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Abstract. A coupled system of partial differential equations modeling the interaction of a fluid and a structure with delay in
the feedback is studied. The model describes the dynamics of an elastic body immersed in a fluid that is contained in a vessel,
whose boundary is made of a solid wall. The fluid component is modeled by the linearized Navier-Stokes equation, while
the solid component is given by the wave equation neglecting transverse elastic force. Spectral properties and exponential
or strong stability of the interaction model under appropriate conditions on the damping factor, delay factor and the delay
parameter are established using a generalized Lax-Milgram method.
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1. Introduction

Consider an elastic body occupying a bounded domain Ωs ⊂ R
d, where d = 2 or d = 3, and it is immersed

in a fluid that is contained in a vessel. Suppose that the boundary Γf of the vessel is made of a solid
wall. We denote by Ωf ⊂ R

d the region where the fluid is occupied and Γs the interface between the
solid and the fluid. All throughout this paper, we assume that Γs and Γf are sufficiently smooth and that
Γs ∩ Γf = ∅. Let u : (0,∞) × Ωf → R

d, p : (0,∞) × Ωf → R and w : (0,∞) × Ωs → R
d represent the

velocity field of the fluid, the pressure in the fluid and the displacement of the structure, respectively. A
linear model describing the interaction of the fluid and the structure is given by the coupled linearized
incompressible Navier-Stokes wave system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut(t, x) − Δu(t, x) + ∇p(t, x) = 0, in (0,∞) × Ωf ,

div u(t, x) = 0, in (0,∞) × Ωf ,

u(t, x) = 0, on (0,∞) × Γf ,

u(t, x) = wt(t, x), on (0,∞) × Γs,

wtt(t, x) − Δw(t, x) = F (t, x), in (0,∞) × Ωs,
∂w

∂ν
(t, x) =

∂u

∂ν
(t, x) − p(t, x)ν(x), on (0,∞) × Γs,

u(0, x) = u0(x), in Ωf ,

w(0, x) = w0(x), wt(0, x) = w1(x), in Ωs.

(1.1)

Here, F can be viewed as a source or control on the structure. The unit vector ν is outward normal to the
fluid domain Ωf , and hence, it will be inward to the structure domain Ωs. In this model, the boundary
of the solid is stationary and as mentioned in [8], this assumption is suitable under small and rapid
oscillations, that is, when the displacement of the solid is small compared to its velocity. The boundary
conditions on the interface Γs represent the continuity of the velocities and stresses for the fluid and solid
components. On the other hand, on Γf we have the no-slip boundary condition.
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In this paper, we study the system (1.1) using the velocity of the structure as the feedback law

F (t, x) = −k0wt(t − τ, x) − k1wt(t, x), in (0,∞) × Ωs, (1.2)

where k1 > 0 is the damping factor, k0 > 0 is the delay factor, and τ > 0 is a constant delay. Physically,
this means that a fraction of the feedback will be felt by the system after some time and the constant τ
signifies the extent of the delay. The constants k1 and k0 quantify the strengths of damping and delay in
the feedback, respectively. The initial history for the velocity of the structure is denoted by

wt(θ, x) = g(θ, x), in (−τ, 0) × Ωs. (1.3)

Recent interests in fluid–structure models include numerical and experimental studies, and lately,
there are works that lean toward rigorous mathematical analysis. The model (1.1) is based on the works
of Avalos and Trigianni [3,6]. Their system is similar to the one considered earlier by Du et al. [14].
Nonlinear versions have been also considered by Barbu et al. [8,9], Lasiecka and Lu [17,18] and Lu
[22,23]. Without any external force F and with transversal elastic force in the wave component, i.e., with
the wave equation wtt − Δw + w = 0, it was shown in [3] using semigroup methods that the solutions
of (1.1) are strongly asymptotically stable. The result holds for every initial data in the state space
excluding those that lie in the kernel of the associated generator and also under additional conditions,
which is related to the geometry of the structure. It relies on whether a certain over-determined boundary
value problem has a solution. This hypothesis, named condition (H) below, will be also utilized in this
study. Later, the authors studied the same model in [6] but with internal damping in the structure. This
additional dissipative mechanism allows the energy of the solution to decay to zero exponentially.

Systems that are stable may turn into an unstable one if there is delay, see for example the classical
works of Datko et al. [11] and Datko [10]. This is because delay induces a transport phenomena in the
system that generate oscillations which may lead into instability. Since then, several authors studied the
effect of delay in various multidimensional wave equations and as well in heat and Schrödinger equations.
In the absence of the fluid and with homogeneous Dirichlet condition on a part of the boundary, the
stability and instability properties of the wave equation with the feedback law (1.2) was considered by
Nicaise and Pignotti [24]. It is shown in their work that if the damping factor is larger than the delay
factor, then the energy of the system decays to zero exponentially. On the other hand, if these coefficients
are equal, it was established that there is a sequence of delays that yield solutions with constant energies.
Even when the damping and delay factors are equal, the presence of other dissipative mechanisms such
as viscoelasticity can provide asymptotic stability for the wave equation, see for example the work of
Kirane and Said-Houari [16]. We would like to extend the study to the fluid–structure model (1.1)–(1.3)
and analyze for the influence of the fluid on the wave equation using the framework and methods in
[3].

Due to the absence of the displacement term, the wave equation will be formulated as a first-order sys-
tem in terms of the velocity wt and stress ∇w, in contrast to the formulation in terms of the displacement
and velocity in [3]. The same first-order formulation has been used for wave equations with viscoelasticity
by Desch et al. [12] and for fluid–structure models in [17,18,22,23], where the works [22,23] were based on
the earlier paper by Lasiecka and Seidman [19] that deals with the stabilization of a structural acoustics
model. Moreover, this is also a familiar way of writing the multidimensional wave equation in the entire
space as a first-order symmetric hyperbolic system. The basis for this particular setup stems from the fact
that the energy contains only the L2-norm of the gradient of the structure’s displacement. Nevertheless,
the displacement can be recovered by integrating the velocity with respect to time.

The said formulation requires a different state space representation of the interaction model and leads
to a different structure on the kernel of the corresponding generator, the space of steady states, and
different analysis and tools will come in place. The construction of the semigroup and the well-posedness
for (1.1)–(1.3) will be discussed in Sect. 2. It will be shown in Sect. 3 that under the condition k1 > k0, the
energy of the solutions decays to zero exponentially (Theorem 3.5) using the frequency domain method.
Under the case k1 = k0, together with an additional geometric condition or except possibly for a countably
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infinite number of delays which is related to the spectrum of the Dirichlet Laplacian on Ωs, the energy
decays asymptotically to zero (Theorem 3.4). This will be done using a generalized Lax-Milgram method
as in [12] and applying the classical Tauberian-type theorems for the stability of semigroups [1,21]. Thus,
under certain circumstances, the dissipative effect of the fluid due to diffusion is strong enough to stabilize
the coupled system even when the damping and delay factors are the same.

Our asymptotic stability result Theorem 3.4, under the condition (H) stated below, has been already
shown for both linear [3,5] and nonlinear [17,23] problems in the case where there is no damping (k1 = 0)
and no delay (k0 = 0). In fact, rational or polynomial decay rates have been provided for a heat–
structure model by Avalos and Trigianni [5] and for a fluid–structure model by Avalos and Bucci [2].
On the other hand, the exponential stability Theorem 3.5 has been established for system (1.1)–(1.2)
with linear damping in [6] and with nonlinear damping in [23], however, without the delay term. In these
references, the treatment for linear problems relies on spectral analysis, while for nonlinear problems,
they are obtained through the multiplier method. In the current work, we will also use spectral analysis
to prove our results.

2. Semigroup construction and well-posedness

The first step in writing the system (1.1)–(1.3) into an abstract evolution equation is to eliminate the
pressure term p. In accordance to the non-homogeneous Neumann boundary condition on the interface Γs,
the typical Leray projection method used in eliminating the pressure in the Navier-Stokes equation with
no-slip boundary condition cannot be applied. A novel approach, introduced and successfully applied in
[3], of eliminating the pressure is to write it in terms of the fluid velocity and normal stress of the structure.
This is done thanks to the realization that p satisfies an elliptic problem with Neumann condition on Γf

and Dirichlet condition on Γs. The same idea has been used, at least at the formal level, in the numerical
approximations of the solutions for the linear Stokes problem through pressure matrix methods, see for
instance [26, Section 9.6.1].

The above strategy leads to a non-standard formulation of the definition for the semigroup generator
including its domain, which implicitly incorporates the pressure term. In the present paper, we shall
also use this strategy for the coupled system (1.1)–(1.3) with the first-order formulation of the wave
component. Broadly speaking, we will follow the theoretical framework and methods presented in [3].
Accordingly, the first step is to write p in terms of u and ∇w. To do this, we first recall the notations in
[3]. Define the Dirichlet map Ds : H

1
2 (Γs) → H1(Ωf ) and the Neumann map Nf : H

3
2 (Γf ) → H1(Ωf ) as

follows. Given g ∈ H
1
2 (Γs), let h = Dsg be the weak solution of the elliptic problem

⎧
⎪⎪⎨

⎪⎪⎩

Δh = 0, in Ωf ,
∂h

∂ν
= 0, on Γf ,

h = g, on Γs.

Given h ∈ H
3
2 (Γf ), let g = Nfh be the weak solution of

⎧
⎪⎪⎨

⎪⎪⎩

Δg = 0, in Ωf ,
∂g

∂ν
= h, on Γf ,

g = 0, on Γs.

From the classical elliptic regularity in [20], we can see that Ds ∈ L(Hr(Γs),Hr+ 1
2 (Ωf )) and Nf ∈

L(Hr(Γf ),Hr+ 3
2 (Ωf )) for every real number r. If the pressure term p, along with u and w satisfies (1.1),
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then taking the divergence of the first equation in (1.1) and using the boundary conditions yield
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Δp = 0, in (0,∞) × Ωf ,

∂p

∂ν
= Δu · ν, on (0,∞) × Γf ,

p =
∂u

∂ν
· ν − (∇w · ν) · ν, on (0,∞) × Γs.

In terms of the Dirichlet and Neumann maps defined above, the pressure can be written in terms of ∇w
and u as

p = −Ds((∇w · ν) · ν) + Ds

(
∂u

∂ν
· ν

)

+ Nf (Δu · ν).

Let v(t, x) = wt(t, x), σ(t, x) = ∇w(t, x) for (t, x) ∈ (0, T ) × Ωs and z(θ, t, x) = wt(t + θ, x) for
(θ, t, x) ∈ (−τ, 0) × (0, T ) × Ωs. The fluid–structure system will be posed in the state space

H := L2(Ωs)d × L2(Ωs)d×d × L2(−τ, 0;L2(Ωs)d) × Hf

where Hf := {u ∈ L2(Ωf )d : div u = 0 in Ωf , u · ν = 0 on Γf}. The space H is equipped with the inner
product

((v1, σ1, z1, u1), (v2, σ2, z2, u2))H

:=
∫

Ωs

(v1 · v2 + σ1 · σ2) dx + k0

0∫

−τ

∫

Ωs

z1 · z2 dxdθ +
∫

Ωf

u1 · u2 dx

with the dot representing the inner product in C
d or C

d×d where it is applicable.
Let L2

div(Ωs)d×d = {σ ∈ L2(Ωs)d×d : div σ ∈ L2(Ωs)d}, where div denotes the distributional diver-
gence and is endowed with the graph norm. There is a generalized normal trace operator σ 	→ σ · ν which
is continuous from L2

div(Ωs)d×d into H− 1
2 (Γs)d. Moreover, the following generalized Green’s identity

∫

Ωs

divσ · u dx = −〈σ · ν, u〉
H− 1

2 (Γs)d×H
1
2 (Γs)d

−
∫

Ωs

σ · ∇u dx

holds for all σ ∈ L2
div(Ωs)d×d and u ∈ H1(Ωs)d. Recall that ν is inward to Γs. The space

Y (Ωs) := {σ ∈ L2(Ωs)d×d : divσ = 0 in Ωs, σ · ν = 0 on Γs}
is a closed subspace of L2(Ωs)d×d and there holds the Helmholtz orthogonal decomposition

L2(Ωs)d×d = Y (Ωs) ⊕ G(Ωs)

where

G(Ωs) = {σ ∈ L2(Ωs)d×d : σ = ∇� for some � ∈ H1(Ωs)d},

see for example [27].
Consider the operators L1 : L2

div(Ωs)d×d → L2(Ωf )d and L2 : H1(Ωf )d ∩ {u ∈ Hf : ∂u
∂ν ∈ H− 1

2 (Γs)d,

Δu · ν ∈ H− 3
2 (Γf )} → L2(Ωf )d defined as follows

L1σ = −Ds((σ · ν) · ν),

L2u = Ds

(
∂u

∂ν
· ν

)

+ Nf (Δu · ν).
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These operators are well defined from the elliptic regularity stated above. Define the linear operator
A : D(A) ⊂ H → H by

A =

⎛

⎜
⎜
⎝

−k1I div −k0γ|θ=−τ 0
∇ 0 0 0
0 0 ∂θ 0
0 −∇L1 0 Δ − ∇L2

⎞

⎟
⎟
⎠

with domain D(A) comprising of all elements (v, σ, z, u) ∈ H such that v ∈ H1(Ωs)d, σ ∈ L2
div(Ωs)d×d,

z ∈ H1(−τ, 0;L2(Ωs)d), u ∈ H1(Ωf )d ∩ Hf , u = 0 on Γf , u = v on Γs, z(0) = v in Ωs, ∂u
∂ν − σ · ν = πν

in H− 1
2 (Γs)d, Δu · ν ∈ H− 3

2 (Γf ), and Δu − ∇π ∈ Hf where π = L1σ + L2u. Here, γ|θ=−τ is the trace
operator. The system (1.1)–(1.3) can now be phrased as a first-order evolution equation in H

{
Ẋ(t) = AX(t) for t > 0,

X(0) = X0,
(2.1)

where X0 = (w1,∇w0, g, u0).
In characterizing the kernel N(A) of A, we need the following result.

Proposition 2.1. For every f = (f1, . . . , fd) ∈ L2(Ωs)d and φ ∈ H− 1
2 (Γs)d satisfying the compatibility

condition
∫

Ωs

fj dx + 〈φ, ej〉
H− 1

2 (Γs)d×H
1
2 (Γs)d

= 0, for j = 1, . . . , d,

where ej is the canonical unit vector in R
d, the boundary value problem
{

divσ = f, in Ωs,

σ · ν = φ, on Γs,
(2.2)

admits a unique solution σ ∈ L2
div(Ωs)d×d ∩G(Ωs). This solution is given by σ = ∇ψ where ψ ∈ H1(Ωs)d

is a solution of the Neumann problem
⎧
⎨

⎩

Δψ = f, in Ωs,
∂ψ

∂ν
= φ, on Γs.

(2.3)

Moreover, σ satisfies the estimate

‖σ‖L2
div(Ωs)d×d ≤ C(‖f‖L2(Ωs)d + ‖φ‖

H− 1
2 (Γs)d

). (2.4)

In particular, all solutions of (2.2) take the form σ = ∇ψ + ρ for some ρ ∈ Y (Ωs).

Proof. With the above compatibility condition, problem (2.3) admits a solution ψ ∈ H1(Ωs)d unique up
to an additive constant vector and it satisfies the stability estimate

‖ψ‖H1(Ωs)d/Rd ≤ C(‖f‖L2(Ωs)d + ‖φ‖
H− 1

2 (Γs)d
). (2.5)

Clearly, σ = ∇ψ lies in L2
div(Ωs)d×d ∩ G(Ωs) and it satisfies (2.2). The estimate (2.4) follows from (2.5)

and the fact that divσ = f . If σ̃ ∈ L2
div(Ωs)d×d ∩ G(Ωs) is also a solution of (2.2), then σ − σ̃ ∈

G(Ωs) ∩ Y (Ωs) = {0}, and hence, the solution is unique in L2
div(Ωs)d×d ∩ G(Ωs). �

Theorem 2.2. Assume that k1 ≥ 0 and k0 > 0. Let Id be the d×d identity matrix and 〈Id〉 = {cId : c ∈ C}.
Then

N(A) = {0} × (〈Id〉 ⊕ Y (Ωs)) × {0} × {0} (2.6)
and in particular

N(A)⊥ = L2(Ωs)d × (G(Ωs)/〈Id〉) × L2(−τ, 0;L2(Ωs)d) × Hf (2.7)
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where G(Ωs)/〈Id〉 denotes the orthogonal complement of 〈Id〉 in G(Ωs) and it is given by

G(Ωs)/〈Id〉 =

⎧
⎨

⎩
σ ∈ G(Ωs) :

∫

Ωs

Tr(σ) dx = 0

⎫
⎬

⎭
.

Here, Tr denotes the trace of a matrix.

Proof. Denote by N0 the set on the right-hand side of (2.6). Assume that σ ∈ 〈Id〉 ⊕ Y (Ωs). To prove
that (0, σ, 0, 0) ∈ D(A), we only need to show that σ · ν = −πν on Γs and ∇π ∈ Hf where π = L1σ. By
assumption, σ = cId + ρ for some constant c and ρ ∈ Y (Ωs). Thus, on Γs

σ · ν = (cId + ρ) · ν = cν

since ρ · ν = 0 on Γs. However, we have π = −(σ · ν) · ν = c on Γs and thus πν = −σ · ν. The equation
π = c on Γs and the fact that π = L1σ imply that π is constant and hence ∇π = 0 ∈ Hf . It is obvious
that A(0, σ, 0, 0) = 0, and therefore, N0 ⊂ N(A).

Conversely, suppose that (v, σ, z, u) ∈ N(A). From the definition of A, we immediately see that
z(θ) = v for every θ ∈ (−τ, 0), v is constant, σ satisfies the boundary value problem

⎧
⎨

⎩

divσ = (k0 + k1)v, in Ωs,

σ · ν =
∂u

∂ν
− πν, on Γs,

(2.8)

and u satisfies the Stokes equation
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Δu − ∇π = 0, in Ωf ,

divu = 0, in Ωf ,

u = 0, on Γf ,

u = v, on Γs.

(2.9)

Taking the inner product of the differential equation in (2.8) with v, applying the divergence theorem
and using the boundary condition u = v on Γs yield

(k0 + k1)
∫

Ωs

|v|2 dx = −
〈

∂u

∂ν
− πν, u

〉

H− 1
2 (Γs)d×H

1
2 (Γs)d

. (2.10)

Recall that ν is inward to Ωs. Multiplying the Stokes equation by u, integrating over Ωf and then using
Green’s identity, one can see that (2.10) becomes

(k0 + k1)
∫

Ωs

|v|2 dx +
∫

Ωf

|∇u|2 dx = 0.

Since k0 +k1 is nonnegative, it follows that u is constant, and according to the boundary condition on Γf

in (2.9), this constant must be zero. As a consequence, the boundary condition on Γs of the same system
implies that v must be also zero, and so is z.

We can see that σ satisfies the problem (2.2) with f = 0 and φ = −πν. From the divergence theorem,∫

Γs

νj ds = 0 for j = 1, . . . , d, and so the pair (0,−πν) is compatible. According to Proposition 2.1,

all solutions to this problem are of the form σ = −πId + ρ where ρ ∈ Y (Ωs), which is an element of
〈Id〉 ⊕ Y (Ωs). This proves the other inclusion N(A) ⊂ N0. Therefore, N(A) = N0, and since Id ∈ G(Ωs),
we have indeed a direct sum in the second component of N(A).

If G(Ωs)/〈Id〉 is the orthogonal complement of 〈Id〉 in G(Ωs), then one can easily see that

(〈Id〉 ⊕ Y (Ωs))⊥ = G(Ωs)/〈Id〉 (2.11)
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where the left-hand side is taken with respect to L2(Ωs)d×d. Indeed, given σ ∈ G(Ωs)/〈Id〉 and κ ∈
〈Id〉 ⊕ Y (Ωs), so that κ = cId + ρ for some constant c and ρ ∈ Y (Ωs), we have

∫

Ωs

κ · σ dx = c

∫

Ωs

Id · σ dx +
∫

Ωs

ρ · σ dx = 0

since Id is orthogonal to σ and G(Ωs) is orthogonal to Y (Ωs). Thus, σ ∈ (〈Id〉 ⊕ Y (Ωs))⊥ and we have
one inclusion. For the reverse inclusion, note that if κ ∈ (〈Id〉 ⊕ Y (Ωs))⊥ and ρ ∈ 〈Id〉 ⊂ 〈Id〉 ⊕ Y (Ωs)
then κ lies in G(Ωs) and it is orthogonal to ρ, which means that κ ∈ G(Ωs)/〈Id〉. This completes the
proof of (2.11), and hence (2.7). The characterization of G(Ωs)/〈Id〉 is a direct consequence of the fact
that σ · Id is the trace of σ. �

The notation G(Ωs)/〈Id〉 for the orthogonal complement of 〈Id〉 in G(Ωs) is motivated from the fact
that the latter space is isomorphic to the former when viewed as a factor space. Now we prove the
invariance of N(A)⊥ under A. This space will be the state space for our stability problem.

Theorem 2.3. The space N(A)⊥ is invariant under A, i.e., A(D(A) ∩ N(A)⊥) ⊂ N(A)⊥.

Proof. Let (v, σ, z, u) ∈ D(A) ∩ N(A)⊥. In order to A(v, σ, z, u) ∈ N(A)⊥, the component v must satisfy
∫

Ωs

div v dx =
∫

Ωs

Tr(∇v) dx = 0,

or equivalently, by the divergence theorem ∫

Γs

v · ν ds = 0. (2.12)

Since u is divergence free in Ωf and it vanishes on Γf , we have
∫

Γs

u · ν ds =
∫

Ωf

div u dx = 0

and hence, (2.12) holds because u = v on Γs. �

Define Ã to be the part of A in N(A)⊥, i.e., the operator Ã : D(A) ∩ N(A)⊥ → N(A)⊥ given by
ÃX = AX for X ∈ N(A)⊥. This operator is well defined according to Theorem 2.3.

Theorem 2.4. Suppose that k1 ≥ k0 > 0. The linear operator Ã is dissipative and generates a strongly
continuous semigroup of contractions on N(A)⊥.

The corresponding result in the case where k1 = k0 = 0 and k0 = 0 has been established in [3] and
[6], respectively. In order to prove the theorem, we need to solve certain Stokes equations. For this, we
recall the following classical result whose proof can be found in [28].

Proposition 2.5. Let m ≥ −1 be an integer and Ω ⊂ R
d be a bounded Cr-domain, where d = 2, 3 and

r = max(2,m + 2). For every f ∈ Hm(Ω)d and φ ∈ Hm+ 3
2 (∂Ω)d such that

∫

∂Ω

φ · ν ds = 0, where ν is the

unit normal outward to Ω, the system
⎧
⎪⎨

⎪⎩

Δu − ∇p = f, in Ω,

div u = 0, in Ω,

u = φ, on ∂Ω,

(2.13)

has a unique solution (u, p) ∈ Hm+2(Ω)d × (Hm+1(Ω)/R) satisfying the estimate
‖u‖Hm+2(Ω)d + ‖p‖Hm+1(Ω)/R ≤ C(‖f‖Hm(Ω)d + ‖φ‖

Hm+3
2 (∂Ω)d

)

for some C > 0 independent of u, p, f and φ.
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Proof of Theorem 2.4. The first step is to show that Ã is dissipative. Let X = (v, σ, z, u) be an arbitrary
element of D(A) and π = L1σ+L2u be the associated pressure. Using Green’s identity and the divergence
theorem, we have

Re
∫

Ωf

(Δu − ∇π) · u dx = −
∫

Ωf

|∇u|2 dx + Re
〈

∂u

∂ν
− πν, u

〉

H− 1
2 (Γs)d×H

1
2 (Γs)d

. (2.14)

Here, we used the fact that u is divergence free and u = 0 on Γf . On the other hand, applying the
divergence theorem with respect to the domain Ωs, we obtain

Re
∫

Ωs

(divσ − k1v − k0z(−τ)) · v + ∇v · σ dx

= −Re〈σ · ν, v〉
H− 1

2 (Γs)d×H
1
2 (Γs)d

− k1

∫

Ωs

|v|2 dx − Re k0

∫

Ωs

z(−τ) · v dx. (2.15)

For the delay variable, we integrate by parts, use the condition z|θ=0 = v and take the real part to get

Re k0

0∫

−τ

∫

Ωs

∂θz · z dxdθ =
k0

2

∫

Ωs

|v|2 dx − k0

2

∫

Ωs

|z(−τ)|2 dx. (2.16)

Taking the sum of (2.14)–(2.16), using the boundary conditions σ · ν = ∂u
∂ν − πν and u = v on Γs so

that the boundary terms will be canceled, and then applying the Cauchy-Schwarz inequality and then
the elementary inequality |ab| ≤ 1

2 (a2 + b2) to the last term on the right-hand side of (2.15), we obtain

Re(AX,X)H ≤ −
∫

Ωf

|∇u|2 dx − (k1 − k0)
∫

Ωs

|v|2 dx. (2.17)

This means that A and Ã are dissipative whenever k1 ≥ k0.
The next step is to prove the invertibility of Ã. It is clear that Ã is injective. Let us show that Ã

is surjective, first for sufficiently large k1. Given (η, κ, ζ, ϕ) ∈ H, the equation Ã(v, σ, z, u) = (η, κ, ζ, ϕ)
with unknown (v, σ, z, u) ∈ D(Ã) is equivalent to the system where v satisfies

∇v = κ, in Ωs, (2.18)

u is the solution of the Stokes equation
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Δu − ∇π = ϕ, in Ωf ,

div u = 0, in Ωf ,

u = 0, on Γf ,

u = v, on Γs,

(2.19)

and σ ∈ G(Ωs)/〈Id〉 satisfies the boundary value problem
⎧
⎨

⎩

div σ = k0z(−τ) + k1v + η, in Ωs,

σ · ν =
∂u

∂ν
− πν, in Γs,

(2.20)

where the delay variable z is given by

z(θ) = v −
0∫

θ

ζ(ϑ) dϑ, in L2(Ωs)d. (2.21)
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Recall that π is the solution of the elliptic problem
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Δπ = 0, in Ωf ,

π =
∂u

∂ν
· ν − (σ · ν) · ν, on Γs,

∂π

∂ν
= Δu · ν, on Γf .

(2.22)

From (2.21), it is clear that z ∈ H1(−τ, 0;L2(Ωs)d). On the other hand, since κ ∈ G(Ωs)/〈Id〉 ⊂ G(Ωs),
it follows that (κ, ρ)L2(Ωs)d = 0 for every divergence-free vector field ρ ∈ C∞

0 (Ωs)d. By a classical result,
there exists ṽ ∈ H1(Ωs)d, which is unique up to an additive constant vector, that satisfies (2.18), see [27,
Lemma 2.2.2] for example. Applying the divergence theorem, we obtain

∫

Γs

ṽ · ν ds = −
∫

Ωs

div ṽ dx = −
∫

Ωs

Tr(κ) dx = 0. (2.23)

As been said, v = ṽ + v∗, where v∗ is a constant vector, also satisfies (2.18) and hence (2.23) where ṽ is
replaced by v. The vector v∗ will be chosen so that the data in (2.20) are compatible.

Taking m = −1 in Proposition 2.5, the Stokes equation (2.19) admits a solution pair (u, π̃) ∈
(H1(Ωf )d ∩ Hf ) × L2(Ωf ). The function π̃ is harmonic since

Δπ̃ = div(ϕ − Δu) = Δ(div u) = 0.

Therefore, π̃ has the following traces π̃|Γs
∈ H− 1

2 (Γs) and ∂π̃
∂ν |Γf

∈ H− 3
2 (Γf ) while u satisfies ∂u

∂ν |Γs
∈

H− 1
2 (Γs)d and Δu · ν in H− 3

2 (Γf ), refer to [4, Lemma 3.1]. For every constant π∗, (u, π) with π = π̃ +π∗

is also a solution pair for (2.19). The constant π∗ will be determined below by imposing the condition
σ ∈ G(Ωs)/〈Id〉 where σ solves (2.20).

Consider the decomposition u = ũ+
∑d

j=1 v∗
j wj and π = π̃0+

∑d
j=1 v∗

j �j , where v∗ = (v∗
1 , . . . , v∗

d) ∈ C
d

and the pairs (ũ, π̃0), (wj , �j) ∈ (H1(Ωf )d ∩ Hf ) × L2(Ωf ) satisfy the following Stokes equations
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Δũ − ∇π̃0 = ϕ, in Ωf ,

div ũ = 0, in Ωf ,

ũ = 0, on Γf ,

ũ = ṽ, on Γs,

(2.24)

and
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Δwj − ∇�j = 0, in Ωf ,

divwj = 0, in Ωf ,

wj = 0, on Γf ,

wj = ej , on Γs,

(2.25)

respectively. The boundary data in (2.24) and (2.25) are admissible according to (2.23) and
∫

Γs

ν · ej ds =
∫

Γs

νj ds = 0, respectively. The compatibility condition for (2.20) is given by, for l = 1, . . . , d

0 = (k0 + k1)
∫

Ωs

(ṽl + v∗
l ) dx − k0

0∫

−τ

∫

Ωs

ζl(ϑ) dϑ +
∫

Ωs

ηl dx

+
〈

∂u

∂ν
− π̃ν, el

〉

H− 1
2 (Γs)d×H

1
2 (Γs)d

, (2.26)
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where we used π∗ ∫

Γs

ν · el ds = 0. Using the above decomposition and Green’s identity, the last term in

the above equation can be written as
∫

Ωf

( d∑

j=1

v∗
j ∇wj · ∇wl + ∇ũ · ∇wl + ϕ · wl

)

dx =
〈

∂u

∂ν
− π̃ν, el

〉

H− 1
2 (Γs)d×H

1
2 (Γs)d

. (2.27)

Equations (2.26) and (2.27) provide us a d × d system of equations

Mv∗ = F (2.28)

for some vector F = F (η, κ, ζ, ϕ) independent of v∗, and the matrix M has the entries

Mjl =

{
(k0 + k1)|Ωs| + ‖∇wj‖2

L2(Ωf )d×d , if l = j,

(∇wl,∇wj)L2(Ωf )d×d , if l �= j,

for j = 1, . . . , d. Here, |Ωs| denotes the Lebesgue measure of Ωs. For sufficiently large k1, the matrix M is
strictly diagonally dominant, that is, Mjj >

∑
l �=j Mjl for every j = 1, . . . , d. To see this, we first apply

Proposition 2.5 with m = −1 to (2.25) in order to obtain the estimate

‖wj‖H1(Ωf )d ≤ C‖ej‖H−1(Ωf )d ≤ C‖ej‖L2(Ωf )d ≤ C|Ωf | 1
2 (2.29)

for every j. Then, one may take, for example, k1 > (d− 1)C2|Ωf ||Ωs|−1, where C is the positive constant
in (2.29). Indeed, by applying the Cauchy-Schwarz inequality, we have

∑

l �=j

Mjl ≤
∑

l �=j

‖∇wj‖L2(Ωf )d‖∇wl‖L2(Ωf )d

= (d − 1)C2|Ωf | < k1|Ωs| ≤ Mjj

for every j = 1, . . . , d. Therefore, for sufficiently large k1 the matrix M is invertible according to the
well-known Levy-Desplanques Theorem, see [15] for instance. Thus, we can solve for v∗ in the linear
system (2.28).

Let f∗ ∈ L2(Ωs)d denote the right-hand side of (2.20), i.e.,

f∗ = (k0 + k1)v − k0

0∫

θ

ζ(ϑ) dϑ + η.

From Proposition 2.1, the function σ = ∇ψ−π∗Id ∈ L2
div(Ωs)d×d ∩G(Ωs), where ψ satisfies the Neumann

problem (2.3) with f = f∗ and φ = ∂u
∂ν − π̃ν, is a solution of (2.20). In order for σ to be an element of

G(Ωs)/〈Id〉, we must have
∫

Ωs

Tr(∇ψ) dx − dπ∗|Ωs| =
∫

Ωs

Tr(∇ψ − π∗Id) dx = 0.

Choosing π∗ = −(d|Ωs|)−1
∫

Ωs

ψ · ν ds yields σ ∈ G(Ωs)/〈Id〉.
It remains to show that π satisfies (2.22), i.e., π = L1σ + L2u. We already know that π is harmonic.

The second line in (2.22) holds in H− 1
2 (Ωs) by taking the inner product, in the sense of traces, of the

second line in (2.20) with ν. Also, ϕ ∈ Hf and the first equation of (2.22) imply that ∂π
∂ν = ∇π ·ν = Δu ·ν

in H− 3
2 (Γf ). Hence, π = L1v + L2σ, and therefore, (v, σ, z, u) ∈ D(Ã) satisfies Ã(v, σ, z, u) = (η, κ, ζ, ϕ).

The operator Ã is therefore bijective, and by the closed graph theorem, 0 lies in the resolvent set
of Ã. By the Lumer-Phillips Theorem, Ã generates a strongly continuous semigroup of contractions on
N(A)⊥. This completes the proof of the theorem in the case where k1 is sufficiently large. However, by
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the bounded perturbation theorem for semigroups, this implies that the conclusion of the theorem also
holds for every k1 ≥ k0. �

Corollary 2.6. Suppose that k1 ≥ k0 > 0. The operators A and A∗ generate strongly continuous semi-
groups of contractions on H. In particular, the Cauchy problem (2.1) admits a unique weak solution
X ∈ C([0,∞);H) for every initial data X0 ∈ H.

Proof. It is enough to prove the range conditions R(I − A) = H = R(I − A∗). Given Y ∈ H, write
Y = Y1 + Y2 where Y1 ∈ N(A)⊥ and Y2 ∈ N(A). From Theorem 2.4, it follows that there exists
X1 ∈ D(Ã) such that (I − Ã)X1 = Y1. If X = X1 + Y2 then X ∈ D(A) and

(I − A)X = (I − Ã)X1 + Y2 = Y.

Therefore, I − A is surjective. The case of A∗ is analogous. �

As in [3], it can be shown that p ∈ C([0,∞);L2(Ωf )) where p = L1σ + L2u and (v, σ, z, u) = etAX0

for a given data X0 ∈ D(A). To close this section, we determine the adjoint of the closed operator A.

Theorem 2.7. The adjoint A∗ : D(A∗) → H of A is given by

A∗ =

⎛

⎜
⎜
⎝

−k1I −div k0γ|θ=0 0
−∇ 0 0 0
0 0 −∂θ 0
0 ∇L1 0 Δ − ∇L2

⎞

⎟
⎟
⎠ . (2.30)

The domain D(A∗) of A∗ is the set of all elements in H such that

(η, κ, ζ, ϕ) ∈ H1(Ωs)d × L2
div(Ωs)d×d × H1(−τ, 0;L2(Ωs)d) × (H1(Ωf )d ∩ Hf )

with the properties ϕ = 0 on Γf , ϕ = η on Γs, ζ(−τ) = −η in Ωs, ∂ϕ
∂ν + κ · ν = pν in H− 1

2 (Γs)d,
Δϕ · ν ∈ H− 3

2 (Γf ) and Δϕ − ∇p ∈ Hf where p = −L1κ + L2ϕ. Moreover, the kernels of A and A∗

coincide.

Proof. Define the operator B : D(B) → H by the right-hand side of (2.30) where the domain D(B) is
the set in the description of D(A∗). With the isometric isomorphism J : H → H defined by

J(v, σ, z(θ), u) = (−v, σ, z(−θ − τ),−u),

which satisfies J−1 = J , the operators A and B are similar, that is, JAJ = B and D(JAJ) = D(B).
This implies that B is m-dissipative and N(A) = N(B). We show that A∗ is an extension of B and since
A∗ is the adjoint of a generator of a strongly continuous semigroup of contractions, A∗ does not contain
a strict m-dissipative operator and so we must have A∗ = B.

We show that
(AX,Y )H = (X,BY )H (2.31)

holds whenever X = (v, σ, z, u) ∈ D(A) and Y = (η, κ, ζ, ϕ) ∈ D(B), so that Y ∈ D(A∗) and consequently
A∗ is an extension of B. By definition, we have

(AX,Y )H = −
∫

Ωs

(k1v − div σ + k0z(−τ)) · η dx +
∫

Ωs

∇v · κ dx (2.32)

+ k0

0∫

−τ

∫

Ωs

∂θz(θ) · ζ(θ) dxdθ +
∫

Ωf

(Δu − ∇π) · ϕ dx.
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Integrating by parts, using Green’s identities, the divergence theorem and ζ(−τ) = −η, we obtain
∫

Ωs

div σ · η dx = −〈σ · ν, η〉
H− 1

2 (Γs)d×H
1
2 (Γs)d

−
∫

Ωs

σ · ∇η dx

∫

Ωs

∇v · κ dx = −〈κ · ν, v〉
H− 1

2 (Γs)d×H
1
2 (Γs)d

−
∫

Ωs

v · div κ dx

0∫

−τ

∫

Ωs

∂θz(θ) · ζ(θ) dxdθ =
∫

Ωs

(v · ζ(0) + z(−τ) · η) dx −
0∫

−τ

∫

Ωs

z(θ) · ∂θζ(θ) dxdθ

∫

Ωf

(Δu − ∇π) · ϕ dx =
〈

∂u

∂ν
− πν, ϕ

〉

H− 1
2 (Γs)d×H

1
2 (Γs)d

−
〈

∂ϕ

∂ν
− pν, u

〉

H− 1
2 (Γs)d×H

1
2 (Γs)d

+
∫

Ωf

u · (Δϕ − ∇p) dx.

Using these equations in (2.32) together with the boundary conditions u = v on Γs, ϕ = η on Γs,
∂ϕ
∂ν + κ · ν = pν in H− 1

2 (Γs)d and ∂u
∂ν − σ · ν = πν in H− 1

2 (Γs)d, it can be seen that (2.31) is satisfied. �

3. Spectral properties and stability

In the absence of delay, it was shown in [3] the partial compactness of the resolvents of the operator A.
More precisely, the projection of a resolvent onto the state space corresponding to the velocity fields for the
fluid and structure components is compact. Here, we will show that even though the operator A does not
have compact resolvents, the spectrum comprises of only eigenvalues except possibly on the negative real
axis. This will be established in a more straightforward manner through a variational method, deviating
from the methods provided in [3]. To this end, we introduce the following Hilbert spaces

H0 := L2(Ωs)d × Hf ,

H1 := {(v, u) ∈ H1(Ωs)d × (H1(Ωf )d ∩ Hf ) : u = 0 on Γf and v = u on Γs},

equipped with the inner products

((v, u), (w,ψ))H0 :=
∫

Ωs

v · w dx +
∫

Ωf

u · ψ dx

((v, u), (w,ψ))H1 :=
∫

Ωs

(v · w + ∇v · ∇w) dx +
∫

Ωf

∇u · ∇ψ dx,

respectively. The embedding H1 ⊂ H0 is continuous, dense and compact.
For each nonzero complex number λ, define the sesquilinear form aλ : H1 × H1 → C by

aλ((v, u), (w,ψ)) := q(λ)
∫

Ωs

v · w dx +
1
λ

∫

Ωs

∇v · ∇w dx

+ λ

∫

Ωf

u · ψ dx +
∫

Ωf

∇u · ∇ψ dx
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where q(λ) = λ + k1 + k0e
−λτ . For a given Y = (η, κ, ζ, ϕ) ∈ H and λ ∈ C \ {0}, define the anti-linear

form FY,λ : H1 × H1 → C by

FY,λ(w,ψ) :=
∫

Ωs

(

η · w − 1
λ

κ · ∇w

)

dx − k0

0∫

−τ

∫

Ωs

e−λ(τ+θ)ζ(θ) · w dxdθ

+
∫

Ωf

ϕ · ψ dx.

In the sequel, ρ(A), σ(A) and σp(A) denote the resolvent set, spectrum and point spectrum of a closed
operator A, respectively.

Theorem 3.1. The spectrum of A in C\(−∞, 0] consists of only eigenvalues, that is, σ(A)∩(C\(−∞, 0]) =
σp(A). The same property holds for A∗.

The proof of this theorem is based on the following result whose proof can be found in [12, Theorem
3] or [25, Lemma 2.1].

Lemma 3.2. [Lax-Milgram-Fredholm] Let H1 and H0 be Hilbert spaces such that the embedding H1 ⊂ H0

is compact and dense. Suppose that a1 : H1 ×H1 → C and a2 : H0 ×H0 → C are two bounded sesquilinear
forms such that a1 is H1-coercive and F : H1 → C is a continuous conjugate linear form. The variational
equation

a1(u, v) + a2(u, v) = F (v), ∀v ∈ H1,

has either a unique solution u ∈ H1 for all F ∈ H ′
1 or has a non-trivial solution for F = 0.

Proof of Theorem 3.1. The fact that A and A∗ are generators of strongly continuous semigroups of con-
tractions implies that {λ ∈ C : Re λ > 0} lies in their respective resolvent sets. Let λ �= 0 with Re λ ≤ 0.
The equation

(λI − A)(v, σ, z, u) = (η, κ, ζ, ϕ) (3.1)
for (v, σ, z, u) ∈ D(A) and Y := (η, κ, ζ, ϕ) ∈ H is equivalent to the system of differential equations

(λ + k1)v − div σ + k0z(−τ) = η, (3.2)
λσ − ∇v = κ, (3.3)

λz(θ) − ∂θz(θ) = ζ(θ), (3.4)
λu − Δu + ∇π = ϕ, (3.5)

and supplied with the boundary conditions listed in the definition of D(A). Applying the variation of
parameter formula to (3.4) yields the following equation in L2(Ωs)d

z(θ) = eλθv +

0∫

θ

eλ(θ−ϑ)ζ(ϑ) dϑ, θ ∈ (−τ, 0). (3.6)

Let w ∈ H1(Ωs)d. Multiplying (3.2) by w, integrating over Ωs, applying the divergence theorem and
then rearranging the terms give us

q(λ)
∫

Ωs

v · w dx +
∫

Ωs

σ · ∇w dx + 〈σ · ν, w〉
H− 1

2 (Γs)d×H
1
2 (Γs)d

=
∫

Ωs

η · w dx − k0

0∫

−τ

∫

Ωs

e−λ(τ+θ)ζ(θ) · w dxdθ. (3.7)
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Taking the inner product of (3.3) with ∇w yields

λ

∫

Ωs

σ · ∇w dx −
∫

Ωs

∇v · ∇w dx =
∫

Ωs

κ · ∇w dx. (3.8)

Suppose that ψ ∈ H1(Ωf )d ∩Hf and ψ = 0 on Γf . Taking the inner product of (3.5) with ψ and using
the divergence theorem, we have

λ

∫

Ωf

u · ψ dx +
∫

Ωf

∇u · ∇ψ dx −
〈

∂u

∂ν
− πν, ψ

〉

H− 1
2 (Γs)d×H

1
2 (Γs)d

=
∫

Ωf

ϕ · ψ dx. (3.9)

If ψ = w on Γs, then dividing (3.8) by −λ and then adding the result to (3.7) and (3.9), it can be seen
that the boundary terms cancel, which leads to the variational equation

aλ((v, u), (w,ψ)) = FY,λ(w,ψ), (3.10)

where aλ and FY,λ are the forms stated preceding the theorem. We have shown that if (3.1) holds, then
(3.10) is satisfied for every (w,ψ) ∈ H1.

Let us verify the other direction. Assume that there exists (u, v) ∈ H1 such that (3.10) is true for
all (w,ψ) ∈ H1. Taking w = 0 and ψ ∈ H1

0 (Ωf )d ∩ Hf leads to the equation (3.9) without the duality
pairing. This implies that u ∈ Hf satisfies (3.5) for some π̃ ∈ L2(Ωf )d. For every constant π∗, the pair
(u, π) where π = π̃ + π∗ also satisfies (3.5). As in the proof of Theorem 2.4, ∂u

∂ν − πν ∈ H− 1
2 (Γs)d.

Define z ∈ H1(−τ, 0;L2(Ωs)d) by (3.6) and σ ∈ L2(Ωs)d×d by

σ =
1
λ

(κ + ∇v).

By construction, σ and z satisfy (3.3) and (3.4), respectively. Setting ψ = 0 and w ∈ H1
0 (Ω) in (3.10) and

rearranging the terms
∫

Ωs

σ · ∇w dx =
∫

Ωs

(η − (λ + k1)v − k0z(−τ)) · w dx.

This implies that (3.2) is satisfied in H−1(Ωs)d, and a posteriori in L2(Ωs)d since the right-hand side lies
in L2(Ωs)d. As a result, σ ∈ L2

div(Ωs)d×d. Now, we choose the constant π∗ according to

π∗ =
1

|Γs|
〈

∂u

∂ν
− π̃ν − σ · ν, ν

〉

H− 1
2 (Γs)d×H

1
2 (Γs)d

and from this choice, we have
〈

∂u

∂ν
− πν − σ · ν, ν

〉

H− 1
2 (Γs)d×H

1
2 (Γs)d

= 0. (3.11)

Given φ ∈ H
1
2 (Γs)d, let ϕ = φ − φν ∈ H

1
2 (Γs)d where φ is the average of φ · ν on Γs, i.e.,

φ =
1

|Γs|
∫

Γs

φ · ν ds.

By construction, it holds that
∫

Γs

ϕ · ν ds = 0. We know from trace theory that there exists w ∈ H1(Ωs)d

such that w = ϕ on Γs. On the other hand, from Proposition 2.5, the Stokes equation
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−Δψ + ∇� = 0, in Ωf ,

div ψ = 0, in Ωf ,

ψ = 0, on Γf ,

ψ = ϕ, on Γs.
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admits a solution (ψ, �) ∈ (H1(Ωf )d ∩ Hf ) × L2(Ωf ). Choosing the pair (w,ψ) ∈ H1 in (3.10) and then
using Green’s identity and the divergence theorem, we have

〈
∂u

∂ν
− πν − σ · ν, ϕ

〉

H− 1
2 (Γs)d×H

1
2 (Γs)d

= 0.

From (3.11) and the equation φ = ϕ + φν, we can see that this equality is also true if we replace the
function ϕ by φ. Since φ ∈ H

1
2 (Γs)d is arbitrary, we obtain ∂u

∂ν − πν − σ · ν = 0 in H− 1
2 (Γs)d. Using the

same argument as in the proof of Theorem 2.4, it can be shown that π = L1σ + L2u. Combining the
above observations shows that (v, σ, z, u) ∈ D(A) and (3.1) holds.

Decompose aλ into aλ = a1
λ+a2

λ where the sesquilinear forms a1
λ : H1×H1 → C and a2

λ : H0×H0 → C

are defined by

a1
λ((v, u), (w,ψ)) :=

∫

Ωs

v · w dx +
1
λ

∫

Ωs

∇v · ∇w dx +
∫

Ωf

∇u · ∇ψ dx,

a2
λ((v, u), (w,ψ)) := (q(λ) − 1)

∫

Ωs

v · w dx + λ

∫

Ωf

u · ψ dx.

Notice that the form a2
λ is bounded. On the other hand, for every nonzero element of (v, u) in H1 there

holds
|a1

λ((v, u), (v, u))|
‖(v, u)‖2

H1

=
∣
∣
∣
∣ 1 +

(
1
λ

− 1
) ∫

Ωs

|∇v|2
‖(v, u)‖2

H1

dx

∣
∣
∣
∣.

Thus, a1
λ is H1-coercive if infε≥0 |1 + ( 1

λ − 1)ε| > 0 holds. This inequality is satisfied provided that
Im λ �= 0. From the compactness of the embedding H1 ⊂ H0, it follows from Lemma 3.2 that λ �= 0 with
Re λ ≤ 0 is either in the resolvent set or an eigenvalue of A. Combined with the earlier remark that the
right-half part of the complex plane lies in ρ(A), this is equivalent to what the theorem stated.

For the operator A∗, notice that it is almost the same with A except for a change of signs on its
definition as well as on its domain. These differences in signs will not affect the applicability of the
analysis presented above. �

We would like to note that the method and results presented in the previous theorem can be adapted
to the original fluid–structure system presented in [3,6], with or without delay.

The spectrum of the generator A on the imaginary axis and the stability of the corresponding semi-
group are connected to the solvability of the over-determined boundary value problem on the structure
domain ⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

−Δϕ = μϕ, in Ωs,

ϕ = 0, on Γs,

∂ϕ

∂ν
= kν, on Γs,

(3.12)

where μ ∈ σ(−ΔD), k ∈ R and −ΔD : H2(Ωs)d ∩ H1
0 (Ωs)d → L2(Ωs)d is the Dirichlet Laplacian. The

spectrum of −ΔD consists of only a countable number of positive eigenvalues, and we let σ(−ΔD) =
{μn}∞

n=1 arranged in increasing order so that μn → ∞. If k = 0, then the unique continuation condition
for elliptic operators in [29, Corollary 15.2.2] implies that ϕ = 0. We consider the following hypothesis.
(H) The over-determined problem (3.12) has the trivial solution ϕ = 0 and hence k = 0.

Condition (H) imposed on the over-determined problem (3.12) is not new, and it was first introduced
in [3], and later in [6,18,22], in the context of the stabilization of certain fluid–structure interaction
models without delay. This condition depends on the geometry of the structure domain, and it has been
studied also in [6] under certain domains. In fact they considered the over-determined problem where the
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Neumann boundary condition appears only on a subset of the boundary. Condition (H) is satisfied for
certain partially flat domains; however, this is not the case for spherical domains.

Theorem 3.3. Let τ > 0 be fixed.
1. If k1 > k0, then A and A∗ have no purely imaginary eigenvalues, that is,

σ(A) ∩ iR = σ(A∗) ∩ iR = {0}. (3.13)

2. Suppose that k1 = k0. If condition (H) holds, then (3.13) is satisfied.
3. Assume that k1 = k0 and (3.12) has non-trivial solutions ϕnj

, j = 1, . . . , J where possibly J = ∞.
Let M be the set of all m ∈ N such that μm = π2

τ2 (2n + 1)2 for some nonnegative integer n. Then,

σ(A) ∩ iR = σ(A∗) ∩ iR = {±i
√

μm}m∈M . (3.14)

Eigenfunctions of A corresponding to ±i
√

μm for m ∈ M are

Xm,j =

⎛

⎜
⎜
⎜
⎝

ϕnj

(±i
√

μm)−1∇ϕnj

e±iθ
√

μmϕnj

0

⎞

⎟
⎟
⎟
⎠

, j = 1, . . . , J. (3.15)

Similarly, eigenfunctions of A∗ associated with ±i
√

μm for m ∈ M are

X∗
m,j =

⎛

⎜
⎜
⎜
⎝

−ϕnj

(±i
√

μm)−1∇ϕnj

e∓i(θ+τ)
√

μmϕnj

0

⎞

⎟
⎟
⎟
⎠

, j = 1, . . . , J. (3.16)

Proof. Let us determine the nonzero purely imaginary eigenvalues, if there are any. Take X = (v, σ, z, u) ∈
D(A) with AX = irX where r �= 0 is a real number. Then, (AX,X)H = ir‖X‖2

H , and from (2.13), we
have

∫

Ωf

|∇u|2 dx + (k1 − k0)
∫

Ωs

|v|2 dx ≤ −Re(AX,X)H = 0.

It follows that u is constant, and from the boundary condition on Γf , this constant must be zero. If
k1 > k0, then the latter inequality implies that v is zero. Consequently, σ = (ir)−1∇v = 0 and z(θ) = 0
for every θ ∈ (−τ, 0). This proves the first part.

The equation AX = irX is equivalent to the systems (3.2)–(3.5) with λ = ir together with the
boundary conditions stated in the domain of A, which is in turn equivalent to the variational equality
(3.10), where the right-hand side is equal to zero. Using these, it is not hard to see that ϕ = − v

ir satisfies
the over-determined problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−Δϕ = −ir(ir + k1 + k0e
−irτ )ϕ, in Ωs,

ϕ = 0, in Γs,

∂ϕ

∂ν
= πν, in Γs.

(3.17)

Suppose that k1 = k0. Let λ = −ir(ir + k1 + k0e
−irτ ). If λ /∈ σ(−ΔD) then the first two equations in

(3.17) can be written as (λI − ΔD)ϕ = 0 and hence ϕ = 0. Therfore v = 0, σ = 0, and z = 0, and we
established the second part.

Finally, suppose that k1 = k0 and λ = μm for some integer m. For this to hold then, necessarily we
must have cos rτ = −1 and r2 = μm. These imply that rτ = (2n+1)π, and hence, π2

τ2 (2n+1)2 ∈ σ(−ΔD).
This proves (3.14) in the case of A. The representation of the eigenfunctions in (3.15) can be obtained
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from (3.2)–(3.5). According to the isomorphism J given in the proof of Theorem 2.7, the eigenvectors for
A∗ are given by (3.16). Indeed, we have

A∗X∗
m,j = A∗JXm,j = JAXm,j = J(±i

√
μmXm,j) = ±i

√
μmX∗

m,j .

This proves the last part of the theorem. �

We can see from the above theorem that in the case where the damping and delay factors coincide and
(3.12) has non-trivial solutions, there are sequences of delays converging to zero or at infinity for which
the corresponding energy is constant. For example, if τm,n = π√

μm
(2n + 1), then τm,n → ∞ as n → ∞

and m fixed, while τm,n → 0 as m → ∞ and n fixed. From the previous theorem and the classical result
of Arendt-Batty [1] and Lyubich-Phong [21], we have the following strong stability result.

Theorem 3.4. [Asymptotic Stability] Suppose that k1 = k0 > 0 and τ > 0. The semigroup generated by
Ã is strongly stable, that is, etÃX0 → 0 in H as t → ∞ for every X0 ∈ N(A)⊥, if one of the following
properties is satisfied.

1. The condition (H) holds.
2. It holds that τ �= π√

μ (2n + 1) for every integer n ≥ 0 and μ ∈ σ(−ΔD).

Moreover, if Π is the orthogonal projection of H onto N(A), then etAX0 → ΠX0 in H as t → ∞ for
every X0 ∈ H.

This means that even though (H) is not satisfied, the system is still stable except for a countable
number of delays. We would like to point out that in the case where k1 = k0 = 0, this stability property
has been already proved in [22] for the nonlinear case and in [3,6] for the linear case with the displacement
term in the wave equation. For decay rates in the non-delayed, case we refer to [2,5].

If k1 > k0, then we expect to have exponential stability. This is the content of the following theorem
whose proof is based on the frequency domain method. Again, we mention that this has been already
established in the non-delayed case, see [6,22]. The method in [6] is to show the uniform boundedness of
the resolvents on the imaginary axis. The proof we provide below uses the Gearhart-Prüss Theorem.

Theorem 3.5. [Exponential Stability] If k1 > k0, then the semigroup generated by Ã is uniformly expo-
nentially stable, that is, there are constants M ≥ 1 and α > 0 such that ‖etÃX0‖H ≤ Me−αt‖X0‖H for
every X0 ∈ N(A)⊥ and t ≥ 0. In particular, for each t ≥ 0 and X0 ∈ H, we have ‖etAX0 − ΠX0‖H ≤
Me−αt‖X0‖H .

Proof. Assume on the contrary that the semigroup generated by Ã is not exponentially stable. According
to the Gearhart-Prüss Theorem, see [13, Theorem V.1.11], we have sup{‖(λI − Ã)−1‖L(H) : Re λ > 0} =
∞. By the Banach-Steinhaus Theorem and the uniform boundedness of the resolvents on compact sets,
there exists a sequence of complex numbers (λn)n with Reλn > 0 such that |λn| → ∞ and a sequence of
unit vectors Xn := (vn, σn, zn, un) ∈ D(Ã) such that ‖(λnI − Ã)Xn‖H → 0. Let Yn := (ηn, κn, ζn, ϕn) =
(λnI −Ã)Xn. The latter equation is equivalent to the system (3.2)–(3.5) with λ, (v, σ, z, u) and (η, κ, ζ, ϕ)
replaced by λn, (vn, σn, zn, un) and (ηn, κn, ζn, ϕn), respectively.

From the dissipativity of the operator Ã, we have

Re(Yn,Xn) = Re(λn − (ÃXn,Xn)H)

≥ Re λn +
∫

Ωf

|∇un|2 dx + (k1 − k0)
∫

Ωs

|vn|2 dx.

Since Re λn > 0 and k1 > k0 we have Re λn → 0,

vn → 0 strongly in L2(Ωs)d, (3.18)

un → 0 strongly in H1(Ωf )d, (3.19)
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where the second limit is due to the Poincaré inequality. Consequently, |Im λn| → ∞. The delay variable
zn satisfies the estimate

0∫

−τ

∫

Ωs

|zn(θ)|2 dxdθ ≤ Cτ

⎛

⎝

0∫

−τ

∫

Ωs

|ζn(θ)|2 dxdθ +
∫

Ωs

|vn|2 dx

⎞

⎠ (3.20)

for some constant Cτ > 0. Using (3.18) and the fact that ζn → 0 in L2(−τ, 0;L2(Ωs)d), we obtain

zn → 0 strongly in L2(−τ, 0;L2(Ωs)d). (3.21)

Taking the inner product in H, both sides of Yn = (λnI − Ã)Xn with Xn yield the following set of
equations

∫

Ωs

ηn · vn dx = (λn + k1)
∫

Ωs

|vn|2 dx +
∫

Ωs

σn · ∇vn dx (3.22)

+ 〈σn · ν, vn〉
H− 1

2 (Γs)d×H
1
2 (Γs)d

+ k0

∫

Ωs

zn(−τ) · vn dx

∫

Ωs

κn · σn dx = λn

∫

Ωs

|σn|2 dx −
∫

Ωs

∇vn · σn dx (3.23)

0∫

−τ

∫

Ωs

ζn(θ) · zn(θ) dxdθ = λn

0∫

−τ

∫

Ωs

|zn(θ)|2 dxdθ (3.24)

−
0∫

−τ

∫

Ωs

znθ(θ) · zn(θ) dxdθ

∫

Ωf

ϕn · un dx = λn

∫

Ωf

|un|2 dx +
∫

Ωf

|∇un|2 dx (3.25)

−
〈

∂un

∂ν
− πnν, un

〉

H− 1
2 (Γs)d×H

1
2 (Γs)d

.

Since Xn is bounded and Yn → 0 in H, each of these terms tends to 0 as n → ∞.
Dividing (3.25) by Im λn, taking the imaginary part and applying (3.19) yield

1
Im λn

Im
〈

∂un

∂ν
− πnν, un

〉

H− 1
2 (Γs)d×H

1
2 (Γs)d

→ 0. (3.26)

Similarly, if we divide (3.24) by Imλn, take the imaginary part and use (3.21), then we obtain

1
Im λn

0∫

−τ

∫

Ωs

Im(znθ(θ) · zn(θ)) dxdθ → 0. (3.27)

On the other hand, if we take the real part of (3.24) and pass to the limit, then we get

Re λn

0∫

−τ

∫

Ωs

|zn(θ)|2 dxdθ − 1
2

∫

Ωs

(|vn|2 − |zn(−τ)|2) dx → 0

and by applying (3.18) and (3.21), we have

zn(−τ) → 0 strongly in L2(Ωs)d. (3.28)
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Now, if we take the sum of (3.23)–(3.25), subtract the result from (3.22) and use the equations vn = un

on Γs and σn · ν = ∂un

∂ν − πnν in H− 1
2 (Γs)d, then we have

λn

⎛

⎝1 − 2
∫

Ωs

|vn|2 dx

⎞

⎠ − k1

∫

Ωs

|vn|2 dx − 2
∫

Ωs

Re(∇vn · σn) dx

− k0

∫

Ωs

zn(−τ) · vn dx −
0∫

−τ

∫

Ωs

znθ(θ) · zn(θ) dxdθ +
∫

Ωf

|∇un|2 dx

− 2
〈

∂un

∂ν
− πnν, un

〉

H− 1
2 (Γs)d×H

1
2 (Γs)d

→ 0.

Dividing by Imλn, taking the imaginary part and using (3.18), (3.26)–(3.28) give us ‖vn‖2
L2(Ωs)d

→ 1
2 ,

which is a contradiction to (3.18). Therefore, the semigroup generated by Ã must be exponentially stable.
This completes the proof of the theorem. �

Acknowledgements

The author is grateful for the helpful suggestions and comments of the referees. This work was funded by
the UP System Enhanced Creative Work and Research Grant (ECWRG 2015-1-007). Part of the research
was done during the stay of the author at the Institut für Mathematik und Wissenschaftliches Rechnen,
Karl-Franzens-Universität Graz.

References

1. Arendt, W., Batty, C.J.K.: Tauberian theorems and stability of one-parameter semigroups. Trans. Amer. Math.
Soc. 360, 837–852 (1988)

2. Avalos, G., Bucci, F.: Rational rates of uniform decay for strong solutions to a fluid-structure PDE system. J. Differ.
Equ. 258, 4398–4423 (2015)

3. Avalos, G., Triggiani, R.: The coupled PDE system arising in fluid-structure interaction, Part I: Explicit semigroup
generator and its spectral properties. Contemp. Math. 440, 15–54 (2007)

4. Avalos, G., Triggiani, R.: Semigroup wellposedness in the energy space of a parabolic-hyperbolic coupled Stokes-Lamé
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