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Abstract
A mixed finite element discretization of an optimal control problem for the linear
wave equation with homogeneous Dirichlet boundary condition is considered. For the
temporal discretization, a Petrov–Galerkin scheme is utilized and the Raviart–Thomas
finite elements for spatial discretization is used. A priori error analysis is proved for
this numerical scheme. A hybridized formulation is proposed and if theArnold–Brezzi
post-processing method is applied, better convergence rates with respect to space are
observed. The interchangeability of discretization and optimization holds both for
mixed and hybrid formulations. Numerical experiments illustrating the theoretical
results are presented using the lowest-order Raviart–Thomas elements.

Mathematics Subject Classification 49J20 · 35L05 · 65M60

1 Introduction

In this paper, we propose mixed and hybrid space–time finite element discretizations
for the optimal control of thewave equationwritten as a first-order hyperbolic system in
terms of the pressure and velocity. We consider the following linear-quadratic optimal
control problem:
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Minimize J (u, p, v)= 1

2

∫ T

0

∫
Ω

α(p(t, x)− pd(t, x))
2 + β|v(t, x)−vd(t, x)|2dxdt

+ γ

2

∫ T

0

∫
Ω

u(t, x)2dxdt (1.1)

subject to the state equation

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂t p − divv = u in (0, T ) × Ω,

∂tv − ∇ p = 0 in (0, T ) × Ω,

p = 0 on (0, T ) × ∂Ω,

p(0) = p0, v(0) = v0 in Ω,

(1.2)

over all distributed controls

u ∈ L2(0, T ; L2(Ω)). (1.3)

Equation (1.2) describes the evolution of small amplitude pressure waves in a New-
tonian fluid or elastic solid, where p = p(t, x) ∈ R and v = v(t, x) ∈ R

2 denote the
pressure and velocity field at time t ∈ [0, T ] and position x ∈ Ω , respectively. These
equations can be obtained by linearizing Euler’s continuity and momentum equations.
Throughout this paper, we assume that Ω is a bounded convex polygonal domain
in R

2. Here, we focus on the two-dimensional case, nevertheless, three-dimensional
bounded domains can be treated in analogous manner.

The state equation (1.2) with an additional linear term in the momentum equation
also arises inmodeling heat dynamicswith finite speed of propagation. Indeed, starting
from the energy balance law for the rate of change of temperature θ we have

cρ∂tθ = −divq + u (1.4)

where c is the specific heat, ρ is the density of the material, u is an external source or
control, and q is the heat flux. Suppose that there is a time delay between the heat flux
and the temperature gradient. This assumption results in the following Cattaneo heat
flux law

q(t + τ, x) = −κ∇θ(t, x) (1.5)

where κ > 0 is the heat conductivity and τ > 0 is a constant representing the relaxation
time. If τ = 0 then Cattaneo’s law reduces to the well-known Fourier’s law of heat
conduction. Applying a first-order Taylor approximation to (1.5) yields

τ∂tq + q = −κ∇θ. (1.6)

After time-reversal and normalization, we observe that (1.4) and (1.6) take the form
of (1.2) with an additional linear term in the momentum equation. For simplicity of
exposition, we only consider the case of (1.2), nevertheless, the analysis presented
here can be adapted to the system (1.4) and (1.6). We refer the reader to [32] for more
details and related models.
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MFEM and HFEM for optimal control of the wave equation 593

The use of mixed finite elements for the optimal control of elliptic and parabolic
partial differential equations has been of interest for researchers in the past decade,
see for instance [11]. The choice of mixed finite elements is advatangeous when one
needs to keep track of the flux instead of the displacement. However, for hyperbolic
problems there is little work in this direction. The authors in [21] address a priori error
analysis for the semidiscretization of the optimal control problem under the positivity
constraint on the mean of the distributed control, that is,

1

T |Ω|
∫ T

0

∫
Ω

u(t, x)dtdx ≥ 0.

There are, however, some works that deal with mixed finite element approximations
of hyperbolic partial differential equations, see [6,9,13,17,27] for example and the
references therein.

There are two main approaches in the discretization of the wave equation

∂t tw − Δw = u (1.7)

with homogeneous Dirichlet boundary condition via mixed method, namely the
velocity–pressure and displacement–stress formulations. In the velocity–pressure for-
mulation, the wave equation (1.7) is rewritten as a first-order system in the form of
(1.2) with p = w and v = ∇w. On the other hand, in the displacement–stress formu-
lation, one introduces the stress field σ = ∇w and rewrites the above wave equation
as the following system {

∂t tw − divσ = u,

σ − ∇w = 0.
(1.8)

One can then discretize this system with respect to space as in the elliptic case, and
proceed with a centered difference time-stepping scheme for the approximation of the
acceleration to obtain a fully discrete system. This strategy has been also considered for
acoustic wave equations with Neumann boundary conditions in [5,14,22]. Regardless
of the formulation (1.2) or (1.8) for mixed finite elements, the Dirichlet boundary
condition is a natural one, while the Neumann boundary condition is an essential
boundary condition.

For the spatial discretization of the state equation (1.2), we shall use mixed finite
elements, specifically the Raviart–Thomas finite elements [31]. Implementing mixed
finite elements for this system is well-suited when the problem is written as a Cauchy
problem on its usual state-space setting. For smooth initial data and control, the result-
ing finite elements will be conformal. With respect to time-discretization, we shall use
a Petrov–Galerkin scheme consisting of continuous piecewise-linear ansatz functions
and discontinuous piecewise constant test functions in time. The same strategy has
been employed in [23] for the optimal control ofwave equationswith either distributed,
Dirichlet, or Neumann control in displacement–velocity formulations.

Although the proposed Petrov–Galerkin scheme is formulated globally in time, it
results in a time-stepping scheme by approximating the integrals through the trape-
zoidal rule. As an outcome, the tracking part of the cost functional will be discretized
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594 G. Peralta, K. Kunisch

by the trapezoidal rule as well. The key by-product of the described numerical scheme
is that the two approaches discretize-then-optimize and optimize-then-discretize coin-
cide. In other words, the adjoint system of the discretized optimal control problem is
a discretization of the adjoint system for the continuous optimal control problem.

It is well-known that the above Petrov–Galerkin scheme is a variant of the Crank–
Nicolson scheme and hence has the capability to be second-order accurate with respect
to time. However, when this method is applied to the optimal control problem (1.1)–
(1.3), we are only able to obtain a linear order of convergence due to the fact that
the time-discretization of the adjoint equations will consist of discontinuous piece-
wise constant ansatz functions. For optimal control governed by parabolic problems,
second-order accuracy can be obtained using an appropriate post-processing strategy
that utilizes the midpoints of the subintervals induced by the temporal partition, see
[2,26].

Recent advances in space–time finite element methods for wave equations and
related hyperbolic problems consider higher order methods in time, for which better
convergence rates were shown in comparison to linear approximations. For instance,
discontinuous Petrov–Galerkin methods in the space–time cylinder were studied in
[16,19] and post-processing techniques for continuous Petrov–Galerkin methods with
respect to time were analyzed in [1,8]. Space–time-discretizations are advantageous
for large-scale problems where it is possible to solve the solutions in parallel both in
space and time. It would be interesting to look at the performance of these schemes in
the context of the optimal control problem (1.1)–(1.3).

The rest of the paper is organized as follows: In Sect. 2, thewell-posedness of (1.1)–
(1.3) based on semigroup theory is briefly presented. Space–time mixed finite element
discretization, and the hybridization of this problem will be discussed in Sect. 3,
and a priori error estimates will be proved in Sect. 4. In the hybrid formulation, the
continuity of the normal components of the discretized stress along the inter-element
boundaries is relaxed by introducing a Lagrange multiplier. As in the elliptic case,
simple post-processing of this Lagrangemultiplier yields better convergence rateswith
respect to space for the optimal pressure and control, at the expense of an additional
computing time. In Sect. 5, specific details for the implementation will be discussed.
Finally, numerical examples based on the lowest order Raviart–Thomas element will
be presented in Sect. 6.

2 Well-posedness of the optimal control problem

In this section, we briefly discuss the theoretical framework of our optimization prob-
lem, specifically the well-posedness of the state equation (1.2). In order to set up
the weak formulation of (1.2), we introduce several notations: Let X0 = L2(Ω),
X1 = H1

0 (Ω), V 0 = L2(Ω)2, and V 1 = H(div,Ω) = {v ∈ V 0 : divv ∈ X0}. We
shall use the notations (·, ·) and ‖ · ‖ for the inner products and norms on X0 and V 0,
and likewise (v,w)I and ‖v‖I for the inner product and norm on L2(I , X), where
I = (0, T ), and X is a given Banach space.
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MFEM and HFEM for optimal control of the wave equation 595

Define the product space H = X0 × V 0 and the linear operator A : D(A) ⊂ H →
H by

A

(
p
v

)
= −

(
divv
∇ p

)

with domain D(A) = X1 × V 1. Applying the divergence theorem, we can see that
A is a skew-adjoint operator, that is, A∗ = −A, and that it has a dense domain. As a
consequence of Stone’s theorem, A generates a unitary group on H . System (1.2) can
be recasted as an abstract Cauchy problem on H as

⎧⎪⎨
⎪⎩

d

dt

(
p(t)

v(t)

)
+ A

(
p(t)

v(t)

)
=

(
u(t)

0

)
t ∈ I ,

p(0) = p0, v(0) = v0.

(2.1)

Applying classical results for semigroups of bounded linear operators, see [28] for
instance, given an initial data (p0, v0)	 ∈ H and control u ∈ U := L2(I , X0), (2.1)
has a unique mild solution (p, v)	 ∈ C(I , H) and there exists a constant C > 0
independent of the data, solution, and control such that

sup
t∈I

{‖p(t)‖ + ‖v(t)‖} ≤ C(‖u‖I + ‖p0‖ + ‖v0‖). (2.2)

A variational formulation of (2.1) is given by the following equation

(p,−ϕt + divψ)I + (v,−ψ t + ∇ϕ)I = (u, ϕ)I + (p0, ϕ(0)) + (v0,ψ(0)) (2.3)

for every (ϕ,ψ)	 ∈ H1(I , X1) × H1(I , V 1) such that ϕ(T ) = 0 and ψ(T ) = 0.
By a density argument a pair (p, v)	 ∈ C(I , H) is a solution to (2.1) if and only if it
satisfies (2.3). If in addition, the data satisfies

(p0, v0)
	 ∈ D(A) and u ∈ W 1,1(I , X0) (2.4)

then the mild solution of (2.1) satisfies

(p, v)	 ∈ C(I , D(A)) × C1(I , H) (2.5)

where D(A) is equipped with the graph norm. Moreover, there is a constant C > 0
such that

sup
t∈I

{‖∂t p(t)‖ + ‖∂tv(t)‖ + ‖∇ p(t)‖ + ‖divv(t)‖}
≤ C(‖u‖W 1,1(I ,X0)

+ ‖∇ p0‖ + ‖v0‖ + ‖divv0‖).
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596 G. Peralta, K. Kunisch

Under the regularity assumptions (2.4) on the data and control, we can see that the
solution (p, v)	 satisfies the variational equation

(∂t p, ϕ)I − (divv, ϕ)I + (∂tv,ψ)I + (p, divψ)I = (u, ϕ)I

for all (ϕ,ψ)	 ∈ L2(I , X0) × L2(I , V 1). This variational formulation will be the
basis for the finite element discretization of our optimal control problem.

All throughout this work, we assume that α, β ≥ 0 and γ > 0, and at the very least
the desired states satisfy pd ∈ L2(I , X0) and vd ∈ L2(I , V 0).

Theorem 2.1 Given p0 ∈ H0 and v0 ∈ V 0, the optimal control problem (1.1)–(1.3)
admits a unique solution (ū, p̄, v̄)	 ∈ U × L2(I , H).

Proof The proof of this theorem follows from standard weak sequential arguments as
in [33] for linear-quadratic optimal control problems. ��

By means of the control-to-state mapping u → (p, v)	 = (p(u), v(u))	 from
U into L2(I , H) defined through (1.2), we introduce the reduced cost functional
j : U → R given by

j(u) = J (u, p(u), v(u)).

Then the optimal control problem (1.1)–(1.3) can be equivalently expressed as

min
u∈U j(u). (2.6)

The first-order necessary optimality condition for the control problem (2.6) is

j ′(ū)δu = 0 ∀δu ∈ U . (2.7)

This condition is also sufficient due to the linear-quadratic structure of the optimal con-
trol problem under consideration. Using the mild solution (w, y)	 = (w(u), y(u))	
of the adjoint system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−wt + div y = α(p(u) − pd) in I × Ω,

− yt + ∇w = β(v(u) − vd) in I × Ω,

w = 0 on I × ∂Ω,

w(T ) = 0, y(T ) = 0 in Ω,

(2.8)

the first derivative of the reduced cost functional in the direction of δu ∈ U is given
by

j ′(u)δu = (γ u + w(u), δu)I . (2.9)

This can be proved using an approximation argument applied to the initial data, desired
state, and control, and then applying the regularity (2.5) and the continuity of the
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MFEM and HFEM for optimal control of the wave equation 597

solutions (2.2) with respect to time. Consequently, from (2.9) the optimality condition
(2.7) reduces to

ū = −γ −1w(ū). (2.10)

The existence and uniqueness of mild solutions in C(I , H) to the adjoint system
(2.8) follows from the fact that the generator A is skew-adjoint. Indeed, we can express
(2.8) as the backward-in-time Cauchy problem

⎧⎪⎨
⎪⎩

− d

dt

(
w(t)

y(t)

)
+ A∗

(
w(t)

y(t)

)
=

(
α(p(t) − pd(t))

β(v(t) − vd(t))

)
t ∈ I ,

w(T ) = 0, y(T ) = 0.

In terms of the variational formulation, the mild solution to (2.8) satisfies the equation

(∂tξ − divη, w)I + (∂tη − ∇ξ, y)I = α(w − wd , ξ)I + β( y − yd , η)I (2.11)

for every (ξ, η)	 ∈ H1(I , X1) × H1(I , V 1) such that ξ(0) = 0 and η(0) = 0.
In the case that u ∈ W 1,1(I , X0), pd ∈ W 1,1(I , X0) if α > 0, and vd ∈

W 1,1(I , V 0) if β > 0, then from (2.5) we have (p, v)	 ∈ W 1,1(I , H), and as a
consequence (w, y)	 ∈ C(I , D(A)) ∩ C1(I , H).

3 Mixed and hybrid finite element discretizations

In this section, we describe the Petrov–Galerkin scheme for the discretization of the
state equation using a mixed finite element method for the spatial variable. Suppose
that {Th} is a family of quasi-regular triangulations ofΩ parametrized by the meshsize
h = maxK∈Th diam(K ). For a nonnegative integer r , define the space of piecewise
polynomial and Raviart–Thomas finite element spaces

Xr
h = {ph ∈ X0 : ph |K ∈ Pr ∀K ∈ Th},

V r
h = {vh ∈ V 1 : vh |K ∈ P

2
r ⊕ xPr ∀K ∈ Th},

where x = (x, y)	 represents the spatial variable and Pr is the space of polynomials
in K of degree at most r . It is known that

divV r
h = Xr

h (3.1)

and there exists a projection operator ρh : H1(Ω)2 → V r
h such that

div(ρhv) = πhdivv (3.2)

where πh is the orthogonal projection from X0 onto Xr
h . Moreover, we have

‖p − πh p‖ ≤ Chr+1‖p‖Hr+1 ∀p ∈ Hr+1(Ω), (3.3)

‖v − ρhv‖ ≤ Chr+1‖v‖Hr+1 ∀v ∈ Hr+1(Ω)2. (3.4)
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598 G. Peralta, K. Kunisch

Partition the interval I into 0 = t0 < t1 < · · · < tM = T . Let I0 = {0} and
I j = (t j−1, t j ] for j = 1, . . . , M . We consider the case of uniform time stepsizes,
that is, τ = t j − t j−1 for every j . To formulate the space–time-discretization of (1.2),
we introduce the following space consisting of continuous piecewise-linear functions
in time with values in Xr

h and V r
h

Xr
hk = {phk ∈ C(I , Xr

h) : phk |I j ∈ P1(I j , X
r
h)},

V r
hk = {vhk ∈ C(I , V r

h) : vhk |I j ∈ P1(I j , V r
h)},

and the space of discontinuous piecewise constant functions in time with values in Xr
h

and V r
h

X̃r
hk = {phk ∈ L2(I , Xr

h) : phk |I j ∈ P0(I j , X
r
h), phk(0) ∈ Xr

h},
Ṽ

r
hk = {vhk ∈ L2(I , V r

h) : vhk |I j ∈ P0(I j , V r
h), vhk(0) ∈ V r

h}.

Here, Pr (I j , X) is the space of polynomial functions in I j of degree at most r with
values in a Banach space X .

3.1 Discretization

Define the multilinear form ahk : Xr
hk × V r

hk × X̃r
hk × Ṽ

r
hk → R by

ahk(phk, vhk, ϕhk,ψhk) = (∂t phk, ϕhk)I − (divvhk, ϕhk)I + (∂tvhk,ψhk)I

+ (phk, divψhk)I + (phk(0), ϕhk(0)) + (vhk(0),ψhk(0)).

For the discretization of the state equation (1.2) with a given control uhk ∈ Uhk , we
consider the following: Find (phk, vhk)	 = (phk(uhk), vhk(uhk))	 ∈ Xr

hk×V r
hk such

that

ahk(phk, vhk, ϕhk,ψhk) = (uhk, ϕhk)I + (p0, ϕhk(0)) + (v0,ψhk(0)) (3.5)

for all (ϕhk,ψhk)
	 ∈ X̃r

hk × Ṽ
r
hk . Here, Uhk ⊂ U and different possible choices

will be mentioned in Remark 3.1 below. The corresponding discrete optimal control
problem reads as follows:

min
uhk∈Uhk

J (uhk, phk, vhk) subject to (3.5) . (3.6)

As in the continuous case, by means of the discrete control-to-state operator
uhk → (phk(uhk), vhk(uhk))	 from Uhk into Xr

hk × V r
hk and the discrete reduced

cost functional jhk : Uhk → R defined by

jhk(uhk) = J (uhk, phk(uhk), vhk(uhk)),
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MFEM and HFEM for optimal control of the wave equation 599

(3.6) can be reformulated as
min

uhk∈Uhk
jkh(uhk). (3.7)

The first-order necessary and sufficient condition for ūhk ∈ Uhk to be the opti-
mal control is j ′hk(ūhk)δuhk = 0 for every δuhk ∈ Uhk . In terms of the solution

(whk, yhk)
	 = (whk(uhk), yhk(uhk))

	 ∈ X̃r
hk × Ṽ

r
hk of the discrete adjoint equation

ahk(ξhk, ηhk, whk, yhk) = α(ξhk, phk(uhk) − pd)I + β(ηhk, vhk(uhk) − vd)I (3.8)

for every (ξhk, ηhk)
	 ∈ Xr

hk ×V r
hk , the first-order directional derivative of the discrete

cost is given by

j ′hk(uhk)δuhk = (γ uhk + whk(uhk)I , δuhk)I ,

for every uhk, δuhk ∈ Uhk .

Remark 3.1 Let us mention possible discretizations of the control space. Let ūhk be
the solution of (3.7). With the choice Uhk = X̃r

hk , we have ūhk = −γ −1whk(ūhk).
On the other hand, if we take Uhk = Xr

hk , then ūhk = −γ −1Πhkwhk(ūhk), where
Πhk : X̃r

h → Xr
hk is the projection operator such that

(Πhkwhk, ϕhk)I = (whk, ϕhk)I , ∀(whk, ϕhk)
	 ∈ X̃r

hk × Xr
hk .

Let us now express the discrete problem (3.5) more explicitly. Though (3.5) is
formulated globally in time, it results in a time-stepping scheme. By approximating
the time integrals through the trapezoidal rule, we obtain a variant of the Crank–
Nicholson method. Here, for the discretization of the control space, we choose the
same discretization as for the pressure, that is, Uhk = Xr

hk .
We follow the usual strategy of discretizing the optimal control problem (2.6), that

is, by discretizing explicitly both the state and control spaces. Another quite popular
method is the so-called variational discretization introduced by Hinze [20]. In this
discretization concept, the state-space is discretized while the space of controls is not.
Although the control lies in a continuous control space, it is a discrete object since it is
implicitly discretized in terms of the discrete adjoint variable and through projection.

Define the bilinear form b : V r
h × Xr

h → R by

b(vh, ph) = (divvh, ph).

In the following, a superscript will refer to the value at the time nodes, for example,
pm = phk(tm) and vm = vhk(tm). Also, we denote by χO to be the indicator function
of a set O .

Let ϕh ∈ Xr
h and ψh ∈ V r

h . Taking ϕhk = χImϕh and ψhk = χImψh in (3.5), we
obtain the following: For m = 0 we find

(p0, ϕh) = (p0, ϕh), (v0,ψh) = (v0,ψh) ∀ϕh ∈ Xr
h,ψh ∈ V r

h, (3.9)
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600 G. Peralta, K. Kunisch

and for m = 1, . . . , M we have

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

τ
(pm − pm−1, ϕh) − 1

2
b(vm + vm−1, ϕh)

= 1

2
(um + um−1, ϕh) ∀ϕh ∈ Xr

h,

1

τ
(vm − vm−1,ψh) + 1

2
b(ψh, p

m + pm−1) = 0 ∀ψh ∈ V r
h .

(3.10)

If uhk = 0 then this scheme preserves the energy at every time step, that is, ‖pm‖2 +
‖vm‖2 = ‖p0‖2 + ‖v0‖2 for every m.

For the realization of the discrete adjoint equation (3.8) as a time-stepping scheme,
we take ξhk = φmξh and ηhk = φmηh , where ξh ∈ Xr

h , ηh ∈ V r
h . Further, {φm : 0 ≤

m ≤ M} are the linear Lagrange elements (hat functions) with respect to the temporal
partition. Thus, we obtain the following: For m = M we have

⎧⎪⎨
⎪⎩

1

τ
(ξh, w

M ) + 1

2
b( yM , ξh) = α

2
(pM − pMd , ξh) ∀ξh ∈ Xr

h,

1

τ
(ηh, y

M ) − 1

2
b(ηh, w

M ) = β

2
(vM − vM

d , ηh) ∀ηh ∈ V r
h .

(3.11)

For m = M − 1, . . . , 1 we have

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

τ
(ξh, w

m − wm+1) + 1

2
b( ym + ym+1, ξh)

= α(pm − pmd , ξh) ∀ξh ∈ Xr
h,

1

τ
(ηh, y

m − ym+1) − 1

2
b(ηh, w

m + wm+1)

= β(vm − vmd , ηh) ∀ηh ∈ V r
h,

(3.12)

and for m = 0 we have
⎧⎪⎨
⎪⎩

1

τ
(ξh, w

0 − w1) + 1

2
b( y1, ξh) = α

2
(p0 − p0d , ξh) ∀ξh ∈ Xr

h,

1

τ
(ηh, y

0 − y1) − 1

2
b(ηh, w

1) = β

2
(v0 − v0d , ηh) ∀ηh ∈ V r

h .
(3.13)

Note that the fully discrete adjoint system (3.11)–(3.13) is an approximation of
(3.8) and under appropriate regularity assumptions the error between the solutions
at the time nodes is second order in time. In contrast to the usual Crank–Nicolson
scheme, we have half-steps at the first and last time-steps, and the right-hand sides are
approximated by the box-rule.

The existence of solutions for the fully discrete state and adjoint equations can
be established immediately by induction over m and the fact that for each m the
system matrix is injective, hence bijective since the associated linear system is finite-
dimensional and square.

Due to the approximation of the integrals, the solutions of the above discrete state
and adjoint equations are different from the original Petrov–Galerkin formulations
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(3.5) and (3.8). However, by using an appropriate approximation of the cost functional,
we will see below that the associated adjoint equations corresponds to the system
(3.11)–(3.13). Consider the discretized cost functional

Jhk(uhk, phk, vhk)

= ατ

2

(
1

2
‖p0 − p0d‖2 +

M−1∑
m=1

‖pm − pmd ‖2 + 1

2
‖pM − pMd ‖2

)

+ βτ

2

(
1

2
‖v0 − v0d‖2 +

M−1∑
m=1

‖vm − vmd ‖2 + 1

2
‖vM − vM

d ‖2
)

+ γ

2
‖uhk‖2I . (3.14)

Here the tracking part of the functional is approximated by the trapezoidal rule, while
the control cost is computed exactly. Set

jhk(uhk) = Jhk(uhk, phk(uhk), vhk(uhk)).

Given uhk ∈ Uhk , the first-order derivative of the reduced cost jhk in the direction
of δuhk ∈ Uhk is given by

j ′hk(uhk)δuhk = γ (uhk, δuhk)I

+ατ

(
1

2
(p0 − p0d , δ p

0)

+
M−1∑
m=1

(pm − pmd , δ pm) + 1

2
(pM − pMd , δ pM )

)

+βτ

(
1

2
(v0−v0d , δv

0)+
M−1∑
m=1

(vm−vmd , δvm)+ 1

2
(vM−vM

d , δvM )

)
(3.15)

where (δ phk, δvhk)	 = (phk(δuhk), vhk(δuhk))	. We claim that

j ′hk(uhk)δuhk = (γ uhk + whk, δuhk)I , (3.16)

for every uhk, δuhk ∈ Uhk , where (whk, yhk)
	 = (whk(uhk), yhk(uhk))

	 ∈ X̃r
hk ×

Ṽ
r
hk is the solution of (3.11)–(3.13). Because we are in the unconstrained case, it is

enough to prove the claim in the case where δ p0 = 0 and δv0 = 0. First, let us define
the sum

S :=
M∑

m=1

{(δ pm, wm) − τ

2
b(δvm, wm) + (δvm, ym) + τ

2
b( ym, δ pm)}.

This sum is related to the discrete adjoint equation as we shall see in (3.18) below.
Using (ϕh,ψh)

	 = (wm, ym)	 as a test function in the discrete state equation (3.10)
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with um replaced by δum , we obtain

S =
M∑

m=2

{(δ pm−1, wm) + τ

2
b(δvm−1, wm) + (δvm−1, ym) − τ

2
b( ym, δ pm−1)}

+
M∑

m=1

τ

2
(δum + δum−1, wm). (3.17)

Because δuhk is piecewise-linear in time and whk is piecewise constant in time, the
trapezoidal rule applied to (δuhk, whk)Im is exact on each subinterval Im , and thus

M∑
m=1

τ

2
(δum + δum−1, wm) = (δuhk, whk)I .

On the other hand, taking (ξh, ηh)
	 = (δ pm, δvm)	 as a test function in the discrete

adjoint equation (3.11)–(3.13), we have

S =
M−1∑
m=1

{(δ pm, wm+1) − τ

2
b( ym+1, δ pm) + (δvm, ym+1) + τ

2
b(δvm, wm+1)}

+
M−1∑
m=1

{ατ(pm − pmd , δ pm) + βτ(vm − vmd , δvm)}

+ ατ

2
(pM − pMd , δ pM ) + βτ

2
(vM − vM

d , δvM ). (3.18)

Reindexing the first sum in (3.18), comparing to (3.17), and using (3.15) proves our
claim (3.16). As a consequence, the process of discretization and optimization com-
mute for the above Petrov–Galerkin approximation.

3.2 Hybridization

We discuss a hybridized formulation of the mixed finite element method presented
in the previous subsection. Following the idea in the elliptic case [3], we relax the
continuity of the normal component of the velocity along the inter-element boundaries
by introducing Langrange multipliers on each of the interior edges. We note that
hybridization offers an easier construction of a basis for the finite element spaces.
The advantages and disadvantages of hybridization will be discussed in the numerical
section. We recall the discontinuous Raviart–Thomas finite element space

Y r
h = {vh ∈ V 0 : vh |K ∈ P

2
r ⊕ xPr ∀K ∈ Th}

and the space of multipliers

Mr
h = {λh ∈ L2(E i

h) : λh |e ∈ Pr ∀e ∈ Eh}
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where E i
h is the set of all interior edges of Th . The spaces Y r

hk , Ỹ
r
hk , M

r
hk , and M̃r

hk ,
are defined analogously as before. Here, r is a nonnegative even integer. Let Πr

h ∈
L(Xr+1

h , Mr
h) and Pr−2

h ∈ L(Xr+1
h , Xr−2

h ) be the L2-projections onto Mr
h and Xr−2

h ,
respectively. Also, define Rr+1

h : Mr
h × Xr

h → Xr+1
h according to

Πr
h R

r+1
h (λh, ph) = λh,

Pr−2
h (Rr+1

h (λh, ph) − ph) = 0, for r ≥ 2,

for each (λh, ph)	 ∈ Mr
h × Xr

h . In the case r = 0, we simply write R1
hλh instead of

R1
h(λh, ph).
In [3] the restriction that r is even was imposed to obtain a unified proof for the

stability of the post-processing operator Rr+1
h . Ad hoc nonconforming approximations

are needed to prove stability in the case of an odd r , and constructions to the cases
k = 1 and k = 3 were given in the said paper.

Define the bilinear forms bh : Y r
h × Xr

h → R and dh : Y r
h × Mr

h → R by

bh(vh, ph) =
∑
K∈Th

∫
K
phdivvhdx,

dh(vh, λh) =
∑
e∈E i

h

∫
e
[vh] · νλhdx,

where [vh] is the jump across the edge e, and the corresponding bilinear forms bh,I :
Y r
hk × Xr

hk → R and dh,I : Y r
hk × Mr

hk → R for time-dependent variables

bh,I (vhk, phk) =
∫
I
bh(vhk(t), phk(t))dt

dh,I (vhk, λhk) =
∫
I
dh(vhk(t), λhk(t))dt .

Also, consider themultilinear form ãhk : Xr
hk×Y r

hk×Mr
hk× X̃r

hk×Ỹ
r
hk×M̃r

hk → R

defined by

ãhk(phk, vhk, λhk, ϕhk,ψhk, μhk)

= (∂t phk, ϕhk)I − bh,I (vhk, ϕhk) + (∂tvhk,ψ)I

+ bh,I (ψhk, phk) − dh,I (vhk, μhk) + dh,I (ψhk, λhk)

+ (phk(0), ϕhk(0)) + (vhk(0),ψhk(0)) + (λhk(0), μhk(0)).

The hybrid formulation of (1.2) that we consider is the following: Find a triple
(phk, vhk, λhk)	 ∈ Xr

hk × Y r
hk × Mr

hk such that

ãhk(phk, vhk, λhk, ϕhk,ψhk, μhk)

= (uhk, ϕhk)I + (p0, ϕhk(0)) + (v0,ψhk(0)) + (λ0, μhk(0)) (3.19)
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for every (ϕhk,ψhk, μhk)
	 ∈ X̃r

hk × Ỹ
r
hk × M̃r

hk . We take λ0 ∈ L2(E i
h) such that

λ0|e = p0|e for every e ∈ E i
h . This is a natural choice since physically, the Lagrange

multiplier approximates the trace of the pressure on the inter-element boundaries.
For the hybrid formulation, the discrete reduced cost functional is defined by

jH (uhk) = J (uhk, phk(uhk), vhk(uhk))

where (phk, vhk, λhk)	 ∈ X̃r
hk × Ỹ

r
hk × M̃r

hk is the solution of (3.19), and the corre-
sponding optimal control problem is given as

min
uhk∈Xr+1

hk

jH (uhk). (3.20)

Notice that the space Xr+1
hk is used as a discretization of the control space. The motiva-

tion of this choice originates from the case of elliptic PDEs, where the post-processed
Lagrange multiplier posseses better convergence properties than the computed scalar
state uhk , see [3] for instance. More precisely, instead of using the dual pressure
whk ∈ X̃r

hk to update the control in the gradient algorithm, one utilizes the post-
processed dual Lagrange multiplier Rr+1

h μhk ∈ Xr+1
hk , see the algorithm in Sect. 5.3

for the details. In this way, the control is an element of Xr+1
hk .

To compensate for the additional degrees of freedom arising from the inter-element
Lagrange multipliers, we will solve the discrete state equations with an additional
penalization term, at the expense of an additional error and larger condition number.
As a result, the corresponding linear systems at each time step can be reduced. For
this purpose, we replace the form ahk by the form

ãε
hk(phk, vhk, λhk, ϕhk,ψhk, μhk)

= ãhk(phk, vhk, λhk, ϕhk,ψhk, μhk) + εsh,I (λhk, μhk).

where sh,I : Mr
hk × Mr

hk → R is given by

sh,I (λhk, μhk) :=
∫
I
sh(λhk(t), μhk(t))dt =

∑
e∈E i

h

1

|e|
∫
I

∫
e
λhk(t)μhk(t)dsdt .

This penalization is adapted from the case of elliptic equations, see [29] for instance.
The effect of the penalty parameter ε on the system matrix will be discussed in the
numerical section.

With the above penalized discrete state equation, the first-order directional deriva-
tive of the discrete cost is given by

j ′H (uhk)δuhk = (γ uhk + whk(uhk), δuhk)I ,

for every uhk, δuhk ∈ Xr+1
hk , where

(whk, yhk, μhk)
	 = (whk(uhk), yhk(uhk), μhk(uhk))

	 ∈ X̃r
hk × Ỹ

r
hk × M̃r

hk
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is the solution of the penalized discrete adjoint equation satisfying the variational
equation

ãε
hk(ξhk, ηhk, ζhk, whk, yhk, μhk)

= α(ξhk, phk(uhk) − pd)I + β(ηhk, vhk(uhk) − vd)I (3.21)

for every (ξhk, ηhk, ζhk)
	 ∈ Xr

hk ×Y r
hk ×Mr

hk . However, instead of solving the above
adjoint equation, we replace the discrete pressure phk(uhk) by the post-processed
Lagrange multiplier Rk+1

h (λhk(uhk), phk(uhk)).
Using a similar process as in the mixed formulation, we have the following time-

stepping formulation of (3.19) if we take ϕhk = φmϕh , ψhk = φmψh , and μhk =
φmμh , where ϕh ∈ Xr

h , ψh ∈ Y r
h , and μh ∈ Mr

h : For m = 0 we have

(p0, ϕh) = (p0, ϕh), (v0,ψh) = (v0,ψh), (λ0, μh) = (λ0, μh)

for all ϕh ∈ Xr
h,ψh ∈ V r

h, μh ∈ Mr
h , and for m = 1, . . . , M we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

τ
(pm − pm−1, ϕh) − 1

2
bh(v

m + vm−1, ϕh)

= 1

2
(um + um−1, ϕh) ∀ϕh ∈ Xr

h,

1

τ
(vm − vm−1,ψh) + 1

2
bh(ψh, p

m + pm−1)

+ 1

2
dh(ψh, λ

m + λm−1) = 0 ∀ψh ∈ Y r
h,

dh(v
m + vm−1, μh) − εsh(λ

m + λm−1, μh) = 0 ∀μh ∈ Mr
h .

(3.22)

Taking ξhk = φmξh , ηhk = φmηh , and ζhk = φmζh , where ξh ∈ Xr
h , ηh ∈ Y r

h ,
and ζh ∈ Mr

h in (3.21), the discrete adjoint equation of the penalized problem is the
following: For m = M we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

τ
(ξh, w

M ) + 1

2
bh( yM , ξh)

= α

2
(Rr+1

h (λM , pM ) − pMd , ξh) ∀ξh ∈ Xr
h,

1

τ
(ηh, y

M ) − 1

2
bh(ηh, w

M ) − 1

2
dh(ηh, μ

M )

= β

2
(vM − vM

d , ηh) ∀ηh ∈ Y r
h,

dh( yM , ζh) + εsh(ζh, μ
M ) = 0 ∀ζh ∈ Mr

h ,

(3.23)
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for m = M − 1, . . . , 1 we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

τ
(ξh, w

m − wm+1) + 1

2
bh( ym + ym+1, ξh)

= α(Rr+1
h (λm, pm) − pmd , ξh) ∀ξh ∈ Xr

h,
1

τ
(ηh, y

m − ym+1) − 1

2
bh(ηh, w

m + wm+1) − 1

2
dh(ηh, μ

m + μm+1)

= β(vm − vmd , ηh) ∀ηh ∈ Y r
h,

dh( ym + ym+1, ζh) + εsh(ζh, μ
m + μm+1) = 0 ∀ζh ∈ Mr

h ,

(3.24)

and for m = 0 we have

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

τ
(ξh, w

0 − w1) + 1

2
bh( y1, ξh) = α

2
(Rr+1

h (λ0, p0) − p0d , ξh) ∀ξh ∈ Xr
h,

1

τ
(ηh, y

0 − y1) − 1

2
bh(ηh, w

1) − 1

2
dh(ηh, μ

1)

= β

2
(v0 − v0d , ηh) ∀ηh ∈ Y r

h,

τ

2
dh( y1, ζh) + τ

2
εsh(ζh, μ

1) + εsh(ζh, μ
0) = 0 ∀ζh ∈ Mr

h .

(3.25)

If ε > 0, then one can see that the systems (3.23)–(3.25) are coercive, hence,
existence of solutions follows from the Lax–Milgram Lemma. If ε = 0, then one
can prove the existence of a triple (pm, vm, λm) by induction using a similar method
as in the elliptic case, see for instance [12,32,33]. Furthermore, if the initial discrete
velocity is chosen in such a way that v0 ∈ V r

h , then it follows that v
m ∈ V r

h for every
m. In particular, this implies that the pressure and velocity components of the solution
to (3.22) with ε = 0 are equal to those of (3.10). Indeed, this follows immediately
from the fact that if vh ∈ Y r

h , then dh(vh, μh) = 0 for every μh ∈ Mr
h if and only if

vh ∈ V r
h , see [3] for the proof. The said remark also applies to (3.23)–(3.25).

Observe that the above discrete state and adjoint equations, without the penalization
term, are the hybridization of the discrete state and adjoint equations in the mixed
formulation. This means that discretization and optimization commute even in the
hybrid formulation.

4 Error analysis for themixed formulation

In this section, we prove a priori error estimates for the solution of the continuous
optimal control problem (2.6) and its discretization

min
uhk∈Xr

hk

jhk(uhk) := Jkh(uhk, phk(uhk), vhk(uhk)) (4.1)

where (phk(uhk), vhk(uhk))	 ∈ Xr
hk × V r

hk is the solution of the fully discrete state
equation (3.9)–(3.10). To do this, let us also introduce the following semidiscrete
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optimal control problem

min
u∈U jhk(u) := Jhk(u, phk(u), vhk(u)). (4.2)

Denote by ūhk and u∗
hk the solutions to (4.1) and (4.2), respectively.

Lemma 4.1 Let X be a Hilbert space. Then for each u ∈ C(I , X) such that u|Im ∈
P1(Im, X) for all m = 1, . . . , M, we have

‖u‖2I = τ

3
‖u(0)‖2 + τ

3
‖u(T )‖2 + 2τ

3

M−1∑
m=1

{‖u(tm)‖2 + (u(tm), u(tm−1))}. (4.3)

In particular, it holds that

τ

6

M∑
m=1

‖u(tm) + u(tm−1)‖2 ≤ ‖u‖2I . (4.4)

Proof Let {φm}Mm=0 be the linear Lagrange basis functions on I with respect to the

above partition so that φ j (tk) = δ jk . Then we can write u = ∑M
m=0 φmu(tm). Using

this representation of u along with the identities ‖φm‖2 = 2τ
3 , (φm, φm−1) = τ

6 , and
(φm, φμ) = 0 for |m−μ| > 1, we obtain (4.3). Expanding the norm in the sum yields

τ

M∑
m=1

‖u(tm) + u(tm−1)‖2

= τ‖u(0)‖2 + 2τ
M∑

m=1

{‖u(tm)‖2 + (u(tm), u(tm−1))} − τ‖u(T )‖2,

from which the estimate (4.4) follows. ��
Recall that the solution (phk, vhk)	 of (3.9)–(3.10) can be written as

phk =
M∑

m=0

φm pm, vhk =
M∑

m=0

φmvm

where pm = phk(tm) and vm = vhk(tm). Therefore, we have the estimate

‖phk‖I + ‖vhk‖I ≤ CT max
0≤m≤M

{‖pm‖ + ‖vm‖}. (4.5)

To establish the stability of the semidiscrete state equation, we shall use the discrete
analogue of the Gronwall lemma: For nonnegative numbers un, vn , and wn , if un ≤
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vn +∑n−1
k=0 wkuk , then un ≤ vn exp(

∑n−1
k=0 wk). For a given control u ∈ C(I , L2(Ω)),

we denote its piecewise-linear Lagrange interpolation by

PI u =
M∑

m=0

φmu(tm).

Obviously, PI u ∈ C(I , L2(Ω)) and PI u|Im ∈ P1(Im, L2(Ω)) for each m =
1, . . . , M .

Lemma 4.2 Let (phk(u), vhk(u))	 be the solution of the fully discrete state equation
(3.9)–(3.10) with control u ∈ W 1,1(I , L2(Ω)). Then there exists a constant CT > 0
independent of u such that for every 0 < τ < T we have

max
0≤m≤M

{‖pm‖ + ‖vm‖} ≤ CT (‖p0‖ + ‖v0‖ + ‖PI u‖I ). (4.6)

In particular, it holds that

‖phk(u)‖I + ‖vhk(u)‖I ≤ CT (‖p0‖ + ‖v0‖ + ‖PI u‖I ). (4.7)

Proof Using the test functions ϕh = p� + p�−1 and ψh = v� + v�−1 in the discrete
state equation (3.9)–(3.10) and the Cauchy-Schwarz inequality, we obtain

‖p�‖2 + ‖v�‖2 − ‖p�−1‖2 − ‖v�−1‖2 ≤ τ‖u� + u�−1‖2 + 2τ {‖p�‖2 + ‖p�−1‖2}

for every 1 ≤ � ≤ M . Taking the sum over all 1 ≤ � ≤ m for a given 1 ≤ m ≤ M ,
one can deduce that

‖pm‖2 + ‖vm‖2 ≤ ‖p0‖2 + ‖v0‖2 + τ

m∑
�=1

‖u� + u�−1‖2 +
m∑

�=0

4τ‖p�‖2.

Applying the discrete Gronwall lemma, the inequality τ(m + 1) ≤ 2T and the fact
that PI u and u coincide at the temporal nodes, we obtain

‖pm‖2 + ‖vm‖2 ≤ e8T
(

‖p0‖2 + ‖v0‖2 + τ

m∑
�=1

‖PI u� + PI u
�−1‖2

)
.

By Lemma 4.1, we obtain the estimate (4.6) after taking square roots. Finally, (4.7) is
a direct consequence of (4.5) and (4.6) ��

Now let us prove a priori error estimates for the discrete state equations under
additional regularity assumptions on the state equations and the control.

Theorem 4.1 Let (phk(u), vhk(u))	 be the solution of the fully discrete state equa-
tion (3.9)–(3.10) for a given control u ∈ W 1,1(I , L2(Ω)), and suppose that p ∈
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H3(I , X0) ∩ H1(I , Hr+1(Ω)) and v ∈ H3(I , V 0) ∩ H1(I , Hr+1(Ω)2). Then there
is a constant C > 0 independent of τ and h such that

‖phk(u) − p(u)‖I + ‖vhk(u) − v(u)‖I ≤ C(τ 2 + hr+1).

Proof It is enough to prove the following estimate

‖pm − p(tm)‖ + ‖vm − v(tm)‖ ≤ C(τ 2 + hr+1)

for each 0 ≤ m ≤ M . First, let us separate the error into discrete and projection errors
according to

pm − p(tm) = êmh + ẽmh := (pm − πh p(tm)) + (πh p(tm) − p(tm))

vm − v(tm) = r̂mh + r̃mh := (vm − ρhv(tm)) + (ρhv(tm) − v(tm)).

The projection errors can be estimated from above thanks to (3.3) and (3.4) as
follows:

‖ẽmh ‖ + ‖r̃mh ‖ ≤ Chr+1(‖p‖L∞(I ,Hr+1(Ω)) + ‖v‖L∞(I ,Hr+1(Ω)2)). (4.8)

On the other hand, for each 1 ≤ m ≤ M , the errors êmh and r̂mh satisfy the equations

1

τ
(êmh − êm−1

h , ϕh) + 1

τ
(r̂mh − r̂m−1

h ,ψh) − 1

2
b(r̂mh + r̂m−1

h , ϕh)

+ 1

2
b(ψh, ê

m
h + êm−1

h ) = −(εm1h, ϕh) + (εm2h,ψh) − (εm3h,ψh)

where the terms on the right hand side are given by

εm1h = 1

τ
(p(tm) − p(tm−1)) − 1

2
∂t p(tm) − 1

2
∂t p(tm−1)

εm2h = 1

τ
(ρhv(tm) − v(tm) − ρhv(tm−1) + v(tm−1))

εm3h = 1

τ
(v(tm) − v(tm−1)) − 1

2
∂tv(tm) − 1

2
∂tv(tm−1).

By rewriting the term εm1h as the integral

εm1h = 1

2τ

∫
Im

(tm − s)(tm−1 − s)∂3t p(s)ds

and similarly for εm3h , we have the estimate

‖εm1h‖2Im + ‖εm3h‖2Im ≤ Cτ 3(‖∂3t p(s)‖2Im + ‖∂3t v(s)‖2Im ).
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On the other hand, from interpolation theory we likewise have the estimate

‖εm2h‖2Im ≤ Cτ−2h2(r+1)‖v(tm) − v(tm−1)‖2L2(Im ,Hr+1(Ω)2)

≤ Cτ−1h2(r+1)‖∂tv‖2L2(Im ,Hr+1(Ω)2)
.

Taking the test functions ϕh = êmh + êm−1
h and ψh = r̂mh + η̂

m−1
h , and applying the

same strategy as in the previous lemma, we obtain

‖êmh ‖2 + ‖r̂mh ‖2 ≤ CT (τ 2 + hr+1)2 +
m−1∑
�=0

4τ‖ê�
h‖2,

where CT is a constant depending on ‖∂3t p(s)‖I , ‖∂3t v(s)‖I , and ‖∂tv‖L2(I ,Hr+1(Ω)2).
Therefore, by the discrete Gronwall Lemma, we have

‖êmh ‖ + ‖r̂mh ‖ ≤ C(τ 2 + hr+1).

Combining this inequality with (4.8) proves the desired estimate. ��

Recall that (whk(u), yhk(u))	 ∈ X̃r
hk × Ṽ

r
hk is the solution of the corresponding

discrete adjoint equation with the pair (phk, vhk)	 = (phk(u), vhk(u))	. One can
write

whk =
M∑

m=0

χImwm, yhk =
M∑

m=0

χIm ym,

where wm = whk(tm), ym = yhk(tm), and χIm is the indicator function on Im , so that

‖whk‖I + ‖ yhk‖I ≤ CT max
1≤m≤M

{‖wm‖ + ‖ ym‖}.

Lemma 4.3 Let (whk(u), yhk(u))	 be the solution of the fully discrete adjoint equation
(3.11)–(3.13). Then there exists a constant C > 0 independent on u such that

max
1≤m≤M

{‖wm‖ + ‖ ym‖} ≤ C(‖phk − pd‖I + ‖vhk − vd‖I ),

and thus we have

‖whk(u)‖I + ‖ yhk(u)‖I ≤ C(‖phk(u) − pd‖I + ‖vhk(u) − vd‖I )

Proof The proof is similar to the one given for the discrete state equationwherewe take
(ξh, ηh) = (wM , yM ) and (ξh, ηh) = (wm +wm+1, ym + ym+1) for 1 ≤ m ≤ M − 1
as the test functions. ��
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MFEM and HFEM for optimal control of the wave equation 611

Theorem 4.2 Let (whk(u), yhk(u))	 be the solution of the fully discrete adjoint
equation (3.11)–(3.13) for a given control u ∈ W 1,1(I , L2(Ω)), and assume that
w ∈ H3(I , X0) ∩ H1(I , Hr+1(Ω)) and y ∈ H3(I , V 0) ∩ H1(I , Hr+1(Ω)2). Then
there is a constant C > 0 independent of τ and h such that

‖whk(u) − w(u)‖I + ‖ yhk(u) − y(u)‖I ≤ C(τ + hr+1).

Proof As in the proof of the previous theorem, it suffices to establish the following a
priori estimate at the time nodes

‖wm − w(tm)‖ + ‖ ym − y(tm)‖ ≤ C(τ + hr+1)

for each 1 ≤ m ≤ M . Using a similar decomposition as in the case of state equations,
we only need to estimate the error terms êmh = πhw(tm)−wm and r̂mh = ρh y(tm)− ym .

First, we consider the case where m = M . Recall from (2.11) that for each ξ ∈
H1(I , X0) and η ∈ H1(I , V 1) such that ξ(0) = 0 and η(0) = 0, we have

(∂tξ,w) + b( y, ξ) + (∂tη, y) − b(η, w) = α(p − pd , ξ) + β(v − vd , η).

Taking ξ = φMξh , η = φMηh , evaluating at t = T , and using the fact that w(T ) = 0
and y(T ) = 0 yields

α(p(T ) − pd(T ), ξh) + β(v(T ) − vd(T ), ηh) = 0,

for every ξh ∈ Xr
h and ηh ∈ V r

h . Using this equation together with (3.11) and the fact

that êMh = −wM and r̂Mh = − yM , we obtain

‖êMh ‖2 + ‖r̂Mh ‖2 = ατ

2
(p(T ) − phk(T ), êMh ) + βτ

2
(v(T ) − vhk(T ), r̂Mh ).

Applying the Cauchy-Schwarz inequality and Theorem 4.1, we deduce that

‖êMh ‖ + ‖r̂Mh ‖ ≤ Cτ 2.

In the case where 1 ≤ m ≤ M − 1, we follow the same method as in the fully
discrete state equation to get

1

τ
(ξh, ê

m
h − êm+1

h ) + 1

τ
(ηh, r̂

m
h − r̂m+1

h ) + 1

2
b(r̂mh + r̂m+1

h , ξh)

− 1

2
b(ηh, ê

m
h + êm+1

h ) = (ξh, ε
m
1h) + (ηh, ε

m
2h) + (ηh, ε

m
3h)

+α(p(tm) − pm, ξh) + β(v(tm) − vm, ηh)

+ α

2
(∂t p(tm) − ∂t pd(tm), ξh) + β

2
(∂tv(tm) − ∂tvd(tm), ηh)
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where εm1h , ε
m
2h , and εm3h are defined by

εm1h = 1

τ
(w(tm) − w(tm+1)) − 1

2
∂tw(tm) − 1

2
∂tw(tm+1)

εm2h = 1

τ
(ρh y(tm) − y(tm) − ρh y(tm+1) + y(tm+1))

εm3h = 1

τ
( y(tm) − y(tm+1)) − 1

2
∂t y(tm) − 1

2
∂t y(tm+1).

With these quantities, one can now proceed as before to establish the desired a priori
estimate by taking the test functions ξh = êmh + êm+1

h and ηh = r̂mh + r̂m+1
h . The main

difference is that the last two terms in the above equation are estimated from above as

τ(‖∂t p(tm) − ∂t pd(tm)‖ + ‖∂tv(tm) − ∂tvd(tm)‖)
≤ Cτ(‖p − pd‖H1(Im+1,X0)

+ ‖v − vd‖H1(Im+1,X0)2
).

This leads to a linear order with respect to τ . ��

Theorem 4.3 Let (ū, p̄, v̄)	 and (ūhk, p̄hk, v̄hk)	 be the solutions of the continuous
and fully discrete optimal control problems (2.6) and (4.1), respectively. Suppose
that ū ∈ H1(I , Hr+1(Ω)), p̄, w̄ ∈ H3(I , X0) ∩ H1(I , Hr+1(Ω)), and v̄, ȳ ∈
H3(I , V 0) ∩ H1(I , Hr+1(Ω)2). Then

‖ū − ūhk‖I + ‖ p̄ − p̄hk‖I + ‖v̄ − v̄hk‖I ≤ C(τ + hr+1).

Moreover, if (w̄, ȳ)	 and (w̄hk, ȳhk)
	 are the corresponding optimal adjoint states,

then

‖w̄ − w̄hk‖I + ‖ ȳ − ȳhk‖I ≤ C(τ + hr+1).

Proof The proof follows from the stability estimates given Lemmas 4.2 and 4.3, the
a priori error estimates in Theorems 4.1 and 4.2, and by adapting the methodologies
presented in [26] in the case of parabolic equations.

Let Pr
hk be the orthogonal projection fromU onto Xr

hk and let ûhk = Pr
hk ū. Applying

the error estimates (3.3) and (3.4), we have

‖ûhk − ū‖I ≤ C(τ 2 + hr+1). (4.9)

By optimality, we deduce that

j ′(ū)(ûhk − ūhk) = j ′hk(u∗
hk)(ûhk − ūhk) = j ′hk(ūhk)(ûhk − ūhk) = 0. (4.10)

123



MFEM and HFEM for optimal control of the wave equation 613

According to the linear-quadratic structure of the optimal control problem and (4.10),
we obtain

γ ‖ûhk − ūhk‖2I ≤ j ′′kh(u∗
hk)(ûhk − ūhk, ûhk − ūhk)

= j ′kh(ûhk)(ûhk − ūhk) − j ′kh(ūhk)(ûhk − ūhk)

= j ′kh(ûhk)(ûhk − ūhk) − j ′kh(ū)(ûhk − ūhk) + j ′kh(ū)(ûhk − ūhk)

− j ′(ū)(ûhk − ūhk).

Utilizing the representations of discrete reduced cost in terms of the adjoint variable
whk , we have the following estimate

j ′kh(ûhk)(ûhk − ūhk) − j ′kh(ū)(ûhk − ūhk)

= (γ uhk + whk(uhk), ûhk − ūhk)I − (γ ū + whk(ū), ûhk − ūhk)I
≤ {γ ‖ûhk − ū‖I + ‖whk(ûhk) − whk(ū)‖I }‖ûhk − ūhk‖I .

Using the equations satisfied by whk(ûhk) and whk(ū), one has

‖whk(ûhk) − whk(ū)‖I ≤ C(‖phk(ûhk) − phk(ū)‖I + ‖vhk(ûhk) − vhk(ū)‖I )
≤ C‖PI (ûhk − ū)‖I
= C(‖ûhk − ū‖I + ‖ū − PI ū‖I )
≤ C(‖ûhk − ū‖I + τ‖ū‖H1(I ,L2(Ω))),

where C is a constant independent of h and k. Similarly, it holds that

j ′kh(ū)(ûhk − ūhk) − j ′(ū)(ûhk − ūhk)

= (γ ū + whk(ū), ûhk − ūhk) − (γ ū + w(ū), ûhk − ūhk)

≤ C‖w(ū) − whk(ū)‖I ‖ûhk − ūhk‖I .

Therefore, by the triangle inequality,

‖ûhk − ūhk‖I ≤ Cγ (τ + ‖ûhk − ū‖I + ‖w(ū) − whk(ū)‖I ).

According to Theorem 4.2 and the estimate (4.9), it holds that

‖ūhk − ū‖I ≤ Cγ (τ + hr+1). (4.11)

The error estimate for the optimal states can be established by writing ( p̄ − p̄hk, v̄ −
v̄hk)

	 = (p(ū)−phk(ū), v(ū)−vhk(ū))	+(phk(ū)−phk(ūhk), vhk(ū)−vhk(ūhk))	,
the stability estimates for the discrete state equations given in Lemma 4.2, and the error
estimate (4.11) for the optimal controls. Similar decompositions for the optimal adjoint
states can be done to prove the corresponding a priori error estimates. ��
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614 G. Peralta, K. Kunisch

5 Implementation with the lowest-order Raviart–Thomas elements

In this section, we present the corresponding linear systems for the proposed Petrov–
Galerkin mixed and hybrid finite element discretization of the state and adjoint
equations. A gradient algorithm approximating the solutions of the fully discretized
reduced problem will also be given.

5.1 Linear systems

Consider a fixed triangulation Th . Let Th = {K jh : 1 ≤ j ≤ Nh} be the list of
triangles in Th and let Eh = {e�h : 1 ≤ � ≤ Mh} be the list of edges with a given fixed
global orientation. Given an edge e�h , there exist two triangles say K j(�)h and Ki(�)h

sharing the common edge e�h or there is one element K j(�)h containing it. Let x j(�)h

and xi(�)h be the nodes in K j(�)h and Ki(�)h opposite to e�h , respectively. Let K j(�)h

be the element that contains e�h having the same orientation with e�h and let ν�h be
the unit normal inward to K j(�)h , hence outward to Ki(�)h . On a boundary edge we set
ν�h = ν, where ν is the unit outward normal to ∂Ω .

First, let us introduce a basis for the lowest-order Raviart–Thomas finite element
space, see [4,18] for instance. Define

ψ�h(x) = 1

2
|e�h ||K j(�)h |−1(x − x j(�)h)χK j(�)h − 1

2
|e�h ||Ki(�)h |−1(x − xi(�)h)χKi(�)h ,

where χA denotes the characteristic function of a set A. In the case where there is
only one element containing the edge e�h , we ignore the second term in the above
definition. Then {ψ�h : 1 ≤ � ≤ Mh} forms a basis for V 0

h . On the other hand, letting
ϕ jh = χK jh , the set {ϕ jh : 1 ≤ j ≤ Nh} forms a basis for X0

h . Let Ch ∈ R
Nh×Nh ,

Bh ∈ R
Mh×Nh , and Ah ∈ R

Mh×Mh , be the matrices with the following components

(Ch)i j = (ϕih, ϕ jh), (Bh)i� = (ϕih, divψ�h), (Ah)�k = (ψ�h,ψkh).

Now we can write the resulting linear system for the fully discrete state equation.
For m = 1, . . . , M , equation (3.10) can be expressed as

(
Ch − τ

2 B
	
h

τ
2 Bh Ah

)(
pm

vm

)
=

(
Ch

τ
2 B

	
h− τ

2 Bh Ah

)(
pm−1

vm−1

)
+ τ

2

(
τCh(um + um−1)

0

)
.

This systemmay be solved by variousmethods such as LU factorization. Alternatively,
a reduction can be done by eliminating pm and then substituting it in the second
equation. Performing this process, we obtain the following equation for vm

R+
h vm = R−

h vm−1 − τ 2

4
Bh(u

m + um−1) − τ Bh p
m−1
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and after solving for vm , we can determine pm from

pm = pm−1 + τ

2
C−1
h B	(vm + vm−1) + τ

2
(um + um−1)

where

R±
h = Ah ± τ 2

4
BhC

−1
h B	

h .

Note that Ch is a diagonal matrix, hence it can be easily inverted. In fact, the entries
of Ch are given by (Ch)i j = δi j |Kih |. Thus, in the case of uniform triangulations,
Ch = |K |INh where |K | denotes the common area of triangles in the mesh. Also,
since Ah is symmetric and positive-definite, so is the matrix R+

h . Therefore, we can
solve for vm via the conjugate gradient (CG) method.

For the approximations of the desired states, we take pdh and vdh to be the projec-
tions of pd and vd in X0

hk and V 0
hk , respectively. By doing a similar procedure for the

fully discrete adjoint equations (3.11)–(3.13), we obtain the following: For m = M
we have

⎧⎪⎨
⎪⎩

R+
h yM = β

2
τ Ah(v

M − vM
d ) + α

4
τ 2Bh(p

M − pMd )

wM = α

2
τ(pM − pMd ) − τ

2
C−1
h B	

h yM ,

for m = M − 1, . . . , 1 we have

⎧⎪⎨
⎪⎩

R+
h ym = R−

h ym+1 + τ Bhw
m + βτ Ah(v

m − vmd ) + α

2
τ 2Bh(p

m − pmd )

wm = wm+1 − τ

2
C−1
h B	

h ( ym + ym+1) + ατ(pm − pmd ),

and for m = 0 we have

⎧⎪⎨
⎪⎩

y0 = y1 + τ

2
A−1
h Bhw

1 + β

2
τ(v0 − v0d)

w0 = w1 − τ

2
C−1
h B	

h y1 + α

2
τ(p0 − p0d).

The discretized cost functional can be computed through, see Lemma 4.1,

jkh(ukh, pkh, vkh) = τ

6
{α(Ch p

0, p0) + β(Ahv
0, v0) + (Chu

0, u0)}

+ τ

6

M∑
m=1

{α(Ch(p
m + pm−1), pm) + β(Ah(v

m + vm−1), vm)

+ (Ch(u
m + um−1), um)}.
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5.2 Hybridization

Now we discuss the corresponding linear systems for the (regularized) hybrid formu-
lation. For this approach, we use the following basis functions (see [4])

ψ̃3 j+1,h(x, y) = (x, 0)	χK j ,

ψ̃3 j+2,h(x, y) = (0, y)	χK j ,

ψ̃3 j+3,h(x, y) = (x − x̄ j , y − ȳ j )
	χK j

for j = 1, . . . , Nh , where (x̄ j , ȳ j )	 is the centroid of the triangle K j in the mesh Th .
The set {ψ̃ jh : 1 ≤ j ≤ 3Nh} forms a basis for Y0

h . Let M̃h be the number of interior

edges and for simplicity, we suppose that they are the first M̃h in the list of edges
Eh . This is of course not necessary in the implementation. Define Ãh ∈ R

3Nh×3Nh ,
B̃h ∈ R

3Nh×Nh , and Dh ∈ R
3Nh×M̃h by

( Ãh)k� = (ψ̃hk, ψ̃�h), (B̃h) j� = (ϕ�h, divψ̃ jh), (Dh)i� =
∫

∂K (ψ̃�h)

ψ̃�h · νχei dx

for 1 ≤ k, � ≤ 3Nh , 1 ≤ j ≤ Nh , 1 ≤ i, r ≤ M̃h , and K (ψ̃�h) is the element
containing the support of ψ̃�h . Furthermore, from the basis {ϕ̃h j }3Nh

j=1 of X
1
h consisting

of discontinuous linear Langrange elements onTh , we define thematrix Fh ∈ R
Nh×3Nh

by

(Fh)i� = (ϕhi , ϕ̃h�).

Beforewe proceed, let us discuss an efficient implementation of post-processing the
Langrange multiplier. For each element K j , denote by ehj(k) for k = 1, 2, 3 the sides
of K j following the given orientation of the element. Given λh ∈ M0

h , let λ̃h ∈ R
3Nh

satisfy

λ̃h,3 j+k = λh j(k)

for each j = 1, . . . , Nh and k = 1, 2, 3. By introducing the Nh × 3Nh matrix

Lh = INh ⊗
⎛
⎝−1 1 1

1 −1 1
1 1 −1

⎞
⎠ ,

where INh is the identity matrix of size Nh and ⊗ is the Kronecker product, one can
easily check that

R1
hλh = Lh λ̃h .
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Following the same procedure as in the mixed formulation, the linear system for
the regularized hybridized discrete state equations (3.22) is

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

R̃+
h vm = R̃−

h vm−1 − τ 2

4
B̃h Fh(u

m + um−1) − τ B̃h p
m−1

pm = pm−1 + τ

2
C−1
h B̃	(vm + vm−1) + τ

2
Fh(u

m + um−1)

λm = −λm−1 + 1

ε
D	
h (vm + vm−1)

for m = 1, . . . , M , where

R̃±
h = Ãh ± τ 2

4
B̃hC

−1
h B̃	

h ± τ

2ε
DhD

	
h .

The approximations of the desired states that we take are the projections pdh and
vdh of pd and vd in X1

hk and V
0
hk , respectively. Similar representations can be obtained

from the hybridized adjoint equations: For m = M we have

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

R̃+
h yM = β

2
τ Ãh(v

M − vM
d ) + α

4
τ 2 B̃h Fh(Lh λ̃

M − pMd )

wM = α

2
τ Fh(Lh λ̃

M − pMd ) − τ

2
C−1
h B	

h yM

μM = −1

ε
D	
h yM

for m = M − 1, . . . , 1 we have

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

R̃+
h ym = R̃−

h ym+1 + τ B̃hw
m + βτ Ãh(v

m − vmd ) + α

2
τ 2 B̃h Fh(Lh λ̃

m − pmd )

wm = wm+1 − τ

2
C−1
h B̃	

h ( ym + ym+1) + ατ Fh(Lh λ̃
m − pmd )

μm = −μm+1 − 1

ε
D	
h ( ym+1 + ym)

and for m = 0 we have
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

y0 = y1 + τ

2
Ã−1
h (B̃hw

1 + Dhμ
1) + β

2
τ(v0 − v0d)

w0 = w1 + α

2
τ Fh(Lh λ̃

0 − p0d) − τ

2
C−1
h B̃	

h y1

μ0 = −τ

2
μ1 − τ

2ε
D	
h y1.

The corresponding reduced cost can be also calculated as in the mixed case, however,
we replace the discrete pressure phk by the post-processed Lagrangemultiplier R1

hλhk .
It is important to point out that the efficient solution for vm by the CG method

requires the use of a preconditioner. In our implementation, we use R̃+
h without its last
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term as preconditioner, that is,

Ph = Ãh + τ 2

4
B̃hC

−1
h B̃	

h . (5.1)

The choice of our basis functions for Y0
h and X0

h imply that the matrices Ãh and B̃h

are diagonal, hence, the preconditioner Ph is also diagonal and therefore P−1
h can be

easily computed. This leads to cheaper computations in the use of the preconditioner
for the CG method.

5.3 Optimization

We present the algorithm for numerically solving the discrete optimization problem
using theBarzilai-Borwein (BB) version of the gradientmethod in [7].We only present
the hybridized formulation, the case of mixed formulation being similar. In the fol-
lowing, we denote by (pihk, v

i
hk, λ

i
hk)

	 and (wi
hk, y

i
hk, μ

i
hk)

	 the discrete state and
adjoint variables corresponding to the control uihk in the i th iteration.

Algorithm: BB Gradient Method for (3.20) with Post-processing

1 Initialize the control u0hk , tolerance 0 < ε � 1, iteration number i = 0, and maximum number of
iterations imax � 1.

2 Compute the discrete state (pihk , v
i
hk , λ

i
hk )

	.

3 Compute the discrete adjoint (wi
hk , y

i
hk , μ

i
hk )

	.

4 Set gi = −(γ uihk + Πhk R
1
hμi

hk ).
5 If i = 0, then take si = 1. Otherwise, take

si =
{

(uihk − ui−1
hk , gi − gi−1)/‖gi − gi−1‖2 if i is even,

‖uihk − ui−1
hk ‖2/(uihk − ui−1

hk , gi − gi−1) if i is odd.

6 Set ui+1
hk = uihk + si g

i and solve (pi+1
hk , vi+1

hk , λi+1
hk )	.

7 Compute the cost j i = Jhk (u
i+1
hk , R1

hλi+1
hk , vi+1

hk )	.

8 If i > 0 and | j i − j i−1|/ j i < ε, then stop. Otherwise, increment i and return to step 3. If
i = imax, then terminate algorithm.

The BB gradient method can be viewed as the secant version of Newton’s method
and is known to be superlinearly convergent in the quadratic case for two-dimensions
[7]. In step 5, the second iteration for the gradient method is taken from the steepest
descent method. Alternatively, one may consider an inexact line search with a suitable
steplength selection criterion, for example, Armijo’s rule. The steplengths in step 5
are alternately computed, however, one may choose either of the given formulas for all
iterates. Numerical experiments in [15] shows better performancewhen using alternate
BB stepsizes instead of a single one. The steplengths are calculated with respect to
the Euclidean inner product and norm. In the computation of the gradients, we used
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MFEM and HFEM for optimal control of the wave equation 619

the post-processed Lagrange multiplier of the discrete adjoint equation instead of the
dual pressure.

We use the linear interpolant determined by the values of R1
hμ

i
hk at the time nodes,

that is, one may replace Πhk in step 4 by the operator Π̃hk defined by

Π̃hk R
1
hμ

i
hk =

M∑
m=0

φ j R
1
hμ

i
hk(tm).

Finally, an alternative stopping criterion is ‖γ uihk + Π̃hk R1
hμ

i
hk‖I < ε, that is, when

the optimality residual is less than the prescribed tolerance.

6 Numerical examples

In this section, we present numerical examples illustrating the performance of the
above schemes. In all examples, we utilized a uniform triangulation of the unit square
Ω = (0, 1)2 and a final time T = 1. The algorithm presented in the previous section
was implemented in Python 3.7.6 (Python Software Foundation, https://www.python.
org/) on a 2.3 GHz Intel Core i5 with 8 GB RAM. The repository for the source codes
and the iteration histories is available at https://github.com/grperalta/pgrtwave.

Example 1 We partition the time domain [0, T ] = [0, 1] into a uniform grid with
stepsize τ = 0.01, and the spatial domain Ω with mesh size h = √

2/20, which
corresponds to a triangulation with 441 nodes, 800 elements, and 1240 edge elements.
The parameters in the cost functional are α = 10, β = 1, and γ = 10−5. Each linear
system is solved by the CG method, with the preconditioner (5.1) in the hybrid case,
and stop the loop if the relative error between successive iterates is less than 10−12.
The BB gradient algorithm is terminated if the relative error between consecutive cost
function values is less than 10−6.

For the target states, we take the following functions

pd(t, x) = cos(π t) sin(2πx) sin(2π y)

vd1(t, x) = 2(1 + sin(π t)) cos(2πx) sin(2π y)

vd2(t, x) = 2(1 + sin(π t)) sin(2πx) cos(2π y).

In the mixed method, the gradient algorithm converges after 317 iterations with opti-
mality residual ‖γ ukh+wkh‖I ≈ 1.953614·10−4 and a relative error 6.842802·10−7.
On the other hand, for the hybrid method with penalization parameter ε = 10−10, the
algorithm terminated after 179 iterations with a relative error 9.718834 · 10−7 and
optimality residual ‖γ ukh + Π̃hk R1

hμkh‖I ≈ 2.074387 · 10−4.
The corresponding optimal costs are given by j∗ ≈ 5.567564 · 10−2 in the mixed

formulation and j∗ ≈ 1.425830 · 10−3 in the hybrid formulation. Therefore, in this
example, the hybrid method performs significantly better than the mixed method with
respect to the cost value and number of gradient iterations, however, at the cost of
additional computing time. Even though the hybridmethod requires less BB iterations,
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each iteration takes a longer time compared to the mixed method. This is due to the
fact that the linear systems have larger dimensions, hencemore iterations are needed in
the preconditioned CG method at each time step in the solution of the primal and dual
state variables. On the average, the computing time of the hybrid method is around
twice slower than that of the mixed method.

The performance of the BB gradient method is presented in Fig. 1. Here, we notice
from part (b) the non-monotone property ofmethodwith respect to the gradient norms.
The first few iterations lead to a fast decrease in the cost values and stagnates after-
wards (a), which is typical for certain gradient-based algorithms. Note the oscillatory
behavior of the normof the computed optimal control as a function of time in the hybrid
formulation and accordingly the oscillations in the residual of the post-processed opti-
mal and target states. Based on this observation, temporal averaging on the computed
pressure and Lagrange multiplier in the state equation and the associated dual vari-
ables in the adjoint equation were utilized (see plots at the bottom of Fig. 1). With
these additional processes, the hybrid formulation converges after 201 iterations, with
j∗ ≈ 1.484320 · 10−3 and ‖γ ukh + Π̃hk R1

hμkh‖I ≈ 1.115701 · 10−4.

Example 2 In this example, we verify the a priori error estimates presented in the
previous section. We take α = β = γ = 1. With a fixed time step τ = 10−3, we
consider uniform triangulations with mesh sizes hk = √

2/2k for k = 3, 4, 5, 6, 7. On
the other hand, with a fixed mesh size h = √

2/27, we consider uniform time steps
τk = 2−k for k = 2, 3, 4, 5, 6.

Let us construct an exact solution of the optimal control problem (1.1)–(1.3). For
this purpose, we consider the following functions as our exact state variables

p̄(t, x) = cos(π t) sin(2πx) sin(2π y)

v̄1(t, x) = 2(1 + sin(π t)) cos(2πx) sin(2π y)

v̄2(t, x) = 2(1 + sin(π t)) sin(2πx) cos(2π y)

and the following functions as our exact adjoint state variables

w̄(t, x) = − sin(π t) sin(2πx) sin(2π y)

ȳ1(t, x) = 2(1 + cos(π t)) cos(2πx) sin(2π y)

ȳ2(t, x) = 2(1 + cos(π t)) sin(2πx) cos(2π y).

For the exact control we take ū = −γ −1w̄. In order for these to be the solution
of the optimal control problem, we add the source term f = p̄t − divv̄ − ū on the
right hand side of the pressure equation. On the other hand, we take vd = v̄ and
pd = p̄ + α−1(w̄t − div ȳ) as our desired states.

In order to compare the exact solutions with the numerical solutions of the dis-
cretized optimal control problems, we used the projections of p̄, w̄, ū in X1

hk , and the
Fortin projections of v̄ and ȳ in V 1

hk as our reference exact solutions. Components of
the Fortin projection are approximated using one-dimensional Gaussian quadrature of
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(a) (b) (c) (d)

(a) (b) (c) (d)

(a) (b) (c) (d)

Fig. 1 Results and performance of the Barzilai–Borwein gradient algorithm with post-processing and
alternating stepsize selection in the mixed formulation (top), the hybrid formulation (middle), and the
hybrid formulation with temporal averaging on the pressure and Lagrange multiplier (bottom): cost values
(a) and gradient norms (b) as functions of the gradient iterations, residuals of the pressure and velocity with
respect to the desired states as functions of time (c), and L2-norm of controls as a function of time (d)

order 5. The temporal and spatial discretization errors and the corresponding experi-
mental orders of convergence are given in Tables 1 and 2.We observe the approximate
orders of convergence O(τ ) and O(h), respectively.

Notice that we have an approximate quadratic order of convergence for spatial dis-
cretizations errors for the velocity and dual velocity. This superconvergence property
of the discrete velocity to the Fortin projection of the exact velocity in V 1

hk has been
observed in the elliptic case for uniform triangulations, see [10,29]. In fact, Brandts
established the rate O(h3/2) for elliptic problems with Dirichlet data in [10]. The
quadratic convergence rates for the velocity and dual velocity have been also observed
for the above example, when quasi-uniform triangulations are utilized, with mesh
refinement based on bisection. These numerical results suggest that we might have
the rate O(h2) for sufficiently smooth solutions. Further analytical and numerical
investigations are needed to confirm these observations.
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Fig. 2 The desired pressure (c), optimal pressure (b), Lagrange multiplier (d), post-processed Langrange
multiplier (a) obtained from the hybrid formulation, and the computed optimal controls in the mixed
formulation (e) and the hybrid formulation (f) at the final time T = 1 in Example 1

Example 3 We repeat the previous example, but now using the hybrid formulation. In
Tables 3 and 4 are the spatial and temporal discretization errors using the penalization
parameter ε = 10−10. A discussion on the choice of the tuning parameter ε will be
discussed below. Approximate orders of convergence O(τ ) and O(h) are depicted.
Also, aside from the quadratic convergence for the velocity and dual velocity as in the
mixed case, we also have the quadratic convergence of the post-processed Lagrange
multiplier to the optimal pressure. In general, the hybrid method produces smaller
discretization errors than the mixed method.
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Fig. 3 The components of desired velocity (c and d) and computed optimal velocity (a and b) in the hybrid
formulation at the final time T = 1 in Example 1

Table 1 Experimental orders of convergence (eoc) for the temporal discretization errors of the primal, dual,
and control variables in the mixed formulation with a fixed mesh size h = √

2/27 and decreasing temporal
stepsizes 2−k

k ‖v̄hk − v̄‖I eoc ‖ p̄hk − p̄‖I eoc

2 1.974567e-2 – 2.426421e-2 –

3 9.881673e-3 0.998709 1.057259e-2 1.198501

4 4.351001e-3 1.183408 5.198032e-3 1.024291

5 2.090567e-3 1.057453 3.799925e-3 0.451995

6 1.183192e-3 0.821209 3.479410e-3 0.127128

k ‖ūhk − ū‖I eoc ‖ ȳhk − ȳ‖I eoc ‖w̄hk − w̄‖I eoc

2 4.903817e-2 – 2.706410e-1 – 4.871087e-2 –

3 3.591443e-2 0.449341 1.133596e-1 1.255474 3.591500e-2 0.439638

4 1.853659e-2 0.954188 5.593515e-2 1.019079 1.869639e-2 0.941827

5 9.821253e-3 0.916397 2.779501e-2 1.008929 9.911550e-3 0.915577

6 5.732314e-3 0.776789 1.375234e-2 1.015149 5.783482e-3 0.777172

123



624 G. Peralta, K. Kunisch

Table 2 Experimental orders of convergence (eoc) for the spatial discretization errors of the primal, dual,
and control variables in the mixed formulation with a fixed time stepsize τ = 10−3 and decreasing mesh
sizes

√
2/2k

k ‖v̄hk − v̄‖I eoc ‖ p̄hk − p̄‖I eoc

3 1.473548e-1 – 7.442448e-2 –

4 3.890624e-2 1.921221 3.011163e-2 1.305457

5 9.868665e-3 1.979075 1.383103e-2 1.122412

6 2.485708e-3 1.989198 6.746917e-3 1.035608

7 6.342321e-4 1.970574 3.352089e-3 1.009168

k ‖ūhk − ū‖I eoc ‖ ȳhk − ȳ‖I eoc ‖w̄hk − w̄‖I eoc

3 5.916516e-2 – 1.051876e-1 – 5.919348e-2 –

4 2.751500e-2 1.104529 2.702965e-2 1.960350 2.749597e-2 1.106218

5 1.345100e-2 1.032505 6.289935e-3 2.103426 1.343856e-2 1.032842

6 6.690677e-3 1.007489 1.146246e-3 2.456129 6.690060e-3 1.006287

7 3.351606e-3 0.997300 6.541195e-4 0.809290 3.363973e-3 0.991853

Table 3 Experimental orders of convergence (eoc) for the temporal discretization errors of the primal, dual,
and control variables in the hybrid formulation with a fixed mesh size h = √

2/27 and decreasing temporal
stepsizes 2−k

k ‖v̄hk − v̄‖I eoc ‖R1
h λ̄hk − p̄‖I eoc

2 1.912979e-2 – 2.333909e-2 –

3 9.278768e-3 1.043816 9.355121e-3 1.318920

4 4.315141e-3 1.104525 3.866334e-3 1.274790

5 2.089870e-3 1.045995 1.718777e-3 1.169584

6 1.185135e-3 0.818362 8.911245e-4 0.947684

k ‖ūhk − ū‖I eoc ‖ ȳhk − ȳ‖I eoc ‖R1
h μ̄hk − w̄‖I eoc

2 4.683819e-2 – 2.614458e-1 – 4.683861e-2 –

3 3.380741e-2 0.470346 1.133171e-1 1.206146 3.380658e-2 0.470394

4 1.811959e-2 0.899789 5.592169e-2 1.018886 1.824368e-2 0.889907

5 9.228530e-3 0.973378 2.779203e-2 1.008737 9.309845e-3 0.970568

6 4.659173e-3 0.986027 1.375150e-2 1.015082 4.715472e-3 0.981355

Let us discuss the conditioning of the linear systems for the mixed and hybrid
formulations provided in Examples 2 and 3. The approximate extreme eigenvalues
and condition numbers of the system matrices in the CG method are presented in
Table 5. The eigenvalues were calculated using the function eigs in the SciPy package.
This function is a wrapper to some ARPACK functions that utilizes the Implicitly
Restarted Arnoldi Method [24]. We used the tolerance 10−10 as the relative accuracy
in the computation of the smallest eigenvalue, while the machine epsilon was used
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Table 4 Experimental orders of convergence (eoc) for the spatial discretization errors of the primal, dual,
and control variables in the hybrid formulation with a fixed time stepsize τ = 10−3 and decreasing mesh
sizes

√
2/2k

k ‖v̄hk − v̄‖I eoc ‖R1
h λ̄hk − p̄‖I eoc

3 1.481898e-1 – 5.876289e-2 –

4 3.906684e-2 1.923430 1.548843e-2 1.923715

5 9.915554e-3 1.978179 3.975572e-3 1.961956

6 2.497349e-3 1.989296 1.026295e-3 1.953717

7 6.371507e-4 1.970691 2.870094e-4 1.838276

k ‖ūhk − ū‖I eoc ‖ ȳhk − ȳ‖I eoc ‖R1
h μ̄hk − w̄‖I eoc

3 3.205965e-2 – 1.047692e-1 – 3.199172e-2 –

4 8.824014e-3 1.861252 2.751281e-2 1.929040 8.872961e-3 1.850211

5 2.037239e-3 2.114820 6.242397e-3 2.139931 1.951703e-3 2.184682

6 4.991417e-4 2.029094 1.132843e-3 2.462152 4.878823e-4 2.000128

7 2.898751e-4 0.784018 6.535607e-4 0.793555 4.068231e-4 0.262131

Table 5 Approximations of the largest eigenvalues (Λmax), smallest eigenvalues (Λmin), and condition
numbers (κ = Λmax/Λmin) rounded up to 6 decimal digits of the system matrices R+

h and P−1
h R̃+

h in

the mixed and hybrid formulations, respectively, under fixed spatial mesh size h = √
2/26 and decreasing

temporal stepsizes τk = 2−k (top table), and fixed temporal stepsize τ = 10−3 and decreasing spatial mesh
sizes hk = √

2/2k (bottom table)

Mixed Hybrid
k Λmax Λmin κ Λmax Λmin κ

2 3.07214e+3 2.92892e-1 1.04890e+4 1.49995e+10 1.0e+0 1.49995e+10

3 7.68285e+2 2.92890e-1 2.62312e+3 7.49975e+9 1.0e+0 7.49975e+9

4 1.92321e+2 2.92880e-1 6.56655e+2 3.74988e+9 1.0e+0 3.74988e+9

5 4.83304e+1 2.92842e-1 1.65039e+2 1.87494e+9 1.0e+0 1.87494e+9

6 1.23326e+1 2.92689e-1 4.21356e+1 9.37469e+8 1.0e+0 9.37469e+8

Mixed Hybrid
k Λmax Λmin κ Λmax Λmin κ

3 9.93321e-1 1.66731e-1 5.95764e+0 5.99890e+7 1.0e+0 5.99890e+7

4 9.98362e-1 1.66923e-1 5.98099e+0 5.99767e+7 1.0e+0 5.99767e+7

5 9.99596e-1 1.67688e-1 5.96106e+0 5.99900e+7 1.0e+0 5.99900e+7

6 9.99900e-1 1.70712e-1 5.85722e+0 5.99970e+7 1.0e+0 5.99970e+7

7 9.99976e-1 1.82246e-1 5.48697e+0 5.99990e+7 1.0e+0 5.99990e+7

for the largest eigenvalue. In general, ARPACK is better at locating large eigenvalues
than small ones.

We see that the systemmatrix for the penalized hybrid method have large condition
numbers in comparison to the mixed method. This is attributed to the small penalty
parameter ε. Decreasing the time stepsize for a fixed meshsize leads to a significant
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change on the condition number, while decreasing the meshsize for a fixed stepsize
yields a small difference. Also, we have observed that a decrease of the parameter ε

leads to an increase of the condition number by the same factor. Finally, for the pair of
stepsizes (τ, h) = (10−3,

√
2/26), we observed that the discretization error decreases

for ε = 10−k with k = 6, 7, 8, 9, 10, before a small increase of the error in the optimal
control is observed at ε = 10−11. Based on this, the parameter ε = 10−10 was used
in the numerical experiments.
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