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We consider first-order hyperbolic systems on an interval with dynamic boundary
conditions. These systems occur when the ordinary differential equation dynamics on
the boundary interact with the waves in the interior. The well-posedness for linear
systems is established using an abstract Friedrichs theorem. Due to the limited
regularity of the coefficients, we need to introduce the appropriate space of test
functions for the weak formulation. It is shown that the weak solutions exhibit a
hidden regularity at the boundary as well as at interior points. As a consequence, the
dynamics of the boundary components satisfy an additional regularity. Neither result
can be achieved from standard semigroup methods. Nevertheless, we show that our
weak solutions and the semigroup solutions coincide. For illustration, we give three
particular physical examples that fit into our framework.
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1. Introduction

Hyperbolic partial differential equations (PDEs) are recognized mathematical mod-
els in areas such as fluid dynamics, acoustics, electromagnetics, scattering theory
and the general theory of relativity. Because information travels along characteristic
curves, discontinuities and oscillations propagate through time and space. There-
fore, in general, one might expect the same regularity for the initial data and the
solution. But what happens when a hyperbolic system has a dynamic boundary con-
dition? There is an emerging interest in coupled hyperbolic systems with dynamic
boundary conditions due to their applications in multiscale blood flow modelling
and valveless pumping (see [4–6,11,21,27,29,30] and the references therein).
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1048 G. Peralta and G. Propst

In this paper, we consider general linear hyperbolic systems with variable coeffi-
cients coupled with linear ordinary differential equations (ODEs) at the boundary

Lvu(t, x) = f(t, x), 0 < t < T, 0 < x < 1,

B0u(t, 0) = g0(t) + Q0(t)h(t), 0 < t < T,

B1u(t, 1) = g1(t) + Q1(t)h(t), 0 < t < T,

h′(t) = H(t)h(t) + G0(t)u(t, 0)
+ G1(t)u(t, 1) + S(t), 0 < t < T,

u(0, x) = u0(x), 0 < x < 1,

h(0) = h0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1.1)

where Lv = ∂t+A(v(t, x))∂x+R(t, x) for some appropriate matrix-valued functions
A, R, Bi, Qi, H, Gi and S. Here, v is a Lipschitz function and it can be thought of
as a frozen coefficient in an otherwise nonlinear system (see [24]). The present paper
is the first work (to the best of our knowledge) to deal with the well-posedness of
general hyperbolic PDE–ODE systems, although specific cases have been studied
separately, e.g. the wave equation with acoustic boundary conditions [2,14] and flow
in an elastic tube connected to tanks [25]. Here, our goal is to unify and improve
these results.

The L2-well-posedness of (1.1) is based on energy estimates. It is well known that
hyperbolic systems admit hidden boundary trace regularity. This is due to the fact
that information travels along characteristics, and thus the boundary regularity
of solutions is influenced by the regularity of the boundary and initial data. We
would like to extend this phenomenon to the coupled system (1.1). We shall show
that u satisfies a hidden regularity property, i.e. it has L2-trace at the boundary.
This property implies that the ODE component h lies not only in L2 but also in
H1. Thanks to this boundary trace regularity, we can also deduce an interior-point
trace regularity for solutions using the multiplier method. Thus, the ODEs have a
smoothing effect not only at the boundary. We would like to point out that trace
regularity plays an important role in the boundary controllability of hyperbolic
systems. If one computes the optimal control via the Hilbert uniqueness method,
then the cost functional contains traces of solutions of the adjoint problem.

One difficulty in deriving the weak form of (1.1) is eliminating the traces u|x=0
and u|x=1 in the ODE part. If there were some structural conditions on Gi and Bi

for i = 0, 1, then this would be an easier task. However, we shall not impose any
relationship between these matrices.

The weak solutions in L2 satisfy a variational equation that takes the form

(u, Λw)X = (f, w)X + (g, Ψw)Z for all w ∈ W (1.2)

for suitable function spaces X, W , Z and operators Λ, Ψ . This equation is obtained
by multiplying the differential equation by appropriate test functions, integrating by
parts and using the boundary and initial conditions. Due to the limited regularity
of the coefficients, particularly on G0 and G1, which we assumed to be L∞ only, we
need to introduce a non-standard space of test functions for the weak formulation.
In fact, they will be chosen to lie on a graph space. With an abstract a priori
estimate, the variational equation (1.2) has a solution u ∈ X (§ 2). Its proof is
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Linear hyperbolic systems with dynamic boundary conditions 1049

based on the Hahn–Banach and Riesz representation theorems. The idea of the
proof can be traced back to the work of Friedrichs [12] for symmetric systems.
Therefore, proving an a priori estimate is the first step in proving the existence of
weak solutions. Our method is to consider the ODE part (§ 3) and PDE part (§ 5)
separately.

How does the weak solution satisfy the initial–boundary-value problem? To an-
swer this, we need to consider the space of functions u ∈ L2(QT ) with Lu :=
∂tu + A∂xu ∈ L2(QT ), where A is at least Lipschitz and QT = (0, T ) × (0, 1). This
space is similar to that of L2-functions with L2-distributional divergence, which is
used in studying the Navier–Stokes equation and the wave equation. These spaces
are called graph spaces. The usual trace operator in H1 can be extended to define
a generalized trace operator for the graph space {u ∈ L2(QT ) : Lu ∈ L2(QT )}, but
the traces are now in H−1/2(∂QT ). To treat initial–boundary-value problems, we
shall also restrict the trace to the edges of the time-space domain (§ 4). With these
considerations, it will be seen that weak solutions satisfy the PDE in the sense of
distributions and the boundary conditions and initial condition are satisfied in the
sense of (generalized) traces.

In the constant-coefficient case, our well-posedness result implies that the weak
solution generates a C0-semigroup (§ 7). As a reassuring result, the weak solution is
the same as the solution given by the semigroup approach.

Notation. Lp(O) and W s,p(O) denote the usual Lebesgue and Sobolev spaces on
a non-empty open set O ⊂ R

d, and we set Hk(O) := W k,2(O). The usual notation
for the space of continuous functions C k(O), k ∈ N0 ∪ {∞}, will be used. The
space of smooth functions with compact support in O is denoted by D(O). For
each non-negative integer k we let CHk(QT ) :=

⋂k
j=0 Cj([0, T ], Hk−j(0, 1)).

If X is a Hilbert space consisting of functions depending on the variable t, we
define the weighted space eγtX = {eγtu : u ∈ X}, where γ ∈ R, equipped with the
inner product (u, v)eγtX := (e−γtu, e−γtv)X . Given n ∈ N, Xn denotes the product
of n copies of X. However, if the context is clear we shall simply write X for Xn.

2. A generalized Friedrichs theorem

In this section we prove the existence and uniqueness of solutions of a variational
problem. This general framework will be used in § 6 for a coupled PDE–ODE system
with variable coefficients. Let X and Z be real Hilbert spaces and let Y be a
subspace of X. Suppose that Λ : Y → X, Ψ : Y → Z and Φ : Y → Z are linear
operators. Let W = ker Φ. We assume that W and Λ(W ) are both non-trivial.
Given F ∈ X and G ∈ Z, we consider the following variational problem:

find u ∈ X such that (u, Λw)X = (F, w)X + (G, Ψw)Z ∀w ∈ W. (2.1)

For the differential equations we consider, Ψ is a trace operator, while Λ and Φ are
the differential and trace operators associated with the adjoint problem. We note
that the space of test functions W need not be dense with respect to the topology
of the space X. For the examples in the succeeding sections, X will be the dual of
the solution space.
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1050 G. Peralta and G. Propst

Theorem 2.1 (Friedrichs). Suppose that there exist γ > 0 and C > 0 such that

γ‖w‖2
X + ‖Ψw‖2

Z � C

(
1
γ

‖Λw‖2
X + ‖Φw‖2

Z

)
∀w ∈ Y. (2.2)

Then the variational equation (2.1) has a solution u ∈ X satisfying

γ‖u‖2
X � C

(
1
γ

‖F‖2
X + ‖G‖2

Z

)
. (2.3)

In addition, the solution is unique if and only if Λ(W ) is dense in X.

Proof. By assumption, the restriction Λ : W → X of Λ to W is injective, and
therefore it has a left inverse Λ−1 : Λ(W ) ⊂ X → W . According to (2.2),

γ‖Λ−1ϕ‖2
X + ‖ΨΛ−1ϕ‖2

Z � C

γ
‖ϕ‖2

X ∀ϕ ∈ Λ(W ). (2.4)

Define the linear map � : Λ(W ) → R by

�ϕ = (F, Λ−1ϕ)X + (G, ΨΛ−1ϕ)Z

for ϕ ∈ Λ(W ). We equipped Λ(W ) with the norm ‖ · ‖X . The Cauchy–Schwarz
inequality and (2.4) imply that

|�ϕ|2 � 2‖F‖2
X‖Λ−1ϕ‖2

X + 2‖G‖2
Z‖ΨΛ−1ϕ‖2

Z

� 2
(

1
γ

‖F‖2
X + ‖G‖2

Z

)
(γ‖Λ−1ϕ‖2

X + ‖ΨΛ−1ϕ‖2
Z)

� C

γ

(
1
γ

‖F‖2
X + ‖G‖2

Z

)
‖ϕ‖2

X

for all ϕ ∈ Λ(W ). Thus, � ∈ [Λ(W )]′ and

γ‖�‖2
[Λ(W )]′ � C

(
1
γ

‖F‖2
X + ‖G‖2

Z

)
.

According to the Hahn–Banach theorem, � admits an extension �̃ ∈ X ′ such that
‖�̃‖X′ = ‖�‖[Λ(W )]′ . From the Riesz representation theorem there is a unique u ∈ X
such that ‖u‖X = ‖�̃‖X′ and (u, v)X = �̃v for all v ∈ X. In particular, for every
w ∈ W

(u, Λw)X = �̃Λw = �Λw = (F, w)X + (G, Ψw)Z .

Thus, u is a solution of the variational equation (2.1) and it satisfies the estimate
(2.3). Suppose that u1 and u2 solve (2.1). Then (u1 −u2, Λw) = 0 for every w ∈ W .
If Λ(W ) is dense in X, then u1 − u2 = 0 and thus the solution of (2.1) is unique.

Conversely, suppose that (v, Λw)X = 0 for some v ∈ X \ {0} and for all w ∈ W .
If u is a solution of (2.1), then u + v is also a solution and hence the solution is not
unique.

The idea of the proof of theorem 2.1 can be traced back to the work of Friedrichs
[12]. The same idea has been used in [3,7,15]. The constant γ is introduced because
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Linear hyperbolic systems with dynamic boundary conditions 1051

the a priori estimates will be derived in weighted Lebesgue spaces. This parameter
is also useful for the absorption arguments.

In the context of differential equations, the variational equation (2.1) can be
derived by multiplying the differential equation by appropriate test functions and
formally integrating by parts. To prove the existence of solutions of the variational
equation (2.1), one has to prove the abstract a priori estimate (2.2). For hyperbolic
systems, the a priori estimates can be obtained with the help of symmetrizers (see
[3, 7, 8, 17,20]). Before dealing with PDEs, we shall first illustrate how theorem 2.1
can be used to prove well-posedness of a system of ordinary differential equations.
This will be done in the succeeding section.

To prove uniqueness, a sufficient condition is to show that for each v ∈ X there
exists w ∈ Y with Λw = v and Φw = 0. This corresponds to a homogeneous dual
problem. In most cases, the well-posedness of the dual problem follows from the
primal problem after time reversal. However, the criterion that the solution lies in
the space Y is not known a priori. In the context of PDEs a different approach to
proving uniqueness is taken, namely the weak equals strong argument.

3. Linear ordinary differential equations

Consider the ordinary differential equation

h′(t) = H(t)h(t) + f(t), t ∈ (0, T ),
h(0) = h0,

}
(3.1)

where T > 0, h : (0, T ) → R
m, h0 ∈ R

m, H ∈ L∞((0, T ); Rm×m) and f ∈
L2((0, T ); Rm). A function h ∈ L2(0, T ) is called a weak solution of (3.1) if the
variational equation

(h, η′ + HTη)L2(0,T ) = −h0 · η(0) − (f, η)L2(0,T ) (3.2)

holds for every η ∈ H1(0, T ) such that η(T ) = 0. If h is a weak solution of (3.1),
then necessarily h ∈ H1(0, T ) and h′ = Hh + f in the weak sense. This can be
seen immediately from (3.2) by taking η ∈ D(0, T ). In addition, integrating by
parts we obtain h(0) = h0. As a result, the variational equation (3.2) is equivalent
to the ordinary differential equation (3.1). The existence and uniqueness of weak
solutions to (3.1) is well known and established. However, we would like to apply
theorem 2.1 to prove its well-posedness and to use the corresponding results in
studying the coupled system (1.1). The application of theorem 2.1 to (3.1) relies on
an a priori estimate that will be derived using the following proposition. For the
proof we refer the reader to [3, p. 283].

Proposition 3.1. For each η ∈ eγtH1(−∞, T ) and γ � 1 we have∫ T

−∞
e−2γt|η(t)|2 dt � 1

γ2

∫ T

−∞
e−2γt|η′(t)|2 dt.

As a consequence we have the following estimate.
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1052 G. Peralta and G. Propst

Corollary 3.2. For each γ � 1 and η ∈ H1(0, T ) such that η(T ) = 0 we have∫ T

0
e2γt|η(t)|2 dt � 1

γ2

∫ T

0
e2γt|η′(t)|2 dt. (3.3)

Proof. Extending η by zero for t > T we have η ∈ H1(0,∞). Define the function
ζ ∈ eγtH1(−∞, T ) by ζ(t) = η(T − t). Proposition 3.1 and the change of variable
s = T − t imply ∫ T

0
e2γt|η(t)|2 dt =

∫ T

−∞
e−2γ(s−T )|ζ(s)|2 ds

� 1
γ2

∫ T

−∞
e−2γ(s−T )|ζ ′(s)|2 ds. (3.4)

Using ζ ′(s) = −η′(T − s) and the change of variable t = T − s we have∫ T

−∞
e−2γ(s−T )|ζ ′(s)|2 ds =

∫ T

−∞
e−2γ(s−T )|η′(T − s)|2 ds

=
∫ T

0
e2γt|η′(t)|2 dt. (3.5)

The estimate (3.3) now follows from (3.4) and (3.5).

With the estimate (3.3), it is now possible to derive an a priori estimate needed
in the well-posedness of (3.2). This a priori estimate, which can be thought of as a
Poincaré-type inequality, will be also used in the PDE–ODE systems of § 6.

Theorem 3.3. Let A ∈ L∞((0, T ); Rm×m). There exist constants C > 0 and γ0 � 1
depending only on ‖A‖L∞(0,T ) such that for all η ∈ H1(0, T ) and for all γ � γ0 we
have

|η(0)|2 + γ‖eγtη‖2
L2(0,T ) � C

γ
‖eγt(η′ + Aη)‖2

L2(0,T ) + Ce2γT |η(T )|2. (3.6)

Proof. First, suppose that η ∈ H1(0, T ) satisfies η(T ) = 0. According to corol-
lary 3.2 and the triangle inequality we have

γ‖eγtη‖2
L2(0,T ) � 2

γ
‖eγt(η′ + Aη)‖2

L2(0,T ) +
2
γ

‖A‖2
L∞(0,T )‖eγtη‖2

L2(0,T ). (3.7)

For sufficiently large γ, the second term on the right-hand side of (3.7) can be
absorbed by the term on the left-hand side. Thus, there are constants C > 0 and
γ0 � 1 both depending only on the L∞-norm of A such that for all γ � γ0

γ‖eγtη‖2
L2(0,T ) � C

γ
‖eγt(η′ + Aη)‖2

L2(0,T ). (3.8)

Define η(t) = 0 for t > T and w(t) = eγ(T−t)η(T − t) for −∞ < t < T . Then
w ∈ H1(−∞, T ), and therefore it satisfies the weighted Sobolev estimate

‖w‖2
L∞(−∞,T ) � γ‖w‖2

L2(−∞,T ) +
1
γ

‖w′‖2
L2(−∞,T ) (3.9)
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Linear hyperbolic systems with dynamic boundary conditions 1053

for all γ > 0. Since w′(t) = −γeγ(T−t)η(T − t) − eγ(T−t)η′(T − t), the above esti-
mate implies that for some C > 0

e2γ(T−t)|η(T − t)|2 � C

(
γ‖eγtη‖2

L2(0,T ) +
1
γ

‖eγtη′‖2
L2(0,T )

)
(3.10)

holds for all t ∈ [0, T ]. Choosing t = T in (3.10), writing η′ = (η′ + Aη) − Aη and
using the same argument as before, we obtain, by increasing γ0 if necessary, that
for all γ � γ0

|η(0)|2 � C

(
γ‖eγtη‖2

L2(0,T ) +
1
γ

‖eγt(η′ + Aη)‖2
L2(0,T )

)
(3.11)

for some C > 0. The estimate

|η(0)|2 + γ‖eγtη‖2
L2(0,T ) � C

γ
‖eγt(η′ + Aη)‖2

L2(0,T ) (3.12)

follows from (3.8) and (3.11).
Now suppose that η ∈ H1(0, T ). Define ζ ∈ H1(0, T ) by ζ(t) = η(t) − η(T ) for

0 < t < T . Applying (3.12) to ζ, using the triangle inequality and the fact that
2γ‖eγt‖2

L2(0,T ) = e2γT − 1 we obtain (3.6).

We are now in a position to use theorem 2.1 in proving that (3.2) is well posed.
We take X = e−γtL2(0, T ), Y = H1(0, T ) and Z = R

m. The operators Λ, Ψ and Φ
are given by Λη = η′ + HTη, Ψη = η(0) and Φη = η(T ) for all η ∈ Y , respectively.
Thus, the variational equation (3.2) can be written in the form

(e−2γth, Λη)X = (−e−2γtf, η)X + (−h0, Ψη)Z ∀η ∈ W, (3.13)

where W = {η ∈ Y : η(T ) = 0}. Note that the set X coincides with L2(0, T ).

Theorem 3.4. Let h0 ∈ R
m, H ∈ L∞(0, T ) and f ∈ L2(0, T ). Then (3.1) has a

unique weak solution h ∈ L2(0, T ). Furthermore, h ∈ H1(0, T ) and it satisfies the
energy estimates

γ‖e−γth‖2
L2(0,T ) � C

(
1
γ

‖e−γtf‖2
L2(0,T ) + |h0|2

)
(3.14)

and

‖e−γth′‖2
L2(0,T ) � C(‖e−γtf‖2

L2(0,T ) + |h0|2) (3.15)

for all γ � γ0 for some C > 0 and γ0 � 1 both depending only on ‖H‖L∞(0,T ).

Proof. Using the notation of the paragraph preceding the theorem, the a priori
estimate (2.3) follows directly from theorem 3.3. Hence, theorem 2.1 implies the
existence of g ∈ X such that

(g, Λη)X = (−e−2γtf, η)X + (−h0, Ψη)Z ∀η ∈ W,

and it satisfies

γ‖g‖2
X � C

(
1
γ

‖e−2γtf‖2
X + |h0|2

)
. (3.16)
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1054 G. Peralta and G. Propst

Then h = e2γtg ∈ L2(0, T ) is a weak solution of (3.1) and it satisfies (3.14) due to
(3.16). From the discussion at the beginning of this section, we already know that
the weak solution h lies in H1(0, T ) and it satisfies h′ = Hh + f in L2(0, T ). The
estimate (3.15) follows from the differential equation h′ = Hh+f and (3.14). Given
f ∈ X, the dual problem η′ + HTη = f , η(T ) = 0 admits a solution η ∈ H1(0, T ),
which was just shown for the forward problem. Hence, Λ(W ) = X and therefore
the weak solution is unique by theorem 2.1.

4. Graph spaces and their traces

Let O be a non-empty open subset of R
2, let A ∈ W 1,∞(O) and let R ∈ L∞(O).

Consider the linear operator L : H1(O) → L2(O) defined by

Lu = ∂tu + A∂xu + Ru.

By duality, we can extend the definition of L for u ∈ L1
loc(O) in the sense of

distributions. Define L : L1
loc(O) → D(O)′ by

Lu(ϕ) = (Lu, ϕ)D(O)′×D(O) =
∫

O
u · L∗ϕ dxdt ∀ϕ ∈ D(O),

where L∗ denotes the formal adjoint of L given by

L∗ϕ = −∂tϕ − AT∂xϕ − (∂xA)Tϕ + RTϕ. (4.1)

By the definition of distributional derivatives, it can be seen that

Lu = ∂tu + ∂x(Au) − (∂xA)u + Ru

for all u ∈ L1
loc(O) in the sense of distributions. It is clear from the definition that

L ∈ L(L2(O); H−1(O)).
Given u ∈ L2(O), suppose that there exists C > 0 such that

|Lu(ϕ)| � C‖ϕ‖L2(O) ∀ϕ ∈ D(O). (4.2)

By the Riesz representation theorem, there exists a unique f ∈ L2(O) such that
Lu(ϕ) = (f, ϕ)L2(O) for all ϕ ∈ L2(O) whenever (4.2) holds. Identifying L2(O) with
its dual, we write Lu = f . Thus, Lu = f , with u ∈ L2(O) for some f ∈ L2(O), is
equivalent to

(u, L∗ϕ)L2(O) = (f, ϕ)L2(O) ∀ϕ ∈ D(O).

If u ∈ H1(O), then Lu = ∂tu + A∂xu + Ru in the weak sense. In other words,
the operator L defined in the sense of distributions and the differential operator
∂t + A∂x + R coincide in H1(O).

For θ ∈ C ∞(O; R) the distribution θLu ∈ D(O)′ is defined by

θLu(ϕ) = Lu(θϕ) = (u, L∗(θϕ))L2(O) ∀ϕ ∈ D(O).

The product rule for smooth functions implies that θLu = L(θu)− (∂tθ +(∂xθ)A)u
in the sense of distributions.

Consider the following subspace of L2(O)

E(O) = {u ∈ L2(O) : Lu ∈ L2(O)}.
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Induced by the graph norm

‖u‖E(O) = (‖u‖2
L2(O) + ‖Lu‖2

L2(O))
1/2,

E(O) becomes a Hilbert space, called a graph space. Furthermore, the zero-order
terms of L are immaterial in the definition of E(O), that is,

E(O) = {u ∈ L2(O) : ∂tu + ∂x(Au) ∈ L2(O)}.

The space E(O) is closed under multiplication with functions in C ∞
b (O; R) and if

uj → u in E(O), then θuj → θu in E(O) for every θ ∈ C ∞
b (O; R).

We need traces of functions in E(QT ), where QT = (0, T ) × (0, 1), which will
be used for initial–boundary-value problems. This has been done in [1] for gen-
eral Lipschitz domains and in [15] for general graph spaces. It is shown in [1] that
D(Q̄T ) is dense in E(QT ). This information allows us to extend the trace oper-
ator Γ : H1(QT ) → H1/2(∂QT ) to functions in E(QT ). Given u ∈ E(QT ) define
Γgu : H1/2(∂QT ) → R by

Γgu(ϕ) = lim
j→∞

(Γuj , A∂ϕ)L2(∂QT ), ϕ ∈ H1/2(QT ),

where
A∂ = −1{x=0} + 1{x=1} − A−T1{t=0} + A−T1{t=T} in ∂QT

and (uj)j ⊂ H1(QT ) and uj → u in E(QT ). Here, 1S denotes the indicator function
of a set S. Using the same arguments as in [1] we have Γgu ∈ H−1/2(∂QT ) and
Γg ∈ L(E(QT ); H−1/2(∂QT )). Moreover, if u ∈ H1(Q), then Γgu = AT

∂ Γu and
Γg(θu) = θ|∂QT

Γgu for every θ ∈ C ∞(Q̄T ; R) and u ∈ E(QT ).
The next step is to localize the trace defined in the previous discussion. Given a

non-empty Σ ⊂ ∂QT we define

V(Σ) = {ϕ ∈ H1/2(∂QT ) : suppϕ ⊂ Σ}. (4.3)

It is known that V(Σ) is dense in L2(Σ) (see [31, theorem 13.6.10]). Denote by
V (Σ) the completion of V(Σ) with respect to the norm of H1/2(∂QT ). Thus, we
have the Gel′fand triple

V (Σ) ⊂ L2(Σ) ⊂ V (Σ)′. (4.4)

If ϕ ∈ V (Σ), there exists a sequence (ϕj)j ⊂ V(Σ) such that ‖ϕj − ϕ‖H1/2(∂QT ) →
0. If a ∈ W 1,∞(Σ), then aTϕj ∈ V(Σ) and ‖aTϕj − aTϕ‖H1/2(∂QT ) → 0. Hence,
aTϕ ∈ V (Σ). As a result, we can define the product au ∈ V (Σ)′, where u ∈ V (Σ)′

and a ∈ W 1,∞(Σ) by

〈au, ϕ〉V (Σ)′×V (Σ) = 〈u, aTϕ〉V (Σ)′×V (Σ), ϕ ∈ V (Σ).

Let us set Σ0 = {0} × (0, 1), Σ1 = (0, T ) × {0}, Σ2 = (0, T ) × {1} and Σ3 =
{T} × (0, 1). Given u ∈ E(QT ), we define the generalized trace u|Σ1 : V (Σ1) → R

of u on Σ1 by

u|Σ1(ϕ) = − lim
j→∞

〈Γgu, ϕj〉H−1/2(∂QT )×H1/2(∂QT ), ϕ ∈ V (Σ1), (4.5)

where (ϕj)j ⊂ V(Σ1) and ‖ϕj − ϕ‖H1/2(∂QT ) → 0. By definition, we have

|u|Σ1(ϕ)| � ‖Γgu‖H−1/2(∂QT )‖ϕ‖H1/2(∂QT ).
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1056 G. Peralta and G. Propst

Thus, u|Σ1 ∈ V (Σ1)′ and ‖u|Σ1‖V (Σ1)′ � ‖Γgu‖H−1/2(∂QT ). In particular, u 
→
u|Σ1 ∈ L(E(QT ); V (Σ1)′) because Γg is bounded. It follows from the definition
that

〈u|Σ1 , ϕ〉V (Σ1)′×V (Σ1) = −〈Γgu, ϕ〉H−1/2(∂QT )×H1/2(∂QT ) (4.6)

for all u ∈ E(QT ) and ϕ ∈ V(Σ1). Also,

u|Σ1 = (Γu)|Σ1 ∀u ∈ H1(QT ). (4.7)

The other trace operators are defined as follows:

〈u|Σ2 , ϕ2〉V (Σ2)′×V (Σ2) = lim
j→∞

〈Γgu, ϕ2j〉H−1/2(∂QT )×H1/2(∂QT ),

〈u|Σ0 , ϕ0〉V (Σ0)′×V (Σ0) = − lim
j→∞

〈Γgu, A(0, ·)Tϕ0j〉H−1/2(∂QT )×H1/2(∂QT ),

〈u|Σ3 , ϕ3〉V (Σ3)′×V (Σ3) = lim
j→∞

〈Γgu, A(T, ·)Tϕ3j〉H−1/2(∂QT )×H1/2(∂QT ),

where ϕi ∈ V (Σi), ϕij ∈ V(Σi) and ‖ϕij − ϕi‖H1/2(∂QT ) → 0 for i = 0, 2, 3. The
properties of the trace u|Σ1 are carried by these traces as well. We note that the
localization process we introduced above is different from the one mentioned in [7].

Using a standard density argument, we can show that∫ T

0

∫ 1

0
Lu · ϕ dxdt =

∫ T

0

∫ 1

0
u · L∗ϕ dxdt + 〈AΓgu, Γϕ〉V (Σ1)′×V (Σ1) (4.8)

for every u ∈ E(QT ) and ϕ ∈ H1(QT ) such that Γϕ ∈ V(Σ1). Similarly, we have∫ T

0

∫ 1

0
Lu · ϕ dxdt =

∫ T

0

∫ 1

0
u · L∗ϕ dxdt − 〈Γgu, Γϕ〉V (Σ0)′×V (Σ0) (4.9)

for every u ∈ E(QT ) and ϕ ∈ H1(QT ) satisfying Γϕ ∈ V(Σ0).
Let us simplify the notation for the traces we have introduced in this section. For

functions u ∈ E(QT ) we shall also use the notation u|x=0, u|x=1, u|t=0 and u|t=T

for u|Σ1 , u|Σ2 , u|Σ0 and u|Σ3 , respectively.

5. Weak and strong solutions for linear hyperbolic systems

This section is devoted to hyperbolic systems on an interval in the absence of ODE
boundary conditions. We shall recall the notion of weak and strong solutions for
such systems. Most of the results are stated here without proofs. We refer the reader
to [3, ch. 9] for more details on the multidimensional case and to [23, ch. 4] in the
case of one space dimension. For the sake of completeness and clarity, we review
these results and in a form (e.g. theorem 5.7) that will be used later. Throughout
this section, we assume the following hypotheses, similar to those given in [3] (see
also [24]).

(FS) Friedrichs symmetrizability. Let U ⊂ R
n be open and convex. The differential

operator
Lw = ∂t + A(w)∂x
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is Friedrichs symmetrizable for all w ∈ U , i.e. there exists a symmetric
positive-definite matrix-valued function S ∈ C ∞(U ; Rn×n), called the Fried-
richs symmetrizer, that is bounded as well as its derivatives; S(w)A(w) is
symmetric for all w ∈ U , and there exists α > 0 such that S(w) � αIn for all
w ∈ U .

(D) Diagonalizability. It holds that A ∈ C ∞(U ; Rn×n) and, for each w ∈ U , A(w)
is diagonalizable with p positive eigenvalues and n − p negative eigenvalues.
In particular, A(w) is invertible and has n independent eigenvectors.

(UKL) Uniform Kreiss–Lopatinskĭı condition. The matrices B0 ∈ C ∞(U ; Rp×n) and
B1 ∈ C ∞(U ; R(n−p)×n) are of full rank and there exists C > 0 such that for
all w ∈ U

|V | � C|B0(w)V | for all V ∈ Eu(A(w))

and

|V | � C|B1(w)V | for all V ∈ Es(A(w)),

where Eu(A) and Es(A) denote the unstable and stable subspaces of a matrix
A, respectively.

Using the full-rank assumptions on B0 and B1, one can prove the following decom-
position of the flux matrix in terms of the boundary matrices B0 and B1. A proof
can be found in [3, lemma 9.4]. This decomposition is important in deriving the
weak form of (1.1).

Lemma 5.1. Assume that (D) holds and suppose that the boundary matrices B0 ∈
C ∞(U ; Rp×n) and B1 ∈ C ∞(U ; R(n−p)×n) have full ranks at each point of U . Then
there exist matrix-valued maps N0, C0, M1 ∈ C ∞(U ; R(n−p)×n) and N1, C1, M0 ∈
C ∞(U ; Rp×n) such that

A(w) = Mx(w)TBx(w) + Cx(w)TNx(w) ∀(w, x) ∈ U × {0, 1}. (5.1)

In fact, N0 is chosen so that
(

B0
N0

)
∈ C ∞(U ; Rn×n) is invertible with inverse

(Y0D0), where Y0 ∈ C ∞(U ; Rn×p) and D0 ∈ C ∞(U ; Rn×(n−p)). Thus, we can take

M0 = (AY0)T and C0 = (AD0)T. (5.2)

Consider the initial–boundary-value problem (IBVP)

∂tu + A∂xu + Ru = f, 0 < t < T, 0 < x < 1
B0u|x=0 = g0, 0 < t < T,

B1u|x=1 = g1, 0 < t < T,

u|t=0 = u0, 0 < x < 1,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.3)

where A = A(v), B0 = B0(v), B1 = B1(v), v ∈ W 1,∞(QT ) and R ∈ L∞(QT ; Rn×n).
Throughout this paper, we suppose that the range of v lies in a compact subset K
of U , ‖v‖W 1,∞(QT ) � K and ‖R‖L∞(QT ) � �. Here, K > 0 and � > 0 are fixed.
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1058 G. Peralta and G. Propst

Definition 5.2. Let f ∈ L2(QT ), g0, g1 ∈ L2(0, T ) and u0 ∈ L2(0, 1). A function
u ∈ L2(QT ) is called a weak solution of the initial–boundary-value problem (5.3) if

∫ T

0

∫ 1

0
u · L∗ϕ dxdt =

∫ T

0

∫ 1

0
f · ϕ dxdt −

∫ T

0
g1 · M1ϕ|x=1 dt

+
∫ T

0
g0 · M0ϕ|x=0 dt +

∫ 1

0
u0 · ϕ|t=0 dx (5.4)

holds for all ϕ ∈ H1(QT ) such that C0ϕ|x=0 = 0, C1ϕ|x=1 = 0 and ϕ|t=T = 0.

It is clear that the space of test functions in definition 5.2 is dense in the solution
space L2(QT ). The following theorem states how the weak solution satisfies the
IBVP (5.3) in some sense.

Theorem 5.3. If u ∈ L2(QT ) is a weak solution of (5.3), then u ∈ E(QT ). The
equation Lu = f holds in L2(QT ) in the sense of distributions and the boundary
and initial conditions are satisfied in the following sense:

B0u|x=0 = g0 in V (Σ1)′, (5.5)
B1u|x=1 = g1 in V (Σ2)′, (5.6)

u|t=0 = u0 in V (Σ0)′. (5.7)

Proof. By taking ϕ ∈ D(QT ) in the definition, the equation Lu = f holds in
the sense of distributions, and hence u ∈ E(QT ). By Green’s identity (4.8), (5.1)
and (5.4) we have

〈B0u|Σ1 , M0ϕ|x=0〉V (Σ1)′×V (Σ1) =
∫ T

0
g0 · M0ϕ|x=0 dt (5.8)

for every ϕ ∈ H1(QT ) such that Γϕ ∈ V(Σ1) and C0ϕ|x=0 = 0. Given ψ ∈ V(Σ1),
let φ ∈ H1(QT )p be such that Γφ = ψ and define ϕ ∈ H1(QT ) by

ϕ(t, x) = A(t, x)−T
(

Y0(t, x)T

D0(t, x)T

)−1(
φ(t, x)

O(n−p)×1

)
.

It is clear that Γϕ ∈ V(Σ1) and C0ϕ|x=0 = DT
0 ATϕ|x=0 = 0. Also, M0ϕ|x=0 =

Y T
0 ATϕ|x=0 = φ|x=0 = ψ. With this ϕ in (5.8) we have

〈B0u|Σ1 , ψ〉V (Σ1)′×V (Σ1) =
∫ T

0
g0 · ψ dt.

By the density of V(Σ1) in V (Σ1) this means that (5.5) holds. A similar argument
shows that (5.6) holds as well.

Let us prove (5.7). For ψ ∈ V(Σ0) we let ϕ ∈ H1(QT ) be such that Γϕ = ψ.
Then C0ϕ|x=0 = 0, C1ϕ|x=1 = 0, ϕ|t=T = 0 and so

〈u|Σ0 , ψ〉V (Σ0)′×V (Σ0) =
∫ 1

0
u0 · ψ dx

from (4.9) and (5.4). Thus, u|Σ0 = u0 in V (Σ0)′.
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We can also introduce a stronger notion of solution for the IBVP (5.3).

Definition 5.4. A function u ∈ L2(QT ) is called a strong solution of (5.3) if there
exist sequences (uj)j ⊂ H1(QT ), (fj)j ⊂ L2(QT ), (g0j)j ⊂ H1/2(0, T ), (g1j)j ⊂
H1/2(0, T ) and (u0j)j ⊂ H1/2(0, 1) such that

Luj = fj , 0 < t < T, 0 < x < 1,

B0uj|x=0 = g0j , 0 < t < T,

B1uj|x=1 = g1j , 0 < t < T,

uj|t=0 = u0j , 0 < x < 1,

with uj → u and fj → f in L2(QT ), g0j → g0 in L2(0, T ), g1j → g1 in L2(0, T ) and
u0j → u0 in L2(0, 1).

It can easily be seen that every strong solution of (5.3) is also a weak solution.
The convergence of the sequence approximating a strong solution can be improved
to E(QT ). The proof of the following theorem can be deduced immediately from
the definition of strong solutions and the continuity of the trace operators.

Theorem 5.5. If u is a strong solution of (5.3) and (uj)j ⊂ H1(QT ) is a cor-
responding approximating sequence of u, then uj → u in E(QT ). In particular,
uj|Σi

→ u|Σi
in V (Σi)′ for i = 1, 2, 3, 4.

We let E(QT ) be the space of all functions ϕ ∈ E(QT ) such that ϕ|∂QT
∈ L2(∂QT )

and there exists a sequence (ϕj)j ⊂ H1(QT ) with the property that

lim
j→∞

‖uj − u‖E(QT ) + ‖uj|∂QT
− u|∂QT

‖L2(∂QT ) = 0. (5.9)

Obviously, we have H1(QT ) ⊂ E(QT ). One can check that E(QT ) is the completion
of H1(QT ) with respect to the norm

‖u‖E(QT ) := (‖u‖2
E(QT ) + ‖u|∂QT

‖2
L2(∂QT ))

1/2. (5.10)

The space E∗(QT ) is also defined in a similar manner where L is replaced by L∗.
We can extend Green’s identity to functions in E(QT ) and E∗(QT ).

Theorem 5.6. For every u ∈ E(QT ) and ϕ ∈ E∗(QT ) we have∫ T

0

∫ 1

0
u · L∗ϕ dxdt =

∫ T

0

∫ 1

0
Lu · ϕ dxdt −

∫ T

0
A(t, 1)u(t, 1) · ϕ(t, 1) dt

+
∫ T

0
A(t, 0)u(t, 0) · ϕ(t, 0) dt −

∫ 1

0
u(T, x) · ϕ(T, x) dx

+
∫ 1

0
u(0, x) · ϕ(0, x) dx. (5.11)

Proof. Using integration by parts, (5.11) holds for all u, v ∈ D(Q̄T ) and hence
for all u, v ∈ H1(QT ). The conclusion now follows from the density of H1(QT ) in
E(QT ) and E∗(QT ).
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1060 G. Peralta and G. Propst

Theorem 5.7. Suppose that (FS), (D) and (UKL) hold. Then there exist C =
C(�, K,K) > 0 and γ0 = γ0(�, K,K) � 1 such that the a priori estimate

‖u|t=0‖2
L2(0,1) + γ‖eγtu‖2

L2(QT ) + ‖eγtu|x=0‖2
L2(0,T ) + ‖eγtu|x=1‖2

L2(0,T )

� C

(
e2γT ‖u|t=T ‖2

L2(0,1) +
1
γ

‖eγtL∗
vu‖2

L2(QT )

+ ‖eγtC0(v)u|x=0‖2
L2(0,T ) + ‖eγtC1(v)u|x=1‖2

L2(0,T )

)
(5.12)

holds for all u ∈ E∗(QT ) and γ � γ0.

The proof of this theorem can be found in [3, ch. 9] in the case where u ∈ H1(QT ).
The fact that it holds for all u ∈ E∗(QT ) follows immediately from the definition of
the space E∗(QT ). The proof of (5.12) is obtained by successively deriving various
a priori estimates. These are the a priori estimates for

(i) pure boundary-value problems using symmetrizers,

(ii) initial–boundary-value problems with homogeneous initial data with the help
of a causality principle and

(iii) general initial–boundary-value problems using duality.

Now with the help of the a priori estimate (5.12), the well-posedness of (5.3) can
be obtained from theorem 2.1 (see [3, ch. 9] and [23, ch. 4] for the details).

Theorem 5.8. In the situation of theorem 5.7, the hyperbolic system (5.3) has a
unique weak solution u such that u ∈ C([0, T ], L2(0, 1)) ∩ E(QT ). The weak solu-
tion u is strong and there exists a sequence (uj)j ⊂ H1(QT ) such that uj → u in
C([0, T ], L2(0, 1)) ∩ E(QT ) and uj |x=y → u|x=y in L2(0, T ) for y = 0, 1. Further-
more, there exist γ0 = γ0(�, K,K) � 1 and C = C(�, K,K) > 0 such that u satisfies
the energy estimate

e−2γT ‖u‖2
C([0,T ],L2(0,1)) + γ‖e−γtu‖2

L2(QT )

+ ‖e−γtu|x=0‖2
L2(0,T ) + ‖e−γtu|x=1‖2

L2(0,T )

� C

(
‖u0‖2

L2(0,1) +
1
γ

‖e−γtf‖2
L2(QT ) + ‖e−γtg0‖2

L2(0,T ) + ‖e−γtg1‖2
L2(0,T )

)
(5.13)

for every γ � γ0.

Remark 5.9. According to Green’s identity (5.11) and theorem 5.8, the weak solu-
tion u of the IBVP (5.3) satisfies∫ T

0

∫ 1

0
u · L∗

vϕ dxdt =
∫ T

0

∫ 1

0
f · ϕ dxdt −

∫ T

0
A(v(t, 1))u(t, 1) · ϕ(t, 1) dt

+
∫ T

0
A(v(t, 0))u(t, 0) · ϕ(t, 0) dt

−
∫ 1

0
u(T, x) · ϕ(T, x) dx +

∫ 1

0
u0(x) · ϕ(0, x) dx.
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for every ϕ ∈ E∗(QT ). In particular, (5.4) holds for every ϕ ∈ E∗(QT ) with the
properties

C0ϕ|x=0 = 0, C1ϕ|x=1 = 0, ϕ|t=T = 0. (5.14)

On the other hand, if u satisfies (5.4) for every ϕ ∈ E∗(QT ) such that (5.14) hold,
then u must be the unique weak solution of (5.4).

To close this section, we state the following regularity result, which will be needed
in § 7. In this theorem, we limit ourselves to the case where A, B0, B1 and R are
constant matrices.

Theorem 5.10. Let k ∈ N. If f ∈ Hk(QT ), g0, g1 ∈ Hk(0, T ) and u0 ∈ Hk(0, 1)
satisfy an appropriate compatibility condition up to order k − 1 (e.g. (7.4)), then
the weak solution of

Lu = f, B0u|x=0 = g0, B1u|x=1 = g1, u|t=0 = u0 (5.15)

satisfies u ∈ CHk(QT ) and u|x=0, u|x=1 ∈ Hk(0, T ). There is a sequence (uj)j ⊂
Hk+1(QT ) with the properties uj → u in CHk(QT ), Luj → Lu in Hk(QT ) and
uj |x=y → u|x=y in Hk(0, T ) for y = 0, 1. Moreover, u satisfies the energy estimate

e−2γT
k∑

j=0

γ2(k−j) sup
τ∈[0,T ]

‖u(j)(τ)‖2
L2(0,1) + γ‖e−γtu‖2

Hk
γ (QT )

+ ‖e−γtu|x=0‖2
Hk

γ (0,T ) + ‖e−γtu|x=1‖2
Hk

γ (0,T )

� Ck

( k∑
j=0

‖uj‖2
Hk−j(0,1) +

1
γ

‖e−γtf‖2
Hk

γ (QT )

+ ‖e−γtg0‖2
Hk

γ (0,T ) + ‖e−γtg1‖2
Hk

γ (0,T )

)
(5.16)

for all γ � γk and for some Ck > 0 and γk � 1.

Proof. See, for example, [23, 28].

6. Linear hyperbolic PDE–ODE systems

In this section we prove the existence, uniqueness and regularity of weak solutions
to a linear hyperbolic system of PDEs coupled with a differential equation at the
boundary. We are interested in the L2-well-posedness of the following system

Lvu(t, x) = f(t, x), 0 < t < T, 0 < x < 1,

B0u(t, 0) = g0(t) + Q0(t)h(t), 0 < t < T,

B1u(t, 1) = g1(t) + Q1(t)h(t), 0 < t < T,

h′(t) = H(t)h(t) + G0(t)u(t, 0)
+ G1(t)u(t, 1) + S(t), 0 < t < T,

u(0, x) = u0(x), 0 < x < 1,

h(0) = h0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.1)
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1062 G. Peralta and G. Propst

where
Lvu(t, x) = ∂tu(t, x) + A(v(t, x))∂xu(x) + R(t, x)u(t, x)

and v ∈ W 1,∞(QT ; Rn) satisfies the conditions stated in the previous section.
Throughout this section we assume that B0 ∈ R

p×n and B1 ∈ R
(n−p)×p have full

ranks,

R ∈ L∞(QT ; Rn×n),

Q0 ∈ L∞((0, T ); Rp×m),

Q1 ∈ L∞((0, T ); R(n−p)×m),

H ∈ L∞((0, T ); Rm×m),

G0, G1 ∈ L∞((0, T ); Rm×n),

S ∈ L2((0, T ); Rm).

Furthermore, we suppose that (FS), (D), and (UKL) hold.

Definition 6.1. Given f ∈ L2(QT ), g0 ∈ L2(0, T ), g1 ∈ L2(0, T ), S ∈ L2(0, T ),
u0 ∈ L2(0, 1) and h0 ∈ R

m, a pair of functions (u, h) ∈ L2(QT ) × L2(0, T ) is called
a weak solution of the system (6.1) if the variational equality∫ T

0

∫ 1

0
u(t, x) · L∗

vϕ(t, x) dxdt

+
∫ T

0
h(t) · (η′(t) + H̃(t)η(t)

+ Q1(t)TM1(t)ϕ(t, 1) − Q0(t)TM0(t)ϕ(t, 0)) dt

=
∫ T

0

∫ 1

0
f(t, x) · ϕ(t, x) dxdt

−
∫ T

0
g1(t) · (M1(t)ϕ(t, 1) + (G1(t)Y1)Tη(t)) dt

+
∫ T

0
g0(t) · (M0(t)ϕ(t, 0) − (G0(t)Y0)Tη(t)) dt −

∫ T

0
S(t) · η(t) dt

+
∫ 1

0
u0(x) · ϕ(0, x) dx − h0 · η(0), (6.2)

where
H̃ = (H + G1Y1Q1 + G0Y0Q0)T,

holds for all ϕ ∈ E∗(QT ) and for all η ∈ H1(0, T ) such that ϕ(T, ·) = 0, η(T ) = 0,
C1ϕ|x=1 = −(G1D1)Tη and C0ϕ|x=0 = (G0D0)Tη.

In definition 6.1, the matrices Mi, Yi and Di are those given in lemma 5.1.
The definition of a weak solution is obtained by multiplying the system (6.1) with
appropriate test functions and integrating by parts. The space of test functions in
the above definition is denoted by

W = {(ϕ, η) ∈ E∗(QT ) × H1(0, T ) : η|t=T = 0, ϕ|t=T = 0,

C1ϕ|x=1 = −(G1D1)Tη, C0ϕ|x=0 = (G0D0)Tη}.
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Linear hyperbolic systems with dynamic boundary conditions 1063

Because G0 and G1 are in L∞, the functions (G1D1)Tη and (G0D0)Tη may be
only in L2(0, T ) even for η ∈ H1(0, T ). In order for the compatibility conditions
C1ϕ|x=1 = −(G1D1)Tη and C0ϕ|x=0 = (G0D0)Tη to be meaningful, we take the
space E∗(QT ) to be the space for the first component instead of the space H1(QT )
which was used in definition 5.2.

Theorem 6.2. The space W is dense in L2(QT ) × L2(0, T ).

Proof. Take (u, h) ∈ L2(QT ) × L2(0, T ) and ε > 0. Let η ∈ H1(0, T ) be such that
η(T ) = 0 and ‖η − h‖L2(0,T ) < ε. Take w ∈ H1

0 (QT ) satisfying ‖u − w‖L2(QT ) < ε.
Consider the IBVP

L∗
vψ = 0, C0ψ|x=0 = (G0D0)Tη, C1ψ|x=1 = −(G1D1)Tη, ψ|t=T = 0. (6.3)

This IBVP has a unique solution ψ ∈ L2(QT ) and furthermore ψ ∈ E∗(QT ) accord-
ing to the dual version of theorem 5.8.

By the absolute continuity of the Lebesgue integral, there exists δ = δ(ε) > 0 such
that if O ⊂ QT has Lebesgue measure less than or equal to δ, then ‖u−ψ‖L2(O) < ε.
Without loss of generality, we can assume that δ < 4T . Let θ ∈ D [0, 1] be such that
0 � θ � 1 on [0, 1], θ = 1 on (0, δ/4T )∪ (1−δ/4T, 1) and θ = 0 on (δ/2T, 1−δ/2T ).
Define ϕ = θψ+(1−θ)w. Since E∗(QT ) is closed under addition and multiplication
with smooth functions, it holds that ϕ ∈ E∗(QT ). From (6.3) and the definition of
θ we have (ϕ, η) ∈ W . Furthermore,

‖u − ϕ‖L2(QT ) � ‖θ‖L∞(QT )‖u − ψ‖L2(Rδ,T ) + ‖1 − θ‖L∞(QT )‖u − w‖L2(QT ) < 2ε,

where Rδ,T = (0, T ) × ((0, δ/2T ) ∪ (1 − δ/2T, 1)). Therefore,

‖(u, h) − (ϕ, η)‖L2(QT )×L2(0,T ) <
√

5ε,

and consequently W is dense in L2(QT ) × L2(0, T ).

We would like to apply theorem 2.1 to prove the well-posedness of (6.1). There-
fore, the crucial step is to prove an a priori estimate. But first we need to rewrite
(6.2) in the form (2.1). Therefore, we set X = e−γtL2(QT ) × e−γtL2(0, T ), Y =
E∗(QT ) × H1(0, T ) and Z = e−γtL2(0, T ) × e−γtL2(0, T ) × L2(0, 1) × R

m. Define
Λ : Y → X, Ψ : Y → Z and Φ : Y → Z as follows:

Λ

(
ϕ

η

)
=

(
L∗

vϕ

η′ + H̃η + QT
1 M1ϕ|x=1 − QT

0 M0ϕ|x=0

)
,

Φ

(
ϕ

η

)
=

⎛
⎜⎜⎜⎝

C0ϕ|x=0 − (G0D0)Tη

C1ϕ|x=1 + (G1D1)Tη

ϕ|t=T

η(T )

⎞
⎟⎟⎟⎠ ,

Ψ

(
ϕ

η

)
=

⎛
⎜⎜⎜⎝

M0ϕ|x=0 − (G0Y0)Tη

−(M1ϕ|x=1 + (G1Y1)Tη)
ϕ|t=0

−η(0)

⎞
⎟⎟⎟⎠

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S0308210515000827
Downloaded from http:/www.cambridge.org/core. Bibliothek der Karl-Franzens-Universitaet Graz, on 20 Dec 2016 at 17:56:49, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0308210515000827
http:/www.cambridge.org/core


1064 G. Peralta and G. Propst

for every (ϕ, η) ∈ Y . With this notation, the variational equation (6.2) can be
rewritten as(

e−2γt

(
u

h

)
, Λ

(
ϕ

η

))
X

=
(

e−2γt

(
f

−S

)
,

(
ϕ

η

))
X

+
(

(e−2γtg0, e−2γtg1, u0, h0)T, Ψ

(
ϕ

η

))
Z

(6.4)

for all (ϕ, η) ∈ W = ker Φ.

Theorem 6.3. In the notation of the previous paragraph, there exist γ0 � 1 and
C > 0 such that

γ‖(ϕ, η)‖2
X + ‖Ψ(ϕ, η)‖2

Z � C

(
1
γ

‖Λ(ϕ, η)‖2
X + ‖Φ(ϕ, η)‖2

Z

)

holds for all (ϕ, η) ∈ Y and γ � γ0.

Proof. Let (ϕ, η) ∈ Y . From the a priori estimate (5.12) and the triangle inequality
it follows that there is a constant C > 0 such that

‖ϕ|t=0‖2
L2(0,1) + γ‖eγtϕ‖2

L2(QT ) + ‖eγtϕ|x=0‖2
L2(0,T )

+ ‖eγtϕ|x=1‖2
L2(0,T ) + ‖eγt(M0ϕ|x=0 − (G0Y0)Tη)‖2

L2(0,T )

+ ‖eγt(M1ϕ|x=1 + (G1Y1)Tη)‖2
L2(0,T )

� C

(
1
γ

‖eγtL∗
vϕ‖2

L2(QT ) + ‖eγt(C0ϕ|x=0 − (G0D0)Tη)‖2
L2(0,T )

+ ‖eγt(C1ϕ|x=1 + (G1D1)Tη)‖2
L2(0,T )

+ ‖eγtη‖2
L2(0,T ) + e2γT ‖ϕ|t=T ‖2

L2(0,1)

)
(6.5)

for all γ � γ0, where γ0 is the constant in theorem 5.7. From the a priori estimate
(3.6) in theorem 3.3 and the triangle inequality we obtain

|η(0)|2 + γ‖eγtη‖2
L2(0,T )

� C

γ
‖eγt(η′ + H̃η + QT

1 M1ϕ|x=1 − QT
0 M0ϕ|x=0)‖2

L2(0,T )

+
C

γ
‖eγtϕ|x=0‖2

L2(0,T ) +
C

γ
‖eγtϕ|x=1‖2

L2(0,T ) + Ce2γT |η(T )|2. (6.6)

From (6.5) and (6.6) and upon choosing γ0 large enough, the estimate in the theorem
follows after absorbing the terms ‖eγtϕ|x=0‖2

L2(0,T ) and ‖eγtϕ|x=1‖2
L2(0,T ).

It is now possible to prove the existence and uniqueness of weak solutions of the
system (6.1).

Theorem 6.4. Let f ∈ L2(QT ), g0 ∈ L2(0, T ), g1 ∈ L2(0, T ), S ∈ L2(0, T ), u0 ∈
L2(0, 1) and h0 ∈ R

m. With the assumptions in the beginning of this section, the
system (6.1) has a unique weak solution (u, h) ∈ L2(QT ) × L2(0, T ). Furthermore,
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(u, h) ∈ [C([0, T ], L2(0, 1)) ∩ E(QT )] × H1(0, T ) and, in particular, u|x=0, u|x=1 ∈
L2(0, T ). The function u is the weak solution of the IBVP

Lvu(t, x) = f(t, x), 0 < t < T, 0 < x < 1,

B0u(t, 0) = g0(t) + Q0(t)h(t), 0 < t < T,

B1u(t, 1) = g1(t) + Q1(t)h(t), 0 < t < T,

u(0, x) = u0(x), 0 < x < 1,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(6.7)

and h is the solution of the ODE

h′(t) = H(t)h(t) + G0(t)u(t, 0) + G1(t)u(t, 1) + S(t), 0 < t < T,

h(0) = h0.

}
(6.8)

The weak solution (u, h) satisfies the energy estimate

e−2γT ‖u‖2
C([0,T ],L2(0,1)) + γ‖e−γtu‖2

L2(QT ) + ‖e−γtu|x=0‖2
L2(0,T )

+ ‖e−γtu|x=1‖2
L2(0,T ) + γ‖e−γth‖2

L2(0,T )

� C

(
‖u0‖2

L2(0,1) + |h0|2 +
1
γ

‖e−γtf‖2
L2(QT ) + ‖e−γtg0‖2

L2(0,T )

+ ‖e−γtg1‖2
L2(0,T ) +

1
γ

‖e−γtS‖2
L2(0,T )

)

for all γ � γ0 for some C > 0 and γ0 � 1.

Proof. The existence of a weak solution is a direct consequence of theorems 2.1
and 6.3. The next step is to show that if (u, h) is any weak solution of (6.1), then
u is the weak solution of (6.7) and h is the solution of (6.8). Suppose that (u, h) is
a weak solution of (6.1). Taking η = 0 and ϕ ∈ H1(QT ) satisfying (5.14), we have
(ϕ, η) ∈ W . With this (ϕ, η) in (6.2) we can see that u is the weak solution of (6.7).
Therefore, from theorem 5.8, u ∈ C([0, T ], L2(0, 1)) ∩ E(QT ) and, in particular,
u|x=0, u|x=1 ∈ L2(0, T ). Moreover, from remark 5.9 and lemma 5.1, u satisfies the
variational equation∫ T

0

∫ 1

0
u(t, x) · L∗

vϕ(t, x) dxdt

=
∫ T

0

∫ 1

0
f(t, x) · ϕ(t, x) dxdt −

∫ T

0
(g1(t) + Q1(t)h(t)) · M1(t)ϕ(t, 1) dt

+
∫ T

0
(g0(t) + Q0(t)h0(t)) · M0(t)ϕ(t, 0) dt −

∫ T

0
N1u(t, 1) · C1(t)ϕ(t, 1) dt

+
∫ T

0
N0u(t, 0) · C0(t)ϕ(t, 0) dt −

∫ 1

0
u(T, x) · ϕ(T, x) dx

+
∫ 1

0
u0(x) · ϕ(0, x) dx (6.9)

for all ϕ ∈ E∗(QT ).
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1066 G. Peralta and G. Propst

Given η ∈ H1(0, T ) with η(T ) = 0, consider the IBVP

L∗
vϕ = 0, C0ϕ|x=0 = (G0D0)Tη, C1ϕ|x=1 = −(G1D1)Tη, ϕ|t=T = 0. (6.10)

The dual version of theorem 5.8 implies that (6.10) has a unique weak solution
ϕ ∈ L2(QT ) such that ϕ ∈ E∗(QT ). Thus, (ϕ, η) ∈ W . From the identity (see the
remark following lemma 5.1)

YyBy + DyNy = In, y = 0, 1,

(5.1), (6.2) and (6.9) we can see that

∫ T

0
h(t) · (η′(t) + H(t)Tη(t)) dt

= −h0 · η(0) −
∫ T

0
(G0(t)u(t, 0) + G1(t)u(t, 1) + S(t)) · η(t) dt. (6.11)

According to (6.11) and theorem 3.4, h is the solution of the ordinary differential
equation (6.8) and h ∈ H1(0, T ).

The energy estimate in the statement of the theorem follows from the energy
estimate (5.13) for u, the energy estimate (3.14) for h and an absorption argument.
Thus, any weak solution of (6.1) satisfies the energy estimate. Consequently, (6.1)
has a unique weak solution.

In particular, if (u, h) is the weak solution of (6.1), then theorems 5.8 and 6.4
imply that the PDE is satisfied in the sense of distributions, the boundary conditions
and the ODE are satisfied in L2(0, T ) and the initial conditions are satisfied in
L2(0, 1) × R

m. Due to the L2-trace boundary regularity we have the following
interior-point trace regularity.

Theorem 6.5. If (u, h) is the unique weak solution of (6.1), then u|x=ξ ∈ L2(0, T )
for every ξ ∈ (0, 1).

Proof. From the diagonalizability assumption (D), there exists an invertible matrix
T ∈ C ∞(U ; Rn×n) such that T−1AT = Λ, where Λ = diag(λ1, . . . , λn) consists of
the eigenvalues of A. Introduce the new variables ũ = T−1u. Because T (ũ), T (ũ)−1 ∈
W 1,∞(QT ) we have ũ|x=ξ ∈ L2(0, T ) if and only if u|x=ξ ∈ L2(0, T ).

Given w ∈ H1((0, T ) × (0, ξ)), λ ∈ W 1,∞((0, T ) × (0, ξ)) and m ∈ W 1,∞(0, ξ) we
have the identity

1
2

∫ T

0
λ(t, ξ)m(ξ)|w(t, ξ)|2 dt

= 1
2

∫ T

0
λ(t, 0)m(ξ)|w(t, 0)|2 dt

− 1
2

∫ ξ

0
m(x)|w(t, x)|2 dx

∣∣∣∣
t=T

t=0
+ 1

2

∫ T

0

∫ ξ

0
(λ(t, x)m(x))x|w(t, x)|2 dxdt

+
∫ T

0

∫ ξ

0
(wt(t, x) + λ(t, x)wx(t, x))m(x)w(t, x) dxdt. (6.12)
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This can be obtained by multiplying the expression wt + λwx by mw, integrating
by parts and rearranging the terms. Suppose that λ is uniformly bounded away
from zero. Choose m such that λ(t, ξ)m(ξ) > 0 for every t ∈ [0, T ]. From (6.12),
by choosing appropriate multipliers for each eigenvalue of A and taking the sum of
the components, we get the estimate

‖ũ|x=ξ‖2
L2(0,T ) � C(‖ũ‖2

C([0,T ],L2(0,1)) + ‖ũt + Λũx‖2
L2(QT )

+ ‖ũ‖2
L2(QT ) + ‖ũ|x=0‖2

L2(0,1)) (6.13)

for some C = C(‖Λ‖W 1,∞ , ‖m‖W 1,∞) > 0 independent of ũ and ξ, whenever ũ ∈
H1(QT ).

According to theorems 5.8 and 6.4, the solution ũ can be approximated by a
sequence of functions (ũj)j ⊂ H1(QT ). We can apply the estimate (6.13) to each
ũj and then pass to the limit thanks to convergence ũj → ũ in C([0, T ], L2(0, 1)),
ũj

t +Λũj
x → ũt+Λũx in L2(QT ) and ũj |x=0 → ũ|x=0 in L2(0, T ) due to theorem 5.8.

Thus, ũ|x=ξ ∈ L2(0, T ) and consequently u|x=ξ ∈ L2(0, T ).

7. Constant-coefficient hyperbolic PDE–ODE systems

The goal of this section is to show that in the case where the coefficients in (6.1) are
constant the weak solution defined in the previous section coincides with that given
by semigroup theory. Consider the weak solution (u, h) ∈ C([0,∞); L2(0, 1) × R

m)
of the system

∂tu(t, x) + A∂xu(t, x) + Ru(t, x) = 0, t > 0, 0 < x < 1,

B0u(t, 0) = Q0h(t), t > 0,

B1u(t, 1) = Q1h(t), t > 0,

h′(t) = Hh(t) + G0u(t, 0) + G1u(t, 1), t > 0,

u(0, x) = u0(x), 0 < x < 1,

h(0) = h0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.1)

The boundary conditions for u and the ODE for h can be viewed as a non-local
boundary condition for u:

Bxu(t, x) = QxetHh0 +
∫ t

0
Qxe(t−s)H(G0u(s, 0) + G1u(s, 1)) ds, x = 0, 1.

This can be derived by using the variation-of-parameters formula for the differential
equation for h and substituting it into the boundary conditions for u. However, we
shall not treat the boundary conditions in this way.

Let k be a positive integer. For each u0 ∈ Hk(0, 1) we define

ui = −A∂xui−1 − Rui−1, i = 1, . . . , k. (7.2)

The data (u0, h0) ∈ Hk(0, 1) × R
m are said to be compatible up to order k − 1 if

Byui(y) = Qyhi, i = 0, . . . , k − 1 and y = 0, 1, (7.3)

where
hi = Hhi−1 + G0ui−1(0) + G1ui−1(1), i = 1, . . . , k. (7.4)
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1068 G. Peralta and G. Propst

Theorem 7.1. Let k ∈ N. If the data (u0, h0) ∈ Hk(0, 1) × R
m is compatible up

to order k − 1, then the weak solution (u, h) of (7.1) satisfies (u, h) ∈ CHk(QT ) ×
Hk+1(0, T ) and u|x=0, u|x=1 ∈ Hk(0, T ).

Proof. From theorem 6.4, h ∈ H1(0, T ) and u is the weak solution of the system

∂tu(t, x) + A∂xu(t, x) + Ru(t, x) = 0, t > 0, 0 < x < 1,

B0u(t, 0) = Q0h(t), t > 0,

B1u(t, 1) = Q1h(t), t > 0,

u(0, x) = u0(x), 0 < x < 1.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(7.5)

From (7.3) it can be seen that the data (u0, 0, Q0h, Q1h) are compatible up to
order 0 for the system (7.5). Thus, theorem 5.10 implies that u ∈ CH1(QT ) and
u|x=0, u|x=1 ∈ H1(0, T ). On the other hand, h satisfies the ODE

h′(t) = Hh(t) + G0u(t, 0) + G1u(t, 1), t > 0,

h(0) = h0

}
(7.6)

still by theorem 6.4. Since u|x=0, u|x=1 ∈ H1(0, T ), it follows from (7.6) that h ∈
H2(0, T ). Consequently, theorem 5.10 and (7.3) imply that u ∈ CH2(QT ) and
u|x=0, u|x=1 ∈ H2(0, T ). Repeating this process, one eventually arrives at u ∈
CHk(QT ), u|x=0, u|x=1 ∈ Hk(0, T ) and h ∈ Hk+1(0, T ).

The following theorem states that compatible data can be approximated by a
sequence of smoother data that are still compatible. This theorem can be viewed
as a generalization of theorem 6.2. A proof is given in the appendix.

Theorem 7.2. Let k ∈ N. If (u0, h0) ∈ Hk(0, 1)×R
m is compatible up to order k−

1, then there exists a sequence (uν
0)ν ⊂ Hk+1(0, 1) such that (uν

0 , h0) is compatible
up to order k for each ν and ‖uν

0 − u0‖Hk(0,1) → 0.

Using a diagonalization argument, the following result can be shown.

Corollary 7.3. For every (u0, h0) ∈ L2(0, 1) × R
m and k ∈ N, there exists a

sequence (uν
0)ν ⊂ Hk(0, 1) such that (uν

0 , h0) is compatible up to order k − 1 and
‖uν

0 − u0‖L2(0,1) → 0.

For each t � 0, define the operator T (t) : L2(0, 1) × R
m → L2(0, 1) × R

m by

T (t)(u0, h0) = (u(t, ·), h(t)), t � 0, (u0, h0) ∈ L2(0, 1) × R
m,

where (u, h) is a unique weak solution of the system (7.1). The linearity of T (t)
follows from the linearity of the system (7.1) and the uniqueness of weak solutions.
The boundedness follows from the energy estimate in theorem 6.4. Also, T (0) = I
and (T (t))t�0 is strongly continuous since (u, h) ∈ C([0, T ];L2(0, 1) × R

m) for
any T > 0. Finally, since the system (7.1) is autonomous, (T (t))t�0 satisfies the
semigroup property.

The goal is to determine the generator of the C0-semigroup (T (t))t�0, which we
denote by A. A candidate generator is given by the linear operator Ã : D(Ã) →
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L2(0, 1) × R
m defined by

Ã
(

u

h

)
=

(
−Aux − Ru

Hh + G0u(0) + G1u(1)

)
, (7.7)

where

D(Ã) = {(u, h) ∈ H1(0, 1) × R
m : B0u(0) = Q0h, B1u(1) = Q1h}.

To prove that A = Ã we proceed using the method in [9] applied to delay equations.
This requires the following three steps:

(1) characterize the resolvent R(λ, A),

(2) show that λI − Ã is injective and

(3) show that the resolvent of A and Ã at λ coincide.

It is sufficient to prove these three steps for large enough λ.

Step 1. Suppose that (u0, h0) ∈ H1(0, 1)×R
m satisfies the compatibility condition

up to order 0. In other words, (u0, h0) ∈ D(Ã). Then, u ∈ CH1(QT ) and h ∈
H2(0, T ) from theorem 7.1. For λ > ω0, where ω0 is the growth bound of T (t), the
resolvent of A at λ is given by the Laplace transform of the semigroup T (t), i.e.

R(λ, A)(u0, h0) =
∫ ∞

0
e−λtT (t)(u0, h0) dt =

∫ ∞

0
e−λt(u(t, ·), h(t)) dt

(see, for example, [22]).
Define w : (0, 1) → R

n and g ∈ R
m by

w(x) =
∫ ∞

0
e−λtu(t, x) dt,

g =
∫ ∞

0
e−λth(t) dt,

so that R(λ, A)(u0, h0) = (w, g).
Because ∂x : H1(0, 1) → L2(0, 1) is a closed operator, u ∈ C([0, T ];H1(0, 1)) and

t 
→ e−λtux(t, ·) is integrable for λ > γ1 according to (5.16), (3.14) and (3.15), we
can interchange differentiation and integration to obtain (see [13, theorem 3.7.12]
and [10, ch. II, theorem 6])

w′(x) =
∫ ∞

0
e−λtux(t, x) dt.

Thus, we take λ > max(ω0, γ0, γ1). Integrating by parts,

λw(x) = −e−λtu(t, x)|t=∞
t=0 +

∫ ∞

0
e−λtut(t, x) dt

= u0(x) −
∫ ∞

0
e−λt(Aux(t, x) + Ru(t, x)) dt

= u0(x) − Aw′(x) − Rw(x). (7.8)
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Because we already know that w ∈ L2(0, 1), (7.8) implies that w ∈ H1(0, 1). Fur-
thermore, for y = 0, 1 we have

Byw(y) =
∫ ∞

0
e−λtByu(t, y) dt =

∫ ∞

0
e−λtQyh(t) dt = Qyg.

Similarly,

λg = Hg + h0 + G0w(0) + G1w(1).

Therefore, the resolvent of A at λ > max(ω0, γ0, γ1) is given by R(λ)(u0, h0) =
(w, g), for (u0, h0) ∈ D(Ã), where w and g satisfy the system

Aw′(x) + (λIn + R)w(x) = u0(x),
B0w(0) = Q0g,

B1w(1) = Q1g,

(λIm − H)g = h0 + G0w(0) + G1w(1),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(7.9)

and, in particular, (w, g) ∈ D(Ã).

Step 2. In this step we show that λI−Ã is injective for sufficiently large λ; however,
we only consider the case where R = 0 and H = 0. Let us denote the operator
Ã by A0 when R = 0 and H = 0. We even prove the stronger property that
λI − A0 is bijective for λ large enough. Given (u0, h0) ∈ L2(0, 1) × R

m, we show
that there exists a unique (w, g) ∈ D(A0) such that (λI − A0)(w, g) = (u0, h0).
This is equivalent to the system

Aw′(x) + λw(x) = u0(x),
B0w(0) = Q0g,

B1w(1) = Q1g,

λg = h0 + G0w(0) + G1w(1).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(7.10)

Thus, w satisfies the two-point boundary-value problem

Aw′(x) + λw(x) = u0(x),
λB0w(0) = Q0(h0 + G0w(0) + G1w(1)),
λB1w(1) = Q1(h0 + G0w(0) + G1w(1)).

⎫⎪⎬
⎪⎭ (7.11)

Therefore, to show that there exists a unique (w, g) satisfying (7.10) it is enough
to prove that the two-point boundary-value problem (7.11) has a unique solution.
Due to the assumption on the matrix A, there exists an invertible matrix T such
that T−1AT = Λ, where Λ = diag(λ1, . . . , λn). By rearranging the columns of T , we
can assume without loss of generality that λ1 � · · · � λn−p < 0 < λn−p+1 � · · ·λn.
Let v = T−1w, v0 = T−1u0 and B̃y = ByT for y = 0, 1. Then (7.11) is equivalent
to

λv + Λvx = v0,

λB̃0v(0) = Q0h0 + Q0G0Tv(0) + Q0G1Tv(1),

λB̃1v(1) = Q1h0 + Q0G0Tv(0) + Q1G1Tv(1).

⎫⎪⎬
⎪⎭ (7.12)
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Note that (Λ, B̃0, B̃1) still satisfies the uniform Lopatinskii condition. Thus, B̃0 is
injective on the unstable subspace of Λ, which is {0}n−p ⊕ R

p, while B̃1 is injective
on the stable subspace of Λ,which is R

n−p ⊕ {0}p. We shall decompose a vector v
in R

n by v =
(
v−

v+

)
, where v− ∈ R

n−p and v+ ∈ R
p. Partitioning B̃0 = (B̃−

0 B̃+
0 ), we

have
B̃0v(0) = B̃−

0 v−(0) + B̃+
0 v+(0), (7.13)

where B̃+
0 ∈ R

p×p and B̃−
0 ∈ R

p×(n−p). The matrix B̃+
0 is invertible and so from

(7.13) the boundary condition at x = 0 in (7.12) can be written as

(λIp + R1)v+(0) = (λR2 + R3)v−(0) + R4v
−(1) + R5v

+(1) + R6h0 (7.14)

for some matrices Ri. Similarly, the boundary condition at x = 1 is equivalent to

(λIn−p + S1)v−(1) = (λS2 + S3)v+(1) + S4v
−(0) + S5v

+(0) + S6h0 (7.15)

for some matrices Si.
By the variation-of-parameters formula, the function v in (7.12) is given by

v(x) = e−xλΛ−1
(

c−

c+

)
+

∫ x

0
e−(x−y)λΛ−1

Λ−1v0(y) dy (7.16)

and from (7.14) and (7.15) the vectors c− and c+ satisfy the equations

(λIp + R1)c+ = (λR2 + R3)c− + R4(e−λ(Λ−)−1
c− + d−)

+ R5(e−λ(Λ+)−1
c+ + d+) + R6h0,

(λIn−p + S1)(e−λ(Λ−)−1
c− + d−) = (λS2 + S3)(e−λ(Λ+)−1

c+ + d+)

+ S4c
− + S5c

+ + S6h0,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(7.17)
where Λ− = diag(λ1, . . . , λn−p), Λ+ = diag(λn−p+1, . . . , λn) and

d =
∫ 1

0
e−(1−y)λΛ−1

Λ−1v0(y) dy. (7.18)

The system (7.17) can be written in matrix form as(
R5e−λ(Λ+)−1 − R1 − λIp λR2 + R3 + R4e−λ(Λ−)−1

(λS2 + S3)e−λ(Λ+)−1
+ S5 S4 − (λIn−p + S1)e−λ(Λ−)−1

)(
c+

c−

)

=
(

−R6h0 + R7d

−S6h0 + S7(λ)d

)
. (7.19)

Therefore, to show that (7.12) has a unique solution, we must prove that the 2 × 2
matrix on the left-hand side of (7.19) is invertible. To prove this, we need the
following result in linear algebra.

Lemma 7.4. Let A, B, C and D be m × m, m × (n − m), (n − m) × m and
(n − m) × (n − m) matrices, respectively. If A and D − CA−1B are invertible, then
the block matrix (

A B

C D

)
(7.20)

is invertible.
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For sufficiently large λ > 0, the matrix

Ξλ := λ−1(R5e−λ(Λ+)−1 − R1) − Ip

is invertible and so λΞλ is invertible. Consider the matrix

Σλ := S4 − (λIn−p + S1)e−λ(Λ−)−1

− [(λS2 + S3)e−λ(Λ+)−1
+ S5]λ−1Ξ−1

λ [λR2 + R3 + R4e−λ(Λ−)−1
].

It can be seen that the matrix

λ−1Σλeλ(Λ−)−1
= λ−1(S4eλ(Λ−)−1 − S1) − In−p

− [(S2 + λ−1S3)e−λ(Λ+)−1
+ λ−1S5]

× Ξ−1
λ [R2eλ(Λ−)−1

+ λ−1R3eλ(Λ−)−1
+ λ−1R4]

is invertible for large λ > 0. Consequently, Σλ is invertible for sufficiently large
λ > 0. Therefore, from lemma 7.4, the system (7.19) has a unique solution (c+c−),
and so (7.12) has a unique solution v. As a result, (7.9) has a unique solution, (w, g).

From (7.16), (7.18) and (7.19) there exists a constant Cλ > 0 such that

‖w‖L2(0,1) = ‖Tv‖L2(0,1) � Cλ(‖u0‖L2(0,1) + |h0|).

The last equation in (7.10), together with (7.16), (7.18) and (7.19), implies that

|g| � Cλ(‖u0‖L2(0,1) + |h0|)

for some Cλ > 0. Therefore, R(λ, A0) ∈ L(L2(0, 1) × R
m) so that A0 has a non-

empty resolvent. Hence, A0 is closed.

Step 3. In this step we show that the resolvents of A (with R = 0 and H = 0)
and A0 at λ are the same for sufficiently large λ. Let (u0, h0) ∈ D(A0). From (7.9)
and (7.10) we have

(λI − A0)R(λ, A)(u0, h0) = (λI − A0)(w, g) = (u0, h0).

Thus, (λI − A0)R(λ, A) = I in D(A0). Since R(λ, A) ∈ L(L2(0, 1) × R
m), A0 is

closed and D(A0) is dense in L2(0, 1) × R
m according to corollary 7.3, we have

(λI − A0)R(λ, A) = I in L2(0, 1) × R
m.

Let z ∈ D(A0) and y = R(λ, A)(λI −A0)z. Then (λI −A0)y = (λI −A0)z. Since
λI − A0 is injective for sufficiently large λ > 0 it follows that y = z, and hence
R(λ, A)(λI − A0)z = z for all z ∈ D(A0). Therefore, R(λ, A0) = R(λ, A) and also
the domain of A is D(A0). Since

λI − A = (λI − A0)R(λ, A0)(λI − A)
= (λI − A0)R(λ, A)(λI − A)
= λI − A0

we conclude that A = A0.
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Now let us turn to the general case where R and H are not necessarily zero. We
can write the operator Ã defined by (7.7) as Ã = A0 + B, where A0 : D(Ã) →
L2(0, 1) × R

m and B : L2(0, 1) × R
m → L2(0, 1) × R

m are given by

A0

(
u

h

)
=

(
−Aux

G0u(0) + G1u(1)

)
,

B
(

u

h

)
=

(
−Ru

Hh

)
.

Since A0 is closed and B is bounded, Ã is closed. We know from above that A0
generates a C0-semigroup on L2(0, 1)×R

m. It follows from the bounded perturbation
theorem of semigroups that Ã generates a C0-semigroup on L2(0, 1)×R

m. Therefore,
λI −Ã is invertible for sufficiently large λ > 0. Similar arguments to those in step 3
show that A = Ã.

Therefore, the solution of the system (7.1) given by semigroup theory coincides
with the weak solution given in definition 6.1. An alternative way of proving that
the weak and semigroup solutions are the same is to prove that the operator Ã
generates a C0-semigroup. For initial data in D(Ã2) we have a classical solution and
so we can multiply the system by the appropriate test functions and use integration
by parts to show that the semigroup solution is the weak solution. By the density of
D(Ã2) in L2(0, 1) × R

m, this is also true for initial data in L2(0, 1) × R
m. However,

proving that Ã is a generator is a difficult task; specifically, it is hard to show that
Ã − λI is dissipative for some λ ∈ R. If (u, h) is the weak solution of (7.1), then
u|x=0, u|x=1 ∈ L2(0, T ) and h ∈ H1(0, T ) for every T > 0 according to theorem 6.4.
These properties are called hidden regularity. Note that these cannot be obtained
directly from standard semigroup methods because in general the solution given by
semigroup theory only satisfies (u, h) ∈ C([0,∞); L2(0, 1) × R

m). In the literature,
hidden regularity properties for weak solutions of PDEs were established using
Fourier analysis and multiplier methods (see [16,18,19]).

As an application, we provide a class of admissible observation operators for the
semigroup (T (t))t�0.

Example 7.5. If we define the operator C : D(A) → R
s by

C
(

u0

h0

)
=

N∑
i=1

Jiu0(ξi), ξi ∈ [0, 1],

where D(A) is the domain of the generator A of the semigroup (T (t))t�0 defined
above and Ji ∈ R

s×n for 1 � i � N , then C is an admissible observation operator
for (T (t))t�0 (see [31]). Indeed, the direct inequality

∫ T

0

∣∣∣∣CT (t)
(

u0

h0

)∣∣∣∣
2

dt � MT

∥∥∥∥
(

u0

h0

)∥∥∥∥
2

L2(0,1)n×Rm

∀(u0, h0) ∈ D(A)

follows immediately from the energy estimate in theorem 6.4 and the estimate
(6.13).
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8. Examples

Example 8.1 (linearized flow in an elastic tube [21,27]). Consider an elastic tube
of length � filled with an incompressible fluid whose ends are attached to a tank
with cross-section AT . Looking at the dynamics near the steady state, the following
linear model can be derived:

∂tA(t, x) + Ae∂xu(t, x) = 0, t > 0, 0 < x < �,

∂tu(t, x) + α∂xA(t, x) + βu(t, x) = 0, t > 0, 0 < x < �,

A(t, 0) = γh0(t), t > 0,

A(t, �) = γh
(t), t > 0,

AT h′
0(t) = −Aeu(t, 0), t > 0,

AT h′

(t) = Aeu(t, �), t > 0,

A(0, x) = A0(x), 0 < x < �,

u(0, x) = u0(x), 0 < x < �,

h0(0) = h0
0,

h
(0) = h0

 .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8.1)

Here (A, u, h0, h
) are the deviations of the cross-sectional area of the tube, the fluid
velocity and the level heights from the equilibrium (Ae, 0, h0e, h
e). Also, α, γ > 0
and β � 0 are parameters based on the physical properties of the fluid, the material
properties of the tube or both.

It follows from theorem 6.4 that (8.1) admits a unique weak solution A, u ∈
C([0, T ], L2(0, �)), h0, h
 ∈ H1(0, T ) with boundary traces A(·, 0), A(·, �), u(·, 0),
u(·, �) ∈ L2(0, T ). The boundary conditions further imply that A(·, 0), A(·, �) ∈
H1(0, T ). Furthermore, the previous section shows that this solution coincides with
that given by semigroup theory. In [25], it was shown that the velocity admits
L2-traces at the boundary using tools from control theory and Fourier analysis.

Example 8.2 (wave equations with oscillator boundary conditions [2, 14]).
Consider the one-dimensional undamped wave equation with oscillator boundary
conditions

∂ttψ(t, x) − ∂xxψ(t, x) = 0, t > 0, 0 < x < �,

∂xψ(t, 0) = −δ′
0(t), t > 0,

∂xψ(t, �) = δ′

(t), t > 0,

m0δ
′′
0 (t) + d0δ

′
0(t) + k0δ0(t) = −ρ∂tψ(t, 0), t > 0,

m
δ
′′

 (t) + d
δ

′

(t) + k
δ
(t) = −ρ∂tψ(t, �), t > 0,

ψ(0, x) = ψ0(x), 0 < x < �,

∂tψ(0, x) = ψ1(x), 0 < x < �,

δi(0) = δ0
i , i = 0, �,

δ′
i(0) = v0

i , i = 0, �.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8.2)

System (8.2) models the velocity potential ψ of the acoustics in a homogeneous
fluid with nominal density ρ contained in a wave guide of length � and terminated
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by oscillators. In this model it is assumed that the fluid does not penetrate the
surface of the oscillators.

As in [14], we introduce the variables φ− = 1
2 (∂tψ + ∂xψ), φ+ = 1

2 (∂tψ − ∂xψ),
v0 = δ′

0 and v
 = δ′

. The system (8.2) can be set in the form (7.1) as follows:

∂tφ
−(t, x) − ∂xφ−(t, x) = 0, t > 0, 0 < x < �,

∂tφ
+(t, x) + ∂xφ+(t, x) = 0, t > 0, 0 < x < �,

φ−(t, 0) − φ+(t, 0) = −v0(t), t > 0,

φ−(t, �) − φ+(t, �) = v
(t), t > 0,

δ′
0(t) = v0(t), t > 0,

δ′

(t) = v
(t), t > 0,

v′
0(t) = − d0

m0
v0(t) − k0

m0
δ0(t) − ρ

m0
(φ−(t, 0) + φ+(t, 0)), t > 0,

v′

(t) = − d


m

v
(t) − k


m

δ
(t) − ρ

m

(φ−(t, �) + φ+(t, �)), t > 0,

φ−(0, x) = φ−
0 (x), 0 < x < �,

φ+(0, x) = φ+
0 (x), 0 < x < �,

δi(0) = δ0
i , i = 0, �,

vi(0) = v0
i , i = 0, �,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8.3)

where
φ−

0 = 1
2 (ψ1 + ψ′

0) and φ+
0 = 1

2 (ψ1 − ψ′
0).

It can be checked that all the requirements in theorem 6.4 are satisfied by the
system (8.3). Therefore, for every (φ−

0 , φ+
0 , δ0, δ
, v0, v
) ∈ L2(0, �)2 × R

4 the sys-
tem (8.3) has a unique weak solution (φ−, φ+, δ0, δ
, v0, v
) ∈ C([0,∞); L2(0, �)2 ×
R

4) and it satisfies φ±(·, 0), φ±(·, �) ∈ L2(0, T ) and δ0, δ
, v0, v
 ∈ H1(0, T ) for every
T > 0. Consequently, δ0, δ
 ∈ H2(0, T ) and φ−(·, 0) − φ+(·, 0), φ−(·, �) − φ+(·, �) ∈
H1(0, T ). The well-posedness of (8.3) was established in [14] using semigroup meth-
ods. Here, we improved this result by showing that the solutions admit traces in
L2 and that the oscillator components are more regular.

Example 8.3 (wave equations with exponential memory kernel [26]).
Consider the normalized damped wave equation with memory boundary conditions

∂ttφ(t, x) − ∂xxφ(t, x) + ∂tφ(t, x) = 0, t > 0, 0 < x < 1,∫ t

0
a0(t − s)∂tφ(s, 0) ds − ∂xφ(t, 0) = 0, t > 0,∫ t

0
a1(t − s)∂tφ(s, 1) ds + ∂xφ(t, 1) = 0, t > 0,

φ(0, x) = φ0(x), 0 < x < 1,

∂tφ(0, x) = φ1(x), 0 < x < 1.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8.4)

Suppose that the kernels a0 and a1 take the form

a0(t) = κ0eα0t and a1(t) = κ1eα1t
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for some non-zero real numbers κ0, κ1, α0, α1. Introducing the state vector

(u, v, h, g)(t) =
(

φt(t, ·), φx(t, ·),
∫ t

0
eα0(t−s)φt(s, 0) ds,

∫ t

0
eα1(t−s)φt(s, 1) ds

)

at time t, the system (8.4) can be written in the form of (7.1) as

∂tu(t, x) − ∂xv(t, x) + u(t, x) = 0, t > 0, 0 < x < 1,

∂tv(t, x) − ∂xu(t, x) = 0, t > 0, 0 < x < 1,

v(t, 0) = κ0h(t), t > 0,

v(t, 1) = −κ1g(t), t > 0,

h′(t) = α0h(t) + u(t, 0), t > 0,

g′(t) = α1g(t) + u(t, 1), t > 0,

u(0, x) = u0(x), 0 < x < 1,

v(0, x) = v0(x), 0 < x < 1,

h(0) = h0,

g(0) = g0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8.5)

where u0 = φ1, v0 = φ′
0 and h0 = g0 = 0. The conditions of theorem 6.4 are satisfied

by the system (8.5). Thus, for each initial datum (u0, v0, h0, g0) ∈ L2(0, 1)2×R
2 the

system (8.5) admits a unique weak solution (u, v, h, g) ∈ C([0,∞); L2(0, 1)2 × R
2)

and, moreover, u(·, 0), v(·, 0), u(·, 1), v(·, 1) ∈ L2(0, T ) and h, g ∈ H1(0, T ) for every
T > 0. As a consequence, v(·, 0), v(·, 1) ∈ H1(0, T ).

Appendix A.

We give the proof of theorem 7.2. This follows the ideas presented in [28] for hyper-
bolic systems. Pick a sequence (vν)ν ⊂ Hk+1(0, 1) satisfying vν → u0 in Hk(0, 1).
Define uν

0 = vν −wν , where wν ∈ Hk+1(0, 1) satisfies wν → 0 in Hk(0, 1) and to be
constructed below. The compatibility conditions for uν

0 are given by

Bywν,i(y) = Byvν,i(y) − Qyhν,i, 0 � i � k, y = 0, 1, (A 1)

where

wν,0 = wν , vν,0 = vν , hν,0 = h0,

wν,i = −A∂xwν,i−1 − Rwν,i−1, 1 � i � k + 1,

vν,i = −A∂xvν,i−1 − Rvν,i−1, 1 � i � k + 1,

hν,i = Hhν,i−1 + G0(vν,i−1(0) − wν,i−1(0))
+ G1(vν,i−1(1) − wν,i−1(1)), 1 � i � k.

The compatibility conditions (A 1) can be rewritten as

Bywν(y) = Byvν(y) − Qyh0 (A 2)

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S0308210515000827
Downloaded from http:/www.cambridge.org/core. Bibliothek der Karl-Franzens-Universitaet Graz, on 20 Dec 2016 at 17:56:49, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0308210515000827
http:/www.cambridge.org/core


Linear hyperbolic systems with dynamic boundary conditions 1077

and

ByAi∂i
xwν(y) = ByAi∂i

xvν(y)

+ �y,i(h0, vν − wν , . . . , ∂i−1
x vν − ∂i−1

x wν ,

vν(0) − wν(0), vν(1) − wν(1), . . . ,

∂i−1
x vν(0) − ∂i−1

x wν(0), ∂i−1
x vν(1) − ∂i−1

x wν(1))
(A 3)

for y = 0, 1 and i = 1, . . . , k, where �y,i is linear in all its arguments.
Recall that there exists a matrix Yy such that ByYy = I, where I is the identity

matrix Ip if y = 0 and In−p if y = 1. Consider the following equations:

wν(y) = Yy(Byvν(y) − Qyh0), (A 4)

∂i
xwν(y) = A−iYy(ByAi∂i

xvν(y)

+ �y,i(h0, vν − wν , . . . , ∂i−1
x vν − ∂i−1

x wν ,

vν(0) − wν(0), vν(1) − wν(1), . . . ,

∂i−1
x vν(0) − ∂i−1

x wν(0), ∂i−1
x vν(1) − ∂i−1

x wν(1))) (A 5)

for y = 0, 1 and i = 1, . . . , k. By multiplying both sides of (A 4) and (A 5) by By

and ByAi, respectively, we obtain (A 2) and (A 3). For this reason we construct a
wν that satisfies (A 4) and (A 5) in addition to the property wν → 0 in Hk(0, 1).

For i = 0, . . . , k and ν ∈ N, let σν,i(y) denote the right-hand sides of (A 4)
and (A 5). Since both vν → u0 and wν → 0 in Hk(0, 1), we have ∂i

xvν(y) → ∂i
xu0(y)

and ∂i
xwν(y) → 0 for all 0 � i � k−1 by the Sobolev embedding. Thus, by the com-

patibility conditions for (u0, h) we have σν,i(y) → 0 for 0 � i � k − 1 and y = 0, 1.
Now, given (σν,0(0), σν,0(1), . . . , σν,k−1(0), σν,k−1(1), 0, 0) ∈ R

2n×(k+1), there exists
ṽν ∈ Hk+1(0, 1) such that ∂i

xṽν(y) = σν,i(y) for 0 � i � k − 1, ∂k
x ṽν(y) = 0 and

‖ṽν‖Hk+1(0,1) � C

k−1∑
i=0

(|σν,i(0)| + |σν,i(1)|) → 0 (A 6)

for some C > 0 independent of ν. Define wν = ṽν + w̃ν , where w̃ν ∈ Hk+1(0, 1)
satisfies ∂i

xw̃ν(y) = 0 for 0 � i � k − 1, ∂k
xw̃ν(y) = σν,k(y) and ‖w̃ν‖Hk(0,1) → 0.

Then wν satisfies the desired properties wν → 0 in Hk(0, 1) and ∂i
xwν(y) = σν,i(y)

for 0 � i � k and y = 0, 1.
Thus, the last step is to construct the function w̃ν . Set cν = σν,k(0). Because it is

enough to consider each component of cν separately, we may assume without loss
of generality that cν is scalar. Let us consider the two cases |cν | � 1 and |cν | > 1
separately. Suppose that |cν | � 1. Let φ ∈ D(R) be such that φ(x) = 1 for |x| � ε
for some ε > 0 small enough and suppφ ⊂ [−1, 1]. Define

ψν(x) =
xk

k!
φ(νx)cν .

Then, by Leibniz’s formula, we have, for 1 � j � k,

∂j
xψν(x) =

j∑
i=0

(
j

i

)
xk−i

(k − i)!
νj−i∂j−i

x φ(νx)cν . (A 7)
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It can be seen from (A 7) that ∂j
xψν(0) = 0 for 1 � j � k − 1 and ∂k

xψν(0) = cν .
Moreover, using the change of variable y = νx, we obtain

‖∂j
xψν‖2

L2(R) � C(k)
j∑

i=0

∫
R

|x|2(k−i)ν2(j−i)|∂j−i
x φ(νx)|2|cν |2 dx

= C(k)
j∑

i=0

∫
R

|y|2(k−i)ν2(j−k)|∂j−i
x φ(y)|2 dy

ν

� C(k)
ν

j∑
i=0

∫
R

|y|2(k−i)|∂j−i
x φ(y)|2 dy

� C(k, φ)
ν

for 0 � j � k. If |cν | > 1, then we take

ψν(x) =
xk

k!
φ(|cν |2νx)cν .

For 1 � j � k, applying Leibniz’s rule yields

∂j
xψν(x) =

j∑
i=0

(
j

i

)
xk−i

(k − i)!
(|cν |2ν)j−i∂j−i

x φ(|cν |2νx)cν . (A 8)

From (A 8) we obtain ∂j
xψν(0) = 0 for 1 � j � k − 1, ∂k

xψν(0) = cν and

‖∂j
xψν‖2

L2(R) � C(k)
j∑

i=0

∫
R

|x|2(k−i)(|cν |2ν)2(j−i)|∂j−i
x φ(|cν |2νx)|2|cν |2 dx

= C(k)
j∑

i=0

∫
R

|y|2(k−i)(|cν |2ν)2(j−k)|∂j−i
x φ(y)|2 dy

ν

� C(k)
ν

j∑
i=0

∫
R

|y|2(k−i)|∂j−i
x φ(y)|2 dy

� C(k, φ)
ν

since j − k � 0 and |cν |2ν > 1. Therefore, in any case we have ‖ψν‖Hk(R) �
C(k, φ)ν−1/2.

For σν,k(1) we can also take the same construction by replacing φ by a smooth
function that is equal to 1 in an ε-neighbourhood of x = 1. By taking the sum of
the functions ψν constructed for x = 0 and x = 1 and choosing ε small enough so
that their supports do not intersect, we obtain an appropriate w̃ν satisfying all the
required properties.
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8 J.-F. Coulombel. Stabilité multidimensionnelle d’interfaces dynamiques; application aux
transitions de phase liquide–vapeur. PhD thesis, École Normale Supérieure de Lyon, 2002.
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