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Abstract. We consider a modular sequence space generated by a sequence of Orlicz

functions. Sufficient conditions were imposed in this sequence to guarantee that the

modular of the space generates a Luxemburg norm. The (Δ2, �2) condition was used

to prove the equivalence of modular convergence and Luxemburg norm convergence.

Using a linear operator with certain properties, we will generate another modular

sequence space and establish an isometry between this space and the previous one.

Also, the quasiconvexity of the modular will be studied.
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1. Introduction

In the early 1930’s, Birnbaum and Orlicz [1] tried to generalize the classical
function spaces of the Lebesgue type Lp in connection with orthogonal expan-
sions. They have considered functions which behave similarly to the power
function f(t) = tp. Another generalization was obtained by Luxemburg [4] in
1955. These generalizations found their applications in the theory of integral
equations having kernels of nonpower types. In this paper, we consider modular
sequence spaces generated by a sequence of extended real valued functions, and
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we note that we will follow the formulation provided by Kozlowski [3]. Other
papers studying sequence spaces can be found in [2], [6] and [7].

This paper is organized as follows. In Section 2, we will define the modular
sequence space w0

0(Φ) generated by a sequence of Orlicz functions Φ. Sufficient
conditions are given in Section 3 so that the modular of w0

0(Φ) generates a
norm, which is usually called the Luxemburg norm. We prove that modular
convergence and Luxemburg norm convergence is equivalent provided that Φ
satisfies certain conditions. In Section 4, we will use a linear operator to generate
another modular sequence space and discuss some properties of this new modular
sequence space in relation to w0

0(Φ). Finally, we will obtain a necessary and
sufficient condition for the quasiconvexity of the modular in w0

0(Φ) in Section 5.

2. Definitions and Preliminaries

Let X be a real or complex vector space. A function � : X → [0,∞] is called a
modular if it satisfies the following properties:

(1) �(x) = 0 if and only if x = 0,

(2) �(�x) = �(x) for all x ∈ X and for all scalars � such that ∣�∣ = 1,

(3) �(�x+ (1 − �)y) ≤ �(x) + �(y) for all x, y ∈ X and scalar � ∈ [0, 1].

If X is a complex vector space, then condition (2) is equivalent to �(eitx) =
�(x) for all x ∈ X and for all t ∈ [0, 2�]. On the other hand, if X is a real vector
space, then condition (2) is equivalent to �(−x) = �(x) for all x ∈ X .

Let � be a modular on X . Then

�(�x) ≤ �(�x), 0 ≤ � ≤ �. (1)

If � = � then equality holds. If � < � then using the third property of the
modular we have

�(�x) = �((�/�)(�x) + (1 − �/�)0) ≤ �(�x).

A function ' : ℝ → [0,∞] is called an Orlicz function if it is a continuous
even function which is increasing on [0,∞) with '(x) = 0 if and only if x = 0
and '(x) → ∞ as x → ∞. Let Φ = {'k}

∞
k=1 be a family of Orlicz function and

let S be the space of real sequences x = {xk}
∞
k=1 considered as a vector space

over ℝ. For each r ∈ ℕ, let �r : S → [0,∞] be defined by

�r(x) =
1

2r−1

2r−1
∑

k=2r−1

'k(∣xk∣).

Define � : S → [0,∞] by �(x) = supr≥1 �r(x). It follows from the properties of
the Orlicz function that � satisfies the first two properties of a modular. For the
third property, let x, y ∈ S and � ∈ [0, 1]. If xk ≤ yk then that the set of all
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linear combinations �xk + (1 − �)yk is just the interval [xk, yk]. Thus we have
∣�xk + (1 − �)yk∣ ≤ max{∣xk∣, ∣yk∣} and so

'k(∣�xk + (1− �)yk∣) ≤ 'k(max{∣xk∣, ∣yk∣}) ≤ 'k(∣xk∣) + 'k(∣yk∣).

Therefore, for each r ∈ ℕ it follows that

1

2r−1

2r−1
∑

k=2r−1

'k(∣�xk +(1−�)yk∣) ≤
1

2r−1

2r−1
∑

k=2r−1

'k(∣xk∣)+
1

2r−1

2r−1
∑

k=2r−1

'k(∣yk∣),

and so �r(�x + (1 − �)y) ≤ �r(x) + �r(y), taking the supremum shows that
�(�x+(1−�)y) ≤ �(x)+�(y). Consider the sectionally modular sequence space
w0

0(Φ) defined as

w0
0(Φ) = {x = {x}∞k=1 ∣ �(�nx) → 0 whenever �n → 0} .

Representation theorems for modularly continuous orthogonally additive func-
tionals on w0

0(Φ) were given by Paredes [5].

3. Convergence in w
0

0
(Φ)

In this section, we will impose sufficient conditions on the sequence Φ of Orlicz
functions so that the modulars � and �r generate a Luxembourg norm.

Theorem 3.1. The modular sequence space w0
0(Φ) is a linear subspace of S.

Proof. It is clear that 0 ∈ w0
0(Φ). Let x ∈ w0

0(Φ) and � be a scalar. Assume
that �n → 0 as n → ∞. Then ��n → 0 and so �(�n(�x)) = �((��n)x) → 0.
This shows that �x ∈ w0

0(Φ). Now let x, y ∈ w0
0(Φ). Since 2�n → 0 we have

�(�n(x + y)) = �

(

1

2
(2�nx) +

1

2
(2�ny)

)

≤ �(2�nx) + �(2�ny) → 0.

Hence x+ y ∈ w0
0(Φ). Therefore w0

0(Φ) is a subspace of S.

Theorem 3.2. Let Φ = {'k}
∞
k=1 be a family of Orlicz functions such that for

each k ∈ ℕ,

'k

(

a+ b

2

)

≤
1

2
'k(a) +

1

2
'k(b), for all a, b ≥ 0. (2)

Define ∥ ⋅ ∥� : w0
0(Φ) → [0,∞] by

∥x∥� = inf {u > 0 ∣ �(x/u) ≤ 1} .

Then (w0
0(Φ), ∥ ⋅ ∥�) is a normed space.
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Proof. We claim that 'k(�a+(1−�)b) ≤ �'k(a) + (1−�)'k(b) for all a, b ≥ 0,
and � ∈ [0, 1] of the form � = m/2n with m ∈ ℕ ∪ {0} and n ∈ ℕ. We proceed
by induction on n. If n = 1, then the possible values for m are 0, 1, 2 and so �
takes the values 0, 1/2, 1. We can directly check that the said property holds for
these values of �. For the induction step, assume that the said property holds
for n− 1. Then, for m ∈ {0, 1, . . . , 2n−1} we have

'k

(m

2n
a+

(

1−
m

2n

)

b
)

= 'k

(

1

2

( m

2n−1
a
)

+
1

2

(

1−
m

2n−1

)

b +
1

2
b

)

≤
1

2
'k

( m

2n−1
a+

(

1−
m

2n−1

)

b
)

+
1

2
'k(b)

≤
1

2

[ m

2n−1
'k(a) +

(

1−
m

2n−1

)

'k(b)
]

+
1

2
'k(b)

=
m

2n
'k(a) +

(

1−
m

2n

)

'k(b).

If m ∈ {2n−1 + 1, . . . , 2n} then we have

'k

(m

2n
a+

(

1−
m

2n

)

b
)

= 'k

(

1

2

(

1 +
m− 2n−1

2n−1

)

a+
1

2

(

2−
m

2n−1

)

b

)

≤
1

2
'k(a) +

1

2
'k

(

m− 2n−1

2n−1
a+

2n −m

2n−1
b

)

.

Since m− 2n−1 ∈ {1, 2, . . . , 2n−1} and

2n −m

2n−1
= 1−

m− 2n−1

2n−1
,

we have by the previous case

'k

(

m− 2n−1

2n−1
a+

2n −m

2n−1
b

)

≤
m− 2n−1

2n−1
'k(a) +

2n −m

2n−1
'k(b).

Using this we obtain

'k

(m

2n
a+

(

1−
m

2n

)

b
)

≤
1

2
'k(a) +

m− 2n−1

2n
'k(a) +

2n −m

2n
'k(b)

=
m

2n
'k(a) +

(

1−
m

2n

)

'k(b).

for m− 2n−1 ∈ {1, 2, . . . , 2n−1}. This establishes our claim.

Next we will show that the set Q = {m/2n ∈ [0, 1] ∣m ∈ ℕ ∪ {0}, n ∈ ℕ}
is dense in [0, 1]. Indeed, let x, y ∈ (0, 1) be such that x < y and p be a
positive integer. Then there exists a positive integer n such that p < 2n(y − x)
and ⌊2nx⌋ ≥ 1. Thus 2nx < p + 2nx < 2ny. Note that ⌊2nx⌋ ≤ 2nx and
2nx < p+ ⌊2nx⌋. Hence

2nx < p+ ⌊2nx⌋ < 2ny.
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It follows that x < m/2n < y where m = p+ ⌊2nx⌋ and so Q = [0, 1].

Let � ∈ [0, 1]. Then we can find a sequence {�n}
∞
n=1 ⊂ Q such that �n → �

and using the continuity of 'k we obtain

'k(�a+ (1− �)b) = lim
n→∞

'k(�na+ (1− �n)b)

≤ lim
n→∞

[�n'k(a) + (1− �n)'k(b)]

= �'k(a) + (1 − �)'k(b),

which shows that 'k is convex.

Now let us show that ∥ ⋅ ∥� is a norm on w0
0(Φ). For each x ∈ w0

0(Φ) we
let Sx = {u > 0 ∣ �(x/u) ≤ 1}. Since S0 = (0,∞) it follows that ∥0∥� = 0.
Conversely, assume that ∥x∥� = 0. Then there exists a sequence of positive
integers {un}

∞
n=1 such that �(x/un) ≤ 1 and un → 0. This implies that there

exists a positive integer N such that 0 < un < 1 whenever n ≥ N . Thus, for
n ≥ N we have, by the convexity of 'k,

�(x) = sup
r∈ℕ

1

2r−1

2r−1
∑

k=2r−1

'k(∣xk∣)

= sup
r∈ℕ

1

2r−1

2r−1
∑

k=2r−1

'k (un(∣xk∣/un) + (1− un)0)

≤ sup
r∈ℕ

1

2r−1

2r−1
∑

k=2r−1

un'k(∣xk∣/un)

= un�(x/un)

≤ un → 0.

Consequently �(x) = 0, so that x = 0. Therefore ∥x∥� = 0 if and only if x = 0.

For homogeneity, let x ∈ w0
0(Φ) and � be a nonzero scalar. Let u ∈ S�x and so

u ∈ S∣�∣x. Hence �(x/(u∣�∣−1)) ≤ 1, that is, u∣�∣−1 ∈ Sx. Thus ∥x∥� ≤ u∣�∣−1.
Because u is an arbitrary element of S�x we get ∣�∣∥x∥� ≤ ∥�x∥�. For the
other inequality, let u ∈ Sx. Then �(�x/(u∣�∣)) ≤ 1, showing that u∣�∣ ∈ S�x.
Therefore ∥�x∥� ≤ ∣�∣u whenever u ∈ Sx. Hence ∥�x∥� ≤ ∣�∣∥x∥�.

Finally, for the triangle inequality, let � > 0. Note that we can find a sequence
{un}

∞
n=1 ⊂ Sx such that un → ∥x∥� and a sequence {vn}

∞
n=1 ⊂ Sy such that

vn → ∥y∥�. Therefore, for sufficiently large N , we have un < ∥x∥� + �/2 and
vn < ∥y∥� + �/2 for n ≥ N . From the fact that each of the 'k is increasing and
convex, we have

�

(

x+ y

un + vn

)

= sup
r∈ℕ

1

2r−1

2r−1
∑

k=2r−1

'k

(

∣xk + yk∣

un + vn

)

≤ sup
r∈ℕ

1

2r−1

2r−1
∑

k=2r−1

'k

(

un

un + vn

∣xk∣

un
+

vn
un + vn

∣yk∣

vn

)
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≤
un

un + vn
�

(

xk

un

)

+
vn

un + vn
�

(

yk
vn

)

≤ 1.

Hence un + vn ∈ Sx+y and so

∥x+ y∥� ≤ un + vn < ∥x∥� + ∥y∥� + �,

whenever n ≥ N . Letting � → 0+ gives us the desired inequality ∥x + y∥� ≤
∥x∥� + ∥y∥�. Therefore (w0

0(Φ), ∥ ⋅ ∥�) is a normed space.

We note that the functional ∥ ⋅ ∥� defined in the previous theorem is called
the Luxemburg norm generated by the modular �. Let

v00(Φ) = {x = {xk}
∞
k=1 ∣ �(�x) < ∞ for some � ∕= 0}.

If the family Φ satisfies the property (2), then we have w0
0(Φ) = v00(Φ). Indeed,

if x ∈ w0
0(Φ) then �(�nx) → 0 whenever �n → 0. In particular, �(x/n) → 0 as

n → ∞. For some N ∈ ℕ we have �(x/n) < 1 for all n ≥ N . Taking � = 1/N
shows that x ∈ v00(Φ) and so w0

0(Φ) ⊂ v00(Φ). On the other hand, let x ∈ v00(Φ)
so that �(�x) < ∞ for some nonzero real number �. If �n → 0 then ∣�n∣ < ∣�∣
for sufficiently large values of n. From the proof of the previous theorem we have

�r(�nx) =
1

2r−1

2r−1
∑

k=2r−1

'k

(

∣�n∣

∣�∣
(∣�xk∣) +

(

1−
∣�n∣

∣�∣

)

0

)

≤
∣�n∣

∣�∣
�r(�x)

for sufficiently large values of n. The above estimate shows that �(�nx) ≤
∣�n∣�(�x)/∣�∣ and so �(�nx) → 0. This limit proves that v00(Φ) ⊂ w0

0(Φ). There-
fore v00(Φ) = w0

0(Φ) provided that the family Φ satisfies inequality (2). From
this equality, assuming that Φ satisfies (2), we may characterize the elements
of w0

0(Φ) as those vectors x in S such that the function value of some nonzero
scalar multiple of x under � is finite.

We can see that �r is also a modular on w0
0(Φ) and using the same argument

as above, ∥ ⋅ ∥�r
is a norm on the modular space w0

0(Φ) provided that Φ satisfies
(2). For each x, y ∈ w0

0(Φ), let ∥x∥∞ = supr∈ℕ ∥x∥�r
. The family Φ is said to

satisfy the (Δ2, �2) condition if there exists a constant M (independent of k)
such that for each k, 'k(2u) ≤ 'k(u) for all u ≥ 0. The (Δ2, �2) condition
implies that �(2x) → 0 whenever �(x) → 0.

Lemma 3.3. If Φ satisfies (2), x ∈ w0
0(Φ) and ∥x∥� < 1 then �(x) ≤ ∥x∥�.

Moreover, if ∥x∥�r
< 1 then �r(x) ≤ ∥x∥�r

.

Proof. If ∥x∥� = 0 then we have equality. Let � > 0. If ∥x∥� ∈ (0, 1) then we
can find a sequence {un}

∞
n=1 ⊂ Sx and a positive integer N such that

0 < un < ∥x∥� + �, n ≥ N.
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If � ∈ (0, 1− ∥x∥�) then

�(x) = �(unx/un) ≤ (∥x∥� + �)�(x/un) ≤ ∥x∥� + �.

Letting � → 0+ we have �(x) ≤ ∥x∥�. The second statement of the lemma can
be shown using a similar argument.

We are now ready to prove the main result of this section. The following
theorem states that modular convergence, Luxemburg norm convergence and
∥ ⋅ ∥∞-convergence are equivalent provided that the sequence Φ satisfies (2) and
the (Δ2, �2) condition.

Theorem 3.4. Let Φ be a family of Orlicz function satisfying (2) and the (Δ2, �2)
condition. Then the following are equivalent

(i) �(x(n) − x) → 0 as n → ∞,

(ii) ∥x(n) − x∥� → 0 as n → ∞,

(iii) ∥x(n) − x∥∞ → 0 as n → ∞.

Proof. Assume that (i) holds, that is, �(x(n) − x) → 0. Using an induction
argument and the (Δ2, �2) condition we have �(2m(x(n)−x)) → 0 for all m ∈ ℕ.
Thus, for some N ∈ ℕ we have �(2m(x(n) − x)) < � for all n ≥ N , where
� ∈ (0, 1). Note that 2M > (�/2)−1 for some positive integer M ≥ N and so
�((x(n)−x)/(�/2)) ≤ �(2M (x(n)−x)) < 1. This shows that ∥x(n)−x∥� ≤ �/2 < �
for all n ≥ N . Therefore ∥x(n) − x∥� → 0.

Next, let us assume that (ii) holds. If

A = {u > 0 ∣ �((x(n) − x)/u) ≤ 1}

and

Br = {u > 0 ∣ �r((x
(n) − x)/u) ≤ 1}

then A ⊂ Br for all r ∈ ℕ. Thus inf A ≥ inf Br for all r ∈ ℕ and so ∥x(n)−x∥�r
≤

∥x(n) − x∥� for all r ∈ ℕ. Hence ∥x(n) − x∥∞ ≤ ∥x(n) − x∥� and this inequality
proves (iii).

If (iii) is satisfied, then there exists an N such that ∥x(n) − x∥�r
≤ ∥x(n) −

x∥∞ < �/2 for all r ∈ ℕ and for all n ≥ N . If �/2 < 1 then using the previous
lemma we get �r(x

(n) − x) ≤ ∥x(n) − x∥�r
for all r ∈ ℕ. Taking the supremum

we obtain �(x(n) − x) ≤ �/2 < � for all n ≥ N . Thus (i) holds.

4. Isometric Modular Spaces

Using an injective linear operator from S into itself, we will generate another
modular sequence space. We prove that this new modular sequence space and
w0

0(Φ) are isometric provided that the linear operator in S is bijective.



820 G.R. Peralta

Theorem 4.1. Let S0 be a subspace of S and T : S0 → S be an injective linear

operator. Then the composition �T is a modular on S0.

Proof. Since T is linear it follows that �T (0) = 0. On the other hand, if �T (x) =
0 then Tx = 0 and because T is injective we have x = 0. Since each 'k is even
we have �T (−x) = �(−Tx) = �T (x) for all x ∈ S0. Finally, if � ∈ [0, 1] then
using the linearity of T we obtain

�T (�x+ (1− �)y) = �(�Tx+ (1− �)Ty)

≤ �(Tx) + �(Ty),

for all x, y ∈ S0. Hence, �T is a modular on S0.

Taking S0 = S it follows that �T is also a modular on S provided that T is
an injective linear operator from S into itself. In this case, we let

w0
0(Φ)T =

{

x ∈ S

∣

∣

∣

∣

∣

sup
r∈ℕ

1

2r−1

2r−1
∑

k=2r−1

'k(�n∣(Tx)k∣) → 0 whenever �n → 0

}

.

Similarly, it can be shown that w0
0(Φ)T is a subspace of S and if the sequence Φ

of Orlicz functions satisfies (2) then the functional

∥x∥�T = inf{u > 0 ∣ �T (x/u) ≤ 1}

is a norm on w0
0(Φ)T . Note that if I is the identity operator on S then w0

0(Φ)I =
w0

0(Φ). Suppose that T : S → S is linear and injective. If w0
0(Φ) is T -invariant,

that is, T [w0
0(Φ)] ⊂ w0

0(Φ) then it follows that

w0
0(Φ) ⊂ w0

0(Φ)T . (3)

Indeed, if x ∈ w0
0(Φ) then Tx ∈ w0

0(Φ) so that we have

�T (�nx) = �(�nTx) → 0

as �n → 0, thus x ∈ w0
0(Φ)T .

Theorem 4.2. Let S0 be a subspace of the space S of all real sequences and let

T : S0 → S be an injective linear operator. Then

T [w0
0(Φ)T ∩ S0] = w0

0(Φ) ∩ T [S0]. (4)

If in addition, the sequence Φ of Orlicz function satisfies inequality (2) then the

normed spaces (w0
0(Φ)T ∩ S0, ∥ ⋅ ∥�T ) and (w0

0(Φ) ∩ T [S0], ∥ ⋅ ∥�) are isometric.

Proof. Let x = {xk}
∞
k=1 ∈ T [w0

0(Φ)T ∩S0] so that x = Ty for some y ∈ w0
0(Φ)T ∩

S0. In particular, we have y ∈ w0
0(Φ)T so that

lim
n→∞

�T (�ny) = 0
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as �n → 0. Hence

lim
n→∞

�(�nx) = lim
n→∞

�(�nTy) = lim
n→∞

�T (�ny) = 0,

whenever �n → 0. It follows that x ∈ w0
0(Φ). Notice that we also have x = Ty ∈

T [S0] and so T [w0
0(Φ)T ∩S0] ⊂ w0

0(Φ)∩T [S0]. Conversely, let x ∈ w0
0(Φ)∩T [S0].

Then x ∈ w0
0(Φ) and x = Ty for some y ∈ S0. Hence

lim
n→∞

�T (�ny) = lim
n→∞

�(�nx) = 0,

as �n → 0. Thus y ∈ w0
0(Φ)T . Consequently, we have T [w0

0(Φ)T ∩ S0] ⊃
w0

0(Φ) ∩ T [S0] and this completes the proof of (4).

Let T1 : w0
0(Φ)T ∩S0 → w0

0(Φ)∩ T [S0] be defined by T1x = Tx, that is, T1 is
the restriction of T on w0

0(Φ)T ∩ S0. Because T is linear and injective, then so
is T1. Equation (4) shows that T1[w

0
0(Φ)T ∩ S0] = w0

0(Φ) ∩ T [S0], that is, T1 is
surjective. Therefore in order to show that w0

0(Φ)T ∩ S0 and w0
0(Φ) ∩ T [S0] are

isometric, it remains to show that T1 preserves norm. If x ∈ w0
0(Φ)T ∩ S0 then

then

∥T1x∥� = inf{u > 0 ∣ �(T1x/u) ≤ 1} = inf{u > 0 ∣ �T1(x/u) ≤ 1} = ∥x∥�T .

This completes the proof of the theorem.

An immediate consequence of this theorem is the following corollary.

Corollary 4.3. If T : S → S is a bijective linear operator and Φ = {'k}
∞
k=1 is

a family of Orlicz functions satisfying (2) then (w0
0(Φ)T , ∥ ⋅ ∥�T ) is isometric to

(w0
0(Φ), ∥ ⋅ ∥�).

Note that if T : S → S is an injective linear operator then T n is also injective
and linear for all positive integer n. Hence it follows that �T n is also a modular
on S for all positive integer n. If w0

0(Φ)Tm is T -invariant for allm = 0, 1, . . . , n−1
then we have the following increasing chain of subspaces of S

{0} ⊂ w0
0(Φ) ⊂ w0

0(Φ)T ⊂ w0
0(Φ)T 2 ⊂ ⋅ ⋅ ⋅ ⊂ w0

0(Φ)Tn ⊂ S

for all positive integer n. This can be easily seen using (3) together with an
induction argument.

5. Quasiconvexity

Let X be a real vector space and f : X → [0,∞]. The function f is said
to be quasiconvex with constant M ≥ 1, if for any positive integer n, for any
elements x1, x2, . . . , xn ∈ X and nonnegative numbers �1, �2, . . . , �n satisfying
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�1 + �2 + ⋅ ⋅ ⋅+ �n = 1, we have

f

(

n
∑

i=1

�ixi

)

≤ M

n
∑

i=1

�if(Mxi).

We note that a quasiconvex function with constant M = 1 is convex. The
following theorem states that the quasiconvexity of each of the elements of Φ is
a necessary and sufficient condition for the quasiconvexity of the modular �.

Theorem 5.1. The modular � on S is quasiconvex with constant M ≥ 1 if and

only if each element of Φ is quasiconvex with the same constant M .

Proof. Suppose that the constants �1, �2, ⋅ ⋅ ⋅ , �n ≥ 0 satisfy �1+�2+⋅ ⋅ ⋅+�n =
1. Assume that 'k is quasiconvex with constant M ≥ 1 for each k ∈ ℕ. If
x(1), x(2), . . . , x(n) ∈ S then, by the triangle inequality and the fact that each 'k

is increasing, we have

�r

(

n
∑

i=1

�ix
(i)

)

=
1

2r−1

2r−1
∑

k=2r−1

'k

(∣

∣

∣

∣

∣

n
∑

i=1

�i(x
(i))k

∣

∣

∣

∣

∣

)

≤
1

2r−1

2r−1
∑

k=2r−1

'k

(

n
∑

i=1

�i∣(x
(i))k∣

)

≤
M

2r−1

2r−1
∑

k=2r−1

n
∑

i=1

�i'k(∣(Mx(i))k∣)

= M

n
∑

i=1

�i�r(Mx(i))

for each r ∈ ℕ. Taking the supremum shows that � is quasiconvex with constant
M .

For the converse, let u1, u2, . . . , un ∈ ℝ. Let k ∈ ℕ be fixed. Denote ek to be
the sequence in S with 1 in the kth position and 0 otherwise. We let x(i) = uiek.
Note that there exists a unique positive integer rk such that 2rk−1 ≤ k ≤ 2rk −1.
By definition we have �r(x

(i)) = 2−rk+1'k(∣(x
(i))k∣) = 2−rk+1'k(∣ui∣) if r = rk

and �r(x
(i)) = 0 if r ∕= rk. Hence �(x(i)) = 2−rk+1'k(∣ui∣). Similarly we can

show that �(Mx(i)) = 2−rk+1'k(M ∣ui∣) and

�

(

n
∑

i=1

�ix
(i)

)

= 2−rk+1'k

(∣

∣

∣

∣

∣

n
∑

i=1

�iui

∣

∣

∣

∣

∣

)

.

The quasiconvexity of � and the fact that 'k is even imply

'k

(

n
∑

i=1

�iui

)

= 2rk−1�

(

n
∑

i=1

�ix
(i)

)
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≤ M

n
∑

i=1

�i2
rk−1�(Mx(i))

= M
n
∑

i=1

�i'k(Mui).

This completes the proof of the theorem.

Corollary 5.2. If there exist constants C2, C1 > 0 and m ≥ 1 such that C2m ≥ C1

and

C1m
−1∣u∣m ≤ 'k(u) ≤ C2∣u∣

m (5)

for all u ∈ ℝ and for all k ∈ ℕ then � is a quasiconvex modular on S with

constant (C2m/C1)
1/(m+1) ≥ 1.

Proof. From the previous theorem it suffices to show that 'k is quasiconvex
with constant (C2m/C1)

1/(m+1) for all k ∈ ℕ. Using (5) and the convexity of
the function g(t) = tm we have

'k

(

n
∑

i=1

�iui

)

≤ C2

∣

∣

∣

∣

∣

n
∑

i=1

�iui

∣

∣

∣

∣

∣

m

≤ C2

n
∑

i=1

�i∣ui∣
m

=

(

C2m

C1

)1/(m+1) n
∑

i=1

�iC1m
−1

∣

∣

∣

∣

∣

ui

(

C2m

C1

)1/(m+1)
∣

∣

∣

∣

∣

m

≤

(

C2m

C1

)1/(m+1) n
∑

i=1

�i'k

(

ui

(

C2m

C1

)1/(m+1)
)

for all u1, u2, . . . , un ∈ ℝ and �1, �2, . . . , �n ≥ 0 such that �1+�2+ ⋅ ⋅ ⋅+�n = 1.
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