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Existence of local-in-time classical solutions of
a model of flow in a bounded elastic tube

Gilbert Peralta and Georg Propst*†

Communicated by Y. Qin

This paper studies the local-in-time existence of classical solutions to a hyperbolic system with differential boundary con-
ditions modelling a flow in an elastic tube. The well-known Lax transformations used for obtaining a priori estimates for
conservation laws are difficult to apply here because of the inhomogeneity of the partial differential equations (PDE).
Rather, our method relies on a suitable splitting of the original system into the PDE part and the ODE part, the character-
istics for the PDE part, appropriate modulus of continuity estimates and a compactness argument. Copyright © 2016 John
Wiley & Sons, Ltd.
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1. The model

A consequence of the results of this study is the existence and uniqueness of classical solutions to the following hyperbolic PDE-ODE
system in [1]; see also [2] and [3],8̂̂

ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂<
ˆ̂̂̂̂
ˆ̂̂̂̂ˆ̂̂̂̂ˆ̂̂̂̂:

At.t, x/C u.t, x/Ax.t, x/C A.t, x/ux.t, x/ D 0,

ut.t, x/C u.t, x/ux.t, x/C
sE

2�r0

p
A0A.t, x/

Ax.t, x/C
8��0

�A0
u.t, x/ D 0,

AT h00.t/ D �A.t, 0/u.t, 0/,

AT h0.t/ D A.t, `/u.t, `/,

A.t, 0/ D A0

�
1C

r0

sE
.�gh0.t/C pf .t//

�2
,

A.t, `/ D A0

�
1C

r0

sE
.�gh.t//

�2
,

A.0, x/ D A0.x/, u.0, x/ D u0.x/, h0.0/ D h0
0, h.0/ D h0,

(1)

for t � 0 and 0 � x � `; the unknown functions are A, u, h0 and h. By classical solutions, we mean that they are at least continuously
differentiable functions. This system describes the flow of an incompressible fluid in an elastic tube whose ends are attached to cylin-
drical tanks with horizontal cross section AT . The state variables A and u represent the cross-sectional area of the tube, which is assumed
to be circular, and the velocity of the fluid inside the tube, while h0 and h are the level heights of the fluid in the left and right tanks,
respectively. The constants � and �0 are the density and viscosity of the fluid; s, E, r0 and A0 are the thickness, Young’s modulus, inner
rest radius and rest cross-sectional area of the tube material; and g is the gravitational constant. The function pf represents an external
pressure that is applied above the left tank.

Systems of type (1) occur in models of cardiovascular blood flow [4–8] and investigations of valveless pumping [2,3]. They are derived
from conservation of mass, balance of momentum and an equation of state that relates the cross section of the tube and the pressure
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in the fluid. (1) is a two-component system of balance laws that is coupled to ODEs via boundary conditions. The well-posedness of (1)
in terms of weak solutions in Sobolev spaces has been studied in [1, 9].

Using an appropriate change of the unknown variables, (1) can be transformed into diagonal form. To do so, let us first note
that the eigenvalues of the system (1) are given by � D u � �A1=4 and � D u C �A1=4, where � D .sE=2�r0

p
A0/

1=2.
With the characteristic variables w.t, x/ D �u.t, x/ C 4�A1=4.t, x/ and z.t, x/ D u.t, x/ C 4�A1=4.t, x/, the PDEs in (1) can be
diagonalized as

wt C �.w, z/wx D
c0

2
.z � w/

zt C �.w, z/zx D
c0

2
.w � z/,

where c0 D 8��0=A0.
The state variables can be written in terms of the characteristic variables as u D .z � w/=2 and A D ..wC z/=8�/4. To transform the

boundary conditions in terms of the characteristic variables (in the form of mixed boundary data), we note that�
w.t, 0/C z.t, 0/

8�

�4

D A0

h
1C

r0

sE
.�gh0.t/C pf .t//

i2
.

Assuming that w.t, 0/C z.t, 0/ remains positive for all t 2 Œ0, T�, for some T > 0 (this will follow from (H4) with a proper choice of O and
the continuity of solutions), we can solve for z.t, 0/ and obtain

z.t, 0/ D 8�A1=4
0

h
1C

r0

sE
.�gh0.t/C pf .t//

i1=2
� w.t, 0/.

We explain the reason why we solve z.t, 0/ in terms of w.t, 0/. As we can see from the diagonal form of (1), the characteristic curves
corresponding to w are left-propagating, and hence, the boundary values of w at x D 0 can be determined from the forcing func-
tion and the initial data w0 up to a certain positive time. In this way, the values of z on the boundary x D 0 can be determined
from the aforementioned equation for z.t, 0/. A similar procedure yields the following correct form for the boundary condition at the
right tank

w.t, `/ D 8�A1=4
0

h
1C

r0

sE
�gh.t/

i1=2
� z.t, `/.

The state components h0 and h in terms of the characteristic variables are as follows

213�AT h00.t/ D �.w.t, 0/C z.t, 0//4.z.t, 0/ � w.t, 0//

213�AT h0.t/ D .w.t, `/C z.t, `//4.z.t, `/ � w.t, `//.

The system (1) is a special case of the abstract system (compare with [4])8̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
<̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂:

wt C �.w, z/wx D f .t, x, w, z/, 0 < t < T , 0 < x < `,
zt C �.w, z/zx D g.t, x, w, z/, 0 < t < T , 0 < x < `,

z.t, 0/ D G0.t, h0.t/, w.t, 0//, 0 < t < T ,

w.t, `/ D G.t, h.t/, z.t, `//, 0 < t < T ,

h00.t/ D H0.w.t, 0/, z.t, 0//, 0 < t < T ,

h0.t/ D H.w.t, `/, z.t, `//, 0 < t < T ,

w.0, x/ D w0.x/, z.0, x/ D z0.x/, 0 < x < `,

h0.0/ D h0
0, h.0/ D h0.

(2)

The initial conditions in (1) and (2) are related by w0 D �u0 C 4�.A0/1=4 and z0 D u0 C 4�.A0/1=4. We would like to point out that the
methods presented here can be extended to differential boundary conditions

h00.t/ D H0.t, h0.t/, w.t, 0/, z.t, 0//, h0.t/ D H.t, h.t/, w.t, 0/, z.t, 0//,

where H0, H 2 C1.R4/.
In what follows, we will analyse the coupled system (2), where T > 0 is a generic time horizon. To guarantee the existence and

uniqueness of a classical solution of this coupled system, the following hypotheses are sufficient.

(H1) There exists an open set O � R2 such that �,� 2 C1.O/ and �.w, z/ < �.w, z/ for all .w, z/ 2 O.
(H2) H, H0 2 C1.R2/ and f , g 2 C1.Œ0, T� � Œ0, `� �O/
(H3) There exist constants M2 > 0 and T > 0 such that G0 2 C1.Œ0, T��Œh0

0 � M2, h0
0 C M2� � R/ and G 2 C1.Œ0, T� � Œh0 � M2, h0

CM2� �R/.
(H4) The initial data satisfy w0, z0 2 C1Œ0, `�, .w0.x/, z0.x// 2 O for all x 2 Œ0, `�, and h0

0, h0 > 0.
(H5) It holds that �.w0.x/, z0.x// < 0 < �.w0.x/, z0.x// for x D 0, `.
(H6) The initial data at the left and right endpoints satisfy the following compatibility conditions

Copyright © 2016 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2016
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z0.0/ D G0.0, h0
0, w0.0//

w0.`/ D G.0, h0, z0.`//

��.w0.0/, z0.0//.z0/0.0/ D rG0.0, h0
0, w0.0// �

�
1, H0.w

0.0/, z0.0//,

� �.w0.0/, z0.0//.w0/0.0/C f .0, 0, w0.0/, z0.0//
�

� g.0, 0, w0.0/, z0.0//

��.w0.`/, z0.`//.w0/0.`/ D rG.0, h0, z0.`// �
�
1, H.w0.`/, z0.`//,

� �.w0.`/, z0.`//.z0/0.`/C g.0, `, w0.`/, z0.`//
�

� f .0, `, w0.`/, z0.`//.

Let us explain what these assumptions mean. The first hypothesis (H1) simply states that the quasilinear PDEs must be strictly hyper-
bolic. The smoothness requirement for the boundary data are given by H2 and H3, while H4 imposes the smoothness requirement for
the initial data and a range condition. We can view H5 and H6 as additional constraints on the initial data w0 and z0. These compati-
bility conditions imply the continuity of the state components and their derivatives. The assumption (H5) guarantees that the left and
right boundaries are non-characteristic.

Our assumption (H1) is weaker than H1(i) in Fernandez et al. [4]. Notice that H1(ii) in [4] is used in [10] for global existence and
uniqueness. However, we are only interested in local existence. H2 and H3 are stronger than H6 and H3, respectively, in [4]. H4 is similar
to H2 in [4] but we have no assumptions on the derivatives of the initial data. Our hypothesis (H5) is similar to H4 in [4], where the half
line x 2 RC is considered with boundary and compatibility conditions at x D 0. Indeed, if the time horizon is small enough so that the
two characteristic curves (x0, x` in Figure 1) emanating from the two boundaries do not intersect, the bounded domain can be replaced
by two half lines as in [4, Section 2.3]. However, some of the methods in [4] cannot be used for our system that includes friction, which
leads to inhomogeneous right-hand sides of the PDEs.

Theorem 1.1
If the hypotheses .H1/–.H6/ hold, then there exists a positive time MT 2 .0, T� such that the coupled system (2) has a unique classical
solution .w, z, h0, h/ 2 C1.Œ0, MT� � Œ0, `�/2 � C2Œ0, MT�2.

Now we will apply the abstract result of Theorem 1.1 to obtain the local existence and uniqueness of a classical solution to system (1).
It suffices to verify that all of H1–H6 are satisfied. (H1) The open set can be chosen to be O D f.w, z/ 2 R2 : w C z > 0g in R2. (H2)
Note that H and H0 are polynomial functions. (H3) Let M2 D min.h0

0, h0/, and so Œh0
0 � M2, h0

0 C M2�, Œh0 � M2, h0 C M2� � Œ0, h0
0 C h0�.

The condition follows once we assume that pf 2 C1Œ0, T� and pf .t/ � �
sE
r0
� 1

2�gh0
0 for all t 2 Œ0, T�. For H4, the conditions are u0, A0 2

C1Œ0, `�, A0.x/ > 0 for all x 2 Œ0, `� and h0
0, h0 > 0. For the boundary conditions, H5 translates into ju0.x/j � �.A0.x//1=4 for x D 0, `.

The condition (H6) should be translated in terms of u0 and A0.

Corollary 1.2
Assume that h0

0, h0 > 0 and u0, A0 2 C1Œ0, `� satisfy A0.x/ > 0, ju0.x/j � �.A0.x//1=4 for x D 0, `, and the compatibility conditions. If
the forcing pf 2 C1Œ0, T� satisfies pf .t/ � �

sE
r0
� 1

2�gh0
0 for all t � 0, then the system (1) has a unique classical solution .u, A, h0, h/ 2

C1.Œ0, MT� � Œ0, `�/2 � C2Œ0, MT�2 for some MT > 0.

The method presented in this paper is a combination of the splitting method in [4] and iteration methods as in [11–13]. We divide
the system into two parts, namely, the PDE part and the ODE part. This splitting method has been also used in [14] to prove the
existence and uniqueness of solutions to the coupling of quasilinear hyperbolic and parabolic PDEs that describes the flow of a fluid
in a porous medium that is connected by a pipe. The process is to define two mappings associated with these two problems in such a
way that a fixed point of the composition corresponds to a solution of the system, and hence, continuity properties of these mappings
are required. Hence, existence and uniqueness will be established using a fixed-point argument, specifically the contraction principle.
Similar problems have been considered in a series of papers [5–7]. The authors analysed multiscale blood flow models, a coupled
system of ODEs and hyperbolic PDEs and prove the well-posedness of such systems. We note that our method is direct and does not
use the approximation argument as in [10] and [13].

Figure 1. The regions determined by the left-most and right-most characteristic curves.

Copyright © 2016 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2016
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Now let us set the basic notations and assumptions. For each nonnegative integer n, positive integer m and positive T , we denote
by Cn.Œ0, T�,Rm/ the space of functions on Œ0, T� whose derivatives up to the order n are continuous and it is equipped with the usual
norm. For r > 0, denote the closed ball in Cn.Œ0, T�,Rm/ centred at the origin with radius r by Bn,mŒT , r�.

First, we split the coupled system into two parts, an ODE part and a PDE part. Let M1 be a positive constant, which will be specified
later. For fixed h0

0 and h0, define S1 : B0,4ŒT , M1�! C1.Œ0, T�,R2/ by S1.'0, �0,', �/ D .h0, h/, where h0 and h satisfy the ODEs

(
h00.t/ D H0.'0.t/, �0.t//, h0.0/ D h0

0,

h0.t/ D H.'.t/, �.t//, h.0/ D h0.
(3)

This is the ODE part. The regularity of H0, H implies that S1 is well-defined.
The PDE part is posed in the following way. Given M3 > M2C j.h0

0, h0/j and for fixed w0 and z0, define S2 : B1,2ŒT , M3�! C.Œ0, T�,R4/

by

S2.h0, h/ D .w.�, 0/, z.�, 0/, w.�, `/, z.�, `//

where .w, z/ is the classical solution on the rectangle Œ0, T� � Œ0, `� to the PDE

8̂̂̂
ˆ̂̂<
ˆ̂̂̂̂
:̂

wt C �.w, z/wx D f .t, x, w, z/

zt C �.w, z/zx D g.t, x, w, z/

z.t, 0/ D G0.t, h0.t/, w.t, 0//

w.t, `/ D G.t, h.t/, z.t, `//

w.0, x/ D w0.x/, z.0, x/ D z0.x/.

(4)

The well-definedness of S2 is not clear for the moment. Although the (local) existence and uniqueness of a classical solution
of the initial-boundary value problem (4) for a given .h0, h/ have been already established [10], it is not obvious that the time of
existence is independent on the choice of the boundary data .h0, h/. This problem has been solved in [4] by providing a positive
existence time that does not depend on the particular choice of the boundary data but only on the bounds of their deriva-
tives. To obtain such results, the authors used the well-known Lax transformations to obtain bounds for the derivatives of the
solution of the quasilinear system. This method works for conservation laws but not on balance laws, which is the case in the
present paper.

To obtain such desired time of existence, we shall proceed in the classical way. First, we consider a linear system of PDEs associated
with the quasilinear system (4) and provide estimates on the solutions of such linear systems. These estimates together with an iteration
scheme will then prove the existence and uniqueness of continuously differentiable functions w and z satisfying (4) on a rectangular
domain Œ0, T� � Œ0, `�with T being independent of .h0, h/, at least in B1,2ŒT , M3�.

If we can show that ran S1 � dom S2, then it follows that the map S : B0,4ŒT , M1� ! C.Œ0, T�,R4/, for appropriate T and M1, given
by the composition S D S2 ıS1 is well-defined. Furthermore, every fixed point of S corresponds to a solution to the coupled system
(2). Indeed, assume that .'0, �0,', �/ is a fixed point of S. Using .h0, h/ D S1.'0, �0,', �/ in (4) gives us a classical solution .w, z/ of (4).
Now .'0, �0,', �/ being a fixed point gives us the property .'0, �0,', �/ D .w.�, 0/, z.�, 0/, w.�, `/, z.�, `//, and plugging these in (3), we
can see that .w, z/ is a classical solution of the coupled system (2).

2. The ordinary differential equation part

The aim of the present section is to prove the claim that the range of the mapping S1 is contained in the domain of the mapping S2.
In the following, M1 > 0 is given.

Theorem 2.1
There exists a solution .h0, h/ 2 C1Œ0, T�2 of (3) such that for some OT D OT.M1, M2/ 2 .0, T�, we have .h0, h/ 2 B1,2Œ OT , M3�, where M3

depends only on T , M1, M2, .h0
0, h0/ and not on the particular choice of the data .'0, �0,', �/ 2 B0,4ŒT , M1�. In other words, ran S1 �

dom S2.

Proof
The solution of (3) is

h0.t/ D h0
0 C

Z t

0
H0.'0.t/, �0.t// dt, h.t/ D h0 C

Z t

0
H.'.t/, �.t// dt.

Because H0, H 2 C1.Œ�M1, M1�
2/, there exists a constant C D C.M1/ > 0 such that we have jH0.a1, b1/j C jH.a2, b2/j � C for every

a1, a2, b1, b2 2 Œ�M1, M1�. Thus, jH0.'0.t/, �0.t//j C jH.'.t/, �.t//j � C for every .'0, �0,', �/ 2 B0,4ŒT , M1� and t 2 Œ0, T�. Choose OT > 0
such that OTC � M2. In this case, k.h0, h/ � .h0

0, h0/kCŒ0,OT�2 �
OTC � M2. Also, k.h00, h0/kCŒ0,OT�2 � kH0.'0, �0/kCŒ0,OT� C kH.', �/kCŒ0,OT� � C.

Taking M3 D M2 C j.h0
0, h0/j C C shows that .h0, h/ 2 B1,2Œ OT , M3�.

Copyright © 2016 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2016
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The following theorem states the continuity of the mapping S1.

Theorem 2.2
Let .h1

0, h1/ and .h2
0, h2/ be solutions of (3) with respective data v1 D .'1

0 , �1
0 ,'1, �1/ and v2 D .'2

0 , �2
0 ,'2, �2/. Then for any T 2 .0, OT�, it

holds that

k
�

h1
0, h1

�
�
�

h2
0, h2

�
kCŒ0,T�2 � LTkv1 � v2kCŒ0,T�4 ,

where L D max
�
kH0kC1.Œ�M1,M1�2/, kHkC1.Œ�M1,M1�2/

�
.

Proof
This follows immediately from the fact that

kh1
0 � h2

0kCŒ0,T� � kH0kC1.Œ�M1,M1�2/Tk
�
'1

0 , �1
0

�
�
�
'2

0 , �2
0

�
kCŒ0,T�2

and a similar estimate for kh1 � h2kCŒ0,T�.

3. The partial differential equation part 1 : linear system

In this section, we prove the existence and uniqueness result for the linear system corresponding to (4). More precisely, we consider the
linear system with nonlinear boundary data 8̂̂

ˆ̂̂̂<
ˆ̂̂̂̂
:̂

wt C �.t, x/wx D f .t, x/

zt C �.t, x/zx D g.t, x/

z.t, 0/ D G0.t, h0.t/, w.t, 0//

w.t, `/ D G.t, h.t/, z.t, `//

w.0, x/ D w0.x/, z.0, x/ D z0.x/

(5)

where .h0, h/ is a fixed element of B1,2ŒT , M3�. Let	T D Œ0, T� � Œ0, `�. In this section, we assume that

(L1) �,�, f , g 2 C1.	T /

(L2) w0, z0 2 C1Œ0, `�
(L3) G0 2 C1.Œ0, T��Œh0

0 �M2, h0
0 CM2� �R/ and G 2 C1.Œ0, T� � Œh0 �M2, h0 CM2� �R/

(L4) �.t, x/ < �.t, x/ for all .t, x/ 2 	T

(L5) �.t, x/ < 0 < �.t, x/ for all .t, x/ 2 Œ0, T� � f0, `g
(L6) The boundary and initial data satisfy C1-compatibility conditions

z0.0/ D G0.0, h0
0, w0.0//

w0.`/ D G.0, h0, z0.`//

��.0, 0/.z0/0.0/ D rG0.0, h0
0, w0.0// � .1, H0.w

0.0/, z0.0//,��.0, 0/.w0/0.0/

C f .0, 0// � g.0, 0/

��.0, `/.w0/0.`/ D rG.0, h0, z0.`// � .1, H.w0.0/, z0.0//,��.0, `/.z0/0.`/

C g.0, `// � f .0, `/.

Here, the functions stated in L1–L3 are given. Also, L1 and L5 imply that there exists a constant d > 0 such that �.t, x/ � �d < 0 <
d � �.t, x/ for every .t, x/ 2 Œ0, T� � f0, `g. Without loss of generality, we may take d 2 .0, 1/.

Remark 3.1
In L3, we assumed that the second argument of G0 and G lies in the intervals centred at the initial level heights h0

0 and h0, with radius
M2 as in H3. However, in L3, a larger radius is admissible. Moreover, a more general case where the right-hand sides of the first two
equations of (5) include multiples of z and w could be treated. However, for our purpose, the aforementioned setting is sufficient.
Because we will utilize the linear theory to prove the local existence of solution for the quasilinear case, it is also sufficient to prove local
existence in the linear case.

3.1. Characteristic curves

For each .t, x/ 2 	T , we have the �-characteristic curve x� D x�.
 ; t, x/ at .t, x/, where

x0�.
 ; t, x/ D �.
 , x�.
 ; t, x//, x�.t; t, x/ D x. (6)

Because � 2 C1.	T /, it follows from the Picard–Lindelöf theorem that such curve exists and it is unique. Furthermore, two distinct
�-characteristic curves will never intersect. Similarly, we have the �-characteristic curve passing through .t, x/, x� D x�.
 ; t, x/, where

x0�.
 ; t, x/ D �.
 , x�.
 ; t, x//, x�.t; t, x/ D x.

Copyright © 2016 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2016
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Let x0 D x�.
 ; 0, 0/ and x` D x�.
 ; 0, `/ be the �-characteristic curve and �-characteristic curve passing through .0, 0/ and .0, `/,
respectively. Temporarily, we denote by T 0 > 0 the time of intersection of the characteristic curves x0.
/ and x`.
/ and set T D
minf OT , T 0g and define

	L
T D f.t, x/ 2 	T : 0 � x � x0.t/g,

	C
T D f.t, x/ 2 	T : x0.t/ � x � x`.t/g,

	R
T D f.t, x/ 2 	T : x`.t/ � x � `g.

There are two possible scenarios. The characteristic curve x� intersects the x-axis at a unique point .0, Qx/, and so Qx D x�.0; t, x/. This
is the case if and only if .t, x/ 2 	L

T [ 	
C
T . Define ˛ : 	L

T [ 	
C
T ! Œ0, `� by ˛.t, x/ D x�.0; t, x/. On the other hand, the characteristic

curve x� will intersect the line x D ` at a unique point .Qt, `/, and so ` D x�.Qt; t, x/. This is true if and only if .t, x/ 2 	R
T , and we define

� : 	R
T ! Œ0, T� such that x�.�.t, x/; t, x/ D `.

With the same aforementioned procedure, we notice that the curve x� either intersects the x-axis at the unique point .0,ˇ.t, x//,
where ˇ : 	C

T [ 	
R
T ! Œ0, `� is given by ˇ.t, x/ D x�.0; t, x/, or it will intersect the line x D 0 at the unique point .�.t, x/, 0/, where

� : 	L
T ! Œ0, T� satisfies x�.�.t, x/; t, x/ D 0.

Define the following sets

‚1
T ,� D Œ0, T� �

�
	L

T [	
C
T

�
,

‚2
T ,� D

˚
.
 , t, x/ : .t, x/ 2 	R

T and �.t, x/ � 
 � T
�

,

‚1
T ,� D Œ0, T� �

�
	C

T [	
R
T

�
,

‚2
T ,� D

˚
.
 , t, x/ : .t, x/ 2 	L

T and �.t, x/ � 
 � T
�

.

In the following, we prove some properties of the characteristic curves and estimates of their derivatives.

Theorem 3.2
It holds that x� 2 C1

�
‚i

T ,�

�
and x� 2 C1

�
‚i

T ,�

�
for i D 1, 2. Furthermore, we have

kx�kC1
�
‚i

T ,�

� � k�kC.�T / C .1C k�kC.�T // exp
�

Tk�kC1.�T /

�
kx�kC1.‚i

T ,�/
� k�kC.�T / C .1C k�kC.�T // exp.Tk�kC1.�T //

for i D 1, 2. In particular, ˛ 2 C1
�
	L

T [	
C
T

�
and ˇ 2 C1

�
	C

T[	
R
T

�
.

Proof
Suppose that .
 ; t, x/ 2 ‚i

T ,�. Let

h.
/ D h�1Œx�.
 ; t, x C h/ � x�.
 ; t, x/�

for sufficiently small h such that .t, x C h/ 2 	L
T [	

C
T if i D 1 or .t, x C h/ 2 	R

T if i D 2. Taking the derivative

0h.
/ D h�1Œ�.
 , x�.
 ; t, x C h// � �.
 , x�.
 ; t, x//�.

Because � 2 C1.	T /, the mean value theorem implies the existence of a number �h.
/ between x�.
 ; t, x/ and x�.
 ; t, x C h/ such that

0h.
/ D h�1�x.
 , �h.
//Œx�.
 ; t, x C h/ � x�.
 ; t, x/�.

Therefore, we have the ODE 	
0h.
/ D �x.
 , �h.
//h.
/, 0 � 
 � t,
h.t/ D h�1Œx�.t; t, x C h/ � x� D: 0

h.

The solution of this ODE is given by

h.
/ D 
0
h exp

�Z �
t
�x.# , �h.#// d#

�
.

As h! 0, we have, using x�.t; t, x/ D x, that 0
h ! 1 and �h.#/! x�.# ; t, x/. Hence, taking the limit h! 0, we obtain

.x�/x.
 ; t, x/ D exp

�Z �
t
�x.# , x�.# ; t, x// d#

�
. (7)

From the definition of the characteristic curve, we have

x�.
 ; tC h, x/ D x C

Z �
tCh

�.# , x�.# ; tC h, x// d# .
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Using the Lipschitz property of x� and �, for every � > 0, it follows thatˇ̌̌
ˇ1

h

Z t

tCh
�.# , x�.# ; t, x// � �.# , x�.# ; tC h, x// d#

ˇ̌̌
ˇ < � (8)

for sufficiently small values of h. Furthermore, we haveˇ̌̌
ˇ x�.t; tC h, x/ � x

h
C �.t, x/

ˇ̌̌
ˇ �

ˇ̌̌
ˇ�.t, x/ �

1

h

Z t

tCh
�.# , x�.# ; t, x// d#

ˇ̌̌
ˇC

ˇ̌̌
ˇ1

h

Z t

tCh
�.# , x�.# ; t, x// � �.# , x�.# ; tC h, x// d#

ˇ̌̌
ˇ .

From the continuity of � and x�, the first term of the right-hand side of the aforementioned inequality can be made arbitrarily small as
long as jhj is also small. Combining this with (8), we have .x�/t.t; t, x/ D ��.t, x/. A similar procedure as the one given previously proves

.x�/t.
 ; t, x/ D ��.t, x/ exp

�Z �
t
�x.# , x�.# ; t, x// d#

�
.

Hence, x� 2 C1.‚i
T ,�/. Similarly, x� 2 C1.‚i

T ,�/. The estimates for the derivative follows immediately.

In the aforementioned proof, one can see that the �-characteristic curves satisfy

.x�/t.
 ; t, x/C �.t, x/.x�/x.
 ; t, x/ D 0. (9)

An analogous identity holds for the �-characteristic curves.

Theorem 3.3
It holds that � 2 C1

�
	R

T

�
and � 2 C1.	L

T / and

k�xkC.�R
T/
� .1=d/ exp

�
Tk�kC1.�T /

�
k�xkC.�L

T/
� .1=d/ exp

�
Tk�kC1.�T /

�
.

Proof
The regularity of � and � follows from the implicit function theorem. Differentiating x�.�.t, x/; t, x/ D 0 with respect to x gives us

.x�/x.�.t, x/; t, x/C x0�.�.t, x/; t, x/�x.t, x/ D 0.

Because x0�.�.t, x/; t, x/ D �.�.t, x/, 0/, we have

�x.t, x/ D �
1

�.�.t, x/, 0/
.x�/x.�.t, x/; t, x/ (10)

and the first estimate follows from (7). The other one can be shown similarly.

Our method is to divide (5) into four problems, namely, the decoupled initial value problems (IVPs)

wt C �wx D f , w.0, x/ D w0.x/, on 	L
T [	

C
T , (11)

zt C �zx D g, z.0, x/ D z0.x/, on 	C
T [	

R
T , (12)

and the boundary-value problems (BVPs)

zt C �zx D g, z.t, 0/ D G0.t, h0.t/, w.t, 0//, on 	L
T , (13)

wt C �wx D f , w.t, `/ D G.t, h.t/, z.t, `//, on	R
T . (14)

The existence of w on the region 	L
T [ 	

C
T will then be used to solve (13), while the data for z on the region 	C

T [ 	
R
T will be used to

prove the existence of w on	R
T .

We will deal with constants that depend on some functions, and so we shall make the following notations. For every positive
R > 0, let

Q0ŒR� D Œ0, T��Œh0
0 �M2, h0

0 CM2� � Œ�R, R�

QŒR� D Œ0, T� � Œh0 �M2, h0 CM2� � Œ�R, R�,

which are the sets to which G0 and G are to be restricted. Suppose for the moment that the solution of (5) satisfies the bounds
kw.�, 0/kCŒ0,T� � M1 and kz.�, `/kCŒ0,T� � M1. Let ƒ1 denote the set of C1-norms of w0 and z0 on Œ0, `�, G0 on Q0ŒM1�, G on QŒM1�, the
supremum norms of f , g,� and � on 	T and the constants M2 and M3. Let ƒ2 be the set of the supremum norms of the derivatives of
f , g,� and� on	T . Setƒ D ƒ1[ƒ2. In the following, C1 will denote constants, which may have a different value at different instances,
that depend on a subset ofƒ1, and analogously for C2 withƒ2.
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3.2. Existence of solutions for the initial value problems (11) and (12)

First, let us consider the IVP (11). If w is a C1-solution of (11) and .t, x/ 2 	L
T [ 	

C
T , then integrating the first equation in (5) along the

�-characteristic at .t, x/, we have

w.t, x/ D w0.˛.t, x//C

Z t

0
f .
 , x�.
 ; t, x// d
 . (15)

We show that (15) is indeed the C1-solution of (11). Differentiating (15) with respect to x and t gives us, using the Leibniz rule,

wt.t, x/ D .w0/0.˛.t, x//˛t.t, x/C f .t, x/C

Z t

0
fx.
 , x�.
 ; t, x//.x�/t.
 ; t, x/ d
 , (16)

wx.t, x/ D .w0/0.˛.t, x//˛x.t, x/C

Z t

0
fx.
 , x�.
 ; t, x//.x�/x.
 ; t, x// d
 . (17)

Because ˛ 2 C1.	L
T [ 	

C
T /, f 2 C1.	T / and x� 2 C1.‚1

T ,�/, it follows from (16) and (17) that w 2 C1.	L
T[	

C
T /. Furthermore, these

equations together with (9) imply that w satisfies (11). Its uniqueness can be shown in a standard manner.

Theorem 3.4
The IVP (11) has a unique solution in C1.	L

T[	
C
T /. Moreover, kw � w0kC.�L

T[�
C
T /
� C.ƒ/T and

kwxkC.�L
T[�

C
T /
C kwtkC.�L

T[�
C
T /
� .C1 C TC.ƒ//eTC.ƒ/.

Proof
From the definition of ˛, we have j˛.t, x/�xj D jx�.0; t, x/�x�.t; t, x/j � k�kC.�T /t, and so jw0.˛.t, x//�w0.x/j � kw0kC1Œ0,`�k�kC.�T /t,
and the estimate kw � w0kC.�L

T[�
C
T /
� C.ƒ/T follows from this inequality and (15).

The estimate for the derivative with respect to x follows from (17). Indeed, using the said equation and Theorem 3.2, we have

jwx.t, x/j � kw0kC1Œ0,`�



k�kC.�T / C

�
1C k�kC.�T /

�
exp

�
Tk�kC1.�T /

��
C
�
kfkC1.�T /



k�kC.�T / C .1C k�kC.�T // exp.Tk�kC1.�T //

��
T

whenever .t, x/ 2 	L
T [ 	

C
T . It can be easily seen that the aforementioned estimate is of the form given in the theorem. We can also

use (16) to prove the estimate for the derivative with respect to t. Alternatively, we can use the PDE and then apply the bound for the
derivative with respect to x.

In an analogous manner, we have the following result for the IVP (12).

Theorem 3.5
The IVP (12) has a unique solution in C1.	C

T[	
R
T /. Moreover, kz � z0kC.�C

T[�
R
T/
� C.ƒ/T and

kzxkC.�C
T[�

R
T/
C kztkC.�C

T[�
R
T/
� .C1 C TC.ƒ//eTC.ƒ/.

3.3. Existence of solutions for the boundary value problems (13) and (14)

Integrating along the �-characteristic, we obtain the integral equation

z.t, x/ D G0.�.t, x/, h0.�.t, x//, w.�.t, x/, 0//C

Z t

�.t,x/
g.
 , x�.
 ; t, x// d
 ,

where w at x D 0 is from Theorem 3.4.
Using the same procedure as before, we can show that this is the unique solution of the BVP (13) whose derivatives are given by

zt.t, x/ D P.t, x/�t.t, x/C g.t, x/ � g.�.t, x/, 0/�t.t, x/C

Z t

�.t,x/
gx.
 , x�.
 ; t, x//.x�/t.
 ; t, x/ d
 (18)

zx.t, x/ D P.t, x/�x.t, x/ � g.�.t, x/, 0/�x.t, x/C

Z t

�.t,x/
gx.
 , x�.
 ; t, x//.x�/x.
 ; t, x// d
 (19)

where

P.t, x/ D rG0.�.t, x/, h0.�.t, x//, w.�.t, x/, 0// �
�
1, h00.�.t, x//, wt.�.t, x/, 0/

�
. (20)
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Theorem 3.6
Let M1 > 0 be such that kw.�, 0/kCŒ0,T� � M1. Then (13) has a unique solution z 2 C1.	L

T / such that kz � z0.0/kC.�L
T /
� C.ƒ/T and

kzxkC.�L
T/
C kztkC.�L

T/
� .1=d/.C1 C .T C T 2/C.ƒ//eTC.ƒ/.

Proof
The compatibility conditions in L6 and the fact that �.t, x/ 2 Œ0, T� imply

jz.t, x/ � z0.0/j � jG0.�.t, x/, h0.�.t, x//, w.�.t, x/, 0// � G0.0, h.0/, w0.0//j C TkgkC.�T /

� krG0kC.Q0ŒM1�/.1CM3 C kwt.�, 0/kC.Œ0,T�//T C TkgkC.�T /

for all .t, x/ 2 	L
T . Using the estimate for wt in Theorem 3.4 in the aforementioned inequality, we obtain the desired bound. From

Equation (19) and Theorem 3.3,

kzxkC.�L
T/
�

1

d
krG0kC.Q0ŒM1�/

�
1CM3 C kwt.�, 0/kCŒ0,T�

�
exp

�
Tk�kC1.�T /

�
C
�
kgkC1.�T /



k�kC.�T / C

�
1C k�kC.�T /

�
exp

�
Tk�kC1.�T /

���
T C

1

d
exp

�
Tk�kC1.�T /

�
kgkC.�T /

which has the form given by the theorem. Again, the bound for the time derivative of z can be obtained from the PDE. This completes
the proof of the theorem.

Similar to the previous theorem, we have the following.

Theorem 3.7
Let M1 > 0 be such that kz.�, `/kCŒ0,T� � M1. Then (14) has a unique solution w 2 C1.	R

T / satisfying kw � w0.`/kC.�R
T /
� C.ƒ/T and

kwxkC.�R
T/
C kwtkC.�R

T/
� .1=d/.C1 C .T C T 2/C.ƒ//eTC.ƒ/.

It can be easily verified using the compatibility conditions in L6 that the functions z and w are continuously differentiable on the
whole rectangle	T . Combining Theorems 3.4 through 3.7, we obtain the following.

Theorem 3.8
Assume that L1–L6 hold. Then for each .h0, h/ 2 B1,2ŒT , M3�, the system (5) has a unique solution .w, z/ 2 C1.Œ0, T��Œ0, `�/2. Furthermore,

k.wx , zx , wt , zt/kC.�T /4 � .1=d/.C.ƒ1/C .T C T 2/C.ƒ//eTC.ƒ/. (21)

4. Modulus of continuity estimates

Because the space where we look for a local solution is not a closed subset of C.	T /
2, the Banach fixed point theorem cannot be applied.

However, we can still find a continuously differentiable solution with the help of the notion of equicontinuity. We define equicontinuity
in this paper through the modulus of continuity, precisely speaking as follows.

Let f : 	 � Rn ! R. We define the modulus of continuity of f to be the extended-real valued function !.f , �/ : Œ0,1/ ! Œ0,1�
by !.f , ı/ D supfjf .x/ � f .x0/j : x, x0 2 	, jx � x0j � ıg. If F D .fi/i2I, where I is some nonempty index set, is a family of functions
fi : 	i ! R, we define !.F , ı/ D supi2I !.fi , ı/. A family F of functions defined on the same set is called equicontinuous if for every
� > 0, there exists ı > 0 such that !.F , ı/ < �.

Let	 � R2, a : 	! R, b : 	! R, and f : f.
 , t, x/ : .t, x/ 2 	, a.t, x/ � 
 � b.t, x/g ! R. If F : 	! R is defined by

F.t, x/ D

Z b.t,x/

a.t,x/
f .
 , t, x/ d


and f is bounded, then

jF.t, x/ � F.t0, x0/j � kfk1.ja.t, x/ � a.t0, x0/j C jb.t, x/ � b.t0, x0/j/C

Z b.t,x/

a.t0 ,x0/
jf .
 , t, x/ � f .
 , t0, x0/j d
 .

In the sequel, we shall use this inequality frequently.
Let F1 be the set that consists of .w0/0, .z0/0, h00, h0,rG0 and rG and F2 be the set containing the functions �x ,�x , fx and gx .

Theorem 4.1
Let M > 0 and .w, z/ be the solution of the system (5) and suppose that kwkC1.�T / � M and kzkC1.�T / � M. Then

!.wx , ı/C !.zx , ı/ �
�
1=d2

�
C.ƒ/.ı C !.F1, ı/C T!.F2, ı//.
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Proof
The proof is established in several steps.

Step 1. If .
 , t, x/, .
 , t0, x0/ 2 ‚i
T ,�, i D 1, 2, satisfy j.t, x/ � .t0, x0/j � ı, then

ˇ̌
.x�/x.
 ; t, x/ � .x�/x.
 ; t0, x0/

ˇ̌
� C.ƒ/ .ı C T!.�x , ı// .

An analogous statement involving x� is also true. From Theorem 3.2, we have

jx�.
 ; t, x/ � x�.
 ; t0, x0/j � .1C k�kC1.�T //e
Tk�kC1.�T /ı � C.ƒ/ı. (22)

Let M0 D max.k�kC1.�T /, k�kC1.�T //. From the formula (7) of .x�/x we obtain

ˇ̌
.x�/x.
 ; t, x/ � .x�/x.
 ; t0, x0/

ˇ̌
� eTM0k�kC1.�T /ı C eTM0

Z �
t0

ˇ̌
�x.# , x�.# ; t, x// � �x.# , x�.# ; t0, x0//

ˇ̌
d# . (23)

However, from (22), we have

ˇ̌
�x.# , x�.# ; t, x// � �x.# , x�.# ; t0, x0//

ˇ̌
� ! .�x , C.ƒ/ı/ � C.ƒ/! .�x , ı/ .

Using this in (23) and noting that j
 � t0j � T , we obtain the required estimate.
Step 2. We have

!
�

wxj�L
T[�

C
T

, ı
�
C !

�
wtj�L

T[�
C
T

, ı
�
� C.ƒ/ .ı C !.F1, ı/C T!.F2, ı// .

Also,!.zxj�C
T[�

R
T
, ı/C !.ztj�C

T[�
R
T
, ı/ has an upper bound of the same form. Define F : 	L

T [	
C
T ! R by

F.t, x/ D

Z t

0
fx.
 , x�.
 ; t, x//.x�/t.
 ; t, x/ d
 .

This is the integral given in (16). Then

jF.t, x/ � F.t0, x0/j � kfkC1.�T /kx�kC1
�
‚1

T ,�

�ı C
Z t

0
jfx.
 , x�.
 ; t, x//.x�/x.
 ; t, x/

� fx.
 , x�.
 ; t0, x0//.x�/x.
 ; t0, x0/
ˇ̌

d
 � C.ƒ/ .ı C T!.fx , ı/C T!.�x , ı//

whenever j.t, x/ � .t0, x0/j � ı. Furthermore,

!
�
..w0/0 ı ˛/˛x , ı

�
� kw0kC1Œ0,`� !.˛x , ı/C !..w0/0 ı ˛, ı/k˛xkC.�L

T[�
C
T /
� C.ƒ/

�
ı C !..w0/0, ı/C T!.�x , ı/

�
.

Adding these estimates and using (17) prove the first half. The second half follows from the PDE and the first half because

!
�

wtj�L
T[�

C
T

, ı
�
� k�kC.�T /!

�
wxj�L

T[�
C
T

, ı
�
C !.�, ı/kwxkC.�T / C !.f , ı/

� k�kC.�T /!
�

wxj�L
T[�

C
T

, ı
�
C
�
k�kC1.�T /kwxkC.�T / C kfkC1.�T /

�
ı.

Step 3. We have !..�x , �x/, ı/ � .1=d2/C.ƒ/ .ı C T!..�x ,�x/, ı//. Similar arguments as in the proof of Step 1 give us

ˇ̌
.x�/x.�.t, x/; t, x/ � .x�/x

�
�.t0, x0/; t0, x0

�ˇ̌
� C.ƒ/ .ı C T!.�x , ı// .

This inequality together with (10) implies

!.�x , ı/ �
kx�kC1.‚2

T ,�/

d2
!.�.�, 0/, ı/C

1

d
C.ƒ/ .ı C T!.�x , ı// �

1

d2
C.ƒ/ .ı C T!.�x , ı// .

The second inequality is similar.
Step 4. It holds that!.P, ı/ � .1=d2/C.ƒ/.ı C !.F1, ı/C T!.F2, ı//, where P is given by (20). If j.t, x/ � .t0, x0/j � ı, then

jh0.�.t, x// � h0.�.t
0, x0//j � M3!.�, ı/

jw.�.t, x/, 0/ � w.�.t, x/, 0/j � M!.�, ı/.
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These properties imply that

!.G0t.�, h ı �, w.�, 0//, ı/ � !.G0t , .1CM3 CM/!.�, ı// � C.ƒ/!.G0t , ı/.

A similar procedure for the other terms appearing in (20) shows that

!.P, ı/ �
1

d2
C.ƒ/

h
!.G0t , ı/CM3!.G0h0 , ı/C kG0h0kC.Q0ŒM�/!.h

0
0, ı/CM!.G0w , ı/C kG0wkC.Q0ŒM�/!

�
wtj�L

T[�
C
T

, ı
�i

and upon using the result of Step 2, we obtain the desired estimate.
Step 5. It holds that !.zxj�L

T
, ı/ � .1=d2/C.ƒ/.ı C !.F1, ı/ C T!.F2, ı// and !.wxj�R

T
, ı/ have also the same type of bound. Utilize

Steps 3 and 4 and a similar argument as in proving Step 2.
The proof of Theorem 4.1 follows directly from Steps 2 and 5.

5. The partial differential equation part 2: quasilinear system

If S � R2 and � > 0, we let S� D f.x, y/ : dist..x, y/, S/ � �g. Consider the curve † :D f.w0.x/, z0.x// : x 2 Œ0, `�g in O. Define
ı : Œ0, `�! R by ı.x/ D dist..w0.x/, z0.x//, @O/. If the boundary of O is empty, then we can replace O by an open set with a nonempty
boundary that contains † and is contained in O. Then ı is continuous and has a positive minimum. Let �1 D

1
2 minx2Œ0,`� ı.x/ > 0.

By construction, †�1 is compactly contained in O. Furthermore, the continuity of � and � implies the existence of �2 > 0 and a
positive constant d > 0 such that for .w, z/ 2 R2, if dist..w, z/, .w0.0/, z0.0/// � �2, then �.w, z/ � �d < 0 < d � �.w, z/, and if
dist..w, z/, .w0.`/, z0.`/// � �2, then �.w, z/ � �d < 0 < d � �.w, z/.

Let � D min.�1, �2/ > 0 and let RT denote the set of all functions .v, y/ 2 C.	T /
2 such that

(1) ran .v, y/ � †�
(2) dist..v.t, x/, y.t, x//, .w0.x/, z0.x/// � � for .t, x/ 2 Œ0, T� � f0, `g
(3) .v.0, x/, y.0, x// D .w0.x/, z0.x// for x 2 Œ0, `�.

In the iteration scheme, it is important that the resulting linear system must be strictly hyperbolic and that the boundaries are non-
characteristic. The first and second criteria in RT preserve these properties, respectively.

Let N > 0 be sufficiently large, which will be made precise later, and

DT D
˚
.v, y/ 2 C1.	T /

2 : k.vt , yt/kC.�T /2 � N, k.vx , yx/kC.�T /2 � N
�

.

Notice that if v.t, x/ D w0.x/ and y.t, x/ D z0.x/ for all .t, x/ 2 	T , then .v, y/ 2 RT \DT if k..w0/0, .z0/0/kCŒ0,`�2 � N, that is, RT \DT is
nonempty.

In this section, we prove the well-posedness of the system8̂̂
ˆ̂̂<
ˆ̂̂̂̂
:

wt C �.w, z/wx D f .t, x, w, z/

zt C �.w, z/zx D g.t, x, w, z/

z.t, 0/ D G0.t, h0.t/, w.t, 0//

w.t, `/ D G.t, h.t/, z.t, `//

w.0, x/ D w0.x/, z.0, x/ D z0.x/

(24)

where .h0, h/ is a fixed element of B1,2ŒT , M3�.

Theorem 5.1
There exists a time T� > 0 such that x0.
/ ¤ x`.
/ for 0 � 
 � T�, for all .v, y/ 2 RT� , where

x00.
/ D �.v.
 , x0.
//, y.
 , x0.
///, x0.0/ D 0,

x0`.
/ D �.v.
 , x`.
//, y.
 , x`.
///, x`.0/ D `.

Proof
Suppose in contrary that there exists a sequence .Tn/n of positive numbers converging to 0 and a sequence .vn, yn/n 2 RT satisfying
x0.Tn; vn, yn/ D x`.Tn; vn, yn/, and denote this common value by xn, for all n 2 N . Because .xn/n is a bounded sequence, there is
convergent subsequence, which we still denote by .xn/n. Then there are two possible cases, either xn � c > 0 for all positive integers
n (this is the case where xn does not converge to 0) or for each � > 0, there exists a positive integer n such that xn < � (this is the case
where the limit is 0).

First, let us consider the former case. Because x0.0/ D 0 and x0.Tn/ D xn, by the mean-value theorem, there exists 
n 2 .0, Tn/ such
that x00.
n/ D xn=Tn. Hence, it follows that we have �.vn.
n, �n/, yn.
n, �n// � c=Tn for all n, where we put �n D x0.
n/. For each S > 0,
there exists R D R.S/ such that �.QvR, QyR/ � S and .QvN, QyN/ 2 †� , a contradiction to the fact that � is bounded on†� .

For the latter case, without loss of generality, we may take that � < `=2. Because x`.0/ D ` and x`.Tn/ D xn, there exists .
n, �n/ 2 	T

such that x0
`
.
n/ D �.vn.
n, �n/, yn.
n, �n// D .xn � `/=Tn < .� � `/=Tn < �`=.2Tn/. For each m < 0, there exists a positive integer

n0 D n0.m/ such that the inequality �.Qvn0 , Qyn0/ � m holds for some .Qvn0 , Qyn0/ 2 †� , which contradicts the boundedness of � on†� .
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Now, we are ready to state and prove the local existence and uniqueness of solutions to the quasilinear system (4) whose life span is
independent on the particular data .h0, h/ in B1,2ŒT , M3�. As mentioned in the earlier sections, this would imply that the mapping S2 is
well-defined. Before we state the result, we note the following elementary estimate.

Lemma 5.2
Let a � 0, b > 0 and .sn/n�0 be a sequence of nonnegative real numbers such that sn � a C bsn�1 for all n � 1. Then sn �

a
Pn�1

kD0 bk C bns0, n � 1.

Theorem 5.3
Let .h0, h/ 2 B1,2ŒT , M3� and assume that H1–H6 hold. Then there exists a time QT D QT.M2, M3/ 2 .0, T� independent of .h0, h/ such that
the quasilinear system (24) has a unique solution .w, z/ in C1.	QT /

2. Moreover, we have .w.t, x/, z.t, x// 2 †� for every .t, x/ 2 	QT , and
it holds that k.wx , zx/kC.�T1 /

2 � N and k.wt , zt/kC.�QT /
2 � N.

Proof
We divide the proof into several steps.

Step 1. Definition of the iteration map. Let .v, y/ 2 RT� \DT� be given and consider the linear system

8̂̂̂
ˆ̂<
ˆ̂̂̂̂:

wt C O�.t, x/wx D Of .t, x/,

zt C O�.t, x/zx D Og.t, x/,

z.t, 0/ D G0.t, h0.t/, w.t, 0//,

w.t, `/ D G.t, h.t/, z.t, `//,

w.0, x/ D w0.x/, z.0, x/ D z0.x/,

(25)

where O�.t, x/ D �.v.t, x/, y.t, x//, O�.t, x/ D �.v.t, x/, y.t, x//, Of .t, x/ D f .t, x, v.t, x/, y.t, x//, Og.t, x/ D g.t, x, v.t, x/, y.t, x//. One can easily
see that the aforementioned system satisfies L1–L6. Therefore, by Theorem 3.8, there exists a unique solution .w, z/ 2 C1.	T�/

2 of (25).
This defines a mapping F : RT� \DT� ! C1.	T�/

2 given by F.v, y/ D .w, z/.
Step 2. Invariance property. We will show that there exists T > 0 such that F.R� \ D� / � R� \ D� for all 
 2 .0, T�. The functions
O�, O�, Of , Og and their derivatives with respect to x have uniform bounds independent of .v, y/ 2 RT� \ DT� . More precisely, we have
the estimates

kOfkC.�T� /
� kfkC.�T�†�/, kO�kC.�T� /

� k�kC.†�/,

kOfxkC.�T� /
� .1C 2N/krfkC.�T�†�/, kO�xkC.�T� /

� 2Nkr�kC.†�/,

and similar estimates for O� and Og. Let Oƒ1 be the set ƒ1 in the statement of Theorem 3.8 where the constants kOfkC.�T�/
,

kOgkC.�T� /
, kO�kC.�T�/

and k O�kC.�T� /
are replaced by the constants kfkC.�T�†�/, kgkC.�T�†�/, k�kC.†�/ and k�kC.†�/, respectively.

Now, we take N > 1
d C. Oƒ1/.

Using this observation in Theorems 3.4–3.7, we can see that there exists T.1/ 2 .0, T�� such that we have kw � w0kC.�L
T[�

C
T /
� �=2,

kz � z0kC.�L
�[�

C
� /
� �=2, kz � z0.0/kC.�L

� /
� �=2 and kw � w0.`/kC.�R

� /
� �=2 for all 
 2 .0, T.1/�. These estimates prove that

ran.w, z/ 2 †� , and the last two also prove that j.w.t, x/, z.t, x// � .w0.x/, z0.x//j � � for .t, x/ 2 Œ0, T.1/� � f0, `g. The last criterion in
RT� is obvious. From the choice of N and the estimate (21) in Theorem 3.8, we can deduce that there exists T.2/ 2 .0, T�� such that
.w, z/ 2 D� for all 
 2 .0, T.2/�. Taking T.3/ D min.T.1/, T.2// shows that .w, z/ 2 R� \D� , and so R� \D� is invariant under F for all

 2 .0, T.3/�.

Step 3. Contraction property. Let .v1, y1/, .v2, y2/ 2 RT.3/ \DT.3/ and F.vi , yi/ D .wi , zi/ for i D 1, 2. Define Qw D w1�w2 and Qz D z1�z2.
It follows that 8̂̂̂

ˆ̂<
ˆ̂̂̂̂:

wt C �.v1, y1/wx D f .t, x, v1, y1/ � f .t, x, v2, y2/C .�.v1, y1/ � �.v2, y2//w2x

zt C �.v1, y1/zx D g.t, x, v1, y1/ � g.t, x, v2, y2/C .�.v1, y1/ � �.v2, y2//z2x

Qz.t, 0/ D G0.t, h0.t/, w1.t, 0// � G0.t, h0.t/, w2.t, 0//

Qw.t, `/ D G.t, h0.t/, w1.t, `// � G.t, h0.t/, w2.t, `//

Qw.0, x/ D 0, Qz.0, x/ D 0.

From Theorem 3.4, we have

k QwkC.�L
QT
[�C
QT
/ �
QT.kfkC1.�T�†�/ C Nk�kC1.†�//k.v1, y1/ � .v2, y2/kC.�QT /

2 .

for each QT 2 .0, T.3/�. Here, the regions are determined by �.v1, y1/ and �.v1, y1/. Similarly, we have the estimate

kQzk
C
�
�C
QT
[�R
QT

� � QT �kgkC1.�T�†�/ C Nk�kC1.†�/

�
k.v1, y1/ � .v2, y2/kC.�QT /

2 ,
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from Theorem 3.5. A procedure similar to the proofs of Theorems 3.6 and 3.8 gives

k Qwk
C
�
�R
QT

� C kQzk
C
�
�L
QT

� � C QTk.v1, y1/ � .v2, y2/kC.�QT /
2 ,

where C is a positive constant independent of .v1, y1/ and .v2, y2/. Combining these, one can see that k. Qw, Qz/kC.�QT /
2 � C QTk

.v1, y1/ � .v2, y2/kC.�QT /
2 for some positive constant C independent of .v1, y1/ and .v2, y2/. Hence, F is a contraction, provided that

C QT < 1.
Step 4. Iteration scheme and compactness argument. One can easily see that RQT \ DQT is not closed. However, if we have a sequence

..vn, yn//n in RQT \DQT , where .v0, y0/ is fixed, and we have recursively .vn, yn/ D F.vn�1, yn�1/ for all n 2 N , that is,

8̂̂̂
ˆ̂<
ˆ̂̂̂̂:

vnt C �.vn�1, yn�1/vnx D f .t, x, vn�1, yn�1/

ynt C �.vn�1, yn�1/ynx D g.t, x, vn�1, yn�1/

yn.t, 0/ D G0.t, h0.t/, vn.t, 0//,

vn.t, `/ D G.t, h.t/, yn.t, `//,

vn.0, x/ D w0.x/, yn.0, x/ D z0.x/,

(26)

then according to the contractive property of F, the sequence ..vn, yn//n is a Cauchy sequence in C.	QT /
2 and hence converges to some

element in C.	QT /
2, say .w, z/. From the definition of RQT \ DQT , the sequence .vnx , ynx/n is equibounded with respect to the C-norm,

indeed, k.vnx , ynx/kC.�QT /
2 � N for all n.

If M D max.k.w0, z0/kCŒ0,`�2 C N C �, M1/, then kvnkC1.�T / � M and kynkC1.�T / � M for all n. Hence, we take this value of M in the
statement of Theorem 4.1. Let Oƒ2 be the set of supremum norms of f , g,�, and �, Oƒ D Oƒ1 [ Oƒ2, OF2 D frf ,rg,r�,r�g and OF2,n be
the set consisting of the derivatives with respect to x of the functions �.vn, yn/, �.vn, yn/, f .�, �, vn, yn/ and g.�, �, vn, yn/.

With these in hand, Theorem 4.1 gives us the inequality

!.vnx , ı/C !.ynx , ı/ � C. Oƒ/.ı C !.F1, ı/C QT!. OF2,n�1, ı//

One can check that !.fx.�, �, vn, yn/, ı/ � C. Oƒ/.!.rf , ı/C !.vnx , ı/C !.ynx , ı//. Using similar estimates for the other elements of OF2,n,
we obtain that

!. OF2,n, ı/ � C. Oƒ/.!. OF2, ı/C !.vnx , ı/C !.ynx , ı//.

Consequently,

!.vnx , ı/C !.ynx , ı/ � C. Oƒ/.ı C !.F1 [ OF2, ı/C QT!..vn�1/x , ı/C QT!..yn�1/x , ı//.

Choose QT such that C. Oƒ/ QT < 1. With this choice, it follows from Lemma 5.2 that

!.vnx , ı/C !.ynx , ı/ �
C. Oƒ/

1 � C. Oƒ/ QT
Œı C !.F1 [ OF2, ı/C !.v1x , ı/C !.y1x , ı/�.

and hence, .vnx , ynx/n is equicontinuous.
It follows from the Arzela–Ascoli theorem that there exists a convergent subsequence ..vn0/x , .yn0/x/n0 of .vnx , ynx/n. Let us denote the

limit of this subsequence by .W , Z/ 2 C.	QT /
2. From the integral representation

wn0.x, t/ D wn0.0, t/C

Z x

0
.wn0/x.t, �/ d�

and from the uniform convergence we obtain, by passing through the limit, that wx D W 2 C.	QT /. Similarly, zx D Z 2 C.	QT /.
From the PDE and the equiboundedness of the derivatives of vn and yn with respect to x, it can be shown that the subse-

quence ..vn0/t , .yn0/t/n0 of .vnt , ynt/n is equicontinuous, and so it has a convergent subsequence ..vn00/t , .yn00/t//n00 , whose limit is .vt , yt/.
Replacing n by n00 in (26) and letting n00 !1 prove existence.

Recall that by construction, .vn.t, x/, yn.t, x//! .w.t, x/, z.t, x// as n!1 and .vn.t, x/, yn.t, x// 2 †� for all n. Because†� is closed,
it follows that .w.t, x/, z.t, x// 2 †� . Also, notice that k..vn00/x , .yn00/x//kC.�QT /

2 � N and k..vn00/t , .yn00/t//kC.�QT /
2 � N for all n00, and from

these, the C0-estimates for the derivatives of .w, z/ follow immediately by taking the limit n00 ! 1. Uniqueness can be shown in a
standard way.

Theorem 5.4
Let .w1, z1/ and .w2, z2/ be solutions of the quasilinear system (24) corresponding to the boundary data .h01, h1/ and .h02, h2/ in
B1,2ŒT , M3�, respectively. Then there exists a constant C independent of .h01, h1/ and .h02, h2/ such that if T 2 .0, QT�, then for x D 0, `,
we have

k.w1.�, x/, z1.�, x// � .w2.�, x/, z2.�, x//kCŒ0,T�2 � Ck.h01, h1/ � .h02, h2/kCŒ0,T�2 .
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Proof
Let W D w1 � w2, Z D z1 � z2, �1 D �.w1, z1/ and �1 D �.w1, z1/. Then W and Z satisfy the following system8̂̂̂

ˆ̂<
ˆ̂̂̂̂:

Wt C �1Wx D f .t, x, w1, z1/ � f .t, x, w2, z2/ � .�.w1, z1/ � �.w2, z2//w2x

Zt C �1Zx D g.t, x, w1, z1/ � g.t, x, w2, z2/ � .�.w1, z1/ � �.w2, z2//z2x

Z.t, 0/ D G0.t, h01.t/, w1.t, 0// � G0.t, h02.t/, w2.t, 0//

W.t, `/ D G.t, h1.t/, z1.t, `// � G.t, h2.t/, z2.t, `//

W.0, x/ D 0, Z.0, x/ D 0.

For each t 2 Œ0, T�, define

OZL.t/ D supfjZ.t, x/j : x 2 Œ0, x0.t/�g,

OZC.t/ D supfjZ.t, x/j : x 2 Œx0.t/, x`.t/�g,

OW.t/ D supfjW.t, x/j : x 2 Œ0, x`.t/�g.

Let OZ.t/ D max. OZL.t/, OZC.t//. Using the fact that �,�, f , g are Lipschitz continuous, jw2xj � N and jz2xj � N, we obtain that for .t, x/ 2
	L

T [	
C
T ,

jW.t, x/j � C

Z t

0
jW.
 , x�1.
//j C jZ.
 , x�1.
//j d
 .

Thus,

OW.t/ � C

Z t

0

OW.
/C OZ.
/ d
 .

If .t, x/ 2 	C
T , then using the fact that OZC.
/ � OZ.
/, we have

OZC.t/ � C

Z t

0

OW.
/C OZ.
/ d
 .

Now, the �1-characteristic at .t, x/ intersects the left boundary at exactly one point with time coordinate �.t, x/. Then it follows that for
.t, x/ 2 	L

T

jZ.t, x/j � Ckh01 � h02kCŒ0,T� C C

Z �.t,x/

0

OW.
/C OZ.
/ d
 C C

Z t

�.t,x/
jW.
 , x�1.
//j C jZ.
 , x�1.
//j d
 .

Hence,

OZL.t/ � Ckh01 � h02kCŒ0,T� C C

Z t

0

OW.
/C OZ.
/ d
 ,

and it follows that by taking the maximum,

OZ.t/ � Ckh01 � h02kCŒ0,T� C C

Z t

0

OW.
/C OZ.
/ d
 .

Adding our results gives us

OW.t/C OZ.t/ � Ckh01 � h02kCŒ0,T� C C

Z t

0

OW.
/C OZ.
/ d


and using Gronwall’s inequality, we obtain OW.t/ C OZ.t/ � CeCTkh01 � h02kCŒ0,T�. Upon taking the supremum, we have
k.W , Z/kC.�L

T[�
C
T /
� CeCTkh01 � h02kCŒ0,T�, and if we take x D 0, we obtain a part of the desired result. The other half can be also

established in a similar manner.

We also note that ran .w, z/ � †� implies that k.w, z/kC.�QT /
2 � k.w0, z0/kCŒ0,`�2 C �. From this remark, we now choose M1 D

k.w0, z0/kCŒ0,`�2 C �. Now, we can prove the main result of this paper.

Proof of Theorem 1.1
The map S : B0,4Œ QT , M1� ! B0,4Œ QT , M1� is well-defined from the previous section and Theorem 5.3. It remains to show that S is
contractive. For this purpose, let vi D .' i

0, � i
0,' i , � i/ 2 B0,4Œ QT , M1� for i D 1, 2. Then Theorems 2.2 and 5.4 imply that

kS.v1/ �S.v2/kCŒ0,QT�4 � CkS1.v
1/ �S1.v

2/kCŒ0,QT�2 � CL QTkv1 � v2kCŒ0,QT�4

and so S : B0,4Œ MT , M1�! B0,4Œ MT , M1� is a contraction, where 0 < MT < min
�
QT , 1

CL

�
. Therefore, we obtain a classical solution .w, z, h0, h/ 2

C1.Œ0, MT��Œ0, `�/2�C1Œ0, MT�2. Moreover, from H2, it follows that .h0, h/ 2 C2Œ0, MT�2. The uniqueness can be shown using similar arguments
as those in Theorem 5.4.
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