CH0([0, T ]⇥O). For each m 2 N
0

, CHm([0, T ]⇥
O) equipped with the norm k · kCHm

([0,T ]⇥O)

is a Banach space.
If X is a Hilbert space consisting of functions and � 2 R, we define the weighted

space e�tX = {e�tu : u 2 X}. With the inner product (w, z)e�tX = (e��tw, e��tz)X ,
w, z 2 e�tX, the space e�tX becomes a Hilbert space.
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2
A MODEL OF FLOW IN AN ELAST IC TUBE

The goal of this chapter is to derive a model for the flow of an incompressible fluid
contained in an elastic tube. A tank or basin is connected at each end of the tube,
see Figure 2.1. All throughout, the variables t and x designate for time and location,
respectively. Let A(t, x) be the cross section of a circular elastic tube of length ` that
is filled with incompressible fluid of constant density ⇢. The reference cross section
at reference pressure p

0

is denoted by A
0

= ⇡r2
0

. Denote by u(t, x) the velocity of the
fluid, and a positive velocity means flow in the positive x direction. In modeling the
flow of the fluid in the tube, we apply the law of conservation of mass and Newton’s
second law. In the derivation, it is assumed that the fluid is a continuum, that is,
physical properties associated with the fluid such as density, pressure and velocity
are defined at every point on a given domain. This hypothesis idealizes the property
that fluids are composed of discrete molecules.

p
0

u -
A ?

6

h
0

pf0

h`

pf`

Figure 2.1.: An elastic tube connected to two tanks.

2.1 euler’s continuity equation

First we derive the continuity equation from the law of conservation of mass. The left
end of the tube is located at the origin x = 0. The mass of the fluid in [x

1

, x
2

] ⇢ (0, `)
at time t is given by

M(t) =

Z x2

x1

⇢A(t, x) dx.

At time t, the flux of mass at position x is ⇢A(t, x)u(t, x). The rate of change of
mass in [x

1

, x
2

] is given by

M 0(t) =
d

dt

Z x2

x1

⇢A(t, x) dx.

However, this change corresponds to fluid flow across the boundary. Hence the rate
of change is the di↵erence of the fluxes at x

1

and x
2

, that is,

d

dt

Z x2

x1

⇢A(t, x) dx = ⇢A(t, x
1

)u(t, x
1

)� ⇢A(t, x
2

)u(t, x
2

).
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a model of flow in an elastic tube

Integrating over a time interval [t
1

, t
2

] tells us that the mass within [x
1

, x
2

] at time
t
2

is equal to the mass within [x
1

, x
2

] at the previous time t
1

plus the integrated
fluxes of mass across the boundaries x

1

and x
2

, that is,
Z x2

x1

⇢A(t
2

, x) dx =

Z x2

x1

⇢A(t
1

, x) dx+

Z t2

t1

⇢A(t, x
1

)u(t, x
1

) dt

�
Z t2

t1

⇢A(t, x
2

)u(t, x
2

) dt.

This is the integral form of the law of conservation of mass. Cancelling ⇢ and
assuming that A and u are smooth, we can rewrite the integral form as

Z x2

x1

Z t2

t1

@tA(t, x) dt dx =

Z t2

t1

Z x2

x1

@x(A(t, x)u(t, x)) dx dt.

Assume that the functions are well-behaved so that we can reverse the order of
the integration in the right hand side. As t

1

, t
2

, x
1

, x
2

are arbitrary, this gives the
di↵erential form of the conservation law

@tA(t, x) + @x(A(t, x)u(t, x)) = 0, t > 0, 0 < x < `. (2.1.1)

also known as Euler’s continuity equation.

2.2 law of balance of momentum

Let x(t) denote the position of a fluid particle at time t so that the velocity is given
by

u(t, x(t)) = x0(t).

Applying the chain rule, the acceleration at time t of the fluid particle is therefore
given by

a(t) =
d

dt
u(t, x(t)) = @tu(t, x(t)) + @xu(t, x(t))x

0(t) = @tu+ u@xu = Du.

Here D = @t + u · @x denotes the material derivative.
To use Newton’s second law, we need to consider internal and external forces acting

on the fluid. The first one is stress (force per unit area). This is due to internal
forces that act on a part of the fluid across its surface by other parts of the fluid.
Assuming that the fluid inside the tube is ideal, there is a function p(t, x) called the
pressure such that if S is a surface in the fluid then the force across S per unit area
is given by p(t, x)⌫, where ⌫ is the unit vector normal to S. Thus, forces only act
orthogonally to the surface and hence tangential forces are neglected. Intuitively,
this means that rotation in the fluid is not taken into account. The stress acting on
[x

1

, x
2

] due to pressure at time t is given by

Fs = p(t, x
1

)� p(t, x
2

) = �
Z x2

x1

@xp(t, x) dx.

External forces may include gravity and frictional forces. If b(t, x) denotes the
given body forces per unit mass and F (t, x) is the friction (force per unit volume)
then the net external force acting on [x

1

, x
2

] is

Fe =

Z x2

x1

⇢b(t, x) + F (t, x) dx.
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2.3 frictional force

The net force per unit area is therefore

F
net

= Fs + Fe =

Z x2

x1

(�@xp(t, x) + ⇢b(t, x) + F (t, x)) dx.

Thus, on any part of the fluid, the net force per unit volume is �@xp + ⇢b + F .
According to Newton’s second law, the net force per unit volume is equal to the
product of the density of the fluid and its acceleration and so

⇢ (@tu+ u@xu) = �@xp+ ⇢b+ F. (2.2.1)

This is the di↵erential form of the law of balance of momentum.

2.3 frictional force

The frictional force is modeled by Hagen-Poiseuille’s law for stationary laminar flow.
Loosely speaking, this law states that there is a decrease in pressure due to friction.
Using the model in Rath and Teipel [63] we have

F (t, x) = �8⇡µ
0

A
0

u(t, x)

where µ
0

is the viscosity of the fluid. With this model, we can see from (2.2.1) that
the acceleration decreases if µ

0

> 0. For example, if the fluid is flowing in the positive
direction then F (t, x) < 0 and so the acceleration is decreased. We can think of F
as dissipation.

2.4 equation of state

If the tube rests on solid ground, then the force due to gravity is cancelled by
the opposing force, the ground reaction force. This means that b = 0. From the
continuity equation (2.1.1) and the balance equation (2.2.1) we have the system

8
><

>:

@tA+ @x(Au) = 0

@tu+ u@xu+
1

⇢
@xp = �8⇡µ

0

⇢A
0

u
(2.4.1)

In (2.4.1), there are three unknown variables u, p and A. To close the system, we
need an additional equation. This will be done by writing the pressure as a function
of the cross sectional area, that is, p = p(A). Such equation is called an equation of
state (EOS).

To obtain the equation of the state we follow [63]. The two main ingredients of
the derivation of the EOS are Laplace’s law of cylinders and Hooke’s law. Due to the
di↵erence of pressures inside and outside of the tube, the wall of the tube is stretched
or compressed. If the pressure inside the tube is greater than the one outside the
tube, then the tube’s wall is stretched, otherwise it is compressed. We assume that
the deformed tube also has circular cross section. Laplace’s law of cylinders relates
this di↵erence of pressure to the radius and thickness of the tube material. The
larger the di↵erence of the inner pressure and from the outside pressure the larger
the tension is. If the inner radius is large then the tension is higher, however, if the
tube is thick then the tension is lower. Taking these considerations into account, if
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a model of flow in an elastic tube

�⌧ and s denote the tension in the wall and the thickness of the tube, respectively,
then

�⌧ (t, x) =
r
0

�p(t, x)

s
=

r
0

(p(t, x)� p
0

)

s
. (2.4.2)

To obtain another equation involving the tension, we can view the tube as a spring
and apply Hooke’s law. This law states that the extension or strain of a spring is
proportional to the load applied to it. In this case, the strain is the ratio of the
change in radii to the reference radius r

0

. Hence

�⌧ (t, x) = E
�r(t, x)

r
0

= E
r(t, x)� r

0

r
0

. (2.4.3)

where E is the proportionality constant, called the Young’s modulus of the tube
material. Suppose that the material is homogeneous so that E is constant. Solving
for r(t, x) in (2.4.3) and using the formula (2.4.2) we have

r(t, x) =
r
0

E
�⌧ (t, x) + r

0

= r
0

⇣
1 +

r
0

Es
(p(t, x)� p

0

)
⌘
.

Therefore the tube’s wall is stretched if p > p
0

while it is compressed if p < p
0

.
Because the cross section remains circular, we have

A(t, x) = ⇡r(t, x)2 = A
0

⇣
1 +

r
0

Es
(p(t, x)� p

0

)
⌘
2

. (2.4.4)

Assuming that A(t, x) > 0, solving for the pressure in (2.4.4) gives us an EOS

p(t, x) =
sE

r
0

0

@
s

A(t, x)

A
0

� 1

1

A+ p
0

. (2.4.5)

Using the equation of state (2.4.5) in (2.4.1) we obtain the system

8
><

>:

@tA+ @x(Au) = 0

@tu+ u@xu+
sE

⇢r
0

p
A

0

@x(A(t, x)
1
2 ) +

8⇡µ
0

⇢A
0

u = 0.
(2.4.6)

2.5 conservative and nonconservative forms

The system (2.4.6) is called a hyperbolic system of partial di↵erential equations. It
can be written in the form Ut +F (U)x = G(U) where U = (A, u) is the state vector,

F (U) =

0

B@
Au

1

2
u2 +

sE

⇢r
0

✓
A(t, x)

A
0

◆ 1
2

1

CA

and

G(U) =

0

@
0

�8⇡µ
0

⇢A
0

u

1

A .

Such systems are called balance laws and the terms F and G are called the flux
and the source term, respectively. If there is no source term, that is, G = 0, then
they are called conservation laws. The equation Ut + F (U)x = G(U) is said to
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2.6 initial and boundary conditions

be in conservative form while the form Ut + FN (U)Ux = G(U) is said to be in
nonconservative form. Assuming that the state vector U and the flux F are smooth,
every system in conservative form can be written in nonconservative form by setting
FN = DF where DF is the Jacobian of F . In the case of (2.4.6), it can be written
in nonconservative form with

DF (U) =

0

B@
u A

sE

2⇢r
0

p
A

0

A
u

1

CA

For smooth solutions with smooth fluxes the conservative and nonconservative forms
are equivalent.

The eigenvalues of the Jacobian are given by

�±(A, u) = u±
 

sE
p
A

2⇢r
0

p
A

0

! 1
2

.

The speed of propagation in the nonlinear model is then given by

a =

✓
sEr

2⇢r2
0

◆ 1
2

,

as in [63]. For small disturbances, r ⇡ r
0

so that the speed of sound of the linearized

system is a ⇡
�

sE
2⇢r0

�
1/2

. In [63] it is approximately equal to 12 meters per second.

2.6 initial and boundary conditions

In order for the system (2.4.6) to be well-posed, it should be supplied by initial and
boundary conditions. Denote by u0 and A0 the initial velocity of the fluid inside the
tube and the profile of the tube, respectively. If A > 0 then �� < 0 < �

+

. Thus,
one wave propagates from left to right and one in the opposite direction. Therefore
there should be two boundary conditions, one at the left end and one at the right
end. For example, when the tube lies on a table and the ends are closed by rigid
lids, one could consider Dirichlet conditions for the velocity and cross section at both
ends, namely,

u(t, 0) = u(t, `) = 0,

A(t, 0) = A(t, `) = A
0

.

This seems to be an overdetermination. Introducing the characteristic variables
w = �u + 4A1/4 and z = u + 4A1/4, where  = (sE/2⇢

0

p
A

0

)1/2 the system
(2.4.6) can be diagonalized. Assigning both u and A to each endpoints will give us
values for w and z at each of the endpoints, which clearly is an overdetermination.
Looking for net flow through the tube one would leave the ends open, but one could
fix the cross section, for example, A(t, 0) = A(t, `) = A

0

. Or one could let the ends
open and elastic, but enforce flow, for example u(t, 0) = u

0

(t) and u(t, `) = u`(t).
In [75], boundary conditions are derived from the in-stationary Bernoulli equation.
The experimental setup in [63] seems to leave the ends open and elastic but have
conditions on p(t, 0) and p(t, `), which is a function of A(t, 0) and A(t, `), respectively.
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a model of flow in an elastic tube

In the configuration of Figure 2.1, the ends of the tube are at the bottom of basins
that contain water, so there is hydrostatic pressure. The pressure at the left end is
then given by

p(t, 0) = p
0

+ pf0(t) + ⇢gh
0

(t),

where pf0 is a control pressure applied to the surface of the water in the left tank, h
0

(t)
is the level height of water in the left tank and the term ⇢gh

0

(t) is the hydrostatic
pressure. Similarly, the pressure at the right end is given by

p(t, `) = p
0

+ pf`(t) + ⇢gh`(t),

where pf` and h are the control pressure and level height of the right tank. Using
the equation of state (2.4.5) we arrive at the following boundary conditions for the
cross section at the left and right ends of the tube

A(t, 0) = A
0

⇣
1 +

r
0

sE
(⇢gh

0

(t) + pf0(t))
⌘
2

, (2.6.1)

A(t, `) = A
0

⇣
1 +

r
0

sE
(⇢gh`(t) + pf (t))

⌘
2

. (2.6.2)

These boundary conditions imply that the cross section is not fixed at the ends.
The rate of change of the level height of the fluid in the tank should be equal to

the flux at the boundary. Thus the rate of change for the level height h` is given by

d

dt
(ATh`(t)) = A(t, `)u(t, `), (2.6.3)

where AT is the cross section of the containers. Analogously, the evolution of the
level height of water in the left tank is given by

d

dt
(ATh0(t)) = �A(t, 0)u(t, 0). (2.6.4)

The initial level heights are denoted by h
0

(0) = h0
0

and h`(0) = h0` .
From the nonconservative form of (2.4.6) together with the boundary conditions

(2.6.1)�(2.6.4), we have the coupled system of hyperbolic PDEs and nonlinear ODEs

8
>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>:

@tA(t, x) + u(t, x)@xA(t, x) +A(t, x)@xu(t, x) = 0

@tu(t, x) + u(t, x)@xu(t, x) +
sE

2⇢r
0

(A
0

A(t, x))�
1
2@xA(t, x) +

8⇡µ
0

⇢A
0

u(t, x) = 0

h0
0

(t) = � 1

AT
A(t, 0)u(t, 0)

h0`(t) =
1

AT
A(t, `)u(t, `)

A(t, 0) = A
0

⇣
1 +

r
0

sE
(⇢gh

0

(t) + pf0(t))
⌘
2

A(t, `) = A
0

⇣
1 +

r
0

sE
(⇢gh`(t) + pf`(t))

⌘
2

A(0, x) = A0(x), u(0, x) = u0(x)

h
0

(0) = h0
0

, h`(0) = h0` .

(2.6.5)

for t > 0 and 0 < x < `.
We can think of the tanks as a source term at the boundary, but this source

term depends on the state. The di↵erential equations for h
0

and h` in (2.6.5) can
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2.6 initial and boundary conditions

be integrated and substituted into the boundary conditions for A to obtain the
nonlocal-in-time boundary conditions

A(t, 0) = A
0

✓
1� r

0

⇢g

sEAT

Z t

0

A(s, 0)u(s, 0) ds+
r
0

sE
pf0(t)

◆
2

A(t, `) = A
0

✓
1 +

r
0

⇢g

sEAT

Z t

0

A(s, `)u(s, `) ds+
r
0

sE
pf`(t)

◆
2

.

However, we will not dwell on this perspective but instead we will study the PDE-
ODE system (2.6.5).
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Part I

L INEAR SYSTEMS





3
STAB IL ITY AND CONTROLLAB IL ITY OF THE

L INEARIZED MODEL

Before dealing with the nonlinear system (2.6.5), its linearization about a steady state
will be studied in the present chapter. The well-posedness of the linearized model is
established in Section 3.2 using C

0

-semigroups. For convenience, a short summary of
results regarding C

0

-semigroups is provided in Appendix A. The connection between
the semigroup solution and the linearized system will be discussed in Section 3.3.
In Section 3.4, the spectrum of the generator is determined and in particular it is
shown that the generator is Riesz spectral, that is, it has a Riesz basis consisting of
generalized eigenvectors. A boundary control system is considered in Section 3.5 and
it is shown using tools in Fourier analysis that the linearized model is boundary exact
controllable for su�ciently large times. For single input controls, a minimal time of
controllability will be given as well. As for the wave equation with either Dirichlet
or Neumann boundary control, the control can be characterize by minimizing a cost
functional with PDE constraints. Finally, numerical solutions of the linear model
are computed using Legendre tau approximations.

3.1 linearization

Let us determine the equilibria of the system (2.6.5) when pf0 and pf` do not depend
on t. Setting the derivative with respect to time to zero in (2.6.5), the first equation
will give @(Au)/@x = 0 and so Au is constant on [0, `]. However, the third and fourth
equations will give A(t, 0)u(t, 0) = A(t, `)u(t, `) = 0 and assuming that A remains
positive for all t � 0 it follows that u must be identically zero on [0, `]. Using this
information in the second equation we obtain that @A/@x = 0 and so A must be
constant on the domain, say A = Ae. Because dh

0

/ dt = 0 and dh`/ dt = 0 then
h
0

= h
0e and h` = h`e for some constants h

0e and h`e. Thus we have

Ae = A
0

⇣
1 +

r
0

sE
(⇢gh

0e + pf0)
⌘
2

= A
0

⇣
1 +

r
0

sE
(⇢gh`e + pf`)

⌘
2

.

and it follows that he�h
0e =

1

⇢g (pf0�pf ). We ignore the other possibility h
0e+h`e =

� 1

⇢r0g
(2sE+r

0

pf0+r
0

pf`) since we are interested in the case where the level heights
in the tanks are both positive. If pf0 = pf` then the former equality coincides with
the fact that the level heights in the two tanks must be the same. Note also that this
is true even when the two tanks have di↵erent horizontal cross sections. If V denotes
the volume of fluid in the tube and in the tanks, then V = Ae` + AT (h0e + h`e).
Therefore pf0, pf` and V uniquely determine the equilibrium point. Furthermore, it
is easy to see that we can choose pf0 and pf` such that h

0e and h`e are both positive.
To linearize the above system about the equilibrium point ze = (Ae, ue, (Ae)x, (ue)x,

h
0e, h`e), where ue = (Ae)x = (ue)x = 0, we use Taylor series expansions about the
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stability and controllability of the linearized model

equilibrium ze and neglect the terms of order higher than one. From these equations
we let A = Ae + Ã, u = ũ, h

0

= h
0e + h̃

0

and h` = h`e + h̃`, which are the small
deviations from the equilibrium, to obtain the linearized system

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

@Ã

@t
= �Ae

@ũ

@x
, t > 0, 0 < x < `,

@ũ

@t
= �↵@Ã

@x
� �ũ, t > 0, 0 < x < `,

dh̃
0

dt
= �Ae

AT
ũ(t, 0), t > 0,

dh̃`
dt

=
Ae

AT
ũ(t, `), t > 0,

(3.1.1)

with boundary conditions

Ã(t, 0) = �h̃
0

(t), Ã(t, `) = �h̃`(t), t > 0, (3.1.2)

and initial conditions
(

Ã(0, x) = Ã0(x), ũ(0, x) = ũ0(x), 0  x  `,

h̃
0

(0) = h̃0
0

, h̃`(0) = h̃0`
(3.1.3)

In the above system we used the following notations

↵ =
sE

2⇢r
0

p
A

0

Ae
, � =

8⇡µ

⇢A
0

,

� =
2⇢A

0

gr
0

sE

⇣
1 +

r
0

sE
(⇢gh

0e + pf0)
⌘

=
2⇢A

0

gr
0

sE

⇣
1 +

r
0

sE
(⇢gh`e + pf`)

⌘
,

since, for the linearization, we assume that pf0 and pf` are constants. We remark
that all the parameters r

0

, s, A
0

, Ae, E are positive while µ is nonnegative. As a
result, ↵ > 0 and � � 0. The constants pf0 and pf` can also be chosen to be small,
so that � > 0. The resulting linear system is the coupling of PDEs in one space
dimension with ODEs and sometimes such systems are referred to as hybrid systems.
By di↵erentiation, a second order linear model, which is a wave equation with viscous
damping and Robin boundary conditions, was formulated and discussed by Bredow
[78].

3.2 well-posedness of the linear system

In this section we prove the well-posedness of the linear system (3.1.1)–(3.1.3). For
convenience, we will denote the state variables and the initial conditions for the
linearized system without the tildas. Our approach utilizes the theory of strongly
continuous semigroups. We will recast the system as a di↵erential equation in an
infinite-dimensional state space. Consider the Hilbert space X = L2((0, `),C)2 ⇥C2

equipped with the inner product

h('
1

, 
1

, a
1

, b
1

), ('
2

, 
2

, a
2

, b
2

)iX =
1

Ae
h'

1

,'
2

iL2 +
1

↵
h 

1

, 
2

iL2 +
�AT

Ae
(a

1

a
2

+ b
1

b
2

).

Notice that the norm induced by the above inner product is equivalent to the usual
product norm of X .
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3.2 well-posedness of the linear system

Define the linear operator A : D(A) ! X with domain D(A) = {(A, u, h
0

, h`) 2
X : A, u 2 H1(0, `), A(0) = �h

0

, A(`) = �h`} by

A

0

BB@

A
u
h
0

h`

1

CCA =

0

BB@

�Aeux
�↵Ax � �u
� Ae

AT
u(0)

Ae
AT

u(`)

1

CCA .

Observe that the last two components of the state appear only in the domain of A.
The coupled system (3.1.1) can now be phrased as an abstract Cauchy problem

(ACP)

8
<

:

d

dt
(A, u, h

0

, h`)(t) = A(A, u, h
0

, h`)(t), t > 0,

(A, u, h
0

, h`)(0) = (A0, u0, h0
0

, h0` )

on the state space X .
There are several ways to prove the well-posedness of (ACP). One possible ap-

proach is to split the PDE and the ODE. The PDE can be considered as a port-
Hamiltonian system and hence it is well-posed [40, Chapter 13], and the ODE,
being finite-dimensional, is also well-posed. Then one shows that the feedback inter-
connection of the two systems is well-posed [73, Section 7.2].

However, the approach presented here is based on the following lemma. It is a
recap of the proof of Theorem 3 in [22]. In the following, X 0 denotes the dual space
of X and L(X,Y ) is the space of bounded linear operators from X to Y .

Lemma 3.2.1 (Lax-Milgram-Fredholm). Let V and H be Hilbert spaces such that
the embedding V ⇢ H is compact and dense. Suppose that a

1

: V ⇥ V ! C and
a
2

: H ⇥H ! C are two bounded sesquilinear forms such that a
1

is V -coercive and
F : V ! C is a continuous conjugate linear form. The equation

a
1

(v, u) + a
2

(v, u) = F (u), 8v 2 V (3.2.1)

has either a unique solution u 2 V for all F 2 V 0 or has a nontrivial solution for
F = 0.

Proof. Since a
1

is bounded, the operator T : V ! V 0 defined by hT', iV 0⇥V =
a
1

(', ) for all ', 2 V is bounded. Furthermore, by the Lax-Milgram Lemma we
have T�1 2 L(V 0, V ). Define S : H ! V 0 by hS', iV 0⇥V = a

2

(', ). Since for each
' 2 H

kS'kV 0 = sup
k kV =1

|hS', iV 0⇥V |  sup
k kV =1

Ck'kHk kH  C̃k'kH

it holds that S 2 L(H,V 0) and in particular S 2 L(V, V 0) is compact. The equation
(3.2.1) is equivalent to (1 + T�1S)v = T�1F in V . Since T�1S is compact the
Fredholm alternative implies that either �1 2 ⇢(T�1S) or �1 2 �p(T�1S), where
⇢(A) and �p(A) denote the resolvent set and point spectrum of a closed operator
A.

Theorem 3.2.2. The operator A generates a strongly continuous semigroup of con-
tractions on X , and in particular, for every (A0, u0, h0

0

, h0` ) 2 D(A) there exist unique
functions A, u 2 C1([0,1);L2(0, `)) and h

0

, h` 2 C1[0,1) such that (ACP) is satis-
fied.

33



stability and controllability of the linearized model

Proof. We will use the Lumer-Phillips Theorem in reflexive Banach spaces, see The-
orem A.1.1. Integrating by parts and using the boundary conditions we have

hA(A, u, h
0

, h`), (A, u, h0, h`)iX = � �

↵
kuk2L2 + 2i= hu,AxiL2

for all (A, u, h
0

, h) 2 D(A). Taking the real part shows that A is dissipative. Next
we are going to show the range condition. Fix � > 0 and (B, v, g

0

, g`) 2 X and define
a
1

: H1(0, `)⇥H1(0, `) ! C, a
2

: L2(0, `)⇥ L2(0, `) ! C and F : H1(0, `) ! C by

a
1

(', ) =
↵�Ae

AT (�+ �)
h', iH1 + �'(0) (0) + �'(`) (`)

a
2

(', ) =
�

AT

✓
�� ↵Ae

�+ �

◆
h', iL2

F ( ) =
�

AT

Z `

0

B(x) (x) dx+
�Ae

AT (�+ �)

Z `

0

v(x) x(x) dx

+ �g
0

 (0) + �g` (`),

respectively. Note that the sesquilinear forms a
1

, a
2

and the conjugate linear form
F satisfy the conditions of Lemma 3.2.1.

We claim that
(�I �A)(A, u, h

0

, h`) = (B, v, g
0

, g`) (3.2.2)

has a solution (A, u, h
0

, h`) 2 D(A) if and only if there is an A 2 H1(0, `) that
satisfies

a
1

(A, ) + a
2

(A, ) = F ( ), 8 2 H1(0, `). (3.2.3)

Notice that (3.2.2) is the system of equations
8
>>>>><

>>>>>:

�A+Aeux = B

(�+ �)u+ ↵Ax = v

�h
0

+ Ae
AT

u(0) = g
0

�h` � Ae
AT

u(`) = g`.

(3.2.4)

Suppose that (3.2.2), and hence (3.2.4), has a solution (A, u, h
0

, h`) in D(A). Mul-
tiplying the first equation in (3.2.4) by �

AT
 for  2 H1(0, `), integrating by parts,

solving for u in the second equation of (3.2.4) and using the boundary conditions we
obtain (3.2.3).

Conversely, let A 2 H1(0, `) satisfy (3.2.3) for all  2 H1(0, `). Define

u =
1

�+ �
(v � ↵Ax), (3.2.5)

h
0

=
1

�

✓
g
0

� Ae

AT
u(0)

◆
, (3.2.6)

h` =
1

�

✓
g` +

Ae

AT
u(`)

◆
. (3.2.7)

Notice that u solves the second equation of (3.2.4) and (3.2.6) and (3.2.7) are the
third and fourth. From (3.2.3) and (3.2.5) we have

�

AT

Z `

0

(�A(x)�B(x)) (x) dx =
�

AT

Z `

0

Aeu(x) x(x) dx+ (�g
0

� �A(0)) (0)

+ (�g` � �A(`)) (`). (3.2.8)
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3.3 the semigroup solution and the pde

Since the above equation is true for all  2 H1(0, `), it also holds in particular for
all test functions  2 C1

0

(0, `), and so the above equation gives us

Z `

0

(B(x)� �A(x)) (x) dx = �
Z `

0

Aeu(x) x(x) dx, 8 2 C1
0

(0, `),

which implies that B � �A = (Aeu)x or ux = 1

Ae
(B � �A) 2 L2(0, `). As a conse-

quence, u 2 H1(0, `) and the first equation in (3.2.4) holds. It remains to verify the
boundary conditions A(0) = �h

0

and A(`) = �h`. The left hand side of (3.2.8) can
be written as

�

AT

Z `

0

(�A(x)�B(x)) (x) dx = ��Ae

AT

Z `

0

ux(x) (x) dx

=
�Ae

AT
(u(0) (0)� u(`) (`)) +

�Ae

AT

Z `

0

u(x) x(x) dx,

and therefore, upon using (3.2.6), (3.2.7) and (3.2.8) and the fact that � > 0,

(�h
0

�A(0)) (0) + (�h` �A(`)) (`) = 0 (3.2.9)

for all  2 H1(0, `). Choosing appropriate functions  , this equation implies that
A(0) = �h

0

and A(`) = �h`. Therefore (A, u, h
0

, h`) 2 D(A) and (3.2.4) holds.

We prove that the second case in Lemma 3.2.1 does not hold. Suppose that
a
1

(A, ) + a
2

(A, ) = 0 for all  2 H1(0, `). This condition is equivalent to the
system (3.2.2) with (B, v, g

0

, g`) = 0. From the first equation we get A = �Ae
� ux.

The rest of the equations will give us

hA,AiL2 = �Ae

�

Z `

0

ux(x)A(x) dx

= �Ae

�
(u(`)A(`)� u(0)A(0)) +

Ae

�

Z `

0

u(x)Ax(x) dx

= �AT

�
(|A(`)|2 + |A(0)|2)� ↵Ae

�(�+ �)

Z `

0

|Ax(x)|2 dx  0.

Hence A = 0. This proves the range condition and hence completes the proof of the
theorem.

3.3 the semigroup solution and the pde

Let A, u, h
0

and h` be the components of the semigroup solution z(t) = eAtz0 to
the abstract Cauchy problem and let z0 = (A0, u0, h0

0

, h0` ). We are interested how
the semigroup solution z = (A, u, h

0

, h`) satisfies the system of partial di↵erential
equations (3.1.1)�(3.1.3). We will follow the discussion in Liu and Zheng [53]. First,
if A0, u0 2 H1(0, `) and h0

0

, h0` 2 C satisfy the compatibility conditions A0(0) = �h0
0

and A0(`) = �h0` then Theorem 3.2.2 already tells us that A, u 2 C([0,1);H1(0, `))\
C1([0,1);L2(0, `)), h

0

, h` 2 C1[0,1), the di↵erential equations (3.1.1) are satisfied
in X while the boundary conditions (3.1.2) are satisfied in the sense of traces. This
type of solution is sometimes referred as strong solutions.

35



stability and controllability of the linearized model

For data that are merely in the state space X , the following notion of solution
can be used. Given A0, u0 2 L2(0, `) and h0

0

, h0` 2 C, the quadruple (A, u, h
0

, h`) 2
C([0,1);L2(0, `)2 ⇥ C2) is called a weak solution of (3.1.1)–(3.1.3) if the equations
8
>>>>>>>><

>>>>>>>>:

hA(t),'iL2 + �AT (h0(t), ⌘0) + �AT (h(t), ⌘`)

= hA0,'iL2 + �AT (h0
0

, ⌘
0

) + �AT (h0` , ⌘`) +Ae

Z t

0

hu(�),'xiL2 d�

hu(t), iL2 = hu0, iL2 + ↵

Z t

0

hA(�), xiL2 d� � �

Z t

0

hu(�), iL2 d�

+ ↵

Z t

0

(�h
0

(�), (0))� (�h`(�), (`)) d�

(3.3.1)

hold for every t � 0, ', 2 H1(0, `) and ⌘
0

, ⌘` 2 C such that '(0) = �⌘
0

and
'(`) = �⌘`. See Sections 4.20 and 4.21 for an equivalent definition.

We will show that the components of the semigroup solution z comprise a weak
solution of (3.1.1)�(3.1.3). To prove this, first we recall that since D(A) is dense
in X there exists a sequence (z0n)n ⇢ D(A) such that z0n ! z0 in X . Let zn =
(An, un, h0n, h`n) be the strong solution corresponding to z0n = (A0

n, u
0

n, h
0

0n, h
0

`n).
For some M � 1 and ↵ � 0 we have

kz � znkC([0,T ];X )

 Me↵T kz0 � z0nkX . (3.3.2)

Multiplying the equations in (3.1.1) by ',  , ⌘
0

and ⌘` in the respective order,
integrating by parts and using the boundary conditions (3.1.2) and initial conditions
(3.1.3), the equations in (3.3.1) with (A, u, h

0

, h`) and (A0, u0, h0
0

, h0` ) replaced by
(An, un, h0n, h`n) and (A0

n, u
0

n, h
0

0n, h
0

`n), respectively, can be obtained. Thanks to
(3.3.2) we have (3.3.1) after passing to the limit n ! 1. For the uniqueness of weak
solutions as well as the continuous dependence of the solution on the initial data, see
Theorem 3.5.7 below.

If the initial data A0, u0 2 H2(0, `) and h0
0

, h0` 2 C satisfy the compatibility condi-
tions up to order one A0(0) = �h0

0

, A(`) = �h0` , ATu0x(0) = �u0(0) and �ATu0x(`) =
�u0(`) then we have a classical solution A, u 2 C1([0,1) ⇥ [0, `]) and h

0

, h 2
C2[0,1).

In this section, we have shown the existence of weak solutions for (3.1.1)–(3.1.3)
using C

0

-semigroups. This existence will be demonstrated in Chapter 4 at a di↵erent
perspective and in a more general setting. In the latter approach, it will be shown
further that the weak solution satisfies additional regularity other the one given in
Theorem 3.2.2, namely, the L2-trace regularity of A and u at the boundary and
hence the H1-regularity of h

0

and h`.

3.4 spectral properties and uniform exponential stability

At this point, we already know that �(A) ⇢ {z 2 C : <z  0} since A generates a
contractive C

0

-semigroup on X . Furthermore, the adjoint operator A⇤ also generates
a contraction C

0

-semigroup, which is the adjoint semigroup, in other words, (eAt)⇤ =
eA⇤t for all t � 0.

Let us determine the X -adjoint of A. Define Ã : D(A) ! X by

Ã

0

BB@

B
v
g
0

g`

1

CCA =

0

BB@

Aevx
↵Bx � �v

Ae
AT

v(0)

� Ae
AT

v(`)

1

CCA ,
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For each (A, u, h
0

, h`), (B, v, g
0

, g`) 2 D(A), a straight forward computation yields

hA(A, u, h
0

, h`), (B, v, g
0

, g`)iX = h(A, u, h
0

, h`), Ã(B, v, g
0

, g`)iX

which implies that (B, v, g
0

, g`) 2 D(A⇤), and this proves that A⇤ is an extension of
Ã. Using a similar argument as in the proof of Theorem 3.2.2, we can also show that
Ã generates a C

0

-semigroup of contractions on X , and hence (0,1) ⇢ ⇢(A⇤) \ ⇢(Ã).
Applying [58, Lemma 1.6.14], we can see that A⇤ = Ã and in particular D(A⇤) =
D(Ã) = D(A).

In the absence of friction, i.e. � = 0, we have A⇤ = �A and so A is skew-adjoint
and from Stone’s Theorem, see Theorem A.1.2, the operator A generates a unitary
C
0

-group. This will be used in the succeeding section. The operator A and A⇤

also generate C
0

-groups even for � > 0. To see this, let us define C 2 L(X ) by
C(A, u, h

0

, h) = (0, u, 0, 0). Then �A = A⇤ + 2�C and �A generates a C
0

-semigroup
satisfying ke�Atk  e2�t for all t � 0 (see, e.g. [25, Theorem III.1.3]). From
Theorem 3.2.2 and [25, p. 79], A generates a C

0

-group on X satisfying keAtk  e2�|t|

for all t 2 R. The case of A⇤ is analogous. Tight decay rates will be given after we
have described the spectra of the generators.

The operators A and A⇤ have compact resolvents and therefore their spectra con-
sist of eigenvalues only. This is a consequence of the compactness of the embedding
H1(0, `) ,! L2(0, `). We can now characterize the spectrum of A and its adjoint.
Due to the di↵erential boundary conditions, namely the third and fourth lines in
(3.1.1), the eigenvalues appear on the boundary conditions of a two-point boundary
value problem, see (3.4.5) for instance. To describe the spectrum of the di↵erential
operator for � � 0, we first describe the special case where � = 0 and use this to
investigate for the case � > 0. First, we state a lemma needed for the asymptotic
description of the eigenvalues.

Lemma 3.4.1. Let a, b, c > 0 and H(x) = x cos ax�(bx2�c) sin ax and let (µn)n2N,
listed in strictly increasing order, be the positive zeros of H. Then µn = (n�1)⇡

a +
O(n�1) as n ! 1.

Proof. Define H
1

(x) = tan ax and H
2

(x) = x/(bx2 � c). If (2n + 1)⇡/2a =
p
c/
p
b

for some n � 0 then ±p
c/
p
b are zeros of H. The other zeros of H are precisely the

abscissas of the points of intersection of the graphs of H
1

and H
2

. If (2n+1)⇡/2a 6=p
c/
p
b for all n � 0 then the zeros of H are just the abscissas of the intersection

of H
1

and H
2

. By looking at the graphs of H
1

and H
2

it can be seen that for large
indices n, we have µn = (n� 1)⇡/a+ en where en ! 0. Multiplying by a and taking
the sine of both sides yields

sin aen = (�1)n�1

µn cos aµn

bµ2

n � c
= (�1)n�1

((n� 1)⇡/a+O(1)) cos aµn

b((n� 1)⇡/a+O(1))2 � c
, n ! 1.

Taking the inverse sine and noting that sin�1 x = O(x) as x ! 0 we obtain that
en = O(n�1).

Theorem 3.4.2. Let (µn)n2Z, listed in strictly increasing order, be the real solutions
of the equation,

2AT

�Ae
µ cos

µ`p
↵Ae

�
p
Aep
↵

✓
A2

T

�2A2

e
µ2 � ↵

Ae

◆
sin

µ`p
↵Ae

= 0, (3.4.1)
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where µ
0

= 0 and µ�n = �µn. Then the spectrum of A is given by �(A) = (�n)n2Z,
where

�n = ��
2
+

1

2
sgn(n)

p
�2 � 4µ2

n, n 2 Z⇤ := Z \ {0}, (3.4.2)

and �
0

= 0, and the eigenvalues �n satisfy the asymptotic growth

�n = ��
2
+

✓p
↵Ae(n� 1)⇡

`
+O(n�1)

◆
i, n ! 1. (3.4.3)

In particular, �(A) = �(A⇤). An eigenvector zn of A associated with the eigenvalue
�n is given by

zn =

0

BB@

'n

 n

⌘
0n

⌘`n

1

CCA =

0

BBBBBBBBBBBB@

cos
µnxp
↵Ae

� ATµn

�
p
↵Ae

sin
µnxp
↵Ae

�
✓
AT�n
�Ae

cos
µnxp
↵Ae

+

p
↵�np
Aeµn

sin
µnxp
↵Ae

◆

1

�

1

�

✓
cos

µn`p
↵Ae

� ATµn

�
p
↵Ae

sin
µn`p
↵Ae

◆

1

CCCCCCCCCCCCA

, n 2 Z.

(3.4.4)
Similarly, an eigenvector z⇤n of A⇤ associated to the eigenvalue �n is given by z⇤n =
('n,� n, ⌘0n, ⌘`n) for every n 2 Z.

Proof. Note that � 2 �(A) if and only if there exists (A, u, h
0

, h`) 2 D(A) \ {0}
satisfying the boundary value problem

8
>>><

>>>:

@

@x

✓
A
u

◆
=

 
0 ��+�

↵
� �

Ae
0

!✓
A
u

◆

�Ae

AT
u(0) =

�

�
A(0),

Ae

AT
u(`) =

�

�
A(`)

(3.4.5)

Consider the equation A(A, u, h
0

, h`) = 0 where (A, u, h
0

, h`) 2 D(A). Then we have
u = 0 and A is constant. Since A(0) = �h

0

and A(`) = �h` we have h
0

= h` and
so (A, u, h

0

, h`) = c(�, 0, 1, 1) for some c 2 C. Hence 0 2 �(A). One can check that
�� 2 �(A) with � > 0 if and only if ` = �2AT /�, hence we exclude this case under
the physically relevant assumption ` > 0.

Suppose that � 6= 0 and � 6= ��. By diagonalizing the 2⇥ 2 matrix in (3.4.5) we
can obtain that the solution of the ODE is given by

A(x) = c
1

cosh

p
�(�+ �)xp
↵Ae

� c
2

p
Aep
↵

p
�(�+ �)

�
sinh

p
�(�+ �)xp
↵Ae

(3.4.6)

u(x) = �c
1

p
↵p
Ae

�p
�(�+ �)

sinh

p
�(�+ �)xp
↵Ae

+ c
2

cosh

p
�(�+ �)xp
↵Ae

(3.4.7)

for some (c
1

, c
2

) 2 C2, where the square root denotes any fixed branch of the complex
square root; for definiteness we choose the principal branch where the nonpositive
real axis is the chosen branch cut.
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This and the boundary conditions yield the following homogeneous system of equa-
tions

�
 
AT�

Ae�
cosh

p
�(�+ �)`p
↵Ae

+

p
↵p
Ae

�p
�(�+ �)

sinh

p
�(�+ �)`p
↵Ae

!
c
1

+

 
cosh

p
�(�+ �)`p
↵Ae

+
AT

Ae�

p
Aep
↵

p
�(�+ �) sinh

p
�(�+ �)`p
↵Ae

!
c
2

= 0

AT�

Ae�
c
1

+ c
2

= 0

The above system in the unknowns c
1

and c
2

has a nontrivial solution if and only
if the determinant of the corresponding matrix is zero and this is equivalent to the
equation

F (w) :=
2AT

Ae�
w cosh

w`p
↵Ae

+

p
Aep
↵

✓
A2

T

A2

e�
2

w2 +
↵

Ae

◆
sinh

w`p
↵Ae

= 0, (3.4.8)

where we put w =
p
�(�+ �).

Let us consider the special case where � = 0. In this case, � 2 �(A) if and
only if F (�) = 0. However, since A is skew-adjoint, its spectrum must lie on the
imaginary axis. This implies that all zeros of F are purely imaginary. Letting
� = iµ, where µ 2 R, we can see that F (iµ) = 0 is equivalent to the equation (3.4.1).
Using this for the case � � 0, we can see from (3.4.8) that � 2 �(A) if and only
if
p
�(�+ �) = iµ for some µ 2 R that satisfies (3.4.1). The asymptotic behavior

(3.4.3) of the eigenvalues follows from the asymptotic behavior of the solutions of
(3.4.1) given by the previous lemma

µn =

p
↵Ae(n� 1)⇡

`
+O(n�1), n ! 1. (3.4.9)

The fact that the spectra of A and A⇤ coincide comes from the symmetry of the
spectrum of A with respect to the real axis.

Choosing c
1

= 1 and c
2

= �AT�n
�Ae

in (3.4.6) and (3.4.7) gives the first and second
components of the eigenvector zn. The third and fourth components are due to
the boundary conditions ⌘

0n = 1

�'n(0) and ⌘`n = 1

�'n(`). Finally, since zn is an
eigenvector of A corresponding to �n we have

(�nI �A⇤)z⇤n =

0

BB@

�n'n +Ae( n)x
��n n � ↵('n)x � � n

�n⌘0n + Ae
AT
 n(0)

�n⌘`n � Ae
AT
 n(`)

1

CCA =

0

BB@

0
0
0
0

1

CCA ,

and so z⇤n is an eigenvector of A⇤ corresponding to the eigenvalue �n.

If � > 2µn, then the eigenvalue �n is real and negative. This implies that z(t, x) =
(eAt)zn(x) = e�ntzn(x) monotonically decays to zero as time goes to infinity. This
means that when the fluid inside the tube and tanks is su�ciently viscous, then there
are solutions which decay to the equilibrium state without oscillations.

With or without viscosity, we have seen in Theorem 3.4.2 that 0 2 �(A) and
this means that the system is not stable in X . The eigenspace associated with the
eigenvalue 0 is the one-dimensional subspace X

0

:= {c(�, 0, 1, 1) : c 2 C}. More-
over, N (A⇤) = X

0

and so A and its adjoint have the same kernel. The state
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stability and controllability of the linearized model

(Ae, 0, h0e, h`e) + c(�, 0, 1, 1) for c 6= 0 is also an equilibrium of the nonlinear sys-
tem but corresponds to di↵erent parameters V , pf0 and pf`.

It is easy to check that the space X
0

is invariant under the action of the group
(eAt)t2R and its adjoint group. If z 2 X?

0

and w 2 X
0

then heAtz, wiX = hz, eA⇤twiX =
0 by the invariance of X

0

under (eA⇤t)t2R. Hence X?
0

is invariant under (eAt)t2R, i.e.,
eAtX?

0

⇢ X?
0

for all t 2 R. From Theorem A.2.4 the restricted group (eAt|X?
0
)t2R is

a C
0

-group on X?
0

whose generator is given by the part of A in X?
0

, denoted by Ap.
A similar argument shows that eA⇤t|X?

0
= eA

⇤
pt for all t 2 R where A⇤

p is the part

of A⇤ in X?
0

. It is easily seen that A⇤
p = (Ap)⇤, which means that taking the part

in a closed invariant subspace and taking the adjoint commute, see Theorem A.2.3.
Since Ap and A⇤

p also have compact resolvents we have �(Ap) = �(A⇤
p) = �(A)\{0},

⇢(Ap) = ⇢(A⇤
p) = ⇢(A) [ {0}. The semigroup generated by Ap will be used in the

next section.
Let us characterize the nonzero eigenvalues of A as the viscosity � increases. In

the following discussions the equality (3.4.2) is used. If � 2 [0, 2µ
1

) then all the
nonzero eigenvalues have nonzero imaginary parts and |�n| = |µn| for all n 2 Z.
Therefore as � increases on this interval, the eigenvalues are rotated positively (that
is, counterclockwise) around the origin and all the eigenvalues lie on the line <z =
��/2. If � = 2µ

1

then the two eigenvalues �±1

coincide and both are equal to
��/2. Suppose that � 2 [2µ

1

, 2µ
2

). As � increases in this interval, �n for |n| > 2 is
again rotated in the same manner as before. However, the eigenvalue �

1

now goes
to the right along the real axis while ��1

goes to the left along the real axis, faster
than <�±2

. When � = 2µ
2

, the eigenvalues �±2

coincide while ��1

is on the left
of �±2

. The same behavior holds for the other intervals [2µn, 2µn+1

), n � 2. Thus
the larger �, the more eigenvalues there are on the interval (��/2, 0) and there are
eigenfunctions which decay slower than those for smaller �. The eigenvalues that
move to the right approach 0 as � increases.

If we denote by ⇣n the eigenvector of A corresponding to �n = iµn when � = 0
and by zn the eigenvector of A when � > 0 then for all n such that � < 2|µn| we
have |�n| = |µn|,

kznkX = kz⇤nkX = k⇣nkX = k⇣�nkX , (3.4.10)

and a straightforward calculation gives

k⇣nk2X =
A2

T `µ
2

n

�2↵A2

e
+

`

Ae
+

AT

�Ae
+

AT

�Ae

✓
cos

µn`p
↵Ae

� ATµn

�
p
↵Ae

sin
µn`p
↵Ae

◆
2

. (3.4.11)

Theorem 3.4.3. Let � � 0. Then we have the following:

1. If � 6= 2µn for all n 2 N then the normalized eigenvectors (zn/kznkX )n2Z
of A form a Riesz basis for X . If � = 0 then this Riesz basis is in fact an
orthonormal basis.

2. If � = 2µn for some n 2 N then the sequence (zn/kznkX )n2Z\{�n}[{Z/kZkX },
where Z = (0,���1

n  n, 0, 0)> is a generalized eigenvector of A corresponding
to �n satisfying (�nI �A)Z = zn, forms a Riesz basis for X .

Similar results for the generator A⇤ hold, however, in (2) the vector Z should be
replaced by the generalized eigenvector Z⇤ := �Z of A⇤ corresponding to �n.

Proof. First consider the case where � = 0. Applying [8, Proposition III.6.1] to
the operator Ap, the normalized eigenvectors (zn/kznkX )n2Z⇤ forms an orthonormal
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basis for X?
0

. Therefore combined with the normalized eigenvector associated with
the eigenvalue 0, the sequence (zn/kznkX )n2Z form an orthonormal basis for X =
X
0

� X?
0

. Now suppose that � > 0 and � 6= 2µn for all n 2 N. Again, let ⇣n be the
eigenvector of A corresponding to the eigenvalue �n = iµn for the case where there
is no viscosity, i.e., � = 0. The first part of (1) follows from Theorem A.3.1 once we
have shown that (zn/kznkX )n2Z and (⇣n/k⇣nkX )n2Z are quadratically close in the
sense that

X

n2Z

����
zn

kznkX
� ⇣n

k⇣nkX

����
2

X
< 1. (3.4.12)

Let N be the largest integer such that � > 2µN . From (3.4.4) and (3.4.10)

zn
kznkX

� ⇣n
k⇣nkX

=

✓
0,
�n � iµn

iµn

⇣n2
k⇣nkX

, 0, 0

◆
, |n| > N. (3.4.13)

where ⇣n2 is the second component of ⇣n. It can be seen from (3.4.2) that |�n�iµn| !
�/2 as |n| ! 1 and in particular the sequence (�n � iµn)n2Z is bounded. Because
k⇣n2kL2

(0,`) 
p
↵k⇣nkX it follows from (3.4.13) that

X

|n|>N

����
zn

kznkX
� ⇣n

k⇣nkX

����
2

X

X

|n|>N

C

µ2

n

for some constant C > 0. The last sum is finite because of (3.4.9). As a consequence,
(3.4.12) is satisfied.

Finally, consider the case where � = 2µn for some n 2 N. Let us verify that Z
satisfies (�nI �A)Z = zn. Indeed,

(�nI �A)Z � zn =

0

BB@

Ae(���1

n  n)x � 'n

�n(���1

n  )� ���1

n  n �  n
Ae
AT

(���1

n  n)(0)� ⌘
0

� Ae
AT

(���1

n  n)(`)� ⌘`n

1

CCA

=

0

BB@

���1

n (�n'n +Ae( n)x)
� n + 2 n �  n

���1

n (�n⌘0n + Ae
AT
 n(0))

���1

n (�n⌘`n � Ae
AT
 n(`))

1

CCA

and this is zero because zn is an eigenvector of A corresponding to �n = ��/2. The
same argument as in the previous case shows that the sequences (zn/kznkX )n2Z\{�n}[
{Z/kZkX } and (⇣n/k⇣nkX )n2Z are quadratically close and hence part (2) also follows
from the Riesz basis generation result Theorem A.3.1.

Let (z̃n)n2Z be the sequence biorthogonal to the Riesz basis (z⇤n/kz⇤nkX )n2Z if
� 6= 2µn for all n 2 N or to the Riesz basis (z⇤n/kz⇤nkX )n2Z\{�n} [ {Z⇤/kZ⇤kX } if
� = 2µn for some n 2 N. The result we have just proved implies that every z 2 X
can be expressed uniquely as a Fourier series

z =
X

n2Z
hz, z̃niX

z⇤n
kz⇤nkX

, (3.4.14)

whenever � 6= 2µn for all n 2 N and a similar equation holds for the other case. For
all square-summable sequences (an)n2Z we have

c

✓X

n2Z
|an|2

◆
1/2


����
X

n2Z

anz⇤n
kz⇤nkX

����
X
 C

✓X

n2Z
|an|2

◆
1/2

(3.4.15)
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for some c, C > 0 independent of (an)n2Z. Furthermore, the sequence (hz, z̃niX )n2Z⇤

is square-summable for each z 2 X . Since eA⇤tz⇤n = e�ntz⇤n for all n 2 Z it follows
from (3.4.14) and the continuity of eA⇤t that when � 6= 2µn for all n 2 N the group
generated by A⇤ can be written as

eA
⇤tz =

X

n2Z⇤

e�nthz, z̃niX
z⇤n

kz⇤nkX
(3.4.16)

for every z 2 X and t 2 R. If � = 2µn for some n 2 N then the group is given by

eA
⇤tz = hz, z̃�ni(e�ntZ⇤ � te�ntz⇤n) +

X

n2Z\{�n}
e�nthz, z̃niX

z⇤n
kz⇤nkX

(3.4.17)

for every z 2 X and t 2 R. Similar characterizations for the group generated by A
hold. The reason why we choose to expand the adjoint semigroup is that we will
use a duality argument in the proof of Theorem 3.5.6. Now we have the following
stability result.

Theorem 3.4.4. Let � > 0. The C
0

-semigroups (eApt)t�0

and (eA
⇤
pt)t�0

generated
by Ap and A⇤

p are uniformly exponentially stable, i.e., there exist constants M � 1
and ! > 0 such that

keAptkL(X?
0 )

= keA⇤
ptkL(X?

0 )

 Me�!t, t � 0. (3.4.18)

Furthermore, !(Ap) = s(Ap) where s(Ap) is the spectral bound of Ap and !(Ap) is
the growth bound of the semigroup generated by Ap. For every z

0

2 X , if z = eAtz
0

2
C([0,1),X ) is the mild solution of (ACP) corresponding to the initial data z

0

then
kz(t)� Pz

0

kX  Mkz
0

kX e�!t for all t � 0, where P is the orthogonal projection of
X onto X

0

.

Proof. The first and second parts follow immediately from (3.4.16) and (3.4.17). For
the last part, let Q be the orthogonal projection of X onto X?

0

so that every z
0

2 X
can be written uniquely as z

0

= Pz
0

+Qz
0

. Since the restriction of eAt to X
0

is just
the identity operator on X

0

we have z(t) = Pz
0

+eAptQz
0

, and the required estimate
follows from (3.4.18) and the fact that kQk  1.

The eigenvalue 0 is removed by restricting the state space to the orthogonal com-
plement of the eigenspace corresponding to the eigenvalue zero. Define the volume
functional V : X ! C by

V(A, u, h
0

, h) =

Z `

0

A(x) dx+ATh0 +ATh`.

It is clear that V is a bounded linear functional on X . Recall that z = ze + z̃
where z = (A, u, h

0

, h), ze = (Ae, 0, h0e, h`e) and z̃ = (Ã, ũ, h̃
0

, h̃) are the state, the
equilibrium state and the deviation of the state from the equilibrium, respectively.
By the conservation of mass we must have V(z) = V(ze) = V and this is equivalent
to V(z̃) = 0, i.e., z̃ 2 N (V). One can check that N (V) = X?

0

. This means that
X?
0

is the natural state space for the deviations. Also, if z(t, x) = eAptz0(x) is the
solution of the system then V(z(t, ·)) = 0 for every t � 0 whenever z0 2 X?

0

. For
this reason, we consider X?

0

to be the state space in the next section.
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3.5 a boundary control system

3.5 a boundary control system

Consider time varying control pressures pf0(t) and pf`(t) applied to the left and the
right tank, respectively. Linearizing about the numbers p⇤f0 and p⇤f` we have

Ã(t, 0) = �h̃
0

(t) +
�

⇢g
p̃f0(t),

Ã(t, `) = �h̃`(t) +
�

⇢g
p̃f`(t)

where p̃f0(t) = pf0(t)� p⇤f0 and p̃f`(t) = pf`(t)� p⇤f`. Again for simplicity, we ignore
the tildas and we let p

0

= �
⇢gpf0 and p

1

= �
⇢gpf`. In this scenario, we have the system

(3.1.1) with the boundary conditions

A(t, 0) = �h
0

(t) + p
0

(t), A(t, `) = �h`(t) + p
1

(t), t > 0. (3.5.1)

Definition 3.5.1. For A0, u0 2 L2(0, `), h0
0

, h0 2 C and p
0

, p
1

2 L2

loc

([0,1),C),
the tuple (A, u, h

0

, h) such that A, u 2 C([0,1), L2(0, `)) and h
0

, h` 2 C([0,1),C)
is called a weak solution of the system (3.1.1) with initial conditions (3.1.3) and
boundary conditions (3.5.1) if
8
>>>>>>>><

>>>>>>>>:

hA(t),'iL2 + �AT (h0(t), ⌘0) + �AT (h`(t), ⌘`)

= hA0,'iL2 + �AT (h0
0

, ⌘
0

) + �AT (h0` , ⌘`) +Ae

Z t

0

hu(�),'xiL2 d�

hu(t), iL2 = hu0, iL2 + ↵

Z t

0

hA(�), xiL2 d� � �

Z t

0

hu(�), iL2 d�

+ ↵

Z t

0

(�h
0

(�) + p
0

(�), (0))� (�h`(�) + p
1

(�), (`)) d�

for every t � 0, ', 2 H1(0, `) and ⌘
0

, ⌘` 2 C such that '(0) = �⌘
0

and '(`) = �⌘`.

To prove the existence of such weak solutions, the system will be expressed as a
boundary control system using well-known results in control theory. Because the
velocity component of the eigenvector corresponding to the eigenvalue 0 vanishes,
the system is not approximately controllable in X , cf. the observation operator B⇤

in Theorem 3.5.2 below. For this reason the system is restricted to the state space
X?
0

.
Denote by Z = (H1(0, `)⇥H1(0, `)⇥ C2) \ X?

0

the solution space endowed with
the product norm of H1(0, `) ⇥H1(0, `) ⇥ C2. Our input space is C2 and the state
space is X?

0

. Note that Z is continuously embedded in X?
0

. Let D(A⇤
p) be endowed

with the graph norm. Then D(A⇤
p) ⇢ X?

0

⇢ D(A⇤
p)

0 with continuous and dense
embeddings and we have

hz, ⇣iD(A⇤
p)

0⇥D(A⇤
p)

= hz, ⇣iX , 8z 2 X?
0

, ⇣ 2 D(A⇤
p). (3.5.2)

Furthermore, we can see that A⇤
p 2 L(D(A⇤

p),X?
0

) so that (A⇤
p)

⇤ 2 L(X?
0

,D(A⇤
p)

0),
where the state space X?

0

is identified with its dual. The operator (A⇤
p)

⇤ can be

viewed as an extension of Ap to X?
0

. For more details on the interpolation and
extrapolation spaces for semigroups the reader may consult [25, p. 123–127].

Let F : Z ! X?
0

and G : Z ! C2 be given by

F(A, u, h
0

, h`) =

0

BB@

�Aeux
�↵Ax � �u
� Ae

AT
u(0)

Ae
AT

u(`)

1

CCA
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and

G(A, u, h
0

, h`) =

✓
A(0)� �h

0

A(`)� �h`

◆
.

Note that F 2 L(Z,X?
0

), G 2 L(Z,C2), N (G) = D(Ap), R(G) = C2 and F|D(Ap)
=

Ap. As a consequence, (F ,G) is a boundary control system. Then according to
Theorem B.4.2, there exists a unique operator B 2 L(C2,D(A⇤

p)
0), called the control

operator, such that Fz = ((A⇤
p)

⇤ + BG)z for all z 2 Z. A characterization of this
control operator is given in the following theorem.

Theorem 3.5.2. The input control operator B 2 L(C2,D(A⇤
p)

0) is given by

B(c
1

, c
2

) = �(A⇤
p)

⇤

0

BB@

0

BB@


0

1

� (� 1)
1

�

1

CCA c
1

+

0

BB@


0
1

�
1

� (� 1)

1

CCA c
2

1

CCA , (3.5.3)

where (c
1

, c
2

) 2 C2 and  = AT
�`+2AT

. Its adjoint B⇤ 2 L(D(A⇤
p),C2) is given by

B⇤(B, v, g
0

, g`) =

✓
v(0)
�v(`)

◆
, (B, v, g

0

, g`) 2 D(A⇤
p). (3.5.4)

Proof. Given (c
1

, c
2

) 2 C2, consider the problem F(A, u, h
0

, h`) = 0 with boundary
conditions G(A, u, h

0

, h`) = (c
1

, c
2

). This implies u = 0, A is constant, A� �h
0

= c
1

and A� �h` = c
2

. Since (A, u, h
0

, h`) 2 X?
0

= N (V), A`+ ATh0 + ATh` = 0. Note
that the unique solution of Fz = 0 with Gz = (c

1

, c
2

) is given by �(A⇤
p)

⇤z = B(c
1

, c
2

).
Solving the linear system for (A, h

0

, h`) 2 C3 in terms of c
1

and c
2

we can see that
B : C2 ! D(A⇤

p)
0 is given by (3.5.3).

For z = (A, u, h
0

, h`) 2 Z and ⇣ = (B, v, g
0

, g`) 2 D(A⇤
p) we obtain from (3.5.2)

that

hGz,B⇤⇣iC2 = hBGz, ⇣iD(A⇤
p)

0⇥D(A⇤
p)

=
⌦
Fz � (A⇤

p)
⇤z, ⇣

↵
D(A⇤

p)
0⇥D(A⇤

p)

= hFz, ⇣iX � hz,A⇤
p⇣iX .

Integrating by parts and using the surjectivity of G we obtain (3.5.4).

In the above theorem, we have a representation of the control operator B in terms
of the extension of the operator Ap. However, the more important item to use in the
controllability of the boundary control system, at least in our case, is the adjoint B⇤

of the control operator.
We shall make use of the Riesz basis approach to study the above boundary control

system. We refer to [43] for various examples in this direction. From Theorem 3.4.2,
the eigenvalues of A⇤

p satisfy

lim inf
|n|!1

|=�n �=�n+1

| =
p
↵Ae⇡

`
(3.5.5)

and, in particular the uniform gap property

�
0

:= inf
�,µ2�p(A⇤

p)

� 6=µ

|�� µ| > 0. (3.5.6)

The following theorems in non-harmonic Fourier analysis [37, 43], which is a
generalization of Parseval’s equality, plays a crucial role in the proof of the exact
controllability of our boundary control system.
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3.5 a boundary control system

Theorem 3.5.3 (Ingham). Let J ⇢ Z and (�m)m2J be a family of real numbers
satisfying the gap condition

�
0

:= inf
n,m2J
n 6=m

|�n � �m| > 0,

and let I be a bounded interval in R. Then, there exists C = C(�
0

, I) such that for
every sequence (am) 2 `2(J,C) we have

Z

I

����
X

m2J
amei�mt

����
2

dt  C
X

m2J
|am|2.

In addition, if the the length of I satisfies |I| > 2⇡
� then there exists c = c(�

0

, I) such
that

c
X

m2J
|am|2 

Z

I

����
X

m2J
amei�mt

����
2

dt.

Ingham’s Theorem is used when the Riesz basis consists of only eigenvectors. In
the case when the Riesz basis contains a generalized eigenvector, the following gener-
alization of Ingham’s Theorem will be used. For the proof we refer to [43, Theorem
4.5].

Theorem 3.5.4 (Haraux). Let (�m)m2J , J ⇢ Z, be a family of complex numbers
such that supm2J |<�m| < 1 and for some m

0

2 J the gap condition

inf
m 6=m0

|�m � �m0 | > 0

is satisfied. If for some interval I
0

we have

c
X

m2J\{m0}
|xm|2 

Z

I0

����
X

m2J\{m0}
xme�mt

����
2

dt  C
X

m2J\{m0}
|xm|2

for some C � c > 0 and for all (xm)m2J\{m0} 2 `2(C) then for all interval I with
length |I| > |I

0

| we also have

c̃

✓
|x̃|2 +

X

m2J
|xm|2

◆

Z

I

����x̃te
�mt +

X

m2J
xme�mt

����
2

dt  C̃

✓
|x̃|2 +

X

m2J
|xm|2

◆

for all x̃ 2 C and for all (xm)m2J 2 `2(C), for some constants C̃ � c̃ > 0.

For single input controls the critical time of controllability will be establish with
the help of the following generalization of the Kadec’s 1

4

-Theorem in [81, Corollary
2, p. 196].

Theorem 3.5.5 (Generalized Kadec 1

4

-Theorem). If (⇢n)n2Z is a sequence of com-
plex numbers for which

sup
n2Z

����
T=⇢n
2⇡

� n

���� <
1

4
and sup

n2Z
|<⇢n| < 1,

then the system (ei⇢nt)n2Z is a Riesz basis for L2(0, T ).
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stability and controllability of the linearized model

Now we are ready to state and prove the main result of this section. A direct
application of Ingham’s Theorem yields the exact controllability of the boundary
control system for any time ⌧ > 2⇡

�0
where �

0

is the gap of the eigenvalues of A⇤
p

given by (3.5.6). However, in general this gap is less than that of the asymptotic
distance between consecutive eigenvalues. To provide a smaller lower bound for the
time of exact controllability we will separate the low and high frequencies as in
[77, Proposition 8.1.3]. However, we need to modify the arguments in the said
proposition since the eigenvectors are not orthogonal anymore, i.e., we generalize
the proposition in such a way that it is still true for the case where the orthonormal
basis is replaced by a Riesz basis.

Theorem 3.5.6. Suppose that � � 0. Then the boundary control system (F ,G) is
exactly controllable in time ⌧ , if ⌧ > ⌧⇤ := 2`p

↵Ae
. That means, for any z0, z1 2 X?

0

there exists (p
0

, p
1

) 2 L2([0, ⌧ ],C2) such that the weak solution z 2 C([0, ⌧ ],X?
0

)
of the system (3.1.1) with initial conditions (3.1.3) and boundary conditions (3.5.1)
satisfies z(⌧) = z1.

Proof. The proof of the existence, uniqueness and regularity of the weak solution
will be provided later (see Theorem 3.5.7 below). We divide the proof into several
steps for ease of reading. Moreover, we first assume that � 6= 2µn for all n 2 N.

Step 1. Let us prove that B is an admissible control operator for (eApt)t�0

, or
equivalently, B⇤ is an admissible observation operator for the adjoint semigroup
(eA

⇤
pt)t�0

. The latter means that for each t � 0 there exists Ct > 0 such thatR t
0

|B⇤eA
⇤
psz|2 ds  Ctkzk2X for all z 2 D(A⇤

p). According to (3.4.10), (3.4.11) and the

asymptotic behavior of µn given in (3.4.9) we have 1

µ2
n
kz⇤nk2X ! A2

T `
�2↵A2

e
as |n| ! 1.

Using this, we can see that

0 < dy := inf
n2Z⇤

| n(y)|2
kz⇤nk2X

 sup
n2Z⇤

| n(y)|2
kz⇤nk2X

=: Dy < 1, y = 0, `. (3.5.7)

Let M = M(�) the largest integer such that � > 2µM . Thus �n is real whenever
|n|  M . From (3.4.16), Ingham’s Theorem, (3.5.7) and (3.4.15) we have
Z t

0

|B⇤eA
⇤
psz|2 ds =

X

y=0,`

Z t

0

����
X

n2Z⇤

e�nshz, z̃niX
 n(y)

kz⇤nkX

����
2

ds

 2
X

y=0,`

✓Z t

0

X

0<|n|M

e2�ns|hz, z̃niX |2
| n(y)|2
kz⇤nk2X

+

����
X

|n|>M

e(��/2+i=�n)shz, z̃niX
 n(y)

kz⇤nkX

����
2

ds

◆

 Ct

X

y=0,`

X

n2Z⇤

|hz, z̃niX |2
| n(y)|2
kz⇤nk2X

 Ct(D0

+D`)c
�2kzk2X

for all z 2 D(A⇤
p) and t � 0. Hence B⇤ is an admissible observation operator for

(eA
⇤
pt)t�0

.
Step 2. Now we separate the eigenfunctions into two parts. From (3.5.5), for

arbitrary ✏ > 0, there exists a positive integer N = N(✏) such that <�n = ��/2 for
all |n| > N and

inf
|m|,|n|>N

m 6=n

|=�n �=�m| �
p
↵Ae

`
⇡ � ✏. (3.5.8)
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3.5 a boundary control system

Consider the subspace X
1

= span (z⇤n)0<|n|N of X?
0

. It is clear that (z⇤n)0<|n|N is
linearly independent and so it forms a basis for X

1

. For each t 2 R, let T (t)⇤ be the
restriction of eA

⇤
pt to X

1

. We note that by construction �(A⇤
p|X1) = (�n)

0<|n|N .
Let X

2

= clos span (z⇤n/kz⇤nkX )|n|>N and A⇤
q be the part of A⇤

p in X
2

. Notice
that A⇤

q have also compact resolvent and �(A⇤
q) = �(A⇤

p) \ (�n)
0<|n|N . Since

span (z⇤n/kz⇤nkX )|n|>N is invariant under the C
0

-group generated by A⇤
p, its closure

is also invariant under this C
0

-group. Thus A⇤
q also generates a C

0

-group on X
2

and

eA
⇤
pt|X2 = eA

⇤
qt for all t 2 R.

Step 3. From the discussions in the previous step, we can see that the normalized
eigenvectors (z⇤n/kz⇤nkX )|n|>N of A⇤

q form a Riesz basis for X
2

. Let B⇤
q be the restric-

tion of B⇤ to D(A⇤
q). A similar application of Ingham’s Theorem as above shows

that B⇤
q is an admissible observation operator for the semigroup generated by A⇤

q .
Moreover, from Ingham’s Theorem and (3.4.15) we have the inverse estimate

Z ⌧

0

|B⇤
qe

A⇤
qtz|2 dt �

X

y=0,`

e��⌧
Z ⌧

0

����
X

|n|>N

ei=�nshz, z̃niX
 n(y)

kz⇤nkX

����
2

ds

� c⌧
X

y=0,`

X

|n|>N

|hz, z̃niX |2
| n(y)|2
kz⇤nk2X

� c⌧ (d0 + d`)C
�2kzk2X

for every z 2 D(A⇤
q) and ⌧ > 2⇡`p

↵Ae⇡�✏` . Thus, the pair (A
⇤
q ,B⇤

q ) is exactly observable

in time ⌧ > 2⇡`p
↵Ae⇡�✏` .

Step 4. Because A⇤
p|X1 2 L(X

1

) ' L(C2N ), B⇤|X1 2 L(X
1

,C2) ' L(C2N ,C2) and
B⇤|X1z

⇤
n 6= 0 for every 0 < |n|  N , the Hautus test for finite-dimensional systems

implies that (A⇤
p|X1 ,B⇤|X1) is observable. Since �(A⇤

p|X1) \ �(A⇤
q) = ;, according to

[77, Proposition 6.4.2] (see also [76]), the pairs (A⇤
p|X1 ,B⇤|X1) and (A⇤

q ,B⇤
q ) are

simultaneously exactly observable, in other words, there exists a constant c̃⌧ > 0
such that for all (v, w) 2 X

1

⇥D(A⇤
q) it holds that

Z ⌧

0

|B⇤|X1T (t)
⇤v + B⇤

qe
A⇤

qtw|2 dt � c̃⌧ (kvk2X + kwk2X ) (3.5.9)

for every ⌧ > 2⇡`p
↵Ae⇡�✏` . For k � N define the kth truncation of z 2 D(A⇤

p) by

zk =
X

0<|n|k

hz, z̃niX
z⇤n

kz⇤nkX

Then zk ! z in X . Since zN 2 X
1

and zk � zN 2 span ( z⇤n
kz⇤nkX )|n|>N ⇢ D(A⇤

q) it

follows from (3.4.15) and (3.5.9) that for any k > N we have
Z ⌧

0

|B⇤eA
⇤
ptzk|2 dt =

Z ⌧

0

|B⇤|X1T (t)
⇤zN + B⇤

qe
A⇤

qt(zk � zN )|2 dt

� c̃⌧ (kzNk2X + kzk � zNk2X ) � c̃⌧ c
2

X

0<|n|k

|hzk, z̃⇤niX |2 � c̃⌧ c
2C�2kzkk2X .

Because B⇤ is an admissible observation operator for the semigroup generated by A⇤
p,

letting k ! 1 in the last inequality we obtain the inverse estimate
Z ⌧

0

|B⇤eA
⇤
ptz|2 dt � c̃⌧ c

2C�2kzk2X .
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Therefore (A⇤
p,B⇤) is exactly observable in time ⌧ > 2⇡`p

↵Ae⇡�✏` , and since ✏ > 0 is

arbitrary, this pair is exactly observable in time ⌧ > 2`p
↵Ae

.

If � = 2µn for some n 2 N then one applies the above argument to the closure
of the span of the normalized eigenvectors of A⇤

p. Notice that B⇤Z⇤ 6= 0. Then
the series representation (3.4.17) together with Haraux’s Theorem imply the exact
observability in the state space X?

0

for any time ⌧ > ⌧⇤. In any case, the conclusion
of the theorem now follows from the well known duality of exact controllability and
exact observability, see Theorem B.3.5.

Now we address the existence and uniqueness of weak solutions of (3.1.1) under
the boundary conditions (3.5.1). Let p

0

, p
1

2 L2

loc

([0,1),C) and z
0

2 X?
0

. Since B
is an admissible control operator for the semigroup generated by Ap, then using the
variation of parameters formula, the function

z(t) = eAptz0 +

Z t

0

e(A
⇤
p)

⇤
(t�s)B(p

0

(s), p
1

(s)) ds in D(A⇤
p)

0 (3.5.10)

is the unique function that satisfies z 2 C([0,1),X?
0

) and

z(t)� z(0) =

Z t

0

((A⇤
p)

⇤z(s) + B(p
0

(s), p
1

(s))) ds

for all t � 0 (cf. [77, Remark 4.2.6]). The integral is computed in D(A⇤
p)

0. There-
fore, for each ⇣ 2 D(A⇤

p) we have from (3.5.2)

hz(t)� z(0), ⇣iX =

Z t

0

(
⌦
z(s),A⇤

p⇣
↵
X + h(p

0

(s), p
1

(s)),B⇤⇣iC2) ds

and using definition of B⇤ provided in Theorem 3.5.2, we can see that the components
of z comprise the unique weak solution of (3.1.1) with boundary conditions (3.5.1).

Theorem 3.5.7. If z
0

2 X?
0

and p
0

, p
1

2 L2

loc

([0,1),C) then (3.1.1), (3.1.3), (3.5.1)
has a unique weak solution z 2 C([0,1),X?

0

) \H1

loc

((0,1),D(A⇤
p)

0) and for every
T > 0 there exists C = C(T ) > 0 such that

kzkH1
((0,T ),D(A⇤

p)
0
)

+ kzkC([0,T ],X?
0 )

 C(kz0kX + k(p
0

, p
1

)kL2
((0,T );C2

)

) (3.5.11)

for all z0 2 X?
0

and (p
0

, p
1

) 2 L2((0, T );C2). Moreover, if z0 2 Z and p
0

, p
1

2
H1((0, T ),C) satisfy the compatibility condition Gz0 = (p

0

(0), p
1

(0)) then the solution
z is in C([0, T ],Z) \ C1([0, T ],X?

0

).

Proof. The first statement was already explained above and the estimate (3.5.11)
can be shown from (3.5.10) and Theorem B.3.1, while the second statement is a
direct application of [77, Proposition 10.1.8].

Remark 3.5.8. As in the proof of Theorem 3.5.6, it can be shown that B⇤ is an
admissible observation operator for the semigroup generated by Ap. This implies
the following: For any z

0

2 D(Ap) the solution of the (unforced) system satisfies

ku(·, 0)kL2
(0,T )

+ ku(·, `)kL2
(0,T )

 CT kz0kX .
By a standard density argument, one can use this to define the traces u(·, 0), u(·, `) 2
L2(0, T ) for the solution corresponding to the initial state z

0

2 X?
0

. Note that these
traces do not make sense by the usual trace theorem for Sobolev spaces because
in general u 2 C([0, T ], L2(0, `)). This is sometimes referred as a hidden regularity
property of solutions, see [44, 46, 50]. The hidden regularity property will be
revisited in Chapter 4 using di↵erent tools and methods.
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3.6 system with distributed control

The controllability result Theorem 3.5.6 still holds even if there is only one forcing
function that is applied to either of the tanks. In this case, the control operator
would be either the first or second component of B according to where the control
pressure is applied. The results can be also extended for two tanks with di↵erent
horizontal cross sections. Now let us consider the case where the forcing is applied
only at the left tank. In this case, the boundary operator G

0

: Z
0

! C is defined by
G
0

(A, u, h
0

, h`) = A(0) � �h
0

, where Z
0

:= {(A, u, h
0

, h) 2 H1(0, `)2 ⇥ C2 : A(`) =
�h`} \ X?

0

is the corresponding solution space.

Theorem 3.5.9. In the situation of Theorem 3.5.6, where G is replaced by G
0

, the
pair (Ap,B0

) is not approximately controllable for any time 0 < ⌧ < ⌧⇤, where
B
0

is the control operator associated with the boundary control system (F ,G
0

). In
particular, (Ap,B0

) is not exactly controllable for any time 0 < ⌧ < ⌧⇤.

Proof. From (3.4.3), there exists a positive integer M such that | ⌧
⇤=�n+1

2⇡ � n| < 1

4

whenever n > M . By symmetry of the eigenvalues we have | ⌧
⇤=�n�1

2⇡ � n| < 1

4

for all
n < �M . Now according to the Generalized Kadec 1

4

-Theorem [81, Corollary 2,

p. 196], the system of exponentials (ei2n⇡t/⌧
⇤
)
0|n|M [ (e�n+1t)|n|>M forms a Riesz

basis for L2(0, ⌧⇤). Let (gn)n2Z be the sequence biorthogonal to this Riesz basis.
Given 0 < ⌧ < ⌧⇤, let us take a nonzero element F

1

2 L2(0, ⌧⇤ � ⌧) such that

Z ⌧⇤�⌧

0

F
1

(t)gn(⌧ + t) dt = 0, 0  |n|  M,

that is, F
1

is in the orthogonal complement of the subspace of L2(0, ⌧⇤� ⌧) spanned
by the functions (gn(⌧ + ·))

0|n|M . Define the nonzero element F 2 L2(0, ⌧⇤) by
F (t) = 0 if 0  t  ⌧ and F (t) = F

1

(t� ⌧) if ⌧ < t  ⌧⇤ = 2`/
p
↵Ae.

Define

z =
X

|n|>M

✓
hF, gniL2

(0,⌧⇤)

kz⇤n+1

kX
 n+1

(0)

◆
z⇤n+1

kz⇤n+1

kX
.

This is a nonzero element of X?
0

because (hF, gniL2
(0,⌧⇤) kz⇤n+1

kX n+1

(0)�1)|n|>M is

nonzero element in `2. Note that by the uniqueness of the coe�cients in a series
of the elements of the Riesz basis, we must have hF, gniL2

(0,⌧⇤) kz⇤n+1

kX n+1

(0)�1 =
hz, z̃n+1

iX for all |n| > M and so

B⇤
0

eA
⇤
ptz =

X

|n|>M

e�n+1t hz, z̃n+1

iX
 n+1

(0)

kz⇤n+1

kX
=
X

|n|>M

hF, gniL2
(0,⌧⇤) e

�n+1t = F (t).

The terms with indices 0  |n|  M vanish by construction of F . Hence there exists
z 2 X?

0

\ {0} such that B⇤
0

eA
⇤
p(·)z = 0 in L2(0, ⌧). Therefore N (B⇤

0

eA
⇤
p(·)) 6= {0} so

that the adjoint system (A⇤
p,B⇤

0

) is not approximately observable in time ⌧ for any
0 < ⌧ < ⌧⇤. The theorem follows from the duality of approximate observability and
approximate controllability.

3.6 system with distributed control

One could also consider external control pressure applied to a part of the elastic
tube, e.g. [63, 78, 13]. In this case, the linearized momentum equation becomes

@u

@t
= �↵@A

@x
� �u+ Pc�

[a,b], (3.6.1)
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stability and controllability of the linearized model

where Pc 2 L2

loc

([0,1), L2(0, `)), 0 < a < b < `. In the literature, the control has
to vanish at the endpoints of the subinterval [a, b] where it is applied, however, we
consider the general case where this vanishing condition is not assumed.

In the present situation, the control operator B
1

: L2(0, `) ! X?
0

is bounded and
given by B

1

Pc = (0, Pc�
[a,b], 0, 0). For each z = (A, u, h

0

, h) 2 X?
0

and Pc 2 L2(0, `)

we have hB
1

Pc, ziX = 1

↵hPc, u�
[a,b]iL2

(0,`). Thus, the operator B⇤
1

: X?
0

! L2(0, `)

is given by B⇤
1

(A, u, h
0

, h) = 1

↵u�[a,b]. We have the following result, whose proof is
similar as in the previous section, and hence it is omitted.

Theorem 3.6.1. The pair (Ap,B1

) is exactly controllable in time ⌧ if ⌧ > 2`p
↵Ae

.

3.7 characterization of controls

In this section we present a theorem which characterizes the control (p
0

, p
1

) described
in Theorem 3.5.6. This problem has been considered for wave equations with either
Dirichlet or Neumman boundary control using variational techniques, see [82] for
instance. Instead of working with the specific case stated in Theorem 3.5.6, we
consider a more general framework that includes the particular set-up of the said
theorem. We prepare with a lemma.

Lemma 3.7.1. Let X and U be complex Hilbert spaces. Suppose that A : D(A) ⇢
X ! X generates a C

0

-group on X and B 2 L(U ,D(A⇤)0) is an admissible control
operator for (eAt)t2R. Given T > 0, z0, z1 2 X and u 2 L2((0, T );U), the solution
z 2 C([0, T ],X ) in D(A⇤)0 of the initial-value problem

ż(t) = Az(t) + Bu(t), z(0) = z0, (3.7.1)

satisfies z(T ; z0, u) = z1 if and only if

Z T

0

hu(t), e
t⇣iU dt+ hz0 � e�AT z1, ⇣iX = 0, 8⇣ 2 X (3.7.2)

where  e
t 2 L(X ;L2([0,1);U))) is the unique extension of the output map  t 2

L(D(A⇤);L2([0,1);U)) defined by ( t⇣)(⌧) = 1{0⌧t}B⇤e�A⇤⌧⇣ for ⇣ 2 D(A⇤).

Proof. Recall from Proposition B.3.3 that the linear map  e
t exists and it is bounded

due to the admissibility of the observation operator B⇤ under the semigroup gener-
ated by A⇤, and hence also for (�A)⇤ = �A⇤. Multiplying (3.7.1) by e�A⇤t⇣ for
⇣ 2 D(A⇤2) we get

hż(t), e�A⇤t⇣iD(A⇤
)

0⇥D(A⇤
)

= hz(t),A⇤e�A⇤t⇣iX + hu(t),B⇤e�A⇤t⇣iU .

Integrating from 0 to T , the above equality implies that

hz(T ), e�A⇤T ⇣iX � hz0, ⇣iX =

Z T

0

d

dt
hz(t), e�A⇤t⇣iD(A⇤

)

0⇥D(A⇤
)

dt

=

Z T

0

hż(t), e�A⇤t⇣iD(A⇤
)

0⇥D(A⇤
)

+

⌧
z(t),

d

dt
e�A⇤t⇣

�

X
dt

=

Z T

0

⌧
z(t),

d

dt
e�A⇤t⇣ +A⇤e�A⇤t⇣

�

X
+ hu(t),B⇤e�A⇤t⇣iU dt

=

Z T

0

hu(t),B⇤e�A⇤t⇣iU dt
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3.7 characterization of controls

Thus (3.7.2) holds for all ⇣ 2 D(A⇤2) and by density this holds for all ⇣ 2 X .
Suppose that the solution of (3.7.1) satisfies z(T ; z0, u) = z1 then according to what
we have shown (3.7.2) holds. Conversely, suppose that (3.7.2) holds. Then the above
calculations imply that hz(T ) � z1, e�A⇤T ⇣iX = 0 for all ⇣ 2 X and since e�A⇤T is
bijective we have z(T ) = z1.

The set-up of the following theorem takes place in complexified Hilbert spaces.
Given a real Hilbert space XR we let X = {x

1

+ ix
2

: x
1

, x
2

2 XR}. The space X can
be equipped with the inner product

hx
1

+ ix
2

, y
1

+ iy
2

iX := hx
1

, y
1

iXR + ihx
2

, y
1

iXR � ihx
1

, y
2

iXR + hx
2

, y
2

iXR

with corresponding norm kx
1

+ ix
2

k2X = kx
1

k2XR + kx
2

k2XR . This makes X a Hilbert
space called a complexified Hilbert space.

Theorem 3.7.2. Let X and U be complexified Hilbert spaces. Suppose that A :
D(A) ⇢ X ! X generates a C

0

-group, B 2 L(U ,D(A⇤)0) is an admissible control
operator for (eAt)t2R and z0, z1 2 X . Assume that the following three conditions
hold.

(i) The pair (A,B) is exactly controllable in time T > 0.

(ii) The real Hilbert space XR is invariant under (eAt)t2R.

(iii) It holds that  e
t⇣ 2 L2((0, T );UR) for every ⇣ 2 XR.

For each fix w0, w1 2 XR, define the cost functional J ( · , w0, w1) : XR ! R by

J (⇣) := J (⇣, w0, w1) =
1

2

Z T

0

k e
t⇣k2U dt+ hw0 � e�ATw1, ⇣iXR .

Let ⇣? and #? be the unique minimizers of the J ( · ,<z0,<z1) and J ( · ,=z0,=z1),
respectively. Then u?(t) =  e

t (⇣
? + i#?) satisfies z(T ; z0, u?) = z1. Moreover, u? is

optimal in the L2-sense, i.e.,

ku?kL2
((0,T );U)

= min{kvkL2
((0,T );U)

: v 2 L2((0, T );U) and z(T ; z0, v) = z1}.

Proof. We begin by noting from the antilinearity of (3.7.2) in ⇣ that (3.7.2) is equiv-
alent to the same statement but with X replaced by XR. First we consider the case
where z0, z1 2 XR. By this assumption together with (ii) we have hz0�e�AT z1, ⇣iX 2
R for all ⇣ 2 XR. If ⇣? is the unique minimizer of J , then

0 = lim
✏!0

J (⇣? + ✏⇣)� J (⇣?)

✏
=

Z T

0

<h e
t⇣
?, e

t⇣iU dt+ hz0 � e�AT z1, ⇣iX

=

Z T

0

hu?(t), e
t⇣iU dt+ hz0 � e�AT z1, ⇣iX

for all ⇣ 2 XR and the last equality is due to assumption (iii). According to Lemma
3.7.1 and the previous remark, we conclude that u?(t) =  e

t⇣
? satisfies z(T ; z0, u) =

z1.
Let us prove that J has a unique minimizer. The proof is standard but we include

it here for the sake of completeness. Because (A,B) is exactly controllable in time
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stability and controllability of the linearized model

T > 0 and (eAt)t2R is a group then the pair (�A,B) is also exactly controllable in
time T > 0 and thus there exists cT > 0 such that

|J (⇣)| �
⇣cT
2
k⇣kX � kz0 � e�AT z1kX

⌘
k⇣kX , 8⇣ 2 XR

and so J is coercive, that is, limk⇣kX!1 J (⇣) = 1. For � 2 (0, 1) and distinct
⇣
1

, ⇣
2

2 XR let ⇣ = ⇣
1

� ⇣
2

6= 0. Then

J (�⇣
1

+ (1� �)⇣
2

) = � �(1� �)

2

Z T

0

k e
t⇣k2U dt+ �J (⇣

1

) + (1� �)J (⇣
2

)

 �J (⇣
1

) + (1� �)J (⇣
2

)� �(1� �)cT
2

k⇣k2X

for which strict convexity of J follows. Moreover,

|J (⇣
1

)� J (⇣
2

)|

 1

2
|k e

t⇣1k2L2
((0,T );U)

� k e
t⇣2k2L2

((0,T );U)

|+ kz0 � e�AT z1kX k⇣1 � ⇣
2

kX


✓
1

2
k e

tk2L(X ,L2
((0,1);U))

(k⇣
1

kX + k⇣
2

kX ) + kz0 � e�AT z1kX
◆
k⇣

1

� ⇣
2

kX

for every ⇣
1

, ⇣
2

2 XR. Thus J is a continuous, coercive, strictly convex functional
and therefore it has a unique minimizer.

If v 2 UT (z1) then taking ⇣ = ⇣? in Lemma 3.7.1 we get

ku?k2L2
((0,T );U)

=

Z T

0

k e⇣?k2U dt = �hz0 � e�AT z1, ⇣?iX

=

Z T

0

hv(t), e⇣?iU dt  kvkL2
((0,T );U)

ku?kL2
((0,T );U)

and so ku?kL2
((0,T );U)

 kvkL2
((0,T );U)

. Now suppose that z0, z1 2 X and ⇣? and #?

are the unique minimizers of the cost functionals J ( · ,<z0,<z1) and J ( · ,=z0,=z1),
respectively. Since u?(t) =  e

t⇣
? 2 L2((0, T );UR) and v?(t) =  e

t#
? 2 L2((0, T );UR)

are the optimal controls steering <z0 to <z1 and =z0 to =z1, respectively, then
u? + iv? is a control steering z0 to z1 according to Lemma 3.7.1. Let us prove that
u? + iv? is optimal. Suppose that w 2 L2((0, T );U) is a control steering z0 to z1.
Since <w,=w 2 L2((0, T );UR), using conditions (i), (iii) and Lemma 3.7.1 it follows
that <w and =w are controls steering <z0 to <z1 and =z0 to =z1, respectively. By
the optimality of controls u? and v? we must have ku?kL2

((0,T );UR)  k<wkL2
((0,T );UR)

and kv?kL2
((0,T );UR)  k=wkL2

((0,T );UR) and so

ku? + iv?k2L2
((0,T );U)

= ku?k2L2
((0,T );UR)

+ kv?k2L2
((0,T );UR)

 kwk2L2
((0,T );U)

proving the optimality of u? + iv?.

Now, we apply the abstract result Theorem 3.7.2 to our problem. It can be shown
that all assumptions of the previous theorem hold for our particular problem for any
T > 2`p

↵Ae
. For our model with boundary control, the cost functional J : (X?

0

)R ! R
is given by

J (⇣0) =
1

2

Z T

0

(|v(t, 0)|2 + |v(t, `)|2) dt+ hw0, ⇣0iX � hw1, ⇣(T )iX
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3.8 legendre tau approximation of the linearized system

where w0, w1 2 (X?
0

)R, ⇣ = (B, v, g
0

, g`) is the solution of the adjoint problem

8
>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

@

@t
B(t, x) = �Ae

@

@x
v(t, x), 0 < t < T, 0 < x < `,

@

@t
v(t, x) = �↵ @

@x
B(t, x) + �v(t, x), 0 < t < T, 0 < x < `,

g0
0

(t) = �Ae

AT
v(t, 0), 0 < t < T,

g0`(t) =
Ae

AT
v(t, `), 0 < t < T,

B(t, 0) = �g
0

(t), B(t, `) = �g`(t), 0 < t < T,

B(0, x) = B0(x), v(0, x) = v0(x), 0 < x < `,

g
0

(0) = g0
0

, g`(0) = g0`

(3.7.3)

and (B0, v0, g0
0

, g0` ) 2 (X?
0

)R. If ⇣? 2 (X?
0

)R and #? 2 (X?
0

)R are the unique minimiz-
ers in the conclusion of Theorem 3.7.2 and (B?, v?, g?

0

, g?` ) is the corresponding solu-
tion of the adjoint problem (3.7.3) with initial data ⇣? + i#? then p

0

(t) = v?(t, 0) 2
L2((0, T );C) and p

1

(t) = �v?(t, `) 2 L2((0, T );C) is a pair of control satisfying
z(T ; z0, (p

0

, p
1

)) = z1 and the pair is optimal in the L2-sense.
For the model with interior control, J : (X?

0

)R ! R takes the form

J (⇣0) =
1

2

Z T

0

Z b

a
|v(t, x)|2 dx dt+ hz0, ⇣0iX � hz1, ⇣(T )iX

where ⇣ is the solution of (3.7.3). Using similar notations as in the previous para-
graph, P (t) = v?(t, ·) 2 L2((0, T );L2((a, b);C)) is an L2-optimal control for which
z(T ; z0, P ) = z1.

3.8 legendre tau approximation of the linearized system

For the rest of this chapter, we are interested in computing numerically the solution
of the linearized system

8
>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>:

@A

@t
= �Ae

@u

@x
, t > 0, 0 < x < `,

@u

@t
= �↵@A

@x
� �u, t > 0, 0 < x < `,

dh
0

dt
= �Ae

AT
u(t, 0), t > 0,

dh`
dt

=
Ae

AT
u(t, `), t > 0,

A(t, 0) = �h
0

(t), A(t, `) = �h`(t), t > 0,

A(0, x) = A0(x), u(0, x) = u0(x), 0 < x < `,

h
0

(0) = h0
0

, h`(0) = h0` .

(3.8.1)

The scheme in [39] using Legendre tau approximations will be used. To do this,
the system is diagonalized by using an appropriate transformation decomposing the
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stability and controllability of the linearized model

wave components that propagate to the left and to the right. The solution of the
original problem can be obtained by using the fact that the semigroups generated
by the two systems are similar up to a suitable time scaling.

3.8.1 Diagonalization

The state space that we consider is the real Hilbert space X = L2((0, `);R)2 ⇥ R2.
Define the map S : X ! X

S(��,�+, ⌘
0

, ⌘`) =
1p
2

✓p
Ae(�

+ � ��),
p
↵(�+ + ��),

p
Ae

AT
⌘
0

,�
p
Ae

AT
⌘`

◆
.

The map S is clearly invertible and its inverse S�1 : X ! X is given by

S�1(A, u, h
0

, h`) =
1p
2

✓
up
↵
� Ap

Ae
,

up
↵
+

Ap
Ae

,
2ATp
Ae

h
0

,� 2ATp
Ae

h`

◆
.

Recall the generator A : D(A) ⇢ X ! X for the semigroup associated with the
system (3.8.1) defined in Section 3.2. Define B : D(B) ⇢ X ! X by

B(��,�+, ⌘
0

, ⌘`) =

0

BBBBB@

��x � �
2c(�

+ + ��)

��+x � �
2c(�

+ + ��)

�(�+(0) + ��(0))

�(�+(`) + ��(`))

1

CCCCCA

where c =
p
↵Ae and D(B) = {z 2 X : Sz 2 D(A)} = {(��,�+, ⌘

0

, ⌘`) 2 X : �± 2
H1(0, `), ⌘

0

= AT
� (�+(0) � ��(0)), ⌘` = �AT

� (�+(`) � ��(`))}. A direct calculation
shows that

cB = S�1AS.

From [25, pp. 60-61] the operator B generates a strongly continuous group and is
similar to the group generated by rescaling A, more precisely,

eBt = S�1ec
�1AtS, 8 t 2 R.

Moreover, their spectra are related by �(A) = c�(B). Thus, the original system can
be solved using the new generator B and the transformation S via

eAtz
0

= SecBtS�1z
0

(3.8.2)

for any z
0

2 X and t 2 R.

3.8.2 The Numerical Scheme

Let pk : [�1, 1] ! R, k = 0, 1, 2, . . ., be the Legendre polynomial of degree k and
N � 2 be fixed. The goal is to derive a finite-dimensional system associated to the
approximate functions

��(t, x) =
NX

k=0

��k (t)pk(2x/`� 1) (3.8.3)

�+(t, x) =
N�1X

k=0

�+k (t)pk(2x/`� 1) (3.8.4)
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such that the system

d

dt
(��,�+, ⌘

0

, ⌘`)
> = B(��,�+, ⌘

0

, ⌘`)
> (3.8.5)

is satisfied as well as the compatibility conditions for �±, ⌘
0

and ⌘` in the definition
of D(B). Take note that the degrees of freedom for �� and �+ are di↵erent. This
choice will be justified later.

Define the rescaled kth degree Legendre polynomial p̃k : [0, `] ! R by p̃k(x) =
pk(2x/`� 1). Using the orthogonality property of the Legendre polynomials

(pk, pj)L2
(�1,1) = 2�kj/(2k + 1),

one can deduce the following orthogonality property of the basis functions p̃k

Z `

0

p̃k(x)p̃j(x) dx =
`

2

Z
1

�1

pk(⇠)pj(⇠) d⇠ =
`

2k + 1
�kj .

The derivatives of the Legendre polynomials can be written as linear combinations
of the lower order Legendre polynomials. More precisely,

p0k =

8
>>>>>><

>>>>>>:

k/2�1X

j=0

(4j + 3)p
2j+1

, if k is even,

(k�1)/2X

j=0

(4j + 1)p
2j , if k is odd.

Taking the inner product in L2(0, `) of the first equation of (3.8.5) with p̃l for l =
0, . . . , N � 1 and the second equation with p̃l for l = 0, . . . , N � 2, and using the fact
that p̃0k = 2

`p
0
k, we obtain the finite-dimensional system

d

dt
(��

0

, . . . ,��N�1

)>(t) = DN (��
0

, . . . ,��N )>(t)�MN (��
0

, . . . ,��N�1

)>(t)

� MN (�+
0

, . . . ,�+N�1

)>(t) (3.8.6)

d

dt
(�+

0

, . . . ,�+N�2

)>(t) = �DN�1

(�+
0

, . . . ,�+N�1

)>(t)�MN�1

(�+
0

, . . . ,�+N�2

)>(t)

� MN�1

(��
0

, . . . ,��N�2

)>(t) (3.8.7)

where DN is the N ⇥ (N + 1) matrix given by

DN =
2

`

0

BBBBBBBBBBB@

0 1 0 1 · · · 0 1 0
0 0 3 0 · · · 3 0 3
0 0 0 5 · · · 0 5 0
...

. . .
. . .

...
...

...
...

. . . 2N � 5 0 2N � 5
... 0 2N � 3 0
0 . . . . . . . . . . . . 0 0 2N � 1

1

CCCCCCCCCCCA

, if N is even
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or

DN =
2

`

0

BBBBBBBBBBB@

0 1 0 1 · · · 1 0 1
0 0 3 0 · · · 0 3 0
0 0 0 5 · · · 5 0 5
...

. . .
. . .

...
...

...
...

. . . 2N � 5 0 2N � 5
... 0 2N � 3 0
0 . . . . . . . . . . . . 0 0 2N � 1

1

CCCCCCCCCCCA

, if N is odd

and MN is the N ⇥N diagonal matrix

MN =
�

2c
diag(1, 1, . . . , 1).

To treat the boundary conditions, we impose that (��(t),�+(t), ⌘
0

(t), ⌘`(t)) 2
D(B) for every t > 0. Using pk(±1) = (±1)k this means that

⌘
0

(t) =
AT

�

 
�

NX

k=0

(�1)k��k (t) +
N�1X

k=0

(�1)k�+k (t)

!
(3.8.8)

⌘`(t) =
AT

�

 
NX

k=0

��k (t)�
N�1X

k=0

�+k (t)

!
. (3.8.9)

Solving for ��N and �+N�1

in (3.8.8) and (3.8.9) gives us the linear system

✓
��N
�+N�1

◆
(t) = TNzN (t) (3.8.10)

where zN = (��
0

, . . . ,��N�1

,�+
0

, . . . ,�+N�2

, ⌘
0

, ⌘`)> and TN is the 2⇥ (2N +1) matrix

TN =

 
�1 0 . . . �1 0 1 0 . . . 0 1 � �

2AT

�
2AT

0 1 . . . 0 1 0 �1 . . . �1 0 � �
2AT

� �
2AT

!

if N is even while

TN =

 
0 �1 . . . �1 0 0 1 . . . 0 1 �

2AT

�
2AT

1 0 . . . 0 1 �1 0 . . . �1 0 �
2AT

� �
2AT

!

if N is odd. This is the place where we need the degrees of freedom of �� and �+

to be distinct. Not only that, we need that the sum of their degrees should be odd.
Otherwise, if either the degrees are both even or both odd, then (3.8.8) and (3.8.9)
is not uniquely solvable in ��N and �+N�1

.
When �� and �+ are given by (3.8.3) and (3.8.4), respectively, then the di↵erential

equations for ⌘
0

and ⌘` in (3.8.5) are

d⌘
0

dt
(t) = �

NX

k=0

(�1)k��k (t)�
N�1X

k=0

(�1)k�+k (t) (3.8.11)

d⌘`
dt

(t) = �
NX

k=0

��k (t)�
N�1X

k=0

�+k (t). (3.8.12)
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Introducing the variable z̄N = (z>N ,��N ,�+N�1

)> the di↵erential equations (3.8.11)
and (3.8.12) can be combined into a single system given by

d

dt
(⌘

0

, ⌘`)
>(t) = KN z̄N (t) (3.8.13)

where KN = [RN RN�1

O
2⇥2

rN ] is a 2⇥ (2N + 3) matrix with

RN =

✓
�1 1 �1 . . . (�1)N

�1 �1 �1 . . . �1

◆
2 R2⇥N

and rN is the 2 ⇥ 2 matrix consisting of the last two columns of RN . Combining
(3.8.6), (3.8.7), (3.8.10) and (3.8.13) we obtain the system of di↵erential equations

żN (t) = AN z̄N (t),

✓
��N
�+N�1

◆
(t) = TNzN (t) (3.8.14)

where the (2N + 1)⇥ (2N + 3) matrix AN is given by

AN = EN � FN

EN =

0

@
D̃N ON⇥(N�1)

ON⇥2

dN ON⇥1

O
(N�1)⇥N �D̃N�1

O
(N�1)⇥2

O
(N�1)⇥1

�dN�1

KN

1

A

FN =

0

@
MN M̃N ON⇥3

mN

LN�1

MN�1

O
(N�1)⇥3

O
(N�1)⇥1

O
2⇥(2N+3)

1

A

where DN = (D̃N dN ), MN = (M̃N mN ), dN ,mN are the last columns of DN and
MN , respectively, and LN�1

= (MN�1

O
(n�1)⇥1

).
To solve the system (3.8.14) numerically, it is convenient to rewrite it as a system

in terms of zN . This can be done by partitioning the matrix AN . Partitioning AN

as AN = (A1

N A2

N ), where A1

N is (2N + 1)⇥ (2N + 1) and A2

N is (2N + 1)⇥ 2, and
using the second equation in (3.8.14), the right hand side of the di↵erential equation
in (3.8.14) is given by

AN z̄N = A1

NzN +A2

N

✓
��N
�+N�1

◆
= (A1

N +A2

NTN )zN .

Therefore the system (3.8.14) can be expressed as an ODE in zN by

żN (t) = (A1

N +A2

NTN )zN (t), t > 0. (3.8.15)

Algorithm
Input : Initial Data z0 = (A0, u0, h0

0

, h0` ) and N � 2.
Output : Approximate solution of the system ż(t) = Az(t), z(0) = z0.

(1) Compute S�1z0 = (��,�+, ⌘
0

, ⌘`).

(2) Determine ��k = (��, p̃k)L2
(0,`) for k = 0, . . . , N � 1 and �+k = (�+, p̃k)L2

(0,`)

for k = 0, . . . , N � 2.

(3) Set z0N = (��
0

, . . . ,��N�1

,�+
0

, . . . ,�+N�2

, ⌘
0

, ⌘`).
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(4) Assemble the matrices DN ,MN , TN and KN .

(5) Set BN = A1

N +A2

NTN .

(6) Compute the solution of the IVP żN (t) = BNzN (t), zN (0) = z0N .

(7) Compute z(t/c) = SzN (t).

3.8.3 Convergence Analysis

In this subsection we review the variational form of the Trotter-Kato Theorem in
Ito, Kappel and Salamon [38] and apply it to prove the convergence of the numerical
scheme presented in Section 3.8.2. However, the following discussion is a simplified
version of the more general setting given in [38].

Let V be a real Hilbert space equipped with an inner product (·, ·). Suppose that
A generates a C

0

-semigroup such that keAtk  e!t for t � 0. Denote by U the space
D(A) equipped with the graph norm kukU = (kuk2 + kAuk2)1/2. Let UN ⇢ U and
V N ⇢ V be subspaces for all N 2 N and ⌅N 2 L(UN , V N ) be an isomorphism.
In applications, UN and V N are finite-dimensional and hence the existence of ⌅N

implies that dimUN = dimV N . Let ÃN 2 L(UN , V N ) and define AN 2 L(V N ) by

AN = ÃN (⌅N )�1.

Then AN generates a strongly continuous semigroup on V N for all N 2 N.
Let ⇡N : V ! V N be the canonical orthogonal projection of V onto V N satisfying

⇡Nv = v for all v 2 V N . Thus, k⇡Nk  1 for all N 2 N so that the projections
(⇡N )N are uniformly bounded. To approximate the solution of the Cauchy problem
ż(t) = Az(t), t > 0, z(0) = v, first we project v onto V N via the projection ⇡N and
then solve the finite-dimensional system żN (t) = ANz(t), t > 0, zN (0) = ⇡Nv. For
large N , we hope that zN is close to z in some sense. Su�cient conditions for this
to happen is given by the following stability and consistency conditions.

(S) Stability. There exists ! 2 R such that (ANvN , vN )  !kvNk2 for all vN 2 V N .

(C) Consistency

(a) For any v 2 V there exists vN 2 V N for all N 2 N such that

lim
N!1

kvN � vk = 0.

(b) There exists D ⇢ U such that (�
0

I �A)D = V for some �
0

> ! where
! is the constant in (S). For any u 2 D there exists uN 2 UN for N 2 N
such that

lim
N!1

k⌅NuN � uk = 0

and
lim

N!1
kAN⌅NuN �Auk = 0.

For the proof of the following theorem, we refer to [38].

Theorem 3.8.1. If the stability (S) and the consistency (C) conditions are satisfied

then limN!1 eA
N t⇡Nv = eAtv for all v 2 V uniformly on [0, T ] for all T > 0.
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Let PN be the space of polynomials on (0, `) of degree at most N and V N =
PN�1

⇥ PN�2

⇥ R2 ⇢ X . Denote by ⇧N the orthogonal projection of L2(0, `) onto
PN and by ⇡N : X ! V N the orthogonal projection of X onto V N given by

⇡N (��,�+, ⌘
0

, ⌘`) = (⇧N�1��,⇧N�2�+, ⌘
0

, ⌘`).

Let UN be the subspace of all (�̃�, �̃+, ⌘
0

, ⌘`) 2 V N+1 such that there exist unique
real numbers ↵ and � satisfying

�̃� = ⇧N�1�̃� + ↵p̃N

�̃+ = ⇧N�2�̃+ + �p̃N�1

⌘
0

=
AT

�
(��̃�(0) + �̃+(0))

⌘` =
AT

�
(�̃�(`)� �̃+(`)).

It is clear that UN is a subspace of D(A). We claim that ⌅N : UN ! V N defined by

⌅N (�̃�, �̃+, ⌘
0

, ⌘`) = (⇧N�1�̃�,⇧N�2�̃+, ⌘
0

, ⌘`)

is an isomorphism. First let us show that ⌅N is injective. For this purpose, suppose
that ⌅N (�̃�, �̃+, ⌘

0

, ⌘`) = (0, 0, 0, 0). This implies that �̃� = ↵p̃N , �̃+ = �p̃N�1

,
��̃�(0) + �̃+(0) = 0 and �̃�(`) � �̃+(`) = 0. The first two equations imply that
�̃�(0) = (�1)N↵, �̃+(0) = (�1)N�1�, �̃�(`) = ↵ and �̃+(`) = �. Plugging these
into the remaining two equations we obtain ↵ + � = 0 and ↵ � � = 0, which imply
↵ = � = 0. Therefore (�̃�, �̃+, ⌘

0

, ⌘`) = (0, 0, 0, 0) and hence ⌅N is injective. Next
let us show that ⌅N is surjective. Let (�̃�, �̃+, ⌘

0

, ⌘`) 2 V N and let (↵,�) solve the
system 8

><

>:

↵+ � = (�1)N�1

✓
�

AT
⌘
0

+ �̃�(0)� �̃+(0)

◆
,

↵� � =
�

AT
⌘` � �̃�(`) + �̃+(`).

If we take �� = �̃�+↵p̃N and �+ = �̃++�p̃N�1

then we have (��,�+, ⌘
0

, ⌘`) 2 UN

and ⌅N (��,�+, ⌘
0

, ⌘`) = (�̃�, �̃+, ⌘
0

, ⌘`), and so ⌅N is surjective. Hence ⌅N is an
isomorphism.

Define B̃N : UN ! V N by

B̃N (�̃�N , �̃+N , ⌘
0

, ⌘`) =

0

BBBBB@

(�̃�N )x � �
2c(�̃

+

N +⇧N�1�̃�N )

�(�̃+N )x � �
2c(⇧

N�2�̃+N +⇧N�2�̃�N )

�(�̃+N (0) + �̃�N (0))

�(�̃+N (`) + �̃�N (`))

1

CCCCCA

and BN : V N ! V N by BN = B̃N (⌅N )�1. The approximate system (3.8.15) can be
rewritten in terms of the operator BN as

żN (t) = BNzN (t), zN (0) = ⇡NS�1z0

where z0 = (A0, u0, h0
0

, h0` ) 2 X .

Theorem 3.8.2. For every z 2 X and T > 0 we have

lim
N!1

sup
t2[0,T ]

keAtz � SecB
N t⇡NS�1zkX = 0. (3.8.16)
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Proof. Let yN = (�̃�N , �̃+N , ⌘
0

, ⌘`) 2 UN . Define a new inner product on X by

((�̃�, �̃+, ⌘
0

, ⌘`), ( ̃
�,  ̃+, ✓

0

, ✓`))1 = (�̃�,  ̃�)L2
(0,`) + (�̃+,  ̃+)L2

(0,`)

+
�

2AT
(⌘

0

✓
0

+ ⌘`✓`).

Similar to the proof of dissipativity of A in Theorem 3.2.2, it can be checked that
B is dissipative with respect to the inner product (·, ·)

1

. Similarly, (BNzN , zN )
1


0 · kzNk2

1

for all zN 2 V N and this proves stability.
It remains to show consistency. In this case we choose D = D(B) and �

0

=
1. Condition (C,a) is guaranteed since k⇡Nz � zk

1

! 0 for all z 2 X . Let y =
(��,�+, ⌘

0

, ⌘`) 2 D(B) and define yN = (�̃�N , �̃+N , ⌘
0N , ⌘`N ) 2 UN by

�̃�N (x) = ��(0) +
Z x

0

⇧N�1��x (⇠) d⇠

�̃+N (x) = �+(0) +

Z x

0

⇧N�2�+x (⇠) d⇠

⌘
0N =

AT

�
(��̃�N (0) + �̃+N (0))

⌘`N =
AT

�
(�̃�N (`)� �̃+N (`))

Let zN = ⌅NyN = (⇧N�1�̃�N ,⇧N�2�̃+N , ⌘
0N , ⌘`N ) 2 V N . For each x 2 [0, `] we have

by Cauchy-Schwarz inequality

|�̃�N (x)� ��(x)| 
Z `

0

|⇧N�1��x (⇠)� ��x (⇠)| d⇠  `1/2k⇧N�1��x � ��x kL2
(0,`).

Therefore k�̃�N � ��k1 ! 0. Similarly, k�̃+N � �+k1 ! 0. In particular we have

⌘`N ! AT
� (�̃�(`) � �̃+(`)) = ⌘`. By definition, ⌘

0N = ⌘
0

for all N . Moreover, since

(⇧N )N is uniformly bounded

k⇧N�1�̃�N � ��kL2
(0,`)  k⇧N�1(�̃�N � ��)kL2

(0,`) + k⇧N�1�� � ��kL2
(0,`) ! 0.

Similarly, k⇧N�2�̃+N � �+kL2
(0,`) ! 0. Consequently,

k⌅NyN � yk
1

= kzN � yk
1

! 0.

Because (�̃�N )x = ⇧N�1��x and (�̃+N )x = ⇧N�2�+x it follows that (�̃�N )x ! ��x and

(�̃+N )x ! �+x both in L2(0, `). These imply that

kBN⌅NyN �Byk
1

= kB̃NyN �Byk
1

! 0

Thus, the consistency condition (C) holds. Invoking Theorem 3.8.2 we have

lim
N!1

sup
t2[0,⌧ ]

keBty � eB
N t⇡Nyk

1

= 0 (3.8.17)

for every y 2 X and ⌧ > 0. From (3.8.2) and the equivalence of the norm k · k
1

and
the norm in X , the following estimate

keAtz � SecB
N t⇡NS�1zkX = kSecBtS�1z � SecB

N t⇡NS�1zkX
 CkSkL(X )

kecBtS�1z � ecB
N t⇡NS�1zk

1

.

holds for some constant C > 0. Taking the supremum over all t 2 [0, T ] and using
(3.8.17) with ⌧ = cT we conclude that (3.8.16) is satisfied. This completes the proof
of the theorem.
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3.8.4 Numerical Results

In our simulations, the parameters listed in the following table were used. Typical
values were taken from [60].

name meaning typical size unit in cgs
s thickness of the tube material 0.1 cm
r
0

inner rest radius of the tube 1 cm
A

0

rest cross section of the tube ⇡ cm2

E Young’s modulus of the material 4.1⇥104 g/s2/cm
p
0

ambient pressure 106 g/s2/cm
g gravitational constant 0.981 cm/s2

⇢ constant density of the fluid 0.998 g/cm2

µ
0

viscosity of the fluid 0.009 g/cm/s

The length of the tube and the overall volume of water are given by ` = 180 cm and
V = 104 cm3, respectively. Each tank has a cross sectional area AT = 50A

0

and for
simplicity we suppose that there are no forcing pressures applied on the top of each
tank, i.e., pf0 = pf` = 0. With these parameters we have ↵ = 6.5380⇥104, � = 0.0721
and � = 1.5005⇥ 10�5. Consequently, the equilibrium cross section and equilibrium
level heights are approximately given by Ae ⇡ 3.1420 and h

0e = h`e ⇡ 30.0288,
respectively.

Figure 3.1.: Eigenvalues of the matrix cB
5

(�) and the generator A (⇤).

It can be seen in Figure 3.1 that the eigenvalues of the approximating matrix cBN

lie on a single line except for those three that lie on the real axis. For comparison we
plotted the first 11 eigenvalues of the generator A using the one we have computed
theoretically, see (3.4.2). We can see the first 7 out of 11 eigenvalues of cB

5

and A
are close to each other.

In the implementation, we use the trapezoidal rule to compute the inner products
in Step 2 of the algorithm. The di↵erential equation in Step 6 is solved using the
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ODE solver ode45 in Matlab. It can be observed that by increasing the number
of Legendre polynomials we get more oscillations in the numerical solution. This is
due to the fact that the matrix cBN will have more eigenvalues with large imaginary
part. It can be seen that the deviations of the level heights converge to zero. Also,

Figure 3.2.: Approximate solution (deviations from the equilibrium) of the linearized
2-tank model with the initial conditions A0(x) = 0.25(2x/`�1), u0(x) =
�50 sin(⇡x/` + 1), h0

0

= �0.25 and h0` = 0.25 using 5 Legendre polyno-
mials: area (upper left), velocity (upper right), level height in the left
tank (lower left) and level height in the right tank (upper right).

we have ku(T, ·)kL1
(0,`) = 0.0021 and kA(T, ·)kL1

(0,`) = 1.3568⇥ 10�6 for T = 2000.
These confirm the theoretical result Theorem 3.4.4.
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4
L INEAR SYSTEMS WITH VARIABLE

COEFF IC IENTS

To establish the well-posedness of the nonlinear system (2.6.5) using an iteration
scheme, as a first step one has to linearize it by freezing some of the coe�cients.
Therefore linear systems with variable coe�cients will be studied. This chapter
is devoted to the existence, uniqueness and regularity of solutions of a hyperbolic
system of first order linear di↵erential equations on a bounded interval as well as a
hyperbolic system with dynamic boundary conditions.

First, we deal with a hyperbolic system with variable coe�cients. Two usual
notions of solutions are considered, weak and strong. The weak solutions are defined
in Lebesgue space L2 or a weighted version of it. The strong solutions are also
defined in L2 but are the limit of smoother functions that satisfy a system that is a
regularization of the original system. The existence and uniqueness of weak solutions
will be established based on a priori estimates that hold for smoother functions
and the Hahn-Banach and Riesz Representation Theorems. This procedure can be
dated back to Friedrichs. The strong solutions satisfy the energy estimates and as
a consequence will have more regularity. In particular, it will be shown that they
have L2-trace at the boundary. By an approximation or mollification argument, the
weak solutions are actually strong solutions. This is sometimes called the weak equals
strong argument.

After dealing with existence and uniqueness of weak and strong solutions, the
regularity of the solutions will be considered. In particular, the weak solutions will
be in the Sobolev space Hk for some positive integer k as long as the data are
su�ciently regular and satisfy appropriate compatibility conditions. This will be
done using a priori estimates in Sobolev spaces.

Finally, we will consider a linear hyperbolic system with variable coe�cients cou-
pled with an ordinary di↵erential equation at the boundary and prove well-posedness
in L2. In the case where the coe�cients are constant, it will be shown that the weak
solution obtained from the variational method coincides with the one given by the
theory of C

0

-semigroups.

4.1 a variational equation

In this section we prove the existence and uniqueness of solutions of a variational
problem. The framework introduced here will include the problems we consider in
this chapter, i.e., boundary value problems, initial boundary value problems and
coupled PDE-ODE systems with variable coe�cients.

Let X and Z be real Hilbert spaces and Y be a subspace of X. Suppose that
⇤ : Y ! X,  : Y ! Z and � : Y ! Z are linear operators. Let W = ker� and we
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linear systems with variable coefficients

assume that W and ⇤(W ) are both nontrivial. Given F 2 X and G 2 Z we consider
the variational problem: Find u 2 X such that

(u,⇤w)X = (F,w)X + (G, w)Z , 8 w 2 W. (4.1.1)

For the di↵erential equations we consider,  is a trace operator while ⇤ and � are
the di↵erential and trace operators associated with the adjoint problem. We note
that the space of test functions W need not be dense with respect to the topology
of the space X. For the examples in the succeeding sections, X will be the dual of
the solution space.

Theorem 4.1.1. Suppose that there exist � > 0 and C > 0 such that

�kwk2X + k wk2Z  C

✓
1

�
k⇤wk2X + k�wk2Z

◆
, 8 w 2 Y. (4.1.2)

Then the variational equation (4.1.1) has a solution u 2 X satisfying

�kuk2X  C

✓
1

�
kFk2X + kGk2Z

◆
. (4.1.3)

In addition, the solution is unique if ⇤(W ) is dense in X.

Proof. By assumption, the restriction ⇤ : W ! X of ⇤ to W is injective, and
therefore it has a left inverse ⇤�1 : ⇤(W ) ⇢ X ! W . According to (4.1.2)

�k⇤�1'k2X + k ⇤�1'k2Z  C

�
k'k2X , 8 ' 2 ⇤(W ). (4.1.4)

Define the linear map ` : ⇤(W ) ! R by

`' = (F,⇤�1')X + (G, ⇤�1')Z ,

for ' 2 ⇤(W ). We equipped ⇤(W ) with the norm k · kX . The Cauchy-Schwarz
inequality and (4.1.4) imply that

|`'|2  kFk2Xk⇤�1'k2X + kGk2Zk ⇤�1'k2Z


✓
1

�
kFk2X + kGk2Z

◆
(�k⇤�1'k2X + k ⇤�1'k2Z)

 C

�

✓
1

�
kFk2X + kGk2Z

◆
k'k2X

for all ' 2 ⇤(W ). Thus ` 2 [⇤(W )]0 and

�k`k2
[⇤(W )]

0  C

✓
1

�
kFk2X + kGk2Z

◆
.

According to the Hahn-Banach Theorem, ` admits an extension ˜̀2 X 0 such that
k˜̀kX0 = k`k

[⇤(W )]

0 . From the Riesz Representation Theorem there is a unique u 2 X

such that kukX = k˜̀kX0 and (u, v)X = ˜̀v for all v 2 X. In particular, for every
w 2 W

(u,⇤w)X = ˜̀⇤w = `⇤w = (F,w)X + (G, w)Z .

Thus u is a solution of the variational equation (4.1.1) and it satisfies the estimate
(4.1.3). Suppose that u

1

and u
2

solve (4.1.1). Then (u
1

� u
2

,⇤w) = 0 for every
w 2 W . If ⇤(W ) is dense in X then u

1

� u
2

= 0 and thus the solution of (4.1.1) is
unique.

64



4.2 linear ordinary differential equations

The idea of the proof of Theorem 4.1.1 can be traced back to the work of Friedrichs
[28]. The same idea has been used in [9, 15, 41]. The constant � is introduced
because the a priori estimates will be derived in weighted Lebesque spaces. This
parameter is useful as well for the nonlinear analysis.

In the context of di↵erential equations, the variational equation (4.1.1) can be
derived by multiplying the di↵erential equation by appropriate test functions and
formally integrate by parts. To prove the existence of solutions of the variational
equation (4.1.1), one has to prove the abstract a priori estimate (4.1.2). For hyper-
bolic partial di↵erential equations, the a priori estimates can be obtained with the
help of symmetrizers. This will be the topic of Sections 4.5, 4.6 and 4.7. Before
dealing with partial di↵erential equations, we will first illustrate how Theorem 4.1.1
can be used to prove well-posedness of a system of ordinary di↵erential equations.
This will be done in the succeeding section.

To prove uniqueness, a su�cient condition is to show that for each v 2 X there
exists w 2 Y with ⇤w = v and �w = 0. This corresponds to a homogeneous dual
problem. In most cases, the well-posedness of the dual problem follows from the
primal problem after time reversal. However, the criterion that the solution lies in
the space Y is not known a priori. In the context of PDEs a di↵erent approach in
proving uniqueness will be provided.

4.2 linear ordinary differential equations

Consider the ordinary di↵erential equation

(
h0(t) = H(t)h(t) + f(t), t 2 (0, T ),

h(0) = h
0

(4.2.1)

where T > 0, h : (0, T ) ! Rm, h
0

2 Rm, H 2 L1((0, T );Rm⇥m) and f 2
L2((0, T );Rm). The goal is to determine the existence and uniqueness of a func-
tion u 2 H1(0, T ) satisfying (4.2.1). This can be done in several ways. We only
discuss the fixed-point method and the variational method based on Theorem 4.1.1.
The first method is classical. The ordinary di↵erential equation (4.2.1) is rewritten
as an integral equation. The existence and uniqueness of a solution of the integral
equation can be obtained using the so-called Banach Fixed-Point Theorem. In the
energy method, the ordinary di↵erential equation is rewritten in variational form.
One acquires the existence and uniqueness of a solution of the variational equation
by proving an a priori estimate and using Theorem 4.1.1.

4.2.1 The Fixed-Point Method

Suppose that h 2 H1(0, T ) satisfies (4.2.1). Integration yields

h(t) = h
0

+

Z t

0

H(s)h(s) + f(s) ds, t 2 (0, T ). (4.2.2)

On the other hand, a function h 2 L2(0, T ) satisfying the integral equation (4.2.2)
is absolutely continuous and its weak derivative is given by the integrand in (4.2.2).
Thus h 2 H1(0, T ) satisfies (4.2.1) in L2(0, T ). The integral equation enables us
to reduce the problem of determining the existence of a solution of (4.2.1) to the
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problem of determining a fixed point of the map M : L2(0, T ) ! L2(0, T ) defined
by

(Mh)(t) = h
0

+

Z t

0

H(s)h(s) + f(s) ds, t 2 (0, T )

It can be easily checked that M is well-defined, i.e., it maps L2(0, T ) into itself.
Given t 2 [0, T ], the Cauchy Schwarz inequality implies

Z t

0

|(Mh
1

)(s)� (Mh
2

)(s)|2 ds =

Z t

0

����
Z s

0

H(⌧)(h
1

(⌧)� h
2

(⌧)) d⌧

����
2

ds

 TtkHk2L1
(0,T )

kh
1

� h
2

k2L2
(0,T )

.

for h
1

, h
2

2 L2(0, T ). By induction, we show that for every t 2 [0, T ] and positive
integer N

kMNh
1

�MNh
2

k2L2
(0,t) 

(Tt)N

N !
kHk2NL1

(0,T )

kh
1

� h
2

k2L2
(0,T )

. (4.2.3)

The case where N = 1 has been already shown. Suppose that (4.2.3) holds for some
N . Applying the Cauchy Schwarz inequality and the induction hypothesis we have

kMN+1h
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k2L2
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ds
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k2L2
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.

Taking t = T in (4.2.3) we get

kMNh
1

�MNh
2

kL2
(0,T )

 TN

p
N !

kHkNL1
(0,T )

kh
1

� h
2

kL2
(0,T )

.

As a consequence, the map M is continuous and MN is a strict contraction for N
large enough. Now the existence of a unique fixed point of M follows immediately
from the following theorem.

Theorem 4.2.1 (Banach Fixed-Point Theorem). Let T : X ! X be a map on a
complete metric space X with metric d. If there exists a positive integer N such
that TN is a strict contraction, i.e., there exists a constant c 2 (0, 1) such that
d(TNx, TNy)  cd(x, y) for all x, y 2 X, then T has a unique fixed point.

The proof can be found in [58, Theorem 1.1.3].

4.2.2 The Energy Method

A function h 2 L2(0, T ) is called a weak solution of (4.2.1) if the variational equation

(h, ⌘0 +H>⌘)L2
(0,T )

= �h
0

· ⌘(0)� (f, ⌘)L2
(0,T )

(4.2.4)

holds for every ⌘ 2 H1(0, T ) such that ⌘(T ) = 0. If h is a weak solution of (4.2.1)
then necessarily h 2 H1(0, T ) and h0 = Hh+ f in the weak sense. This can be seen
immediately from (4.2.4) by taking ⌘ 2 D(0, T ). In addition, integrating by parts
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4.2 linear ordinary differential equations

we obtain h(0) = h
0

. As a result, the variational equation (4.2.4) is equivalent to
the ordinary di↵erential equation (4.2.1).

The existence and uniqueness of a weak solution of (4.2.1) relies on an a priori
estimate that will be derived using the following proposition. For the proof we refer
to [9, p. 283].

Proposition 4.2.2. For each ⌘ 2 e�tH1(�1, T ) and � � 1 we have
Z T

�1
e�2�t|⌘(t)|2 dt  1

�2

Z T

�1
e�2�t|⌘0(t)|2 dt.

As a consequence we have the following estimate.

Corollary 4.2.3. For each � � 1 and ⌘ 2 H1(0, T ) such that ⌘(T ) = 0 we have
Z T

0

e2�t|⌘(t)|2 dt  1

�2

Z T

0

e2�t|⌘0(t)|2 dt. (4.2.5)

Proof. Extending ⌘ by zero for t > T we have ⌘ 2 H1(0,1). Define ⇣ 2 e�tH1(�1, T )
by ⇣(t) = ⌘(T � t). Proposition 4.2.2 and the change of variable s = T � t imply

Z T

0

e2�t|⌘(t)|2 dt =

Z T

�1
e�2�(s�T )|⇣(s)|2 ds

 1

�2

Z T

�1
e�2�(s�T )|⇣ 0(s)|2 ds. (4.2.6)

Using ⇣ 0(s) = �⌘0(T � s) and the change of variable t = T � s we have
Z T

�1
e�2�(s�T )|⇣ 0(s)|2 ds =

Z T

�1
e�2�(s�T )|⌘0(T � s)|2 ds

=

Z T

0

e2�t|⌘0(t)|2 dt. (4.2.7)

The estimate (4.2.5) now follows from (4.2.6) and (4.2.7).

With the estimate (4.2.5), it is now possible to derive an a priori estimate needed
in the well-posedness of (4.2.4). This a priori estimate will be also used in the
PDE-ODE systems of Section 4.20.

Theorem 4.2.4. Let A 2 L1((0, T );Rm⇥m). There exist constants C > 0 and
�
0

� 1 depending only on kAkL1
(0,T )

such that for all ⌘ 2 H1(0, T ) and for all
� � �

0

we have

|⌘(0)|2 + �ke�t⌘k2L2
(0,T )

 C

�
ke�t(⌘0 +A⌘)k2L2

(0,T )

+ Ce2�T |⌘(T )|2. (4.2.8)

Proof. First, suppose that ⌘ 2 H1(0, T ) satisfies ⌘(T ) = 0. According to Corollary
4.2.3 and the triangle inequality we have

�ke�t⌘k2L2
(0,T )

 2

�
ke�t(⌘0 +A⌘)k2L2

(0,T )

+
2

�
kAk2L1

(0,T )

ke�t⌘k2L2
(0,T )

. (4.2.9)

For su�ciently large �, the second term on the right hand side of (4.2.9) can be
absorbed by the term on the left hand side. Thus there are constants C > 0 and
�
0

� 1 both depending only on the L1-norm of A such that for all � � �
0

�ke�t⌘k2L2
(0,T )

 C

�
ke�t(⌘0 +A⌘)k2L2
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. (4.2.10)
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Define ⌘(t) = 0 for t > T and w(t) = e�(T�t)⌘(T � t) for �1 < t < T . Then
w 2 H1(�1, T ) and therefore it satisfies the weighted Sobolev estimate

kwk2L1
(�1,T )

 �kwk2L2
(�1,T )

+
1

�
kw0k2L2

(�1,T )

(4.2.11)

for all � > 0, see the proof of Proposition 4.16.1. Since w0(t) = ��e�(T�t)⌘(T � t)�
e�(T�t)⌘0(T � t) the above estimate implies that for some C > 0 there holds

e2�(T�t)|⌘(T � t)|2  C

✓
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ke�t⌘0k2L2
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◆
(4.2.12)

for all t 2 [0, T ]. Choosing t = T in (4.2.12), writing ⌘0 = (⌘0 + A⌘)� A⌘ and using
the same argument as before we obtain, by increasing �

0

if necessary, that for all
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0

|⌘(0)|2  C
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for some C > 0. The estimate

|⌘(0)|2 + �ke�t⌘k2L2
(0,T )
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ke�t(⌘0 +A⌘)k2L2

(0,T )

(4.2.14)

follows from (4.2.10) and (4.2.13).
Now suppose that ⌘ 2 H1(0, T ). Define ⇣ 2 H1(0, T ) by ⇣(t) = ⌘(t) � ⌘(T ) for

0 < t < T . Applying (4.2.14) to ⇣, using the triangle inequality and the fact that
2�ke�tk2L2

(0,T )

= e2�T � 1 we obtain (4.2.8).

We are now in position to use Theorem 4.1.1 in proving that (4.2.4) is well-posed.
We take X = e��tL2(0, T ), Y = H1(0, T ) and Z = Rm. The operators ⇤,  and �
are given by ⇤⌘ = (⌘0 +H>⌘),  ⌘ = ⌘(0) and �⌘ = ⌘(T ) for all ⌘ 2 Y , respectively.
Thus the variational equation (4.2.4) can be written in the form

(e�2�th,⇤⌘)X = (�e�2�tf, ⌘)X + (�h
0

, ⌘)Z , 8 ⌘ 2 W (4.2.15)

where W = {⌘ 2 Y : ⌘(T ) = 0}. Note that the set X coincides with L2(0, T ).

Theorem 4.2.5. Let h
0

2 Rm, H 2 L1(0, T ) and f 2 L2(0, T ). Then (4.2.1) has
a unique weak solution h 2 L2(0, T ). Furthermore, h 2 H1(0, T ) and it satisfies the
energy estimates
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and
ke��th0k2L2
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for all � � �
0

for some C > 0 and �
0

� 1 both depending only on kHkL1
(0,T )

.

Proof. Using the notations of the paragraph preceding the theorem, the a priori
estimate (4.1.3) follows directly from Theorem 4.2.4. Hence Theorem 4.1.1 implies
the existence of g 2 X such that

(g,⇤⌘)X = (�e�2�tf, ⌘)X + (�h
0

, ⌘)Z , 8 ⌘ 2 W,
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and it satisfies

�kgk2X  C
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ke�2�tfk2X + |h
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◆
. (4.2.18)

Then h = e2�tg 2 L2(0, T ) is a weak solution of (4.2.1) and it satisfies (4.2.16)
due to (4.2.18). From the discussion at the beginning of this section, we already
know that the weak solution h lies in H1(0, T ) and it satisfies h0 = Hh + f in
L2(0, T ). The estimate (4.2.17) follows from the di↵erential equation h0 = Hh + f
and (4.2.16). Given f 2 X, the dual problem ⌘0 + H>⌘ = f , ⌘(T ) = 0 admits
a solution ⌘ 2 H1(0, T ), which was just shown for the forward problem. Hence
⇤(W ) = X and therefore the weak solution is unique by Theorem 4.1.1.

The fixed point method takes less e↵ort than the energy method. However, the
advantage of the latter is that it shows directly from the a priori estimate the contin-
uous dependence of the solution with respect to the data. We would like to extend
the energy method presented above to a hyperbolic system of partial di↵erential
equations on a bounded interval. Of course the derivation of the a priori estimates
will now be more technical. This will be the goal of the succeeding sections.

4.3 linear hyperbolic system of pdes

Consider the hyperbolic system of first order linear partial di↵erential equations with
variable coe�cients

@tu(t, x)+A(t, x)@xu(t, x)+R(t, x)u(t, x) = f(t, x), (t, x) 2 (0, T )⇥(0, 1), (4.3.1)

where u takes values in Rn. The system (4.3.1) is supplied with the boundary
conditions

B
0

u(t, 0) = g
0

(t), t 2 (0, T ), (4.3.2)

B
1

u(t, 1) = g
1

(t), t 2 (0, T ), (4.3.3)

and initial condition
u(0, x) = u

0

(x), x 2 (0, 1). (4.3.4)

The data f, g
0

, g
1

, u
0

and the coe�cients A,R,B
0

, B
1

are contained in appropriate
function spaces that will be specified precisely in the succeeding sections.

The aim is to prove the well-posedness of the system (4.3.1)�(4.3.4) in L2 and the
regularity of the solutions under additional smoothness and compatibility conditions
on the initial data, boundary data and the coe�cients. Following the framework in
[9] the first step is to provide well-posedness for the pure boundary value problem

8
><

>:

@tu(t, x) +A(t, x)@xu(t, x) +R(t, x)u(t, x) = f(t, x), (t, x) 2 R⇥ (0, 1),

B
0

u(t, 0) = g
0

(t), t 2 R,
B

1

u(t, 1) = g
1

(t), t 2 R,

where A and R are infinitely di↵erentiable. Afterwards, the initial value problem
(4.3.1)�(4.3.4) with homogeneous initial data u

0

= 0 will be considered. This is
done by extending the data f , g

0

, and g
1

by zero outside the interval (0, T ) and
analyzing the associated boundary value problem. Thanks to a causality principle
the restriction of the solution of the boundary value problem is the solution of the
homogeneous initial boundary value problem. Finally, the well-posedness of the
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general initial boundary value problem will be established from the homogeneous
case using lifting and approximation arguments.

In the previous section, we have seen that a weak solution of the ordinary di↵er-
ential equation (4.2.1) automatically satisfies the di↵erential equation in the sense
of L2 and the initial condition is satisfied. However, for the initial value problem
(4.3.1)�(4.3.4) this is not immediate. In order to show that the weak solution, which
is in L2 initially, satisfies the partial di↵erential equation in some sense we need to
consider the space of L2 functions u for which the left hand side of (4.3.1) also lies
in L2 in the sense of distributions. Furthermore, it will be shown that such functions
admit traces on the boundary in certain spaces and this information will help us
explain how the weak solution satisfies the boundary and the initial conditions in
some sense.

For simplicity, we rewrite the boundary conditions in a single equation. Setting
⌦ = (0, 1), wefine u|@⌦(t) = (u(t, 0), u(t, 1)), g = (g

0

, g
1

),

B =

✓
B

0

Op⇥n

O
(n�p)⇥n B

1

◆
2 Rn⇥2n. (4.3.5)

Here Ok⇥j denotes the k ⇥ j zero matrix. The boundary conditions (4.3.2) and
(4.3.3) can be written as Bu|@⌦ = g. Whenever there are matrices defined at the
boundaries, we combine them into a single matrix using the same form as (4.3.5).

4.4 graph spaces and their traces

Let O be a non-empty open subset of R2, A 2 W 1,1(O) and R 2 L1(O). Consider
the linear operator L : H1(O) ! L2(O) defined by

Lu = @tu+A@xu+Ru.

By duality, we can extend the definition of L for u 2 L1

loc

(O) in the sense of distri-
butions. Define L : L1

loc

(O) ! D(O)0 by

Lu(') = (Lu,')D(O)

0⇥D(O)

=

Z

O
u · L⇤' dx dt, 8 ' 2 D(O)

where L⇤ denotes the formal adjoint of L given by

L⇤' = � @t'�A>@x'� (@xA)>'+R>'. (4.4.1)

By the definition of distributional derivatives, it can be seen that

Lu = @tu+ @x(Au)� (@xA)u+Ru

for all u 2 L1

loc

(O) in the sense of distributions.
Given u 2 L2(O), we have

|Lu(')|  kukL2
(O)

kL⇤'kL2
(O)

 CkukL2
(O)

k'kH1
(O)

for all ' 2 D(O) and for some constant C > 0 independent of u and '. Therefore Lu
has a unique extension, denoted by the same notation, to a bounded linear functional
fromH1

0

(O) to R. Furthermore, kLukH�1
(O)

 CkukL2
(O)

for all u 2 L2(O), showing
that L 2 L(L2(O);H�1(O)).
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Given u 2 L2(O), suppose that there exists C > 0 such that

|Lu(')|  Ck'kL2
(O)

, 8 ' 2 D(O). (4.4.2)

The density of D(O) in L2(O) implies that Lu can be extended to a linear functional

in L2(O)0 and denote this extension by fLu at the moment. It can be seen that
fLu|H1

0 (O)

= Lu where L is regarded as a bounded linear operator from L2(O) to

H�1(O). This equality follows immediately from the fact that it holds for all u 2
D(O) and that both operators fLu and Lu are continuous. For this reason, we simply

write Lu for fLu.
From the Riesz Representation Theorem, there exists a unique f 2 L2(O) such

that Lu(') = (f,')L2
(O)

for all ' 2 L2(O) whenever (4.4.2) holds. Identifying L2(O)
with its dual, we write Lu = f . Thus, Lu = f for some f 2 L2(O), with u 2 L2(O),
is equivalent to

(u, L⇤')L2
(O)

= (f,')L2
(O)

, 8 ' 2 D(O).

If u 2 H1(O) then from the definition of weak derivatives it follows that

(u, L⇤')L2
(O)

= (@tu+A@xu+Ru,')L2
(O)

, 8 ' 2 D(O).

Therefore Lu = @tu + A@xu + Ru in the weak sense. Thus, the operator L defined
in the sense of distributions and the di↵erential operator @t + A@x + R coincide in
H1(O).

For ✓ 2 C1(O;R) the distribution ✓Lu 2 D(O)0 is defined by

✓Lu(') = Lu(✓') = (u, L⇤(✓'))L2
(O)

, 8' 2 D(O).

The product rule for smooth functions implies

(u, L⇤(✓'))L2
(O)

= (u, ✓L⇤'� (@t✓ +A>@x✓)')L2
(O)

= (✓u, L⇤')L2
(O)

� ((@t✓ + (@x✓)A)u,')L2
(O)

.

Therefore ✓Lu = L(✓u)� (@t✓ + (@x✓)A)u in the sense of distributions.
Consider the following subspace of L2(O)

E(O) = {u 2 L2(O) : Lu 2 L2(O)}.

Induced by the graph norm

kukE(O)

= (kuk2L2
(O)

+ kLuk2L2
(O)

)
1
2

E(O) becomes a Hilbert space, called a graph space. Furthermore, the zero order
terms of L is immaterial in the definition of E(O), that is,

E(O) = {u 2 L2(O) : @tu+ @x(Au) 2 L2(O)}.

The space E(O) is closed under multiplication of functions in C1
b (O;R) and if uj ! u

in E(O) then ✓uj ! ✓u in E(O) for every ✓ 2 C1
b (O;R).

Theorem 4.4.1. Let O
1

be a nonempty open subset of O. If u 2 E(O) then u|O1
2

E(O
1

) and
L(u|O1

) = (Lu)|O1
. (4.4.3)

If (uj)j ⇢ E(O) satisfies uj ! u in E(O) then uj|O1
! u|O1

in E(O
1

).
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Proof. It is clear that u|O1
2 L2(O

1

). Every ' 2 D(O
1

) can be considered as an
element of D(O) by defining ' to be zero outside O

1

. With this, we have

(u|O1
, L⇤')L2

(O1)
=

Z

O1

u|O1
· L⇤' dx dt =

Z

O
u · L⇤' dx dt

=

Z

O
Lu · ' dx dt =

Z

O1

(Lu)|O1
· ' dx dt.

Thus L(u|O1
) = (Lu)|O1

and therefore u|O1
2 E(O

1

). If uj ! u in E(O) then
uj|O1

! u|O1
in L2(O

1

) and from (4.4.3)

L(uj|O1
) = (Luj)|O1

! (Lu)|O1
= L(u|O1

)

in L2(O
1

). Therefore uj|O1
! u|O1

in E(O
1

).

The trace operator � : H1(R⇥ (0, 1)) ! H
1
2 (R⇥{0, 1}) can be extended to E(R⇥

(0, 1)) thanks to Theorem 4.4.2 below. Identifying the elements of H
1
2 (R ⇥ {0, 1})

and H
1
2 (R)⇥H

1
2 (R) we sometimes write �u = (u|x=0

, u|x=1

) for u 2 H1(R⇥ (0, 1)).
Before proving the following trace theorem, we need to construct a continuous right
inverse of the trace operator. Since the trace operator � is onto, it follows that
��⇤ > 0 and hence ��⇤ is invertible, see [77, Proposition 12.1.3]. Here, �⇤ 2
L(H 1

2 (R⇥ {0, 1});H1(R⇥ (0, 1))) denotes the adjoint of �. Define

�R = �⇤(��⇤)�1 2 L(H 1
2 (R⇥ {0, 1});H1(R⇥ (0, 1))). (4.4.4)

By definition, ��R = id, where id is the identity map ofH
1
2 (R⇥{0, 1}). The operator

�R is sometimes called a lifting operator because functions defined on the boundary
are lifted in the domain in a continuous way. An alternative way of proving the
existence of lifting operators is presented in Adams [1].

Given two pair of functions (f
1

, f
2

) and (g
1

, g
2

) we define the componentwise prod-
uct

(f
1

, f
2

)⌦ (g
1

, g
2

) = (f
1

g
1

, f
2

, g
2

) (4.4.5)

whenever the products f
1

g
1

and f
2

g
2

are meaningful. This definition will be applied
to pairs of traces at x = 0 and x = 1.

Theorem 4.4.2. Suppose that A 2 W 1,1(R ⇥ (0, 1)) is invertible and constant
outside a compact subset of R⇥ (0, 1) and R 2 L1(R⇥ (0, 1)).

1. The set D(R⇥ [0, 1]) is dense in E(R⇥ (0, 1)).

2. For each u 2 E(R⇥ (0, 1)) define �gu : H
1
2 (R)⇥H

1
2 (R) ! R by

�gu('0

,'
1

) = lim
j!1

(�uj , ('0

,'
1

))L2
(R)⇥L2

(R) (4.4.6)

where (uj)j ⇢ H1(R ⇥ (0, 1)) satisfies uj ! u in E(R ⇥ (0, 1)). Then �gu 2
[H

1
2 (R)⇥H

1
2 (R)]0 ' H� 1

2 (R)⇥H� 1
2 (R) and �g 2 L(E(R⇥ (0, 1));H� 1

2 (R)⇥
H� 1

2 (R)). Furthermore,

�gu = �u, 8 u 2 H1(R⇥ (0, 1)). (4.4.7)
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3. If ✓ 2 C1
b (R⇥ [0, 1];R) and u 2 E(R⇥ (0, 1)) then �g(✓u) = �✓ ⌦ �gu where

(�✓ ⌦ �gu)('0

,'
1

) := �gu(�✓ ⌦ ('
0

,'
1

)) (4.4.8)

for ('
0

,'
1

) 2 H
1
2 (R)⇥H

1
2 (R).

Proof. (1) follows using mollifiers, see [9, p. 258]. Let v 2 H1(R ⇥ (0, 1)) and

' = ('
0

,'
1

) 2 H
1
2 (R)⇥H

1
2 (R). By Green’s Formula

(�v,')L2
(R)⇥L2

(R) =

Z

R
�v(t, 1) · '

1

(t) dt�
Z

R
�v(t, 0) · (�'

0

(t)) dt

=

Z

R

Z
1

0

A�1Lv · �R(�'0

,'
1

) dx dt�
Z

R

Z
1

0

v · (A�1L)⇤�R(�'0

,'
1

) dx dt

where
(A�1L)⇤' = �@t(A�>')� @x'+R>A�>'. (4.4.9)

Thus there exists a constant C > 0 independent of v and ' such that

|(�v,')L2
(R)⇥L2

(R)|  CkvkE(R⇥(0,1))k'kH 1
2
(R)⇥H

1
2
(R)

. (4.4.10)

Therefore the limit in (4.4.6) exists and from (1) the limit is independent of the
approximating sequence (uj)j ⇢ H1(R ⇥ (0, 1)) as long as uj ! u 2 E(R ⇥ (0, 1)).

From (4.4.6) and (4.4.10) we have �gu 2 H� 1
2 (R) ⇥ H� 1

2 (R) and �g 2 L(E(R ⇥
(0, 1));H� 1

2 (R) ⇥H� 1
2 (R)). The equality (4.4.7) follows immediately from the defi-

nition of �g and the inclusion L2(R)⇥ L2(R) ⇢ H� 1
2 (R)⇥H� 1

2 (R).
If u 2 H1(R⇥ (0, 1)) then (4.4.7) implies

�g(✓u) = �(✓u) = �✓ ⌦ �u = �✓ ⌦ �gu. (4.4.11)

Now (4.4.8) follows from property (1), (4.4.11) and the continuity of �g.

If a 2 W 1,1(O) and u 2 H
1
2 (O) then au 2 H

1
2 (O). We extend this definition of

product for u 2 H� 1
2 (O) by duality.

Definition 4.4.3. Let u 2 H� 1
2 (O) and a 2 W 1,1(O;Rn⇥n). The product au 2

H� 1
2 (O) is defined by

hau,'i
H� 1

2
(O)⇥H

1
2
(O)

= hu, a>'i
H� 1

2
(O)⇥H

1
2
(O)

, ' 2 H
1
2 (O).

For each u 2 E(R⇥(0, 1)), define the trace operators �igu : H
1
2 (R) ! R for i = 0, 1

by

�0gu(') = �gu(', 0), �1gu(') = �gu(0,'), ' 2 H
1
2 (R).

Then �ig 2 L(E(R ⇥ (0, 1));H� 1
2 (R)) for i = 0, 1. If u 2 H1(R ⇥ (0, 1)) then

�igu = �u|x=i for i = 0, 1. By a standard density argument, we have the generalized
Green’s identity

Z

R

Z
1

0

Lu · v dx dt�
Z

R

Z
1

0

u · L⇤v dx dt (4.4.12)

= hA|x=1

�1gu,�v|x=1

i
H� 1

2
(R)⇥H

1
2
(R)

� hA|x=0

�0gu,�v|x=0

i
H� 1

2
(R)⇥H

1
2
(R)
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for all u 2 E(R⇥ (0, 1)) and v 2 H1(R⇥ (0, 1)).
We also need traces of functions in E(QT ) where QT = (0, T ) ⇥ (0, 1) which

will be used for initial boundary value problems. This has been done in [3] for
general Lipschitz domains in [41] for general graph spaces. It is shown in [3] that
D(QT ) is dense in E(QT ). This information allows us to extend the trace operator

� : H1(QT ) ! H
1
2 (@QT ) to functions in E(QT ) as we have done in the case of the

graph space E(R⇥ (0, 1)). Given u 2 E(QT ) define �gu : H
1
2 (@QT ) ! R by

�gu(') = lim
j!1

(�uj , A@')L2
(@QT )

, ' 2 H
1
2 (QT ),

where

A@ = �1{x=0} + 1{x=1} �A�>1{t=0} +A�>1{t=T}, in @QT

and (uj)j ⇢ H1(QT ) and uj ! u in E(QT ). Here, 1S denotes the indicator

function of a set S. As in the previous theorem we have �gu 2 H� 1
2 (@QT ) and

�g 2 L(E(QT );H
� 1

2 (@QT )). Moreover, if u 2 H1(Q) then �gu = A>
@ �u and

�g(✓u) = ✓|@QT
�gu for every ✓ 2 C1(QT ;R) and u 2 E(QT ).

The next step is to localize the trace defined in the previous discussion. Given a
nonempty ⌃ ⇢ @QT we define

V(⌃) = {' 2 H
1
2 (@QT ) : supp ' ⇢ ⌃}. (4.4.13)

It is known that V(⌃) is dense in L2(⌃), see [77, Theorem 13.6.10]. Denote by

V (⌃) the completion of V(⌃) with respect to the norm of H
1
2 (@QT ). Thus we have

the Gelfand triple
V (⌃) ⇢ L2(⌃) ⇢ V (⌃)0. (4.4.14)

If ' 2 V (⌃) then there exists a sequence ('j)j ⇢ V(⌃) such that k'j�'k
H

1
2
(@QT )

!
0. If a 2 W 1,1(⌃) then we have a>'j 2 V(⌃) and ka>'j�a>'k

H
1
2
(@QT )

! 0. Hence

a>' 2 V (⌃). As a result, we can define the product au 2 V (⌃)0 where u 2 V (⌃)0

and a 2 W 1,1(⌃) by

hau,'iV (⌃)

0⇥V (⌃)

= hu, a>'iV (⌃)

0⇥V (⌃)

, ' 2 V (⌃). (4.4.15)

Let us denote ⌃
0

= {0} ⇥ (0, 1), ⌃
1

= (0, T ) ⇥ {0}, ⌃
2

= (0, T ) ⇥ {1} and
⌃
3

= {T}⇥(0, 1). Given u 2 E(QT ) we define the generalized trace u|⌃1
: V (⌃

1

) ! R
of u on ⌃

1

by

u|⌃1
(') = � lim

j!1
h�gu,'ji

H� 1
2
(@QT )⇥H

1
2
(@QT )

, ' 2 V (⌃
1

), (4.4.16)

where ('j)j ⇢ V(⌃
1

) and k'j � 'k
H

1
2
(@QT )

! 0. By definition, we have

|u|⌃1
(')|  k�guk

H� 1
2
(@QT )

k'k
H

1
2
(@QT )

.

Thus u|⌃1
2 V (⌃

1

)0 and ku|⌃1
kV (⌃1)

0  k�guk
H� 1

2
(@QT )

. In particular, u 7! u|⌃1
2

L(E(QT );V (⌃
1

)0) because �g is bounded. It follows from the definition that

hu|⌃1
,'iV (⌃1)

0⇥V (⌃1)
= �h�gu,'i

H� 1
2
(@QT )⇥H

1
2
(@QT )

(4.4.17)
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for all u 2 E(QT ) and ' 2 V(⌃
1

). Also,

u|⌃1
= (�u)|⌃1

, 8 u 2 H1(QT ). (4.4.18)

The other trace operators are defined as follows

hu|⌃2
,'

2

iV (⌃2)
0⇥V (⌃2)

= lim
j!1

h�gu,'2ji
H� 1

2
(@QT )⇥H

1
2
(@QT )

hu|⌃0
,'

0

iV (⌃0)
0⇥V (⌃0)

= � lim
j!1

h�gu,A(0, ·)>'0ji
H� 1

2
(@QT )⇥H

1
2
(@QT )

hu|⌃3
,'

3

iV (⌃3)
0⇥V (⌃3)

= lim
j!1

h�gu,A(T, ·)>'3ji
H� 1

2
(@QT )⇥H

1
2
(@QT )

where 'i 2 V (⌃i), 'ij 2 V(⌃i) and k'ij � 'ik
H

1
2
(@QT )

! 0 for i = 0, 2, 3. The

properties of the trace u|⌃1
are carried by these traces as well.

Let us simplify the notation for the traces we have introduced in this section. For
functions u in E(R⇥ (0, 1)) we shall also use the notations u|@⌦, u|x=0

and u|x=1

for
�gu, �0gu and �1gu, respectively. If u 2 E(QT ) then similarly we also denote u|x=0

,
u|x=1

, u|t=0

and u|t=T for u|⌃1
, u|⌃2

, u|⌃0
, and u|⌃3

, respectively. Moreover, setting
⌦ = (0, 1) we let u|@⌦ = (u|x=0

, u|x=1

) for u 2 E(QT ).

4.5 a priori estimates in e�tL2 with smooth coefficients

4.5.1 Functional Boundary Symmetrizers

Consider the first order di↵erential operator

L = @t +A@x +R.

The goal of this subection is to prove an a priori estimate necessary for well-posedness
under the following assumptions on the coe�cients A and R.

(H1) A 2 C1
b (R ⇥ [0, 1];Rn⇥n) has a bounded inverse and is constant outside a

compact set of R⇥ [0, 1]

(H2) R 2 C1
b (R⇥ [0, 1];Rn⇥n)

We also assume that the boundary matrices B
0

and B
1

satisfy

(H3) B
0

2 C1
b (R;Rp⇥n) and B

1

2 C1
b (R;R(n�p)⇥n) are constant outside a compact

set of R and have full ranks

The a priori estimates are derived in the weighted space L2(R⇥ (0, 1); e��t dt dx)
where � � 1 is su�ciently large. For this reason, we also introduce the di↵erential
operator L� = L+ �In, where � � 1. Let P �(x) = �A(t, x)�1@t � �A(t, x)�1. Then
P � is a first order partial di↵erential operator in the variable t with parameters
x 2 [0, 1] and � � 1. From (H1) it can be shown that for all x 2 [0, 1], {P �(x)}��1

is
a family of pseudo-di↵erential operators of order 1 in the variable t and their symbols
are p(t, �, �;x) = �(i� + �)A(t, x)�1. Here, � is the frequency associated with the
Fourier variable t.

Definition 4.5.1. A functional boundary symmetrizer for (A,B) is a family {R� :
� � �

0

} ⇢ C 1([0, 1];L(L2(R))), where �
0

� 1, such that
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1. there exists M > 0 such that

sup
���0

kR�kC 1
([0,1];L(L2

(R)))  M, (4.5.1)

2. R�(x) is self-adjoint for all x 2 [0, 1] and � � �
0

,

3. <(R�(x)P �(x)) 2 L(L2(R)) and there exists C > 0 such

<(R�(x)P �(x)) � C� (4.5.2)

holds for all x 2 [0, 1] and � � �
0

, and

4. there exist ↵,� > 0 such that

�⌫(x)(R�(x)u, u)L2
(R) � ↵kuk2L2

(R) � �kBxuk2L2
(R) (4.5.3)

for all x = 0, 1, t 2 R and u 2 L2(R), where ⌫(0) = �1 and ⌫(1) = 1.

The condition (4.5.3) allows us to control the trace u|@⌦.

Theorem 4.5.2. If (A,B) has a functional boundary symmetrizer then there exist
�
0

� 1 and C > 0 such that for all � � �
0

and u 2 e�tH1(R⇥ (0, 1)) we have

�

Z

R

Z
1

0

e�2�t|u(t, x)|2 dx dt+
Z

R
e�2�t|u(t)|@⌦|2 dt (4.5.4)

 C

✓
1

�

Z

R

Z
1

0

e�2�t|(Lu)(t, x)|2 dx dt+
Z

R
e�2�t|Bu(t)|@⌦|2 dt

◆
.

Proof. It is enough to prove the estimate in the case where R = 0. Indeed, if (4.5.4)
holds for R = 0 then by the triangle inequality

�

Z

R

Z
1

0

e�2�t|u(t, x)|2 dx dt+
Z

R
e�2�t|u(t)|@⌦|2 dt

 C

✓
1

�

Z

R

Z
1

0

e�2�t|(Lu)(t, x)|2 dx dt+ kRk2L1

�

Z

R

Z
1

0

e�2�t|u(t, x)|2 dx dt

+

Z

R
e�2�t|Bu(t)|@⌦|2 dt

◆
.

for every � � �
0

and u 2 e�tH1(R⇥ (0, 1)). The second term on the right hand side
can be absorbed by the first term on the left hand side for su�ciently large �. For
if �

1

=
p
2CkRkL1 then for every � � max(�

0

, �
1

) there exists a C > 0 such that
(4.5.4) holds for R 6= 0.

By a standard density argument, it is enough to prove the estimate (4.5.4) for all
u 2 D(R⇥ [0, 1]). Since R�(x) is self-adjoint

d

dx

Z

R
R�(x)u(t, x) · u(t, x) dt

=

Z

R

dR�

dx
(x)u(t, x) · u(t, x) dt+ 2

Z

R
<R�(x)@xu(t, x) · u(t, x) dt

=

Z

R

dR�

dx
(x)u(t, x) · u(t, x) dt+ 2

Z

R
<R�(x)P �(x)u(t, x) · u(t, x) dt

+ 2<
Z

R
R�(x)A(t, x)�1L�u(t, x) · u(t, x) dt

=: I
1

(x) + I
2

(x) + I
3

(x). (4.5.5)
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According to (4.5.1) we have

|I
1

(x)|  M

Z

R
|u(t, x)|2 dt, 8 x 2 [0, 1]. (4.5.6)

From (4.5.2), the term I
2

can be estimated from below

I
2

(x) � 2C�

Z

R
|u(t, x)|2 dt, 8 x 2 [0, 1] (4.5.7)

By Young’s inequality and (4.5.1) we obtain

|I
3

(x)|  C
1

✓
1

✏�

Z

R
|L�u(t, x)|2 dt+ ✏�

Z

R
|u(t, x)|2 dt

◆
, 8 x 2 [0, 1]. (4.5.8)

for some C
1

> 0 independent of x and u and ✏ > 0.
Therefore from (4.5.5)�(4.5.8)

d

dx

Z

R
R�(x)u(t, x) · u(t, x) dt

� ((2C � C
1

✏)� �M)

Z

R
|u(t, x)|2 dt� C

1

✏�

Z

R
|L�u(t, x)|2 dt

Chossing ✏ = C/C
1

, integrating over [0, 1] and rearranging the terms

(C� �M)

Z

R

Z
1

0

|u(t, x)|2 dx dt�
Z

R
R�(1)u(t, 1) · u(t, 1) dt

+

Z

R
R�(0)u(t, 0) · u(t, 0) dt  C2

1

C�

Z

R

Z
1

0

|L�u(t, x)|2 dx dt.

Using (4.5.3) and choosing � � max(�
0

, 2M/C) we can see that

C�

2

Z

R

Z
1

0

|u(t, x)|2 dx dt+ ↵

Z

R
|u(t)|@⌦|2 dt

 C2

1

C�

Z

R

Z
1

0

|L�u(t, x)|2 dx dt+ �

Z

R
|Bu(t)|@⌦|2 dt. (4.5.9)

Replacing u by e��tu, which is also an element of D(R ⇥ [0, 1]) provided that u is,
and using L�(e��tu) = e��tLu, the a priori estimate (4.5.4) follows from (4.5.9).

4.5.2 Kreiss Symmetrizers

For boundary value problems with Friedrichs symmetrizer and dissipative bound-
ary conditions, there is a natural functional boundary symmetrizer induced by the
Friedrichs symmetrizer. However, there are boundary value problems that do not
have dissipative boundary conditions but still admit a functional boundary sym-
metrizer, for example the system that we are considering here.

In 1970, Kreiss [45] introduced a class of symmetrizers for which energy estimates
can be also obtained. The author considered the case of constant coe�cients and
proposed that it also can be done for the variable coe�cient case. Later on, it has
been verified that this holds [9, 15, 55]. In this section, we define the global and
local Kreiss symmetrizers and see how global Kreiss symmetrizers induce a functional
boundary symmetrizer. Our approach follows from Benzoni-Gavage and Serre [9].

Define C+ = {z 2 C : <z � 0}, C+⇤ = C+ \ {0}, X = R ⇥ [0, 1] ⇥ C+⇤ and
X
0

= R⇥ {0, 1}⇥ C+⇤ . For X = (t, x, ⌧) 2 X we let A(X) = �⌧A(t, x)�1.
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Definition 4.5.3. A matrix-valued map R : C1(X;Cn⇥n) is called a global Kreiss
symmetrizer for (A,B) if R(X) is Hermitian for all X 2 X, t 7! R(t, x, ⌧) is constant
outside a compact subset of R, (t, �) 7! R(t, x, � + i�) 2 S0(Rt ⇥ R�), there exist
constants ↵,�, C > 0 such that

<(R(X)A(X)) � (C<⌧)In, 8 X = (t, x, ⌧) 2 X, (4.5.10)

and

�⌫(x)R(X) + �Bx(t)
>Bx(t) � ↵In, 8 X = (t, x, ⌧) 2 X

0

. (4.5.11)

Theorem 4.5.4. If (A,B) has a global Kreiss symmetrizer then it has a functional
boundary symmetrizer.

Proof. For the sake of completeness, we include a proof of this theorem which ba-
sically follows from the one given in [9]. By assumption R(x) := R(·, x, � + i ·) 2
S0(Rt ⇥ R�) for � � 1. Therefore {Op�(R(x))}��1

is a family of pseudo-di↵erential
operators of order 0.

There is no reason for Op�(R(x)) to be symmetric. For this reason we symmetrize
it. We claim that

x 7! R�(x) := <Op�(R(x)) =
1

2
(Op�(R(x)) + Op�(R(x))⇤) (4.5.12)

defines a functional boundary symmetrizer. The operator R�(x) is clearly symmetric
for every x 2 [0, 1] and � � 1. According to [2, Exercise 5.3], there exists C > 0
independent of x and � such that

kOp�(R(x))kL(L2
(R))  C

X

i,j2{0,1}
k@it@

j
�R(x)kL1

(R⇥R) (4.5.13)

Therefore, there exists a constant M
1

> 0 such that kOp�(R(x))kL(L2
(R))  M

1

for
every x 2 [0, 1] and � � 1. In particular, kR�(x)kL(L2

(R))  M
1

from (4.5.12).

It can be seen from the dominated convergence theorem that d

dx Op�(R(x)) =

Op�
�

d

dxR(x)
�
and as in (4.5.13) there exists M

2

> 0 such that

����
d

dx
Op�(R(x))

����
L(L2

(R))
=

����Op�
✓

d

dx
R(x)

◆����
L(L2

(R))
 M

2

(4.5.14)

for every x 2 [0, 1] and � � 1. Thus R� 2 C 1([0, 1];L(L2(R))) satisfies (4.5.1) with
�
0

= 1 and M = max(M
1

,M
2

).
It remains to verify (4.5.2) and (4.5.3), which is possible if we take �

0

large enough.
From Theorem C.2.1 and the fact that R(x) is Hermitian, there exists a family
{q(x)}��1

of order �1 symbols such that

Op�(q(x)) = Op�(R(x))�Op�(R(x))⇤ = �2(R�(x)�Op�(R(x))).

Hence R�(x) = Op�(R(x)� 1

2

q(x)).
Because B is independent of the frequency � it follows

�⌫(x)R�(x)� ⌫(x)

2
Op�(q(x)) + �B>

x Bx = Op�(�⌫(x)R(x) + �B>
x Bx)
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for x 2 {0, 1}. Applying (4.5.11) and Garding’s inequality Theorem C.2.2 yield

<
✓
�⌫(x)R�(x) + �B>

x Bx �
⌫(x)

2
Op�(q(x))u, u

◆

L2
(R)

� ↵

4
kuk2L2

(R) (4.5.15)

for all u 2 L2(R). Since {q(x)}��1

is a family of order �1, (C.2.1) implies that

|(Op�(q(x))u, u)L2
(R)|  kOp�(q(x))ukL2

(R)kukL2
(R) 

C

�
kuk2L2

(R) (4.5.16)

for some C > 0 independent of �. Therefore choosing �
0

large enough so that
↵
4

� C
2� � ↵

8

, we have from (4.5.15) and (4.5.16) that

�⌫(x)(R�(x)u, u)L2
(R) + �kBxuk2L2

(R) �
↵

8
kuk2L2

(R)

for all x 2 {0, 1}, � � �
0

and u 2 L2(R), which verifies (4.5.3) in Definition 4.5.1.
It remains to verify that (4.5.2) is satisfied. From Theorem C.2.1 there exists a

family {s(x)}��1

of order 0 such that

R�(x)P �(x) = Op�(R(x)A(x) + s(x)) (4.5.17)

Using (4.5.10), (4.5.17) and sharp Garding’s inequality Theorem C.2.3, it holds that

<h[R�(x)P �(x)� C�In �Op�(s(x))]u, ui
H

� 1
2

� (R)⇥H
1
2
� (R)

� �C
1

kuk2L2
(R). (4.5.18)

for some C
1

> 0 and for all u 2 H
1
2 (R). Because s(x) is of order 0 it holds that

hOp�(s(x))u, ui
H

� 1
2

� (R)⇥H
1
2
� (R)

= (Op�(s(x))u, u)L2
(R)  Ckuk2L2

(R) (4.5.19)

for all u 2 H
1
2 (R) for some constant C > 0 independent of x, � and u. Similarly,

since <R�(x)P �(x) is of order 0, for � su�ciently large we have from (4.5.18) and
(4.5.19) that

(<R�(x)P �(x)u, u)L2
(R) � C�kukL2

(R) (4.5.20)

for all u 2 H
1
2 (R) and for some C > 0 independent of u. Since H

1
2 (R) is densely

embedded in L2(R) and the operator <R�(x)P �(x) is bounded in L2(R) it follows
that (4.5.20) also holds for all u 2 L2(R).

The symmetrizers in Definition 4.5.3 are defined on the whole time-space-frequency
set X. In the following we introduce a local version of this symmetrizer. These local
symmetrizers can be used as building blocks in obtaining global symmmetrizers, cf.
Lemma 4.5.6 below.

Definition 4.5.5. A local Kreiss symmterizer for (A,B) at X 2 X is a Hermitian
matrix-valued map r 2 C1(V (X);Cn⇥n), where V (X) is some neighborhood of X
in X, such that there exists a map T 2 C1(V (X),Cn⇥n) satisfying the following
conditions

1. T (Y ) 2 GLn(C) for all Y 2 V (X)

2. there exists C > 0 such that for all Y = (t, x, ⌧) 2 V (X)

<(r(Y )T (Y )�1A(Y )T (Y )) � C(<⌧)In (4.5.21)
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3. if in addition, Y 2 V (X)\X
0

, there exist ↵,� > 0 independent of Y such that

�⌫(x)r(Y ) + �(Bx(t)T (Y ))⇤Bx(t)T (Y ) � ↵In. (4.5.22)

The inequalities (4.5.21) and (4.5.22) can be viewed as local versions of (4.5.10)
and (4.5.11), respectively.

Lemma 4.5.6. Suppose that A and B satisfy (H1) and (H3), respectively. If (A,B)
has a local Kreiss symmetrizer at every point in X

1

:= {X = (t, x, ⌧) 2 X : |⌧ | = 1}
then (A,B) has a global Kreiss symmetrizer.

Proof. Suppose that A is constant in BM := {(t, x) 2 R⇥ [0, 1] : |t| > M} and B is
constant in {t 2 R : |t| > M}. By homogeneity it is enough to construct the global
symmetrizer R on the compact set K := {(t, x, ⌧) 2 X : |t|  M, |⌧ | = 1} ⇢ X

1

.
Indeed, we can define

R(t, x, ⌧) =

8
><

>:

R(�M,x, ⌧/|⌧ |), if t < �M,

R(t, x, ⌧/|⌧ |), if |t|  M,

R(M,x, ⌧/|⌧ |), if t > M,

for x 2 [0, 1] and ⌧ 2 C+⇤ .
By assumption, for each X 2 K there exists a pair (rX ,V (X)) such that V (X) is

a neighborhood of X in X and rX 2 C1(V (X);Cn⇥n) is a local Kreiss symmetrizer
for (A,B) at X. The collection {V (X) 2 K : X 2 K} forms a covering of K
consisting of open sets in X. By compactness of K, there exists a finite sequence
X

1

, . . . , XI 2 {X 2 K : x 2 (0, 1)} and XI+1

, . . . , XI+J 2 {X 2 K : x = 0, 1} such
that {V (Xi) : 1  i  I + J} still covers K. Let {'i : 1  i  I + J} denote a
partition of unity subordinate to this subcover, i.e., 'i 2 D(V (Xi)), 0  'i  1 andPI+J

i=1

'i ⌘ 1 on K.
Let TXi be the invertible matrix-valued map associated with rXi . Then the map

R(X) =
I+JX

i=1

'i(X)(TXi(X)⇤)�1rXi(X)TXi(X)�1, X 2 K, (4.5.23)

after extending it to the whole of X by homogeneity, is the required global Kreiss
symmetrizer for (A,B). See [9, pp. 231–232] for details.

The remaining task is to derive a local Kreiss symmetrizer at every point in X
1

.
For this, we need the following additional hypothesis on the coe�cient matrix A.

(H4) A is smoothly diagonalizable with p positive eigenvalues and n � p negative
eigenvalues.

For each X 2 X such that <⌧ > 0 the matrix-valued map A(X) = �⌧A(t, x)�1

is hyperbolic, i.e., its eigenvalues have nonzero real parts. This follows immediately
from (H4) and �(A(X)) = {�⌧��1 : � 2 �(A(t, x))}. Given X = (t, x, ⌧) 2 X such
that <⌧ > 0, consider the Dunford-Taylor integral

P�(X) =
1

2⇡i

Z

C
(zIn �A(X))�1 dz
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where C is a positively oriented Jordan curve in the left-half of the complex plane
enclosing all the eigenvalues of A(X) with negative real parts. Then E�(X) :=
Es(A(X)) = ran P�(X) and

E
+

(X) := Eu(A(X)) = kerP�(X) = ran P
+

(X)

where P
+

= In � P�. The spectral projectors P± are C1 in (t, x) and analytic in ⌧ .
Now, we extend E� and E

+

up to points in X where <⌧ = 0. For each X =
(t, x, i�) 2 X we define

P±(t, x, i�) = P±(t, x, 1 + i�)

By definition, we have the following continuity of P± up to the boundary of X

P±(X) = lim
X3Y!X

P±(Y ), 8 X 2 X. (4.5.24)

Define E±(t, x, i�) = ran P±(t, x, i�). Thus E±(t, x, i�) = E±(t, x,�+ i�) for every
� > 0 and (t, x, �) 2 R⇥ [0, 1]⇥ (R \ {0}).

4.5.3 UKL and Local Kreiss Symmetrizers

In order to derive local Kreiss Symmetrizers we need an additional assumption on the
boundary matrices. The following condition is called the Uniform Kreiss-Lopatinskĭı
condition, abbreviated as UKL.

(H5) There exists C > 0 such that for all t 2 R we have

|V |  C|B
0

(t)V |, 8 V 2 Eu(A(t, 0)), (4.5.25)

and

|V |  C|B
1

(t)V |, 8 V 2 Es(A(t, 1)). (4.5.26)

Let X 2 X
1

with <⌧ > 0 and V (X) be a neighborhood of X in X such that the
spectral projections P�(X) and P

+

(X) of Cn onto E�(X) and E
+

(X), respectively,
are well defined. Denote by �

1

(t, x), . . . ,�p(t, x) the positive eigenvalues of A(t, x)�1

and by �p+1

(t, x), . . . ,�n(t, x) the negative eigenvalues. Let zi(t, x) be an eigenvector
of A(t, x)�1 associated with the eigenvalue �i(t, x).
Writing each zi as column vectors we denote the change of basis matrix by

T
0

= (z
1

· · · zn).

Define T : V (X) ! Cn⇥n by T (Y ) = T
0

(t, x) for all Y = (t, x, ⌧) 2 V (X). Then
T 2 C1(V (X);Cn⇥n) and we have

T (Y )�1A(Y )T (Y ) =

✓
�⌧⌃+(t, x) Op⇥(n�p)

O
(n�p)⇥p �⌧⌃�(t, x)

◆
(4.5.27)

where ⌃+ = diag(�
1

, . . . ,�p) and ⌃� = diag(�p+1

, . . . ,�n).
Consider the Hermitian matrix-vaued map r 2 C1(V (X);Cn⇥n) defined by

r(Y ) =

✓
�Ip Op⇥(n�p)

O
(n�p)⇥p µIn�p

◆
, Y 2 V (X), (4.5.28)
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where µ � 1. From (4.5.27) and (4.5.28)

r(Y )T (Y )�1A(Y )T (Y ) =

✓
⌧⌃+(t, x) Op⇥(n�p)

O
(n�p)⇥p �µ⌧⌃�(t, x)

◆
, (4.5.29)

for every Y 2 V (X). Therefore, there exists C = C(µ) > 0 such that

<(r(Y )T (Y )�1A(Y )T (Y )) � C(<⌧)In

for all Y = (t, x, ⌧) 2 V (X).
Now consider the case where x = 0 and <⌧ > 0. Each vector v 2 Cn is decomposed

into v =
� v�
v+
�
where v� 2 Cp consists of the first p entries of v and v+ 2 Cn�p consists

of the rest. Since E�(Y ) = span{zi(t, x) : 1  j  p} we have

P�(Y )T (Y )v =
nX

j=1

P�(Y )vjzj(t, x) =
pX

j=1

vjzj(t, x) = T (Y )

✓
v�

0

◆
.

Therefore

|T (Y )|�1|P�(Y )T (Y )v|  |v�|  |T (Y )�1||P�(Y )T (Y )v| (4.5.30)

Similarly, using the fact that E
+

(Y ) = span{zi(t, x) : p+ 1  j  n} we have

|T (Y )|�1|P
+

(Y )T (Y )v|  |v+|  |T (Y )�1||P
+

(Y )T (Y )v|. (4.5.31)

By the UKL condition (H5) we have for each v 2 Cn and Y 2 V (X)

|P�(Y )T (Y )v|  C|B
0

(t)P�(Y )T (Y )v|
 C|B

0

(t)(In � P
+

(Y ))T (Y )v|
 C(|B

0

(t)T (Y )v|+ |B
0

(t)||P
+

(Y )T (Y )v|). (4.5.32)

Using (4.5.30)�(4.5.32) we obtain

r(Y )v · v = � 2|v�|2 + µ|v+|2 + |v�|2

� � 2|T (Y )�1|2|P�(Y )T (Y )v|2 + µ|T (Y )|�2|P
+

(Y )T (Y )v|2

+ |T (Y )�1|2|P�(Y )T (Y )v|2

� � 4C|T (Y )�1|2(|B
0

(t)T (Y )v|2 + |B
0

(t)|2|P
+

(Y )T (Y )v|2)
+ µ|T (Y )|�2|P

+

(Y )T (Y )v|2 + |T (Y )�1|2|P�(Y )T (Y )v|2

� � C
1

|B
0

(t)T (Y )v|2 + C
2

|P�(Y )T (Y )v|2

+ (C
3

µ� C
4

)|P
+

(Y )T (Y )v|2.

Choosing µ � 1 large enough, applying the Pythagorean identity and the fact that
T is invertible yield

r(Y )v · v + �|B
0

(t)T (Y )v|2 � ↵|v|2, 8v 2 Cn, Y 2 V (X)

for some ↵,� > 0 independent of v and Y .
In the case where x = 1, then the local Kreiss symmetrizer can be chosen to be

r(Y ) =

✓
�µIp Op⇥(n�p)

O
(n�p)⇥p In�p

◆
, Y 2 V (X). (4.5.33)
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The details are the same as in the case where x = 0 and therefore we omit them
here. Thus, (4.5.22) holds.

Suppose that X 2 X
1

and <⌧ = 0. If 0 < x < 1 then r can be taken to be the
local Kreiss symmetrizer at X. If x = 0 then passing to the limit of the projections,
see (4.5.24), we still have

|P�(Y )T (Y )v|  C(|B
0

(t)T (Y )v|+ |B
0

(t)||P
+

(Y )T (Y )v|)

for all Y 2 V (X). The procedure of constructing local symmetrizers are now the
same with the help of the latter inequality. Therefore we have shown the following
theorem.

Theorem 4.5.7. If (H1), (H2), (H4) and (H5) hold, then (A,B) has a local Kreiss
symmetrizer at every point in X

1

.

Combining Theorem 4.5.2, Theorem 4.5.4, Lemma 4.5.6 and Theorem 4.5.7 we
have the following theorem.

Theorem 4.5.8. Assume that (H1)�(H5) hold. Then the a priori estimate (4.5.4)
holds for all u 2 e�tH1(R⇥ (0, 1)) and all � � �

0

for some �
0

� 1.

4.6 a priori estimates in e�tL2 with lipschitz coefficients

The a priori estimate (4.5.4) applies to problems with smooth coe�cients. In this
section, we would like to prove this a priori estimate in the case where A and B are
only Lipschitz. More precisely, we suppose that the coe�cients are compositions of
C1-matrix fields and a function in W 1,1. All throughout this section, we assume
the following hypotheses.

(FS) Friedrichs Symmetrizability. Let U ⇢ Rn open and convex. The di↵erential
operator

Lw = @t +A(w)@x

is Friedrichs symmetrizable for all w 2 U , i.e., there exists a symmetric positive-
definite matrix-valued function S 2 C1(U ;Rn⇥n), called the Friedrichs sym-

metrizer, that is bounded as well as its derivatives, S(w)A(w) is symmetric for
all w 2 U , and there exists ↵ > 0 such that S(w) � ↵In for all w 2 U .

(D) Diagonalizability. It holds that A 2 C1(U ;Rn⇥n) and for each w 2 U , A(w)
is diagonalizable with p positive eigenvalues and n�p negative eigenvalues. In
particular, A(w) is invertible and has n independent eigenvectors.

(UKL) Uniform Kreiss-Lopatinskĭı Condition. The boundary matrices satisfy B
0

2
C1(U ;Rp⇥n), B

1

2 C1(U ;R(n�p)⇥n) are of full rank and there exists C > 0
such that for all w 2 U

|V |  C|B
0

(w)V |, for all V 2 Eu(A(w))

and
|V |  C|B

1

(w)V |, for all V 2 Es(A(w))

where Eu(A) and Es(A) denote the unstable and stable subspaces of a matrix
A, respectively.

83



linear systems with variable coefficients

Friedrichs symmetrizability is used in deriving pointwise in time estimates. The
diagonalizability assumption implies that we are in the non-characteristic case. Fi-
nally, the Uniform Kreiss-Lopatinskĭı Condition tells us what forms of the boundary
conditions are appropriate.

Let X = U ⇥ C+⇤ and X
1

= {(w, ⌧) 2 X : |⌧ | = 1}. In nonlinear analysis we also
need to consider the range of the frozen coe�cient and how it is involved in the a
priori estimate. For this reason we introduce the following set. For each compact
subset K of U and for each K > 0 let

W(K,K) := {v 2 W 1,1(R⇥ (0, 1)) : ran v ⇢ K, kvkW 1,1  K}.

By replacing the (pseudo)-di↵erential operator P �(x) = Op�(A(X)) in Definition
4.5.1 by its paradi↵erential version, we can similarly define a functional boundary
symmetrizer for coe�cients with limited regularity. Let Av = A(v) and Bv = B(v).

Definition 4.6.1. Let v 2 W(K,K). A functional boundary symmetrizer for (Av, Bv)
is a two-parameter family of self-adjoint operators {R�

v (x) : � � �
0

, x 2 [0, 1]}, where
�
0

� 1, such that

1. R�
v 2 W 1,1([0, 1];L(L2(R))) is uniformly bounded in � � �

0

,

2. there exists C > 0 such that for all x 2 [0, 1] and � � �
0

,

<(R�
v (x)T

�,�
Av(x)

) � C� (4.6.1)

where Av(x) = �(� + i�)A(v(·, x))�1, � 2 R, and T�,�Av(x)
is the paradi↵erential

operator with parameters x 2 [0, 1] and � associated to the symbol Av(x) 2 �1
1

and an admissible frequency cut-o↵ function �,

3. and there exist ↵,� > 0 such that

�⌫(x)hR�
v (x)u, uiL2

(R) + �kT�,�Bv(x)
uk2L2

(R) � ↵kuk2L2
(R) (4.6.2)

for x 2 {0, 1} and u 2 L2(R)n, where ⌫(0) = �1 and ⌫(1) = 1.

We note that the constants ↵,� and C appearing in Definition 4.6.1 may depend
only on K and K but are independent of v 2 W(K,K). As in the smooth case, a
functional boundary symmetrizer induces an a priori estimate in a weighted Lebesgue
space.

Theorem 4.6.2. Suppose that (Av, Bv) has a functional boundary symmetrizer. Let
v 2 W(K,K). There exist C = C(K,K) > 0 and �

0

= �
0

(K,K) � 1 such that for
every u 2 D(R⇥ [0, 1]) and � � �

0

we have

�kuk2L2
(R⇥(0,1)) + ku|@⌦k2L2

(R)

 C

✓
1

�
k@xu� T�,�Av

uk2L2
(R⇥(0,1)) + kT�,�Bv

u|@⌦k2L2
(R)

◆
. (4.6.3)

Proof. With the aid of the equality

d

dx

Z

R
R�

v (x)u(x) · u(x) dx

=

Z

R

d

dx
R�

v (x)u(x) · u(x) dx+ 2

Z

R
<R�

v (x)T
�,�
Av(x)

u(x) · u(x) dx

+ 2

Z

R
<R�

v (x)(@xu(x)� T�,�Av(x)
u(x)) · u(x) dx
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the proof uses the same method as in Theorem 4.5.2 but using Definition 4.6.1 instead
of Definition 4.5.1.

The following tells us that in order to prove (4.6.4), it is enough to replace P �
v =

�A(v)�1(�In + @t) and Bv by their paradi↵erential version.

Corollary 4.6.3. In the situation of Theorem 4.6.2, suppose in addition that R 2
L1(R⇥(0, 1);Rn⇥n) satisfies kRkL1  %. Then there are constants C = C(%,K,K) >
0 and �

0

= �
0

(%,K,K) � 1 such that the a priori estimate

�ke��tuk2L2
(R⇥(0,1)) + ke��tu|@⌦k2L2

(R)

 C

✓
1

�
ke��tLvuk2L2

(R⇥(0,1)) + ke��tBvu|@⌦k2L2
(R)

◆
(4.6.4)

holds for every u 2 e�tH1(R⇥ (0, 1)) and � � �
0

.

Proof. Using a usual absorption argument, we can assume without loss of generality
that R = 0, see the proof of Theorem 4.6.2. Note that from (C.3.4) we have

T�,�Av(x)
= T�,��(�+i�)Av(x)�1 = � �T�,�Av(x)�1 � T�,�Av(x)�1@t.

Thus, for each x 2 (0, 1) we have according to [Theorem C.20, GS]

kP �
v(x)u(x)� T�,�Av(x)

u(x)kL2
(R)  �kAv(x)

�1u(x)� T�,�Av(x)�1u(x)kL2
(R)

+ kAv(x)
�1@tu(x)� T�,�Av(x)�1@tu(x)kL2

(R)

 CkAvkL1ku(x)kL2
(R) (4.6.5)

for all u 2 D(R ⇥ (0, 1)). Upon squaring both sides of (4.6.5) and integrating over
x 2 (0, 1) we see that

kP �
v u� T�,�Av

uk2L2
(R⇥(0,1))  Ckuk2L2

(R⇥(0,1)). (4.6.6)

for some C = C(K,K) > 0. Similarly, from Theorem C.3.3 there exists C =
C(K,K) > 0 with

kBvu|@⌦ � T�,�Bv
u|@⌦k2L2

(R) 
C

�
ku|@⌦k2L2

(R). (4.6.7)

By the triangle inequality, (4.6.6) and (4.6.7) we have

1

�
k@xu� T�,�Av

uk2L2
(R⇥(0,1)) + kT�,�Bv

u|@⌦k2L2
(R)

 C

✓
1

�
k@xu� P �

v uk2L2
(R⇥(0,1)) +

1

�
kuk2L2

(R⇥(0,1))

+ kBvu|@⌦k2L2
(R) +

1

�
ku|@⌦k2L2

(R)

◆
(4.6.8)

From (4.6.3), (4.6.8) and @x �P �
v = A�1

v L�v , there exist constants �
0

= �
0

(K,K) � 1
and C = C(K,K) > 0 such that if � � �

0

then

�kuk2L2
(R⇥(0,1)) + ku|@⌦k2L2

(R)  C

✓
1

�
kL�vuk2L2

(R⇥(0,1)) + kBvu|@⌦k2L2
(R)

◆

for all u 2 D(R⇥ (0, 1)). Replacing u by e��tu and using the density of D(R⇥ (0, 1))
in e�tH1(R⇥ (0, 1)) we obtain (4.6.4).
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For the existence of functional boundary symmetrizers for (Av, Bv), su�cient con-
ditions are the smooth diagonalizability of A and the uniform Kreiss-Lopatinskĭı
condition. As in the case of smooth coe�cients, the functional boundary symmetriz-
ers can be constructed from Kreiss symmetrizers, and these can be obtained first
locally and then globally after homogeneity and compactness arguments. As before
we introduce the following local symmetrizers.

Definition 4.6.4. LetA 2 C1(U ;Rn⇥n), B
0

2 C1(U ;Rp⇥n), B
1

2 C1(U ;R(n�p)⇥n)
and v 2 W(K,K). A local Kreiss symmetrizer for (Av, Bv) at X = (t, x, ⌧) 2
R⇥ [0, 1]⇥C+⇤ is a Hermitian matrix-valued function r 2 C1(Ũ ⇥O;Cn⇥n), where
Ũ ⇥ O is open in U ⇥ C+⇤ and v(V(t, x)) ⇢ Ũ for some neighbourhood V(t, x)
of (t, x) in R ⇥ [0, 1], such that there exists an invertible matrix-valued function
T 2 C1(Ũ ⇥O;GL(n,C)) with the following properties

(a) there exists C > 0 such that

<(r(X)T (X)�1A(X)T (X)) � (C<⌧)In, (4.6.9)

where A(X) = �⌧A(v(t, x))�1, for all X = (v(t, x), ⌧) with (t, x, ⌧) 2 V(t, x)⇥
O

(b) and if in addition, X 2 R ⇥ {0, 1} ⇥ C+⇤ , then there exist ↵,� > 0 such that
for all (t, x, ⌧) 2 V(t, x)⇥O we have

�⌫(x)r(X) + �T (X)⇤Bv(x)
>Bv(x)T (X) � ↵In (4.6.10)

where X = (v(t, x), ⌧).

Theorem 4.6.5. Suppose that (D) and (UKL) hold and let v 2 W(K,K). Then
(Av, Bv) has a local Kreiss symmetrizer at every point in XM := [�M,M ]⇥ [0, 1]⇥
{⌧ 2 C+ : |⌧ | = 1} for every M > 0.

Proof. The construction is the same as in Subsections 4.5.2 and 4.5.3. For the sake
of completeness we provide the main ideas. We start with the case where <⌧ > 0.
The matrix A(w, ⌧) = �⌧A(w)�1 is hyperbolic for all w 2 U . Indeed, we have

E�(w, ⌧) := Es(A(w, ⌧)) = Eu(A(w)), E
+

(w, ⌧) := Eu(A(w, ⌧)) = Es(A(w)).

These show that E�(w, ⌧) and E
+

(w, ⌧) are independent of ⌧ as long as <⌧ > 0.
Let X = (t, x, ⌧) 2 XM be such that <⌧ > 0 and Ũ ⇥ O be an open set in

U⇥C+⇤ containing (v(t, x), ⌧), where Ũ and O are open sets in U and C+⇤ \{<⌧ > 0},
respectively. By continuity of v, there exists an open set V(t, x) in R ⇥ [0, 1] such
that v(V(t, x)) ⇢ Ũ . For each w 2 Ũ we let T

0

(w) 2 C1(U ;GL(n,C)) be the matrix
consisting of the eigenvectors of A(t, x)�1, arranged in such a way that the first p
columns correspond to the p positive eigenvalues and the rest correspond to the n�p
negative eigenvalues. Then A(w)�1 can be diagonalized as

T
0

(w)�1A(w)�1T
0

(w) =

✓
⌃+(w) Op⇥(n�p)

O
(n�p)⇥p ⌃�(w)

◆
(4.6.11)

where ⌃+(w) = diag(�
1

(w), . . . ,�p(w)) and ⌃�(w) = diag(�p+1

(w), . . . ,�n(w)) are
the diagonal matrices with the positive eigenvalues and negative eigenvalues of
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A(w)�1 as entries, respectively. Define T (w, ⌧) = T
0

(w) for all (w, ⌧) 2 Ũ ⇥ O.
Then we have

T (w, ⌧)�1A(w, ⌧)T (w, ⌧) =

✓
�⌧⌃+(w) Op⇥(n�p)

O
(n�p)⇥p �⌧⌃�(w)

◆
(4.6.12)

Suppose 0 < x < 1. Then the Hermitian matrix

r(w, ⌧) =

✓
�Ip Op⇥(n�p)

O
(n�p)⇥p µIn�p

◆
(4.6.13)

can be chosen to be a local Kreiss symmetrizer at X for any µ � 1 and T defined
above is the associated invertible-matrix valued function.

If x = 0 the same form of r(w, ⌧) given by (4.6.13) is possible for su�ciently large
µ. This is the place where one requires the Kreiss-Lopantiskĭı condition. Reducing
Ũ if necessary, we can assume without loss of generality that the spectral projections
P�(w, ⌧) and P

+

(w, ⌧) onto E�(w, ⌧) and E
+

(⌧, w), respectively, are well-defined.
These projections can be written as Dunford-Taylor integrals and by a classical
argument in Kato they can be chosen so that they are C1 in w and analytic in ⌧ .
Since E�(w, ⌧) and E

+

(w, ⌧) are independent of ⌧ then P�(w, ⌧) and P
+

(w, ⌧) are
also independent of ⌧ . By (UKL), for all V 2 Cn and (w, ⌧) 2 Ũ ⇥O we have

kP�(w, ⌧)V k  CkB
0

P�(w, ⌧)V k = CkB
0

(V � P
+

(w, ⌧)V )k
 C

1

(kB
0

V k+ kP
+

(w, ⌧)V k). (4.6.14)

With this estimate it can be shown, as in Subection 4.5.3, that for su�ciently large
µ, r given by (4.6.13) is a local Kreiss symmetrizer at X. If x = 1 then analogously,
one can choose

r(w, ⌧) =

✓
�µIp Op⇥(n�p)

O
(n�p)⇥p In�p

◆
(4.6.15)

where µ is again su�ciently large.
The next step is to construct symmetrizers at points with <⌧ = 0 of the frequency

set C+⇤ \ {|⌧ | = 1} = {±i}. However, for nonzero real number �, E�(w, i�) is not
the stable subspace of A(w, i�) anymore. Note that E�(w, i�) is the zero subspace.
Instead, we extend the definition of E�(w, ⌧) by continuity, or equivalently, the
definition of the spectral projections P�(w, ⌧). For each (w, �) 2 U ⇥ (R \ {0}) we
define

P±(w, i�) = P±(w,� + i�)

where � > 0. This definition of P± is independent on � as long as it is a positive
real number. Moreover, one immediately have the continuity of the projections up
to the boundary of the frequency set

lim
X3(z,⌧)!(w,i�)

P±(z, ⌧) = P±(w, i�).

We define E±(w, ⌧) := ran P±(w, ⌧), for <⌧ = 0.
Suppose that X = (t, x, ⌧) 2 XM where <⌧ = 0. The neighborhoods Ũ ,O, and V

along with matrices r and T are the same as in the construction above. If 0 < x < 1
then we choose r as in (4.6.13). If x = 0, by passing to the limit of projections in
(4.6.13) we still have the estimate

kP�(w, ⌧)V k  CkB
0

V k+ kP
+

(w, ⌧)V k

for all V 2 Cn and (w, ⌧) 2 Ũ ⇥ O. Once we have this estimate we can proceed in
exactly the same manner as before. The case x = 1 is analogous.
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We are now in position to state and prove the main theorem of this section.

Theorem 4.6.6. Assume that (D) and (UKL) hold. Let v 2 W(K,K) and R 2
L1(R ⇥ (0, 1);Rn⇥n) be such that kRkL1  %. Then (Av, Bv) has a functional
boundary symmetrizer and hence the a priori estimate (4.6.4) holds for every u 2
e�tH1(R⇥ (0, 1)).

Proof. Fix M > 0 su�ciently large. Given (t, x, ⌧) 2 XM let rv be the local Kreiss
symmetrizer at (t, x, ⌧) and as in Lemma 4.5.6 we construct a global symmetrizer
Rv which is homogeneous degree 0 in ⌧ . With the construction provided by the
partition of unity, see (4.5.23), we have

Rv(t, x, ⌧) =
X

j

Pj(X)⇤rj(X)Pj(X) (4.6.16)

with X = (v(t, x), ⌧) and Pj(X) = 'j(X)
1
2Tj(X)�1. From the construction this sum

is finite. It can be shown that S =
P

j P
⇤
j Pj is uniformly bounded from below.

The matrix-valued function

Rv(x) : (t, ⌧) = (t, � + i�) 7! Rv(t, x, � + i�)

for all x 2 (0, 1) satisfies Rv(x) 2 �0
1

(Rt ⇥ R�) with parameter � � 1 since v 2
W 1,1(R ⇥ ⌦) and Rv is homogeneous degree 0 in ⌧ . As in [9, pp. 231–232], the
local estimates (4.5.21) and (4.5.22) can be extended to a global estimate in the sense
that there are some constants ↵,�, C > 0 depending only on (%,K,K) such that

� ⌫(x)Rv(t, x, ⌧) + �Bx(v(t, x))
>Bx(v(t, x)) � ↵In, (4.6.17)

for every (t, x) = R⇥ {0, 1} and

<(Rv(t, x, ⌧)Av(t, x, ⌧)) � (C<⌧)In, (4.6.18)

for every for (t, x) = R ⇥ (0, 1). It follows that for each x 2 (0, 1), {T�,�Rv(x)
}��1

is a

family of paradi↵erential operators of order 0, and their operator norm in L(L2(R))
is uniform in � � �

0

and as well in x 2 [0, 1] since their symbols are Lipschitz in the
parameter x, see [17, Theorem 4.4] and [54, Chapter 5].

Let us construct the functional boundary symmetrizer. The symmetrizer is the
paradi↵erential version of the one constructed in Theorem 4.5.4, cf. (4.5.12). Con-
sider the operator

R�
v (x) :=

1

2
(T�,�Rv(x)

+ (T�,�Rv(x)
)⇤).

It follows that R�
v (x) is a self-adjoint bounded operator in L(L2(R)). As in the proof

of Theorem 4.5.4, there exists M
1

= M
1

(K,K) > 0 such that

sup
��1

kT�,�Rv
kW 1,1

((0,1);L(L2
(R)))  M

1

, (4.6.19)

see [17, Theorem 4.4] and [54, Chapter 5].
From Theorem C.3.4, {R�

v (x)�T�,�Rv(x)
}��1

is a family of paradi↵erential operators

of order �1. According to (C.2.1), for every u 2 L2(R) we have

kR�
v (x)u� T�,�Rv(x)

ukL2
(R) 

C

�
kukL2

(R) (4.6.20)
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for some C > 0 independent of u, x and �. If

Q(x) = �⌫(x)Rv(t, x, ⌧) + �Bx(v(t, x))
>Bx(v(t, x))

then from (4.6.17) we have Q(x) +Q(x)⇤ � 2↵In for x 2 {0, 1}, where we used the
fact that R⇤

v = Rv. Also, we have

T�,�Q(x) = �⌫(x)T�,�Rv(x)
+ �(T�,�Bv(x)

)⇤T�,�Bv(x)
+Q�(x), x 2 {0, 1}, (4.6.21)

where {Q�(x)}��1

is a family of operators of order �1. By Garding’s inequality
Theorem C.3.5 and a standard absorption argument

<(�⌫(x)T�,�Rv(x)
u, u)L2

(R) + �kT�,�Bv(x)
uk2L2

(R) �
↵

4
kuk2L2

(R) (4.6.22)

for � large enough. Using (4.6.20), (4.6.22) and the fact that R�
v (x) is self-adjoint

we obtain

(�⌫(x)R�
v (x)u, u)L2

(R) + �kT�,�Bv(x)
uk2L2

(R)

= �⌫(x){<((R�
v (x)� T�,�Rv(x)

)u, u)L2
(R) + <(T�,�Rv(x)

u, u)L2
(R)}+ �kT�,�Bv(x)

uk2L2
(R)

�
✓
↵

4
� C

�

◆
kuk2L2

(R) � ↵

8
kuk2L2

(R)

for x 2 {0, 1} and � large enough. Therefore for x 2 {0, 1} and � � �
0

, where �
0

is
large enough

(�⌫(x)R�
v (x)u, u)L2

(R) + �kT�,�Bv(x)
uk2L2

(R) �
↵

8
kuk2L2

(R).

This proves (4.6.2) after renaming the constant ↵.

It remains to prove (4.6.1). From (4.6.16) and the form of the local symmetrizers
(4.6.13) and (4.6.15) we have

Rv(x, t, �)Av(t, x, ⌧)

=
X

j

'j(X)
1
2 (Tj(X)�1)⇤rj(X)'j(X)

1
2Tj(X)�1A(X)Tj(X)Tj(X)�1

=
X

j

Pj(X)⇤(rj(X)Tj(X)�1A(X)Tj(X))Pj(X)

=
X

j

Pj(X)⇤(⌧�
0j(X))Pj(X) (4.6.23)

where �
0j are diagonal matrices independent of ⌧ and <�

0j(X) � CjIn for each j.
Hence �

0j is homogeneous degree 0 in ⌧ = �+i�, and we have �
0j(X) = �

0j(w, ⌧) 2
�0
1

(Rt ⇥ R�). From �
0j(X) +�

0j(X)⇤ � 2CjIn and Garding’s inequality Theorem
C.3.5 we have

<(T�,�
�0j

u, u)L2
(R) �

Cj

2
kuk2L2

(R) (4.6.24)
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for every u 2 L2(R). Now the symbol of R�
vT

�,�
Av

di↵ers from the symbol RvAv by
a symbol of order 0 as in (4.5.17), so by (4.6.23), (4.6.24), Theorem C.3.4 and a
standard error estimate

<(R�
v (x)T

�,�
Av

u, u)L2
(R) �

X

j

<(T�,�RvAv
u, u)L2

(R) � Ckuk2L2
(R)

�
X

j

�<((T�,�Pj
)⇤T�,�

�0j
T�,�Pj

u, u)L2
(R) � Ckuk2L2

(R)

� �
X

j

<(T�,�
�0j

T�,�Pj
u, T�,�Pj

u)L2
(R) � Ckuk2L2

(R)

� C�

2

X

j

kT�,�Pj
uk2L2

(R) � Ckuk2L2
(R). (4.6.25)

However we have, since
P

j P
⇤
j Pj � �IN for some � > 0, by Garding’s inequality

C.3.5
X

j

<(T�,�P ⇤
j Pj

u, u)L2
(R) = <(T�,�P

j P
⇤
j Pj

u, u)L2
(R) �

�

2
kuk2L2

(R). (4.6.26)

Because the symbol of (T�,�Pj
)⇤T�,�Pj

di↵ers from the symbol of T�,�P ⇤
j Pj

by a symbol of

order �1 we have

kT�,�Pj
uk2L2

(R) = ((T�,�Pj
)⇤T�,�Pj

u, u)L2
(R) � <(T�,�P ⇤

j Pj
u, u)L2

(R) �
C

�
kuk2L2

(R). (4.6.27)

Choosing �
0

su�ciently large, we obtain from (4.6.25)�(4.6.27) that

<(R�
v (x)T

�,�
Av

u, u)L2
(R) � C�kuk2L2

(R)

for all � � �
0

. Thus (4.6.1) is satisfied. This completes the proof that R�
v is a

functional boundary symmetrizer for (Av, Bv). Consequently, the a priori estimate
(4.6.4) follows from Corollary 4.6.3.

4.7 a priori estimates in e��tL2 for the adjoint operator

The weak solutions of the partial di↵erential equations we consider satisfy a vari-
ational equality where the test functions lie in a space associated with the dual
problem. For this, we need to prove the a priori estimates on a subspace of the dual
of the solution space. The goal of this section is to derive such a priori estimates
using the same assumptions in the previous sections.

We begin with the case where the coe�cients are smooth.

Lemma 4.7.1. Let (H1) and (H3) be satisfied. Then there exist matrix-valued maps
N

0

, C
0

,M
1

2 C1(R;R(n�p)⇥n) and N
1

, C
1

,M
0

2 C1(R;Rp⇥n), which are constant
outside a compact subset of R, such that

A(t, x) = Mx(t)
>Bx(t) + Cx(t)

>Nx(t), 8 (t, x) 2 R⇥ {0, 1}. (4.7.1)

Proof. We only prove the case where x = 0. Since B
0

is of full rank, there exists
another full rank matrix N

0

2 C1(R;R(n�p)⇥n) such that
✓
B

0

N
0

◆
2 C1(R;Rn⇥n) (4.7.2)
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is invertible. Let us decompose its inverse into two blocks (Y
0

D
0

) where Y
0

2
C1(R;Rn⇥p) and D

0

2 C1(R;Rn⇥(n�p)). Thus

Y
0

B
0

+D
0

N
0

= (Y
0

D
0

)

✓
B

0

N
0

◆
= In. (4.7.3)

Multiplying both sides by A(t, 0), it can be seen that (4.7.1) with x = 0 holds where
M

0

(t) = (A(t, 0)Y
0

(t))> and C
0

(t) = (A(t, 0)D
0

(t))>. Because the matrices B
0

and
A(·, 0) are constant outside a compact subset of R, the matrices N

0

, Y
0

, D
0

, M
0

and
C
0

can also be chosen to be constant outside a compact subset of R.

In the following discussions, we will show that if (A,B) satisfies the UKL condition
(H5) then (�A>, C) also satisfies the UKL condition, i.e., there exists C > 0 such
that for all t 2 R we have

|U |  C|C
0

(t)U |, 8 U 2 Eu(�A(t, 0)>), (4.7.4)

and

|U |  C|C
1

(t)U |, 8 U 2 Es(�A(t, 1)>). (4.7.5)

Suppose that t 2 R. By (H5) there exists a constant C > 0 such that

|V |  C|B
0

(t)V |, 8 V 2 Eu(A(t, 0)) = Eu(A(t, 0)�1). (4.7.6)

Let U 2 Eu(�A(t, 0)>) = Es(A(t, 0)�>) and V 2 Eu(A(t, 0)�1). Define v(s) =

e�sA(t,0)�1
V and u(s) = esA(t,0)�>

U . By assumption, we have v(s) ! 0 and u(s) ! 0
as s ! 1. Note that

d

ds
(u(s) ·A(t, 0)v(s)) = u̇(s) ·A(t, 0)v(s)) +A(t, 0)>u(s) · v̇(s)

= A(t, 0)�>u(s) ·A(t, 0)v(s)�A(t, 0)>u(s) ·A(t, 0)�1v(s)

= 0.

Thus u(s) ·A(t, 0)v(s) = u(0) ·A(t, 0)v(0) = U ·A(t, 0)V for all s � 0. Letting s ! 1
it follows that U · A(t, 0)V = 0 whenever U 2 Eu(�A(t, 0)>) and V 2 Eu(A(t, 0)).
From Lemma 4.7.1 there exists C > 0 independent of U and t such that

|U |  C(|M
0

(t)U |+ |C
0

(t)U |). (4.7.7)

Since B
0

(t) : Eu(A(t, 0)) ! Cp is an isomorphism we have

|M
0

(t)U | = sup
W2Cp

|M
0

(t)U ·W |
|W | = sup

V 2Eu
(A(t,0))

|M
0

(t)U ·B
0

(t)V |
|B

0

(t)V |

 C sup
V 2Eu

(A(t,0))

|M
0

(t)U ·B
0

(t)V |
|V | (4.7.8)

according to (4.7.6). However, if V 2 Eu(A(t, 0)) and U 2 Es(A(t, 0)>) then by
(4.7.1)

M
0

(t)U ·B
0

(t)V = (A(t, 0)>U �N
0

(t)>C
0

(t)U) · V
= �C

0

(t)U ·N
0

(t)V.
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Thus by the Cauchy-Schwarz inequality

|M
0

(t)U ·B
0

(t)V |
|V | =

|C
0

(t)U ·N
0

(t)V |
|V |  |C

0

(t)U |kN
0

(t)k. (4.7.9)

Now, (4.7.4) follows from (4.7.7)�(4.7.9). The proof of (4.7.5) is analogous.
Using Theorem 4.5.8 and changing the time variable t by �t one obtains the

following a priori estimate in terms of the formal adjoint L⇤ of L given by (4.4.1)
and a boundary matrix C in Lemma 4.7.1. Recall that

C =

✓
C
0

O
(n�p)⇥n

Op⇥n C
1

◆
.

Theorem 4.7.2. Assume that (H1)�(H5) hold. Then there exist C⇤ > 0 and �⇤
0

� 1
such that the a priori estimate

�ke�t'k2L2
(R⇥(0,1)) + ke�t'|@⌦k2L2

(R)

 C⇤
✓
1

�
ke�tL⇤'k2L2

(R⇥(0,1)) + ke�tC'|@⌦k2L2
(R)

◆
(4.7.10)

holds for all ' 2 e��tH1(R⇥ (0, 1)) and � � �⇤
0

.

The previous theorem gives us an a priori estimate of the adjoint operator L⇤ in
the case where the coe�cients are smooth. In the case where the coe�cients have
limited regularity we have the following analogous results.

Lemma 4.7.3. Assume that (D) holds and suppose that the boundary matrices B
0

2
C1(U ;Rp⇥n) and B

1

2 C1(U ;R(n�p)⇥n) have full ranks at each point of U . Then
there exist matrix-valued maps N

0

, C
0

,M
1

2 C1(U ;R(n�p)⇥n) and N
1

, C
1

,M
0

2
C1(U ;Rp⇥n) such that

A(w) = Mx(w)
>Bx(w) + Cx(w)

>Nx(w), 8 (w, x) 2 U ⇥ {0, 1}. (4.7.11)

Theorem 4.7.4. In the framework of Theorem 4.6.6, there exist constants C⇤ =
C⇤(%,K,K) > 0 and �⇤

0

= �⇤
0

(%,K,K) � 1 such that for every ' 2 e��tH1(R⇥ (0, 1))
and � � �⇤

0

we have

�ke�t'k2L2
(R⇥(0,1)) + ke�t'|@⌦k2L2

(R)

 C⇤
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�
ke�tL⇤

v'k2L2
(R⇥(0,1)) + ke�tCv'|@⌦k2L2

(R)

◆
. (4.7.12)

4.8 weak and strong solutions for the bvp

Two types of solutions of the pure boundary value problem

(
Lu = @tu+A@xu+Ru = f, �1 < t < 1, 0 < x < 1,

Bu|@⌦ = g, �1 < t < 1,
(4.8.1)

in the weighted Lebesgue space e�tL2(R⇥ (0, 1)) will be defined in this section. This
definition applies to systems where the coe�cients A and B are at least Lipschitz
and the coe�cient R is bounded.

92



4.8 weak and strong solutions for the bvp

Definition 4.8.1. Let f 2 e�tL2(R ⇥ (0, 1)) and g 2 e�tL2(R) where � 2 R. A
function u 2 e�tL2(R ⇥ (0, 1)) is called a weak solution of the BVP if for every
' 2 e��tH1(R⇥ (0, 1)) such that C'|@⌦ = 0 we have

Z

R

Z
1

0

u · L⇤' dx dt =

Z

R

Z
1

0

f · ' dx dt�
Z

R
g
1

·M
1

'|x=1

dt

+

Z

R
g
0

·M
0

'|x=0

dt, (4.8.2)

where C
0

, C
1

,M
0

and M
1

are the matrices in Lemma 4.7.1.

Since D(R ⇥ (0, 1)) is contained in the space of test functions {' 2 e��tH1(R ⇥
(0, 1)) : C'|@⌦ = 0}, the space of test functions in Definition 4.8.1 is dense in the
solution space e�tL2(R⇥(0, 1)). The following theorem tells us how the weak solution
satisfies the BVP (4.8.1) in some sense.

Theorem 4.8.2. If u 2 e�tL2(R ⇥ (0, 1)) is a weak solution of (4.8.1) then u 2
e�tE(R⇥(0, 1)), and in particular, u|@⌦ 2 e�tH� 1

2 (R). The equation Lu = f holds in
e�tL2(R⇥(0, 1)) in the sense of distributions and the boundary conditions B

0

u|x=0

=

g
0

and B
1

u|x=1

= g
1

hold in e�tH� 1
2 (R).

Proof. The fact that Lu = f in the sense of distributions follows immediately from
(4.8.2) by taking ' 2 D(R⇥ (0, 1)). Furthermore,

L(e��tu) = � �e��tu+ e��tf 2 L2(R⇥ (0, 1)).

Thus e��tu 2 E(R ⇥ (0, 1)). By Green’s identity (4.4.12), Lemma 4.7.1 and (4.8.2)
we have

hB
1

u|x=1

,M
1

'|x=1

i
e�tH� 1

2
(R)⇥e��tH

1
2
(R)

� hB
0

u|x=0

,M
0

'|x=0

i
e�tH� 1

2
(R)⇥e��tH

1
2
(R)

=

Z

R
g
1

·M
1

'|x=1

dt�
Z

R
g
0

·M
0

'|x=0

dt (4.8.3)

for every ' 2 e��tH1(R⇥ (0, 1)) be such that C'|@⌦ = 0.

Let  2 e��tH
1
2 (R) and � 2 e��tH1(R⇥(0, 1)) such that �|x=0

=  and �|x=1

= 0.
Define

'(t, x) = A(t, x)�>
✓
Y
0

(t)>

D
0

(t)>

◆�1

✓
�(t, x)

O
(n�p)⇥1

◆

where Y
0

andD
0

are the matrices in the proof of Lemma 4.7.1. Then ' 2 e��tH1(R⇥
(0, 1)) satisfies M

0

'|x=0

= Y >
0

A(t, 0)>'|x=0

=  , C
0

'|x=0

= D>
0

A(t, 0)>'|x=0

= 0
and '|x=1

= 0. With this ' in (4.8.3) we have

hB
0

u|x=0

, i
e�tH� 1

2
(R)⇥e��tH

1
2
(R)

=

Z

R
g
0

·  dt

for all  2 e��tH
1
2 (R). This means that B

0

u|x=0

= g
0

holds in e�tH� 1
2 (R). The

other boundary condition is similar.

A stronger type of solutions for the boundary value problem (4.8.1) is given in the
following definition.
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Definition 4.8.3. A function u 2 e�tL2(R ⇥ (0, 1)) is called a strong solution of

(4.8.1) if there exist sequences (fj)j ⇢ e�tL2(R ⇥ (0, 1)), (gj)j ⇢ e�tH
1
2 (R) and

(uj)j ⇢ e�tH1(R⇥ (0, 1)) satisfying

(
Luj = fj , �1 < t < 1, 0 < x < 1,

Buj|@⌦ = gj , �1 < t < 1,
(4.8.4)

where fj ! f in e�tL2(R ⇥ (0, 1)), gj ! g in e�tL2(R) and uj ! u in e�tL2(R ⇥
(0, 1)).

The reason why the above definition is stronger than the one given in Definition
4.8.1 is because every strong solution is a weak solution. Indeed, if u is a strong
solution of (4.8.1) and (uj)j , (fj)j , and (gj)j are the corresponding sequences then
Green’s identity implies that

Z

R

Z
1

0

uj · L⇤' dx dt =

Z

R

Z
1

0

fj · ' dx dt�
Z

R
g
1j ·M1

'|x=1

dt

+

Z

R
g
0j ·M0

'|x=0

dt (4.8.5)

for every ' 2 e��tH1(R⇥ (0, 1)) such that C'|@⌦ = 0. Passing to the limit j ! 1
in (4.8.5) shows that u is a weak solution. It will be shown later that for su�ciently
large �, weak and strong solutions coincide.

Theorem 4.8.4. Let u be a strong solution of the boundary value problem (4.8.1)
and (uj)j ⇢ e�tH1(R⇥(0, 1)) be the corresponding sequence given in Definition 4.8.3.

Then uj ! u in e�tE(R⇥ (0, 1)), and in particular uj|@⌦ ! u|@⌦ in e�tH� 1
2 (R).

Proof. The limit uj ! u in e�tE(R⇥ (0, 1)) follows immediately from the fact that

L(e��tuj) = � �e��tuj + e��tfj ! � �e��tu+ e��tf = L(e��tu)

in L2(R ⇥ (0, 1)). The convergence of the traces follows from the continuity of the
generalized trace operator.

Note that in this section we exhibit basic properties of weak and strong solutions
without proving any existence nor uniqueness. This will be done however in Section
4.10 for smooth coe�cients and in Section 4.12 for coe�cients that are at least
Lipschitz.

4.9 weak and strong solutions for the ibvp

In this section we define the weak and strong solutions in L2(QT ) of the initial
boundary value problem

8
><

>:

Lu = @tu+A@xu+Ru = f, 0 < t < T, 0 < x < 1

Bu|@⌦ = g, 0 < t < T,

u|t=0

= u
0

, 0 < x < 1.

(4.9.1)
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4.9 weak and strong solutions for the ibvp

Definition 4.9.1. Let f 2 L2(QT ), g 2 L2(0, T ) and u
0

2 L2(0, 1). A function
u 2 L2(QT ) is called a weak solution of the initial-boundary value problem (4.9.1) if

Z T
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Z
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0

u · L⇤' dx dt =

Z T

0

Z
1

0

f · ' dx dt�
Z T

0
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1
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1

'|x=1

dt

+

Z T

0

g
0

·M
0

'|x=0

dt+

Z
1

0

u
0

· '|t=0

dx (4.9.2)

holds for all ' 2 H1(QT ) such that C'|@⌦ = 0 and '|t=T = 0.

Since D(QT ) ⇢ {' 2 H1(QT ) : C'|@⌦ = 0,'|t=T = 0}, it follows that the space
of test functions in Definition 4.9.1 is dense in the solutions space L2(QT ). Recall
from (4.4.1) and (4.4.9) that the formal adjoint of L and A�1L are given by

L⇤v = �@tv � @x(A
>v) +R>v

and
(A�1L)⇤v = �@t(A�>v)� @xv +R>A�>v.

Thus for each v 2 H1(QT ) we have L⇤(A�>v) = (A�1L)⇤v and the Green’s identity
Z T

0

Z
1

0

Lu ·A�>v dx dt

=

Z T

0

Z
1

0

u · L⇤(A�>v) dx dt+ h�gu,�vi
H� 1

2
(@QT )⇥H

1
2
(@QT )

(4.9.3)

for all u 2 E(QT ) and v 2 H1(QT ). With this version of the generalized Green’s
identity we are able to prove the following theorem stating how the weak solution
satisfies the IBVP (4.9.1) in some sense.

Theorem 4.9.2. If u 2 L2(QT ) is a weak solution of (4.9.1) then u 2 E(QT ). The
equation Lu = f holds in L2(QT ) in the sense of distributions and the boundary and
initial conditions are satisfied in the following sense

B
0

u|x=0

= g
0

in V (⌃
1

)0, (4.9.4)

B
1

u|x=1

= g
1

in V (⌃
2

)0, (4.9.5)

u|t=0

= u
0

in V (⌃
0

)0. (4.9.6)

Proof. By taking ' 2 D(QT ) in the definition, the equation Lu = f holds in the
sense of distributions and hence u 2 E(QT ). Given  2 V(⌃

1

), let � 2 H1(QT ) be
such that �� =  and

'(t, x) =

✓
Y
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(t)>
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◆�1

✓
�(t, x)

O
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◆
.

Then ' 2 H1(QT ) and C
0

(t)A(t, 0)�>'(t, 0) = D
0

(t)>A(t, 0)>A(t, 0)�>'(t, 0) = 0
for a.e. t 2 (0, T ). Furthermore C

1

(t)A(t, 1)�>'(t, 1) = 0 for a.e. t 2 (0, 1) and
'(0, x) = 0 and '(T, x) = 0 for a.e. x 2 (0, 1) since the support of  lies in ⌃

1

. From
(4.4.16), (4.9.2) and the generalized Green’s identity (4.9.3) we have
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(t)> (t, 0) dt

=

Z T

0
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for each  2 V(⌃
1

) since B
0

(t)A(t, 0)�1M
0

(t)> = B
0

(t)Y
0

(t) = Ip. Therefore (4.9.4)
holds. A similar argument shows that (4.9.5) holds as well.

Let us prove (4.9.6). For ' 2 V(⌃
0

) we let � 2 H1(QT ) such that �|@⌦ = '. Then
C�|@⌦ = 0, �|t=T = 0 and so

hu|⌃0
,'iV (⌃0)

0⇥V (⌃0)
= �h�gu,A(0, ·)>'i

H� 1
2
(@QT )⇥H

1
2
(@QT )

=

Z
1

0

u
0

(x) · '(0, x) dx

from (4.9.2) and (4.9.3). Thus u|⌃0
= u

0

in V (⌃
0

)0.

We can also introduce a stronger notion of solution for the IBVP (4.9.1).

Definition 4.9.3. A function u 2 L2(QT ) is called a strong solution of (4.9.1)

if there exist sequences (uj)j 2 H1(QT ), (fj)j 2 L2(QT ), (gj)j 2 H
1
2 (0, T ) and

(u
0j)j 2 H

1
2 (0, 1) such that

8
><

>:

Luj = fj , 0 < t < T, 0 < x < 1,

Buj|@⌦ = gj , 0 < t < T,

uj|t=0

= u
0j , 0 < x < 1,

with uj ! u and fj ! f in L2(QT ), gj ! g in L2(0, T ) and u
0j ! u

0

in L2(0, 1).

It can be easily seen that every strong solution of (4.9.1) is also a weak solution.
The convergence of the sequence approximating a strong solution can be improved
to E(QT ). The proof of the following theorem is similar to the proof of Theorem
4.8.4 and therefore we omit the details.

Theorem 4.9.4. If u is a strong solution of (4.9.1) and (uj)j ⇢ H1(QT ) is a
corresponding approximating sequence of u then uj ! u in E(QT ). In particular,
uj|⌃i

! u|⌃i
in V (⌃i)0 for i = 1, 2, 3, 4.

4.10 bvp with smooth coefficients

In order to apply Theorem 4.1.1, we take X = e��tL2(R⇥ (0, 1)), Y = e��tH1(R⇥
(0, 1)) and Z = e��tL2(R). Define ⇤ : Y ! X, � : Y ! Z and  : Y ! Z by

⇤' = L⇤', �' = C'|@⌦,  ' = (M
0

'|x=0

,�M
1

'|x=1

),

for all ' 2 Y . The variational equation (4.8.2) can now be written in the form

(e�2�tu,⇤')X = (e�2�tf,')X + (e�2�t(g
0

, g
1

), ')Z , 8 ' 2 ker�. (4.10.1)

Theorem 4.10.1. Assume that (H1)�(H5) hold. Then there exists �
0

� 1 such that
for all � � �

0

, f 2 e�tL2(R ⇥ (0, 1)) and g 2 e�tL2(R) the boundary value problem
(4.2.7) has a weak solution u 2 e�tL2(R⇥ (0, 1)) satisfying the energy estimate

�ke��tuk2L2
(R⇥(0,1))  C

✓
1

�
ke��tfk2L2

(R⇥(0,1)) + ke��tgk2L2
(R)

◆
(4.10.2)

for some C > 0.
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4.10 bvp with smooth coefficients

Proof. With the notations in the paragraph preceding the theorem, the estimate
(4.1.2) holds for all ' 2 Y according to Theorem 4.7.2. Thus, according to Theorem
4.1.1, taking supremum norms of M

0

and M
1

, there exists v 2 X such that

(v,⇤')X = (e�2�tf,')X + (e�2�t(g
0

, g
1

), ')Z , 8 ' 2 ker�.

Then u = e2�tv 2 e2�tX = e�tL2(R ⇥ (0, 1)) satisfies (4.10.1), and so u is a weak
solution of (4.8.1). The energy estimate (4.10.2) is a consequence of (4.2.8).

We define E(R ⇥ (0, 1)) to be the set of all functions ' 2 E(R ⇥ (0, 1)) such that
'|@⌦ 2 L2(R) and there exists a sequence ('j)j ⇢ H1(R⇥ (0, 1)) satisfying

lim
j!1

kuj � ukE(R⇥(0,1)) + kuj|@⌦ � u|@⌦kL2
(R) = 0.

It is clear that H1(R⇥ (0, 1)) ⇢ E(R⇥ (0, 1)). It can be shown that E(R⇥ (0, 1)) is
the completion of H1(R⇥ (0, 1)) with respect to the norm

kukE(R⇥(0,1)) := (kuk2E(R⇥(0,1)) + ku|@⌦k2L2
(R))

1
2 .

The proof is similar to Theorem 4.13.4 below. The space E⇤(R⇥(0, 1)) can be defined
similarly by replacing L by L⇤ in the definition.

Remark 4.10.2. The a priori estimate (4.7.12) in Theorem 4.7.4 is valid for all
functions ' 2 e��tE⇤(R ⇥ (0, 1)). Indeed, (4.7.12) holds for 'j where 'j is the
approximating sequence for ', and hence for ' by passing to the limit j ! 1.

Theorem 4.10.3. For all u 2 e�tE(R⇥ (0, 1)) and w 2 e��tE⇤(R⇥ (0, 1)) we have

Z

R

Z
1

0

u(t, x) · L⇤w(t, x) dx dt�
Z

R

Z
1

0

Lu(t, x) · w(t, x) dx dt

=

Z

R
A(t, 0)u(t, 0) · w(t, 0) dt�

Z

R
A(t, 1)u(t, 1) · w(t, 1) dt. (4.10.3)

Proof. Using integration by parts, (4.10.3) holds for all u,w 2 D(R ⇥ (0, 1)). By a
density argument, (4.10.3) holds for all u 2 e�tH1(R⇥ (0, 1)) and w 2 e��tH1(R⇥
(0, 1)). The conclusion now follows from the definition of the spaces e�tE(R⇥ (0, 1))
and e��tE⇤(R⇥ (0, 1)).

The following theorem implies that strong solutions have L2-traces at the boundary
and the convergence of the traces given in Theorem 4.8.4 can be improved.

Theorem 4.10.4. Assume that (H1)�(H5) hold. There exists �
0

� 1 such that if
u 2 e�tL2(R ⇥ (0, 1)) is a strong solution of (4.8.1) then u|@⌦ 2 e�tL2(R) and u
satisfies the energy estimate

�ke��tuk2L2
(R⇥(0,1)) + ke��tu|@⌦k2L2

(R)

 C

✓
1

�
ke��tfk2L2

(R⇥(0,1)) + ke��tgk2L2
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(4.10.4)

for some C > 0 and for all � � �
0

. If (uj)j ⇢ e�tH1(R ⇥ (0, 1)) is the sequence
associated with u then uj|@⌦ ! u|@⌦ in e�tL2(R). In particular the strong solution is
unique and u 2 e�tE(R⇥ (0, 1)).
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Proof. Let u be a strong solution of (4.8.1) and (uj)j , (fj)j and (gj)j be the corre-
sponding sequence stated in Definition 4.8.3. Applying the a priori estimate (4.5.4)
to uj � uk and the fact that Luj = fj and Buj|@⌦ = gj for all n we have

�ke��t(uj � uk)k2L2
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◆

for some C > 0 and for all � � �
0

where �
0

is the constant in the statement of
Theorem 4.5.2. Thus (uj)j and (uj|@⌦)j are Cauchy sequences in e�tL2(R⇥(0, 1)) and
e�tL2(R), respectively. By definition we already have uj ! u in e�tL2(R⇥(0, 1)). Let
v 2 e�tL2(R) such that uj|@⌦ ! v in e�tL2(R). From Theorem 4.8.4 we have uj|@⌦ !
u|@⌦ in e�tH� 1

2 (R). Since the embedding e�tL2(R) ⇢ e�tH� 1
2 (R) is continuous we

must have u|@⌦ = v. Applying the a priori estimate (4.5.4) to uj and passing to the
limit, we can see that the energy estimate (4.10.4) is satisfied. The uniqueness of
the strong solution follows from (4.10.4).

Theorem 4.10.5. Suppose that that (H1)�(H5) hold. There exists �̃
0

� 1 such that
for all � � �̃

0

, a weak solution u 2 e�tL2(R ⇥ (0, 1)) of (4.8.1) is a strong solution.
In particular, this weak solution is unique, has a trace u|@⌦ 2 e�tL2(R), and the
energy estimate (4.10.4) is satisfied by the weak solution u. The boundary condition
Bu|@⌦ = g holds in e�tL2(R).

Proof. The first statement will be proved even in the case where the coe�cients are
only Lipschitz, cf. Theorem 4.12.2. An alternative proof is to use the regularity
result Theorem 4.10.6 below and apply a standard approximation argument, see [9,
pp. 260–262] for details. The rest of the theorem follows from Theorem 4.10.4.

The following regularity theorem can be shown as in [9, 15].

Theorem 4.10.6. In the situation of Theorem 4.10.5, for all k 2 N
0

there exists
�k � 1 such that for all � � �k, if f 2 e�tHk(R ⇥ (0, 1)) and g 2 e�tHk(R) then
the weak solution u of the BVP (4.8.1) lies in e�tHk(R⇥ (0, 1)) and satisfies u|@⌦ 2
e�tHk(R). There exists Ck > 0 such that

�kuk2e�tHk
� (R⇥(0,1)) + ku|@⌦k2e�tHk

� (R)

 Ck

✓
1

�
kfk2e�tHk

� (R⇥(0,1)) + kgk2e�tHk
� (R)

◆
. (4.10.5)

Furthermore, there exists a sequence (uj)j ⇢ e�tHk+1

� (R ⇥ (0, 1)) such that uj ! u

in e�tHk
� (R⇥ (0, 1)), Luj ! Lu in e�tHk

� (R⇥ (0, 1)) and uj|@⌦ ! u|@⌦ in e�tHk
� (R).

4.11 ibvp with constant coefficients

In this section we study the well-posedness of the IBVP (4.9.1) and we restrict
ourselves to the case where the coe�cient are constants. We refer the readers to the
paper of Rauch and Massey [64] for the case of smooth coe�cients. The results of
this section will be used in a PDE-ODE system that we consider in Section 4.21.

All throughout this section, we suppose that the A 2 Rn⇥n is invertible with p
positive eigenvalues and n � p negative eigenvalues, R 2 Rn⇥n, B

0

2 Rp⇥n, B
1

2
R(n�p)⇥n, B

0

and B
1

have full ranks and the UKL condition (H5) is satisfied. We
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4.11 ibvp with constant coefficients

begin with L2-well-posedness. This theorem will be shown even in the case where
the coe�cient is Lipschitz, cf. Theorem 4.13.10.

Theorem 4.11.1. For each f 2 L2(QT ), g 2 L2(0, T ) and u
0

2 L2(0, 1) the initial-
boundary value problem (4.9.1) has a unique weak solution u 2 L2(QT ). This weak
solution is a strong solution, u|@⌦ 2 L2(0, T ) and u satisfies the energy estimate

e�2�T kuk2CL2
(QT )

+ �ke��tuk2L2
(QT )

+ ke��tu|@⌦k2L2
(0,T )

 C

✓
ku

0

k2L2
(0,1) +

1

�
ke��tfk2L2

(QT )

+ ke��tgk2L2
(0,T )

◆

for all � � �
0

for some C > 0 and some �
0

� 1. Furthermore, there exists (uj)j ⇢
H1(QT ) such that uj ! u in CL2(QT ) \ E(QT ) and uj|@⌦ ! u|@⌦ in L2(0, T ).

Now we prove additional regularity of the solution of the IBVP (4.9.1) under the
assumption that the data are also regular and satisfy compatibility conditions. The
argument relies on the following a priori estimate.

Theorem 4.11.2. Let k 2 N
0

. There exists �k � 1 and Ck > 0 such that the a
priori estimate

e��T
X

|↵|k

�2(k�|↵|) sup
⌧2[0,T ]

k@↵u(⌧)k2L2
(0,1) + �ke��tuk2Hk

� (QT )

+ ke��tu|@⌦k2Hk
� (0,T )

 Ck

0

@
kX

j=0

k@jt u|t=0

k2Hk�j
(0,1) +

1

�
ke��tLuk2Hk

� (QT )

+ ke��tBu|@⌦k2Hk
� (0,T )

1

A .

holds for all u 2 Hk+1(QT ) and � � �k.

The proof of this theorem can be done as in the case of variable coe�cients, cf.
Section 4.19. The proof is therefore omitted. We begin in the homogeneous case.

Theorem 4.11.3. Suppose that f 2 Hk(QT ) and g 2 Hk(0, T ) satisfy @jt f|t=0

= 0

and g(j)(0) = 0 for all 0  j  k � 1. The weak solution of

Lu = f, Bu|@⌦ = g, u|t=0

= 0 (4.11.1)

lies in CHk(QT ) and has trace u|@⌦ 2 Hk(0, T ). Furthermore, there exists a sequence

(uj)j ⇢ Hk+1(QT ) such that uj ! u in CHk(QT ), Luj ! Lu in Hk(QT ) and
um|@⌦ ! u|@⌦ in Hk(0, T ).

Proof. Let f̃ 2 e�tHk(R⇥(0, 1)) and g̃ 2 e�tHk(R) be extensions of f and g such that
f̃|t<0

= 0 and g̃|t<0

= 0. Such extensions exist due to the assumptions on f and g at

t = 0. From Theorem 4.10.6, the solution of the BVP Lũ = f̃ , Bũ|@⌦ = g̃ satisfies

ũ 2 e�tHk(R ⇥ (0, 1)) and ũ|@⌦ 2 e�tHk(R). Moreover, there exists a sequence

(ũj)j ⇢ e�tHk+1

� (R ⇥ (0, 1)) such that ũj ! ũ in e�tHk
� (R ⇥ (0, 1)), Lũj ! Lũ in

e�tHk
� (R ⇥ (0, 1)) and ũj|@⌦ ! ũ|@⌦ in e�tHk

� (R). Let uj = ũj|QT
. Applying the a

priori estimate to uj�uk in Theorem 4.11.2 shows that (uj)j and (uj|@⌦)j are Cauchy
sequences in CHk(QT ) \Hk(QT ) and Hk(0, T ), respectively. If u = ũ|QT

then u is
the weak solution of the IBVP and satisfies the conclusion of the theorem while the
sequence (uj)j is the required sequence in the statement of the theorem.
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linear systems with variable coefficients

We say that the data (u
0

, f, g) 2 Hk(0, 1) ⇥ Hk(QT ) ⇥ Hk(0, T ) satisfies the
compatibility condition up to order k � 1 if

Byui(y) = Digy(0), i = 0, . . . , k � 1, y = 0, 1, (4.11.2)

where

ui = �A@xui�1

�Rui�1

� @i�1

t f|t=0

, i = 1, . . . , k. (4.11.3)

Theorem 4.11.4. Let k be a positive integer. If f 2 Hk(QT ), g 2 Hk(0, T ) and
u
0

2 Hk(0, 1) satisfy the compatibility condition up to order k � 1 then the weak
solution of the IBVP

Lu = f, Bu|@⌦ = g, u|t=0

= u
0

(4.11.4)

satisfies u 2 CHk(QT ) and u|@⌦ 2 Hk(0, T ). There is a sequence (uj)j ⇢ Hk+1(QT )

with the properties uj ! u in CHk(QT ), Luj ! Lu in Hk(QT ) and uj|@⌦ ! u|@⌦
in Hk(0, T ). Moreoever, u satisfies the energy estimate

e��T
X

|↵|k

�2(k�|↵|) sup
⌧2[0,T ]

k@↵u(⌧)k2L2
(0,1) + �ke��tuk2Hk

� (QT )

+ ke��tu|@⌦k2Hk
� (0,T )

 Ck

0

@
kX

j=0

kujk2Hk�j
(0,1) +

1

�
ke��tfk2Hk

� (QT )

+ ke��tgk2Hk
� (0,T )

1

A . (4.11.5)

for all � � �k for some Ck > 0 and �k � 1.

Proof. First suppose that u
0

2 Hk+ 1
2 (0, 1). From [1, pp. 216-217], there exists a

function ua 2 Hk+1(R ⇥ (0, 1)) such that @it(ua)|t=0

= ui for every i = 0, . . . , k � 1.

Let fa = f�Lua 2 Hk(QT ) and ga = g�Bua|@⌦ 2 Hk(0, T ). From (4.11.3) we have
@itfa|t=0

= 0 for i = 0, . . . , k� 1 and from the the compatibility conditions (4.11.2) it
holds that Diga(0) = 0 for i = 0, . . . , k � 1. According to Theorem 4.11.3, the weak
solution of the homogeneous IBVP

Luh = fa, Buh|@⌦ = ga, uh|t=0

= 0

satisfies uh 2 CHk(QT ) and uh|@⌦ 2 Hk(QT ). Then the solution of the IBVP

(4.11.4) is given by u = uh + ua and therefore u 2 CHk(QT ) and u|@⌦ 2 Hk(0, T ).

The sequence (ujh + ua)j ⇢ Hk+1(QT ), where (ujh)j is the sequence in Theorem
4.11.3 corresponding to uh, has the desired properties.

For the case where u
0

2 Hk(0, 1), one can find a sequence (uj0)j ⇢ Hk+ 1
2 (0, 1) such

that (uj0, f, g) is still compatible up to order k� 1, see [64] or the proof of Theorem
4.21.2 below. Thanks to the a priori estimate in Theorem 4.11.2 the desired results
can be shown, see the proof of Theorem 4.19.5 and Remark 4.19.7.

4.12 bvp with lipschitz coefficients

We turn to the boundary value problem where the coe�cients are Lipschitz. As in
Theorem 4.10.1, one can prove the following theorem using the a priori estimate in
Theorem 4.7.4 instead of Theorem 4.7.2.
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4.12 bvp with lipschitz coefficients

Theorem 4.12.1. In the framework of Theorem 4.6.6, there exists �
0

= �
0

(%,K,K) �
1 such that for all � � �

0

, R 2 L1(R ⇥ (0, 1);Rn⇥n) with kRkL1
(R⇥(0,1))  %,

v 2 W(K,K), f 2 e�tL2(R ⇥ (0, 1)) and g 2 e�tL2(R), the boundary value problem
(4.8.1) has a weak solution u 2 e�tL2(R⇥ (0, 1)) satisfying the energy estimate

�ke��tuk2L2
(R⇥(0,1))  C

✓
1

�
ke��tfk2L2

(R⇥(0,1)) + ke��tgk2L2
(R)

◆

for some C = C(%,K,K) > 0.

We show that the weak solution of (4.8.1) is actually a strong solution provided
that � is large enough.

Theorem 4.12.2. Suppose that the hypotheses of Theorem 4.6.6 hold. Then every
weak solution u 2 e�tL2(R⇥ (0, 1)) of (4.8.1) is a strong solution and u 2 e�tE(R⇥
(0, 1)). In particular, (4.8.1) has a unique weak solution satisfying the energy estimate

�ke��tuk2L2
(R⇥(0,1)) + ke��tu|@⌦k2L2

(R)

 C

✓
1

�
ke��tfk2L2

(R⇥(0,1)) + ke��tgk2L2
(R)

◆
(4.12.1)

for every � � �
0

, for some �
0

= �
0

(%,K,K) � 1 and C = C(%,K,K) > 0.

To prove this we need a few lemmas. Let ⇢ 2 D(R) be a mollifier with support in
(�1, 1) and

R
R ⇢(t) dt = 1. Define ⇢✏(t) = ✏�1⇢(t/✏). Denote by R✏ the convolution

operator corresponding to ⇢✏, that is,

R✏u := ⇢✏ ? u = Op(F⇢✏)u.

Then R✏ 2 L(Hr(R), Hs(R)) for all r, s 2 R and ✏ 2 (0, 1). However (R✏)0<✏<1

is
uniformly bounded only as operators of order m � 0.

The first lemma tells us that the trace operator and the convolution operator R✏

commute when applied to elements of the graph space e�tE(R⇥ (0, 1)).

Lemma 4.12.3. Let u 2 e�tE(R ⇥ (0, 1)). Then (R✏(e��tu))|@⌦ = R✏(e��tu|@⌦) 2
H+1(R) for every ✏ 2 (0, 1).

Proof. Fix ✏ 2 (0, 1). The fact that R✏(e��tu|@⌦) 2 H+1(R) for every ✏ 2 (0, 1)
follows from R✏ 2 L(Hr(R), Hs(R)) for all r, s 2 R and ✏ 2 (0, 1). Since e��tu 2
E(R⇥ (0, 1)), there exists a sequence (u�j )j 2 D(R⇥ [0, 1]) with the property u�j !
e��tu in E(R ⇥ (0, 1)). Because u�j is smooth one has (R✏u

�
j )|@⌦ = R✏((u

�
j )|@⌦) for

all j. By continuity of the generalized trace operator we have (u�j )|@⌦ ! e��tu|@⌦
in H� 1

2 (R) and since R✏ 2 L(H� 1
2 (R)) it follows that R✏((u

�
j )|@⌦) ! R✏(e��tu|@⌦)

in H� 1
2 (R). Since R✏ 2 L(L2(R), H1(R)) we have R✏u

�
j ! R✏(e��tu) in H1(R) and

by the continuity of the trace operator it follows wthat (R✏u
�
j )|@⌦ ! (R✏(e��tu))|@⌦

in H
1
2 (R). Finally the continuity of the embedding H

1
2 (R) ⇢ H� 1

2 (R) implies that
(R✏(e��tu))|@⌦ = R✏(e��tu|@⌦).

The second lemma shows that di↵erentiation with respect to space and convolution
with respect to time associated with the mollifier ⇢✏ commute for elements of the
graph space E(R⇥ (0, 1)).
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linear systems with variable coefficients

Lemma 4.12.4. For each u 2 E(R⇥ (0, 1)) it holds that @x(⇢✏ ? u) = ⇢✏ ? (@xu) in
H�1(R⇥ (0, 1)).

Proof. For simplicity we let O = R⇥ (0, 1). Take ' 2 D(O). By Fubini’s Theorem
and the change of variable � = t� s we have

h@x(⇢✏ ? u),'iH�1
(O)⇥H1

0 (O)
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Z

1

0

Z
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Z
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1

0

Z

R

Z

R
⇢✏(�)@x'(� + s, x)u(s, x) d� ds dx
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R
⇢✏(�)h@xu,'(� + ·, ·)iH�1

(O)⇥H1
0 (O)

d�

Recall that @xu = A�1

v Lvu � @t(A�1

v u) + (@tA�1

v )u. Computations similar as above
show that
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for all w 2 L2(O). Thus
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where w = A�1

v Lvu + (@tA�1

v )u 2 L2(O). Let us consider the integral on the right
hand side of (4.12.2). Integrating by parts and using the fact that R✏ is a convolution
operator with respect to t, so that R✏ and @t commute, we obtain
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v u),'iH�1
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Therefore using @xu = w � @t(A�1

v u) we have
Z

R
h⇢✏(�)@xu,'(� + ·, ·)iH�1

(O)⇥H1
0 (O)

d� = h⇢✏ ? (@xu),'iH�1
(O)⇥H1

0 (O)

Since D(O) is dense in H1

0

(O) it follows that @x(⇢✏ ? u) = ⇢✏ ? (@xu) in H�1(O).

The following lemma is a generalization of Friedrichs Lemma, see Theorem C.1.1
and (C.1.4).
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4.12 bvp with lipschitz coefficients

Lemma 4.12.5. For each u 2 e�tE(R⇥(0, 1)) and ✏ 2 (0, 1) we have [P �
v , R✏]e��tu 2

L2(R⇥ (0, 1)), [Bv, R✏]e��tu|@⌦ 2 H
1
2 (R),

lim
✏!0

k[P �
v , R✏]e

��tukL2
(R⇥(0,1)) = 0

and
lim
✏!0

k[Bv, R✏]e
��tu|@⌦kL2

(R) = 0.

To prove Theorem 4.12.2, we regularized the weak solution using the smoothing
operator R✏. This will give us more regularity in time. Using the PDE and Lemma
4.12.5 we can obtain additional regularity in space. The sequence of regularizations
satisfy a boundary value problem that is an approximation of the original boundary
value problem, and hence, the weak solution is a strong solution. This is the main
idea of the proof below.

Proof of Theorem 4.12.2. Let us define the following regularized functions

u�✏ = R✏(e
��tu), F �

✏ = R✏(A
�1

v e��tf), g�✏ = R✏(e
��tg),

where u is the weak solution of the BVP (4.8.1). For each ✏ > 0, we have u�✏ 2
L2((0, 1);H+1(R)), F �

✏ 2 L2((0, 1);H+1(R)), g�✏ 2 H+1(R) and as ✏ ! 0 we have
u�✏ ! e��tu in L2(R ⇥ (0, 1)), F �

✏ ! A�1

v e��tf in L2(R ⇥ (0, 1)) and g�✏ ! e��tg in
L2(R). According to Theorem 4.8.2, the weak solution u lies in e�tE(R⇥ (0, 1)).

We claim that u�✏ 2 H1(R⇥ (0, 1)). Recall that

@xe
��tu = P �

v e
��tu+A�1

v e��tf. (4.12.3)

From Lemma 4.12.4 and (4.12.3)

@xu
�
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�
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��tu+ F �
✏ = F �

✏ + P �
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�
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v ]e

��tu. (4.12.4)

By construction F �
✏ , P

�
v u

�
✏ 2 L2(R ⇥ (0, 1)). According to the previous lemma
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v , R✏]e��tu 2 L2(R ⇥ (0, 1)). Therefore @xu

�
✏ 2 L2(R ⇥ (0, 1)) and as a result

u�✏ 2 H1(R ⇥ (0, 1)). Applying Theorem 4.6.6 to e�t(u�✏ � u�✏0) 2 e�tH1(R ⇥ (0, 1))
and using Lemma 4.12.3 and (4.12.4) we have
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Using Lemma 4.12.5, we conclude that (u�✏ )✏>0

and ((u�✏ )|@⌦)✏>0

are Cauchy se-
quences in L2(R⇥(0, 1)) and L2(R), respectively. We already know that u�✏ ! e��tu
in L2(R⇥ (0, 1)). From (4.12.4)

Lvu
�
✏ = AvF

�
✏ � �u�✏ �Av[R✏, P

�
v ]e

��tu. (4.12.5)

Passing to the limit in (4.12.5) we have Lvu
�
✏ ! e��tf � �e��tu = Lv(e��tu) in

L2(R⇥ (0, 1)). Thus u�✏ ! e��tu in E(R⇥ (0, 1)). The continuity of the generalized

trace operator implies that (u�✏ )|@⌦ ! e��tu|@⌦ in H� 1
2 (R), and hence in L2(R).
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linear systems with variable coefficients

We see from (4.12.4) and Lemma 4.12.4 that w✏ := e�tu�✏ 2 e�tH1(R ⇥ (0, 1))
satisfies the system

Lvw✏ = e�tAvF
�
✏ � e�tAv[R✏, P

�
v ]e

��tu =: f✏

Bv(w✏)|@⌦ = e�t[Bv, R✏]e
��tu|@⌦ + e�tg�✏ =: h✏.

Since f✏ 2 e�tL2(R⇥ (0, 1)), h✏ 2 e�tH
1
2 (R), f✏ ! f in e�tL2(R⇥ (0, 1)) and h✏ ! g

in e�tL2(R), it follows that u is a strong solution of (4.8.1). The energy estimate
(4.12.1) follows from the a priori estimate (4.6.4) applied first to u✏ and then passing
to the limit ✏ ! 0. The uniqueness of weak solution of (4.8.1) is a consequence of
the energy estimate (4.12.1).

The above arguments show that there exists a sequence (uj)j ⇢ e�tH1(R⇥ (0, 1))
such that uj ! u in e�tE(R ⇥ (0, 1)) and uj|@⌦ ! u|@⌦ in e�tL2(R). Therefore
u 2 e�tE(R⇥ (0, 1)).

In studying initial-boundary value problems, the following causality principle will
be used. For the proof, we refer to [9, Theorem 9.13].

Theorem 4.12.6 (Principle of Causality). Let ⌧ 2 R. If f 2 L2(R ⇥ (0, 1)) and
g 2 L2(R) satisfy f|t<⌧ = 0 and g|t<⌧ = 0 then the weak solution of (4.8.1) also
satisfies u|t<⌧ = 0.

4.13 ibvp with lipschitz coefficients

The proof of existence and uniqueness of weak solutions for the IBVP (4.9.1) is
slightly di↵erent from the one we have already done for the BVP (4.8.1). Theorem
4.1.1 is not applicable at the moment since a suitable a priori estimate is not available
at this point. If the initial data in (4.9.1) is zero, then (4.9.2) is similar to (4.8.2).
With this observation, one can prove well-posedness of the homogeneous IBVP by
using results for the BVP and the Causality Principle Theorem 4.12.6. Thanks to
this procedure we obtain an a priori estimate for the IBVP with homogeneous initial
data. By a duality argument, an a priori estimate for the IBVP will be proved, and
with this estimate, Theorem 4.1.1 can now be applied to prove the well-posedness of
the general IBVP (4.9.1).

The passage from initial-boundary value problems to pure boundary value prob-
lems requires a technical step of extending a function in W 1,1(QT ) to a function
in W 1,1(R ⇥ (0, 1)). This is possible thanks to a standard reflection argument, see
Adams [1, p. 84].

Theorem 4.13.1. For each v 2 W 1,1(QT ) there exists V 2 W 1,1(R2) such that
kvkW 1,1

(QT )

= kV kW 1,1
(R2

)

and v and V have the same range.

With abuse of notation, we denote by the same notation v the extension V of
v stated in Theorem 4.13.1. In this section, we let W(K,K) denote the set of all
functions v 2 W 1,1(QT ) such that ran v ⇢ K and kvkW 1,1

(QT )

 K.

Theorem 4.13.2. Suppose that (D) and (UKL) hold. Let f 2 L2(QT ), g 2 L2(0, T ),
v 2 W(K,K) and R 2 L1(QT ) with kRkL1  %. The homogeneous initial-boundary
value problem

Lvu = f, Bvu|@⌦ = g, u|t=0

= 0 (4.13.1)
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has a unique weak solution. Furthermore, the weak solution is a strong solution and
it satisfies u|@⌦ 2 L2(0, T ) and the energy estimate

�ke��tuk2L2
(QT )

+ ke��tu|@⌦k2L2
(0,T )

 C

✓
1

�
ke��tfk2L2

(QT )

+ ke��tgk2L2
(0,T )

◆
(4.13.2)

for all � � �
0

for some �
0

= �
0

(%,K,K) � 1 and C = C(%,K,K) > 0. In particular,
the boundary condition Bvu|@⌦ = g holds in L2(0, T ).

Proof. Let f̃ and g̃ be the extensions of f and g by zero outside (0, T ) and let
ũ 2 e�tE(R ⇥ (0, 1)) be the unique weak solution of the BVP Lvũ = f̃ , Bvũ|@⌦ = g̃.
We know that this weak solution is strong and by Theorem 4.12.6 u|t<0

= 0. Let
(ũj)j 2 e�tH1(R⇥ (0, 1)) be the sequence of functions approximating ũ in the proof
of Theorem 4.12.2. In particular, ũj satisfies a BVP

Lvũj = f̃j , Bvũj = g̃j (4.13.3)

where f̃j ! f̃ in e�tL2(R⇥(0, 1)) and g̃j ! g̃ in e�tL2(R). By replacing the mollifiers
⇢✏ by ✏�1⇢((x � a)/✏) for some a > 0 small enough in the proof of Theorem 4.12.2,
so that they are supported in {t > 0}, we have ũj|t<0

= 0 for each j.
From (4.13.3) and integration by parts we have

Z T

0

Z
1

0

ũj · L⇤
v' dx dt =

Z T

0

Z
1

0

f̃j · ' dx dt�
Z T

0

g̃
1j ·M1

(v)'|x=1

dt

+

Z T

0

g̃
0j ·M0

(v)'|x=0

dt (4.13.4)

for all ' 2 H1(QT ) such that Cv'|@⌦ = 0 and '|t=T = 0. Passing to the limit in
(4.13.4) yields

Z T

0

Z
1

0

u · L⇤
v' dx dt =

Z T

0

Z
1

0

f · ' dx dt�
Z T

0

g
1

·M
1

(v)'|x=1

dt

+

Z T

0

g
0

·M
0

(v)'|x=0

dt

where u = ũ|QT
. Thus u is a weak solution of the initial boundary value problem

(4.13.1).
Because ũj ! ũ in e�tE(R⇥ (0, 1)) we also have uj := ũj|QT

! u in E(QT ) from
Theorem 4.4.1 and in particular uj|x=0

! u|x=0

in V (⌃
1

)0 and uj|x=1

! u|x=1

in
V (⌃

2

)0. However we already have uj|@⌦ ! u|@⌦ in L2(0, T ). Thus u|@⌦ 2 L2(0, T )
since the second inclusion in (4.4.14) is continuous. Likewise, uj|t=0

= 0 for all
j so that u|t=0

= 0 in L2(0, 1). Because (uj)j ⇢ H1(QT ), (fj)j ⇢ L2(QT ) and

(gj)j ⇢ H
1
2 (0, T ) satisfy Lvuj = fj , Buj|@⌦ = gj , uj|t=0

= 0, the weak solution
constructed above is a strong solution.

As the function ũj satisfies the boundary value problem (4.13.3), it also satisfies
the energy estimate

�ke��tũjk2L2
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+ ke��tũj|@⌦k2L2
(0,T )
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according to Theorem 4.12.2. Letting j ! 1 and recalling that f̃ and g̃ vanish for
t 2 (�1, 0) [ (T,1), it follows that the energy estimate (4.13.2) is satisfied by the
weak solution that we have constructed.

It remains to prove that the weak solution of the IBVP is unique. For this, we
suppose that u

1

and u
2

are any weak solutions and let w = u
1

�u
2

2 L2(QT ). Then
w is a weak solution of the homogeneous IBVP

Lvw = 0, Bvw|@⌦ = 0, w|t=0

= 0.

This means that Z T

0

Z
1

0

w · L⇤
v' dx dt = 0 (4.13.5)

for all ' 2 H1(QT ) such that Cv'|@⌦ = 0 and '|t=T = 0. Fix ⌧ 2 (0, T ). Let
✓⌧ 2 D(R) be a cut-o↵ function such that ✓⌧ (t) = 1 for t  ⌧ and ✓⌧ (t) = 0 for t � T .
Let w̃ be the extension of w by zero outside (0, T ). Take  2 e��tH1(R ⇥ (0, 1))
with Cv |@⌦ = 0. From the equality L⇤

v(✓⌧ ) = ✓⌧L⇤
v � ✓0⌧ we have

Z

R

Z
1

0

✓⌧ w̃ · L⇤
v dx dt =

Z T

0

Z
1

0

w · L⇤
v(✓⌧ ) dx dt+

Z T

0

Z
1

0

✓0⌧w ·  dx dt

=

Z

R

Z
1

0

✓0⌧ w̃ ·  dx dt (4.13.6)

where the second equality is based on (4.13.5) with ' replaced by ✓⌧ . This is
possible since ✓⌧ 2 H1(QT ), C(✓⌧ )|@⌦ = 0 and (✓⌧ )|t=T = 0. Therefore, from
(4.13.6) we can see that z := ✓⌧ w̃ satisfies the boundary value problem Lvz = ✓0⌧ w̃,
Bvz|@⌦ = 0. By construction, ✓0⌧ w̃ = 0 for t < ⌧ and therefore z = 0 for t < ⌧ by
Theorem 4.12.6. Consequently, w = 0 a.e. in Q⌧ . Since ⌧ 2 (0, T ) is arbitrary, we
have w = 0 a.e. in QT and thus the uniqueness of weak solutions for (4.13.1).

Using Friedrichs symmetrizability we can prove an a priori estimate which includes
terms that are pointwise-in-time.

Theorem 4.13.3. In the framework of Theorem 4.13.2, suppose in addition that
(FS) holds. For all u 2 H1(QT ) satisfying u|t=0

= 0 there exist constants C =
C(%,K,K) > 0 and �

0

= �
0

(%,K,K) � 1 such that
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for all � � �
0

.

Proof. We use the same notation as in the proof of Theorem 4.13.2. Take u 2 H1(QT )
satisfying u|t=0

= 0. Thanks to Theorem 4.13.2 we already have
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by taking f = Lvu and g = Bvu|@⌦.
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Denote by Sv the Friedrichs symmetrizer of Av and let � = �(K,K) > 0 be a
constant independent of v such that �In  Sv  ��1In. Define u� = e��tu so that
L�vu� = e��tLvu. Since Sv is symmetric we have

d

dt

Z ⌧

0

Z
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0

Svu� · u� dx dt (4.13.9)

=
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Z
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(@tSv)u� · u� + 2<[Sv(L
�
v � �)u� · u� ]� 2<[SvAv@xu� · u� ] dx dt.

Integrating by parts gives us
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v Sv))u� +A>
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v Sv))u� · u� dx dt (4.13.10)

Therefore from (4.13.9) and (4.13.10) we obtain
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dt

Z ⌧

0

Z
1

0
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Sv(t, 1)Av(t, 1)u�(t, 1) · u�(t, 1) dt

+
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Sv(t, 0)Av(t, 0)u�(t, 0) · u�(t, 0) dt

+
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(@tSv + @x(A
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v Sv))u� · u� + 2<[Sv(L

�
v � �)u� · u� ] dx dt. (4.13.11)

By Cauchy-Schwarz inequality and Young’s inequality and �In  Sv we have

ku�(⌧)k2L2
(0,1) (4.13.12)
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for every ⌧ 2 [0, T ]. Therefore (4.13.7) follows from (4.13.8) and (4.13.12).

With Friedrichs symmetrizability, additional regularity in time is possible for the
weak solution of (4.13.1). Furthermore, the solution lies on a subspace of the graph
space E(QT ).
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We let E(QT ) be the space of all functions ' 2 E(QT ) such that '|@QT
2 L2(@QT )

and there exists a sequence ('j)j ⇢ H1(QT ) with the property that

lim
j!1

kuj � ukE(QT )

+ kuj|@QT
� u|@QT

kL2
(@QT )

= 0. (4.13.13)

Obviously, we have H1(QT ) ⇢ E(QT ). The space E⇤(QT ) is also defined in a similar
manner where L is replaced by L⇤.

Theorem 4.13.4. The space E(QT ) is the completion of H1(QT ) with respect to the
norm

kukE(QT )

:= (kuk2E(QT )

+ ku|@QT
k2L2

(@QT )

)
1
2 . (4.13.14)

Proof. Denote by Ẽ(QT ) the completion of H1(QT ) under the norm k · kE(QT )

. Let
u 2 E(QT ) and (uj)j ⇢ H1(QT ) be its corresponding sequence. From (4.13.13) it
follows that (uj)j is a Cauchy sequence in Ẽ(QT ). Thus, uj ! w in Ẽ(QT ) for some
w 2 Ẽ(QT ). In particular, uj ! w in E(QT ). By uniqueness of limits in E(QT ) it
follows that u = w and so u 2 Ẽ(QT ).

Conversely, suppose that u 2 Ẽ(QT ) so that there exists (uj)j ⇢ H1(QT ) such
that uj ! u in Ẽ(QT ). Thus (4.13.13) holds and u 2 E(QT ). It remains to show
that u|@QT

2 L2(@QT ). It follows from (4.13.13) that there exists v 2 L2(@QT ) such
that uj|@QT

! v in L2(@QT ). Since uj ! u in E(QT ) we have uj|x=0

! u|x=0

in
V (⌃

1

)0. Because the inclusion L2(0, T ) ⇢ V (⌃
1

)0 is continuous we have u|x=0

= v|⌃1
.

Similarly, we have u|⌃i
= v|⌃i

for i = 0, 2, 3. Therefore u|@QT
= v on @QT and so

u|@QT
2 L2(@QT ). Hence u 2 E(QT ) and this proves the other inclusion.

As in the proof of Theorem 4.10.3, we have the following generalized Green’s
identity.

Theorem 4.13.5. For every u 2 E(QT ) and ' 2 E⇤(QT ) we have

Z T
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0

u · L⇤' dx dt =

Z T

0
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0

Lu · ' dx dt�
Z T

0

A(t, 1)u(t, 1) · '(t, 1) dt

+

Z T

0

A(t, 0)u(t, 0) · '(t, 0) dt�
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u(T, x) · '(T, x) dx

+

Z
1

0

u(0, x) · '(0, x) dx. (4.13.15)

Corollary 4.13.6. In the situation of Theorem 4.13.3, the solution u of (4.13.1)
lies in CL2(QT ) \ E(QT ) and satisfies the energy estimate

e�2�T kuk2CL2
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+ �ke��tuk2L2
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Moreover, there exists a sequence (uj)j 2 H1(QT ) such that uj ! u in CL2(QT ) \
E(QT ) and uj|@⌦ ! u|@⌦ in L2(0, T ).

Proof. We know from Theorem 4.13.2 that the weak solution u of (4.13.1) is a
strong one. Let (uj)j ⇢ H1(QT ) be a sequence corresponding to the strong solution
u. Applying the a priori estimate (4.13.7) to uj � uk, we can see that (uj)j and
(uj|@⌦)j are Cauchy sequences in CL2(QT ) and L2(0, T ), respectively. Since we
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already know that uj ! u in L2(QT ) we must have uj ! u in CL2(QT ) as well since
the inclusion CL2(QT ) ⇢ L2(QT ) is continuous. From Theorem 4.9.4, uj ! u in
E(QT ) and uj|⌃i

! u|⌃i
in V (⌃i)0 for every i = 0, 1, 2, 3. According (4.4.14) we have

uj|@⌦ ! u|@⌦ in L2(0, T ). Finally, since uj ! u in CL2(QT ) we have uj|t=⌧ ! u|t=⌧
in L2(0, 1) for every ⌧ 2 [0, T ] and so u 2 E(QT ).

With a duality argument, the a priori estimate in Theorem 4.13.3 can be improved
to all functions u 2 H1(QT ).

Theorem 4.13.7. In the situation of Theorem 4.13.3, there are constants C =
C(%,K,K) > 0 and �
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(%,K,K) � 1 such that the a priori estimate
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holds for all u 2 H1(QT ) and � � �
0

.

Proof. Suppose that F 2 e��tL2(QT ), G 2 e��tL2(0, T ) and u 2 H1(QT ). Let z be
the solution of the IBVP

L⇤
vz = F, Cvz|@⌦ = G, z|t=T = 0.

The dual version of Corollary 4.13.6 implies that z satisfies the energy estimate
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and z 2 E⇤(QT ). Using the generalized Green’s identity (4.13.15) for u and z
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dx. (4.13.19)

Taking G
0

= G
1

= 0 in (4.13.19), using the Cauchy-Schwarz inequality and the
estimate (4.13.18) we have
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where
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Dividing by the norm involving F and taking the supremum over all F 2 e�tL2(QT )
in (4.13.20) yields p

�ke��tukL2
(QT )

 CQ(u). (4.13.21)

Similarly, letting F = 0 and G arbitrary in (4.13.19) we have

ke��tNvu|@⌦kL2
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 CQ(u). (4.13.22)

Define the 2n⇥ 2n matrix-valued function
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where N
1v are the matrices in Lemma 4.7.1. Note that P is invertible and hence
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Revisiting the proof of Theorem 4.13.3, we have

ke��⌧u(⌧)k2L2
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(QT )
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for all ⌧ 2 [0, T ]. The main di↵erence here is the occurrence of the tern u|t=0

, which
does not appear in Theorem 4.13.3 due to the assumption on u there. The conclusion
now follows form (4.13.21)�(4.13.24).

There is also a corresponding a priori estimate for the dual problem. We leave the
details of this estimate to the reader. The proof of the following corollary follows
from the dual version of (4.13.17) and the definition of E⇤(QT ).

Corollary 4.13.8. In the situation of Theorem 4.13.3, there exist C = C(%,K,K) >
0 and �
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(%,K,K) � 1 such that a priori estimate

ku|t=0

k2L2
(0,1) + �ke�tuk2L2

(QT )

+ ke�tu|@⌦k2L2
(0,T )

 C

✓
e2�T ku|t=T k2L2

(0,1) +
1

�
ke�tL⇤

vuk2L2
(QT )

+ ke�tCvu|@⌦k2L2
(0,T )

◆
(4.13.25)

holds for all u 2 E⇤(QT ) and � � �
0

.

For the coupled PDE-ODE system that will be discussed in Section 4.20, the a
priori estimate (4.13.25) will be used.

Theorem 4.13.9. Suppose that the hypotheses of Theorem 4.13.3 hold. Then the in-
homogeneous IBVP (4.9.1) has a unique weak solution and there exist C = C(%,K,K) >
0 and �
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holds for every � � �
0

.
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Proof. We apply Theorem 4.1.1. Let X = e��tL2(QT ), Y = H1(QT ) and Z =
e��tL2(0, T ) ⇥ e��tL2(0, T ) ⇥ L2(0, 1). Define ⇤ : Y ! X,  : Y ! Z, � : Y ! Z
by

⇤' = L⇤
v',  ' = (M

0v'|x=0

,�M
1v'|x=1

,'|t=0

), �' = (C'|@⌦,'|t=T ).

for ' 2 Y . The variational equation (4.9.2) can be written as

(e�2�tu,⇤w)X = (e�2�tf, w)X + ((e�2�tg
0

, e�2�tg
1

, u
0

), w)Z (4.13.27)

for all w 2 W = ker�. The existence of a solution for (4.13.27) satisfying (4.13.26)
follows the same lines of argument as in the proof of Theorem 4.10.1 thanks to the
dual version of the a priori estimate (4.13.17). The uniqueness of weak solutions
follows from the uniqueness of weak solutions for homogeneous problems stated in
Theorem 4.13.3.

To close this section, we show that the weak solution of (4.9.1) given in Theorem
4.13.9 is a strong solution.

Theorem 4.13.10. In the situation of Theorem 4.13.3, the weak solution u is a
strong solution, u 2 CL2(QT ) \ E(QT ). There exists a sequence (uj)j ⇢ H1(QT )
such that uj ! u in CL2(QT ) \E(QT ) and uj|@⌦ ! u|@⌦ in L2(0, T ). Furthermore,
there exist �

0

= �
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(%,K,K) � 1 and C = C(%,K,K) > 0 such that u satisfies the
energy estimate

e�2�T kuk2CL2
(QT )

+ �ke��tuk2L2
(QT )

+ ke��tu|@⌦k2L2
(0,T )

 C

✓
ku

0

k2L2
(0,1) +

1

�
ke��tfk2L2

(QT )

+ ke��tgk2L2
(0,T )

◆
(4.13.28)

for every � � �
0

.

Proof. Suppose that u
0

2 L2(0, 1). Let (u
0j)j ⇢ H1(0, 1) be such that u

0j ! u
0

in
L2(0, 1). Let ujc be the weak solution of the Cauchy problem

Lujc = 0, ujc|t=0
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where u
0j is extended to the whole of R. From Theorem [9, Theorem 2.9], ujc 2

CH1(QT ) ⇢ H1(QT ), and so Bujc|@⌦ 2 H
1
2 (0, T ). Using Green’s identity we have

Z

QT

ujc · L⇤
v' dx dt = �

Z T

0

B
1vujc|x=1

·M
1v' dt+

Z T

0

B
0vujc|x=0

·M
0v' dt

+

Z
1

0

u
0j · '|t=0

dx (4.13.29)

for all ' 2 H1(QT ) such that C'|@⌦ = 0 and '|t=T = 0.
Consider the homogeneous initial-boundary value problem

Lvujh = f, Bvujh|@⌦ = g �Bujc|@⌦, ujh|t=0

= 0.

From Corollary 4.13.6 this problem has a strong solution and hence for each positive
integer j there exists wjh 2 H1(QT ), Fj 2 L2(QT ) and Gj 2 H

1
2 (0, T ) such that

Lvwjh = Fj , Bvwjh|@⌦ = Gj , wjh|t=0

= 0,

kwjh � ujhkE(QT )\CL2
(QT )

+ kwjh|@⌦ � ujh|@⌦kL2
(0,T )

<
1

j
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and

kFj � fkL2
(QT )

+ kGj � (g �Bujc|@⌦)kL2
(0,T )

<
1

j
.

Thus wjh satisfies the variational equality

Z

QT

wjh · L⇤
v' dx dt =

Z

QT

Fj · ' dx dt�
Z T

0

G
1j ·M1v' dt

+

Z T

0

G
0j ·M0v' dt (4.13.30)

for all ' 2 H1(QT ) such that C'|@⌦ = 0 and '|t=T = 0.
Define wj = wjh + ujc. From (4.13.29) and (4.13.30), it can be seen that wj 2

H1(QT ) solves the initial-boundary value problem

Lvwj = Fj , Bvwj|@⌦ = Gj +Bujc|@⌦, wj|t=0

= u
0j .

Applying the a priori estimate (4.13.17) for wj�wk and using Fj ! f in L2(QT ) and
Gj+Bujc|@⌦ ! g in L2(0, T ) show that (wj)j is a Cauchy sequence in CL2(QT ). Let
w be the limit of (wj)j in CL2(QT ). Thus w is a strong solution of the inhomogeneous
IBVP (4.9.1). Because strong solutions are weak and weak solutions are unique,
we must have u = w where u is the weak solution of (4.9.1). It can be checked
that (wj)j ⇢ H1(QT ) is an approximating sequence for u satisfying all the desired
properties stated in the theorem. Applying the a priori estimate (4.13.17) to wj and
then passing to the limit proves (4.13.28).

We end this section with a simple remark that will be used in Section 4.20.

Remark 4.13.11. According to Green’s identity (4.10.2) and Theorem 4.13.10, the
weak solution u of the IBVP (4.9.1) satisfies

Z T

0

Z
1

0

u · L⇤
v' dx dt =

Z T

0

Z
1

0

f · ' dx dt�
Z T

0

Av(t, 1)u(t, 1) · '(t, 1) dt

+

Z T

0

Av(t, 0)u(t, 0) · '(t, 0) dt�
Z

1

0

u(T, x) · '(T, x) dx

+

Z
1

0

u
0

(x) · '(0, x) dx.

for every ' 2 E⇤(QT ) . In particular, (4.9.2) holds for every ' 2 E⇤(QT ) with the
properties C'|@⌦ = 0 and '|t=T = 0. On the other hand, if u satisfies (4.9.2) for
every ' 2 E⇤(QT ) such that C'|@⌦ = 0 and '|t=T = 0 then u must be the unique
solution of (4.9.2).

4.14 some classical sobolev estimates

Our next goal is to prove the regularity of weak solutions for boundary value problems
and initial-boundary value problems where the coe�cients are smooth. Again the
results rely on a priori estimates, but now in the setting of Sobolev spaces. In
preparation we state the following various results on Sobolev spaces.

Proposition 4.14.1. Let ⌦ be an open cube or a strip in Rd. For all real numbers
s, t � 0 such that s + t > 0, if u 2 Hs(⌦) and v 2 Ht(⌦) then uv 2 Hr(⌦)
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for all 0  r  min(s, t) such that r + d/2 < s + t. Furthermore, there exists
C = C(r, s, t,⌦) > 0 such that

kuvkHr
(⌦)

 CkukHs
(⌦)

kvkHt
(⌦)

In particular, Hs(⌦) is a Banach algebra for all s > d/2.

Proof. The proof follows from a well-known result in the case ⌦ = Rd, e.g. [9,
Theorem C.10]. Indeed, we recall that given a real q � 0 there exists a continuous
operator Eq : Hq(⌦) ! Hq(Rd) such that (Equ)|⌦ = u and

kEqukHq
(Rd

)

 CqkukHq
(⌦)

for some constant Cq = Cq(⌦) > 0 independent of u 2 Hq(⌦), see e.g. [1, p.
207–208]. Then uv = (EsuEtv)|⌦ 2 Hr(⌦) and

kuvkHr
(⌦)

 kEsuEtukHr
(Rd

)

 CkEsukHs
(Rd

)

kEtvkHt
(Rd

)

 CkukHs
(⌦)

kvkHt
(⌦)

.

This proves the proposition.

By induction, if s
1

, . . . , sN � 0 are real numbers such that s
1

+ · · ·+ sN > 0 and if
ui 2 Hsi(⌦) for all 1  i  N then u

1

· · ·uN 2 Hr(⌦) whenever 0  r  min
1iN si

and r + d/2 < s
1

+ · · ·+ sN , and moreover, we have the estimate

ku
1

· · ·uNkHr
(⌦)

 Cku
1

kHs1
(⌦)

· · · kuNkHsN
(⌦)

(4.14.1)

for some C > 0 independent of ui for 1  i  N .
In a similar way the following commutator estimate can be shown.

Proposition 4.14.2. Let ⌦ be an open cube or a strip in Rd, s � [d/2]+2, a 2 Hs(⌦)
and u 2 Hs�1(⌦). Then for all 1  |↵|  s we have

k[@↵, a]ukL2
(⌦)

 CkakHs
(⌦)

kukH|↵|�1
(⌦)

.

Proposition 4.14.3. Let ⌦ be an open cube or a strip in Rd, s > d/2 and F 2
C1(R) such that F (0) = 0. If u 2 Hs(⌦) then F (u) 2 Hs(⌦) and there exists a
continuous function C : [0,1) ! [0,1) such that

kF (u)kHs
(⌦)

 C(kukL1
(⌦)

)kukHs
(⌦)

.

Proof. The proof uses the same ideas as in the proof of the Proposition 4.14.1. We
note that the extension operator Eq : Hq(⌦) ! Hq(Rd) can be chosen, e.g. successive
application of Seeley’s reflection argument [1, p. 84], in such a way that kukL1

(Rd
)


C(q,⌦)kukL1

(⌦)

. Using the same extension argument as above and [9, Theorem
C.12] one can prove the proposition.

Similarly, using [9, Corollary C.3] one can prove the following.

Proposition 4.14.4. Let ⌦ be an open cube or a strip in Rd, s > d/2 and F 2
C1(R). Then there exists a continuous function C : [0,1) ! (0,1) such that for
all u, v 2 Hs(⌦) we have

kF (u)� F (v)kHs
(⌦)

 C(max(kukHs
(⌦)

, kvkHs
(⌦)

))ku� vkHs
(⌦)

.
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4.15 a priori estimates in sobolev spaces with time interval R

The proof of the regularity of solutions also relies on an a priori estimate, but now
in weighted Sobolev spaces. All throughout this section we let ⌦ = (0, 1). Let v 2
Hm(R⇥⌦) taking values on a compact set K ⇢ U , kvkW 1,1

(R⇥⌦)

 K, kvkHm
(R⇥⌦)


R and u 2 D(R⇥ ⌦). First we estimate in terms of the norm k · kHm

�
, where m � 3

is an integer. We divide the derivation of the estimates into pure time derivatives
and mixed derivatives.

4.15.1 Estimates on Time Derivatives

Applying the a priori estimate (4.6.4) to w = @↵t u for ↵ = 0, 1, . . . ,m one obtains

p
�k@↵t ukL2

(⌦;L2
(R)) + k(@↵t u)|@⌦kL2

(R)

 c

✓
1
p
�
kL�v@↵t ukL2

(⌦;L2
(R)) + kB(@↵t u)|@⌦kL2

(R)

◆
. (4.15.1)

Since B is a constant matrix, the boundary terms on the right hand side of (4.15.1)
are given by

mX

↵=0

�m�↵kB(@↵t u)|@⌦kL2
(R) =

mX

↵=0

�m�↵k@↵t (Bu|@⌦)kL2
(R)

= kBu|@⌦kHm
� (R). (4.15.2)

Here the trace and the derivative commute since u is smooth. The term L�v@↵t u is
more involved. We rewrite it as

L�v@
↵
t u = A(v)@↵t (A(v)�1f) +A(v)[A(v)�1L�v , @

↵
t ]u (4.15.3)

where f = L�vu.
For the first term on the right hand side of (4.15.3) we write

A(v)@↵t (A(v)�1f) = A(v)@↵t (A(v)f) +A(v)A(0)�1@↵t f (4.15.4)

where A(v) = A(v)�1 � A(0)�1 satisfies A(0) = 0. Taking the L2-norm in (4.15.4)
and applying the triangle inequality

kA(v)@↵t (A(v)�1f)kL2
(R⇥⌦)

 Ck@↵t (A(v)f)kL2
(R⇥⌦)

+ CkfkH↵
(R⇥⌦)

. (4.15.5)

Here and below, C is a generic positive constant which depends only on m, K and
K. Let us estimate the first term on the right hand side of (4.15.5). Since the case
↵ = 0 is nothing but the L2-estimate (4.6.4) we only need to consider the case where
↵ � 1. If ↵ = 1 then @t(A(v)f) = (@tA(v))f +A(v)@tf for which can be estimated
immediately

�m�1k@t(A(v)f)kL2
(R⇥⌦)

 C�m�1kfkH1
(R⇥⌦)

 CkfkHm
� (R⇥⌦)

.

Suppose that ↵ � 2. Then using Proposition 4.14.1 and (1.1.18)

�m�↵k@↵t (A(v)f)kL2
(R⇥⌦)

 C�m�↵kvkH↵
(R⇥⌦)

kfkH↵
(R⇥⌦)

 CkvkH↵
(R⇥⌦)

kfkH↵
� (R⇥⌦)
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Therefore it holds that for all ↵ = 0, 1, . . . ,m

�m�↵kA(v)@↵t (A(v)�1f)kL2
(R⇥⌦)

 C(1 + kvkHm
(R⇥⌦)

)kfkHm
� (R⇥⌦)

(4.15.6)

We can rewrite the commutator in (4.15.3) in terms of derivatives with respect to
t only. Indeed, a straightforward computation gives us

A(v)[A(v)�1L�v , @
↵
t ]u = A(v)[@↵t , A(v)

�1]@tu+ �A(v)[@↵t , A(v)
�1]u. (4.15.7)

Writing A(v)�1 = (A(v)�1�A(0)�1)+A(0)�1, applying commutator estimate Propo-
sition 4.14.2 (and this is the place where we need the assumption m � 3) in each
term of (4.15.7) together with (1.1.18) and Propsition 4.14.3 we have

�m�↵kA(v)[A(v)�1L�v , @
↵
t ]ukL2

(R⇥⌦)

 CkvkHm
(R⇥⌦)

kukHm
� (R⇥⌦)

. (4.15.8)

Applying (4.15.6) and (4.15.8) in (4.15.3) and then taking the sum yields

mX

↵=0

�m�↵kL�v@↵t ukL2
(⌦;L2

(R)) (4.15.9)

 C(1 + kvkHm
(R⇥⌦)

)(kL�vukHm
� (R⇥⌦)

+ kukHm
� (R⇥⌦)

).

Thus according to (4.15.1), (4.15.2) and (4.15.9) we have the following estimates on
the time derivatives

p
�kukL2

(⌦;Hm
� (R)) + ku|@⌦kHm

� (R)

 C
p
�
(1 + kvkHm

(R⇥⌦)

)kL�vukHm
� (R⇥⌦)

+ CkBu|@⌦kHm
� (R)

+
C
p
�
(1 + kvkHm

(R⇥⌦)

)kukHm
� (R⇥⌦)

=: CN(u, v).

It is important to note that on the right hand side, the norms of v are independent
of �.

4.15.2 Estimates on Spatial and Mixed Derivatives

To obtain estimates involving derivatives with respect to x we use the operator L�v .
We show by strong induction that

�m�k�↵+1/2k@kx@↵t ukL2
(R⇥⌦)

 CN(u, v)

holds for all k and ↵ such that k + ↵  m. The case k = 0 only involves time-
derivatives and hence the basis step was already established. Suppose we have shown
that for all j and ↵ such that j = 0, . . . , k and j + ↵  m we have

�m�(j�1)�↵�1/2k@jx@↵t ukL2
(R⇥⌦)

 CN(u, v) (4.15.10)

We show that this also holds for k + 1 and ↵ such that k + 1 + ↵  m. First, by
applying @kx@

↵
t to the equality

@xu = A(v)(f � @tu� �u) +A(0)�1(f � @tu� �u), (4.15.11)
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one obtains

@k+1

x @↵t u = @kx@
↵
t [A(v)(f � @tu� �u)]

+ A(0)�1(@kx@
↵
t f � @kx@

↵+1

t u� �@kx@
↵
t u). (4.15.12)

The first term in (4.15.12) may be expanded using the Leibniz’s rule as

@kx@
↵
t [A(v)(f � @tu� �u)] =

kX
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↵X

l=0

cjl@
k�j
x @↵�l

t A(v) @jx@
l
t(f � @tu� �u) (4.15.13)

for some nonnegative constants cjl. By the induction hypothesis (4.15.10) one has
already an estimate for the second term in (4.15.12)
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t u)kL2

(R⇥⌦)

 CN(u, v). (4.15.14)

Next we estimate the terms appearing in the sum (4.15.13) and for this we consider
di↵erent cases.

Case 1. If k�j+↵�l  1 then one has the estimate k@k�j
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 C,

while the terms �m�k�↵�1/2@jx@
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t u and �m�k�↵+1/2@jx@ltu can be estimated using
the induction hypothesis: Since j  k, k + ↵ � j + l and � � 1
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 CN(u, v).

Case 2. If k � j + ↵ � l = 2 then we first estimate with respect to time and
then integrate with respect to space. In the following, for simplicity we write u, v, f
for u(·, x), v(·, x), f(·, x), respectively. Using an L2 � L1 estimate, the embedding
H1(R) ,! L1(R) and � � 1
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and integrating with respect to x over ⌦ and applying the embedding H3(R⇥⌦) ,!
L1(⌦;H2(R))

�m�k�↵�1/2k@k�j
x @↵�l

t A(v) @jx@
l
t(f � @tu� �u)kL2

(R⇥⌦)

 C
p
�
kvkH3

(R⇥⌦)

(kfkHm
� (R⇥⌦)

+ kukHm
� (R⇥⌦)

)  CN(u, v).

Case 3. If k � j + ↵� l � 3 then j + l + 3  k + ↵  m and we have
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and similar for the other terms @k�j
x @↵�l

t A(v) @jx@ltf and �@k�j
x @↵�l

t A(v) @jx@ltu. Com-
bining the three cases in (4.15.13) one has
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and taking the sum of (4.15.14) and (4.15.15) in (4.15.12) we have
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which establishes the induction step.

4.15.3 Weighted-in-Time Estimates

The above estimates give us finally the estimate
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(4.15.16)

for all u 2 D(R⇥⌦) where C = C(K,K) > 0 is independent of u. Choosing � large
enough, the last term on the right hand side of (4.15.16) can be absorbed by the
first term on the left hand side and therefore
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where the constant C > 0 also depends only on the W 1,1-norm and Hm-norm of
v and the compact set K. The passage from (4.15.17) from (4.15.16) by absorption
would not be possible if we have the Hm

� -norm of v in (4.15.16) instead of its Hm-
norm.

Replacing u by e��tu, which is still in D(R ⇥ ⌦) provided that u is, noting that
L�v(e��tu) = e��tLvu, and then by a density argument we have the following a priori
estimate.

Theorem 4.15.1. Let v 2 Hm(R ⇥ ⌦) taking values on a compact set K ⇢ U ,
kvkW 1,1

(R⇥⌦)

 K and kvkHm
(R⇥⌦)

 R. Then there exist Cm = Cm(K,K,R) >
0 and �m = �m(K,K,R) � 1 such that for every � � �m and for every u 2
e�tHm+1(R⇥ ⌦) it holds that
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The proof of Theorem 4.15.1 given above follows the ideas given in the proof of
Theorem 9.7 in [9]. However, we have a di↵erent estimate in (4.15.6). In [9, p. 252],
the authors seem to use the estimate

kvfkL2
(⌦;e�tHm

� (R))  CkvkL2
(⌦;Hm

(R))kfkL2
(⌦;e�tHm

� (R))

which does not hold in general. We resolved this by estimating in terms of the norm
in Hm

� (R⇥ ⌦).
The a priori estimate (4.15.18) will be used in pure boundary value problems.
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4.16 a priori estimates in sobolev spaces with time interval
(�1, T ]

While the a priori estimate derived in the previous section is intended to boundary
value problems, the a priori estimate in this section is designated to solve homoge-
neous initial-boundary value problems. All throughout this section ⌦ = (0, 1).

Suppose that v 2 Hm((�1, T ]⇥⌦) and u 2 D((�1, T ]⇥⌦) such that u|t<0

= 0.
Then thanks to (FS) the a priori estimate
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holds for all � � �
0

(K,K) � 1, see Theorem 4.13.7. The same procedure as in
Section 3.1 gives us the inequality
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=: CN(u, v). (4.16.1)

We proceed by induction for the pointwise in time estimates for the spatial deriva-
tives. Assume that for k with k+↵  m we have already shown that (the basis step
k = 0 is nothing but the L2-estimate, which is already given by (4.16.1))

�m�k�↵k@kx@↵t u(t)kL2
(⌦)

 CN(u, v), t 2 (�1, T ].

We show that this is true for k+1 when k+1+↵  m. Recall our formula (4.15.12),
and let J denote the first term, i.e., J := @kx@

↵
t [A(v)(f � @tu � �u)]. The following

weighted Sobolev estimate will be used.

Proposition 4.16.1. For every w 2 H1((�1, T ]⇥ ⌦) and � > 0 we have
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k@twk2L2

((�1,T ]⇥⌦)

. (4.16.2)

Proof. By a standard density argument we may suppose that w 2 D((�1, T ]⇥ ⌦).
Let R

0

< 0 be such that w vanishes for all t  R
0

. For simplicity we assume that w
is scalar-valued. Let R  2R

0

� T and T+R
2

 ⌧  T . Using Young’s inequality

|w(⌧, x)|2 =

Z ⌧

R
@t(|w(t, x)|2) dt

= 2

Z ⌧

R
w(t, x)wt(t, x) dt

 �

Z T

R
|w(t, x)|2 dt+ 1

�

Z T

R
|wt(t, x)|2 dt.

Letting R ! �1 we have

|w(⌧, x)|2  �

Z T

�1
|w(t, x)|2 dt+

1

�

Z T

�1
|wt(t, x)|2 dt

for all ⌧ 2 (�1, T ] and x 2 ⌦. Integrating the previous inequality over ⌦ and taking
the supremum over all ⌧ 2 (�1, T ] proves (4.16.2).
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4.16 a priori estimates in sobolev spaces with time interval (�1, T ]

Using (4.16.2) together with the induction hypothesis yields an estimate for the
second term in (4.15.12)

�m�(k+1)�↵k@kx@↵t f(t)� @kx@
↵+1

t u(t)� �@kx@
↵
t u(t)kL2

(⌦)

 CN(u, v). (4.16.3)

As in the computation of mixed derivatives one obtains
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 CN(u, v).

Thus by the weighted Sobolev estimate (4.16.2) we have the estimate
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 CN(u, v) (4.16.4)

Combining (4.16.3) and (4.16.4) proves the induction step.
Therefore we have the full estimate
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for all t 2 (�1, T ]. Now replacing u by e��tu, choosing � large enough, so that
the last term on the right hand side can be absorbed by the second term on the left
hand side, and finally using the norm-equivalence

X

|�|m

�m�|�|k@�(e��tu(t))kL2
(⌦)

'
X

|�|m

�m�|�|e��tk@�u(t)kL2
(⌦)

.

we have the following a priori estimate.

Lemma 4.16.2 (A Priori Estimate in Weighted Sobolev Spaces). Let m � 3 be an
integer. For each v 2 Hm((�1, T )⇥ ⌦) satisfying ran v ⇢ K, kvkW 1,1

((�1,T ]⇥⌦)


K and kvkHm

((�1,T ]⇥⌦)

 R and for all u 2 Hm+1((0, T )⇥ ⌦) such that u|t=0

= 0,
there exist C = C(K,K,R) > 0 and �m(K,K,R) � 1 such that for all � � �m and
for all ⌧ 2 [0, T ] the following a priori estimate holds
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◆
. (4.16.5)

The a priori estimate (4.16.5) is di↵erent from those in [9] and [55] because in
(4.16.5) the constants Cm and �m depend only on the Hm-norm of v and not on its
Hm
� -norm.
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linear systems with variable coefficients

4.17 gagliardo-nirenberg type estimates

For initial boundary value problems with zero initial conditions the a priori estimate
(4.16.5) will be used. The next step is to derive an a priori estimate that can be
used for problems that are not starting initially from zero. In preparation we borrow
the Gagliardo-Nirenberg type estimates in [55, pp. 69–71]. In this section, we let
⌦ = (0, 1).

Theorem 4.17.1 (Gagliardo-Nirenberg). Let m be a positive integer and T > 0.
Then there exists C > 0, independent of T , such that for all u 2 Hm((�1, T )⇥ ⌦)
and 1  |↵|  m we have

k@↵xukL2m/|↵|
((�1,T )⇥⌦)

 Ckuk1�|↵|/m
L1

((�1,T )⇥⌦)

kuk|↵|/mHm
((�1,T )⇥⌦)

.

A similar estimate also holds for u 2 Hm(�1, T ).

The following is a modification of Proposition 4.5.5 in [55].

Theorem 4.17.2. For all m 2 N there exists C = C(m) > 0 such that for all T > 0
and  2 Hm(0, T ) and 1  j  m we have

k (j)kL2m/j
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 C(Km,T ( )
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| (i)(0)|.

In particular,
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+Km,T ( )).

Proof. We adjust the proof in [55]. Given  2 Hm(0, T ), let  
1

2 Hm(R) be such

that  (i)
1

(0) =  (i)(0) for all i = 0, . . . ,m � 1 and using the fact that the trace
operator has a continuous right inverse
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where C > 0 is independent of  . Let  
2

=  �  
1

2 Hm(0, T ). Then (4.17.1) and
the Sobolev embedding theorem Hm(R) ,! L1(R) imply
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By construction it holds that  (i)
2

(0) = 0 for i = 0, . . . ,m�1 and therefore extending
 
2

by 0 for t < 0 we have  
2

2 Hm(�1, T ). By the Gagliardo-Nirenberg inequality
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4.17 gagliardo-nirenberg type estimates

Thus (4.17.2)�(4.17.5) imply that
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j/m +Km,T ( )).

This proves the first part. The second part follows immediately using the elementary
inequality a1�r(a+ b)r  a+ b for a, b � 0 and 0 < r < 1.

Theorem 4.17.3. For all positive integers m there exists C = C(m) > 0 such that
for all T > 0, u 2 Hm((0, T ) ⇥ ⌦) \ L1((0, T ) ⇥ ⌦) such that @jt u|t=0

2 Hm�j(⌦)
for 0  j  m� 1 we have
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+ K̃m,T (u)).

Proof. The proof is similar as in the previous theorem, see [55, Proposition 4.5.6]
for the details.

A function F is said to be a nonlinear function of u of order k if

F (u) =
NX
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X

|↵1|+···+|↵l|=k
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(u)[@↵1u, . . . , @↵lu]

where ↵i 2 N2

0
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are multilinear mappings depending smoothly on u and

there exists (↵
1

, . . . ,↵l) such that |↵
1

|+ · · ·+ |↵l| = k and Fl,↵1,...,↵l
6= 0.

Theorem 4.17.4. Let m be a positive integer and F be a nonlinear function of order
k  m. There exists C > 0, which depends continuously on its argument, such that
for all T > 0 and u 2 Hm((0, T )⇥⌦)\L1((0, T )⇥⌦) such that @jt u|t=0
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In particular,
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where C̃ � 1. A similar statement holds for  2 Hm(0, T ) where m 2 N.
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Proof. For simplicity we assume that u is scalar valued. First note that we have
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2m . By Hölder’s inequality and Theorem 4.17.3
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Taking the sum of all terms we obtain the estimate of the theorem.

Using classical Sobolev embedding theorems and the identity u(t) = u(0)+
R t
0

u0(⌧) d⌧
for a.e. t 2 [0, T ] and for u 2 W 1,1([0, T ];X) whereX is a Banach space, the following
estimates can be shown by induction.

Theorem 4.17.5. Let m be a nonnegative integer and T > 0. There exists a C > 0
independent of T such that for all u 2 Hm+2((0, T )⇥ ⌦) we have
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Theorem 4.17.6. Let m be a positive integer. There exists C > 0 such that for all
T > 0 and u 2 Hm(0, T ) we have
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Also, there exists C > 0 such that for all T > 0 and u 2 Hm((0, T )⇥ ⌦) we have
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4.18 regularity of solutions for bvp

Thanks to the a priori estimates in Sobolev spaces, we can show additional regularity
of weak solutions for the pure boundary value problems under additional smoothness
conditions of the data as well. In this section, we assume that the boundary matrices
B

0

and B
1

are constant.

Theorem 4.18.1. Consider the framework of Theorem 4.6.6. Suppose in addition
that v 2 Hm(R⇥(0, 1)) for some m � 3. If f 2 e�tHm(R⇥(0, 1)) and g 2 e�tHm(R)
then the weak solution of the boundary value problem

Lvu = f, Bu|@⌦ = g (4.18.1)
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lies in e�tHm(R⇥ (0, 1)) and satisfies u|@⌦ 2 e�tHm(R) and the energy estimate
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for every � � �m, where the constants �m and Cm are as in Theorem 4.15.1.

Proof. We follow the proof in [9, pp. 281–282]. Let (vj)j ⇢ D(R⇥(0, 1)) such that
vj ! v in Hm(R⇥(0, 1)) and that for each j the range of vj lies on a �-neighborhood
of the range of v for some fixed � > 0. From Theorem 4.10.6 the weak solution of
the boundary value problem

Lvjuj = f, Buj|@⌦ = g (4.18.3)

satisfies uj 2 e�tHm(R ⇥ (0, 1)) and uj|@⌦ 2 Hm(R). Moreover, for every j there
exists a sequence (uji)i ⇢ e�tHm+1

� (R⇥(0, 1)) such that uji ! uj in e�tHm
� (R⇥(0, 1)),

Lvjuji ! Lvjuj = f in e�tHm
� (R⇥ (0, 1)) and uji|@⌦ ! uj|@⌦ in e�tHm

� (R). Applying
Theorem 4.15.1 to uji and passing to the limit i ! 1 we obtain the energy estimate
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This implies that (e��tuj)j and (e��tuj|@⌦)j are bounded in Hm
� (R ⇥ (0, 1)) and

Hm
� (R), respectively. Therefore, up to a subsequence we have e��tuj * ũ in Hm

� (R⇥
(0, 1)) and e��tuj|@⌦ * w̃ in Hm

� (R) for some ũ 2 Hm
� (R⇥ (0, 1)) and w̃ 2 Hm

� (R).
Now, we deviate the proof from [9]. From (4.18.3) the di↵erence uj � uk satisfies

the boundary value problem

Lvj (uj � uk) = �(A(vj)�A(vk))@xuk, B(uj � uk)|@⌦ = 0. (4.18.5)

According to (4.10.4) there exists constants �
0

� 1 and C > 0 both depending only
on the range of vj and kvjkW 1,1

(R⇥(0,1)) such that

p
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(R⇥⌦)
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(R⇥(0,1))kA(vj)�A(vk)kL2
(R⇥(0,1)) (4.18.6)

for every � � �
0

. By construction of the sequence (vj)j , we can see that �
0

and C can
be made independent of j and the mean value-theorem implies that A(vj) ! A(v)
in L2(R⇥ (0, 1)). Moreover, the sequence (e��t@xuk)k is a bounded in L1(R⇥ (0, 1))
by the Sobolev Embedding Theorem. Thus, it follows from (4.18.6) that (e��tuj)j
and (e��tuj|@⌦)j are Cauchy sequences in L2(R⇥ (0, 1)) and L2(R), respectively.

By interpolation we have e��tuj ! ũ in Hs(R ⇥ (0, 1)) and e��tuj|@⌦ ! w̃ in
Hs(R) for every s 2 [0,m). In particular, the trace theorem implies that w̃ = ũ|@⌦.
From (4.18.3)

Lvj (e
��tuj) + �e��tuj = e��tf, Be��tuj|@⌦ = e��tg. (4.18.7)

Passing to the limit j ! 1 in (4.18.7) gives us

Lvũ+ �ũ = e��tf, Bũ|@⌦ = e��tg. (4.18.8)
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Setting u = e�tũ 2 e�tHm(R ⇥ (0, 1)) we have u|@⌦ 2 e�tHm(R) and from (4.18.8),
u satisfies (4.18.1). The energy estimate (4.18.2) follows by taking the limit inferior
in (4.18.3) and using the inequalities

lim inf
j!1

ke��tujkHm
� (R⇥(0,1)) � ke��tukHm

� (R⇥(0,1))

lim inf
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ke��tuj|@⌦kHm
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� (R).

This completes the proof of the theorem.

4.19 regularity of solutions for ibvp

We would like to extend the regularity results in the previous section to initial-
boundary value problems. The first step is to prove additional time regularity in
Theorem 4.13.9 in the homogeneous case under additional smoothness assumptions
on the frozen coe�cient v and on the data f and g. As before we extend the data
f and g by zero for negative times and consider the corresponding pure boundary
value problem and this enables us to use the results of the previous section. However,
we need to extend the frozen coe�cient to all times. This is possible thanks to the
following lemma.

Lemma 4.19.1. Let m � 3 be a positive integer and v 2 Hm((0, T )⇥⌦) be such that
kvkHm

((0,T )⇥⌦)

 R, kvkW 1,1
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 K and the range of v lies on a compact and
convex set K containing 0. Then there exist v̆ 2 Hm(R2) and (v̆✏)✏>0
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 C(K) and the range of v̆✏ lies
on a �-neighborhood of K, for a fixed � > 0.

Proof. Let ✓ 2 C1
0

([0,1); [0, 1]) be such that ✓(0) = 1 and ✓(j)(0) = 0 for every
1  j  m� 1. For a > 0 define ✓a : R ! [0, T ] by

✓a(s) =

8
><

>:

✓(�s), s < 0,

1, 0  s  a,

✓(s� a), s > a.

By construction ✓a 2 Hm(R). Let ṽ 2 Hm([�T, 2T ] ⇥ [�1, 2]) be the extension
of v using Seeley’s reflection argument [1, p. 84]. The construction of ṽ implies
that kṽkW 1,1

((�T,2T )⇥(�1,2))  C(K). Define v̆(t, x) = ✓T (t)✓1(x)ṽ(t, x), where ṽ is
extended by zero outside [�T, 2T ] ⇥ [�1, 2]. Reducing the support of ✓ it can be
shown that v̆ 2 Hm(R2) and the range of v̆ lies on �/2-neighborhood of K. Let
v̆✏ = ⇢✏ ? v̆ 2 C1(R2) where ⇢✏ is a standard mollifier in the variable (t, x). By
definition, v̆ = v on (0, T ) ⇥ ⌦ and kv̆✏ � v̆kHm

(R2
)

! 0 as ✏ ! 0+. The remaning
properties can be easily checked using the Sobolev embedding theorem.

In this section we suppose that the boundary matrices B
0

and B
1

are constant.

4.19.1 The Homogeneous Case

Theorem 4.19.2. In the framework of Theorem 4.13.3, suppose in addition that the
function v 2 Hm((0, T ) ⇥ ⌦) for some integer m � 3 and kvkHm

((0,T )⇥⌦)

 R. If
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f 2 Hm((0, T ) ⇥ ⌦) and g 2 Hm(0, T ) satisfy (@jt f)|t=0

= 0 and (@jt g)|t=0

= 0 for
0  j  m� 1 then the solution u of the IBVP

Lvu = f, Bu|@⌦ = g, u|t=0

= 0 (4.19.1)

lies in CHm([0, T ]⇥⌦) with trace u|@⌦ 2 Hm(0, T ) and (@jt u)|t=0

= 0 for 0  j  m�
1. Furthermore, there exist Cm = Cm(K,K,R, T ) > 0 and �m = �m(K,K,R, T ) � 1
such that for all � � �m and for all ⌧ 2 [0, T ] we have

X

|↵|m

�m�|↵|e��⌧k@↵u(⌧)kL2
(⌦)

+
p
�ke��tukHm

� ((0,⌧)⇥⌦)

+ ke��tu|@⌦kHm
� (0,⌧)

 Cm

✓
1
p
�
ke��tfkHm

� ((0,⌧)⇥⌦)

+ ke��tgkHm
� (0,⌧)

◆
. (4.19.2)

Proof. Let f̆ 2 Hm(R⇥⌦) and ğ 2 Hm(R) be extensions of f and g both vanishing
for t < 0. Such extensions are possible due to the assumptions on f and g at t = 0.
Let ŭ be the solution of the pure boundary value problem

Lv̆ŭ = f̆ in R⇥ ⌦, Bŭ|@⌦ = ğ in R,

where v̆ is the extension of v in Lemma 4.19.1. From Theorem 4.18.1 this BVP
has a unique weak solution ŭ 2 L2(R ⇥ ⌦) with trace ŭ|@⌦ 2 L2(R). Furthermore
ŭ 2 Hm(R⇥⌦) and ŭ|@⌦ 2 Hm(R). From the proof of Theorem 4.13.2 u := ŭ|[0,T ]

2
Hm((0, T )⇥⌦) is the solution of the homogeneous IBVP (4.19.1) and it satisfies all
the conclusions of the theorem except the energy estimate (4.19.2) and the additional
regularity in time, see for instance the proof of Theorem 4.11.4 with Theorem 4.16.2
in place of Theorem 4.11.2. To see this we use the usual weak = strong argument
as suggested in in [9]. We will do this step because this will reveal some important
remarks that are required in the proof of Theorem 4.19.5 below. Let ⇢✏ be a standard
mollifier with respect to t chosen in such a way that ⇢✏ ? ŭ =: u✏ vanishes for t < 0.
The notation R✏u = ⇢✏ ? u will also be used. Then u✏ 2 Hm(⌦;H+1(R)) where
H+1(R) =

T
m2RHm(R)

The next step is to show additional regularity in x. Note that

A�1

v̆ Lv̆ŭ = A�1

v̆ @tŭ+ @xŭ = A�1

v̆ f̆

Let ↵ 2 N2

0

be a multiindex with |↵|  m. Applying @↵ to both sides of the latter
equality gives

A�1

v̆ @t(@
↵ŭ) + @x(@

↵ŭ) = @↵(A�1

v̆ f̆) + [A�1

v̆ @t, @
↵]ŭ. (4.19.3)

Since the commutator [A�1

v̆ @t, @↵] is of order |↵| and ŭ 2 Hm(R ⇥ ⌦), it follows
[A�1

v̆ @t, @↵]ŭ 2 L2(R ⇥ ⌦). Mollifying both sides of (4.19.3) with respect to time
yields

A�1

v̆ @t(@
↵u✏) + @x(@

↵u✏) = R✏(@
↵(A�1

v̆ f̆) + [A�1

v̆ @t, @
↵]ŭ) + [A�1

v̆ @t, R✏]@
↵ŭ.(4.19.4)

Let F✏ be the right hand side of (4.19.4). Solving for @x(@↵u✏) shows that @x(@↵u✏) 2
L2(R ⇥ ⌦). Therefore u✏ 2 Hm+1(R ⇥ ⌦). In other words, mollification in time
gives additional regularity in time, and together with the PDE one has additional
regularity in space.
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As ✏! 0 it holds that

Lv̆@
↵u✏ ! Lv̆@

↵ŭ, in L2(R⇥ ⌦). (4.19.5)

Indeed, we have R✏(@↵(A
�1

v̆ f̆) + [A�1

v̆ @t, @↵]ŭ) ! @↵(A�1

v̆ f̆) + [A�1

v̆ @t, @↵]ŭ and also
[A�1

v̆ @t, R✏]@↵ŭ ! 0 both in L2(R⇥⌦), where we used Theorem C.1.1 for the latter.
Now (4.19.5) follows from

[A�1

v̆ @t, @
↵]ŭ = [A�1

v̆ Lv̆, @
↵]ŭ = A�1

v̆ Lv̆@
↵ŭ� @↵(A�1

v̆ f̆)

since [@x, @↵]ŭ = 0 and Lv̆ŭ = f̆ .
Applying the a priori estimate (4.16.5) to u✏ � u✏0 2 e�tHm+1

� (R⇥⌦) one obtains

X

|↵|m

�m�|↵|e��T sup
⌧2[0,T ]

k@↵(u✏ � u✏0)(⌧)kL2
(⌦)

+ k(u✏ � u✏0)|@⌦kHm
� (0,T )

 Cm

✓
1
p
�
ke��tLv̆(u✏ � u✏0)kHm

� ((0,T )⇥⌦)

+ ke��tB(u✏ � u✏0)|@⌦kHm
� (0,T )

◆
. (4.19.6)

Since g✏ = R✏ğ vanishes for t < 0 and B(u✏)|@⌦ = R✏(Bŭ|@⌦) = g✏ we have

ke��tB(u✏ � u✏0)|@⌦kHm
� (0,T )

 ke��t(g✏ � g✏0)|@⌦kHm
� (R) ! 0

as ✏, ✏0 ! 0. On the other hand, since u✏ � u✏0 vanish for t < 0 and the function
t 7! e��t is uniformly bounded on compact intervals we have

ke��tLv̆(u✏ � u✏0)kHm
� ((0,T )⇥⌦)

 CkAv̆kHm
� (R⇥⌦)

kA�1

v̆ Lv̆(u✏ � u✏0)kHm
� (R⇥⌦)

.

Using commutators we can rewrite

@↵(A�1

v̆ Lv̆(u✏ � u✏0)) = [@↵, A�1

v̆ Lv̆](u✏ � u✏0)�A�1

v̆ Lv̆@
↵(u✏ � u✏0).

Because u✏ ! ŭ in Hm(R⇥⌦) and [@↵, A�1

v̆ Lv̆] is of order |↵|  m, the commutator
term on the right hand side tends to zero in L2(R ⇥ ⌦) as ✏, ✏0 ! 0. On the other
hand the second term also tends to zero in L2(R⇥ ⌦) according to (4.19.5). There-
fore from (4.19.6) we can see that (u

1/j)j and ((u
1/j)|@⌦)j are Cauchy sequences in

CHm([0, T ] ⇥ ⌦) and Hm(0, T ), respectively, and their limits are u and u|@⌦ since
u
1/j ! u in CL2([0, T ]⇥ ⌦) and (u

1/j)|@⌦ ! u|@⌦ in L2(0, T ).
It remains to establish the energy estimate (4.19.2). First let us note that

@↵Lv̆u✏ = [@↵, Lv̆]u✏ + Lv̆@
↵u✏ ! [@↵, Lv̆]ŭ+ Lv̆@

↵ŭ = @↵f̆ . (4.19.7)

in L2(R ⇥ ⌦). Thus Lv̆u✏ ! f̆ in e�tHm
� (R ⇥ ⌦). Applying the a priori estimate

(4.16.5) to u
1/j 2 e�tHm+1

� (R⇥ ⌦) and letting j ! 1 proves (4.19.2).

4.19.2 The Non-homogeneous Case

Now we will consider the IBVP with nonzero initial condition. For this one needs
compatibility conditions which we are now going to state. Given su�ciently smooth
functions f and u

0

define recursively the functions ui : ⌦! Rn by

ui(x) = @i�1

t f(0, x)�
i�1X

l=0

✓
i� 1

l

◆
@ltA(v(0, x))@xui�1�l(x), x 2 ⌦. (4.19.8)
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The data (u
0

, f, g) are said to be compatible up to order p if

Bui|@⌦ = @itg(0), i = 0, . . . , p.

By the embedding

Hm((0, T )⇥ ⌦) ,! Hj+1((0, T );Hm�j�1(⌦)) ,! Cj([0, T ];Hm�j�1(⌦))

for 0  j  m � 1, we have @jt v|t=0

2 Hm�j�1(⌦). However, stronger assumptions
are needed for these traces in the general IBVP as included in the following theorem.

Theorem 4.19.3. Consider the framework of Theorem 4.13.3 and suppose that v sat-
isfies the conditions of Theorem 4.19.2. Suppose in addition that @jt v|t=0

2 Hm�j(⌦)
for all 0  j  m� 1. If the data

(u
0

, f, g) 2 Hm+1/2(⌦)⇥Hm((0, T )⇥ ⌦)⇥Hm(0, T )

is compatible up to order m� 1 then the initial boundary value problem

Lvu = f, Bu|@⌦ = g, u|t=0

= u
0

(4.19.9)

has a unique solution u 2 CHm([0, T ]⇥ ⌦) and u|@⌦ 2 Hm(0, T ).

Remark 4.19.4. The proof of this theorem is similar to the proof of Theorem 4.11.4.
These is where the additional regularity for u

0

is needed. The proof shows that the
solution takes the form u = ua|[0,T ]

+ uh where ua 2 Hm+1(R ⇥ ⌦) and uh is a
solution of an IBVP with zero initial data. Therefore, according to the proof of
Theorem 4.19.2, there exists (uj)j ⇢ Hm+1((0, T )⇥ ⌦) such that

uj ! u, in CHm([0, T ]⇥ ⌦)
(uj)|@⌦ ! u|@⌦, in Hm(0, T ) (4.19.10)

Lvuj ! Lvu, in Hm(0, T ).

The extra regularity imposed on the data u
0

is not necessary since one can have
the same result even when it is only in Hm(⌦). This is the content of the following
theorem.

Theorem 4.19.5. The conclusions of the Theorem 4.19.3 still hold even for initial
data u

0

2 Hm(⌦).

To prove this theorem one requires the following a priori estimate. This is similar
to the one given in Lemma 4.16.2 but with additional terms for the nonzero initial
condition.

Lemma 4.19.6. For every v 2 Hm((0, T )⇥⌦) satisfying the conditions in Theorem
4.19.3 and for every u 2 Hm+1((0, T )⇥ ⌦) we have

kukCHm
([0,T ]⇥⌦)

+ ku|@⌦kHm
(0,T )

 C

 
kLvukHm

((0,T )⇥⌦)

+ kBu|@⌦kHm
(0,T )

+
mX

i=0

k@itu|t=0

kHm�i
(⌦)

!

where C > 0 depends only on T,K,K,R and k@jt v|t=0

kHm�j
(⌦)

for 0  j  m� 1.
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Proof. In the following proof C > 0 will be a generic constant as in the statement
of the lemma independent of ⌧ 2 [0, T ]. As before, let f = Lvu and g = Bu|@⌦. We
will use the following a priori estimate

kw(⌧)kL2
(⌦)

+
1p
⌧
kwkL2

((0,⌧)⇥⌦)

+ kw|@⌦kL2
(0,⌧)

 C(kw|t=0

kL2
(⌦)

+
p
⌧kLvwkL2

((0,⌧)⇥⌦)

+ kBw|@⌦kL2
(0,⌧)) (4.19.11)

which holds for all ⌧ 2 (0, T ] and for all w 2 H1((0, T )⇥⌦), where C = C(K,K) > 0.
This follows from the a priori estimate (4.13.17) by taking � = C/⌧ for some C =
C(T ) > 0. By a standard density argument it is enough to prove the a priori estimate
for u 2 D([0, T ] ⇥ ⌦). Applying @jt for j = 0, . . . ,m to the equality Lvu = f we
obtain Lv@

j
t u = fj := A(v)@jt (A(v)�1f)�A(v)[@jt , A(v)

�1Lv]u and B(@jt u)|@⌦ = @jt g

for j = 0, . . . ,m. Taking w = @jt u in (4.19.11) we have

k@jt u(⌧)kL2
(⌦)

+
1p
⌧
k@jt ukL2

((0,⌧)⇥⌦)

+ k@jt (u|@⌦)kL2
(0,⌧)

 C(k@jt u|t=0

kL2
(⌦)

+
p
⌧kfjkL2

((0,⌧)⇥⌦)

+ k@jt gkL2
(0,⌧)) (4.19.12)

We are going to estimate each term on the right hand side of this inequality. Ex-
panding the commutator in fj for j � 1 we have

A(v)[@jt , A(v)
�1Lv]u = A(v)

X

1lj

cij@
l�1

t (dA(v)�1@tv)@
j�l
t (@tu),

where dA is the first order di↵erential of A and cij are constants. Let us estimate
the L2-norm of each term in the above sum. If j = 1 then we immediately have
the estimate k(dA(v)�1@tv)@tukL2

((0,⌧)⇥⌦)

 Ck@tukL2
((0,⌧)⇥⌦)

. Suppose that j � 2.
Then Hölder’s inequality implies that

k@l�1

t (dA(v)�1@tv)@
j�l
t (@tu)kL2

((0,⌧)⇥⌦)

 k@l�1

t (dA(v)�1@tv)kL2(j�1)/(l�1)
((0,⌧)⇥⌦)

k@j�l
t (@tu)kL2(j�1)/(j�l)

((0,⌧)⇥⌦)

Since @l�1

t (dA(v)�1@tv) is a nonlinear function of @tv of order l � 1 the first factor
can be estimated using Theorem 4.17.4 by

k@l�1

t (dA(v)�1@tv)kL2(j�1)/(l�1)
((0,⌧)⇥⌦)

 C(K̃j�1,⌧ (@tv))(k@tvkHj�1
((0,⌧)⇥⌦)

+ 1)

On the other hand, the term involving u can also be estimated using Theorem 4.17.3

k@j�l
t (@tu)kL2(j�1)/(j�l)

((0,⌧)⇥⌦)

 C(k@tukHj�1
((0,⌧)⇥⌦)

+ K̃j�1,⌧ (@tu))

Theorem 4.17.5 and the Sobolev embedding Hk+1(⌦) ,! W k,1(⌦) imply

K̃j�1,⌧ (@tu)  C

 
p
⌧kukH3
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i=0

k@itu|t=0

kHm�i
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!
.

Furthermore, we have kA(v)@jt (A(v)
�1f)kL2

((0,⌧)⇥⌦)

 CkfkHm
((0,T )⇥⌦)

. Combining
all our estimates we deduce that, using ⌧  T ,

kfjkL2
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kfkHm
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+ kukHm
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+
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kHm�i
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Therefore,

mX

j=0

k@jt u(⌧)kL2
(⌦)

+ ku|@⌦kHm
(0,⌧) (4.19.13)

 C

 
kfkHm
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+ kgkHm
(0,T )

+
mX

i=0

k@itu|t=0

kHm�i
(⌦)

+ kukHm
((0,⌧)⇥⌦)

!

For convenience we denote by N(u) the term on the right hand side of (4.19.13).
The next step is to estimate the mixed derivatives. We proceed by an induction

argument to prove that
k@kx@

j
t u(⌧)kL2

(⌦)

 N(u) (4.19.14)

for all k + j  m. The basis step k = 0 is given by (4.19.13). Before proceeding to
the induction step, we prove the estimate in the separate case where k = j = 1. The
PDE gives us

@x@tu(⌧) = @t(A(v(⌧))�1f(⌧))� @t(A(v(⌧))
�1)@tu(⌧)�A(v(⌧))�1@2t u(⌧).

The estimates on time-derivatives we have shown above and the Sobolev embedding
theorem imply

k@x@tu(⌧)kL2
(⌦)

 N(u). (4.19.15)

Now we go to the induction step. Suppose that (4.19.14) is true for k and j such
that k + j  m. The PDE gives us

@k+1

x @jt u = @kx@
j
t (A(v)�1f)� @kx@

j
t (A(v)

�1@tu)

for k + 1 + j  m and k � 0. On one hand, by the Sobolev embedding theorem

k@kx@
j
t (A(v(⌧))

�1f(⌧))kL2
(⌦)

 CkfkHm
((0,T )⇥⌦)

for all ⌧ 2 [0, T ]. On the other hand, Leibniz’s rule gives us

k@kx@
j
t (A(v(⌧))�1@tu(⌧))kL2
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kX

l=0

jX

i=0

clik@k�l
x @j�i

t A(v(⌧))�1@lx@
i+1

t u(⌧)kL2
(⌦)

for some constants cli. Let us consider separate cases. If k � l + j � i  m� 2 then
for all ⌧ 2 [0, T ]

k@k�l
x @j�i

t A(v(⌧))�1@lx@
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t u(⌧)kL2
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 k@k�l
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t u(⌧)kL2
(⌦)

 N(u)

where the last inequality is due to the induction hypothesis. If k� l+ j � i = m� 1
then k + j = m� 1 and i = l = 0 and therefore applying (4.19.15)

k@k�l
x @j�i

t A(v(⌧))�1@lx@
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t u(⌧)kL2
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(⌦)

)

 N(u)
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for all ⌧ 2 [0, T ]. Taking the sum completes the proof of the induction. Combining
the estimates for the time derivatives and the mixed derivatives gives us

X

|�|m

k@�u(⌧)kL2
(⌦)

+ ku|@⌦kHm
(0,T )

 N(u). (4.19.16)

Squaring this inequality and applying Gronwall’s inequality give the estimate stated
in the lemma.

Proof of Theorem 4.19.5. It can be shown that there exists a sequence of more reg-
ular functions (uk

0

)k ⇢ Hm+1/2(⌦) such that uk
0

! u
0

in Hm(⌦) and the data
(uk

0

, f, g) is still compatible up to order m � 1 for all k, see for instance [64] or the
proof of Theorem 4.21.2. Let uk be the solution of the corresponding initial bound-
ary value problem with data (uk

0

, f, g) given by Theorem 4.19.3. Then the di↵erence
w = uk � uj satisfies

Lvw = 0 in (0, T )⇥ ⌦, Bw|@⌦ = 0 in (0, T ), w|t=0

= uk
0

� uj
0

in ⌦.

Then according to Remark 4.19.4 there exists a sequence wl 2 Hm+1((0, T )⇥⌦) such
that wl ! w in CHm([0, T ] ⇥ ⌦), Lvwl ! 0 in Hm((0, T ) ⇥ ⌦) and B(wl)|@⌦ ! 0
in Hm(0, T ). Thus applying the a priori estimate in the previous lemma to wl and
passing to the limit l ! 1 we have

kuk � ujkCHm
([0,T ]⇥⌦)

+ k(uk)|@⌦ � (uj)|@⌦kHm
(0,T )

 C
mX

i=0

k@ituk(0)� @ituj(0)kHm�i
(⌦)

.

However, by recursion we have @ituk(0) = uk,i ! ui in Hm�i(⌦), where uk,i are the
functions defined recursively in (4.19.8) where uk

0

is the initial term. Thus (uk)k
and ((uk)|@⌦)k are Cauchy sequences in CHm([0, T ]⇥⌦) and Hm(0, T ), respectively,
and let u and ũ be their limits. Since uk ! u in H1((0, T ) ⇥ ⌦), the continuity of
the trace operator implies (uk)|@⌦ ! u|@⌦ in L2(0, T ) and thus ũ = u|@⌦. Passing
to the limit k ! 1 in the IBVP satisfied by uk we can see that u is the required
solution.

Remark 4.19.7. Given a positive integer k, using Remark 4.19.4, there exists a
function ukk 2 Hm+1((0, T )⇥ ⌦) such that kukk�ukkCHm

([0,T ]⇥⌦)

< 1

k and k(ukk)|@⌦�
(uk)|@⌦kHm

(0,T )

< 1

k where uk is the solution corresponding to the initial data uk
0

in

the proof of the previous theorem. By the triangle inequality we have ukk ! u in

CHm([0, T ] ⇥ ⌦) and (ukk)|@⌦ ! u|@⌦ in Hm(0, T ). Moreover, since Lvukk � Lvu
j
j =

Fk � Fj where Fk ! f in Hm((0, T ) ⇥ ⌦), see (4.19.7) for instance, it follows that
(Lvukk)k is a Cauchy sequence in Hm((0, T )⇥⌦). Since Lvukk ! Lvu in L2((0, T )⇥⌦)
we have Lvukk ! Lvu in Hm((0, T ) ⇥ ⌦). This implies that the a priori estimate in
Lemma 4.19.6 holds for the solution u of the initial boundary value problem (4.19.9).

4.20 weak solutions of a linear hyperbolic pde-ode system

In this section we prove the existence, uniqueness and regularity of weak solutions to
a linear hyperbolic system of partial di↵erential equations coupled with a di↵erential
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equation at the boundary. We are interested in the L2-well-posedness of the following
system

8
>>>>>>>>><

>>>>>>>>>:

Lvu(t, x) = f(t, x), 0 < t < T, 0 < x < 1,

B
0

u(t, 0) = g
0

(t) +Q
0

(t)h(t), 0 < t < T,

B
1

u(t, 1) = g
1

(t) +Q
1

(t)h(t), 0 < t < T,

h0(t) = H(t)h(t) +G
0

(t)u(t, 0) +G
1

(t)u(t, 1) + S(t), 0 < t < T,

u(0, x) = u
0

(x), 0 < x < 1,

h(0) = h
0

(4.20.1)

where
Lvu(t, x) = @tu(t, x) +A(v(t, x))@xu(x) +R(t, x)u(t, x)

and v 2 W 1,1(QT ;Rn). All throughout this section we assume that B
0

2 Rp⇥n,
B

1

2 R(n�p)⇥p,

R 2 L1(QT ;Rn⇥n), Q
0

2 L1((0, T );Rp⇥m), Q
1

2 L1((0, T );R(n�p)⇥m)

H 2 L1((0, T );Rm⇥m), G
0

, G
1

2 L1((0, T );Rm⇥n), S 2 L2((0, T );Rm).

Furthermore, we suppose that B
0

and B
1

have full ranks and that (FS), (D), and
the UKL condition (H5) hold.

Definition 4.20.1. Given f 2 L2(QT ), g0 2 L2(0, T ), g
1

2 L2(0, T ), S 2 L2(0, T ),
u
0

2 L2(0, 1) and h
0

2 Rm, a pair of functions (u, h) 2 L2(QT ) ⇥ L2(0, T ) is called
a weak solution of the system (4.20.1) if the variational equality
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+
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=
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1
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1

(t)Y
1

)>⌘(t)) dt

+

Z T

0

g
0

(t) · (M
0

(t)'(t, 0)� (G
0

(t)Y
0

)>⌘) dt�
Z T

0

S(t) · ⌘(t) dt

+

Z
1

0

u
0

(x) · '(0, x) dx� h
0

· ⌘(0) (4.20.2)

where
H̃ = (H +G

1

Y
1

Q
1

+G
0

Y
0

Q
0

)>,

holds for all ' 2 E⇤(QT ) and for all ⌘ 2 H1(0, T ) such that '(T, ·) = 0, ⌘(T ) = 0,
C
1

'|x=1

= �(G
1

D
1

)>⌘ and C
0

'|x=0

= (G
0

D
0

)>⌘.

In Definition 4.20.1, the matrices Mi, Yi and Di are those given in Lemma 4.7.3.
The definition of a weak solution is obtained by multiplying the system (4.20.1) with
appropriate test functions and integrating by parts. The space of test functions in
the above definition is denoted by

W = {(', ⌘) 2 E⇤(QT )⇥H1(0, T ) : ⌘|t=T = 0, '|t=T = 0,

C
1

'|x=1

= �(G
1

D
1

)>⌘, C
0

'|x=0

= (G
0

D
0

)>⌘}.
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Because G
0

and G
1

are in L1, the functions (G
1

D
1

)>⌘ and (G
0

D
0

)>⌘ may be
only in L2(0, T ) even for ⌘ 2 H1(0, T ). In order for the compatibility conditions
C
1

'|x=1

= �(G
1

D
1

)>⌘ and C
0

'|x=0

= (G
0

D
0

)>⌘ to be meaningful, we take the
space E⇤(QT ) to be the space for the first component instead of the space H1(QT )
which was used in Definition 4.9.1.

Theorem 4.20.2. The space W is dense in L2(QT )⇥ L2(0, T ).

Proof. Take (u, h) 2 L2(QT ) ⇥ L2(0, T ) and ✏ > 0. Let ⌘ 2 H1(0, T ) be such that
⌘(T ) = 0 and k⌘ � hkL2

(0,T )

< ✏. Take w 2 H1

0

(QT ) satisfying ku � wkL2
(QT )

< ✏.
Consider the IBVP

L⇤
v = 0, C

0

 |x=0

= (G
0

D
0

)>⌘, C
1

 |x=1

= �(G
1

D
1

)>⌘,  |t=T = 0. (4.20.3)

This IBVP has a unique solution  2 L2(QT ) and furthermore  2 E⇤(QT ) according
to the dual version of Theorem 4.13.10.

By the absolute continuity of the Lebesgue integral, there exists � = �(✏) > 0 such
that if O ⇢ QT has Lebesgue measure less than or equal to � then ku� kL2

(O)

< ✏.
Without loss of generality, we can assume that � < 4T . Let ✓ 2 D [0, 1] be such that
0  ✓  1 on [0, 1], ✓ = 1 on (0, �/4T )[ (1� �/4T, 1) and ✓ = 0 on (�/2T, 1� �/2T ).
Define ' = ✓ + (1� ✓)w. Since E⇤(QT ) is closed under addition and multiplication
with smooth functions it holds that ' 2 E⇤(QT ). From (4.20.3) and the definition
of ✓ we have (', ⌘) 2 W . Furthermore,

ku� 'kL2
(QT )

 k✓kL1
(QT )

ku�  kL2
(R�,T )

+ k1� ✓kL1
(QT )

ku� wkL2
(QT )

< 2✏

where R�,T = (0, T )⇥ ((0, �/2T ) [ (1� �/2T, 1)). Therefore

k(u, h)� (', ⌘)kL2
(QT )⇥L2

(0,T )

<
p
5✏

and consequently W is dense in L2(QT )⇥ L2(0, T ).

We would like to apply Theorem 4.1.1 to prove the well-posedness of (4.20.1).
Therefore the crucial step is to prove an a priori estimate. But first we need to rewrite
(4.20.2) in the form (4.1.1). For this purpose, we set X = e��tL2(QT )⇥e��tL2(0, T ),
Y = E⇤(QT )⇥H1(0, T ) and Z = e��tL2(0, T )⇥e��tL2(0, T )⇥L2(0, 1)⇥Rm. Define
⇤ : Y ! X,  : Y ! Z and � : Y ! Z as follows
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CCA

for every (', ⌘) 2 Y . With these notations, the variational equation (4.20.2) can be
rewritten as

(e�2�t(u, h),⇤(', ⌘))X = (e�2�t(f,�S), (', ⌘))X

+ ((e�2�tg
0

, e�2�tg
1

, u
0

, h
0

), (', ⌘))Z (4.20.4)

for all (', ⌘) 2 W = ker�.
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Theorem 4.20.3. In the notation of the previous paragraph, there exist �
0

� 1 and
C > 0 such that

�k(', ⌘)k2X + k (', ⌘)k2Z  C

✓
1

�
k⇤(', ⌘)k2X + k�(', ⌘)k2Z

◆

holds for all (', ⌘) 2 Y and � � �
0

.

Proof. Let (', ⌘) 2 Y . From the priori estimate (4.13.25) and the triangle inequality
it follows that there is a constant C > 0 such that
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◆
(4.20.5)

for all � � �
0

where �
0

is the constant in Theorem 4.13.7. From the a priori estimate
(4.2.8) in Theorem 4.2.4 and the triangle inequality we obtain

|⌘(0)|2 + �ke�t⌘k2L2
(0,T )
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�
ke�t(⌘0 + H̃⌘ +Q>
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)k2L2
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+
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�
ke�t'|@⌦k2L2

(0,T )

+ Ce2�T |⌘(T )|2. (4.20.6)

From (4.20.5) and (4.20.6) and upon choosing �
0

large enough, the estimate in the
theorem follows after an absorption argument.

It is now possible to prove the existence and uniqueness of weak solutions of the
system (4.20.1).

Theorem 4.20.4. Let f 2 L2(QT ), g
0

2 L2(0, T ), g
1

2 L2(0, T ), S 2 L2(0, T ),
u
0

2 L2(0, 1) and h
0

2 Rm. With the assumptions in the beginning of this section, the
system (4.20.1) has a unique weak solution (u, h) 2 L2(QT )⇥L2(0, T ). Furthermore,
(u, h) 2 [CL2(QT ) \ E(QT )] ⇥ H1(0, T ) and in particular u|@⌦ 2 L2(0, T ). The
function u is the weak solution of the IBVP

8
>>>><

>>>>:

Lvu(t, x) = f(t, x), 0 < t < T, 0 < x < 1,

B
0

u(t, 0) = g
0

(t) +Q
0
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B
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1

(t) +Q
1

(t)h(t), 0 < t < T,

u(0, x) = u
0

(x), 0 < x < 1,

(4.20.7)

and h is the solution of the ODE
(

h0(t) = H(t)h(t) +G
0

(t)u(t, 0) +G
1

(t)u(t, 1) + S(t), 0 < t < T,

h(0) = h
0

(4.20.8)

The weak solution (u, h) satisfies the energy estimate
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for all � � �
0

for some C > 0 and �
0

� 1.
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Proof. The existence of a weak solution is a direct consequence of Theorem 4.1.1
and Theorem 4.20.3. The next step is to show that if (u, h) is any weak solution
of (4.20.1) then u is the weak solution of (4.20.7) and h is the solution of (4.20.8).
Suppose that (u, h) is a weak solution of (4.20.1). Taking ⌘ = 0 and ' 2 H1(QT )
with C'|@⌦ = 0 and '|t=T = 0 we have (', ⌘) 2 W . With this (', ⌘) in (4.20.2) we
can see that u is the weak solution of the (4.20.7). Therefore from Theorem 4.13.10,
u 2 CL2(QT ) \ E(QT ) and in particular u|@⌦ 2 L2(0, T ). Moreover, from Remark
4.13.11 and Lemma 4.7.3 u satisfies the variational equation
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N
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u(t, 0) · C
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(t)'(t, 0) dt�
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1

0

u(T, x) · '(T, x) dx
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Z
1

0

u
0

(x) · '(0, x) dx (4.20.9)

for all ' 2 E⇤(QT ).

Given ⌘ 2 H1(0, T ) with ⌘(T ) = 0 consider the IBVP

L⇤
v' = 0, C

0

'|x=0

= (G
0

D
0

)>⌘, C
1

'|x=1

= �(G
1

D
1

)>⌘, '|t=T = 0. (4.20.10)

The dual version of Theorem 4.13.10 implies that (4.20.10) has a unique weak solution
' 2 L2(QT ) such that ' 2 E⇤(QT ). Thus (', ⌘) 2 W . From (4.7.3), (4.7.11), (4.20.2)
and (4.20.9) we can see that

Z T

0

h(t) · (⌘0(t) +H(t)>⌘(t)) dt

= �h
0

· ⌘(0)�
Z T

0

(G
0

(t)u(t, 0) +G
1

(t)u(t, 1) + S(t)) · ⌘(t) dt. (4.20.11)

According to (4.20.11) and Theorem 4.2.5, h is the solution of the ordinary di↵erential
equation (4.20.8) and h 2 H1(0, T ).

The energy estimate in the statement of the theorem follows from the energy esti-
mate (4.13.28) for u, the energy estimate (4.2.16) for h and an absorption argument.
Thus, any weak solution of (4.20.1) satisfies the energy estimate. Consequently,
(4.20.1) has a unique weak solution.

4.21 linear hyperbolic pde-ode systems with constant coeffi-
cients

In this section, we show that in the case where the coe�cients in (4.20.1) are constant,
the weak solution defined in the previous section coincides with the one given by
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semigroup theory. Consider the weak solution (u, h) 2 C([0,1);L2(0, 1) ⇥ Rm) of
the system

8
>>>>>>>>><

>>>>>>>>>:

@tu(t, x) +A@xu(t, x) +Ru(t, x) = 0, t > 0, 0 < x < 1,

B
0

u(t, 0) = Q
0

h(t), t > 0,

B
1

u(t, 1) = Q
1

h(t), t > 0,

h0(t) = Hh(t) +G
0

u(t, 0) +G
1

u(t, 1), t > 0,

u(0, x) = u
0

(x), 0 < x < 1,

h(0) = h
0

(4.21.1)

The boundary conditions for u and the ODE for h can be viewed as a nonlocal
boundary condition for u

Bxu(t, x) = Qxe
tHh

0

+

Z t

0

Qxe
(t�s)H(G

0

u(s, 0) +G
1

u(s, 1)) ds, x = 0, 1.

This can be derived by using the variation of parameters formula for the di↵erential
equation for h and substituting it to the boundary conditions for u. However, we
will not treat the boundary conditions in this way.

Let k be a positive integer. For each u
0

2 Hk(0, 1) we define

ui = �A@xui�1

�Rui�1

, i = 1, . . . , k. (4.21.2)

The data (u
0

, h
0

) 2 Hk(0, 1)⇥ Rm is said to be compatible up to order k � 1 if

Byui(y) = Qyhi, i = 0, . . . , k � 1 and y = 0, 1, (4.21.3)

where

hi = Hhi�1

+G
0

ui�1

(0) +G
1

ui�1

(1), i = 1, . . . , k. (4.21.4)

Theorem 4.21.1. Let k 2 N. If the data (u
0

, h
0

) 2 Hk(0, 1)⇥Rm is compatible up
to order k� 1 then the weak solution (u, h) of (4.21.1) satisfies (u, h) 2 CHk(QT )⇥
Hk+1(0, T ) and u|@⌦ 2 Hk(0, T ).

Proof. From Theorem 4.20.4, h 2 H1(0, T ) and u is the weak solution of the system
8
>>>><

>>>>:

@tu(t, x) +A@xu(t, x) +Ru(t, x) = 0, t > 0, 0 < x < 1,

B
0

u(t, 0) = Q
0

h(t), t > 0,

B
1

u(t, 1) = Q
1

h(t), t > 0,

u(0, x) = u
0

(x), 0 < x < 1.

(4.21.5)

From (4.21.3) it can be seen that the data (u
0

, 0, Q
0

h,Q
1

h) is compatible up to
order 0 for the system (4.21.5). Thus Theorem 4.11.4 implies that u 2 CH1(QT )
and u|@⌦ 2 H1(0, T ). On the other hand, h satisfies the ODE

(
h0(t) = Hh(t) +G

0

u(t, 0) +G
1

u(t, 1), t > 0,

h(0) = h
0

(4.21.6)

still from Theorem 4.20.4. Since u|@⌦ 2 H1(0, T ), it follows from (4.21.6) that
h 2 H2(0, T ). Consequently, Theorem 4.11.4 and (4.21.3) imply that u 2 CH2(QT )
and u|@⌦ 2 H2(0, T ). Repeating this process, one eventually arrives at u 2 CHk(QT ),

u|@⌦ 2 Hk(0, T ) and h 2 Hk+1(0, T ).

135



linear systems with variable coefficients

Theorem 4.21.2. Let k 2 N
0

. If (u
0

, h
0

) 2 Hk(0, 1)⇥Rm is compatible up to order
k� 1 when k � 1, then there exists a sequence (u⌫

0

)⌫ ⇢ Hk+1(0, 1) such that (u⌫
0

, h
0

)
is compatible up to order k for each ⌫ and ku⌫

0

� u
0

kHk
(0,1) ! 0.

Proof. The proof follows the ideas presented in [64] for hyperbolic systems. Pick a
sequence (v⌫)⌫ ⇢ Hk+1(0, 1) satisfying v⌫ ! u

0

in Hk(0, 1). Define u⌫
0

= v⌫ � w⌫
where w⌫ 2 Hk+1(0, 1) satisfies w⌫ ! 0 in Hk(0, 1) and to be constructed below.
The compatibility conditions for u⌫

0

is given by

Byw⌫,i(y) = Byv⌫,i(y)�Qyh⌫,i, 0  i  k, y = 0, 1, (4.21.7)

where

w⌫,0 = w⌫ , v⌫,0 = v⌫ , h⌫,0 = h
0

,

w⌫,i = �A@xw⌫,i�1

�Rw⌫,i�1

, 1  i  k + 1
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, 1  i  k + 1
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(0)� w⌫,i�1

(0)) +G
1

(v⌫,i�1

(1)� w⌫,i�1

(1)), 1  i  k

The compatibility conditions (4.21.7) can be rewritten as

Byw⌫(y) = Byv⌫(y)�Qyh0 (4.21.8)

ByA
i@ixw⌫(y) = ByA

i@ixv⌫(y) + `y,i(h0, v⌫ � w⌫ , . . . , @
i�1

x v⌫ � @i�1

x w⌫ ,

v⌫(0)� w⌫(0), v⌫(1)� w⌫(1), . . . , @
i�1

x v⌫(0)� @i�1

x w⌫(0),

@i�1

x v⌫(1)� @i�1

x w⌫(1)) (4.21.9)

for y = 0, 1 and i = 1, . . . , k, where `y,i is linear in all its arguments.
Recall from Lemma 4.7.1 that exits a matrix Yy such that ByYy = I where I is

the identity matrix Ip if y = 0 and In�p if y = 1. Consider the following equations

w⌫(y) = Yy(Byv⌫(y)�Qyh0) (4.21.10)

@ixw⌫(y) = A�iYy(ByA
i@ixv⌫(y) + `y,i(h0, v⌫ � w⌫ , . . . , @
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x w⌫(0),

@i�1

x v⌫(1)� @i�1

x w⌫(1))) (4.21.11)

for y = 0, 1 and i = 1, . . . , k. By multiplying ByA and ByAi to both sides of
(4.21.10) and (4.21.11), respectively, we obtain (4.21.8) and (4.21.9), respectively.
For this reason we construct w⌫ that satisfies (4.21.10) and (4.21.11) in addition to
the property w⌫ ! 0 in Hk(0, 1).

For i = 0, . . . k and ⌫ 2 N, let �⌫,i(y) denote the right hand side of (4.21.10) and
(4.21.11). Since v⌫ ! u

0

and w⌫ ! 0 both in Hk(0, 1), we have @ixv⌫(y) ! @ixu0(y)
and @ixw⌫(y) ! 0 for all 0  i  k � 1 by the Sobolev embedding. Thus, by the
compatibility conditions for (u

0

, h) we have �⌫,i(y) ! 0 for 0  i  k � 1 and
y = 0, 1. Now given (�⌫,0(0),�⌫,0(1), . . . ,�⌫,k�1

(0),�⌫,k�1

(1), 0, 0) 2 R2n⇥(k+1) there
exists ṽ⌫ 2 Hk+1(0, 1) such that @ixṽ⌫(y) = �⌫,i(y) for 0  i  k � 1, @kx ṽ⌫(y) = 0
and

kṽ⌫kHk+1
(0,1)  C

k�1X

i=0

(|�⌫,i(0)|+ |�⌫,i(1)|) ! 0 (4.21.12)

for some C > 0 independent of ⌫. Define w⌫ = ṽ⌫ + w̃⌫ where w̃⌫ 2 Hk+1(0, 1)
satisfies @ixw̃⌫(y) = 0 for 0  i  k � 1, @kxw̃⌫(y) = �⌫,k(y), and kw̃⌫kHk

(0,1) ! 0.
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Then w⌫ satisfies the desired properties w⌫ ! 0 in Hk(0, 1) and @ixw⌫(y) = �⌫,i(y)
for 0  i  k and y = 0, 1.

Thus the last step is to construct the function w̃⌫ . Set c⌫ = �⌫,k(0). Because it
is enough to consider each component of c⌫ separately, we may assume without loss
of generality that c⌫ is scalar. Let us consider the two cases |c⌫ |  1 and |c⌫ | > 1
separately. Suppose that |c⌫ |  1. Let � 2 D(R) be such that �(x) = 1 for |x|  ✏
for some ✏ > 0 small enough and supp � ⇢ [�1, 1]. Define

 ⌫(x) =
xk

k!
�(⌫x)c⌫ .

Then by Leibniz’ formula we have for 1  j  k

@jx ⌫(x) =
jX

i=0

✓
j

i

◆
xk�i

(k � i)!
⌫j�i@j�i

x �(⌫x)c⌫ . (4.21.13)

It can be seen from (4.21.13) that @jx ⌫(0) = 0 for 1  j  k � 1 and @kx ⌫(0) = c⌫ .
Moreover, using the change of variable y = ⌫x we obtain

k@jx ⌫k2L2
(R)  C(k)

jX

i=0

Z

R
|x|2(k�i)⌫2(j�i)|@j�i

x �(⌫x)|2|c⌫ |2 dx

= C(k)
jX

i=0

Z

R
|y|2(k�i)⌫2(j�k)|@j�i

x �(y)|2 dy
⌫

 C(k)

⌫

jX

i=0

Z

R
|y|2(k�i)|@j�i

x �(y)|2 dy  C(k,�)

⌫

for 0  j  k.
If |c⌫ | > 1 then we take

 ⌫(x) =
xk

k!
�(|c⌫ |2⌫x)c⌫ .

For 1  j  k, applying Leibniz’ rule yields

@jx ⌫(x) =
jX

i=0

✓
j

i

◆
xk�i

(k � i)!
(|c⌫ |2⌫)j�i@j�i

x �(|c⌫ |2⌫x)c⌫ . (4.21.14)

From (4.21.14) we obtain @jx ⌫(0) = 0 for 1  j  k � 1, @kx 
⌫(0) = c⌫ and

k@jx ⌫k2L2
(R)  C(k)

jX

i=0

Z

R
|x|2(k�i)(|c⌫ |2⌫)2(j�i)|@j�i

x �(|c⌫ |2⌫x)|2|c⌫ |2 dx

= C(k)
jX

i=0

Z

R
|y|2(k�i)(|c⌫ |2⌫)2(j�k)|@j�i

x �(y)|2 dy
⌫

 C(k)

⌫

jX

i=0

Z

R
|y|2(k�i)|@j�i

x �(y)|2 dy  C(k,�)

⌫

since j � k  0 and |c⌫ |2⌫ > 1. Therefore in any case we have k ⌫kHk
(R) 

C(k,�)⌫�1/2.
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For �⌫,k(1) we can also do the same construction by replacing � by a smooth
function that is equal to 1 in an ✏-neigborhood of x = 1. By taking the sum of
the functions  ⌫ constructed for x = 0 and x = 1 and choosing ✏ small enough so
that their supports do not intersect we obtain an appropriate w̃⌫ satisfying all the
required properties.

Using a diagonalization argument, the following result can be shown.

Corollary 4.21.3. For every (u
0

, h
0

) 2 L2(0, 1) ⇥ Rm and k 2 N, there exists a
sequence (u⌫

0

)⌫ ⇢ Hk(0, 1) such that (u⌫
0

, h
0

) is compatible up to order k � 1 and
ku⌫

0

� u
0

kL2
(0,1) ! 0.

For each t � 0, define the operator T (t) : L2(0, 1)⇥ Rm ! L2(0, 1)⇥ Rm by

T (t)(u
0

, h
0

) = (u(t, ·), h(t)), t � 0, (u
0

, h
0

) 2 L2(0, 1)⇥ Rm,

where (u, h) is the unique weak solution of the system (4.21.1). The linearity of T (t)
follows from the linearity of the system (4.21.1) and the uniqueness of weak solutions.
The boundedness follows from the energy estimate in Theorem 4.20.4. Also, T (0) = I
and (T (t))t�0

is strongly continuous since (u, h) 2 C([0, T ];L2(0, 1) ⇥ Rm) for any
T > 0. Finally, since the system (4.21.1) is autonomous, (T (t))t�0

satisfies the
semigroup property.

The goal is to determine the generator of the C
0

-semigroup (T (t))t�0

, which we
denote by A. A candidate generator is given by the linear operator Ã : D(Ã) !
L2(0, 1)⇥ Rm defined by

Ã
✓
u

h

◆
=

✓
�Aux �Ru

Hh+G
0

u(0) +G
1

u(1)

◆
(4.21.15)

where

D(Ã) = {(u, h) 2 H1(0, 1)⇥ Rm : B
0

u(0) = Q
0

h,B
1

u(1) = Q
1

h.}

To prove that A = Ã we proceed using the method in [19] applied to delay equations.
This requires the following three steps: (1) characterize the resolvent R(�,A), (2)
show that �I � Ã is injective and (3) the resolvent of A and Ã at � coincide. It is
su�cient to prove these three steps for large enough �.

Step 1. Suppose that (u
0

, h
0

) 2 H1(0, 1)⇥Rm satisfies the compatibility condition
up to order 0, in other words, (u

0

, h
0

) 2 D(Ã). Then u 2 CH1(QT ) and h 2 H2(0, T )
from Theorem 4.21.1. For � > !

0

, where !
0

is the growth bound of T (t), the resolvent
of A at � is given by the Laplace transform of the semigroup T (t), i.e.,

R(�,A)(u
0

, h
0

) =

Z 1

0

e��tT (t)(u
0

, h
0

) dt =

Z 1

0

e��t(u(t, ·), h(t)) dt.

Define w : (0, 1) ! Rn and g 2 Rm by

w(x) =

Z 1

0

e��tu(t, x) dt

g =

Z 1

0

e��th(t) dt

so that R(�,A)(u
0

, h
0

) = (w, g).
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Because @x : H1(0, 1) ! L2(0, 1) is a closed operator, u 2 C([0, T ];H1(0, 1)) and
t 7! e��tux(t, ·) is integrable for � > �

1

according to (4.11.5), (4.2.16) and (4.2.17),
we can interchange di↵erentiation and integration to obtain

w0(x) =
Z 1

0

e��tux(t, x) dt,

see [34, Theorem 3.7.12] and [23, Chap. II, Theorem 6]. Thus we take
� > max(!

0

, �
0

, �
1

). Integrating by parts

�w(x) = � e��tu(t, x)
���
t=1
t=0

+

Z 1

0

e��tut(t, x) dt

= u
0

(x)�
Z 1

0

e��t(Aux(t, x) +Ru(t, x)) dt

= u
0

(x)�Aw0(x)�Rw(x). (4.21.16)

Because we already know that w 2 L2(0, 1), (4.21.16) implies that w 2 H1(0, 1).
Furthermore, for y = 0, 1 we have

Byw(y) =

Z 1

0

e��tByu(t, y) dt =

Z 1

0

e��tQyh(t) dt = Qyg.

Similarly,

�g = Hg + h
0

+G
0

w(0) +G
1

w(1).

Therefore the resolvent of A at � > max(!
0

, �
0

, �
1

) is given by R(�)(u
0

, h
0

) =
(w, g), for (u

0

, h
0

) 2 D(Ã), where w and g satisfy the system
8
>>>><

>>>>:

Aw0(x) + (�In +R)w(x) = u
0

(x)

B
0

w(0) = Q
0

g

B
1

w(1) = Q
1

g

(�Im �H)g = h
0

+G
0

w(0) +G
1

w(1)

(4.21.17)

and in particular (w, g) 2 D(Ã).
Step 2. In this step we wish to show that �I � Ã is injective for su�ciently

large �. However, we only consider the case where R = 0 and H = 0 in this
step. Let us denote the operator Ã by A

0

when R = 0 and H = 0. We even
prove the stronger property that �I � A

0

is bijective for � large enough. Given
(u

0

, h
0

) 2 L2(0, 1)⇥Rm we show that there exists a unique (w, g) 2 D(A
0

) such that
(�I �A

0

)(w, g) = (u
0

, h
0

). This is equivalent to the system
8
>>>><

>>>>:

Aw0(x) + �w(x) = u
0

(x)

B
0

w(0) = Q
0

g

B
1

w(1) = Q
1

g

�g = h
0

+G
0

w(0) +G
1

w(1).

(4.21.18)

Thus w satisfies the two-point boundary value problem
8
><

>:

Aw0(x) + w(x) = u
0

(x)

�B
0

w(0) = Q
0

(h
0

+G
0

w(0) +G
1

w(1))

�B
1

w(1) = Q
1

(h
0

+G
0

w(0) +G
1

w(1)).

(4.21.19)
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Therefore to show that there exists a unique (w, g) satisfying (4.21.18) it is enough
to prove that the two-point boundary value problem (4.21.19) has a unique solution.

Due to the assumption on the matrix A, there exists an invertible matrix T such
that T�1AT = ⇤ where ⇤ = diag(�

1

, . . . ,�n). By rearranging the columns of T we
can assume without loss of generality that �

1

 · · ·  �n�p < 0 < �n�p+1

 · · ·�n.
Let v = T�1w, v

0

= T�1u
0

and B̃y = ByT for y = 0, 1. Then (4.21.19) is equivalent
to

8
><

>:

�v + ⇤vx = v
0

�B̃
0

v(0) = Q
0

h
0

+Q
0

G
0

Tv(0) +Q
0

G
1

Tv(1)

�B̃
1

v(1) = Q
1

h
0

+Q
0

G
0

Tv(0) +Q
1

G
1

Tv(1)

(4.21.20)

Note that (⇤, B̃) still satisfies the uniform Lopatinskii condition. Thus B̃
0

is injective
on the unstable subspace of ⇤ which is {0}n�p�Rp, while B̃

1

is injective on the stable

subspace of ⇤ which is Rn�p�{0}p. We will decompose a vector v in Rn by v =
� v�
v+
�

where v� 2 Rn�p and v+ 2 Rp. Partitioning B̃
0

= (B̃�
0

B̃+

0

) we have

B̃
0

v(0) = B̃�
0

v�(0) + B̃+

0

v+(0). (4.21.21)

where B̃+

0

2 Rp⇥p and B̃�
0

2 Rp⇥(n�p). The matrix B̃+

0

is invertible and so from
(4.21.21) the boundary condition at x = 0 in (4.21.20) can be written as

(�Ip +R
1

)v+(0) = (�R
2

+R
3

)v�(0) +R
4

v�(1) +R
5

v+(1) +R
6

h
0

(4.21.22)

for some matrices Ri. Similarly, the boundary condition at x = 1 is equivalent to

(�In�p + S
1

)v�(1) = (�S
2

+ S
3

)v+(1) + S
4

v�(0) + S
5

v+(0) + S
6

h
0

(4.21.23)

for some matrices Si.
By the variation of parameters formula, the function v in (4.21.20) is given by

v(x) = e�x�⇤�1

✓
c�

c+

◆
+

Z x

0

e�(x�y)�⇤�1
⇤�1v

0

(y) dy (4.21.24)

and from (4.21.22) and (4.21.23) the vectors c� and c+ satisfy the equations
8
>>>><

>>>>:

(�Ip +R
1

)c+ = (�R
2

+R
3

)c� +R
4

(e��(⇤�
)

�1
c� + d�)

+ R
5

(e��(⇤+
)

�1
c+ + d+) +R

6

h
0

(�In�p + S
1

)(e��(⇤�
)

�1
c� + d�) = (�S

2

+ S
3

)(e��(⇤+
)

�1
c+ + d+)

+ S
4

c� + S
5

c+ + S
6

h
0

(4.21.25)

where ⇤� = diag(�
1

, . . . ,�n�p), ⇤+ = diag(�n�p+1

, . . . ,�n) and

d =

Z
1

0

e�(1�y)�⇤�1
⇤�1v

0

(y) dy. (4.21.26)

The system (4.21.25) can be written in matrix form as
 

R
5

e��(⇤+
)

�1 �R
1

� �Ip �R
2

+R
3

+R
4

e��(⇤�
)

�1

(�S
2

+ S
3

)e��(⇤+
)

�1
+ S

5

S
4

� (�In�p + S
1

)e��(⇤�
)

�1

!✓
c+

c�

◆

=

✓
�R

6

h
0

+R
7

d
�S

6

h
0

+ S
7

(�)d

◆
. (4.21.27)

Therefore to show that (4.21.20) has a unique solution, we must prove that the 2⇥2
matrix on the left hand side of (4.21.27) is invertible. To prove this, we need the
following result in linear algebra.
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Lemma 4.21.4. Let A, B, C and D be m ⇥ m, m ⇥ (n � m), (n � m) ⇥ m and
(n �m) ⇥ (n �m) matrices, respectively. If A and D � CA�1B are invertible then
the block matrix ✓

A B
C D

◆
(4.21.28)

is invertible.

Proof. Since A is invertible, we can express the block matrix as a product of a lower
triangular matrix and an upper triangular matrix as follows

✓
A B
C D

◆
=

✓
Im Om⇥(n�m)

CA�1 In�m

◆✓
A B

O
(n�m)⇥m D � CA�1B

◆
. (4.21.29)

The lower triangular matrix in (4.21.29) is clearly invertible. The upper triangular
matrix in (4.21.29) is invertible as well because A and D � CA�1B are invertible.
Therefore the block matrix (4.21.28) is invertible.

For su�ciently large � > 0, the matrix

⌅� = ��1(R
5

e��(⇤
+
)

�1 �R
1

)� Ip.

is invertible and so �⌅� is invertible. Consider the matrix

⌃� = S
4

� (�In�p + S
1

)e��(⇤
�
)

�1

� [(�S
2

+ S
3

)e��(⇤
+
)

�1
+ S

5

]��1⌅�1

� [�R
2

+R
3

+R
4

e��(⇤
�
)

�1
].

It can be seen that the matrix

��1⌃�e
�(⇤�

)

�1
= ��1(S

4

e�(⇤
�
)

�1 � S
1

)� In�p

� [(S
2

+ ��1S
3

)e��(⇤
+
)

�1
+ ��1S

5

]⌅�1

� [R
2

e�(⇤
�
)

�1
+ ��1R

3

e�(⇤
�
)

�1
+ ��1R

4

]

is invertible for large � > 0. Consequently ⌃� is invertible for su�ciently large � > 0.
Therefore from Lemma 4.21.4, the system (4.21.27) has a unique solution (c+ c�)
and so (4.21.20) has a unique solution v. As a result, (4.21.17) has a unique solution
(w, g).

From (4.21.24), (4.21.26) and (4.21.27) there exists a constant C� > 0 such that

kwkL2
(0,1) = kTvkL2

(0,1)  C�(ku0kL2
(0,1) + |h

0

|).

The last equation in (4.21.18) together with (4.21.24), (4.21.26) and (4.21.27) imply
that

|g|  C�(ku0kL2
(0,1) + |h

0

|)
for some C� > 0. Therefore R(�,A

0

) 2 L(L2(0, 1)⇥Rm) so that A
0

has a nonempty
resolvent. Hence A

0

is closed.
Step 3. In this step we show that the resolvents of A and A

0

at � are the same
for su�ciently large �. Let (u

0

, h
0

) 2 D(A
0

). From (4.21.17) and (4.21.18) we have

(�I �A
0

)R(�,A)(u
0

, h
0

) = (�I �A
0

)(w, g) = (u
0

, h
0

).

Thus (�I � A
0

)R(�,A) = I in D(A
0

). Since R(�,A) 2 L(L2(0, 1) ⇥ Rm), A
0

is
closed and D(A

0

) is dense in L2(0, 1) ⇥ Rm according to Corollary 4.21.3, we have
(�I �A

0

)R(�,A) = I in L2(0, 1)⇥ Rm.
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Let z 2 D(A
0

) and y = R(�,A)(�I � A
0

)z. Then (�I � A
0

)y = (�I � A
0

)z.
Since �I �A

0

is injective for su�ciently large � > 0 it follows that y = z and hence
R(�,A)(�I � A

0

)z = z for all z 2 D(A
0

). Therefore R(�,A
0

) = R(�,A) and also
the domain of A is D(A

0

). Since

�I �A = (�I �A
0

)R(�,A
0

)(�I �A)

= (�I �A
0

)R(�,A)(�I �A) = �I �A
0

.

we conclude that A = A
0

.
Now let us turn to the general case where R and H are not necessarily zero. We

can write the operator Ã defined by (4.21.15) as Ã = A
0

+ B where A
0

: D(Ã) !
L2(0, 1)⇥ Rm and B : L2(0, 1)⇥ Rm ! L2(0, 1)⇥ Rm are given by

A
0

✓
u

h

◆
=

✓
�Aux

G
0

u(0) +G
1

u(1)

◆

B
✓
u

h

◆
=

✓
�Ru

Hh

◆
.

Since A
0

is closed and B is bounded, Ã is closed. We know from above that A
0

generates a C
0

-semigroup on L2(0, 1)⇥Rm. It follows from the bounded perturbation
theorem of semigroups that Ã generates a C

0

-semigroup on L2(0, 1)⇥Rm. Therefore
�I � Ã is invertible for su�ciently large � > 0. Similar arguments as in Step 3 show
that A = Ã.

Therefore, the solution of the system (4.21.1) given by semigroup theory coincides
with the weak solution given in Definition 4.20.1. An alternative way of proving
that the weak and semigroup solutions are the same is to prove that the operator Ã
generates a C

0

-semigroup. For initial data in D(Ã2) we have a classical solution and
so we can multiply the system with the appropriate test functions and use integration
by parts to show that the semigroup solution is the weak solution. By the density
of D(Ã2) in L2(0, 1)⇥ Rm, this also true for every initial data in L2(0, 1)⇥ Rm, see
Section 3.3. However, proving that Ã is a generator is a di�cult task, specifically it
is hard to show that Ã� �I is dissipative for some � 2 R.

If (u, h) is the weak solution of (4.21.1) then u|@⌦ 2 L2(0, T ) and h 2 H1(0, T )
for every T > 0 according to Theorem 4.20.4. These properties are called hidden
regularity. Note that these cannot be obtained directly from standard semigroup
methods because in general the solution given by semigroup theory only satisfies
(u, h) 2 C([0,1);L2(0, 1) ⇥ Rm). In the literature, hidden regularity property for
weak solutions of partial di↵erential equations were established using Fourier analysis
and multiplier methods.

If we define the operator C : D(A) ! Rs by

C(u
0

, h
0

) = J

✓
u
0

(0)

u
0

(1)

◆

where D(A) is the domain of the generator A of the semigroup (T (t))t�0

defined
above and J 2 Rs⇥2n, then C is an admissible observation operator for (T (t))t�0

.
Indeed, the direct inequality (B.3.5) follows immediately from the energy estimate
in Theorem 4.20.4.

4.22 examples

Example 4.22.1 (Linearized Flow in an Elastic Tube). The two tank model in
Chapter 3 can be put in the form (4.21.1). It can be easily checked that all the
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properties that are required in Theorem 4.20.4 are satisfied. The hidden regularity
on the velocity component was shown using methods in control theory. This was
established by proving the direct inequality using the Fourier representation of the
semigroup, cf. Remark 3.5.8. In this section we have shown this with a di↵erent
method and in addition we also established that the cross-section admits traces in
L2 and the level heights are in H1.

Example 4.22.2 (Wave Equations with Oscillator Boundary Conditions). Consider
the one-dimensional undamped wave equation with oscillator boundary conditions,
[6, 39]

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

@tt (t, x)� @xx (t, x) = 0, t > 0, 0 < x < `,

 x(t, 0) = ��0
0

(t), t > 0,

 x(t, `) = �0`(t), t > 0,

m
0

�00
0

(t) + d
0

�0
0

(t) + k
0

�
0

(t) = �⇢@t (t, 0), t > 0,

m`�00` (t) + d`�0`(t) + k`�`(t) = �⇢@t (t, `), t > 0,

 (0, x) =  
0

(x), 0 < x < `,

@t (0, x) =  
1

(x), 0 < x < `,

�i(0) = �0i , i = 0, `,

�0i(0) = v0i , i = 0, `.

(4.22.1)

The system (4.22.1) models the velocity potential  of the acoustics in a homogeneous
fluid with nominal density ⇢ contained in a wave guide of length ` and terminated by
oscillators. In this model it is assumed that the fluid does not penetrate the surface
of the oscillators.

As in Ito and Propst [39], we introduce the variables �� = 1

2

(@t + @x ), �+ =
1

2

(@t � @x ), v0 = �0
0

and v` = �0`. The system (4.22.1) can be put in the form
(4.21.1) as

8
>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>:

@t��(t, x)� @x��(t, x) = 0, t > 0, 0 < x < `,

@t�+(t, x) + @x�+(t, x) = 0, t > 0, 0 < x < `,

��(t, 0)� �+(t, 0) = �v
0

(t), t > 0,

��(t, `)� �+(t, `) = v`(t), t > 0,

�0
0

(t) = v
0

(t), t > 0,

�0`(t) = v`(t), t > 0,

v0
0

(t) = � d0
m0

v
0

(t)� k0
m0
�
0

(t)� ⇢
m0

(��(t, 0) + �+(t, 0)), t > 0,

v0`(t) = � d`
m`

v`(t)� k`
m`
�`(t)� ⇢

m`
(��(t, `) + �+(t, `)), t > 0,

��(0, x) = ��
0

(x), 0 < x < `,

�+(0, x) = �+
0

(x), 0 < x < `,

�i(0) = �0i , i = 0, `,

vi(0) = v0i , i = 0, `,

(4.22.2)

where ��
0

= 1

2

( 
1

+ 0
0

) and �+
0

= 1

2

( 
1

� 0
0

). It can be checked that all the require-
ments in Theorem 4.20.4 are satisfied by the system (4.22.2). Therefore for every
(��

0

,�+
0

, �
0

, �`, v0, v`) 2 L2(0, `)2⇥R4 the system (4.22.2) has a unique weak solution
(��,�+, �

0

, �`, v0, v`) 2 C([0,1);L2(0, `)2 ⇥ R4) and it satisfies �±(·, 0),�±(·, `) 2
L2(0, T ) and �

0

, �`, v0, v` 2 H1(0, T ) for every T > 0. The well-posedness of (4.22.2)
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was established in [39] using semigroup methods. Here, we improved this result by
showing that the solutions admit traces in L2 and that the oscillator components
are more regular.

Example 4.22.3 (Wave Equations with Exponential Memory Kernel). The next
example is the normalized damped wave equation with memory boundary conditions
[62]

8
>>>>>><

>>>>>>:

@tt�(t, x)� @xx�(t, x) + @t�(t, x) = 0, t > 0, 0 < x < 1,

(a
0

? �t(·, 0))(t)� �x(t, 0) = 0, t > 0,

(a
1

? �t(·, 1))(t) + �x(t, 1) = 0, t > 0,

�(0, x) = �
0

(x), 0 < x < 1,

�t(0, x) = �
1

(x), 0 < x < 1.

(4.22.3)

where a ? u is the convolution

(a ? u)(t) =

Z t

0

a(t� s)u(s) ds.

Suppose that the kernels a
0

and a
1

take the form a
0

(t) = 
0

e↵0t and a
1

(t) = 
1

e↵1t

for some nonzero real numbers 
0

,
1

,↵
0

,↵
1

. Introducing the state vector

(u, v, h, g)(t) =

✓
�t(t, ·),�x(t, ·),

Z t

0

e↵0(t�s)�t(s, 0) ds,

Z t

0

e↵1(t�s)�t(s, 1) ds

◆

at time t, the system (4.22.3) can be written in the form of (4.21.1) as

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

@tu(t, x)� @xv(t, x) + u(t, x) = 0, t > 0, 0 < x < 1,

@tv(t, x)� @xu(t, x) = 0, t > 0, 0 < x < 1,

v(t, 0) = 
0

h(t), t > 0,

v(t, 1) = �
1

g(t), t > 0,

h0(t) = ↵
0

h(t) + u(t, 0), t > 0,

g0(t) = ↵
1

g(t) + u(t, 1), t > 0,

u(0, x) = u
0

(x), 0 < x < 1,

v(0, x) = v
0

(x), 0 < x < 1,

h(0) = h
0

,

g(0) = g
0

.

(4.22.4)

where u
0

= �
1

, v
0

= �0
0

and h
0

= g
0

= 0. The conditions for Theorem 4.20.4 are satis-
fied by the system (4.22.4). Thus, for each initial data (u

0

, v
0

, h
0

, g
0

) 2 L2(0, 1)2⇥R2

the system (4.22.4) admits a unique weak solution (u, v, h, g) 2 C([0,1);L2(0, 1)2⇥
R2), and moreover, u(·, 0), v(·, 0), u(·, 1), v(·, 1) 2 L2(0, T ) and h, g 2 H1(0, T ) for
every T > 0.
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NONL INEAR SYSTEMS





5
LOCAL EXISTENCE AND BLOW-UP

CRITER ION FOR NONL INEAR PDE -ODE
SYSTEMS

The aim of this chapter is to obtain a well-posedness result for a hyperbolic system of
first order quasilinear partial di↵erential equations in the bounded interval ⌦ = (0, 1)
with dynamic boundary conditions

8
>>>>>>>>><

>>>>>>>>>:

ut(t, x) +A(u(t, x))ux(t, x) = f(u(t, x)), 0 < t < T, 0 < x < 1,

B
0

u(t, 0) = b
0

(p
0

(t), h(t)), 0 < t < T,

B
1

u(t, 1) = b
1

(p
1

(t), h(t)), 0 < t < T,

h0(t) = H(h(t), q(t), u(t, 0), u(t, 1)), 0 < t < T,

u(0, x) = u
0

(x), 0 < x < 1,

h(0) = h
0

.

(5.0.1)

The unknown state variables are u : [0, T ]⇥ [0, 1] ! Rn and h : [0, T ] ! Rd taking
values in the open and convex sets U and H, respectively. We assume for simplicity
that 0 2 U and 0 2 H. This is not restrictive since one can shift a general problem
to this case. The coe�cients appearing in (5.0.1) are assumed to have the following
properties. The flux matrix A : U ! Rn⇥n and the source term f : U ! Rn are both
infinitely di↵erentiable. The boundary matrices B

0

2 Rp⇥n and B
1

2 R(p�n)⇥n are
of full rank, where p is the number of incoming characteristics from the left boundary,
or equivalently, the number of positive eigenvalues of the flux matrix. According to
the diagonalizability assumption (D) in Chapter 4, n� p is the number of incoming
characteristics from the right boundary. This assumption further implies that we
are in the non-characteristic case. It should be noted that unlike in multidimensions,
cf. [9, Chapter 11], for which the boundary matrix should be of constant maximal
rank along the boundary, in the case of one space dimension the boundary matrices
can have di↵erent ranks. However, the sum of their ranks should be the same as the
number of components of u.

The boundary data p
0

, p
1

, and q are given by p
0

: [0, T ] ! Rn0 , p
1

: [0, T ] ! Rn1 ,
q : [0, T ] ! Rn2 , while b

0

: Rn0⇥H ! Rp, b
1

: Rn1⇥H ! Rn�p andH : H⇥Rn2+2n !
Rd. Again for simplicity we assume that b

0

, b
1

and H are all infinitely di↵erentiable.
If b

0

and b
1

are independent of h then (5.0.1) includes systems of balance laws that
are decoupled from the h-dynamics. If H is independent of h then (5.0.1) includes
balance laws with nonlocal boundary conditions of the form

Byu(t, y) = by

✓
py(t),

Z t

0

H(q(s), u(s, 0), u(s, 1)) ds

◆
, 0 < t < T, y = 0, 1.

We assume that f(0) = 0, H(0) = 0, and b(0) = 0. Again these are not restrictions
since one may consider a�ne shifts of the state spaces. Other assumptions, for
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example on the initial and boundary data, will be stated later. According to our
hypotheses, we include the case of non-symmetric fluxes with symmetrizers. The
diagonalizability assumption though would give us a new diagonal system through
a change of variables, and thus the flux matrix will be trivially symmetric. However,
the cost of this diagonalization would be that the boundary matrices will be time-
dependent. For this reason, we do not diagonalize the system.

One possible generalization of (5.0.1) is to consider nonlinear boundary conditions,
e.g. B(u, h) = 0 where B satisfies the condition B(0) = 0. To deal with the nonlinear-
ity, one first studies the linearized problem. The linearized boundary condition takes
the form B̃(v, g)u = g̃ for which the boundary matrix B̃ depends on t through the
frozen coe�cients v and g. We shall not pursue this generalization and consider the
simpler case where the boundary matrices are constant. Regarding time-dependent
boundary matrices we refer to [9, Chapter 9]. We believe that the method used in
this thesis will work on these types of problems.

Systems of the form (5.0.1) occur in multiscale blood flow models [14, 27, 65, 66,
67, 68] and in valveless pumping [13, 60, 63]. Our well-posedness results are based
on Sobolev spaces. The motivation for studying the well-posedness in Sobolev spaces,
rather than spaces of continuous functions [27, 47, 48], lies in the later study of
global-in-time existence of smooth solutions for which energy estimates formulated
in Sobolev norms are used. The presence of a damping term, the bounded space
domain and the ODE boundary conditions will not cause much technical di�culty,
we will address methods on how to treat them. Broadly speaking, we will follow the
frameworks in Benzoni-Gavage and Serre [9] and Métivier [55] to prove our result.

However, there will be di↵erences specifically when it comes to the full nonlinear
PDE-ODE system where an appropriate linearization and a modified a priori esti-
mate will be used. Recent results regarding the mixing of conservation laws and
balance laws with ODEs on the boundary, but with another notion of solutions and
on a semi-infite interval, are given in [11] and [12], respectively.

As in the linear case, to prove the existence of solutions in Sobolev spaces, the
initial and boundary data should be compatible. These compatibility conditions are
given in Section 5.1. Using the well-posedness theory in Section 4.19 and a Picard
iteration scheme, the local-in-time well posedness of (5.0.1) is discussed in Section
5.2. In the event that the local solution cannot be continued for all times, a blow-up
criterion will be proved in Section 5.3. To close this chapter, some examples that
have the form (5.0.1) will be given in Section 5.4.

5.1 compatibility conditions

The existence of smooth solutions requires, and also implies, compatibility conditions
between the initial data and the boundary data. These are additional constraints
for the initial and boundary data. The compatibility conditions are obtained by
(a) formally di↵erentiating the PDE with respect to time, (b) evaluate the time
derivatives at t = 0 and use the initial data to compute the spatial derivatives and
(c) di↵erentiate the boundary conditions, use the information in (b) and evaluate
them along the boundary. The result in (c) will be the compatibility conditions.
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5.1 compatibility conditions

Suppose that u and h are Cp-functions satisfying @tu+A(u)@xu = f(u) in (t, x) 2
(0, T )⇥ ⌦ and ḣ = H(h, q, u|@⌦) in t 2 (0, T ), respectively. Then by Leibniz’s rule

@itu = �
i�1X

l=0

✓
i� 1

l

◆
@lt(A(u))@x@

i�1�l
t u+ @i�1

t f(u), i = 1, . . . , p.

The terms @lt(A(u)) and @i�1

t f(u) can be expanded with the aid of Faá di Bruno’s
formula. If u is continuous up to the boundary then

Byu(0, y) = by(py(0), h(0)), y = 0, 1.

In general, if u is Ci up to the boundary then we must have

By@
i
tu(0, y) = Di

tby(py(t), h(t))|t=0

, y = 0, 1.

We can use Faá di Bruno’s formula to expand the right hand term and then use the
ODE satisfied by h. Thus, we are led to the following definitions. Given a su�ciently
smooth function u

0

: ⌦! Rn with values in U , recursively define ui : ⌦! Rn as

u
1

= �A(u
0

)@xu0 + f(u
0

)

ui = �
i�1X

l=0

lX

k=1

X

l1+···+lk=l

✓
i� 1

l

◆
cl1,...,lk(d

kA)(u
0

)[ul1 , . . . , ulk ]@xui�1�l (5.1.1)

�A(u
0

)@xui�1

+
i�1X

k=1

X

l1+···+lk=i�1

cl1,...,lk(d
kf)(u

0

)[ul1 , . . . , ulk ],

for i = 2, . . . , p

where dkF denotes the kth order di↵erential of a smooth function F viewed as
multilinear form. Here, cl1,...,lk are nonnegative coe�cients which depend only on i.
Given h

0

2 H define ⌘ = (h
0

, q(0), u
0

(0), u
0

(1)),

h
1

= H(⌘) (5.1.2)

hi =
i�1X

k=1

X

l1+···+lk=i�1

cl1,...,lk(d
kH)(⌘)[zl1 , . . . , zlk ], for i = 2, . . . , p� 1.

where zj = (hj , q(j)(0), uj(0), uj(1))> and the uj are defined according to (5.1.1). For
y = 0, 1, define

Cy,0 = by(py(0), h0)

Cy,i =
iX

k=1

X

l1+···+lk=i

cl1,...,lk(d
mby)(py(0), h0)[wl1,y, . . . , wlk,y]

where wk,y = (p(k)y (0), hk)>. With these notations we are now in position to state
the necessary compatibility conditions.

(CCm) Let m � 1 be an integer and T > 0. The data

(u
0

, h
0

, p, q) 2 Hm(0, 1)⇥H⇥Hm(0, T )⇥Hm(0, T )

are said to be compatible up to order m � 1 if Byui(y) = Cy,i for all i =
0, . . . ,m� 1 and y = 0, 1.

149



local existence and blow-up criterion for nonlinear pde-ode systems

We are going to state the regularity properties of the functions ui, i = 1, . . . ,m,
defined in (5.1.1) for a given u

0

2 Hm(⌦).

Lemma 5.1.1. Let s � 1 be an integer. Let u
0

2 Hs(⌦) such that the range of u
0

lies
in a compact subset K of U and u

1

, . . . , us be defined as in (5.1.1). Then ui 2 Hs�i(⌦)
for all 1  i  s. Moreover, there exist continuous functions Ci : [0,1) ! [0,1)
such that

kuikHs�i
(⌦)

 Ci(ku0kHs
(⌦)

), 1  i  s. (5.1.3)

Proof. We follow the proof in [9, pp. 322–323] and proceed by strong induction on
i. In this proof, all Sobolev spaces are defined in ⌦ = (0, 1). By redefining A and f
in (5.0.1) outside a neighborhood of K one can assume without loss of generality that
A and f are C1 on Rn. From the assumption that f(0) = 0 we have f(u

0

) 2 Hs by
Proposition 4.14.3. We rewrite

A(u
0

)@xu0 = (A(u
0

)�A(0))@xu0 +A(0)@xu0

Propostion 4.14.3 can now be applied so that A(u
0

)�A(0) 2 Hs, since ⌦ is bounded.
Thus (A(u

0

)�A(0))@xu0 2 Hs�1 by Proposition 4.14.1. Moreover we have

kA(u
0

)@xu0kHs�1  CkA(u
0

)�A(0)kHsk@xu0kHs�1 + |A(0)|k@xu0kHs�1

 C(ku
0

kL1)ku
0

kHsk@xu0kHs�1 + |A(0)|k@xu0kHs�1

 C(ku
0

kHs)

by the Sobolev embedding Hs ,! L1. The Hs�1-norm of f(u
0

) can be estimated
similarly. Thus u

1

2 Hs�1 and (4.14.1) holds for i = 1.
Now suppose that for 1  i  s we have uk 2 Hs�k and kukkHs�k  Ck(ku0kHs)

holds for k = 0, 1, . . . , i � 1. We show that ui 2 Hs�i and (5.1.3) holds. A similar
argument as above yields A(u

0

)@xui�1

2 Hs�i. The triple sum in ui contains terms
of the form

%(u
0

)ul1,j1 · · ·ulk,jk@xui�1�l,� (5.1.4)

where l
1

+ · · · + lk = l for k = 1, . . . , l, with l = 1, . . . , i � 1 and for some % 2 C1.
Here ul1,j1 denotes the j1th component of the vector ul1 . By the induction hypothesis
ul1,j1 2 Hs�l1 , . . . , ulk,jk 2 Hs�lk , @xui�1�l,� 2 Hs�(i�1�l) ⇢ Hs�i+l and %(u

0

) 2 Hs.
Since

min(s, s� l
1

, . . . , s� lk, s� i+ l) � min(s� l, s� i+ 1) = s� i+ 1.

and since ks � s > 1/2

s+ (s� l
1

) + · · ·+ (s� lk) + (s� i+ l) = (k + 2)s� i > s� i+ 1/2

it follows from the remark succeeding Proposition 4.14.1 that (5.1.4) lies in Hs�i.
Similarly, the double sum in ui contains terms of the from

#(u
0

)ul1,j1 · · ·ulk,jk (5.1.5)

where l
1

+ · · ·+ lk = i� 1 for some # 2 C1. Because

min(s, s� l
1

, . . . , s� lk) � s� (i� 1) = s� i+ 1

and
s+ (s� l

1

) + · · ·+ (s� lk) = (k + 1)s� (i� 1) > s� i+ 1/2

the terms of the form (5.1.5) belong to Hs�i. Collecting all our observations, we
obtain that ui 2 Hs�i. The estimate kuikHs�i

(⌦)

 Ci(ku0kHs
(⌦)

) can be shown
from the definition of ui, the induction hypothesis, and (4.14.1).
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5.2 local-in-time existence

Now we are ready to state and prove one of the main results of this chapter.

Theorem 5.2.1 (Local Existence). Let m � 3, T
0

> 0 and (u
0

, h
0

, p, q) 2 Hm(⌦)⇥
H ⇥ Hm(0, T

0

) ⇥ Hm(0, T
0

). Assume that the range of u
0

lies in a compact and
convex set K

0

⇢ K
1

⇢ U , h
0

2 G
0

⇢ G
1

⇢ H where K
1

and G
1

are also compact
and convex sets containing neighborhoods of K

0

and G
0

, respectively, and moreover
ku

0

kHm
(⌦)

 M . Suppose that (FS), (D), (UKL) and (CCm) hold. Then there
exists T 2 (0, T

0

) depending only on (K
1

,G
1

,M) such that the nonlinear system
(5.0.1) has a unique solution (u, h) 2 CHm([0, T ] ⇥ ⌦) ⇥ Hm(0, T ). Furthermore,
u|@⌦ 2 Hm(0, T ) and consequently h 2 Hm+1(0, T ).

Proof. The proof is a Picard iteration scheme using the linear well-posedness theory
of Chapter 4.

Step 1. Existence of initial functions for the iteration scheme. In this step we
find v 2 CHm([0, T

0

] ⇥ ⌦) such that @jt v(0) = uj for all 0  j  m � 1. The
following construction is inspired by [20, 71]. Let g 2 Hm(0, T

0

) be such that
@jt g(0) = hj for all 0  j  m � 1 where hj are the constants defined from (5.1.2)
and kgkHm

(0,T0)
 C

Pm�1

j=0

|hj |. This is possible by the trace theorem. Consider the
initial-value boundary value problem

vt +A(u
0

)vx = f(u
0

) +G, Bv|@⌦ = b(p, g), v(0) = u
0

(5.2.1)

for some G 2 Hm((0, T
0

) ⇥ ⌦) to be specified below. The local existence result
Theorem 4.19.5 for linear systems shows that the system (5.2.1) has a unique solution
v 2 CHm([0, T

0

] ⇥ ⌦) with v|@⌦ 2 Hm(0, T
0

) provided that the data (u
0

, f(u
0

) +
G, b(p, g)) is compatible up to order m � 1 for the linear system (5.2.1). To ensure
this, let vj for 0  j  m � 1 be @jt v|t=0

that is obtained from (5.2.1) by formal

di↵erentiation. Similarly, let ṽj be @jt ṽ|t=0

that is obtained from

ṽt +A(u
0

)ṽx = f(u
0

), ṽ(0) = u
0

(5.2.2)

by di↵erentiating formally. The equation vj = uj holds if

@jtG(0) = uj � ṽj 2 Hm�j(⌦) ⇢ Hm�1�j+1/2(⌦), 0  j  m� 1. (5.2.3)

By the trace theorem there exists G 2 Hm((0, T
0

)⇥ ⌦) such that (5.2.3) hold and

kGkHm
((0,T0)⇥⌦)

 C(ku
0

kHm
(⌦)

) (5.2.4)

for some continuous function C : [0,1) ! [0,1). This estimate follows from the
trace theorem and a result similar to Lemma 5.1.1 applied to the PDEs (5.2.1) and
(5.2.2). Since Byvj(0, y) = Byuj(0, y) = Cy,j for y = 0, 1 and 0  j  m � 1,
due to the compatibility condition for the nonlinear system, it follows that the data
(u

0

, f(u
0

) +G, b(p, g)) is compatible up to order m� 1 for the linear system (5.2.1).
Step 2. An invariant set. Let R,K, T > 0. Define V m

T,K,R to be a subset of
CHm([0, T ]⇥ ⌦)⇥Hm(0, T ) such that (v, g) 2 V m

T,K,R if and only if

(V1) Compatibility: @jt v|t=0

= uj for all 0  j  m � 1 and @jt g(0) = hj for all
0  j  m� 1 where uj and hj are defined by (5.1.1) and (5.1.2)

(V2) Range condition: ran(v, g) ⇢ K
1

⇥ G
1
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(V3) W 1,1-bound: kvkW 1,1
((0,T )⇥⌦)

+ kgkW 1,1
(0,T )

 K

(V4) Hm-bound: kvkHm
((0,T )⇥⌦)

+ kv|@⌦kHm
(0,T )

+ kgkHm
(0,T )

 R.

Consider the function (v, g) 2 CHm([0, T
0

] ⇥ ⌦) ⇥ Hm(0, T
0

) constructed in the
previous step. By construction of g we already know that kgkHm

(0,T0)
 C(G

1

,M).
According to Remark 4.19.7

kvkCHm
([0,T0]⇥⌦)

+ kv|@⌦kHm
(0,T0)

 C

 
kf(u

0

) +GkHm
((0,T0)⇥⌦)

+ kb(p, g)kHm
(0,T0)

+
mX

i=0

k@itv|t=0

kHm�i
(⌦)

!

where C depends on the range of u
0

, which lies in K
0

, and on ku
0

kHm
((0,T0)⇥⌦)


C(T

0

,M). From this, it can be seen that

kvkHm
((0,T0)⇥⌦)

+ kv|@⌦kHm
(0,T0)

 C(K
1

,G
1

,M) =: R
1

where we removed the explicit dependence of C on T
0

since it is fixed from the
beginning. By Theorem 4.17.5 and the PDE (5.2.1)

kvkW 1,1
((0,T0)⇥⌦)

 ku
0

kL1
(⌦)

+ kf(u
0

) +G(0, ·)�A(u
0

)@xu0kL1
(⌦)

+
p
T
0

R
1

.

Applying the Sobolev embedding theorem and (5.2.4) we have kvkW 1,1
((0,T0)⇥⌦)


C(R

1

,M). One can do the same procedure for the W 1,1-norm of g. Hence

kvkW 1,1
((0,T0)⇥⌦)

+ kgkW 1,1
(0,T0)

 C(K
1

,G
1

,M) =: K
1

.

Finally, for the range condition, Theorem 4.17.5 and v|t=0

= u
0

imply that kv �
u
0

kL1
((0,T )⇥⌦)

 TR
1

. Therefore there exists T
1

= T
1

(R
1

) > 0 such that the range
of v lies in K

1

for all T 2 (0, T
1

]. Using the same argument, it can be shown
that the range of g also lies in G

1

for all T 2 (0, T
1

] by reducing T
1

if necessary.
Therefore V m

T,K,R is nonempty for all K � K
1

, R � R
1

and for T 2 (0, T
1

] for some
T
1

= T
1

(K
1

,G
1

,M) > 0.
We will show that there exist K > K

1

, R = R(K) > R
1

and T = T (R) > 0 such
that given (v, g) 2 V m

T,K,R the solution of the system

8
>>>>>><

>>>>>>:

ut +A(v)ux = f(v), t > 0, 0 < x < 1,

Bu|@⌦ = b(p, h), t > 0,

h0 = H(g, q, v|@⌦), t > 0,

u|t=0

= u
0

, 0 < x < 1,

h(0) = h
0

(5.2.5)

satisfies (u, h) 2 V m
T,K,R. Let us verify the regularity of (u, h). Note that @jt v 2

CHm�j([0, T ] ⇥ ⌦) it follows that @jt v 2 Cm�j�1([0, T ] ⇥ ⌦) ⇢ C([0, T ] ⇥ [0, 1]) for
all 0  j  m� 1. Therefore

@jt (v|@⌦)|t=0

= (@jt v)|{t=0}⇥@⌦ = (@jt v|t=0

)|@⌦ = uj|@⌦, 0  j  m� 1.

Together with (V1) it can be shown that the compatibility conditions are satisfied
by (u, h). Since

h(t) = h
0

+

Z t

0

H(g(s), q(s), v|@⌦(s)) ds
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5.2 local-in-time existence

we have h 2 Hm+1(0, T ) and therefore u 2 CHm([0, T ] ⇥ ⌦) with u|@⌦ 2 Hm(0, T )
according to Theorem 4.19.5 . Furthermore, u and h satisfies (V1) since v and g
satisfy the same property. Thus by Theorem 4.17.5

kukW 1,1
([0,T ]⇥⌦)

+ khkW 1,1
(0,T )

 C(K
1

,M) +R
p
T .

Take K = 2max(K
1

, C(K
1

,M)). Letting T = T (R,K
1

,G
1

,M) > 0 small enough,
condition (V3) is satisfied by (u, h). A similar argument using the same Theorem
4.17.5 implies that (u, h) satisfies (V2) by reducing T if necessary. It remains to
prove that (u, h) also satisfies (V4). Indeed, as in [55], one can prove the following
additional a priori estimate

kukHm
([0,T ]⇥⌦)

+ ku|@⌦kHm
(0,T )

+ khkHm
(0,T )

 R (5.2.6)

for some R = R(K) > R
1

. The proof of this estimate is straightforward but lengthy.
For this reason we postpone its proof. In summary, V m

T,K,R is invariant under the
map (v, g) 7! (u, h) where (u, h) solves (5.2.5) for some T,K,R > 0.
Step 3. Existence and Higher regularity. Let V = V m

T,K,R where the parameters

T,K, and R are those given in the previous step. Let (u0, h0) 2 V be given and for
each nonnegative integer k, define (uk+1, hk+1) recursively to be the solution of

8
>>>>>><

>>>>>>:

uk+1

t +A(uk)uk+1

x = f(uk), t > 0, 0 < x < 1,

Buk+1 = b(p, hk+1), t > 0,

(hk+1)0 = H(hk, q, uk|@⌦), t > 0,

uk+1

|t=0

= u
0

, 0 < x < 1,

hk+1(0) = h
0

(5.2.7)

Note that the boundary condition in (5.2.7) depends on hk+1 which is possible
because hk+1 does not depend on uk+1 and at the same time couples the PDE
to the ODE. Then according to Step 2, (uk+1, hk+1) 2 V for all k = 1, 2, . . .
Thus (uk, (uk)|@⌦, hk) is bounded in Hm((0, T ) ⇥ ⌦) ⇥ Hm(0, T ) ⇥ Hm(0, T ) and
one can extract a weakly convergent subsequence. By compact embedding and
by extracting an appropriate subsequence (uk, (uk)|@⌦, hk) converges in L2((0, T ) ⇥
⌦) ⇥ L2(0, T ) ⇥ L2(0, T ) and let (u, ũ, h) be the limit. The limit is necessarily
in Hm((0, T ) ⇥ ⌦) ⇥ Hm(0, T ) ⇥ Hm(0, T ). Since (uk, (uk)|@⌦, hk) is bounded in
Hm((0, T )⇥⌦)⇥Hm(0, T )⇥Hm(0, T ), by interpolation theory for Sobolev spaces,
(uk, (uk)|@⌦, hk) ! (u, ũ, h) in Hs((0, T )⇥⌦)⇥Hs(0, T )⇥Hs(0, T ) for all s 2 [0,m).

The continuity of the trace operator implies that (uk)|@⌦ ! u|@⌦ in L2(0, T ) and
therefore u|@⌦ = ũ by uniqueness of limits in L2(0, T ). By passing to the L2-limit in

the system satisfied by (uk, hk), we can see that the pair (u, h) satisfies the nonlinear
system (5.0.1). Note that @jt u|t=0

= uj 2 Hm�j(⌦) for 0  j  m� 1 from Lemma
5.1.1. Finally, Theorem 4.19.5 implies the additional regularity u 2 CHm([0, T ]⇥⌦).
Step 4. Uniqueness. Let (u

1

, h
1

) and (u
2

, h
2

) be two solutions of the system (5.0.1)
on the time interval [0, T ]. Introducing the variables w = u

1

� u
2

and ⌘ = h
1

� h
2

we have the system
8
>>>>>><

>>>>>>:

Lu1w = f(u
1

)� f(u
2

)� (A(u
1

)�A(u
2

))@xu2, 0 < t < T, 0 < x < 1

Bw|@⌦ = b(p, h
1

)� b(p, h
2

), 0 < t < T,

⌘0 = H(h
1

, q, u
1|@⌦)�H(h

2

, q, u
2|@⌦), 0 < t < T,

w|t=0

= 0, 0 < x < 1,

⌘|t=0

= 0.
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Let K ⇥ G ⇢ U ⇥H be a compact set both containing the ranges of (u
1

, h
1

) and
(u

2

, h
2

) and let K > 0 be such that the W 1,1-norms of (u
1

, h
1

) and (u
2

, h
2

) are
bounded above by K. According to (4.19.11), there exists C = C(K,K) > 0 such
that for all 0 < ⌧  T

kwk2CL2
([0,⌧ ]⇥⌦)

+ kw|@⌦k2L2
(0,⌧)  C⌧kf(u

1

)� f(u
2

)k2L2
((0,⌧)⇥⌦)

(5.2.8)

+ C⌧k(A(u
1

)�A(u
2

))@xu2k2L2
((0,⌧)⇥⌦)

+ Ckb(p, h
2

)� b(p, h
1

)k2L2
(0,⌧)

By the mean value theorem

kb(p, h
1

)� b(p, h
2

)k2L2
(0,⌧)  Ck⌘k2L2

(0,⌧). (5.2.9)

A similar argument proves that

kf(u
1

)� f(u
2

)k2L2
((0,⌧)⇥⌦)

+ k(A(u
1

)�A(u
2

))@xu2k2L2
((0,⌧)⇥⌦)

 Ckwk2L2
((0,⌧)⇥⌦)

 C⌧kwk2CL2
([0,⌧ ]⇥⌦)

. (5.2.10)

The di↵erential equation for ⌘ gives us the following pointwise estimate

|⌘(t)|2  C⌧(k⌘k2L2
(0,⌧) + kw|@⌦k2L2

(0,⌧)), t 2 [0, ⌧ ].

Integrating the last inequality and choosing ⌧ = ⌧(K,K) > 0 small enough

k⌘k2L2
(0,⌧) 

C⌧2

1� C⌧2
kw|@⌦k2L2

(0,⌧). (5.2.11)

From (5.2.8)�(5.2.9) and reducing ⌧ > 0 if necessary it can be seen that w = 0 on
[0, ⌧ ] and from (5.2.11) ⌘ = 0 as well on [0, ⌧ ]. Repeating the process on intervals of
the form [k⌧, (k + 1)⌧ ] for positive integers k shows that w = 0 and ⌘ = 0 on [0, T ]
and therefore the uniqueness of solutions.

Now we prove the estimate (5.2.6) used in the third step of the proof of the
previous theorem. The proof of this estimate is similar to the proof of Lemma
4.19.6, however, the di↵erence is that the source terms appearing on the PDE and
the boundary condition now depend on the frozen coe�cients v and g. From the
proof of Lemma 4.19.6 we already have the estimate

1p
T
kukL2

(⌦;Hm
(0,T ))

+ ku|@⌦kHm
(0,T )

 C

0

@
mX

j=1

k@jt u|t=0

k2L2
(⌦)

+
p
T

mX

j=1

kfjkL2
((0,T )⇥⌦)

+ kb(p, h)kHm
(0,T )

1

A (5.2.12)

for all T 2 (0, T
0

], where fj = A(v)@jt (A(v)�1f(v)) � A(v)[@jt , A(v)
�1Lv]u. For the

rest of the proof C will denote a positive constant depending only on T
0

,K,K
1

,G
1

,M
kpkHm

(0,T0)
, kqkHm

(0,T0)
, and is independent on R and T . The commutator has been

estimated uniformly in T in the proof of Lemma 4.19.6. Let us consider the first
term of fj . Note that it is a nonlinear function of order at most m and thus by
Theorem 4.17.4 we have

kA(v)@jt (A(v)�1f(v))kL2
((0,T )⇥⌦)

 C(kvkHm
((0,T )⇥⌦)

+ 1)
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5.2 local-in-time existence

Because (u, h) 2 V m
T,K,R we have @jt u|t=0

= uj for all 0  j  m � 1. Using this in
(5.2.12) and recalling Lemma 5.1.1 we have

1p
T
kukL2

(⌦;Hm
(0,T ))

+ ku|@⌦kHm
(0,T )

(5.2.13)

 C(1 +
p
TkvkHm

((0,T )⇥⌦)

+
p
T (1 +R)kukHm

((0,T )⇥⌦)

+ kb(p, h)kHm
(0,T )

)

where R is a positive constant to be chosen below. Next we will estimate the bound-
ary terms on the right hand side of (5.2.12). By Theorem 4.17.4 once more

kb(p, h)kHm
(0,T )

 C(Km,T (p, h))(kpkHm
(0,T )

+ khkHm
(0,T )

+ 1).

The fact that (u, h) 2 V implies that h(j)(0) = hj for all 0  j  m � 1. The
di↵erential equation h0 = H(q, g, v|@⌦) for h gives us the estimate

khkHm
(0,T )

 C(Km�1,T (q, g, v|@⌦))(kqkHm�1
(0,T )

+ kgkHm�1
(0,T )

+ 1)

With these, together with Theorem 4.17.6 we have

kb(p, h)kHm
(0,T )

 C(TkgkHm
(0,T )

+ 1). (5.2.14)

Using (5.2.14) in (5.2.13) we have

1p
T
kukL2

(⌦;Hm
(0,T ))

+ ku|@⌦kHm
(0,T )

(5.2.15)

 C(1 +
p
TkvkHm

((0,T )⇥⌦)

+
p
T (1 +R)kukHm

((0,T )⇥⌦)

+ TkgkHm
(0,T )

).

It remains to estimate the mixed derivatives. As usual we proceed by an induction
argument. Suppose that k@lx@

j
t ukL2

((0,T )⇥⌦)

 N(u) for all l = 0, 1 . . . , k � 1 and j
such that l + j  m, where N(u) is the right hand side of (5.2.15). Let k and j be
integers such that k + j  m. The PDE implies that

@kx@
j
t u = @k�1

x @jt (A(v)�1f(v))� @k�1

x @jt (A(v)�1@tu).

The first term on the right hand side is a nonlinear function of v of order at most
m� 1, and therefore using Theorem 4.17.4, Theorem 4.17.6 and (V1) we have

k@k�1

x @jt (A(v)�1f(v))kL2
((0,T )⇥⌦)

 C(TkvkHm
((0,T )⇥⌦)

+ 1).

We can expand the second term using Leibniz’s rule and estimate each term in the
sum. Let 0  l  k � 1 and 0  j  i. If l+ i  m� 3 then Theorem 4.17.4 implies

k@k�1�l
x @j�i

t (A(v)�1)@lx@
i+1

t ukL2
((0,T )⇥⌦)

 k@k�1�l
x @j�i

t (A(v)�1)kL2
((0,T )⇥⌦)

k@lx@i+1

t ukL1
((0,T )⇥⌦)

 C(1 + kvkHm�1
((0,T )⇥⌦)

)kukWm�2
((0,T )⇥⌦)

.

According to Theorem 4.17.6 we have

kukWm�2
((0,T )⇥⌦)


m�2X

k=0

k@kt u|t=0

kWm�2�k
(⌦)

+ C
p
TkukHm

((0,T )⇥⌦)

 C
m�2X

k=0

k@kt u|t=0

kHm�k�1
(⌦)

+ C
p
TkukHm

((0,T )⇥⌦)
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local existence and blow-up criterion for nonlinear pde-ode systems

Thus k@k�1�l
x @j�i

t (A(v)�1)@lx@
i+1

t ukL2
((0,T )⇥⌦)

 N(u). Suppose that l + i = m �
2,m� 1 then k� 1� l+ j� i = 1, 0. Thus we can have a standard L1�L2 estimate
to obtain

k@k�1�l
x @j�i

t (A(v)�1)@lx@
i+1

t ukL2
((0,T )⇥⌦)

 Ck@lx@i+1

t ukL2
((0,T )⇥⌦)

 N(u)

where the last inequality is due to the induction hypothesis. This completes the
proof of the induction step. Therefore we have

✓
1p
T

� C
p
T (1 +R)

◆
kukHm

((0,T )⇥⌦)

+ ku|@⌦kHm
(0,T )

 C(1 +
p
TkvkHm

((0,T )⇥⌦)

+
p
TkgkHm

(0,T )

)  C(1 +
p
TR).

Choosing R = max(5C,R
1

) where C is the constant in the last inequality and choos-
ing T = T (R) > 0 small enough so that 1p

T
�C

p
T (1+R) > 1

2

and
p
TR < 1 finally

proves (5.2.6).

5.3 blow-up criterion

We prove the following standard blow-up criterion for first order quasilinear PDEs.
The idea of the proof is the following. Boundedness in W 1,1 of the local solution
implies boundedness in Hm, which can be further improved to show boundedness in
CHm. If this is known, then a standard argument shows that the solution can be
extended.

Theorem 5.3.1 (Blow-up Criterion in Finite Time). Let (u, h) 2 CHm([0, T ]⇥⌦)⇥
Hm(0, T ) be a solution of (5.0.1) having a trace u|@⌦ 2 Hm(0, T ), where m � 3 is
an integer, and T ⇤ be the maximal time of existence. If T ⇤ < 1 then the range of
(u, h) on [0, T ] ⇥ [0, 1] leaves every compact subset of U ⇥ H as T ! T ⇤, i.e. for
every compact set K ⇥ G in U ⇥H there exists ✏ > 0 and (t, x) 2 (0, T ⇤ � ✏]⇥ [0, 1]
such that (u(t, x), h(t)) /2 K ⇥ G, or

lim sup
t"T ⇤

k@xu(t)kL1
[0,1] = 1.

Proof. Suppose that the range of (u, h) on [0, T ]⇥⌦ lies in a compact subset K
0

⇥G
0

of U ⇥ H and kukW 1,1
([0,T ]⇥[0,1])  K

0

for some constant K
0

> 0 and (u, h) 2
CHm([0, T ]⇥ ⌦)⇥Hm(0, T ) for all T 2 (0, T ⇤). We show that there exists a ⌧ > 0
such that the solution can be extended to a solution (u, h) 2 CHm([0, T ⇤+ ⌧ ]⇥⌦)⇥
Hm(0, T ⇤ + ⌧) satisfying u|@⌦ 2 Hm(0, T ⇤ + ⌧).

Step 1. Uniform boundedness in CHm ⇥Hm. The following estimates are again
in the same spirit as before, but now, the frozen coe�cients are the solutions of the
PDE. For completeness we include their proof. According to (4.13.17), we have for
all u 2 H1((0, T )⇥ ⌦) and for all � � �

0

p
�kukL2

((0,T )⇥⌦)

+ ku|@⌦kL2
(0,T )

 C

✓
1
p
�
kLuukL2
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+ kBu|@⌦kL2
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+ ku|t=0

kL2
(⌦)

◆
.
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for some constants C > 0 and �
0

� 1 depending only on (K
0

,G
0

,K
0

). Applying this
estimate to @jt u, for j = 0, 1, . . . , j where k = 0, 1, . . . ,m we have

p
�kukL2

(⌦;Hk
(0,T ))

+ ku|@⌦kHk
(0,T )

 C
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@ 1
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�

kX

j=0

kfjkL2
((0,T )⇥⌦)

+ kb(p, h)kHk
(0,T )

+ 1

1

A

where fj = A(u)@jt (A(u)�1f(u))�A(u)[@jt , A(u)
�1Lu]u. For j � 1, fj is a nonlinear

function of @tu of order at most j � 1. Thus, using Theorem 4.17.4 we have

kfjkL2
((0,T )⇥⌦)

 C(k@tukHj�1
((0,T )⇥⌦)

+ 1)  C(kukHj
((0,T )⇥⌦)

+ 1).

The case of f
0

= f(u) can be done merely by the mean-value theorem. On the other
hand, by a similar argument we also have kb(p, h)kHk

(0,T )

 C(khkHk
(0,T )

+ 1). The
di↵erential equation for h gives us khkL2

(0,T )

 C and khkHk
(0,T )

 C(khkHk�1
(0,T )

+
ku|@⌦kHk�1

(0,T )

+ 1) for 1  k  m. Combining all of these in a recursive manner,
we obtain

p
�kukL2

(⌦;Hm
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+ ku|@⌦kHm
(0,T )

+ khkHm
(0,T )

 C

✓
1
p
�
kukHm

((0,T )⇥⌦)

+ 1

◆
.

From the PDE we note that @xu = A(u)�1f(u) � A(u)�1@tu. Therefore @jx@kt u can
be written in terms of derivatives of u with respect to t only, and is a nonlinear
function of u of order at most k + j. Fixing x 2 ⌦, we apply Theorem 4.17.4 to the
function u(·, x) 2 Hm(0, T ) to obtain

k@jx@kt u(·, x)kL2
(0,T )

 C(ku(·, x)kHm
(0,T )

+ 1).

Integrating over the bounded domain ⌦ yields

k@jx@kt ukL2
((0,T )⇥⌦)

 C(kukL2
(⌦;Hm

(0,T ))

+ 1).

Combining this with our estimates above and choosing � large enough we have

kukHm
((0,T )⇥⌦)

+ khkHm
(0,T )

 C, for all 0 < T < T ⇤. (5.3.1)

for some constant C > 0 independent of T 2 (0, T ⇤).
Let ' 2 D(R) be a cut-o↵ function such that '(t) = 0 if t  T ⇤/4 and '(t) = 1

if t � T ⇤/2. Multiplying the system (5.0.1) by this cut-o↵ function we have the new
homogeneous system for w = 'u and g = 'h

8
>>>>>><

>>>>>>:

wt +A(u)wx = 'f(u) + '̇u, 0 < t < T, 0 < x < 1,

Bw|@⌦ = 'b(p, h), 0 < t < T,

g0 = 'H(h, q, u|@⌦) + '̇h, 0 < t < T,

w|t=0

= 0, 0 < x < 1,

g|t=0

= 0.

(5.3.2)

Applying the energy estimates for the initial boundary value problem with homoge-
neous data (4.19.2) together with the previous result (5.3.1) shows that there exists
an M > 0 such that

kukCHm
([0,T ]⇥⌦)

+ khkHm
(0,T )

 M, for all 0 < T < T ⇤.
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local existence and blow-up criterion for nonlinear pde-ode systems

Step 2. Extension. According to the previous step there exist an M > 0 and a
sequence (tn)n ⇢ (0, T ) such that tn ! T ⇤ and ku(tn)kHm + |h(tn)|  M for all n.
Consider the initial boundary value problem

8
>>>>>><

>>>>>>:

vt +A(v)vx = f(v), t > 0, 0 < x < 1,

Bv|@⌦ = b(p, g), t > 0,

g0 = H(g, q, v|@⌦), t > 0,

v|t=0

= u(tn), 0 < x < 1,

g|t=0

= h(tn).

(5.3.3)

The local existence result Theorem 5.2.1 implies that the exists ⌧ > 0, depending
only on M and in some neighborhoods of K

0

and G
0

but independent of n, such that
(5.3.3) has a unique solution on [0, ⌧ ]. Choose n large enough so that tn + ⌧ > T ⇤.
Then the functions w and ⌘ defined by

(w, ⌘)(t) =

(
(u, h)(t), 0  t  tn

(v, g)(t� tn), tn  t  tn + ⌧,

lies in CHm([0, tn + ⌧ ]⇥ ⌦)⇥Hm(0, tn + ⌧) since (u, h) and (v, g) must coincide in
[tn, (tn + T ⇤)/2] by uniqueness. Thus (w, ⌘) satisfies (5.0.1). Therefore the solution
can be extended up to the time tn + ⌧ > T ⇤. This completes the proof of the
theorem.

5.4 examples

In this section we cite some examples that fit in the general system (5.0.1).

5.4.1 Flow in an elastic tube revisited

Consider the following system modelling the velocity v of an incompressible fluid
contained in an elastic tube of length `, cross-section a that is connected to a tank
at each end having cross-section aT and level height h

0

, h`, respectively,
8
>>>>>>>>>>><

>>>>>>>>>>>:

at(t, x) + v(t, x)ax(t, x) + a(t, x)vx(t, x) = 0, 0 < t < T, 0 < x < `,

vt(t, x) +
2ax(t, x)p

a(t, x)
+ v(t, x)vx(t, x) = ��v(t, x), 0 < t < T, 0 < x < `,

aTh0
0

(t) = �a(t, 0)v(t, 0), 0 < t < T,

aTh`(t) = a(t, `)v(t, `), 0 < t < T,

a(t, 0) = a
0

(1 + p
0

(t) + bh
0

(t))2, 0 < t < T,

a(t, `) = a
0

(1 + p`(t) + bh`(t))2, 0 < t < T,

(5.4.1)

see (2.6.5). Here a
0

is the rest cross-sectional area of the tube, b, > 0 are parameters
incorporating the material properties of the tube and � � 0 is a parameter modeling
linear tube friction. The tanks are subjected from above to external forcing pressures
represented by p

0

and p`. Letting u = (u
1

, u
2

) = (a, v), h = (h
1

, h
2

) = (h
0

, h`), and
p = (p

1

, p
2

) = (p
0

, p`) we can transform (5.4.1) into (5.0.1) with

A(u) =

 
u
2

u
1

2u
� 1

2
1

u
2

!
, f(u) =

✓
0

��u

◆
, B

0

= B` = ( 1 0 ),
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b(p, h) =

✓
a
0

(1 + p
1

+ bh
1

)2

a
0

(1 + p
2

+ bh
2

)2

◆
, H(h, u, w) =

 
� 1

aT
u
1

u
2

1

aT
w
1

w
2

!
.

The eigenvalues of the flux matrix A(u) are given by �(u) = u
2

�u
1
4
1

and µ(u) =

u
2

+ u
1
4
1

with corresponding eigenvectors

e�(u) =

 
u
1

�u
1
4
1

!
, eµ(u) =

 
u
1

u
1
4
1

!
,

respectively. Let Ũ = {(u
1

, u
2

) 2 R2 : u
1

> 0, |u
2

| < u
1
4
1

}. It follows that A(w)
has one negative and one positive eigenvalue for every w 2 Ũ . Thus Es(A(w)) =
span{e�(w)} and Eu(A(w)) = span{eµ(w)}. The estimate keµ(w)k  CkB

0

eµ(w)k
is equivalent to

u
1

 �4(C2 � 1)2u4
1

. (5.4.2)

Let Ũ✏ = {w 2 Ũ : dist(w, @Ũ) > ✏} for ✏ > 0. By continuity it can be seen
from (5.4.2) that there exists C✏ > 1 such that keµ(w)k  C✏kB0

eµ(w)k for all
w 2 Ũ✏. By positive homogeneity of the norm it follows that kV k  C✏kB0

V k for all
V 2 Eu(A(w)) and for all w 2 Ũ✏. Similarly, kV k  C✏kB`V k for all V 2 Es(A(w))
for all w 2 Ũ✏. Therefore the uniform Kreiss-Lopatinskĭı condition holds for w 2 Ũ✏.

It remains to verify Friedrichs symmetrizability. It can be easily seen that the
matrix

S(w) =

 
2u

� 3
2

1

0
0 1

!

is a Friedrichs symmetrizer of the system. For R > 0 define U = {w 2 Ũ✏ : kwk <
R}. It is clear that there exists ↵ = ↵(✏, R) > 0 such that S(w) � ↵I

2

for all
w 2 U . Therefore if the the initial data for the system (5.4.1) and the boundary
data p satisfy the conditions of Theorem 5.2.1 then (5.4.1) has a unique solution
(a, v, h

0

, h`) 2 CHm([0, T ]⇥ [0, `])2 ⇥Hm+1(0, T )2 for some T > 0. Moreover, if the
maximal time T ⇤ > 0 of existence is finite then either the range of (a, v, h

0

, h`) leaves
every compact set of U ⇥ R2 or

lim sup
t!T ⇤

(k@xa(t)kL1
[0,`] + k@xv(t)kL1

[0,`]) = 1.

5.4.2 Multiscale blood flow model

Consider the following system [27, 67]

8
<

:

at(t, x) + qx(t, x) = 0,

qt(t, x) +

✓
q(t, x)2

a(t, x)

◆

x

+
1

⇢
a(t, x)px(t, x) = �8⇡⇢⌫

q(t, x)

a(t, x)

(5.4.3)

with 0 < t < T and 0 < x < `. This models the flow rate q of the blood in a vessel
of cross-section a and length `. The pressure p is given by the constitutive law

p =

p
⇡hE

a
0

(1� �2)
(
p
a�p

a
0

). (5.4.4)

All the parameters are positive and they represent various physical quantities de-
picting the properties of the blood and the vessel. Here, a

0

, E, h,� denote the rest
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cross-section, Young’s modulus, thickness and Poisson coe�cient of the vessel wall,
respectively, whereas ⇢ is the blood density and ⌫ is the kinematic blood viscosity.

To have a more realistic description of the cardiovascular system, lumped param-
eter models based on ordinary di↵erential equations were introduced. These ODEs
can be derived by linearizing and integrating the hyperbolic models with respect to
space. Following [27] we have

ẏ
0

(t) = A
0

y
0

(t) + rH0

(t, y
0

(t)) + s
0

(t, y
0

(t)) (5.4.5)

ẏ`(t) = A`y`(t) + rH`(t, y`(t)) + s`(t, y`(t)) (5.4.6)

where y
0

(t), y`(t) 2 Rm, A
0

, A` are m ⇥ m matrices and rH0

, rH`, s0, s` are source
terms. The coupling of the hyperbolic PDE (5.4.3) and the ODEs (5.4.5) and (5.4.6)
is done by imposing the pressure at the boundaries to be equal to a specific entry of
the ODE, i.e.,

p(t, 0) = y
0i(t), p(t, `) = y`j(t) (5.4.7)

for some 1  i, j  m. Writing the system in terms of a and q only by using the con-
stitutive law (5.4.4) it can be shown as in the previous example that (5.4.3)�(5.4.6)
can be written in the form (5.0.1) and satisfies (FS), (D) and (UKL) with appropri-
ate U . Alternatively, one can diagonalize the system as in [27], and thus Friedrichs
symmetrizability is easily checked. The boundary matrices will be transformed, how-
ever, the UKL condition is preserved. This can be verified in the same manner as in
the previous example and for this reason we omit the details.

5.4.3 1-Tank model

Consider a 1-D tank of length ` filled with inviscid incompressible irrotational fluid
which is subjected by a horizontal force. Then using the Saint-Venant equation one
can derive the following system [16]

8
>>>>>><

>>>>>>:

Ht(t, x) + v(t, x)Hx(t, x) +H(t, x)vx(t, x) = 0, 0 < t < T, 0 < x < `,

vt(t, x) + gHx(t, x) + v(t, x)vx(t, x) = �u(t), 0 < t < T, 0 < x < `,

v(t, 0) = v(t, L) = 0, 0 < t < T,

ṡ(t) = u(t), 0 < t < T,

Ḋ(t) = s(t), 0 < t < T,

(5.4.8)

where g is the gravitational force, H is the height of the fluid in the tank, v is the
referential horizontal velocity of water, s is the horizontal velocity of the tank, D is
the horizontal displacement of the tank and u is the horizontal acceleration of the
tank in the absolute referential and is viewed as the control. Note that the PDE
part is not of the same form as the PDE part in (5.0.1), but instead, it is of the form

ut(t, x) +A(u(t, x))ux(t, x) = F (t, x).

The results given in the previous sections extend to the case where there is an extra
source term F on the right hand side of the PDE part.
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6
GLOBAL EXISTENCE AND NONL INEAR

STABIL ITY

We know already from Chapter 5 that the two-tank model (2.6.5) has at least a local-
in-time smooth solution. Can we extend this smooth solution to all positive times?
It is known that in general, quasilinear systems do not have global-in-time solutions
and blow-up in finite time may occur. So at the very least, su�cient conditions
should be given to guarantee that a global smooth solution exists. In the event
that this global solution exists, what can we expect about its long-time behavior?
We have seen that for the linearized version of the system, the solution tends to
the steady state exponentially fast. Can we expect the same result for the original
nonlinear system (2.6.5)? One might expect that this is true for dynamics near the
steady state, i.e., the nonlinear system behaves like the linear system if the data is
close enough to the steady state. With the results of Chapter 5 together with energy
and entropy methods, we will show in the present chapter that as long as a smooth
data is close enough to the steady state, (2.6.5) has a global-in-time solution and
this solution tends to the steady state.

To simplify notation, we rename the parameters in (2.6.5). The system (2.6.5) can
be rewritten as

8
>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>:

At + uAx +Aux = 0, t > 0, 0 < x < `,

ut + 2A� 1
2Ax + uux = ��u, t > 0, 0 < x < `,

ATh0
0

(t) = �A(t, 0)u(t, 0), t > 0,

ATh0`(t) = A(t, `)u(t, `), t > 0,

A(t, 0) = (a
0

+ bh
0

(t))2, t > 0,

A(t, `) = (a` + bh`(t))2, t > 0,

A(0, x) = A0(x), u(0, x) = u0(x), 0 < x < 1,

h
0

(0) = h0
0

, h`(0) = h0`

(6.0.1)

where

2 =
sE

2⇢r
0

p
A

0

, � =
8⇡µ

⇢A
0

, b =
r
0

⇢g
p
A

0

sE
,

a
0

=
p

A
0

⇣
1 +

r
0

pf0
sE

⌘
, a` =

p
A

0

⇣
1 +

r
0

pf`
sE

⌘
,

The main result of this chapter will be stated in Section 6.1. The energy method
is used to prove the existence of global solutions for (6.0.1). In deriving the energy
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global existence and nonlinear stability

estimates we shall make use of entropies. Relative entropies and entropy-entropy
flux pairs relevant to the proof of the main result will be tackled in Section 6.2. The
relative entropy gives an entropy dissipation identity which will be useful in zero
order estimates [33]. The entropy-entropy flux pairs on the other hand are used
in deriving first order and second order estimates, cf. [68]. These estimates will be
proved in Section 6.3. The proof of the global existence using energy estimates will
be provided in Section 6.4. Thanks to the energy estimates, it immediately follows
that the solution tends to the equilibrium in H1⇥H1⇥R2. With respect to the norm
of L2 ⇥ L2 ⇥R2 it will be shown in Section 6.5 that this convergence is exponential.

6.1 statement of the main result

The volume of the fluid inside the tube and the tanks at time t � 0 is given by

V (t) =

Z `

0

A(t, x) dx+ATh0(t) +ATh`(t). (6.1.1)

If (A, u, h
0

, h`) is a smooth solution of (6.0.1) on [0, T ] then V (t) is conserved on
[0, T ], i.e., V (t) = V (0) for all t 2 [0, T ]. This can be seen immediately by taking
the derivative of V and using the first, third and fourth equations in (6.0.1). In this
chapter, by a smooth solution we mean that each state component is at least con-
tinuously di↵erentiable. The equilibrium state of (6.0.1) is given by (Ae, 0, h0e, h`e)
where

Ae = (a
0

+ bh
0e)

2 = (a` + bh`e)
2. (6.1.2)

For a given fixed volume and with the assumption that the pressures pf0 or pf` are
given (not too large), the equilibrium is uniquely determined. Indeed, if V

0

denotes
the fixed volume then we have V

0

= Ae` + ATh0e + ATh`e. The latter equality
together with (6.1.2) provide explicit expressions for Ae, h0e and h`e in terms of V

0

.
In Chapter 5, themth order compatibility condition of the initial data wass defined

and the following local-in-time existence result and blow-up criterion was shown.

Theorem 6.1.1 (Local Existence and Blow-up Criterion). Let (A0, u0, h0
0

, h0` ) 2
Hm(0, `) ⇥Hm(0, `) ⇥ R2 be compatible up to order m � 1 for some integer m � 3.
Suppose that the range of (A0, u0) lies on a compact and convex subset of U :=
{(A, u) 2 (0,1) ⇥ R : |u| < A1/4}. Then there exists T > 0 such that (6.0.1)
has a unique solution (A, u, h

0

, h`) such that A, u 2 \m
k=0

Cm�k([0, T ];Hm(0, `)) and
h
0

, h` 2 Hm+1(0, T ). Furthemore, if the maximal time T ⇤ of existence is finite then
either (A, u, h

0

, h`) leaves every compact set of U ⇥ R2 or

lim
t"T ⇤

(kAx(t)kL1
[0,`] + kux(t)kL1

[0,`]) = +1.

If the maximal time is finite, the first scenario is typical for ODEs while the second
one is called shock formation. For the first one, the state approaches the boundary
of U and as a result the flux matrix will become singular. In the region U , there
is one negative eigenvalue and one positive eigenvalue for the flux matrix and the
flow in this case is subsonic. On the other hand, the shock formation is a typical
behavior for first order quasilinear PDEs where waves are compressed within finite
time and therefore wave profiles can have arbitrary large slope. However, for data
close enough to an equilibrium state and with dissipative terms these will not happen.
This assertion with regard to (6.0.1) is the main result of this chapter.
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6.2 entropy-entropy flux pairs

Theorem 6.1.2 (Global Existence). In the framework of Theorem 6.1.1, there exists
�
0

> 0 such that if E
0

:= kA0 �Aek2H2 + ku0k2H2 + |h0
0

� h
0e|2 + |h0` � h`e|2  �

0

then
there is a unique global solution (A, u, h

0

, h`) of (6.0.1) such that

A, u 2 C([0,1);H2(0, `)) \ C1([0,1);H1(0, `)), h
0

, h` 2 C2[0,1),

and

sup
t�0

(kA(t)�Aek2H2 + ku(t)k2H2 + |h
0

(t)� h
0e|2 + |h`(t)� h`e|2)

+

Z 1

0

kAx(t)k2H1 + ku(t)k2H1 dt  CE
0

for some C > 0.

6.2 entropy-entropy flux pairs

Entropies of the system (6.0.1) can be obtained by solving a wave equation as shown
in the following. For a more general result of a similar model and in the case of
� = 0 we refer to the paper of Lions, Perthame and Tadmor [51].

Proposition 6.2.1. Let ⌘ 2 C2((0,1)⇥R)\C1([0,1)⇥R) satisfy the wave equation

@2⌘

@A2

(A, u) = 2A� 3
2
@2⌘

@u2
(A, u), in (0,1)⇥ R. (6.2.1)

Then any smooth functions A and u satisfying the first two equations in (6.0.1) also
satisfy the entropy dissipation identity

@

@t
⌘(A, u) +

@

@x
q(A, u) = ��u @

@u
⌘(A, u), in (0,1)⇥ R, (6.2.2)

where q 2 C2((0,1)⇥ R) is given by

q(A, u) =

Z u

0

v⌘u(A, v) +A⌘A(A, v) dv +

Z A

0

2a�
1
2 ⌘u(a, 0) da. (6.2.3)

Proof. The regularity of q stated above follows immediately from the regularity of ⌘.
Since u and A satisfy the first two equations in (6.0.1), the PDE (6.2.2) is equivalent
to

ux(qu � u⌘u �A⌘A) +Ax(qA � 2A� 1
2 ⌘u � u⌘A) = 0. (6.2.4)

The first term vanishes due to the construction of q since qu = u⌘u +A⌘A. We show
that the second term also vanishes. Di↵erentiating the latter equality with respect
to A and using (6.2.1) we have

qAu = quA = u⌘uA + ⌘A +A⌘AA = (u⌘A + 2A� 1
2 ⌘u)u. (6.2.5)

Integrating (6.2.5) twice, first with respect to u and then with respect to A, we have

q(A, u) =

Z A

0

u⌘A(a, u) + 2a�
1
2 ⌘u(a, u) da+ F (A) (6.2.6)

for some function F . Taking u = 0 in (6.2.3) and (6.2.6) shows that F ⌘ 0. Thus,
di↵erentiating (6.2.6) with respect to A shows that the second term in (6.2.4) is
identically zero. Hence (6.2.4) is satisfied and so is (6.2.2).
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The function ⌘ is called an entropy and q is the corresponding entropy flux. The
entropy dissipation identity (6.2.2) is commonly called a companion law to the first
two equations in (6.0.1). Let ⌘p = a

1

u+a
2

A+a
3

uA+a
4

where the ai’s are constants.
Notice that the wave equation is invariant under perturbations of the form ⌘p, i.e.,
if ⌘ satisfies (6.2.1) then so does ⌘ + ⌘p.

A common entropy of the above system is

⌘(A, u) =
1

2
Au2 +

4

3
2A

3
2 ,

called the mechanical energy and it is strictly convex in the variables (A,Au) 2
(0,1) ⇥ R. This particular entropy satisfies the boundary conditions ⌘(0, u) = 0
and ⌘A(0, u) =

1

2

u2. Such entropies are called weak entropies [51]. However, for our
purpose we will modify this entropy. We want an entropy ⌘

0

such that ⌘
0

(Ae, 0) = 0
and D⌘

0

(Ae, 0) = (0, 0). This can be done by choosing

⌘
0

(A, u) = ⌘(A, u)� ⌘(Ae, 0)� (D⌘(Ae, 0), (A�Ae, u))

=
1

2
Au2 +

4

3
2(A

3
2 �A

3
2
e )� 22A

1
2
e (A�Ae). (6.2.7)

In the literature, ⌘
0

is referred to as the relative entropy with respect to the state
(Ae, 0). Notice that the di↵erence of the mechanical energy ⌘ and its modified version
⌘
0

is a function of the form ⌘p stated above. By invariance, ⌘
0

also satisfies the wave
equation (6.2.1) and therefore if (A, u) satisfies the first two equations in (6.0.1), ⌘

0

also satisfies the entropy dissipation identity (6.2.2) with the corresponding entropy
flux

q
0

(A, u) =
1

2
Au3 + 22(A

1
2 �A

1
2
e )uA. (6.2.8)

obtained from (6.2.3). Moreover, ⌘
0

is also strictly convex in the variables (A, uA).
This entropy-entropy flux pair will be used in the next section to obtain zero order
estimates. By a second order Taylor expansion we can see that there exist constants
cK , CK > 0 such that

cK(|uA|2 + |A�Ae|2)  ⌘
0

(A, u)  CK(|uA|2 + |A�Ae|2) (6.2.9)

for every (A, u) 2 K where K ⇢ (0,1)⇥R is a compact set containing (Ae, 0). Thus
the relative entropy serves as a distance between the smooth solutions of the system
and the constant equilibrium state.

The next step is to develop entropy-entropy flux pairs to deal with first order
and second order estimates as done by Ruan et al. [68]. This will be done using
an appropriate diagonal form of the system. The eigenvalues of the associated flux
matrix of (6.0.1) are �̃ = u � A

1
4 and µ̃ = u + A

1
4 . Multiplying the first two

equations in (6.0.1) by (A� 3
4 , 1) and by (A� 3

4 ,�1) we obtain a diagonal system

w̃t + �̃(w̃, z̃)w̃x =
�

2
(z̃ � w̃)

z̃t + µ̃(w̃, z̃)z̃x = ��
2
(z̃ � w̃)

where w̃ = �u+ 4A
1
4 , z̃ = u+ 4A

1
4 , �̃ = �5

8

w̃ + 3

8

z̃ and µ̃ = �3

8

w̃ + 5

8

z̃. If (A, u)

is close to the equilibrium state (Ae, 0) then (w, z) is close to (4A
1
4
e , 4A

1
4
e ). With
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6.2 entropy-entropy flux pairs

this in mind, we shall consider the shifted Riemann invariants w = w̃ � 4A
1
4
e and

z = z̃ � 4A
1
4
e so that

w = �u+ 4(A
1
4 �A

1
4
e ), z = u+ 4(A

1
4 �A

1
4
e ). (6.2.10)

Therefore the state variables (A, u) and the shifted Riemann invariants (w, z) are
related by

u =
1

2
(z � w), A

1
4 �A

1
4
e =

1

8
(z + w). (6.2.11)

Using the Riemann invariants, the system (6.0.1) can be written in diagonal form

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

wt + �(w, z)wx =
�

2
(z � w), t > 0, 0 < x < `,

zt + µ(w, z)zx = ��
2
(z � w), t > 0, 0 < x < `,

h0
0

(t) = �✓(w(t, 0), z(t, 0))(z(t, 0)� w(t, 0)), t > 0,

h0`(t) = ✓(w(t, `), z(t, `))(z(t, `)� w(t, `)), t > 0,

z(t, 0) + w(t, 0) = ⇣
0

(h
0

(t))(h
0

(t)� h
0e), t > 0,

z(t, `) + w(t, `) = ⇣`(h`(t))(h`(t)� h`e), t > 0,

(6.2.12)

where the coe�cient functions are given by

�(w, z) = �5

8
w +

3

8
z � 1

4
Ce, Ce = 4A

1
4
e (6.2.13)

µ(w, z) = �3

8
w +

5

8
z +

1

4
Ce (6.2.14)

✓(w, z) =
1

2134AT
(w + z + 2Ce)

4 (6.2.15)

⇣k(h) = b(
p

ak + bh+
p
ak + bhke)

�1, k = 0, `. (6.2.16)

Di↵erentiating the first two equations in (6.2.12) with respect to x once and twice
we have

(@kxw)t + �(w, z)(@kxw)x = Fk (6.2.17)

(@kxz)t + µ(w, z)(@kxz)x = Gk (6.2.18)

for k = 1, 2 where

F
1

= ��xwx +
�

2
(zx � wx) (6.2.19)

G
1

= �µxzx �
�

2
(zx � wx) (6.2.20)

F
2

= �2�xwxx � �xxwx +
�

2
(zxx � wxx) (6.2.21)

G
2

= �2µxzxx � µxxzx �
�

2
(zxx � wxx). (6.2.22)
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Consider di↵erentiable functions �k = �k(t, x,W ) and  k =  k(t, x, Z) for k = 1, 2.
Using the equation (6.2.17) we have for a smooth solution (w, z) of the system
(6.2.12),

@t�k(t, x, @
k
xw(t, x)) + @x(�(t, x)�k(t, x, @

k
xw(t, x)))

= �kt(t, x, @
k
xw(t, x)) + �kW (t, x, @kxw(t, x))@t(@

k
xw(t, x))

+ �x(t, x)�k(t, x, @
k
xw(t, x)) + �(t, x)�kx(t, x, @

k
xw(t, x))

+ �(t, x)�kW (t, x, @kxw(t, x))@x(@
k
xw(t, x))

= �kt(t, x, @
k
xw(t, x)) + �x(t, x)�k(t, x, @

k
xw(t, x)) + �(t, x)�kx(t, x, @

k
xw(t, x))

+ �kW (t, x, @kxw(t, x))Fk(t, x) (6.2.23)

for k = 1, 2. Similarly, using (6.2.18) we get

@t k(t, x, @
k
xz(t, x)) + @x(µ(t, x) k(t, x, @

k
xz(t, x)))

=  kt(t, x, @
k
xz(t, x)) + µx(t, x) k(t, x, @

k
xz(t, x)) + µ(t, x) kx(t, x, @

k
xz(t, x))

+  kZ(t, x, @
k
xz(t, x))Gk(t, x) (6.2.24)

for k = 1, 2. Subtracting (6.2.23) from (6.2.24) we obtain the partial di↵erential
equation

@t( k � �k) + @x(µ k � ��k) = Mk( k,�k) (6.2.25)

where

Mk( k,�k) = ( kt � �kt) + (µx k � �x�k) + (µ kx � ��kx)

+ ( kZGk � �kWFk). (6.2.26)

Integrating (6.2.25) over [0, t]⇥ [0, `] and using Fubini’s theorem we have

Z `

0

⌘k(t, x)� ⌘k(0, x) dx+

Z t

0

qk(⌧, `)� qk(⌧, 0) d⌧

=

Z t

0

Z `

0

Mk( k,�k) dx d⌧ (6.2.27)

where

⌘k(t, x) =  k(t, x, @
k
xw(t, x))� �k(t, x, @

k
xw(t, x))

qk(t, x) = µ(t, x) k(t, x, @
k
xw(t, x))� �(t, x)�k(t, x, @

k
xw(t, x)).

The point is that solutions (w, z) of (6.2.12) that are su�ciently smooth satisfy
(6.2.27) for k = 1, 2. Equation (6.2.27) will be of great importance in deriving the
energy estimates. This is done by choosing appropriate functions  and � such that
the term Mk will be, in some sense, dominated by the velocity u or its derivatives.

6.3 energy estimates

For T > 0 define the solution space

XT = (C([0, T ];H2(0, `)2) \ C1([0, T ];H1(0, `)2) \ C2([0, T ];L2(0, `)2))⇥ C2[0, T ]2.

By using classical embedding results we can see that XT is continuously embedded
in C1([0, T ] ⇥ [0, `])2 ⇥ C2[0, T ]2. All throughout this section (A, u, h

0

, h`) will be
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6.3 energy estimates

a smooth solution to the system on the time interval [0, T ], provided that such
solution exists on such interval. Define the energy functionals Nk : [0,1) ! [0,1)
for k = 0, 1, 2 by

N2

k (t) = sup
⌧2[0,t]

(ku(⌧)k2Hk + kA 1
4 (⌧)�A

1
4
e k2Hk + |h

0

(⌧)� h
0e|2 + |h`(⌧)� h`e|2)

+

Z t

0

ku(⌧)k2Hk + kk(A 1
4 )x(⌧)k2Hk�1 d⌧.

In the following estimates, and C� and Ci� will denote generic positive constants that
depend on the system parameters and may depend on � > 0, and

C� and Ci� remain bounded as long as � stays on a bounded set in (0,1). (6.3.1)

Before we proceed we state the following equivalence of norms of the state variables
u,A and the Riemann invariants

2k@kxu(t)k2L2 + 322k@kx(A
1
4 (t)�A

1
4
e )k2L2 = k@kxw(t)k2L2 + k@kxz(t)k2L2 . (6.3.2)

for k = 0, 1, 2 and for t 2 [0, T ]. This follows immediately from the identity 2w2 +
2z2 = (z � w)2 + (z + w)2 in R and the transformations given in (6.2.11). This
norm equivalence will be used in converting an estimate involving the Riemann
invariants into an estimate involving the state variables and vice versa. Furthermore,
if 0 < � < Ae then |A�Ae|  � implies that

C
1�|A�Ae|  |A 1

4 �A
1
4
e |  C

2�|A�Ae|. (6.3.3)

This can be seen from the elementary identity A�Ae = (A
1
4�A

1
4
e )(A

1
4+A

1
4
e )(A

1
2+A

1
2
e )

whenever A,Ae > 0.

6.3.1 Zero Order Estimates

Lemma 6.3.1 (Zero Order Estimate). There exist � > 0 and C� > 0 such that
for any solution (A, u, h

0

, h`) 2 XT satisfying N2

2

(T )  � also satisfies the energy
estimate

N2

0

(t)  C�

 
N2

0

(0) + sup
⌧2[0,t]

ku(⌧)kH1

Z t

0

ku(⌧)k2H1 d⌧

!
(6.3.4)

for all t 2 [0, T ].

Proof. Recall that ⌘
0

and q
0

given in (6.2.7) and (6.2.8), respectively, satisfy the
entropy dissipation identity (6.2.2). Integrating (6.2.2) over [0, t] ⇥ [0, `] and using
Fubini’s Theorem yield

Z `

0

⌘
0

(A(t, x), u(t, x))� ⌘
0

(A(0, x), u(0, x)) dx (6.3.5)

+

Z t

0

q
0

(A(⌧, `), u(⌧, `))� q
0

(A(⌧, 0), u(⌧, 0)) d⌧ = ��
Z t

0

Z `

0

(Au2)(⌧, x) dx d⌧.

Let us estimate the left hand side of (6.3.5) from below and its right hand side
from above. According to (6.2.9) and (6.3.3) it holds that, choosing � > 0 su�ciently
small,

Z `

0

⌘
0

(A(t, x), u(t, x))� ⌘
0

(A(0, x), u(0, x)) dx (6.3.6)

� C�(k(uA)(t)k2L2 + kA 1
4 (t)�A

1
4
e k2L2 � k(uA)(0)k2L2 � kA 1

4 (0)�A
1
4
e k2L2)
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global existence and nonlinear stability

Using (6.1.2) and the last four equations of (6.0.1) in (6.2.8) we have

q
0

(A(⌧, `), u(⌧, `)) =
1

2
(Au3)(⌧, `) + 2AT

2b(h`(⌧)� h`e)h
0
`(⌧)

q
0

(A(⌧, 0), u(⌧, 0)) =
1

2
(Au3)(⌧, 0)� 2AT

2b(h
0

(⌧)� h
0e)h

0
0

(⌧).

Plugging these in the second integral in (6.3.5) and using the Sobolev embedding
theorem we have

Z t

0

q
0

(A(⌧, `), u(⌧, `))� q
0

(A(⌧, 0), u(⌧, 0)) d⌧

� C(|h
0

(t)� h
0e|2 + |h`(t)� h`e|2 � |h0

0

� h
0e|2 � |h0` � h`e|2) (6.3.7)

� C� sup
⌧2[0,t]

ku(⌧)kH1

Z t

0

ku(⌧)k2H1 d⌧

Moreover, the Sobolev embedding theorem again implies that

� �

Z t

0

Z `

0

(Au2)(⌧, x) dx d⌧  ��C�
Z t

0

ku(⌧)k2L2 d⌧. (6.3.8)

Now it can be seen that (6.3.4) follows from (6.3.5)–(6.3.8) and the fact that the
L2- norm of (uA)(t) and u(t) are equivalent for each t provided that � > 0 is small
enough.

6.3.2 First Order Estimates

The next step is to derive estimates involving the spatial derivatives of the state
components u and A

1
4 . To this end we recall two classical inequalities frequently used

in deriving estimates. The first one is Young’s inequality: For each real numbers
a, b and ✏ > 0 we have ab  ✏

2

a2 + 1

2✏b
2. The second one is the following modified

Sobolev embedding.

Proposition 6.3.2. Let a < b. For every # > 0 there exists C(a, b,#) > 0 such that

kuk2L1
(a,b)  #kuxk2L2

(a,b) + C(a, b,#)kuk2L2
(a,b) (6.3.9)

for all u 2 H1(a, b).

Proof. Let a  x
0

 a+b
2

. Consider the linear multiplier m(x) = 2

b�x0
(x � x

0

) � 1
satisfying kmkL1

[x0,b] = 1. Thus

|u(x
0

)|2 + |u(b)|2 =

Z b

x0

(mu2)x dx =
2

b� x
0

Z b

x0

u2 dx+ 2

Z b

x0

muux dx

 #kuxk2L2
(x0,b)

+

✓
4

a+ b
+

1

#

◆
kuk2L2

(x0,b)

where we use Young’s inequality in the last step. A similar process can be done
for the case a+b

2

 x
0

 b, now using the multiplier n(x) = 2

x0�a(x � x
0

) + 1 and
integration over [a, x

0

]. These estimates imply (6.3.9).

The proposition is useful when dealing with higher order estimates. For example,
in obtaining estimates for zx and wx we will put a small factor, if necessary, to these
terms, but the drawback is the occurrence of a large factor to lower order terms.
However, this will not cause problems when we have already derived estimates for
the lower order terms, specifically, the one given in Lemma 6.3.1.
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6.3 energy estimates

Lemma 6.3.3 (First Order Estimate). There exist � > 0 and C� > 0 such that for
any solution (A, u, h

0

, h`) 2 XT satisfying N2

2

(T )  � we have

kux(t)k2L2 + k(A 1
4 )x(t)k2L2 +

Z t

0

kux(⌧)k2L2 d⌧  C�N
2

1

(0) (6.3.10)

+ C� sup
⌧2[0,t]

(ku(⌧)kH2 + kA 1
4 (⌧)�A

1
4
e kH2)

Z t

0

ku(⌧)k2H1 + k(A 1
4 )x(⌧)k2L2 d⌧

for all t 2 [0, T ].

Proof. To prove the lemma we will utilize the system satisfied by the (shifted) Rie-
mann invariants (6.2.12). Let us consider the entropy ⌘

1

=  
1

� �
1

where

 
1

(t, x, Z) = ✓(w(t, x), z(t, x))µ(t, x)Z2

�
1

(t, x,W ) = ✓(w(t, x), z(t, x))�(t, x)W 2.

We will estimate each integral in (6.2.27) with these particular functions.
Suppose that N2

2

(T )  �. If � > 0 is su�ciently small then there exist positive
constants Ci� such that C

1�  ⇣k(hk(t))  C
2� for k = 0, `, �C

3�  �(t, x)  �C
4�,

C
5�  µ(t, x)  C

6� and C
7�  ✓(w(t, x), z(t, x))  C

8� for all (t, x) 2 [0, T ] ⇥ [0, `].
We shall use these properties all throughout without mentioning them anymore.

We estimate each of the integrals on the left hand side of (6.2.27) from below
and estimate the integral on the right hand side from above. For ease of reading,
we divide the process into three steps. To make the terms more compact we also
introduce the variable V = (w, z).

Step 1. Estimate from below. The preceding remarks about ✓,� and µ show that

C
1�(w

2

x(t, x) + z2x(t, x))  ⌘
1

(t, x)  C
2�(w

2

x(t, x) + z2x(t, x)) (6.3.11)

for all (t, x) 2 [0, T ]⇥ [0, `]. Thus

Z `

0

⌘
1

(t, x)� ⌘
1

(0, x) dx � C�(kVx(⌧)k2L2 � kVx(0)k2L2). (6.3.12)

Next, we deal with boundary terms. Let us note the identity

q
1

= ✓(w, z)((µzx)
2 � (�wx)

2)

= ✓(w, z)

✓✓
�zt �

�

2
(z � w)

◆
2

�
✓
�wt +

�

2
(z � w)

◆
2

◆

= ✓(w, z)(z2t � w2

t + �(zt + wt)(z � w))

obtained from the first two equations in (6.2.12). Each term of the above equality is
evaluated at either (t, 0) and (t, `). Consider the case where it is evaluated at (t, 0).
Di↵erentiating the fifth equation in (6.2.12) and using the third equation we arrive
at

zt(t, 0) + wt(t, 0) = [⇣ 0
0

(h
0

(t))(h
0

(t)� h
0e) + ⇣

0

(h
0

(t))]h0
0

(t) (6.3.13)

= �S
1

(t)(z(t, 0)� w(t, 0)). (6.3.14)

where S
1

(t) = ✓(w(t, 0), z(t, 0))[⇣ 0
0

(h
0

(t))(h
0

(t)� h
0e) + ⇣

0

(h
0

(t))]. Thus we have

�q
1

(t, 0) = �✓(w(t, 0), z(t, 0))(z2t (t, 0)� w2

t (t, 0))

� �✓(w(t, 0), z(t, 0))S
1

(t)(z(t, 0)� w(t, 0))2 =:  
1

(t) + 
2

(t). (6.3.15)
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global existence and nonlinear stability

Using the estimate in Propostion 6.3.2, the Sobolev embedding theorem and the
equality 2u = z � w we have

Z t

0

 
2

(⌧) d⌧ � �C�#

Z t

0

kux(⌧)k2L2 d⌧ � C�,#

Z t

0

ku(⌧)k2L2 d⌧. (6.3.16)

Di↵erentiating the third equation in (6.2.12) gives

h00
0

(t) = � ✓
1

(w(t, 0), z(t, 0))(zt(t, 0) + wt(t, 0))(z(t, 0)� w(t, 0))

� ✓(w(t, 0), z(t, 0))(zt(t, 0)� wt(t, 0)) (6.3.17)

where ✓
1

(w, z) = 1

2

11AT
(w + z + 2Ce)3. Multiplying the left hand side of (6.3.13)

with the right hand side of (6.3.17), rearranging the terms and then using (6.3.14)
we obtain
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(t) = S
2

(t)(z(t, 0)� w(t, 0))3 +
1

2
S
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(t)
d
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|h0(t)|2. (6.3.18)

where S
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(t) = ✓
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(w(t, 0), z(t, 0))S2
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(t) and S
3

(t) = ⇣ 0
0

(h
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(t))(h
0

(t)� h
0e) + ⇣

0

(h
0

(t)).
Let us integrate (6.3.18) from 0 to t. The first term of the integral can be estimated
as follows
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S
2

(t)(z(t, 0)� w(t, 0))3 � �C� sup
⌧2[0,t]

ku(⌧)kH1
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ku(⌧)k2H1 d⌧. (6.3.19)

For the remaining term we integrate by parts, use the the third equation in (6.0.1),
apply the Sobolev embedding and Proposition 6.3.2 to obtain
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Therefore, (6.3.15) and the inequalities (6.3.16), (6.3.19) and (6.3.20) give us the
estimate
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In an analogous manner we can obtain the same form of estimate from below for
the integral

R t
0

q
1

(⌧, `) d⌧ . Combining the estimates that we have obtained so far, we
have the following estimate from below for the left hand side of (6.2.27)
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6.3 energy estimates

Step 2. Estimate from above. First we will express the derivative of the eigen-
values � and µ with respect to t in terms of the Riemann invariants w and z. A
straightforward calculation and application of the two PDEs in (6.2.12) gives us

µt = �3Ce

32
wx �

5Ce

32
zx �

�

2
(z � w) +R

1

�t = �5Ce

32
wx �

3Ce

32
zx �

�

2
(z � w) +R

2

where Rk = ck1wwx + ck2zwx + ck3wzx + ck4zzx, k = 1, 2, for some constants ckj .
Therefore, each term of µt and �t contains at least one factor among z � w,wx, zx.
Consequently, the same is true for wt and zt according to the PDE and in turn for
✓t(w, z) = ✓

1

(w, z)(wt+ zt). This observation is important because we want to avoid

the term
R t
0

kA 1
4 (⌧)�A
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4
e kL2 d⌧ which is not present in the energy functional N

2

.
Now the first three pairs appearing in (6.2.26) for k = 1 are given by
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x.

From the previous remarks we notice that the factors of z2x and w2

x appearing on
the right hand sides of the last three equations are polynomials of degree at least 1
in z, w, zx, wx. Applying the Sobolev embedding theorem for these factors and then
taking the supremum over [0, t] we have
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The last term in M
1

is more delicate since it contains second order terms. Indeed,
we have
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where ✓c > 0 is the constant term of ✓. Here R
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are terms of degree at least 3 that
contain either z2x, w
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x, or wxzx. Hence
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where C̃ = ✓cCe�
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> 0, if � > 0, independent of �. Adding (6.3.22) and (6.3.24) we
arrive at
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global existence and nonlinear stability

Step 3. Let us combine the estimates obtained from Step 1 and Step 2. Choosing
# > 0 small enough so that C̃ � C�# > 0 we have

kVx(t)k2L2 +
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We can use Lemma 6.3.1 to bound the first and third terms on the right hand side
of (6.3.26) from above. Consequently, (6.3.10) follows from (6.3.26), (6.3.4) and
(6.3.2).

To complete the estimate for the energy functional N
1

we need the following
additional estimate.
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for all t 2 [0, T ].

Proof. The proof of the lemma is basically the same as the proof of Lemma 6.3.3
and the main di↵erence is the particular choice of the entropy appearing in (6.2.27).
In the current situation we consider the entropy ⌘̃

1

=  ̃
1

� �̃
1

with corresponding
entropy flux q̃
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1
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(z � w). Using Young’s inequality
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for some ✏ 2 (0, 1) small enough. Similarly, ⌘̃
1

 C�(w2

x + z2x + w2 + z2). Thus
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(0, x) dx � C�(kVx(t)k2L2 � kV (t)k2L2 � kV (0)k2H1). (6.3.28)

From (6.2.12), (6.3.18), (6.3.19) and (6.3.20) and according to the statement fol-
lowing (6.3.20) we immediately get
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The remaining task is to obtain estimates from above. As in the previous lemma,
we need to look carefully at each pair appearing in M̃

1

since some of them contain
terms of degree only 2. For the rest of the proof Ri will denote terms that are degree
at least 3 and contain at least two factors among z � w,wx, zx. Note that using
(6.2.12) we have

zt � wt = �Ce

4
(zx + wx)� �(z � w) + R̂

0

(6.3.30)

where R̂
0

= c
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zzx for some constants ci. Thus have
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By Young’s inequality and the Sobolev embedding theorem we have
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For the second pair we can see that
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The third pair can be computed as in the first pair and we get
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(6.3.33)

Finally, for the last pair we use (6.2.19) and (6.2.20) to obtain
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where R̂
1

, R̂
2

are of degree 2 and have the same form as R̂
0

.
Taking the sum of (6.3.31)–(6.3.34), choosing ✏ > 0 small enough so that C̃

1

=
✓cCe�

4

� C�✏ > 0, using the Sobolev embedding theorem and the transformations
(6.2.11) we obtain
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) dx d⌧  � C̃
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k(A 1
4 )x(⌧)k2L2 d⌧ (6.3.35)

+ C� sup
⌧2[0,t]

kV (⌧)kH2

Z t

0

kVx(⌧)k2L2 + ku(⌧)k2L2 d⌧.

Now it can be seen that (6.3.27) follows from (6.3.28), (6.3.29), (6.3.35), Lemma
6.3.1, and from the equivalence of norms in (6.3.2).

Remark 6.3.5. It is worth pointing out that by an appropriate modification of the
entropy-entropy flux pair we saw in the proof of Lemma 6.3.4 that the term u2x, or
equivalently (zx�wx)2, which appears on the right hand side of (6.2.27) cancels when

adding (6.3.33) and (6.3.34). Moreover it was replaced by a term involving (A
1
4 )2x,

or equivalently (zx + wx)2. The appearance of (A
1
4 )2x is precisely what we want in

order to prove Lemma 6.3.4. This observation will also be used in the following two
lemmas.

6.3.3 Second Order Estimates

Before we proceed in obtaining estimates for the second spatial derivatives of the
state variables, we will derive some identities from the two PDEs in the diagonal
system (6.2.12). In the following, we concentrate on the linear terms and state only
the properties of the higher degree terms. Di↵erentiating the first equation in (6.2.12)
with respect to t we get

�wxt = �wtt � �twx +
�

2
(zt � wt). (6.3.36)

However, we note from (6.2.17) for k = 1 that

�wtx = ��2wxx + �F
1

. (6.3.37)

Thus, according to (6.3.36), (6.3.37) and (6.2.19) we have
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2
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2
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In a similar way we have the equation for ztt
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Taking the derivative with respect to x of both sides of (6.3.30) we have
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j
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where R̂
4

are terms of degree at least 2 and contain at least one factor among
z � w,wx, zx, zxx, wxx, however, each term has at most one factor among wxx, zxx.

Lemma 6.3.6 (Second Order Estimate). There exist � > 0 and C� > 0 such that
for any solution (A, u, h

0

, h`) 2 XT satisfying N2

2

(T )  � it holds that
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for all t 2 [0, T ].

Proof. Again we will proceed in the same manner, now with the entropy ⌘
2

=  
2

��
2

where
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µ

✓
µ2Z � �

2
(zt � wt) +

�µ

2
(zx � wx) + µµxzx � µtzx

◆
2

�
2

(t, x,W ) =
✓(w, z)

�

✓
�2W +

�

2
(zt � wt)�

��

2
(zx � wx) + ��xwx � �twx

◆
2

.

We estimate (6.2.27) with these particular functions and as before we divide the
procedure in three steps, namely, the derivation of estimates of the left hand side
of (6.2.27) from below, estimates of the right hand side of (6.2.27) from above and
finally to combine the two.

Step 1. Estimate from below. For brevity let us set

Ñ = ��
2
(zt � wt) +

�µ

2
(zx � wx) + µµxzx � µtzx (6.3.43)

P̃ =
�

2
(zt � wt)�

��

2
(zx � wx) + ��xwx � �twx. (6.3.44)

Using Young’s inequality we have, for � > 0 small enough,
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(t, x, zxx(t, x)) = ✓µ�1(µ4z2xx + 2µ2zxxÑ + Ñ2)
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= (✓µ3 � ✓µ✏)z2xx � (✓µC✏ � ✓µ�1)Ñ2.

for every ✏ > 0, we removed the arguments (t, x) on the right hand sides for simplicity.
Using the definition of Ñ

2

and replacing the term zt � wt by the right hand side of
(6.3.30) we can see that

Ñ(t, x)2  C�(w(t, x)
2 + z(t, x)2 + wx(t, x)

2 + zx(t, x)
2).

This follows immediately from the fact that Ñ consists of terms that are at least
degree 1 in w, z, wx, zx and so Ñ2 will have at least degree 2 terms in these variables.
Then we retain two factors and take the supremum of the rest, employing the Sobolev
embedding theorem to estimate the supremum and finally use the assumption that
N2

2

(T )  �, for � > 0 small enough.
Now, choosing ✏ > 0 su�ciently small we have
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xx(t, x)� C�(|V (t, x)|2 + |Vx(t, x)|2). (6.3.45)

175



global existence and nonlinear stability

for all (t, x) 2 [0, T ] ⇥ [0, `]. Recall that V = (w, z). Similarly, we have the upper
bound
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(t, x, zxx(t, x))  C�z
2

xx(t, x) + C�(|V (t, x)|2 + |Vx(t, x)|2). (6.3.46)

for all (t, x) 2 [0, T ]⇥ [0, `]. Doing the same process with �
2

and recalling that � is
negative for small enough � > 0 we have
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From (6.3.45)–(6.3.47) we have
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According to (6.3.38) and (6.3.39) we have
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Let us use the boundary conditions to rewrite the integrand in terms of w, z and their
first derivatives with respect to x. For convenience, the functions in the following
discussions are to be evaluated at (t, 0) or t, or with other variables representing
time, where they make sense. First, we notice from (6.3.13) that
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and from (6.3.30) we have zt�wt = p
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Taking the derivative of both sides of (6.3.13) gives us
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Thus, (6.3.52) implies that
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We also take the derivative of (6.3.17) and apply (6.3.50) and (6.3.54) to obtain
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where ✓
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(w, z) = 12
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Note that p
1

, p
2

and p
3

contain terms that are degree at least 1 and have at least
one factor among z�w,wx, zx while p

4

has terms with degree at least 2 that contain
at least two factors among z�w,wx, zx. Moreover, we note that each Si is bounded
as long as its arguments stay on a bounded subset of (0,1), which is the case due
to the assumption that |h

0

(t)� h
0e|2  � for small enough � > 0.

From (6.3.53), (6.3.54) and (6.3.55) we can now rewrite (6.3.49) as
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Integrating by parts and using (6.3.52)
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Applying Proposition 6.3.2 to the terms having either zx(⌧, 0) or wx(⌧, 0) appearing
in the first term of the above last expression and using the Sobolev embedding
theorem for the rest we obtain the inequality
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In the above computations it is important to note the properties of p
2

.
In a similar way we can integrate by parts and use the same techniques to obtain
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Adding the lower bounds for J
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and J
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gives us a lower bound of �
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which has essentially the form of the lower bound for J
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. We can repeat the same
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process for
R t
0
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(⌧, `) d⌧ and obtain a lower bound having the same form as stated
above. With these we finally obtain
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Inequalities (6.3.48) and (6.3.57) give us the desired estimate from below.
Step 2. Estimate from above. In this step Ri will denote terms of degree at least 3

containing at least two factors among z �w,wx, zx, zxx, wxx and containing at most
two among zxx, wxx. First, we have

 
2t � �

2t = (µ2zxx + Ñ)2
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Consider each Ii. According to (6.3.41) and Young’s inequality we have
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Also, from (6.3.30) and (6.3.41)
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From (6.3.40) we see that
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and
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Adding (6.3.59)–(6.3.62) we have
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Similarly for the third pair we have
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From (6.3.30), (6.3.40) and Young’s inequality we have
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I
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= R
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. (6.3.70)

The last equation is due to the fact that the terms in µ2 � �2 are of degree at least
1. Therefore from (6.3.66)–(6.3.70) we have
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Finally for the last pair in M
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we use (6.2.21) and (6.2.22) to obtain
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Adding (6.3.63), (6.3.64), (6.3.71), (6.3.72), choosing ✏ > 0 small enough so that

C̃
2

= ✓c�C3
e

64

� C�✏ > 0, where the first term is independent of � and ✏, using the
Sobolev embedding for the terms Ri and finally invoking (6.2.11) yields
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◆
. (6.3.73)

Step 3. The estimate (6.3.42) immediately follows from (6.3.48), (6.3.57), (6.3.73),
Lemmas 6.3.1–6.3.4, (6.3.2) and by choosing # > 0 in Proposition 6.3.2 su�ciently
small enough.

As in the case of first order estimates, we shall also need the following estimate in
order to complete an estimate for the full energy functional N

2

.
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Lemma 6.3.7. There exist � > 0 and C� > 0 such that for any solution (A, u, h
0

, h`) 2
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Proof. We modify the entropy of the previous lemma. We consider the entropy
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Doing the same process as in the first step of the Lemma 6.3.6 we can show that
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Using (6.3.39) and (6.3.38), a simple computation gives us
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where q
2

is the entropy flux in the previous lemma and p
1

and p
3

are defined by
(6.3.51) and (6.3.54), respectively. A straightforward calculation gives
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are terms of degree at least 3 and contain at least two factors
among z � w,wx, zx. By the estimate Proposition 6.3.2 and (6.3.2) we have
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Integrating (6.3.76) from 0 to t and using (6.3.57) and (6.3.77) we have
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Observe that the deviation of  
2

and �
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, respectively, is that
the former terms contain �
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(zt � wt) while the latter terms do not. This means

that M̃
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will consist of the same terms as M
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but without those that stem from
�
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(zt � wt). Thus, crossing out the terms that appear due to the said extra term, a
careful analysis in the second step of the proof of Lemma 6.3.6 shows that
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is again terms of degree at least 3 containing at least two factors among
z �w,wx, zx, zxx, wxx and contains at most two among zxx, wxx. Therefore we have,
according to Young’s inequality,
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for some C̃
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> 0. With the same explanations as above we have
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From (6.3.75), (6.3.78), (6.3.79), choosing # > 0 in Proposition 6.3.2 small enough
and using Lemmas 6.3.1–6.3.6, the estimate (6.3.74) follows.

6.4 proof of the global existence and stability in H1 ⇥H1 ⇥R2

An immediate consequence of the results in the previous section is the following
estimate for the energy N

2

.

Corollary 6.4.1. Let T > 0 be such that (6.0.1) has a solution that belongs to XT .
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p
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Proof of Theorem 6.1.2. The proof is standard, however, we include it here for com-
pleteness. According to Corollary 6.4.1 we have a � > 0 such that N2
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(0)
for some C̃� > 0 whenever N2
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there exists T
2

2 (T
1

, T
1

+ ✏) satisfying N2

2

(T
2

)  �. Corollary 6.4.1 implies that
N2
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(T
2

)  C̃�N2

2

(0)  �
2

, which is a contradiction. Therefore we must have T ⇤ = +1
and this proves that a global-in-time solution exists. Furthermore, we have the
estimate N2

2

(t)  C̃�N2

2

(0) for all t � 0.

By applying the PDEs, the estimate in Theorem 6.1.2 implies the following esti-
mate on the time-derivatives of the state.

Corollary 6.4.2. In the situation of Theorem 6.1.2. there exists a C� > 0 such that
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Now we are ready to prove the following asymptotic behaviour of the solutions.

Theorem 6.4.3 (Asymptotic Stability). In the framework of Theorem 6.1.2 we have

lim
t!1(kA(t)�AekH1

(0,`) + ku(t)kH1
(0,`) + |h

0

(t)� h
0e|+ |h`(t)� h`e|) = 0. (6.4.1)

Proof. As functions of time ku(·)k2H1
(0,`) and kAx(·)k2L2

(0,`) belong to W 1,1(0,1)
according to Theorem 6.1.2 and Corollary 6.4.1 . Hence

lim
t!1(ku(t)kH1

(0,`) + kAx(t)kL2
(0,`)) = 0 (6.4.2)

Using a Gagliardo-Nirenberg-Moser interpolation, see [74], we have

kA(t)�AekL1
(0,`)  C`k@xA(t)k1/2L2

(0,`)kA(t)�Aek1/2L2
(0,`).

Theorem 6.1.2 implies that kA(t)�AekL2
(0,`) is uniformly bounded in t 2 [0,1) and

thus from (6.4.2) we get kA(t)�AekL1
(0,`) ! 0 as t ! 1. In particular, this implies

that kA(t) � AekL2
(0,`) ! 0, A(t, 0) ! Ae and A(t, `) ! Ae as t ! 1. The latter

two further imply that h
0

(t) ! h
0e and h`(t) ! h`e as t ! 1. Combining these

with (6.4.2) we obtain (6.4.1).

The decay rate at which the state converges to the equilibrium can be shown to
be exponential, however, if one uses the norm in L2(0, `)2 ⇥ R2. This is the goal of
the next section.

6.5 exponential convergence to the equilibrium in L2(0, `)2⇥R2

The exponential stability result for (6.0.1) is based on linear stability and treating
the higher order terms as perturbation of the linearized system. The basic ingre-
dients are the exponential stability derived from semigroup theory, the variation of
parameters formula and interpolation estimates. However, care should be taken since
the linearization yields a nontrivial kernel and therefore stability for the linearized
problem is only possible in a factor space. The smallness of the data and the order
of nonlinearity play an important role in the proof, specifically the applicability of a
Gronwall-type estimate. In this way the decay rate for the nonlinear system is the
same as the decay rate for the linearized system.
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First, we revisit the stability result in Chapter 3. Define the following constants

↵ =
2p
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0

+ bh
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, h`) 2
H1(0, `)2 ⇥ R2 : A(0) = �h
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This operator is obtained by linearizing the system (6.0.1) including its boundary
conditions about the equilibrium state (Ae, 0, h0e, h`e). The operator A has a non-
trivial kernel N (A) = {c(�, 0, 1, 1) : c 2 R}. The orthogonal complement N (A)? of
N (A) coincides with the kernel of the volume functional V : X ! R

V(A, u, h
0

, h`) =

Z `

0

A(x) dx+ATh0 +ATh`.

In the following theorem �(A) will denote the spectrum of A, which consists of
eigenvalues since the operator is discrete. For the proof and explicit values of � and
k we refer to Chapter 3.

Theorem 6.5.1. The operator A is a discrete spectral operator that generates a
strongly continuous group T (t), t 2 R, on X . If � > 0 then there exists M � 1 such
that

kT (t)kL(N (A)

?
)

 M(1 + tk)e��t, t � 0,

where � = � sup�2�(A)

<� > 0 and k is either 0 or 1.

To use this result for the nonlinear system (6.0.1), we need further tools. The first
one is the following Gronwall-type lemma whose proof can be found in [26].

Lemma 6.5.2. Let u 2 Lip([0,1),R
+

) and suppose that for some C > 0

u(t)  C(1 + tk)e��tu(0) + C

Z t
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(1 + (t� s)k)e��(t�s)u(s)% ds, t � 0,

for some � > 0, % > 1 and nonnegative integer k. Then there exists ✏ > 0 and C > 0
such that if u(0) < ✏ then

u(t)  C(1 + tk)e�t�, t � 0.

The next tool is a simple interpolation estimate obtained from the well-known
Gagliardo-Nirenberg inequality, see [74] for example.

Theorem 6.5.3 (Gagliardo-Nirenberg). Let m be a positive integer. There exists
C` > 0 such that for all u 2 Hm(0, `) and j  m we have
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As a consequence, we have the following estimate.

Corollary 6.5.4. There exists C > 0 such that for all u 2 H2(0, `) it holds that

kuxkL1
(0,`)  Ckuk7/8H2

(0,`)kuk
1/8
L2

(0,`).

Proof. Using the Gagliardo-Nirenberg-Moser estimate in [74], Hölder’s inequality
and Theorem 6.5.3 with m = 2 and j = 1 we have, for generic constants C > 0,

kuxkL1
(0,`)  Ckuxxk1/2L2

(0,`)kuxk
1/2
L2

(0,`)

 Ckuxxk1/2L2
(0,`)kuxk

1/2
L4

(0,`)

 Ckuxxk1/2L2
(0,`)(kuk

1/2
L1

(0,`)kuk
1/2
H2

(0,`))
1/2

 Ckuxxk1/2L2
(0,`)(kuxk

1/4
L2

(0,`)kuk
1/4
L2

(0,`)kuk
1/2
H2

(0,`))
1/2.

This clearly implies the estimate given in the corollary.

Now we are in position to prove the following stability result.

Theorem 6.5.5 (Exponential Stability). Consider the framework of Theorem 6.1.2.
There exists �

0

> 0 such that if E
0

 �
0

then the solution of (6.0.1) satisfies

kA(t)�AekL2
(0,`) + ku(t)kL2

(0,`) + |h
0

(t)� h
0e|+ |h`(t)� h`e|  C(1 + tk)e��t

for all t � 0 and for some constant C = C(E
0

) > 0. The constants k and � are
those of Theorem 6.5.1.

Proof. Let z = (B, v, ⌘
0

, ⌘`) = (A�Ae, u, h0 � h
0e, h` � h`e) denote the deviation of

the state from the equilibrium. The system (6.0.1) can be rewritten in terms of the
deviations as

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

Bt = �Aevx � (A�Ae)ux � uAx,

vt = �↵Bx � �v + ↵A� 1
2 (A

1
2 +A

1
2
e )�1(A�Ae)Ax � uux,

⌘0
0

(t) = � Ae
AT

v(t, 0)� 1

AT
(A(t, 0)�Ae)u(t, 0),

⌘0`(t) =
Ae
AT

v(t, `) + 1

AT
(A(t, `)�Ae)u(t, `),

B(t, 0) = �⌘
0

(t) + b2(h
0

(t)� h
0e)2,

B(t, `) = �⌘(t) + b2(h(t)� h`e)2.

In order to use the results for abstract homogeneous linear time-invariant systems
via semigroup theory, we consider a new state variable w := z � (�, 0, 0, 0) where

�(t, x) =
`� x

`
b2(h

0

(t)� h
0e)

2 +
x

`
b2(h`(t)� h`e)

2.

This is introduced in order to compensate for the nonlinearity in the boundary con-
ditions. It is easy to see that w(t) 2 D(A) for all t � 0 and it satisfies the system

ẇ(t) = Aw(t) + F (t), t > 0, (6.5.1)
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where

F (t) =

0

BBBBB@

�(A(t)�Ae)ux(t)� u(t)Ax(t)� �t(t)

↵A(t)�
1
2 (A(t)

1
2 +A

1
2
e )�1(A(t)�Ae)Ax(t)� u(t)ux(t)� ↵�x(t)

� 1

AT
(A(t, 0)�Ae)u(t, 0)

1

AT
(A(t, `)�Ae)u(t, `).

1

CCCCCA

Because u 2 C1([0,1);H1(0, `)) it follows that uux 2 C1([0,1);L2(0, `)). Using
the regularity of A, u, h

0

and h` stated in Theorem 6.1.2 together with a similar
argument as in the previous statement one can show that F 2 C1([0,1);X ). A
standard result in semigroup theory, see [61, Section 4.2] for example, shows that
(6.5.1) has a unique solution in X and it is given by the variation of parameters
formula

w(t) = T (t)w(0) +

Z t

0

T (t� s)F (s) ds. (6.5.2)

By uniqueness, this function w must coincide with the function z� (�, 0, 0, 0) above.
Since the semigroup T (t) is exponentially stable only inN (A)?, we will decompose

the solution w into two parts. First decompose F as a sum F = F
1

+ (F
2

)t where
F
2

= (��, 0, 0, 0). By construction, F
1

(s) 2 N (A)? for all s � 0. This can be
easily seen since F

1

(s) lies in the kernel of V for all s � 0. Let ⇧ : X ! N (A)
be the orthogonal projection of X onto N (A). Conservation of volume implies that
V(A0

0

, u0, h0
0

, h0` ) = V(Ae, 0, h0e, h`e) or equivalently z(0) 2 N (A)?. Furthermore, we

have F
1

(s) + (I �⇧)(F
2

)t(s) 2 N (A)? for all s � 0. We write

w(t) = w
1

(t) + w
2

(t)

where

w
1

(t) = T (t)(z(0) + (I �⇧)F
2

(0)) +

Z t

0

T (t� s)(F
1

(s) + (I �⇧)(F
2

)t(s)) ds

w
2

(t) = T (t)⇧F
2

(0) +

Z t

0

T (t� s)⇧(F
2

)t(s) ds.

Because T (t)⇧ = ⇧ and ⇧(F
2

)t(s) = (⇧F
2

(s))t we actually have w
2

(t) = ⇧F
2

(t).
Using (6.5.2) and Theorem 6.5.1 we have

kw(t)kX  M(1 + tk)e��tkz(0) + (I �⇧)F
2

(0)kX + k⇧F
2

(t)kX

+ M

Z t

0

(1 + (t� s)k)e��tkF
1

(s) + (I �⇧)(F
2

)t(s)kX ds. (6.5.3)

The next task is to estimate each term of (6.5.3) in terms of the norm kz(t)kX of
the deviation z(t). Since kI �⇧kL(X )

 1 it holds that for all t � 0

k(I �⇧)F
2

(t)kX  Ck�(t)kL2
(0,`)  Ckz(t)k2X  CE1/2

0

kz(t)kX (6.5.4)

for some C > 0 independent of E
0

. Similarly, for all t � 0

kw(t)kX = kz(t) + F
2

(t)kX � (1� CE1/2
0

)kz(t)kX . (6.5.5)

From Corollary 6.5.4 we obtain

ku(t)ux(t)kL2
(0,`)  ku(t)kL2

(0,`)kux(t)kL1
(0,`)

 Cku(t)k7/8H2
(0,`)ku(t)k

9/8
L2

(0,`)  CE7/16
0

kz(t)k9/8L2
(0,`).
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The other terms in the first and second rows of F
1

can be estimated similarly. Now
we estimate the third and fourth rows of F

1

. By Sobolev embedding we have

|(A(t, y)�Ae)u(t, y)|  C(k(A(t)�Ae)u(t)kL2
(0,`) + k[(A(t)�Ae)u(t)]xkL2

(0,`)),

for y = 0, `. Expanding the term [(A(t)� Ae)u(t)]x = Ax(t)u(t) + (A(t)� Ae)ux(t),
it can be seen that each term can be estimated in the same manner as we esti-
mated u(t)ux(t) above. For the first term, we apply the Gagliardo-Nirenberg-Moser
interpolation once more to get

k(A(t)�Ae)u(t)kL2
(0,`)  kA(t)�AekL2

(0,`)ku(t)kL1
(0,`)

 CkA(t)�AekL2
(0,`)kux(t)k

1/2
L2

(0,`)ku(t)k
1/2
L2

(0,`)

 C(E
0

)kz(t)k3/2X  C(E
0

)kz(t)k9/8X .

Combining all of our estimates yields

kF
1

(t)kX  C(E
0

)kz(t)k9/8X . (6.5.6)

The next step is to estimate k(1 � ⇧)(F
2

)t(t)kX . Using the di↵erential boundary
conditions, the derivative of � with respect to t is given by

�t(t, x) = � 2AT b
2`�1(`� x)(h

0

(t)� h
0e)A(t, 0)u(t, 0)

+ 2AT b
2`�1x(h`(t)� h`e)A(t, `)u(t, `)

and by interpolation we can estimate its L2-norm by

k�t(t)kL2
(0,`)  C(|h

0

(t)� h
0e|+ |h`(t)� h`e|)kA(t)kL1

(0,`)ku(t)kL1
(0,`)

 CE1/2
0

(|h
0

(t)� h
0e|+ |h`(t)� h`e|)kA(t)k1/2L2

(0,`)ku(t)k
1/2
L2

(0,`)

 C(E
0

)kz(t)k9/8X .

Consequently,

k(1�⇧)(F
2

)t(t)kX  C(E
0

)kz(t)k9/8X . (6.5.7)

Using (6.5.4), (6.5.5), (6.5.6), (6.5.7) in (6.5.3) we have

kz(t)kX  MC(E
0

)

1� CE1/2
0

✓
(1 + tk)e��tkz(0)kX

+

Z t

0

(1 + (t� s)k)e��tkz(s)k9/8X ds

◆
(6.5.8)

whenever CE1/2
0

 C�1/2
0

< 1.
Finally, we check the Lipschitz continuity of the map t 7! kz(t)kX . From the

continuity equation, it holds that

|kA(t)�AekL2
(0,`) � kA(s)�AekL2

(0,`)|
 kA(t)�A(s)kL2

(0,`)


����
Z s

t
u(⌧)Ax(⌧) +A(⌧)ux(⌧) d⌧

����
L2

(0,`)
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⌧�0

ku(⌧)Ax(⌧) +A(⌧)ux(⌧)kL2
(0,`)

 C|t� s|max
⌧�0

(ku(⌧)kH1
(0,`)kAx(⌧)kL2

(0,`) + kA(⌧)kH1
(0,`)kux(⌧)kL2

(0,`))

 C(E
0

)|t� s|.
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for all s, t � 0. The same estimate can be obtained for u and h
0

, h` using the
momentum equation and the ODE boundary conditions, respectively. Therefore
kz(·)kX 2 Lip([0,1),R

+

). The result now easily follows from (6.5.8) and the
Gronwall-type estimate Lemma 6.5.2.
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Part III

APPENDICES





A
SEMIGROUPS AND RIESZ SPECTRAL

OPERATORS

In this section, we state the basic facts in the theory of strongly continuous semi-
groups of bounded linear operators and in particular those that have Riesz spectral
generators. We restrict ourselves to the case of Hilbert spaces. All throughout this
chapter, unless otherwise stated, we let X be a complex Hilbert space equipped with
the inner product h·, ·i and the corresponding norm is k · k.

a.1 strongly continuous semigroups

A family (T (t))t�0

of bounded linear operators in X is called a strongly continuous
semigroup or C

0

-semigroup if T (0) = I, T (t)T (s) = T (t+s) for all t, s � 0 (semigroup
property) and kT (t)x � xk ! 0 as t ! 0+ for every x 2 X (strong continuity). If
t � 0 is replaced by t 2 R then the family is called a C

0

-group. The infinitesimal
generator, or generator in short, of a C

0

-semigroup (T (t))t�0

is the linear operator
A : D(A) ! X, where

D(A) =

⇢
z 2 X : lim

t!0

+

1

t
(T (t)z � z) exists in X

�
,

defined by

Az = lim
t!0

+

1

t
(T (t)z � z).

The generator of a C
0

-semigroup is necessarily closed and its domain D(A) is dense
in X. If (T (t))t�0

is a C
0

-semigroup with generator A then the notation etA is also
used for T (t). It is well known that for a C

0

-semigroup (T (t))t�0

there exist constants
M � 1 and ! 2 R such that kT (t)k  Me!t for t � 0.

If z
0

2 D(A) then z(t) := etAz
0

solves the initial-value problem in X
(

ż(t) = Az(t), t > 0,

z(0) = z
0

.
(A.1.1)

Semigroup theory is therefore a suitable tool in studying the well-posedness of the
initial-value problem (A.1.1). This is also the motivation in writing the semigroup
T (t) as etA because etAz

0

is precisely the solution of (A.1.1) in the finite-dimensional
case. Later in Appendix B we also consider nonhomogeneous di↵erential equations.

In applications, the operator A is the one that is known and the question is whether
it generates a strongly continuous semigroup. The two main generation theorems are
the Hille-Yosida Theorem and the Lumer-Phillips Theorem. However, we only state
here the Lumer-Phillips Theorem in reflexive Banach spaces, see e.g. [25, Corollary
III.3.20]
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Theorem A.1.1 (Lumer-Phillips). A closed linear operator A : D(A) ! X in a
reflexive Banach space X generates a C

0

-semigroup of contractions if and only if A
is dissipative, i.e., <hAz, zi  0 for every z 2 D(A), and R(�I � A) = X for some
� > 0.

Let A : D(A) ! X be a linear operator in X with dense domain. Suppose that
z 2 X satisfies |hAw, zi|  Ckwk for some C � 0 and for all w 2 D(A). For such z,
define the linear operator `z : X ! C by

`zw = lim
n!1hAwn, zi

where (wn)n2N ⇢ D(A) and wn ! w in X. It is clear that the limit on the right hand
side exists and is independent of the sequence used to approach w. By assumption,
`z 2 X 0 and it is the unique bounded linear functional defined in X such that
`zw = hAw, zi for all w 2 D(A). By the Riesz Representation Theorem there exists
a unique y 2 X such that

`zw = hw, yi, 8 w 2 X.

Define the operator A⇤ : D(A⇤) ! X, where

D(A⇤) = {z 2 X : 9C � 0 such that |hAw, zi|  Ckwk 8w 2 D(A)}

by A⇤z = y where y is the Riesz representor of `z. The operator A⇤ is called the
adjoint of A. By definition, we have

hAw, zi = hw,A⇤zi, 8 w 2 D(A), z 2 D(A⇤).

If A : D(A) ! X is a densely defined closed linear operator then its adjoint is
also a densely defined closed linear operator. If A generates a C

0

-semigroup then A⇤

generates a C
0

-semigroup as well and etA
⇤
= (eAt)⇤ where the star on the right hand

side denotes the adjoint of a bounded linear operator.
A densely defined operator is called skew adjoint if A⇤ = �A. Using Lumer-

Phillips Theorem the following generation theorem for skew-adjoint operators can
be shown. For a proof, see [25, Theorem 3.24].

Theorem A.1.2 (Stone). A closed linear operator A : D(A) ! X generates a
C
0

-group of unitary operators if and only if A is skew-adjoint.

a.2 part of generators and invariant subspaces of semigroups

In certain situations, it is also important to look at the restriction of an operator to a
subspace. Let V be a subspace of X. The part of an operator A : D(A) ! X in V is
the operator AV : D(AV ) ! X, where D(AV ) = {z 2 D(A) \ V : Av 2 V }, defined
by AV z = Az. In other words, AV is the restriction of A to D(AV ). A subspace V
is said to be invariant under a linear operator T : X ! X if TV ⇢ V and it is said
to be invariant under a family (Ti)i2I of linear operators if V is invariant under Ti

for all i 2 I. Invariant subspaces of semigroups and parts of generators are related
in the following theorem. The proof can be seen in [77, Proposition 2.4.4].

Theorem A.2.1. Let X be a Hilbert space and V ⇢ X with continuous embedding.
Suppose that A generates a strongly continuous semigroup in X. If V is invariant
under (etA)t�0

and ((etA)|V )t�0

is strongly continuous in V then ((etA)|V )t�0

is a
C
0

-semigroup with generator AV . On the other hand, if AV generates a C
0

-semigroup
then etAV = (etA)|V for all t � 0.
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By taking V to be a closed subspace of X we have the following corollary.

Corollary A.2.2. Suppose that A : D(A) ! X generates a C
0

-semigroup and Y is
a closed subspace of X that is invariant under (etA)t�0

. Then AY : D(AY ) ! Y
generates a C

0

-semigroup in Y and etAY = (etA)|Y for all t � 0. In particular, if A
generates a semigroup of contractions then so is AY .

The following theorem states that the adjoint of the part of A in Y is the same as
the part of the adjoint of A in Y , whenever Y satisfies certain properties.

Theorem A.2.3. Let A : D(A) ! X generate a C
0

-semigroup and Y be a closed
subspace of X that is invariant under (etA)t�0

and (etA
⇤
)t�0

. Then (A⇤)Y = (AY )⇤.

Proof. From Corollay A.2.2, etA|Y = etAY and etA
⇤ |Y = et(A

⇤
)Y for all t � 0. For

each w, z 2 Y , using the fact that (etA)⇤ = etA
⇤
, we have

hw, (etAY )⇤zi = hetAY w, zi = hetAw, zi = hw, etA⇤
zi = hw, et(A⇤

)Y zi.

Therefore (etAY )⇤ = et(A
⇤
)Y for all t � 0. The generator of ((etAY )⇤)t�0

is (AY )⇤

while the generator of (et(A
⇤
)Y )t�0

is (A⇤)Y , and since the generator is uniquely
determined by the semigroup we conclude that (A⇤)Y = (AY )⇤.

These results can be extended to the case of groups.

Theorem A.2.4. Suppose that A generates a C
0

-group on X and Y is a closed
subspace of X invariant under the group (etA)t2R. Then AY generates a C

0

-group
on Y and etAY = (etA)|Y for all t 2 R. If the group generated by A is unitary in X,
then the group generated by AY is unitary in Y .

Proof. The first conclusion follows from the fact that Y is invariant under the semi-
groups (etA)t�0

and (e�tA)t�0

and we have etA|Y = etAY and e�tA|Y = e�tAY for
all t � 0. Suppose that A generates a unitary group on X. Then by Stone’s The-
orem A is skew-adjoint. Also, Y is invariant under (etA

⇤
)t�0

since etA
⇤
= e�tA for

t � 0. From Corollary A.2.2, AY is a generator of a C
0

-semigroup on Y and hence
AY : D(AY ) ! Y is closed and D(AY ) is dense in Y . Because A is skew-adjoint,
Az 2 Y if and only if A⇤z 2 Y . Therefore D((A⇤)Y ) = D(AY ) and from Theorem
A.2.3

(AY )
⇤z = (A⇤)Y z = A⇤z = �Az = �AY z

for all z 2 D(AY ), that is, (AY )⇤ = �AY . Thus AY is skew-adjoint and therefore it
generates a unitary group in Y according to Stone’s Theorem.

a.3 riesz bases and riesz spectral operators

Let X be a separable Hilbert space and (en)n2N be an of orthonormal basis in X. A
sequence (zn)n2N inX is called a Riesz basis inX if there exists an invertible bounded
linear operator Q : X ! X such that Qzn = en for every positive integer n. Two
sequences (wn)n2N and (yn)n2N in X are said to be biorthogonal if hwn, ymi = �nm,
where �nm is the Kronecker delta symbol. If (zn)n2N is a Riesz basis in X then
(zn)n2N and (Q⇤Qzn)n2N are biorthogonal.

Just like orthonormal bases, Riesz bases can be used to express an element in X
as a Fourier series. Indeed, each z 2 X can be uniquely written as

z =
X

n2N
hz,Q⇤Qznizn (A.3.1)
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and there exist constants C � c > 0 independent of z such that

ckzk2 
X

n2N
|hz,Q⇤Qzni|2  Ckzk2.

The series in (A.3.1) is called the Fourier series representation of z with respect to the
Riesz basis (zn)n2N and hz,Q⇤Qzni are the Fourier coe�cients. Fourier series with
respect to a Riesz basis and square summable sequences are closely related. In fact,
(an)n2N 2 `2(C) if and only if

P
n2N anzn 2 X. For the proofs of these statements,

see Young [81].
The resolvent set and the spectrum of a closed linear operator A are denoted by

⇢(A) and �(A), respectively. If � 2 ⇢(A) then R(�, A) := (�I � A)�1 is called a
resolvent of A. An element z 2 X is called a generalized eigenvector of A if there
exist � 2 C and m 2 N such that (�I � A)mz = 0. If m = 1 then z is simply
called an eigenvector and � is the corresponding eigenvalue. The point spectrum of
A, denoted by �p(A), is the set of all eigenvalues of A.

An operator A is called Riesz spectral if it has a Riesz basis consisting of generalized
eigenvectors. Let A be a Riesz spectral operator and {zn,m : n 2 N, m = 1, . . . ,mn}
be a Riesz basis consisting of generalized eigenvectors where zn,1 is an eigenvector
associated with the eigenvalue �n of A and (�nI�A)zn,k = zn,k�1

for k = 2, . . . ,mn.
Suppose that |�n| ! 1 as n ! 1, (<�n)n2N is bounded from above and (mn)n2N
is bounded. If in addition, A generates a C

0

-semigroup (T (t))t�0

then T (t) can be
written as a Fourier series. To see this, we express an element z 2 X by its Fourier
representation

z =
X

n2N

mnX

m=1

hz, z̃n,mizn,m

where z̃n,m = Q⇤Qzn,m, and use the continuity of the operator T (t) to obtain

T (t)z =
X

n2N

mnX

m=1

hz, z̃n,miT (t)zn,m.

The next task is to determine the action of the semigroup on the generalized
eigenvectors zn,m for each n and m. Let us start in the case of eigenvectors. Because
zn,1 2 D(A) it holds that

d

dt
T (t)zn,1 = T (t)Azn,1 = �nT (t)zn,1.

Therefore wn,1(t) := T (t)zn,1 solves the initial-value problem
(

ẇ(t) = �nw(t), t > 0,

w(0) = zn,1.

Therefore T (t)zn,1 = e�ntzn,1. We prove by induction that

T (t)zn,k =
k�1X

j=0

(�t)j

j!
e�ntzn,k�j , k = 1, . . . ,mn. (A.3.2)

The basis step k = 1 has been already shown above. Suppose that (A.3.2) is true for
k  mn�1. We show that it also true when k is replaced by k+1. By di↵erentiation

d

dt
T (t)zn,k+1

= T (t)Azn,k+1

= �nT (t)zn,k+1

� T (t)zn,k.
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Thus wn,k+1

(t) = T (t)zn,k+1

solves the initial-value problem

(
ẇ(t) = �nw(t)� T (t)zn,k, t > 0,

w(0) = zn,k+1

.

Using the variation of parameters formula and the induction hypothesis we have

wn,k+1

(t) = e�ntzn,k+1

�
Z t

0

e�n(t�s)T (s)zn,k ds

= e�ntzn,k+1

+
k�1X

j=0

(�t)j+1

(j + 1)!
e�ntzn,k�j

=
kX

j=0

(�t)j

j!
e�ntzn,k+1�j .

This proves the induction step. Therefore, T (t) has the Fourier representation

T (t)z =
X

n2N

mnX

m=1

m�1X

j=0

(�t)j

j!
e�nthz, z̃n,mizn,m�j .

If (<�n)n2N is both bounded from above and below then it follows from this repre-
sentation that A generates a C

0

-group.
A su�cient condition for a sequence of generalized eigenvectors to form a Riesz

basis in a separable Hilbert space is the following improvement of the theorem of
Guo [29, Theorem 6.3] by Xu and Weiss [79, Theorem 2.4]. The proof is based
on properties of discrete spectral operators [24] and Bari’s Theorem [81]. Recall
that a sequence of vectors is called linearly independent if every finite subsequence
is linearly independent.

Theorem A.3.1 (Guo-Xu-Weiss). Let A be a densely defined linear operator in
a separable Hilbert space X with a nonempty resolvent set and compact resolvents.
Suppose that (zn)n2N is a Riesz basis in X and (wn)n2N is a sequence of linearly
independent generalized eigenvectors of A such that for some m 2 N

0

, (zn+m)n2N
and (wn)n2N are quadratically close in the sense that

X

n2N
kwn � zn+mk2 < 1.

Then there exist generalized eigenvectors y
1

, . . . , ym of A such that (yn)mn=1

[(wn)n2N
is a Riesz basis in X.

By taking m = 0 in the preceding theorem, we see that a sequence of linearly
independent generalized eigenvectors of A that is quadratically close to a Riesz basis
in X is a Riesz basis in X as well.
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All throughout this chapter, X will denote a complex Hilbert space. To distinguish
the inner products and norms between di↵erent Hilbert spaces, they are usually
denoted with a subscript. For example, the inner product and the corresponding
norm in X are denoted by h·, ·iX and k · kX , respectively. Our main references in
this chapter are Salamon [70] and Tucsnak and Weiss [77] .

b.1 gelfand triples

Let V and X be Hilbert spaces such that V is a dense subset of X and the embedding
V ⇢ X is continuous. The functional defined on X

kzk⇤ = sup
v2V \{0}

|hz, viX |
kvkV

, 8 z 2 X,

is a norm on X. Denote by V ⇤ the completion of X with respect to the norm k · k⇤.
The map J : V ⇤ ! V 0, where V 0 is the space of bounded conjugate linear functionals
on V , defined by

hJz, viV 0⇥V = lim
n!1hzn, viX , 8 z 2 V ⇤, v 2 V,

where (zn)n2N is a sequence in X such that kzn�zk⇤ ! 0, is a well-defined isometric
isomorphism. By identifying elements of V ⇤ and V 0 through the isomorphism J , we
have

V ⇢ X ⇢ V 0

with continuous and dense embeddings. Such triple is called a Gelfand triple. The
space V ⇤ is called the dual of V with respect to the pivot space X and k · k⇤ is the
dual norm. Finally, we have

hz, viV 0⇥V = hz, viX , 8 z 2 X, v 2 V.

Assume that A : D(A) ! X is a densely defined operator in X with nonempty
resolvent. Then A is closed and its adjoint A⇤ : D(A⇤) ! X is also a densely defined
closed operator with nonempty resolvent. If D(A⇤) is equipped with the graph norm,
then D(A⇤) is a Hilbert space, A⇤ 2 L(D(A⇤), X) and we have the Gelfand triple
D(A⇤) ⇢ X ⇢ D(A⇤)0. Taking the adjoint of A⇤ as a bounded linear operator and
identifying X with its dual, we have Ae := (A⇤)⇤ 2 L(X,D(A⇤)0). The operator Ae

is an extension of A. Indeed, if z 2 D(A) then for all w 2 D(A⇤)

hAez, wiD(A⇤
)

0⇥D(A⇤
)

= hz,A⇤wiX = hAz,wiX = hAz,wiD(A⇤
)

0⇥D(A⇤
)

.

Therefore Aez = Az for all z 2 D(A).
It can be shown that if A generates a C

0

-semigroup in X then Ae generates a
C
0

-semigroup in D(A⇤)0 and (etAe)|X = etA for all t � 0, [77, Proposition 2.10.4].
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b.2 nonhomogeneous initial value problems

Let A : D(A) ! X be a generator of a C
0

-semigroup in X and Ae be the extension
of A constructed in the previous section. Suppose that f 2 L1

loc

([0,1);D(A⇤)0) and
z
0

2 D(A⇤)0. Consider the following nonhomegeneous initial value problem in the
extended space D(A⇤)0

(
ż(t) = Aez(t) + f(t), t > 0,

z(0) = z
0

.
(B.2.1)

A function z 2 L1

loc

([0,1);X)\C([0,1);D(A⇤)0) is called a weak solution in D(A⇤)0

of (B.2.1) if for every w 2 D(A⇤) we have

hz(t)� z
0

, wiD(A⇤
)

0⇥D(A⇤
)

=

Z t

0

hz(s), A⇤wiX + hf(s), wiD(A⇤
)

0⇥D(A⇤
)

ds

for every t � 0. If z is a weak solution, then

z(t) = z
0

+

Z t

0

Aez(s) + f(s) ds, t � 0, (B.2.2)

where the integral is computed with respect to the norm ofD(A⇤)0. As a consequence,
z is absolutely continuous with values in D(A⇤) and has a derivative, computed with
respect to the norm of D(A⇤), for a.e. t � 0 and it is given by the integrand in
(B.2.2).

Weak solutions defined above is adapted from Tucsnak and Weiss [77]. This con-
cept is stronger than the one in the literature due to the additional local integrability
condition with respect to the norm in X, see [19, Definition 3.1.6] for example. If
z is a weak solution of (B.2.2) in D(A⇤)0 then necessarily it is given by the variation
of parameters formula

z(t) = etAez
0

+

Z t

0

e(t�s)Aef(s) ds. (B.2.3)

In particular, weak solutions are unique. The function z defined by (B.2.3) is called
the mild solution of (B.2.1). Thus, every weak solution is a mild solution. However,
the converse it not necessarily true.

A su�cient condition for the existence of a weak solution of (B.2.1) is that z
0

2 X
and f 2 H1

loc

([0,1);D(A⇤)0) and, moreover, the weak solution has the regularity
z 2 C([0,1);X) \ C1([0,1);D(A⇤)0), see [77, Theorem 4.1.6]. In other words,
for initial data in X the trajectories lie in X even though the forcing functions have
values in the extended space D(A⇤)0 and the di↵erential equation is posed in D(A⇤)0.

b.3 control and observation operators

In this section, we are interested in the existence of a weak solution in D(A⇤)0 for
the initial-value problem

(
ż(t) = Aez(t) +Bu(t) + F (t), t > 0,

z(0) = z
0

,
(B.3.1)
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where z
0

2 X, u 2 L2

loc

([0,1);U), U is a Hilbert space, B 2 L(U,D(A⇤)0) and
F 2 H1

loc

([0,1);D(A⇤)0). The function u is called an input, U is the input space
and B is called a control operator.

Formally, if (B.3.1) has a weak solution in D(A⇤)0 then it must be given by the
variation of parameters formula

z(t) = etAz
0

+

Z t

0

esAeBu(s) ds+

Z t

0

esAeF (s) ds.

With this observation, we are led to the following definition. Given an operator B 2
L(U,D(A⇤)0) and ⌧ � 0 we define the controllability map �⌧ 2 L(L2([0,1);U), D(A⇤)0)
by

�⌧u =

Z ⌧

0

esAeBu(s) ds.

The control operator B 2 L(U,D(A⇤)0) is said to be an admissible for (etA)t�0

if ran �⌧ ⇢ X for some ⌧ > 0. For admissible control operators, the associated
operator �⌧ can be regarded as a bounded operator into X. For a proof, see [77,
Proposition 4.2.2].

Proposition B.3.1. If B 2 L(U,D(A⇤)0) is an admissible control operator for
(etA)t�0

then �t 2 L(L2([0,1);U), X) for every t � 0.

Admissibility of the control operator is su�cient for the existence and uniqueness
of a weak solution in D(A⇤)0 for the problem (B.3.1) as stated in the succeeding
theorem.

Theorem B.3.2. Let B 2 L(U,D(A⇤)0) be an admissible control operator for (etA)t�0

.
For every z

0

2 X, u 2 L2

loc

([0,1);U) and F 2 H1

loc

([0,1), D(A⇤)0),

z(t) = etAz
0

+ �tu+

Z t

0

esAeF (s) ds.

is the unique weak solution of (B.3.1) and it satisfies

z 2 C([0,1);X) \H1

loc

([0,1);D(A⇤)0).

Proof. Consider the initial-value problems
(

ẏ(t) = Aey(t) +Bu(t), t > 0,

y(0) = z
0

,
(B.3.2)

and
(

ẇ(t) = Aew(t) + F (t), t > 0,

w(0) = 0.
(B.3.3)

Then according to [77, Proposition 4.2.5], y(t) = etAz
0

+�tu is the weak solution
of (B.3.2) and y 2 C([0,1);X) \H1

loc

([0,1);D(A⇤)0). According to Appendix B.2,
(B.3.3) has a weak solution w 2 C([0,1);X)\C1([0,1);D(A⇤)0) and it is given by
the mild solution

w(t) =

Z t

0

esAeF (s) ds

It is easy to see that z = y + w is the weak solution in D(A⇤)0 of (B.3.1) and has
the desired regularity.
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Let Y be a Hilbert space and C 2 L(D(A), Y ) where D(A) is equipped with the
graph norm. Consider the system

8
><

>:

ż(t) = Az(t), t > 0,

y(t) = Cz(t), t > 0,

z(0) = z
0

,

(B.3.4)

where z
0

2 D(A). Here, y is called the output, Y is the output space and C is an
observation operator. The output y can be easily solved and it is given by y(t) =
CetAz

0

.
For each ⌧ � 0, define the observability map  ⌧ 2 L(D(A), L2([0,1);Y )) by

( ⌧z)(t) = 1
[0,⌧ ](t)CetAz, t � 0,

where 1
[0,⌧ ] is the indicator function of [0, ⌧ ]. The observation operator C 2 L(D(A), Y )

is said to be admissible for (etA)t�0

if there exist ⌧ > 0 and M⌧ � 0 such that

Z ⌧

0

kCetAzk2Y dt  M⌧kzk2X , 8 z 2 D(A). (B.3.5)

Therefore, C is admissible for the semigroup generated by A if and only if the
operator  ⌧ can be extended to a bounded linear operator  e

⌧ 2 L(X,L2([0,1);Y )).
By density of D(A) in X, this extension is unique. The definition of admissibility of
observation operators is independent of the time ⌧ > 0. This is the content of the
following proposition. A proof can be found in [77, Proposition 4.3.2].

Proposition B.3.3. If C 2 L(D(A), Y ) is an admissible observation operator for
(etA)t�0

then  t has a unique extension  e
t 2 L(X,L2([0,1);Y )) for every t � 0.

Admissibility of control and observation operators are dual to each other. More,
precisely we have the following theorem. For a proof, see [77, Theorem 4.4.3].

Theorem B.3.4. The operator B 2 L(U,D(A⇤)) is an admissible control operator
for the semigroup generated by A if and only if B⇤ 2 L(D(A⇤), U) is an admissible
observation operator for the semigroup generated by A⇤.

This means that the set-theoretic condition ran �⌧ ⇢ X is equivalent to the alge-
braic condition

Z ⌧

0

kB⇤etA
⇤
zk2U dt  M⌧kzk2X , 8 z 2 D(A⇤), (B.3.6)

for some M⌧ > 0 independent of z. For concrete systems, the inequality (B.3.6) is
easier to verify. For example, if the semigroup (etA

⇤
)t�0

can be expressed as a Fourier
series then (B.3.6) can be verified using tools from nonharmonic Fourier analysis.

Let B 2 L(U,D(A⇤)0) be an admissible control operator for the semigroup gen-
erated by A. The pair (A,B) is said to be exactly controllable in time ⌧ > 0 if
ran �⌧ = X. Exact controllability is equivalent to the statement that for every
z
0

, z
1

2 X there exists u 2 L2((0, ⌧);U) such that the weak solution of the system

(
ż(t) = Aez(t) +Bu(t), 0 < t < ⌧,

z(0) = z
0

,
(B.3.7)
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in D(A⇤)0 satisfies z(⌧) = z
1

. The pair (A,B) is said to be approximately controllable
in time ⌧ > 0 if ran �⌧ is dense in X. This is equivalent to the following: For every
z
0

, z
1

2 X and for every ✏ > 0 there exists u 2 L2((0, ⌧);U) such that the weak
solution of (B.3.7) satisfies kz(⌧)� z

1

kX < ✏.
Suppose that C 2 L(D(A), X) is an admissible observation operator for the C

0

-
semigroup (etA)t�0

. The pair (A,C) is said to be exactly observable in time ⌧ > 0 if
there exists m⌧ > 0 such that

Z ⌧

0

kCetAzk2Y dt � m⌧kzk2X , 8 z 2 D(A). (B.3.8)

The inequality (B.3.8) holds if and only if  ⌧ is bounded from below. Therefore
exact observability is equivalent to the statement that any initial state z

0

2 X can
be recovered continuously through the observation y(t) = Cz(t), 0  t  ⌧ , through
z
0

= ( ⇤
⌧ ⌧ )

�1 ⇤
⌧y. The pair (A,C) is said to be approximately observable in time

⌧ > 0 if ker  ⌧ = {0}. Approximate observability means that the the only initial
data with zero output in [0, ⌧ ] is the zero initial data.

The controllability and observability concepts defined above are dual to each other,
see [77, Theorem 11.2.1]

Theorem B.3.5. Assume that B 2 L(U,D(A⇤)0) is an admissible control operator
for the semigroup generated by A and ⌧ > 0. The pair (A,B) is exactly controllable
in time ⌧ if and only if (A⇤, B⇤) is exactly observable in time ⌧ . The pair (A,B) is
approximately controllable in time ⌧ if and only if (A⇤, B⇤) is approximately observ-
able in time ⌧ .

b.4 nonhomogeneous boundary control systems

Let Z,X and U be Hilbert spaces and Z ⇢ X with continuous embedding. Consider
the abstract initial-boundary value problem in X

8
><

>:

ż(t) = Lz(t) + F (t), 0 < t < T,

Gz(t) = u(t), 0 < t < T,

z(0) = z
0

,

(B.4.1)

where z
0

2 X, F 2 H1((0, T );X), u 2 L2((0, T );U), L 2 L(Z,X) and G 2 L(Z,U).
The spaces Z,X and U are called the solution space, state space and input space,
respectively. The system (B.4.1) arises in the control of partial di↵erential equations
where the control acts on the whole or a part of the boundary and in ordinary
di↵erential equations with delay in their input, see Salamon [70] for examples.

Definition B.4.1. Let L 2 L(Z,X) and G 2 L(Z,U). The pair (L,G) is called a
boundary control system if ker G is dense in X, ran G = U and there exists � > 0
such that ker (�I � L) \ ker G = {0} and (�I � L)(ker G) = X.

If (L,G) is a boundary control system then the linear operator A : D(A) ! X,
where D(A) = ker G, defined by Az = Lz is a densely defined operator on X and
A 2 L(D(A), X). Thus � 2 ⇢(A) by the Banach Inverse Theorem. Therefore A
is closed and from Appendix B.1 the operator A admits a unique extension Ae 2
L(X,D(A⇤)0). For the proof of the following theorem, see [77, Proposition 10.1.2].
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Theorem B.4.2. Let (L,G) be a boundary control system. Then there exists a
unique operator B 2 L(D(A⇤)0, U), called the control operator associated with (L,G),
such that

L = Ae +BG.

For boundary control systems, the IBVP (B.4.1) in X can be written as a pure
IVP in the extended space D(A⇤)0. Using Theorem B.4.2, the following theorem can
be shown, see [77, Remark 10.1.4] for the homogeneous case, i.e. F = 0.

Theorem B.4.3. Let (L,G) be a boundary control system and F 2 H1((0, T );X).
A function z 2 C1([0, T ];X)\C([0, T ];Z) satisfies the abstract initial boundary value
problem (B.4.1) in X if and only if it satisfies the following pure initial value problem
in D(A⇤)0

(
ż(t) = Aez(t) +Bu(t) + F (t), 0 < t < T,

z(0) = z
0

,
(B.4.2)

where B is the control operator associated with (L,G).

Su�cient conditions for the existence of solution of (B.4.1) are given in the follow-
ing theorem. The proof of this theorem is similar to the homogeneous case in [77,
Proposition 10.1.8].

Theorem B.4.4. Let (L,G) be a boundary control system such that A generates a C
0

-
semigroup in X and the corresponding control operator B is admissible for (etA)t�0

.
Then for every T > 0, z

0

2 Z, u 2 H1((0, T );U) and F 2 H1((0, T );X) such that
Gz

0

= u(0), the system (B.4.1) has a unique solution z 2 C1([0, T ];X)\C([0, T ];Z).
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C
PSEUDODIFFERENTIAL AND

PARADIFFERENTIAL CALCULUS

In this section we present a short survey of results in pseudodi↵erential and parad-
i↵erential calculus that will be needed in deriving symmetrizers for boundary value
problems. For the proofs and details we refer the readers to [2, 4, 9, 10, 15, 17,
36, 54, 57, 56, 74].

c.1 pseudodifferential operators

One of the motivations of studying pseudodi↵erential calculus is due to the obser-
vation that a partial di↵erential operator can be written in terms of the Fourier
transform through an appropriate symbol. To illustrate this, consider the di↵eren-
tial operator

L =
X

|↵|m

a↵(x)@
↵

where a↵ 2 C1
b (Rd). Using the properties of the Fourier transform we obtain

(Lu)(x) =
X

|↵|m

a↵(x)@
↵u(x) =

X

|↵|m

a↵(x)[F
�1((i ·)↵Fu)](x)

=
1

(2⇡)d

Z

Rd
eix·⇠a(x, ⇠)Fu(⇠) d⇠

for every u 2 S (Rd), where

a(x, ⇠) =
X

|↵|m

(i⇠)↵a↵(x) (C.1.1)

and Fu is the Fourier transform of u. Thus the di↵erential operator L can be
written in terms of the Fourier transform and the function a, called the symbol of L.
Pseudodi↵erential calculus aims to generalize this to symbols that are not necessarily
polynomial in ⇠.

Let m 2 R and N 2 N. Denote by Sm the set of all a 2 C1(Rd⇥Rd;CN⇥N ) such
that for all ↵,� 2 Nd

0

there is C↵,� > 0 such that

sup
x2Rd

|@↵x @
�
⇠ a(x, ⇠)|  C↵,�(1 + |⇠|2)(m�|�|)/2.

The elements of Sm are called symbols of orderm. In light of the motivation discussed
above, we call the variable x the Fourier variable and ⇠ its associated frequency. This
is a special class of the more general type of symbols Sm

%,�, 0  �  %  1, in [36].
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The set Sm
%,� consists of all a 2 C1(Rd⇥Rd;CN⇥N ) with the property that for every

↵,� 2 Nd
0

there is C↵,� > 0 such that

sup
x2Rd

|@↵x @
�
⇠ a(x, ⇠)|  C↵,�(1 + |⇠|2)(m+�|↵|�%|�|)/2.

Indeed, we have Sm = Sm
1,0. We let S�1 =

T
m2R Sm and S1 =

S
m2R Sm.

If n  m then Sn ⇢ Sm. If a 2 Sm and b 2 Sn then ab 2 Sm+n and @↵x @
�
⇠ a 2

Sm�|�|. In other words, the product of two symbols is again a symbol having an
order equal to the sum of the orders of the symbol. Likewise, di↵erentiation with
respect to the frequency ⇠ reduces the order of the symbol by the same order as that
of the di↵erentiation.

Let us cite some examples of symbols. The function a defined by (C.1.1) is a
symbol of order m. These symbols are called di↵erential symbols. It is clear that
�m(⇠) := (1 + |⇠|2)m/2 2 Sm for any m 2 R and these are called Sobolev symbols. It
can be checked that S (Rd) ⇢ S�1.

Our last example deals with homogeneous functions. A function f : Rd ! CN is
said to be homogeneous degree m if f(t⇠) = tmf(⇠) for all ⇠ 6= 0 and t > 0. If f is
di↵erentiable at all points except at 0 and it is homogeneous degreem then @jf is also
homogeneous of degree m�1 for all 1  j  d. To see this, define g(s) = f(t(⇠+sej))
and h(s) = tmf(⇠ + sej), where ej denotes the canonical unit vector in Rd in the
jth direction. Because f is homogeneous, g(s) = f(s) whenever ⇠ 6= 0, t > 0 and |s|
is small enough. The chain rule implies that g0(0) = rf(t⇠) · (tej) = t@jf(t⇠) and
h0(0) = tmrf(⇠) · ej = tm@jf(⇠). Hence @jf(t⇠) = tm�1@jf(⇠), which proves that
@jf is homogeneous degree m� 1.

Assume that a 2 C1(Rd ⇥ Rd \ {0};CN⇥N ) is bounded as well as all derivatives
with respect to x and homogeneous degree m in ⇠. Then there exists ã 2 Sm such
that a = ã in |⇠| � 1. Indeed, let us introduce a frequency cut-o↵ function � 2 D(Rd)
such that � vanishes in a neighborhood of 0 and � = 1 for |⇠| � 1. Then the function

ã(x, ⇠) = �(⇠)a(x, ⇠)

satisfies the requirement. If �
1

is another frequency cut-o↵ function which vanishes
in a neighborhood of 0 and is equal to 1 for |⇠| � 1 and ã

1

= �
1

a then ã = a = ã
1

for |⇠| � 1 so that ã� ã
1

2 D(Rd) ⇢ S�1. Therefore ã is unique modulo S�1. We
say that a property of a symbol is unique modulo Sm for some m 2 R[ {±1} if for
any other symbol having the property their di↵erence is a symbol in Sm.

For each a 2 Sm, the operator Op(a) : S (Rd) ! S (Rd) defined by

(Op(a)u)(x) =
1

(2⇡)d

Z

Rd
eix·⇠a(x, ⇠)Fu(⇠) d⇠

is well-defined and continuous. The map Op : Sm ! B(S (Rd)) is injective. Here,
B(S (Rd)) denotes the space of continuous linear operators from S (Rd) into itself.
The operator Op(a) is called a pseudodi↵erential operator of order m and a is called
its symbol.

For each a 2 Sm it can be shown that Op(a)⇤ 2 Op(Sm). However, the symbol
of Op(a)⇤ is not the same as the adjoint a⇤ of a but it di↵ers from a⇤ by a lower
order symbol. More precisely, Op(a)⇤ � Op(a⇤) = Op(b) for some b 2 Sm�1. With
this information, the operator Op(a) which is originally defined in S (Rd) can be
extended to S 0(Rd) by duality. The map Op(a) : S 0(Rd) ! S 0(Rd) is defined by

hOp(a)u,'iS 0
(Rd

)⇥S (Rd
)

= hu,Op(a)⇤'iS 0
(Rd

)⇥S (Rd
)

, u 2 S 0(Rd), ' 2 S (Rd).
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C.2 pseudodifferential operators with parameter

This extension maps Sobolev spaces into Sobolev spaces continuously, i.e., Op(a) 2
L(Hs(Rd);Hs�m(Rd)) for every s 2 R whenever a 2 Sm. In particular, operators
associated with symbols of negative order are regularizing.

Given two operators F and G, we define the commutator [F,G] = FG�GF when-
ever the products FG and GF are well-defined. For pseudo-di↵erential operators
corresponding to mollifiers, the following result will be used. For a proof, see [9,
Theorem C.14].

Theorem C.1.1. Let ⇢✏(x) = ✏�d⇢(x/✏) be a mollifier with the properties ⇢ 2 D(Rd),
⇢ � 0 and

R
Rd ⇢ = 1. Let R✏ = Op(F⇢✏). For all a 2 W 1,1(Rd), u 2 L2(Rd) and

j = 1, . . . , d there exists C > 0 independent of u, a, and ✏ 2 (0, 1) such that

k[R✏, a@j ]ukL2
(Rd

)

 CkakW 1,1
(Rd

)

kukL2
(Rd

)

(C.1.2)

and
lim
✏!0

k[R✏, a@j ]ukL2
(Rd

)

= 0. (C.1.3)

The previous theorem is used in proving that weak solutions of boundary value
problems are strong solutions. This is done thanks to the regularizing operator
R✏. However, we also need an analogous result for the generalized trace of weak
solutions, which have less regularity than the solution. For this, we need the following
generalization of Theorem C.1.1: If a 2 W 1,1(Rd) and u 2 H�1(Rd) then

lim
✏!0

k[R✏, a]ukL2
(Rd

)

= 0. (C.1.4)

Indeed, given u 2 H�1(Rd) there exist kj 2 C and uj 2 L2(Rd) for j = 0, 1, . . . , d
such that

u = k
0

u
0

+
dX

j=1

kj@juj .

Since au
0

, u
0

2 L2(Rd) we have [R✏, a]u0 = R✏(au0) � aR✏u0 ! 0 in L2(Rd). For
each j the commutator [R✏, a]@juj can be rewritten as follows

[R✏, a]@juj = R✏(a@juj)� aR✏@juj

= R✏(a@juj)� a@j(R✏uj)� a(R✏@juj � @j(R✏uj))

= [R✏, a@j ]uj � a[R✏, @j ]uj .

Because the constant identity matrix IN is in W 1,1(Rd) and uj 2 L2(Rd), according
to Theorem C.1.1 we have

k[R✏, a]@jujkL2  k[R✏, a@j ]ujkL2 + kakL1k[R✏, @j ]ujkL2 ! 0, as ✏! 0.

Taking the sum for j we obtain (C.1.4).

c.2 pseudodifferential operators with parameter

In deriving a priori estimates for boundary value problems with smooth coe�cients,
the weighted Lebesgue spaces L2(R⇥ (0, 1); e��t dt dx) with � � 1 will be used. For
this reason we need a parameter version of the pseudodi↵erential calculus that was
introduced above.
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Without confusion, we use the same notation Sm to denote the set of all functions
a : Rd ⇥ Rd ⇥ [1,1) ! CN⇥N with a(·, ·, �) 2 C1(Rd ⇥ Rd;CN⇥N ) and for every
� � 1 and for each ↵,� 2 Nd

0

there exists C↵,� > 0 such that

sup
x2Rd

|@↵x @
�
⇠ a(x, ⇠, �)|  C↵,�(�

2 + |⇠|2)(m�|�|)/2.

The space Sm is a Fréchet space by taking the best constants C↵,� in the above
inequality as seminorms.

A family {P �}���0 ⇢ Op(Sm), where �
0

� 1, is said to be of order m if for each
s 2 R there exists Cs > 0 such that

sup
���0

kP �kL(Hs
�(Rd

);Hs�m
� (Rd

))

 Cs.

If {P �}���0 is a family of order m < 0 then we have

kP �ukL2
(Rd

)

 C�mkukL2
(R). (C.2.1)

This estimate is important in absorption arguments, cf. [9, Remark C.2].
Given a 2 Sm the operator Op�(a) : S (Rd) ! S (Rd) defined by

Op�(a) =
1

(2⇡)d

Z

Rd
eix·⇠a(x, ⇠, �)Fu(⇠) d⇠

after extending to S 0(Rd) defines a bounded linear operator fromHs
�(Rd) toHs�m

� (Rd)
for each s 2 R and for a fixed � � 1. The following theorem states that for each
fixed s 2 R the operator norms of Op�(a) are uniformly bounded in �.

Theorem C.2.1. Let m,n 2 R, a 2 Sm and b 2 Sn.

1. {Op�(a)}��1

is a family of order m.

2. {Op�(a)⇤ �Op�(a⇤)}��1

is a family of order m� 1.

3. {Op�(a)Op�(b)�Op�(ab)}��1

is a family of order m+ n� 1

4. if either a or b is scalar-valued then {[Op�(a),Op�(b)] � Op�([a, b])}��1

is a
family of order m+ n� 1.

Next, we state two parameter versions of the Garding’s inequality.

Theorem C.2.2 (Garding’s Inequality). Suppose that a 2 S2m satisfies 2<a(x, ⇠, �) �
↵(�2 + |⇠|2)mIN for some ↵ > 0 and for all (x, ⇠, �) 2 Rd ⇥ Rd ⇥ [1,1). Then for
every # 2 (0,↵) there exists �

0

= �
0

(#) � 1 such that

<hOp�(a)u, uiH�m
� (Rd

)⇥Hm
� (Rd

)

� #kuk2Hm
� (Rd

)

for all � � �
0

and u 2 Hm
� (Rd).

Theorem C.2.3 (Sharp Garding’s Inequality). If a 2 S2m satisfies 2<a(x, ⇠, �) � 0
for all (x, ⇠, �) 2 Rd ⇥ Rd ⇥ [1,1) then there exist C > 0 and �

0

� 1 such that

<hOp�(a)u, uiH�m
� (Rd

)⇥Hm
� (Rd

)

� �Ckuk2
H

m� 1
2

� (Rd
)

for every � � �
0

and u 2 Hm
� (Rd).

206



C.3 paradifferential operators with parameter

c.3 paradifferential operators with parameter

The concepts introduced in the previous section apply to problems with smooth
coe�cients. These definitions can be also extended to symbols with limited regularity
in the variable x and such formulations are useful for problems with coe�cients
having limited regularity.

We begin by a defining a symbol. Given m 2 R and k 2 N
0

we denote by �mk the
set of all functions a : Rd ⇥ Rd ! CN⇥N satisfying the following properties.

1. a(x, ·, �) 2 C1(Rd) for almost all x 2 Rd and for every � � 1

2. For every (⇠, �,�) 2 Rd⇥ [1,1)⇥Nd
0

, @�⇠ a(·, ⇠, �) 2 W k,1(Rd) and there exists
C� > 0 such that

k@�⇠ a(·, ⇠, �)kWk,1
(Rd

)

 C�(�
2 + |⇠|2)(m�|�|)/2.

It is clear that Sm ⇢ �mk for every k 2 N
0

. The elements of �mk are called symbols of
order m and regularity k.

In contrast to symbols in Sm, symbols in �mk , in general, are not associated with
bounded operators between Sobolev spaces. However, this is possible for the class of
symbols in �mk with some spectral properties. Let ⌃m

k be the set of all a 2 �mk such
that for some ✏ 2 (0, 1) independent of (⇠, �) we have

supp F (a(·, ⇠, �)) ⇢ B(0; ✏(�2 + |⇠|2) 1
2 ) (C.3.1)

for all ⇠ 2 Rd and � � 1. The symbols in ⌃m
k are necessarily C1 with respect to x,

see [35, Theorem 7.1.14] for example.
Symbols in ⌃m

k can be associated with bounded operators between weighted Sobolev
spaces. For the proof of the following theorem, we refer to [17].

Theorem C.3.1. For all a 2 ⌃m
k , k � 0, one can associate a family of operators

{Op�(a)}��1

, where Op�(a) : F�1(E 0(Rd)) ! C1
b (Rd) is defined by

(Op�(a)u)(x) =
1

(2⇡)d
heix·a(x, ·, �),FuiC1

(Rd
)⇥E 0

(Rd
)

This definition of Op�(a) coincides with the one defined when a 2 Sm. For all s 2 R
and � � 1, Op�(a) extends in a unique way into an element in L(Hs

�(Rd), Hs�m
� (Rd))

and there exists Cs > 0 such that

sup
��1

kOp�(a)kL(Hs
�(Rd

),Hs�m
� (Rd

))

 Cs.

It can be shown that ⌃m
k ⇢ Sm

1,1 where Sm
1,1 is the class of symbols defined in

Appendix C.1. For a proof see [9] or [17].
The next step is how to obtain a symbol in ⌃m

k from a given symbol in �mk . We can
do this by multiplying an appropriate cut-o↵ function on the Fourier side so that the
spectral condition (C.3.1) is satisfied. The idea is to cut-o↵ the higher frequencies
associated to the variable of limited regularity, i.e., with respect to the variable x.

A function � 2 C1(Rd ⇥ Rd ⇥ [1,1); [0,1)) is called an admissible frequency
cut-o↵ function if there exist 0 < ✏

1

< ✏
2

< 1 satisfying

�(⌘, ⇠, �) =

(
1, if |⌘|  ✏

1

(�2 + |⇠|2) 1
2

0, if |⌘| � ✏
2

(�2 + |⇠|2) 1
2
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and if for all ↵,� 2 Nd
0

there exists C↵,� > 0 such that

|@↵⌘ @
�
⇠ �(⌘, ⇠, �)|  C↵,�(�

2 + |⇠|2)�(|↵|+|�|)/2, 8(⇠, �) 2 Rd ⇥ [1,1). (C.3.2)

An example of an admissible frequency cut-o↵ function based on the parameter
version of the Littlewood-Paley decomposition can be found [9, p. 489].

By taking the convolution of the inverse Fourier transform of an admissible fre-
quency cut-o↵ function and a symbol in �mk one obtains a symbol in ⌃m

k . This is the
content of the following proposition, see [17] for a proof.

Proposition C.3.2. Let � be an admissible cut-o↵ function. The operator R� :
�mk ! ⌃m

k given by

(R�(a))(·, ⇠, �) = F�1(�(·, ⇠, �)) ? a(·, ⇠, �) (C.3.3)

is well-defined and

R�(�mk ) ⇢ ⌃m
k = {a 2 �mk : supp F (a(·, ⇠, �)) ⇢ B(0; ✏

2

(�2 + |⇠|2) 1
2 }.

If k � 1 then a � R�(a) 2 �m�1

k�1

for all a 2 �mk . In particular, if �
1

and �
2

are

two admissible frequency cut-o↵ functions then R�1(a) � R�2(a) 2 �m�1

k�1

for every
a 2 �mk with k � 1.

Suppose that � is an admissible frequency cut-o↵ function. For each element
a 2 �mk we define the operator T�,�a for � � 1 by

T�,�a = Op�(R�(a)).

The operator T�,�a is called a paradi↵erential operator with parameter � � 1 asso-
ciated with the symbol a and the cut-o↵ function �. For each b 2 W k,1(Rd) with
k � 1 one can show that

T�,�
i|↵|⇠↵b

= T�,�b @↵. (C.3.4)

In deriving a priori estimates for partial di↵erential operators with coe�cients that
are at least Lipschitz, it is enough to consider their paradi↵erential version and use
the following error estimate in [17].

Theorem C.3.3. There exists C > 0 such that for all a 2 W 1,1(Rd), u 2 L2(Rd)
and � � 1 we have

ka@ju� T�,�a @jukL2
(Rd

)

+ kau� T�,�a ukH1
�(Rd

)

 CkakW 1,1
(Rd

)

kukL2
(Rd

)

.

Finally, we also have the following results similar to pseudodi↵erential operators
with parameter.

Theorem C.3.4. For all a 2 �m
1

and b 2 �n
1

we have ab 2 �m+n
1

. Moreover,
{T�,�a }��1

, {(T�,�a )⇤ � T�,�a⇤ }��1

, {T�,�ab }��1

and {T�,�a T�,�b � T�,�ab }��1

are families
of paradi↵erential operators of orders m, m� 1, m+ n, and m+ n� 1, respectively.

Theorem C.3.5 (Garding’s Inequality). Assume that a 2 �2m
1

satisfies 2<a(x, ⇠, �) �
↵(�2 + |⇠|2)mIN for some ↵ > 0 and for all (x, ⇠, �) 2 Rd ⇥Rd ⇥ [1,1). Then there
exist �

0

� 1 and C > 0 such that for all � � �
0

and u 2 Hm
� (Rd) we have

<hT�,�a u, uiH�m
� (Rd

)⇥Hm
� (Rd

)

� ↵

4
kuk2Hm

� (Rd
)

.
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[22] W. Desch, E. Fas̆angová, J. Milota, and G. Propst, Stabilization through
viscoelastic boundary damping: a semigroup approach, Semigroup Forum, 80
(2010), pp. 405–415.

[23] J. Diestel and J. J. Uhl, Vector Measures, Amer. Math. Soc., 1977.

[24] N. Dunford and J. T. Schwartz, Linear Operators, Part III: Spectral Op-
erators, Wiley-Interscience, New York, 1971.

[25] K. J. Engel and R. Nagel, One–Parameter Semigroups for Linear Evolution
Equations, Springer–Verlag, New York, 2000.

[26] K. Fellner and G. Raoul, Stability of stationary states of non-local inter-
action equations, Mathematical and Computer Modelling, 53 (2011), pp. 1436–
1450.
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dimensional wave equation with boundary oscillators, Numerical Functional
Analysis and Optimization, 19 (1998), pp. 57–70.

[40] B. Jacob and H. Zwart, Linear Port Hamiltonian Systems on Infinite-
Dimensional Spaces, Birkhäuser, Basel, 2012.
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Waves, Birkhäuser, Boston, 2009.

[50] J.-L. Lions, Contrôle des systèmes distribués singuliers, Gauthiers-Villars,
Paris, 1968.

[51] P. L. Lions, B. Perthame, and E. Tadmor, Kinetic formulation for the
isentropic gas dynamics and p-system, Comm. Math. Phys., 163 (1994), pp. 415–
431.

[52] H. Liu, J. Wang, and T. Yang, Stability of a relaxation model with nonconvex
flux, SIAM J. Math. Anal., 29 (1998), pp. 18–29.

[53] Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems, Chap-
man and Hall/CRC, Washington D.C., 1999.

[54] G. Métivier, Para-di↵erential Calculus and Applications to the Cauchy
Problem for Nonlinear Systems. Available from http://www.math.u-
bordeaux1.fr/ gmetivie/Total.Mai08v2.pdf.

[55] , Stability of multidimensional shocks, in Advances in the Theory of Shock
Waves, ed. H. Freistühler and A. Szepessy, Birkhäuser, Boston, (2001), pp. 25–
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