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1. Introduction

Optimal flow control problems remain a very active field of research due to their wide variety of ap-
plications in physics and engineering. These include combustion, optimal mixing, shape design, kinetic
energy regulation and turbulence minimization to name a few. Rigorous mathematical analysis of such
problems, as well as their realization to efficient numerical methods, are among the main themes in the
past decades. The pioneering work of Abergel and Temam [1] served as an impetus in the study of optimal
control problems for time-dependent fluid flows, where first-order necessary optimality conditions were
established. Gradient-based algorithms approximating the controls were also suggested. Since then, there
are numerous papers extending this work, see for instance [10–12,20,21,31,32,38,53] and the references
therein. We also refer to the earlier works of Fursikov [25–27]. Recent developments also include ther-
modynamic effects, multi-phase flows, phase transitions, and the interaction with either elastic or rigid
bodies.

The current paper is dedicated to the analysis and numerical approximations to a distributed op-
timal control problem for time-dependent incompressible fluid flows governed by the two-dimensional
Navier–Stokes equation with delay in the convection. A very short account for control problems of partial
differential equations with delay was presented in [40, Section 18.1], and recent work that dealt with
numerical aspects is given in [43]. In both cases the delay appears linear in the state. In our work, on the
other hand, the delayed term is bilinear in nature, for which the history acts as a convective force for the
fluid flow. This leads to different characteristics of the control. For instance, velocity-tracking problems
at the terminal time have controls with limited regularity.

Let us now state the precise formulation of the optimal control problem. Given a fixed final time T > 0
and an open, bounded and connected domain Ω ⊂ R

2 that is either of class C2 or a convex polygonal
with boundary Γ, we consider the following infinite-dimensional optimization problem:
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min
q∈L2(0,T ;L2(Ω)2)

J(u, q) :=
αΩT

2

∫ T

0

∫

Ω

|u − ud|2 dxdt +
αT

2

∫

Ω

|u(T ) − uT |2 dx

+
αR

2

∫ T

0

∫

Ω

|∇ × u|2 dxdt +
α

2

∫ T

0

∫

Ω

|q|2 dxdt

subject to the state equation

∂tu − νΔu + div(ur ⊗ u) + ∇p = f + q in ΩT := (0, T ) × Ω,

div u = 0 in (−r, T ) × Ω,

u = 0 on ΓT := (0, T ) × Γ,

u(0) = u0 in Ω,

u = z in Ωr := (−r, 0) × Ω.

(P)

The unknown state variables u : (0, T )×Ω → R
2 and p : (0, T )×Ω → R represent the velocity field and

the pressure of the fluid. The given functions f : (0, T ) × Ω → R
2, u0 : Ω → R and z : (−r, 0) × Ω → R

2

are the external forces, initial velocity and initial history, respectively. A no-slip condition for the velocity
on the boundary is imposed. For the state equation in (P), the constant ν > 0 is the fluid viscosity and
the fluid density has been normalized to 1 for the sake of simplicity. Also, α > 0 and αΩT

, αT , αR ≥ 0 are
given constants, where at least one of the latter three parameters is positive in order to have a nontrivial
solution to (P).

We use the customary notation ur(t, x) := u(t − r, x) for the delay of velocity with respect to time,
where 0 < r < T is a fix delay parameter. The convection term (ur · ∇)u corresponds to the non-
instantaneous transfer of momentum on the fluid bulk. As pointed out in [41], if there is a time delay r
in “following the fluid”, then the material derivative is given by Du

Dt = ∂tu + (ur · ∇)u, where the direc-
tional derivative of u is taken with respect to the delayed velocity field ur. Due to the incompressibility
assumption div ur = 0, the convective term (ur ·∇)u coincides with div(ur ⊗u). Here, the tensor product
v ⊗ w : Ω → R

2×2 of two vector valued functions v, w : Ω → R
2 has the components (v ⊗ w)ij := viwj

for i, j = 1, 2. For works on the Navier–Stokes with delay, we refer the reader to [7,9,28,29,51,52]. The
delay in the convective term can be considered as a regularization or stabilization to the Navier–Stokes
equation.

In the cost functional J , the first two integrals correspond to a velocity tracking problem, where ud

and uT are the desired velocity profiles in the space-time domain and space domain at the terminal time,
respectively. These intend to minimize the kinetic energy, or a fraction of it, of the difference between the
optimal state to the desired target. The third integral aims to minimize the turbulence of the fluid flow,
where ∇ × u = ∂x2u1 − ∂x1u2 is the curl of the fluid velocity u = (u1, u2). Finally, the fourth integral is
a Tikhonov regularization term leading to coercivity of J , and it also measures the cost of the control.
The general rule of thumb here is that the smaller the value of α, the more the controls are going to be
expensive.

One of the goals of the paper is to establish the well-posedness and regularity of the solutions to the
state equation and as well as the associated linearized and adjoint problems. Although the results are
analogous to the case without delay, this has to be done ab initio in order to have a clear understanding
on how the initial history enters in the analysis. In fact, we shall see that the delay impedes further
regularity on the optimal control. To be precise, if αT > 0 then even for compatible initial datum and
initial history in the state equation, the adjoint state does not enjoy the same compatibility at the terminal
time, see Theorem 3.4. Nonetheless, the results here will be useful in the error analysis for the finite-
dimensional approximations. The differentiability properties of the so-called control-to-state operator will
be established from the implicit function theorem, deviating from those that were presented in [1,53].

The other goal is to analyze a semi-implicit scheme for (P) based on discontinuous-in-time Galerkin
and finite element methods. It will be shown that in terms of the space-time L2-norm, the errors between
the continuous and discrete optimal solutions have the order of convergence O((αΩT

+α+1)h+αR+αT )h),
see Theorem 4.21 and Corollary 4.22. This is with the stability condition τ = O(h2) for the temporal
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and spatial step sizes τ and h, respectively, a typical condition for explicit or semi-implicit schemes to
parabolic problems. Note that in the uncontrolled case of the Navier–Stokes equation without the delay,
the condition τ = O(hγ) for some γ > 0 on the time step and mesh size was imposed in [33–37,42] when
explicit and semi-implicit schemes are applied in the convection term. However, the methods presented in
these papers are not applicable to the current problem due to the limited time-regularity of the controls.
If αR = αT = 0, then we obtain the expected optimal quadratic order of convergence. To establish this
convergence rate, we shall utilize Aubin–Nitsche-type duality arguments. In addition, error estimates for
the control, state, and adjoint variables in terms of the norms of the function spaces L2(0, T ;H1

0 (Ω)2)
and L∞(0, T ;L2(Ω)2) will be proved.

The associated finite-dimensional optimization problem will be solved by the gradient method of
Barzilai and Borwein [6]. This particular choice is based on its simplicity, efficiency, and applicability to
large-scale optimization problems. As an application, we consider examples on the velocity-tracking and
vorticity minimization problems with local controls.

This paper is organized as follows: In Sect. 2, we establish the well-posedness and regularity of solutions
of the state, linearized state and adjoint equations. The existence and regularity of the optimal controls
will be discussed in Sect. 3. Section 4 deals with the proposed numerical scheme for the optimal control
problem. Finally, numerical experiments based on the two commonly utilized finite elements for the
Navier–Stokes equation, the mini-finite and Taylor-Hood elements, will be presented in Sect. 5.

2. Analysis of the State, Linearized State and Adjoint Equations

The existence and uniqueness of solutions to the state equation in the optimal control problem (P) can be
established through a standard spectral Galerkin method. There are two possible directions that one may
pursue. One such approach is to successively consider intervals of length equal to the delay and show well-
posedness using the fact that the state equation is an Oseen equation at each subinterval. Alternatively,
one can proceed by following the classical strategy for the nonlinear Navier–Stokes equation. For the sake
of completeness and clarity, especially the required regularity and compatibility conditions on the initial
history, we discuss in detail the latter approach.

2.1. Preliminaries

Let us introduce the function spaces and notations that will be used throughout the paper. The dual
space of a Banach space Z will be denoted by Z∗ and 〈z∗, z〉Z∗,Z represents the duality pairing between
z∗ ∈ Z∗ and z ∈ Z. The set of all bounded linear operators from a Banach space U into a Banach space Z
is denoted by L(U,Z) and L(U) := L(U,U). We follow standard notations for the Lebesgue space Lp(Ω)
and Sobolev space Hr(Ω) for 1 ≤ p ≤ ∞ and r ∈ R, and denote the corresponding norms by ‖ · ‖Lp

and ‖ · ‖Hr , see [2] for more details. The closure in Hr(Ω) of the set C∞
0 (Ω) consisting of all infinitely

differentiable functions that vanish on a neighborhood of Γ will be denoted by Hr
0 (Ω). All throughout

the paper, we use the abbreviations

X := L2(Ω)2, W := H1
0 (Ω)2, M := L2(Ω)/R, Y := H1(Ω) ∩ M.

The solenoidal functions with no-slip boundary condition will be denoted by

H := {u ∈ X : div u = 0 in Ω, u · n = 0 on Γ}, V := W ∩ H,

where n is the unit outward vector normal to Γ. These are Hilbert spaces with respect to the inner
products in X and W . The embedding V ⊂ H is dense, continuous, and compact.

Let A : D(A) ⊂ H → H be the Stokes operator defined by Au = −PΔu for u ∈ D(A), where P :
X → H is the Leray projection operator associated with the Helmholtz decomposition X = H ⊕∇L2(Ω).
Since Ω ⊂ R

2 is either a convex polygonal domain or of class C2, then D(A) = V ∩ H2(Ω)2, see [39] and
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[49, Lemma III.2.1]. Equipped with the inner product (u, v)D(A) = (Au,Av)H , D(A) becomes a Hilbert
space. Moreover, the norms ‖ · ‖H2 and ‖ · ‖D(A) are equivalent in D(A).

It is well-known that A is a self-adjoint positive operator with dense domain and compact inverse. As
a consequence, H has an orthonormal basis {ϕn}∞

n=1 consisting of eigenfunctions of A with an associated
sequence of eigenvalues 0 < λ1 ≤ λ2 ≤ · · · where λk → ∞ as k → ∞. Each u ∈ H admits the unique
Fourier expansion u =

∑∞
k=1(u, ϕk)Hϕk. The domain and the action of the linear operator A can be

written as follows:

D(A) =

{

u ∈ H :
∞∑

k=1

(1 + λ2
k)|(u, ϕk)H |2 < ∞

}

, Au =
∞∑

k=1

λk(u, ϕk)Hϕk.

Let V k be the linear span of {ϕj}k
j=1 and PV k : H → H be the orthogonal projection of H onto V k, that

is, PV ku :=
∑k

j=1(u, ϕj)Hϕj . For each k, it holds that ‖PV k‖L(H) ≤ 1 and ‖PV ku − u‖H → u as k → ∞
whenever u ∈ H. Given u ∈ D(A), we have Au ∈ H and so ‖PV ku‖D(A) = ‖APV ku‖H = ‖PV kAu‖H ≤
‖Au‖H and ‖PV ku − u‖D(A) = ‖PV kAu − Au‖H → 0 as k → ∞. In particular, ‖PV k‖L(D(A)) ≤ 1 for
every k.

The square root A1/2 of A is well-defined and D(A1/2) = V . The following spectral representations
for the space V and its corresponding norm hold

V =

{

u ∈ H :
∞∑

k=1

λk|(u, ϕk)H |2 < ∞
}

, ‖u‖V =
( ∞∑

k=1

λk|(u, ϕk)H |2
)1/2

.

From the orthonormality of the basis, it follows from these representations that ‖PV k‖L(V ) ≤ 1 for every
k and each u ∈ V satisfies ‖PV ku − u‖V → 0 as k → ∞.

We will work in the Bochner spaces Lp(I, Z) for 1 ≤ p ≤ ∞ from an interval I = (a, b) into a real
Hilbert space Z, and C(Ī , Z) the space of continuous functions from Ī into Z equipped with their usual
norms ‖u‖C(Ī,Z) = supt∈Ī ‖u(t)‖Z , ‖v‖L∞(I,Z) = ess supt∈I ‖v(t)‖Z and

‖w‖Lp(I,Z) =
(∫

I

‖w(t)‖p
Z dt

)1/p

(1 ≤ p < ∞).

The space W k,p(I, Z) is the set of all u ∈ Lp(I, Z) having distributional derivatives ∂j
t u ∈ Lp(I, Z) for

0 ≤ j ≤ k, while Ck(Ī , Z) is the space of all functions u : Ī → X such that ∂j
t u ∈ C(Ī , X) for every

0 ≤ j ≤ k. We shall write Hk(I, Z) for W k,2(I, Z).
Consider the Banach space W p(I) := {u ∈ L2(I, V ) : ∂tu ∈ Lp(I, V ∗)} with the norm

‖u‖W p(I) := ‖u‖L2(I,V ) + ‖∂tu‖Lp(I,V ∗).

Then the embeddings W p(I) ⊂ C(Ī , V ∗) for 1 ≤ p ≤ ∞ and W 2(I) ⊂ C(Ī , H) are continuous. Moreover,
by the well-known Aubin-Lions-Simon Lemma [46], W p(I) ⊂ Lp(I,H) is compact for 1 < p < ∞. Let
V 2(I) := L2(I, V ) ∩ L∞(I,H) and V 2,1(I) := {w ∈ V 2(I) : ∂tw ∈ V 2(I)} = H1(I, V ) ∩ W 1,∞(I,H) be
endowed with the graph norms

‖v‖V 2(I) := ‖v‖L2(I,V ) + ‖v‖L∞(I,H), ‖w‖V 2,1(I) := ‖w‖V 2(I) + ‖∂tw‖V 2(I).

It holds that W 2(I) ⊂ V 2(I) and V 2,1(I) ⊂ V 2(I) continuously. By interpolation theory, we also have the
continuous embedding H2,1(I) := L2(I,D(A)) ∩ H1(I,H) ⊂ C(Ī , V ). Furthermore, H2,1(I) ⊂ L2(I, V )
is compact.

For the nonlinear convection term, we define the trilinear form b : W × W × W → R by

b(u, v, w) := ((u · ∇)v, w)X . (2.1)

It follows from the divergence theorem that b(u, v, w) = − b(u,w, v)− ((div u)v, w)X for each u, v, w ∈ W.
In particular, it holds that b(u, v, w) = −b(u,w, v) and b(u, v, v) = 0 for every u ∈ V and v, w ∈ W .
In writing the strong form of the adjoint equation, the following equation b(u, v, w) = ((∇v)�w, u)X for
every u ∈ V and v, w ∈ W will be utilized.
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For u ∈ V and v ∈ V , the distributional divergence div(u ⊗ v) ∈ V ∗ of u ⊗ v is defined by

〈div(u ⊗ v), w〉V ∗,V := −(u ⊗ v,∇w) = −b(u,w, v) ∀w ∈ V.

Let us recall in the following lemma the standard estimates for the trilinear form b, see [18,24,49] for
instance. In fact, these estimates follow from the Hölder, Gagliardo–Nirenberg, Agmon and Poincaré
inequalities.

Lemma 2.1. The trilinear form b satisfies the following estimates:

(a) |b(u, v, w)| ≤ c‖u‖1/2
H ‖u‖1/2

V ‖v‖1/2
H ‖v‖1/2

V ‖w‖V for every u, v, w ∈ V ,
(b) |b(u, v, w)| ≤ c‖u‖1/2

H ‖u‖1/2
V ‖v‖1/2

V ‖Av‖1/2
H ‖w‖H for every u ∈ V , v ∈ D(A), w ∈ H,

(c) |b(u, v, w)| ≤ c‖u‖H‖v‖V ‖Aw‖H for every u ∈ H, v ∈ V , w ∈ D(A),
(d) |b(u, v, w)| ≤ c‖Au‖H‖v‖V ‖w‖H for every u ∈ D(A), v ∈ V , w ∈ H,
for some constant c > 0 independent of u, v and w.

In what follows, the time, history and future domains will be denoted by

I := (0, T ), Ir := (−r, 0), Ir := (T, T + r), Jr := (−r, T ), Jr := (0, T + r) (2.2)

where we take without of loss of generality that r < T . We shall use c > 0 and c > 0 to denote generic
constants and continuous functions, respectively, whose values may differ on each line. To emphasize the
dependence on other quantities, we will put a subscript on c or c.

2.2. Analysis of the State Equation

In this subsection, we study the existence and uniqueness of weak solutions to the state equation and
provide the regularity of the solutions under suitable smoothness and compatibility of the initial data
and history.

Given u0 ∈ H, z ∈ V 2(Ir) and f ∈ L2(I, V ∗), a function u ∈ W 2(I) is called a weak solution of
{

∂tu − νΔu + div(ur ⊗ u) + ∇p = f in ΩT ,

div u = 0 in ΩT , u = 0 in ΓT , u(0) = u0 in Ω, u = z in Ωr,
(2.3)

if the following variational equation holds

〈∂tu(t), ϕ〉V ∗,V + ν(∇u(t),∇ϕ) − b(ur(t), ϕ, u(t)) = 〈f(t), ϕ〉V ∗,V ∀ϕ ∈ V (2.4)

for a.e. t ∈ I, u(0) = u0 in H and u = z in V 2(Ir).
The point-wise value u(0) is well-defined since W 2(I) ⊂ C(Ī , H). Now, we write an equivalent and

convenient formulation of (2.3) as an abstract evolution equation. First, let us extend the definition of
the Stokes operator A : L2(I, V ) → L2(I, V ∗) to the time-dependent case by

〈Av, ϕ〉L2(I,V ∗),L2(I,V ) :=
∫

I

〈Av(t), ϕ(t)〉V ∗,V dt =
∫

I

(∇v(t),∇ϕ(t))X2 dt.

Given z ∈ V 2(Ir), let Bz : W 2(I) → L2(I, V ∗) be the operator defined by

〈Bz(u), ϕ〉 = −
∫ r

0

b(zr(t), ϕ(t), u(t)) dt −
∫ T

r

b(ur(t), ϕ(t), u(t)) dt.

An application of the Hölder inequality and Lemma 2.1(a) yields

‖Bz(u)‖L2(I,V ∗) ≤ c(‖z‖V 2(Ir) + ‖u‖V 2(I))‖u‖L2(I,V ). (2.5)

Then u ∈ W 2(I) is a weak solution of (2.3) if and only if it satisfies the differential equation
{

∂tu + νAu + Bz(u) = f in L2(I, V ∗),

u(0) = u0 in H.
(2.6)
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Take note here that the history was included in the definition of the nonlinear operator Bz and treated
as a coefficient of the evolution equation. With regards to the existence of weak solutions, we have the
following theorem. Here, the regularity of the initial history is different from the one provided in [51] for
the three-dimensional case.

Theorem 2.2. Given u0 ∈ H, z ∈ V 2(Ir) and f ∈ L2(I, V ∗), the evolution equation (2.6) has a unique
solution u ∈ W 2(I) and there exists a constant c > 0 such that

‖u‖V 2(I) ≤ c(‖u0‖H + ‖f‖L2(I,V ∗)) (2.7)

‖∂tu‖L2(I,V ∗) ≤ c((1 + ‖z‖V 2(Ir) + ‖u‖V 2(I))‖u‖L2(I,V ) + ‖f‖L2(I,V ∗)). (2.8)

Proof. The proof is based on the spectral Galerkin method, which we provide for the sake of the reader.
Take the approximations u0k := PV ku0 ∈ V k and zk := PV kz ∈ L∞(Ir, V

k) for the initial data and
initial history. Consider the ansatz uk(t, x) =

∑k
j=1 αj(t)ϕj(x), where αj ∈ H1(I) for j = 1, . . . , n, to the

following system of nonlinear delay differential equations
{

∂tuk + P ∗
V k(νAuk + Bzk

(uk)) = P ∗
V kf in L2(I, V k),

uk(0) = u0k in V k, uk = zk in L∞(Ir, V
k).

(2.9)

Here, we have extended the projection operators PV k into the time-dependent case in the obvious way so
that PV k : L2(I, V k) → L2(I, V ). Thus, for the adjoint operator, we have P ∗

V k : L2(I, V ∗) → L2(I, V k),
where L2(I, V k)∗ was identified with L2(I, V k).

According to the classical Cauchy–Lipschitz theory of delay differential equations, the above system
admits a unique solution uk ∈ H1(0, tk;V k) for some 0 < tk ≤ T . The a priori estimates below shows
that tk = T . Indeed, taking the inner product of the first equation (2.9) with uk in H and applying the
Young inequality, we obtain

1
2

d
dt

‖uk(t)‖2
H + ν‖uk(t)‖2

V ≤ 1
2ν

‖f(t)‖2
V ∗ +

ν

2
‖uk(t)‖2

V .

Integrating over [0, t] for t ∈ (0, tk), we deduce that

‖uk(t)‖2
H + ν

∫ t

0

‖uk(s)‖2
V ds ≤ ‖u0k‖2

H +
1
ν

∫ t

0

‖f(s)‖2
V ∗ ds.

Since ‖u0k‖H ≤ ‖u0‖H , ‖zk‖V 2(Ir) ≤ ‖z‖V 2(Ir), and by the virtue of the Gronwall Lemma, there exists
a constant c > 0 such that

‖uk‖V 2(I) = ‖uk‖L∞(I,H) + ‖uk‖L2(I,V ) ≤ c(‖u0‖H + ‖f‖L2(I,V ∗)). (2.10)

Using a classical continuation argument, this implies that (2.9) has a solution on the whole interval I.
Since ‖P ∗

V k‖L(L2(I,V ∗)) ≤ 1 for each k, we obtain from (2.5) that

‖∂tuk‖L2(I,V ∗) ≤ c((1 + ‖zk‖V 2(Ir) + ‖uk‖V 2(I))‖uk‖L2(I,V ) + ‖f‖L2(I,V ∗)). (2.11)

From the a priori estimates (2.10) and (2.11), the sequences {uk}∞
k=1 and {ur

k}∞
k=1 are bounded in

W 2(I) and V 2(Jr), respectively. Therefore, one can take a subsequence, denoted by the same indices for
simplicity, so that uk ⇀ u in L2(I, V ), Auk ⇀ Au in L2(I, V ∗), ∂tuk ⇀ ∂tu in L2(I, V ∗) and ur

k
∗
⇀ ur in

L∞(Jr,H) for some u ∈ W 2(I)∩V 2(Jr). By the compactness of W 2(I) ⊂ L2(I,H), a further subsequence
can be extracted in such a way that uk → u in L2(I,H). In particular, ur

k → ur in L2(Jr,H) and u = z
in L2(Ir,H), since zk → z in L2(Ir,H).
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Let us now pass to the limit. Take ϕ ∈ L4(I, V ). From Lemma 2.1(a) and the Hölder inequality, we
obtain, by letting k → ∞, that

|〈Bzk
(uk) − Bz(u), ϕ〉L2(I,V ∗),L2(I,V )| ≤

∫

I

|(ur ⊗ u − ur
k ⊗ uk,∇ϕ)X |dt

≤
∫

I

|((ur − ur
k) ⊗ u,∇ϕ)X |dt +

∫

I

|(ur
k ⊗ (u − uk),∇ϕ)X |dt

≤ c‖ur
k − ur‖1/2

L2(I,H)‖ur
k − u‖1/2

L2(I,V )(‖u‖L2(I,V ) + ‖ur
k‖L2(I,V ))‖ϕ‖L4(I,V ) → 0.

By the density of L4(I, V ) in L2(I, V ) and the boundedness of {Bzk
(uk)}∞

k=1 in L2(I, V ∗), this implies
Bzk

(uk) ⇀ Bz(u) in L2(I, V ∗). Therefore,

∂tuk + P ∗
V k(νAuk + Bzk

(uk) − f) ⇀ ∂tu + νAu + Bz(u) − f in L2(I, V ∗).

By the continuity of the map ϕ �→ ϕ(0) from W 2(I) to H, we get uk(0) ⇀ u(0) in H. Since uk(0) =
u0k → u0 in H, we obtain that u(0) = u0. Thus u is a solution to (2.6). The a priori estimates (2.7)
and (2.8) follows from taking the limit inferior of (2.10) and (2.11), respectively, and utilizing the lower
semicontinuity of the norm with respect to weak and weak-star topologies.

For the uniqueness of the solution, it is enough to observe that on the interval [0, r], (2.6) is a linearized
Navier–Stokes equation, whose uniqueness of solution follows from standard results. We then apply this to
the next interval [r, 2r] to conclude that the solution of (2.6) is unique on the interval [0, 2r]. Continuing
this procedure leads to the uniqueness of solution to (2.6) on the whole time interval I. �

Under appropriate conditions on the initial history, we recover the same regularity as in the case of
Navier–Stokes equation without delay. This property is reflected on the existence of strong solutions as
shown in the theorem below.

Theorem 2.3. Suppose that u0 ∈ V , z ∈ L∞(Ir, V ) and f ∈ L2(I,X). Then the solution of (2.6) satisfies
u ∈ H2,1(I) and there exists a unique p ∈ L2(I, Y ) such that

∂tu + νAu + Bz(u) + ∇p = f in L2(I,X). (2.12)

Furthermore, there exists a continuous function c > 0 such that

‖u‖H2,1(I) + ‖p‖L2(I,Y ) ≤ c(‖u0‖V , ‖z‖L∞(Ir,V ), ‖f‖L2(I,X)). (2.13)

In particular, it holds that u ∈ C(Ī , V ).

Proof. Let us adopt the notations in the proof of Theorem 2.2. Taking the inner product of (2.9) with
Auk in H and invoking the Young inequality, one has

1
2

d
dt

‖uk(t)‖2
V + ν‖Auk(t)‖2

H + b(ur
k(t), uk(t), Auk(t)) ≤ 1

ν
‖f(t)‖2

X +
ν

4
‖Auk(t)‖2

H . (2.14)

The trilinear term in (2.14) can be estimated according to Lemma 2.1(b) and the Young inequality as
follows

|b(ur
k(t), uk(t), Auk(t))| ≤ 1

ν
‖ur

k(t)‖2
H‖ur

k(t)‖2
V ‖uk(t)‖2

V +
ν

4
‖Auk(t)‖2

H .

Using this in (2.14), and integrating over [0, t] in the resulting estimate, we obtain

‖uk(t)‖2
V + ν

∫ t

0

‖Auk(s)‖2
H ds ≤ ‖u0k‖2

V +
∫ t

0

c‖ur
k(s)‖2

H‖ur
k(s)‖2

V ‖uk(s)‖2
V +

2
ν

‖f(s)‖2
X ds.

From ‖u0k‖V ≤ ‖u0‖V , ‖zk‖V 2(Ir) ≤ c‖z‖L∞(Ir,V ), the Gronwall Lemma and (2.10), there exists a
continuous function c > 0 such that

‖uk‖L∞(I,V ) + ‖uk‖L2(I,D(A)) ≤ c(‖u0‖V , ‖z‖L∞(Ir,V ), ‖f‖L2(I,X)). (2.15)
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Using (2.9), Lemma 2.1(b), ‖P ∗
V k‖L(L2(I,H)) ≤ 1 and the continuity of the embeddings D(A) ⊂ V ⊂ H,

we have

‖∂tuk‖L2(I,H) ≤ c((1 + ‖ur
k‖L∞(I,V ))‖uk‖L2(I,D(A)) + ‖f‖L2(I,X)). (2.16)

Thus, {uk}∞
k=1 is bounded in H2,1(I), hence after extraction of an appropriate subsequence, the weak

limit of this sequence in H2,1(I) is the solution of (2.6). Passing to the limit inferior as k → ∞ in the a
priori estimates (2.15) and (2.16), we deduce (2.13) but without the pressure term. On the other hand,
the existence and uniqueness of p ∈ L2(I, Y ) satisfying (2.12) follows from de Rham’s Theorem and it
holds that

‖p‖L2(I,Y ) ≤ c(‖∂tu‖L2(I,H) + (1 + ‖ur‖L∞(I,V ))‖u‖L2(I,D(A)) + ‖f‖L2(I,X)).

Therefore, we have (2.13) and this completes the proof of the theorem. �

Theorem 2.4. If u0 ∈ D(A) and z ∈ V 2,1(Ir) ∩ L2(Ir,D(A)) satisfy the compatibility condition z(0) = u0

and the source term f ∈ H1(I, V ∗) satisfies f(0) ∈ X, then the solution of (2.6) satisfies u ∈ V 2,1(Jr) ∩
L2(Jr,D(A)). Moreover, there is a continuous function c > 0 such that

‖u‖V 2,1(Jr) ∩ L2(Jr,D(A)) ≤ c(‖u0‖D(A), ‖z‖V 2,1(Ir) ∩ L2(Ir,D(A)), ‖f‖H1(I,V ∗), ‖f(0)‖X).

In particular, we have u ∈ C(J̄r, V ).

Proof. We follow the notations in the proofs of the previous theorems. First, let us note that the com-
patibility condition z(0) = u0 is carried out in the finite dimensional approximation, that is, zk(0) =
PV kz(0) = PV ku0 = u0k for every k. This compatibility, together with the regularity zk ∈ W 1,∞(Ir, V

k)
and f ∈ H1(I, V ∗), implies that uk ∈ H2(I, V k) ∩ H1(Jr, V

k) according to classical regularity results
for delay differential equations. Therefore, we may differentiate the system (2.9). Doing so, we see that
yk := ∂tuk satisfies the delay differential equation

{
∂tyk + P ∗

V k(νAyk + Bzk
(yk) + Byk

(uk)) = P ∗
V k∂tf in L2(I, V k),

yk(0) = ∂tuk(0) in V k, yk = ∂tzk in L∞(Ir, V
k).

Taking the inner product of the differential equation with yk in H gives us
1
2

d
dt

‖yk(t)‖2
H + ν‖yk(t)‖2

V − b(yr
k(t), yk(t), uk(t)) ≤ 1

ν
‖∂tf(t)‖2

V ∗ +
ν

4
‖yk(t)‖2

V .

From Lemma 2.1(a), we have

|b(yr
k(t), yk(t), uk(t))| ≤ c

ν
‖yr

k(t)‖2
V ‖uk(t)‖2

V +
ν

4
‖yk(t)‖2

V .

Substituting this estimate to the previous one, integrating over [0, t] and then applying the Gronwall-
type Lemma 7.1 with φ(t) = 1

2‖yk(t)‖2
H , ϕ(t) = ν

2‖yk(t)‖2
V , ψ(t) = 1

ν ‖∂tf(t)‖2
V ∗ , α(t) = β(t) = 0,

γ(t) = c
ν ‖uk(t)‖2

V and a = 1
2‖yk(0)‖2

H , there is a continuous function c > 0 such that

‖yk‖V 2(I) ≤ c(‖yk(0)‖H , ‖uk‖L∞(I,V ), ‖∂tzk‖V 2(Ir), ‖∂tf‖L2(I,V ∗)). (2.17)

Note that the sequences {uk}∞
k=1 and {zk}∞

k=1 are bounded in L∞(I, V ) and V 2,1(Ir), respectively,
and uk

∗
⇀ u in L∞(I, V ) and zk

∗
⇀ z in V 2,1(Ir). Thus, it remains to estimate ‖yk(0)‖H to establish the

boundedness of {yk}∞
k=1 in V 2(I). Indeed, setting t = 0 in (2.9) and then taking the norm of the resulting

equation in X, we obtain that

‖yk(0)‖H ≤ c(‖Au0k‖H + ‖(ur
k(0) · ∇)u0k‖X + ‖f(0)‖X)

≤ c(‖Au0‖H + ‖z‖H1(Ir,V )‖Au0‖H + ‖f(0)‖X).

As a result, {uk}∞
k=1 is bounded in V 2,1(Jr), and for a subsequence uk ⇀ u in V 2,1(Jr). The a priori

estimate in the statement of the theorem follows by taking the sum of (2.13) with the inequality obtained
by passing to the limit inferior in (2.17) and ‖uk‖V 2,1(Ir) ∩ L2(Ir,D(A)) ≤ ‖z‖V 2,1(Ir) ∩ L2(Ir,D(A)). From the
compatibility condition, we have u ∈ H2,1(Jr) ⊂ C(J̄r, V ). �
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2.3. Analysis of the Linearized State Equation

In this subsection, we study the linearization of the state equation (2.6) at a given element u ∈ W 2(I).
Suppose that z ∈ V 2(Ir). From the quadratic nature of Bz, one can verify immediately that Bz ∈
C∞(W 2(I), L2(I, V ∗)). Moreover, the action of the Fréchet derivative of Bz at u ∈ W 2(I) in the direction
h ∈ W 2(I) is given by

〈B′
z(u)h, ϕ〉L2(I,V ∗),L2(I,V )

= −
∫ r

0

b(zr(t), ϕ(t), h(t)) dt −
∫ T

r

b(ur(t), ϕ(t), h(t)) dt −
∫ T

r

b(hr(t), ϕ(t), u(t)) dt.

Likewise, the action of the second Fréchet derivative of Bz at u in the directions h1, h2 ∈ W 2(I) is

〈B′′
z (u)[h1, h2], ϕ〉L2(I,V ∗),L2(I,V ) = −

∫ T

r

b(hr
1(t), ϕ(t), h2(t)) dt −

∫ T

r

b(hr
2(t), ϕ(t), h1(t)) dt.

Take note that B′′
z (u) is independent on u, hence the derivatives of Bz beyond order 3 vanish.

Theorem 2.5. Given z ∈ V 2(Ir), u ∈ W 2(I), v0 ∈ H and f ∈ L2(I, V ∗), the linearized state equation
{

∂tv + νAv + B′
z(u)v = f in L2(I, V ∗),

v(0) = v0 in H,
(2.18)

has a unique solution v ∈ W 2(I). Moreover, there exists a continuous function c > 0 such that

‖v‖W 2(I) ≤ c(‖u‖W 2(I), ‖z‖V 2(Ir))(‖v0‖H + ‖f‖L2(I,V ∗)). (2.19)

Proof. The proof is similar to the one provided in Theorem 2.2. For this reason, the details are omitted
to avoid repetition. �

Remark 2.6. The solution of the linearized state equation (2.18) can be regarded as the weak solution of
{

∂tv − νΔv + div(ur ⊗ v) + div(vr ⊗ u) + ∇
 = f in ΩT ,

div v = 0 in ΩT , v = 0 in ΓT , v(0) = v0 in Ω, v = 0 in Ωr,
(2.20)

where u = z in Ωr and 
 is the corresponding linearized pressure. Sufficient conditions for the weak
solution v to be in H2,1(I) and for the existence of the pressure 
 ∈ L2(I, Y ) are provided in the
following theorem.

Theorem 2.7. If z ∈ L∞(Ir, V ), u ∈ H2,1(I), v0 ∈ V and f ∈ L2(I,X), then the solution of (2.18)
satisfies v ∈ H2,1(I) and there exists a unique 
 ∈ L2(I, Y ) such that

∂tv + νAv + B′
z(u)v + ∇
 = f in L2(I,X). (2.21)

Moreover, there is a continuous function c > 0 such that

‖v‖H2,1(I) + ‖
‖L2(I,Y ) ≤ c(‖u‖H2,1(I), ‖z‖L∞(Ir,V ))(‖v0‖V + ‖f‖L2(I,X)). (2.22)

Proof. The proof is similar to the case of the state equations, see Theorem 2.3, hence we only derive the
necessary a priori estimates. Moreover, we drop the indices k in the associated approximating spectral
Galerkin system. Using the test function Av and the antisymmetry of b, we get

1
2

d
dt

‖v(t)‖2
V + ν‖Av(t)‖2

H + b(ur(t), v(t), Av(t)) + b(vr(t), v(t), Au(t))

≤ 1
2ν

‖f(t)‖2
X +

ν

2
‖Av(t)‖2

H . (2.23)
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For the trilinear terms on the left hand side, one can estimate them from above with the help of
Lemma 2.1(b) and the Cauchy–Schwarz inequality as follows

|b(ur(t), v(t), Av(t))| ≤ c‖ur(t)‖2
H‖ur(t)‖2

V ‖v(t)‖2
V +

ν

4
‖Av(t)‖2

H

|b(vr(t), u(t), Av(t))| ≤ c(‖u(t)‖2
V ‖vr(t)‖2

V + ‖Au(t)‖2
H‖vr(t)‖2

V ) +
ν

8
‖Av(t)‖2

H .

Using these estimates in the energy inequality (2.23) and then applying the Gronwall-type Lemma 7.1
with φ(t) = 1

2‖v(t)‖2
V , ϕ(t) = ν

8‖Av(t)‖2
H , ψ(t) = 1

2ν ‖f(t)‖2
X , α(t) = c‖ur(t)‖2

H‖ur(t)‖2
V , β(t) =

c(‖u(t)‖2
V + ‖Au(t)‖2

H), γ(t) = 0 and a = 1
2‖v(0)‖2

V , we obtain

‖v‖L∞(I,V ) + ‖v‖L2(I,D(A)) ≤ c(‖u‖H2,1(I), ‖z‖L∞(Ir,V ))(‖v0‖V + ‖f‖L2(I,X))

for some continuous function c > 0. Hence, the time derivative of v can be estimated by

‖∂tv‖L2(I,H) ≤ c(‖Av‖L2(I,H) + ‖B′
z(u)v‖L2(I,H) + ‖f‖L2(I,X))

≤ c((1 + ‖z‖L∞(Ir,V ) + ‖u‖L∞(I,V ))‖Av‖L2(I,H) + ‖f‖L2(I,X)).

In the second inequality, we used Lemma 2.1(b). The last two inequalities imply that v ∈ H2,1(I) and
(2.3), but without the term involving 
. However, the existence of a unique pressure 
 ∈ L2(I, Y )
satisfying (2.21) and (2.22) can be established as in the proof of Theorem 2.3. �

Define the map Lz : W 2(I) → L(W 2(I), L2(I, V ∗)) according to

Lz(u)v = ∂tv + νAv + B′
z(u)v ∀u, v ∈ W 2(I).

Also, let Nz : W 2(I) → L(W 2(I), L2(I, V ∗) × H) be given by

Nz(u)v = (Lz(u)v, v(0)).

It follows from Theorem 2.5 that the linear operator Nz(u) ∈ L(W 2(I), L2(I, V ∗)×H) is an isomorphism
for each u ∈ W 2(I). In particular, Lz(u) ∈ L(W 2

0 (I), L2(I, V ∗)) is an isomorphism, where W 2
0 (I) := {v ∈

W 2(I) : v(0) = 0}, and from (2.19) we obtain that

‖Lz(u)−1‖L(L2(I,V ∗),W 2
0 (I)) ≤ c(‖u‖W 2(I), ‖z‖V 2(Ir)). (2.24)

If z ∈ L∞(Ir, V ), then Lz : H2,1(I) → L(H2,1
0 (I), L2(I,X)) according to Theorem 2.7, and

‖Lz(u)−1‖L(L2(I,X),H2,1
0 (I)) ≤ c(‖u‖H2,1(I), ‖z‖L∞(Ir,V )) (2.25)

where H2,1
0 (I) := {v ∈ H2,1(I) : v(0) = 0}.

For the rest of the paper, Q := L2(I,X) will denote the space of controls. Given fixed initial data
u0 ∈ H, history z ∈ V 2(Ir) and source term f ∈ L2(I, V ∗), let us define the nonlinear operator F :
W 2(I) × Q → L2(I, V ∗) × H by

F (u, q) = (∂tu + νAu + Bz(u) − f − q, u(0) − u0).

If q ∈ Q ⊂ L2(I, V ∗), then there exists a unique u ∈ W 2(I) such that F (u, q) = 0 by Theorem 2.2.
Conversely, if F (u, q) = 0 then u is the solution of (2.6) with f replaced by f + q. In this way, we define
the so-called control-to-state operator S : Q → W 2(I) by S(q) = u if and only if F (u, q) = 0. Note that
F , and hence S, depends on the triple (u0, z, f), however, we shall not explicitly write this dependence
for simplicity of notation.

Theorem 2.8. Let u0 ∈ H, z ∈ V 2(Ir) and f ∈ L2(I, V ∗). Then S ∈ C∞(Q,W 2(I)). The action of the
first and second Fréchet derivatives of S at q in the directions g ∈ Q and (g1, g2) ∈ Q × Q are given by

S′(q)g = Lz(S(q))−1g

S′′(q)[g1, g2] = −Lz(S(q))−1B′′
z (u)[S′(q)g1, S

′(q)g2].
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Proof. One can easily see that F ∈ C∞(W 2(I) × Q,L2(I, V ∗) × H). Let q� ∈ Q and u� := S(q�) ∈
W 2(I), so that F (u�, q�) = 0. We have ∂

∂uF (u�, q�) = Nz(u�) ∈ L(W 2(I), L2(I, V ∗) × H), which is an
isomorphism according to the above discussion. Therefore, by the Implicit Function Theorem [54, Section
4.7], there exist open neighborhoods Oq� ⊂ Q and Ou� ⊂ W 2(I) of q� and u�, respectively, and a map
S̃ ∈ C∞(Oq� , Ou�) such that F (S̃(q), q) = 0 for every q ∈ Oq� . This implies that S̃ = S in Oq� by the
definition of S. Since q� ∈ Q is arbitrary, one obtains that S ∈ C∞(Q,W 2(I)).

Applying the chain rule to F (S(q), q) = 0, we have that S′(q)g = −Lz(S(q))−1 ∂
∂q F (S(q), q)g =

Lz(S(q))−1g. This implies that Lz(S(q))S′(q)g = g. Setting g = g1, taking the derivative in the direction
of g2, and then invoking the chain rule once more to the resulting equation, one has

L′
z(S(q))[S′(q)g1, S

′(q)g2] + Lz(S(q))S′′(q)[g1, g2] = 0.

The result for the second derivative now follows from L′
z(u)[v1, v2] = −B′′

z (u)[v1, v2] for u ∈ W 2(I) and
v1, v2 ∈ W 2

0 (I). Here, we note that L′
z : W 2(I) → L(W 2(I),L(W 2

0 (I), L2(I, V ∗))), where the latter space
is isometrically isomorphic to L(W 2(I) × W 2

0 (I), L2(I, V ∗)). �

Remark 2.9. If u0 ∈ V , z ∈ L∞(Ir, V ) and f ∈ L2(I,X) then S ∈ C∞(Q,H2,1(I)). This is a consequence
of the fact that Nz(u) ∈ L(H2,1(I), Q × V ) is an isomorphism for every u ∈ H2,1(I).

In terms of the strong formulation, S′(q)g = v if and only v is the weak solution of (2.20) with u = S(q),
f = g and v0 = 0. Also, S′′(q)[g1, g2] = y if and only if y is the weak solution of

{
∂ty − νΔy + div(ur ⊗ y) + div(yr ⊗ u) + ∇� = −div(vr

1 ⊗ v2) − div(vr
2 ⊗ v) in ΩT ,

div y = 0 in ΩT , y = 0 in ΓT , y(0) = 0 in Ω, y = 0 in Ωr,
(2.26)

where u = S(q), v1 = S′(q)g1, v2 = S′(q)g2 and u = z in Ωr.

Theorem 2.10. If u0 ∈ H, z ∈ V 2(Ir) and f ∈ L2(I, V ∗), then the map S : Q → W 2(I) is weak-weak
continuous, that is, qk ⇀ q in Q implies S(qk) ⇀ S(q) in W 2(I). Moreover, if u0 ∈ V , z ∈ L∞(Ir, V )
and f ∈ L2(I,X), then S : Q → H2,1(I) is weak-weak continuous.

Proof. Since Q and W 2(I) are both reflexive and separable, any closed ball in these spaces is metrizable.
Hence, with respect to the weak topologies, continuity is equivalent to weak sequential continuity [22,
page 426]. Suppose that qk ⇀ q in Q. Then {qk}∞

k=1 is bounded in Q and {S(qk)}∞
k=1 is bounded in W 2(I)

by Theorem 2.2. Therefore, up to a subsequence, S(qk) ⇀ u in W 2(I) for some u ∈ W 2(I). Following
the passage of limit in the proof of Theorem 2.2, it can be deduced that S(q) = u. Since u is uniquely
determined, this implies that the whole sequence {S(qk)}∞

k=1 must converge weakly to u in W 2(I). Indeed,
this follows from the fact that every subsequence of {S(qk)}∞

k=1 has a subsequence that converges weakly
to S(q). With the help of Theorem 2.3, the proof of the second statement can be handled in a similar
manner. �

2.4. Analysis of the Adjoint Equation

In this subsection, we study the adjoint problem corresponding to (2.18). According to the discussions in
the previous subsection, S′(q) = Lz(S(q))−1 ∈ L(L2(I, V ∗),W 2

0 (I)). In particular, S′(q)∗ = Lz(S(q))−∗ ∈
L(W 2

0 (I)∗, L2(I, V )).
The action of the adjoint B′

z(u)∗ : L2(I, V ) → C∞
0 (I, V )∗ of the linear operator B′

z(u) : C∞
0 (I, V ) →

L2(I, V ∗), where u ∈ W 2(I) and z ∈ V 2(Ir), is given by

〈B′
z(u)∗w,ϕ〉C∞

0 (I,V )∗,C∞
0 (I,V ) = −

∫ r

0

b(zr(t), w(t), ϕ(t)) dt −
∫ T

r

b(ur(t), w(t), ϕ(t)) dt

−
∫ T−r

0

b(ϕ(t), w−r(t), u−r(t)) dt
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for w ∈ L2(I, V ) and ϕ ∈ C∞
0 (I, V ). Here, we recall that u−r(t) := u(t + r) and w−r(t) := w(t + r). If

u ∈ W 2(I) and z ∈ V 2(Ir), then from Lemma 2.1(a) and the Hölder inequality

|〈B′
z(u)∗w,ϕ〉C∞

0 (I,V )∗,C∞
0 (I,V )| ≤ c(‖z‖V 2(Ir) + ‖u‖W 2(I))‖w‖L2(I,V )‖ϕ‖L4(I,V ).

By density of C∞
0 (I, V ) in L4(I, V ), it follows that B′

z(u)∗w ∈ L4/3(I, V ∗).
To treat the tracking part at the final time, let us define the linear map eT : H → W 2

0 (I)∗ by

〈eT v, w〉W 2
0 (I)∗,W 2

0 (I) := (v, w(T ))H , v ∈ H, w ∈ W 2
0 (I).

This operator is bounded since ‖eT v‖W 2
0 (I)∗ ≤ c‖v‖H for every v ∈ H, where c > 0 is the constant

corresponding to the continuous embedding W 2
0 (I) ⊂ C(Ī , H).

Theorem 2.11. Assume that z ∈ V 2(Ir), u ∈ W 2(I), gd ∈ L2(I, V ∗) and wT ∈ H. Then the function
w := Lz(u)−∗(gd + eT wT ) ∈ W 4/3(I) is precisely the unique solution of

{
−∂tw + νAw + B′

z(u)∗w = gd in L4/3(I, V ∗),

w(T ) = wT in H,
(2.27)

and there exists a continuous function c > 0 such that

‖w‖W 4/3(I) ≤ c(‖u‖W 2(I), ‖z‖V 2(Ir))(‖wT ‖H + ‖gd‖L2(I,V ∗)). (2.28)

Proof. The continuity of the embedding L2(I, V ∗) ⊂ W 2
0 (I)∗ and the boundedness of eT imply that

gd + eT wT ∈ W 2
0 (I)∗ and there holds ‖gd + eT wT ‖W 2

0 (I)∗ ≤ c(‖gd‖L2(I,V ∗) + ‖wT ‖H). Observe that the
equation w = Lz(u)−∗(gd + eT wT ) is equivalent to the variational problem

〈∂tv + νAv + B′
z(u)v, w〉L2(I,V ∗),L2(I,V ) = 〈gd, v〉L2(I,V ∗),L2(I,V ) + (v(T ), wT )H (2.29)

for every v ∈ W 2
0 (I). Using (2.24) and ‖Lz(u)−∗‖L(W 2

0 (I)∗,L2(I,V )) = ‖Lz(u)−1‖L(L2(I,V ∗),W 2
0 (I)), one

obtains that

‖w‖L2(I,V ) ≤ c(‖u‖W 2(I), ‖z‖V 2(Ir))(‖wT ‖H + ‖gd‖L2(I,V ∗)). (2.30)

Taking v ∈ C∞
0 (I, V ) in (2.29), we see that ∂tw = νAw+B′

z(u)∗w−gd in C∞
0 (I, V )∗. Since B′

z(u)∗w ∈
L4/3(I, V ∗) and νAw − gd ∈ L2(I, V ∗) ⊂ L4/3(I, V ∗), it follows that ∂tw ∈ L4/3(I, V ∗) and it satisfies
the estimate

‖∂tw‖L4/3(I,V ∗) ≤ c((1 + ‖z‖V 2(Ir) + ‖u‖W 2(I))‖w‖L2(I,V ) + ‖gd‖L2(I,V ∗)). (2.31)

Therefore, w ∈ W 4/3(I) and (2.28) is verified by the previous estimates (2.30) and (2.31).
To demonstrate the terminal condition w(T ) = wT , we shall proceed by a density argument. Since

C1(Ī , V ) is dense in W 4/3(I, V ) [45, Lemma 7.2], there is a sequence {wk}∞
k=1 in C1(Ī , V ) such that

wk → w in W 4/3(I, V ). Given ϕ ∈ V and χ ∈ C1(Ī) such that χ(0) = 0 and χ(T ) = 1, we have
χϕ ∈ W 2

0 (I) ∩ L4(I, V ), and by invoking the continuity of the map ψ �→ ψ(T ) from W 4/3(I) into V ∗, we
deduce by partial integration that

〈∂t(χϕ), w〉L2(I,V ∗),L2(I,V ) = lim
k→∞

((ϕ,wk(T ))H − (χϕ, ∂twk)L2(I,X))

= 〈w(T ), ϕ〉V ∗,V − 〈∂tw,χϕ〉L4(I,V ∗),L4(I,V ).

Since ϕ ∈ V is arbitrary, it follows from the first equation in (2.27) and (2.29) with v = χϕ that
w(T ) = wT .

Conversely, if w satisfies (2.27), then (2.29) holds for every v ∈ W 2
0 (I) ∩ L4(I, V ), and hence for every

v ∈ W 2
0 (I) by density of W 2

0 (I)∩L4(I, V ) in W 2
0 (I) as well as the continuity of Lz(u) : W 2

0 (I) → L2(I, V ∗).
Therefore, w = Lz(u)−∗(gd + eT wT ) and the proof of the theorem is now complete. �
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Remark 2.12. The function w = Lz(u)−∗(gd + eT wT ) can be viewed as the unique weak solution of the
backward-in-time linear system with homogeneous future data

{
− ∂tw − νΔw − (ur · ∇)w − (∇w−r)�u−r + ∇π = gd in ΩT ,

div w = 0 in ΩT , w = 0 in ΓT , w(T ) = wT in Ω, w = 0 in ΩT+r,
(2.32)

where ΩT+r := (T, T + r) × Ω, u = z in Ωr, and π can be regarded as the associated adjoint pressure.
Since the convection term in the state equation was written in divergence form, the above dual problem
is not the usual form compared to the one in the literature for the Navier–Stokes equation without
delay, specifically, the term involving − (∇w−r)�u−r. However, in view of the weak formulations, these
representations of the adjoint equation are equivalent for r = 0.

We now show that the weak solution of the adjoint problem (2.27) enjoys additional regularity, provided
that of course the initial data and initial history also satisfy appropriate regularity and compatibility
conditions.

Corollary 2.13. Suppose that wT ∈ H, z ∈ L∞(Ir, V ), u ∈ H2,1(I) and gd ∈ L2(I, V ∗). Then the solution
of (2.27) satisfies w ∈ W 2(I) and for some continuous function c > 0 it holds that

‖w‖W 2(I) ≤ c(‖u‖H2,1(I), ‖z‖L∞(Ir,V ))(‖wT ‖H + ‖gd‖L2(I,V ∗)). (2.33)

Proof. Using the continuity of H2,1(I) ⊂ L∞(I, V ), we obtain B′
z(u)∗w ∈ L2(I, V ∗) and

‖B′
z(u)∗w‖L2(I,V ∗) ≤ c(‖u‖H2,1(I), ‖z‖L∞(Ir,V ))‖w‖L2(I,V ).

Therefore, from the proof of the previous theorem, we deduce that w ∈ W 2(I), and the estimate (2.33)
follows immediately from this estimate along with (2.28). �

Theorem 2.14. If wT ∈ V , z ∈ L∞(Ir, V ), u ∈ H2,1(I) and gd ∈ L2(I,X), then the solution of (2.27)
satisfies w ∈ H2,1(I). There exists a unique π ∈ L2(I, Y ) such that

−∂tw + νAw + B′
z(u)∗w + ∇π = gd in L2(I,X) (2.34)

and there is a continuous function c > 0 such that

‖w‖H2,1(I) + ‖π‖L2(I,Y ) ≤ c(‖u‖H2,1(I), ‖z‖L∞(Ir,V ))(‖wT ‖V + ‖gd‖L2(I,X)). (2.35)

If in addition, wT = 0, u ∈ V 2,1(I)∩L2(I,D(A)), z ∈ V 2,1(Ir)∩L2(Ir,D(A)), z(0) = u0, gd ∈ H1(I, V ∗)
and gd(0) ∈ X, then w ∈ V 2,1(Jr) ∩ L2(Jr,D(A)). In particular, w ∈ C(J̄r, V ).

Proof. By uniqueness, the solution of (2.27) coincides with the one that can be constructed from the
spectral Galerkin method. Therefore, to prove the above regularity, we can do the same strategy as in
the case of linearized state equation. For this reason, we shall only formally derive the necessary a priori
estimates. Let us set u = z in Ωr and w = 0 in ΩT+r. We apply the test function Aw so that

−1
2

d
dt

‖w(t)‖2
V + ν‖Aw(t)‖2

H − b(ur(t), w(t), Aw(t))

− b(Aw(t), w−r(t), u−r(t)) ≤ 1
2ν

‖gd(t)‖2
X +

ν

2
‖Aw(t)‖2

H . (2.36)

The trilinear terms is estimated from above using Lemma 2.1(b) and (c) according to

|b(ur(t), w(t), Aw(t))| ≤ c‖ur(t)‖2
H‖ur(t)‖2

V ‖w(t)‖2
V +

ν

4
‖Aw(t)‖2

H

|b(Aw(t), w−r(t), u−r(t))| ≤ c‖Au−r(t)‖2
H‖w−r(t)‖2

V +
ν

8
‖Aw(t)‖2

H .

Using these estimates in (2.36), integrating over [0, t] and then applying a backward-in-time version of
the Gronwall-type Lemma 7.1 to the resulting inequality, it follows that

‖w‖L∞(I,V ) + ‖Aw‖L2(I,H) ≤ c(‖u‖H2,1(I), ‖z‖L∞(Ir,V ))(‖wT ‖V + ‖gd‖L2(I,X)).
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From this, an estimate for the time derivative of w is now available

‖∂tw‖L2(I,H) ≤ ‖Aw‖L2(I,H) + ‖B′
z(u)∗w‖L2(I,H) + ‖gd‖L2(I,X)

≤ c((1 + ‖z‖L∞(Ir,V ) + ‖u‖H2,1(I))‖Aw‖L2(I,H) + ‖gd‖L2(I,X)).

Therefore, w ∈ H2,1(I) and the a priori estimate (2.35) without the dual pressure π is satisfied.
Again, the existence of the dual pressure can be reasoned out as in the proof of Theorem 2.3. For the last
statement, thanks to the compatibility of the homogenous terminal data and history, we can adapt the
proof of Theorem 2.4 by differentiating the spectral Galerkin system approximating (2.6). Afterwards,
one can utilize sequential compactness arguments to deduce that w ∈ V 2,1(Jr) ∩ L2(Jr,D(A)). �

Corollary 2.15. Let wT ∈ V , z ∈ L∞(Ir, V ), gd ∈ L2(I,X) and wi = Lz(ui)−∗(gd + eT wT ) for i = 1, 2.
Then there exists a constant c > 0 depending continuously on the norms of wT , z, gd, u1 and u2 in their
indicated spaces such that ‖w1 − w2‖H2,1(I) ≤ c‖u1 − u2‖H2,1(I).

Proof. The difference of w1 and w2 satisfies

w1 − w2 = Lz(u1)−∗(B′
z(u1)∗w2 − B′

z(u2)∗w2) = Lz(u1)−∗B′
z(u1 − u2)∗w2.

Thus, Theorem 2.14 gives us

‖w1 − w2‖H2,1(I) ≤ c‖B′
z(u1 − u2)∗w2‖L2(I,X)

≤ c‖u1 − u2‖H2,1(I)‖w2‖H2,1(I) ≤ c‖u1 − u2‖H2,1(I)

where c > 0 is a constant as described by the corollary. �

Given ud ∈ L2(I,X) and uT ∈ H, let us define the control-to-adjoint state operator D : Q → W 4/3(I)
by

D(q) = Lz(S(q))−∗(αΩT
(S(q) − ud) + αR∇ × (∇ × S(q)) + αT eT (S(q)(T ) − uT )). (2.37)

In other words, w = D(q) if and only if w is the weak solution of
{

−∂tw + νAw + B′
z(u)∗w = αΩT

(u − ud) + αR∇ × (∇ × u) in L4/3(I, V ∗),

w(T ) = αT (u(T ) − uT ) in H,
(2.38)

where u = S(q) and 〈∇ × (∇ × u), ϕ〉L2(I,V ∗),L2(I,V ) := (∇ × v,∇ × ϕ)L2(I,L2(Ω)) for ϕ ∈ L2(I, V ). The
map D is locally bounded by Theorems 2.2 and 2.11.

Theorem 2.16. The following properties of the control-to-adjoint state operator D hold:
(a) If u0 ∈ V , z ∈ L∞(Ir, V ), f ∈ L2(I,X), ud ∈ L2(I,X) and wT ∈ H, then D : Q → W 2(I) is locally

bounded. If in addition, wT ∈ V then D : Q → H2,1(I) is locally bounded.
(b) If u0 ∈ D(A), z ∈ V 2,1(Ir) ∩ L2(Ir,D(A)), f ∈ H1(I, V ∗), ud ∈ H1(I,X), f(0) ∈ X, z(0) = z0 and

αT = 0, then D : Q → V 2,1(Jr) ∩ L2(Jr,D(A)) is locally bounded.

Proof. Part (a) is a direct consequence of Theorem 2.3, Corollary 2.13 and Theorem 2.14. On the other
hand, (b) follows from (a), Theorem 2.4, ∇× (∇×u) ∈ H1(I, V ∗) since u ∈ H1(I, V ), ∇× (∇×u0) ∈ X
and the last statement of Theorem 2.14. �

Corollary 2.17. Let u0 ∈ V , z ∈ L∞(Ir, V ), f ∈ L2(I,X), ud ∈ L2(I,X) and wT ∈ V . Given q1 ∈ Q and
q2 ∈ Q, there exists a constant c > 0 depending continuously on the norms of u0, z, f , ud, wT , q1 and q2

in their indicated spaces such that ‖D(q1) − D(q2)‖H2,1(I) ≤ c‖q1 − q2‖Q.

Proof. Let u1 = S(q1), u2 = S(q2), u = u1 − u2 and q = q1 − q2. The difference D(q1) − D(q2) can be
written as

D(q1) − D(q2) = Lz(u1)−∗(αΩT
u + αR∇ × (∇ × u) + αT eT u(T ))

+ (Lz(u1)−∗ − Lz(u2)−∗)(αΩT
(u2 − ud) + αR∇ × (∇ × u2) + αT eT (u2(T ) − uT ))).
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Let d1 and d2 denote the terms on the right hand side. In the following, c > 0 will be a constant with the
stated dependence on the given data. By the mean-value theorem and Remark 2.9, ‖u‖H2,1(I) ≤ c‖q‖Q

and thus ‖u‖L2(I,X)+‖∇×(∇×u)‖L2(I,L2(Ω))+‖u(T )‖V ≤ c‖q‖Q. This inequality along with (2.35) yields
‖d1‖H2,1(I) ≤ c‖q‖Q. On the other hand, from the stability estimate in Corollary 2.15, we obtain that
‖d2‖H2,1(I) ≤ c‖u‖H2,1(I) ≤ c‖q‖Q. The desired estimate now follows from the triangle inequality. �

3. Analysis of the Optimal Control Problem

In this section, we address the well-posedness of the optimal control problem (P) and establish the first
order necessary and second order sufficient conditions for local optimality. Let us introduce the reduced
cost functional j : Q → R by j(q) = J(S(q), q), where S : Q → W 2(I) is the control-to-state operator
defined in Sect. 2.3. The optimization problem (P) is then equivalent to the unconstrained formulation

min
q∈Q

j(q). (P)

Theorem 3.1. Let α > 0 and αΩT
, αT , αR ≥ 0. Assume that u0 ∈ H, z ∈ V 2(Ir), f ∈ L2(I, V ∗),

ud ∈ L2(I,X) and uT ∈ H. Then (P) has a global solution q� ∈ Q, that is, j(q�) ≤ j(q) for every q ∈ Q.

Proof. The proof follows a standard weak sequential argument in [40,50], which we outline for the sake
of convenience. Let {qk}∞

k=1 be a minimizing sequence, that is, j(qk) → j�, where j� is the infimum of j.
Thus α

2 ‖qk‖2
Q < j� + 1 for sufficiently large indices k. Hence, {qk}∞

k=1 is bounded in Q, and therefore up
to a subsequence, qk ⇀ q� in Q. Let uk = S(qk) and u� = S(q�). From the weak-weak continuity of S,
see Theorem 2.10, it follows that uk ⇀ u� in W 2(I). The continuity of the map ϕ �→ ϕ(T ) from W 2(I)
into H implies that uk(T ) ⇀ u�(T ) in H. Also, we have ∇ × uk ⇀ ∇ × u in L2(I, L2(Ω)). Due to the
lower semicontinuity of the norm in the weak topology, j� ≤ j(q�) = J(u�, q�) ≤ lim infk→∞ J(uk, qk) =
lim infn→∞ j(qk) = j�. Thus (P) has at least one solution q� ∈ Q such that j(q�) ≤ j(q) for every
q ∈ Q. �

Since j is a sum of squared-norms and S ∈ C∞(Q,W 2(I)), it follows from the chain rule that j ∈
C∞(Q,R). Given q ∈ Q and g ∈ Q, if u = S(q), v = S′(q)g and w = D(q) denote the respective solutions
of the state, linearized state and adjoint equations, then by standard arguments one can deduce the
following representations for the first and second order directional derivatives of j

j′(q)g = (w + αq, g)Q (3.1)

j′′(q)[g, g] = αΩT
‖v‖2

L2(I,H) + αR‖∇ × v‖2
L2(I,L2(Ω)) + αT ‖v(T )‖2

H

− 2〈B′′
z (u)[v, v], w〉L2(I,V ∗),L2(I,V ) + α‖g‖2

Q. (3.2)

We would like to point out that the regularity of the state is different from the regularity of the adjoint
state if αT > 0. Also, unless u(T ) = uT , which is unlikely in practice, we do not have the compatibility
condition for the terminal data and dual history in the adjoint equation. Thus, a presence of delay in the
state equation impedes further smoothness with respect to time on the adjoint state, and hence on the
control.

A control q� ∈ Q is said to be a local solution to (P) if there exists δ > 0 such that j(q�) ≤ j(q) for
every q ∈ Q with ‖q−q�‖Q < δ. For the first and second order necessary condition, the following theorem
can be established by classical arguments of unconstrained optimization in Hilbert spaces, we refer to
[38,53] for the details.

Theorem 3.2. Suppose that the assumptions of the previous theorem are fulfilled and let q� be a local
solution to (P) and u� = S(q�). Then q� = −α−1D(q�) ∈ W 4/3(I). Furthermore, j′′(q�)[g, g] ≥ 0 for
every g ∈ Q.

We now formulate a second order sufficient condition with the assumption that the optimal state is
close enough to the desired data. This is typically observed numerically when the penalty parameter
α > 0 is chosen to be sufficiently small.
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Theorem 3.3. Let u0 ∈ H, z ∈ V 2(Ir) and f ∈ L2(I, V ∗). Suppose that q� ∈ Q satisfies j′(q�)q = 0 for
every q ∈ Q. Then there exist constants η > 0 and μ = μα,η > 0 such that if u� = S(q�) and

√
αΩT

‖u� − ud‖L2(I,X) +
√

αT ‖u�(T ) − uT ‖H +
√

αR‖∇ × u�‖L2(I,X) < η (3.3)

then j′′(q�)[q, q] ≥ μ‖q‖2
Q for every q ∈ Q. In particular, q� is a strict local solution of (P).

Proof. From the characterization of the second derivative of j in (3.2), if we let v = S′(q�)q and
w� = D(q�), then for some c1 > 0 we have j′′(q�)[q, q] ≥ α‖q‖2

Q − c1‖v‖2
W 2

0 (I)
‖w�‖L2(I,V ). Note that

‖v‖2
W 2

0 (I)
≤ c2‖q‖2

Q where c2 = ‖S′(q�)‖2
L(Q,W 2

0 (I))
. Assuming that (3.3) holds, then we get from (2.33)

that ‖w�‖L2(I,V ) ≤ c2η for a constant c2 > 0 independent of η. Thus, we take η > 0 small enough so that
μ := α − c1c2c3η > 0. In this case, we obtain j′′(q�)[q, q] ≥ μ‖q‖2

Q for every q ∈ Q. The fact that q� is a
strict local solution follows from the coercivity of j′′(q�). �

We close this section by stating the improved regularity for the optimal state and optimal control
under additional regularity and compatibility of the initial data and history.

Theorem 3.4. An optimal triple (q�, u�, w�) for (P), where q� is a local solution, u� = S(q�) and w� =
D(q�), satisfies the following:
(a) If u0 ∈ V , z ∈ L∞(Ir, V ), f ∈ L2(I,X), ud ∈ L2(I,X) and wT ∈ H, then u� ∈ H2,1(I) and w�,

q� ∈ W 2(I). In addition, if wT ∈ V , then w�, q� ∈ H2,1(I).
(b) If u0 ∈ D(A), z ∈ V 2,1(Ir)∩L2(Ir,D(A)), f ∈ H1(I, V ∗), ud ∈ H1(I,X), f(0) ∈ X and z(0) = u0,

then u� ∈ V 2,1(Jr) ∩ L2(Jr,D(A)). If in addition αT = 0, then w� ∈ V 2,1(Jr) ∩ L2(Jr,D(A)) and
q� ∈ V 2,1(I) ∩ L2(I,D(A)).

Proof. Apply Theorems 2.3, 2.4 and 2.16. �

4. Galerkin Finite Element Discretization

The goal of this section is to present a numerical scheme for the finite-dimensional approximation of
solutions to the control problem (P). In the forthcoming discussion, the following assumption for the
regularity and compatibility of the initial data, history and target data will be imposed:
(A1) u0 ∈ D(A), uT ∈ D(A), z ∈ H2,1(Ir), ud ∈ H2,1(I), f ∈ H2,1(I) and z(0) = u0.
From the results of the previous section, (A1) implies that u = S(q) ∈ H2,1(Jr), v = S′(q)g ∈ H2,1(Jr)
and w = D(q) ∈ H2,1(I) for every q ∈ Q and g ∈ Q.

4.1. Finite Element Spaces and Approximation Operators

Let Kh = {Kh} for h > 0 be a family of triangulations of a convex polygonal domain Ω parametrized by
the mesh size h, that is, the length of the largest triangle edge in the subdivision. Let Wh and Mh be
finite dimensional subspaces W and M , respectively, and define

Vh := {uh ∈ Wh : (div uh, ph)L2 = 0 ∀ph ∈ Mh}.

The following assumptions on these finite dimensional subspaces will be considered:
(A2) There exist finite element approximation operators Πh : D(A) → Wh and Γh : Y → Mh such that,

for some constant c > 0, we have ‖u−Πhu‖X+h‖u−Πhu‖W ≤ ch2‖Au‖H and ‖p−Γhp‖M ≤ ch‖p‖Y

for every u ∈ D(A) and p ∈ Y .
(A3) We have the inverse estimate ‖uh‖W ≤ ch−1‖uh‖X for every uh ∈ Wh.
(A4) The pair (Wh,Mh) satisfies the uniform discrete inf-sup condition

inf
uh∈Wh\{0}

sup
ph∈Mh\{0}

(div uh, ph)L2

‖uh‖W ‖ph‖M
≥ c > 0.
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These assumptions are satisfied for the mini-element [3] and the Taylor-Hood finite element spaces
[30], and if the family of triangulations is shape-regular. The latter means that there is a constant c > 0
such that, if eKh

and δKh
denote the respective largest edge and diameter of the largest ball contained in

Kh, then h/eKh
≤ c and eKh

/δKh
≤ c. In other words, the smallest interior angle of each triangle should

not tend to zero as h → 0.
Let Ph : X → Vh be the L2-projection onto Vh, that is, for u ∈ X let (Phu, vh)X = (u, vh)X for all

vh ∈ Vh. It is well known that the operator Ph satisfies the stability and error estimates ‖Phw‖X ≤ c‖w‖X ,
‖u − Phu‖X + h‖u − Phu‖W ≤ ch‖u‖W and ‖v − Phv‖X + h‖v − Phv‖W ≤ ch2‖Av‖H whenever w ∈ X,
u ∈ W and v ∈ D(A). For further details, the reader is referred to [17,30].

We extend the above projections to the time-dependent case according to Πh : L2(I,D(A))
→ L2(I,Wh), Γh : L2(I, Y ) → L2(I,Mh) and Ph : L2(I,X) → L2(I, Vh). For instance, (Phu)(t) =
Ph(u(t)) for a.e. t ∈ I. Similarly, these operators will be considered in the history interval Ir.

To simplify the exposition, let us assume that T = n0r for some positive integer n0 and take a
uniform temporal step size. Partition the history interval Īr = [−r, 0] with grid size τ = r/Nr into
−r = t−Nr

< · · · < t−1 < t0 = 0, where t−j = −jτ for j = 0, 1, . . . , Nr. Likewise, subdivide the time
domain Ī = [0, T ] with grid size τ into 0 = t0 < t1 < · · · < tNτ

= T , where tj = jτ for j = 0, 1, . . . , Nτ

and Nτ = Nrn0. For each j = −Nr, . . . , Nτ , let Ij = (tj−1, tj ]. In the case of the adjoint equation, we
likewise partition Īr = [T, T + r] into intervals Ij = (tj−1, tj ] for j = Nτ + 1, · · · , Nτ + Nr. We denote
by σ := (τ, h) for the pair of temporal and spatial mesh sizes. Note that |σ|2 ≤ T 2 + diam(Ω)2, where
diam(Ω) is the diameter of Ω. As mentioned in the introduction, we take the following stability condition:
(A5) There exists c > 0 such that τ ≤ ch2 for every σ = (τ, h).
All throughout this section, the assumptions (A1)–(A5) shall be implicitly imposed.

For the temporal discretization, we consider a discontinuous Galerkin scheme. This is a variant of
the backward Euler method, where time-evaluation is replaced by time-averaging. In this direction, we
denote

Pτ (I, Z) =

{

vσ ∈ L2(I, Z) : vσ =
Nτ∑

k=1

vk
h1Ik

, vk
h ∈ Z, k = 1, . . . , Nτ

}

Pτ (Ir, Z) =

{

zσ ∈ L2(Ir, Z) : zσ =
Nr−1∑

k=0

z−k
h 1I−k

z−k
h ∈ Z, k = 0, . . . , Nr − 1

}

the space of piecewise constant functions on I and Ir with values in a Hilbert space Z, respectively,
corresponding to the above partitions of I and Ir. Here, 1Ik

is the indicator function of the interval
Ik. Given vσ ∈ P(I, Z), we write vk

h := vσ|Ik
for each k = 1, . . . , Nτ , and similarly for the elements of

Pτ (Ir, Z). By definition, Pτ (I, Z) ⊂ L∞(I, Z) and for every vσ ∈ Pτ (I, Z) there holds

‖vσ‖2
L∞(I,Z) = max

1≤k≤Nτ

‖vk
h‖2

Z , ‖vσ‖2
L2(I,Z) =

Nτ∑

k=1

τ‖∇vk
h‖2

Z . (4.1)

Proposition 4.1. Let sk ∈ Ik for each k = 1, . . . , Nτ . For every u ∈ H1(I,X), we have
( Nτ∑

k=1

∫

Ik

‖u − u(sk)‖2
X dt

)1/2

≤ τ‖∂tu‖L2(I,X),

max
1≤k≤Nτ

‖u − u(sk)‖L∞(Ik,X) ≤ √
τ‖∂tu‖L2(I,X).

Proof. For each t ∈ Ik, let t+k and t−k denote largest and smallest between t and sk, respectively. By the
Cauchy–Schwarz inequality

‖u(t) − u(sk)‖2
X ≤ |sk − t|

∫ t+k

t−
k

‖∂tu(s)‖2
X ds ≤ τ

∫

Ik

‖∂tu(s)‖2
X ds. (4.2)
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Note that point-wise time evaluation is admissible since H1(I,X) ⊂ C(Ī , X). Integrating (4.2) over the
interval Ik and then taking the sum over all k = 1, . . . , Nτ , we get

Nτ∑

k=1

∫

Ik

‖u(t) − u(sk)‖2
X dt ≤ τ2‖∂tu‖2

L2(I,X).

Taking square roots yields the first inequality. Getting the supremum over all t ∈ Ik in (4.2) and then
the maximum over all 1 ≤ k ≤ Nτ , one obtains the second inequality. �
Proposition 4.2. Let sk ∈ Ik for each k = 1, . . . , Nτ . There exists a constant c > 0 such that for every
u ∈ H2,1(I), the following error estimates hold:

max
1≤k≤Nτ

‖u − Phu(sk)‖L∞(Ik,X) ≤ c(
√

τ + h)‖u‖H2,1(I)

( Nτ∑

k=1

∫

Ik

‖u − Phu(sk)‖2
X dt

)1/2

+ h

( Nτ∑

k=1

∫

Ik

‖∇u − ∇Phu(sk)‖2
X dt

)1/2

≤ c(τ + h2)‖u‖H2,1(I).

Proof. Suppose that u ∈ H2,1(I). On the interval Ik, write u − Phu(sk) = (u − Phu) + Ph(u − u(sk)).
Using the boundedness of Ph : X → X, Proposition 4.1 and the continuity of H2,1(I) ⊂ C(Ī , V )

‖u − Phu(sk)‖L∞(Ik,X) ≤ ‖u − Phu‖L∞(Ik,X) + ‖Ph(u − u(sk))‖L∞(Ik,X)

≤ c(h‖u‖L∞(I,V ) +
√

τ‖∂tu‖L2(I,H)).

Getting the maximum over all indices 1 ≤ k ≤ Nτ proves the first estimate. On the other hand,
Nτ∑

k=1

∫

Ik

‖u − Phu(sk)‖2
X dt ≤ 2

Nτ∑

k=1

∫

Ik

‖u − Phu‖2
X dt + 2

Nτ∑

k=1

∫

Ik

‖Ph(u − u(sk))‖2
X dt

≤ c(h4‖Au‖2
L2(I,H) + τ2‖∂tu‖2

L2(I,H)).

Applying the inverse estimate (A3), we obtain that

h2
Nτ∑

k=1

∫

Ik

‖∇u − ∇Phu(sk)‖2
X dt ≤ c

Nτ∑

k=1

∫

Ik

‖u − Phu(sk)‖2
X dt.

Taking the sum of the last two inequalities and then the square roots prove the second estimate. �
The special cases where sk = tk−1 or sk = tk will be utilized in our analysis. If one wishes to use the

approximation operator Πh instead of the projection operator Ph, which is typical in practice, then due
to the limited regularity of the initial history and source term, time-evaluation is not applicable anymore
and has to be replaced by time-averaging. This approach was introduced in [5] for hereditary control
problems with ordinary differential equations. Define the linear operator Rτ : L2(I,X) → Pτ (I,X) by

Rτu =
Nτ∑

k=1

(
1
τ

∫

Ik

u(t) dt

)

1Ik

with the obvious modification when I is replaced by Ir. Then, ‖Rτu‖L2(I,X) ≤ ‖u‖L2(I,X) and
‖Rτw‖L∞(I,X) ≤ ‖w‖L∞(I,X) for every u ∈ L2(I,X) and w ∈ L∞(I,X). It can also be shown that there
is a constant c > 0 such that ‖Rτv − v‖L2(I,X) ≤ τ‖v‖H1(I,X) and ‖Rτv − v‖L∞(I,X) ≤ √

τ‖v‖H1(I,X) for
every v ∈ H1(I,X). With these, the following error estimates can be established by adapting the proof
of Proposition 4.2.
Proposition 4.3. Consider the operator ΠhRτ : L2(I,D(A)) → Pτ (I,Wh). Then there exists a constant
c > 0 such that for every u ∈ H2,1(I) there holds

‖ΠhRτu − u‖L∞(I,X) ≤ c(
√

τ + h)‖u‖H2,1(I)

‖ΠhRτu − u‖L2(I,X) + h‖∇ΠhRτu − ∇u‖L2(I,X) ≤ c(τ + h2)‖u‖H2,1(I).

These estimates are also valid when ΠhRτ is replaced by PhRτ : L2(I,D(A)) → Pτ (I, Vh).
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4.2. Fully Discrete Optimal Control Problem

Here, we present the full space-time discretization of the optimal control problem (P). Given a control
q ∈ Q and discrete initial data (u0h, zσ) ∈ Wh ×Pτ (Ir,Wh), consider the following discrete problem: Find
uσ =

∑Nτ

k=1 uk
h1Ik

∈ Pτ (I, Vh) such that for k = 1, . . . , Nτ

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(dτuk
h, ϕh)X + ν(∇uk

h,∇ϕh)X

= b(uk−Nr

h , ϕh, uk−1
h ) +

1
τ

∫

Ik

(fσ(t) + q(t), ϕh)X dt ∀ϕh ∈ Vh,

uj
h = zj

h for j = 1 − Nr, . . . , 0,

(4.3)

where dτu1
h := τ−1(u1

h − u0h) and dτuk
h := τ−1(uk

h − uk−1
h ) for k = 2, . . . , Nτ . Notice that the initial data

u0h is only applied at the first time step, while the history zσ was utilized in the trilinear form b. This is
an implicit-explicit scheme in the sense that the Laplacian and delay are discretized implicitly, while the
convection term is discretized explicitly. More precisely, on each interval Ik, the following approximations
were adapted:

∫

Ik

(∇u(t),∇ϕh) dt ≈ τ(∇u(tk),∇ϕh)
∫

Ik

b(ur(t), ϕh, u(t)) dt ≈ τb(ur(tk), ϕh, u(tk−1)).

The scheme (4.3) is one of the simplest possible discretization of the state equation in (P), where it
is possible to prove stability and error estimates. Observe that the matrices of the corresponding linear
system to (4.3) are the same at every time step. This will also be the case of the discrete adjoint problem
below. For gradient-based optimization algorithms, where one has to solve both the discrete state and
adjoint equations in order to get a directional derivative, this is advantageous. For instance, one can
pre-factorize the matrix before doing the primal and dual solvers for efficiency.

As with the continuous case, we will set uσ = zσ on Ωr so that uσ ∈ L2(Jr,Wh), that is,

uσ =
1−Nr∑

k=0

z−k
h 1I−k

+
Nτ∑

k=1

uk
h1Ik

. (4.4)

We note that (4.3) is similar to the one presented in [51], the main difference is that the trilinear term
there is b(uk−1−Nr

h , ϕh, uk−1
h ), that is, the convection is discretized explicitly. Also, spatial discretization

was not considered. The one given in (4.3) is a natural choice based on (4.4), where the solution and
the history of the continuous problem are evaluated at the right endpoint of the interval Ik for each
k = 1−Nr, . . . , Nτ . This is also suitable in the case when the initial data and history are not compatible.
Discontinuous Galerkin time-schemes of arbitrary order for the 2D and 3D Navier–Stokes equation can
be found in [16].

With regard to the initial data, history and source term, we shall take the approximations u0h =
Πhu0 ∈ Wh, zσ = RτΠhz ∈ Pτ (I,Wh) and fσ = RτΠhf ∈ Pτ (Ir,Wh). Thanks to (A1), (A2), (A5) and
Proposition 4.3, there is a constant c > 0 independent on σ such that

‖u0h − u0‖X + h‖u0h − u0‖W ≤ ch2‖Au0‖H (4.5)

‖zσ − z‖L2(Ir,X) + h(‖zσ − z‖L∞(Ir,X) + ‖zσ − z‖L2(Ir,W )) ≤ ch2‖z‖H2,1(Ir) (4.6)

‖fσ − f‖L2(I,X) + h(‖fσ − f‖L∞(I,X) + ‖fσ − f‖L2(I,W )) ≤ ch2‖f‖H2,1(I). (4.7)

The existence and uniqueness of uσ ∈ Pτ (I, Vh) satisfying (4.3) follows immediately from the Lax-
Milgram Lemma and by induction. In fact, it is enough to observe that the finite-dimensional square
system for each k is injective. Let us define the discrete control-to-state operator Sσ : Q → Pτ (I, Vh)
by Sσ(q) = uσ if and only if uσ is the solution of (4.3). By the discrete inf-sup condition (A4), (4.3)
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is equivalent to the problem of finding a pair (uσ, pσ) ∈ Pτ (I,Wh) × Pτ (I,Mh) satisfying the following
system of mixed problems:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(dτuk
h,ϕh)X + ν(∇uk

h,∇ϕh)X − (div ϕh, pk
h)L2 + (div uk

h, ρh)L2

= b(uk−Nr

h , ϕh, uk−1
h ) +

1
τ

∫

Ik

(fσ(t) + q(t), ϕh)X dt ∀(ϕh, ρh) ∈ Wh × Mh,

uj
h = zj

h for j = 1 − Nr, . . . , 0,

(4.8)

for each k = 1, . . . , Nτ , see [8]. The scheme is thus conforming with respect to W but not with V , since
Wh ⊂ W while Vh �⊂ V . Whereas (4.3) is used in the analysis, the more practical mixed problem (4.8) is
the one that is utilized in the numerical implementation.

Remark 4.4. The discrete solution operator Sσ is invariant under left composition by PhRτ , that is,
Sσ = SσPhRτ as a map from Q into Pτ (I, Vh).

We shall take Qσ := Pτ (I,Wh) ⊂ Q as the discretization of the control space Q. The fully discrete
optimal control problem is then given by

min
qσ∈Qσ

jσ(qσ) (Pσ)

where jσ : Pτ (I, Vh) → R is the discrete analogue of j given by

jσ(qσ) =
1
2

∫

I

αΩT
‖uσ − udσ‖2

X + αR‖∇ × uσ‖2
L2 dt +

αT

2
‖uσ(T ) − uTh‖2

X +
α

2
‖qσ‖2

Q

=
τ

2

Nτ∑

k=1

(αΩT
‖uk

h − uk
dh‖2

X + αR‖∇ × uk
h‖2

L2) +
αT

2
‖uNτ

h − uTh‖2
X +

ατ

2

Nτ∑

k=1

‖qk
h‖2

X

with uσ = Sσ(qσ) ∈ Pτ (I, Vh), udσ = ΠhRτud ∈ Pτ (I,Wh) and uTh = ΠhuT ∈ Wh. Again, from (A1),
(A2), (A5) and Proposition 4.3, the following error estimates for the target data hold for some constant
c > 0 independent on σ:

‖uTh − uT ‖X + h‖uTh − uT ‖W ≤ ch2‖AwT ‖H (4.9)

‖udσ − ud‖L2(I,X) + h(‖udσ − ud‖L∞(I,X) + ‖udσ − ud‖L2(I,W )) ≤ ch2‖ud‖H2,1(I). (4.10)

The existence of a global solution to the finite-dimensional optimization problem (Pσ) is immediate since
jσ is continuous and coercive, that is, jσ(qσ) → ∞ as ‖qσ‖Q → ∞. We will see later that replacing Qσ

by Pτ (I, Vh) leads to an equivalent problem, see Remark 4.13 below.

4.3. Error Estimates for the Discrete State Equation

In this subsection we analyze the discrete state equation (4.3) and prove error estimates. First, let us
establish the local boundedness of solutions.

Theorem 4.5. Let q ∈ Q. If uσ = Sσ(q), then there exists a continuous function c > 0 independent of σ
such that

‖uσ‖L∞(I,X) + ‖uσ‖L2(I,W ) ≤ c(‖q‖Q, ‖f‖L2(I,X), ‖u0‖H , ‖z‖L∞(Ir,H) ∩ L2(Ir,V )). (4.11)

Proof. Let û0
h := u0h and ûk

h := uk
h for k = 1, . . . , Nτ so that dτuk

h = τ−1(uk
h − ûk−1

h ). Taking the test
function ϕh = 2τuk

h in (4.3) and using the equation 2(v − w, v)X = ‖v‖2
X − ‖w‖2

X + ‖v − w‖2
X , we obtain

for k = 1, . . . , Nτ that

‖uk
h‖2

X − ‖ûk−1
h ‖2

X + ‖uk
h − ûk−1

h ‖2
X + 2ντ‖∇uk

h‖2
X

≤ 2τb(uk−Nr

h , uk
h, uk−1

h ) + 2
∫

Ik

(fσ(t) + q(t), uk
h)X dt. (4.12)
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We can estimate the second term on right hand side using (A2) and the Young and Poincaré inequalities
by

2
∫

Ik

(fσ(t) + q(t), uk
h)X dt ≤ c

ν

∫

Ik

‖f(t)‖2
X + ‖q(t)‖2

X dt +
ντ

2
‖∇uk

h‖2
X . (4.13)

Given ε > 0, by the Hölder, Gagliardo–Nirenberg and Young inequalities, the trilinear term is estimated
from above as follows:

2τb(uk−Nr

h , uk
h, uk−1

h )

≤ ντ

2
‖∇uk

h‖2
X + ετ‖uk−Nr

h ‖2
X‖∇uk−1

h ‖2
X +

cτ

ε
‖∇uk−Nr

h ‖2
X‖uk−1

h ‖2
X . (4.14)

Plugging the estimates (4.13) and (4.14) in (4.12), and then taking the sum over all k = 1, . . . , j with
1 ≤ j ≤ Nτ , yields the following:

‖uj
h‖2

X +
j∑

k=1

ντ‖∇uk
h‖2

X ≤ ‖u0h‖2
X + ετ‖z1−Nr

h ‖2
X‖∇z0

h‖2
X +

cτ

ε
‖∇z1−Nr

h ‖2
X‖z0

h‖2
X

+
c

ν

j∑

k=1

∫

Ik

‖f(t)‖2
X dt +

c

ν

j∑

k=1

∫

Ik

‖q(t)‖2
X dt + ε

j−1∑

k=1

τ‖uk+1−Nr

h ‖2
X‖∇uk

h‖2
X

+
c

ε

j−1∑

k=1

τ‖∇uk+1−Nr

h ‖2
X‖uk

h‖2
X . (4.15)

From (A2), (4.1) and the boundedness of Rτ : V 2(Ir) → V 2(Ir), there is some positive constant c
independent on σ such that the sum of the first three terms on the right hand side of (4.15) can be
estimated by

‖u0h‖2
X + ετ‖z1−Nr

h ‖2
X‖∇z0

h‖2
X +

cτ

ε
‖∇z1−Nr

h ‖2
X‖z0

h‖2
X

≤ c

(

‖u0‖2
H +

(

1 +
1
ε2

)

ε‖z‖2
L∞(Ir,H)‖z‖2

L2(Ir,V )

)

. (4.16)

We shall prove by induction that for each � = 1, . . . , n0, there is a continuous function c
 > 0 such
that if c
(q, f, u0, z) := c
(‖q‖Q, ‖f‖L2(I,X), ‖u0‖H , ‖z‖L∞(Ir,H) ∩ L2(Ir,V )), then

max
1≤k≤
Nr

‖uk
h‖2

X +

Nr∑

k=1

ντ

2
‖∇uk

h‖2
X ≤ c
(q, f, u0, z). (4.17)

Consider the case � = 1. From (4.6), we get for some constant c0 > 0 that ‖uk
h‖X = ‖zk

h‖X ≤ c0‖z‖L∞(Ir,H)

for each 1 − Nr ≤ k ≤ 0. Taking ε = ε1 := ν/(2c2
0‖z‖2

L∞(Ir,H) + 1), we have

ε

j−1∑

k=1

τ‖uk+1−Nr

h ‖2
X‖∇uk

h‖2
X ≤ εc2

0‖z‖2
L∞(Ir,H)

j−1∑

k=1

τ‖∇uk
h‖2

X ≤
j−1∑

k=1

ντ

2
‖∇uk

h‖2
X (4.18)

each for 1 ≤ j ≤ Nr. Thus, we obtain from (4.15), (4.16) with ε = ε1, and (4.18) that

‖uj
h‖2

X +
j∑

k=1

ντ

2
‖∇uk

h‖2
X ≤ c

(

‖u0‖2
H +

(

1 +
1
ε2
1

)
ν

2c2
0

‖z‖2
L2(Ir,V )

)

+
c

ν

∫

I

‖f(t)‖2
X dt +

c

ν

∫

I

‖q(t)‖2
X dt +

c

ε1

j−1∑

k=1

τ‖∇uk+1−Nr

h ‖2
X‖uk

h‖2
X . (4.19)
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Let c(ε1, q, f, u0, z) denote the sum of the first three terms on the right hand side. Applying the discrete
Gronwall Lemma 7.2 to the previous inequality, we have

max
1≤k≤Nr

‖uk
h‖2

X +
Nr∑

k=1

ντ

2
‖∇uk

h‖2
X ≤ eγ1c(ε1, q, f, u0, z),

where

γ1 =
c

ε1

Nr−1∑

k=1

τ‖∇uk+1−Nr

h ‖2
X ≤ c

ε1
‖z‖2

L2(Ir,V ).

The last two inequalities verify (4.17) for � = 1.
Now, let us assume that (4.17) is satisfied for �. Then by taking

ε = ε
+1 := ν(2max{c2
0‖z‖2

L∞(Ir,H), c
(q, f, u0, z)} + 1)−1 < ε1

we obtain (4.18) for every 1 ≤ j ≤ (� + 1)Nr. Thus, adapting the above procedure leads to

max
1≤k≤(
+1)Nr

‖uk
h‖2

X +
(
+1)Nr∑

k=1

ντ

2
‖∇uk

h‖2
X ≤ eγ�+1c(ε
+1, q, f, u0, z),

where c(ε
+1, q, f, u0, z) is the sum of the first three terms on the right hand side of (4.19), with ε1

replaced by ε
+1. Here, the constant γ
+1 is bounded by the induction hypothesis, that is,

γ
+1 =
c

ε


Nr−1∑

k=1

τ‖∇uk+1−Nr

h ‖2
X +

c

ε



Nr−1∑

k=Nr

τ‖∇uk+1−Nr

h ‖2
X

≤ c

ε


(

‖z‖2
L2(Ir,V ) +

2
ν
c
(q, f, u0, z)

)

.

Hence, (4.17) is also valid when � is replaced by � + 1, completing the induction step. Therefore, the
inequality (4.11) follows from (4.1) and (4.17) with � = n0 = T/r since Nτ = n0Nr. �

Remark 4.6. Note that the function c in the previous theorem is not uniform in terms of the delay
parameter r. In fact, according to the proof, c depends on the ratio T/r, so that in particular c → ∞ as
r → 0.

We are now in position to prove error estimates for the solutions between the continuous and discrete
state problems. Let us start with the errors in the norms of L∞(I,X) and L2(I,W ).

Theorem 4.7. Let q ∈ Q, u = S(q) and uσ = Sσ(q). Then there is a constant c > 0 depending continuously
on ‖q‖Q, ‖f‖H2,1(I), ‖Au0‖H and ‖z‖H2,1(Jr) but independent on σ such that

max
1≤k≤Nτ

‖u(tk) − uk
h‖X + ‖u − uσ‖L∞(Jr,X) + ‖u − uσ‖L2(Jr,W ) ≤ ch. (4.20)

Proof. Since u − uσ = z − zσ in Ωr, it is enough to prove (4.20) with Jr replaced by I according to
(4.6). Define ūσ ∈ L2(Jr, Vh) such that ūk

h = Phu(tk) for each k = 1 − Nr, . . . , Nτ and split the error into
u − uσ = (u − ūσ) + (ūσ − uσ). From Proposition 4.2, it holds that

‖u − ūσ‖L∞(I,X) + ‖u − ūσ‖L2(I,W ) ≤ ch. (4.21)

In particular, this estimate implies

max
1≤k≤Nτ

‖u(tk) − ūk
h‖X ≤ max

1≤k≤Nτ

‖u − ūσ‖L∞(Ik,X) ≤ ch. (4.22)

Also, by (4.6), Propositions 4.1 and 4.3

‖zσ − ūσ‖L2(Ir,W ) ≤ ‖zσ − z‖L2(Ir,W ) + ‖u − ūσ‖L2(Ir,W ) ≤ ch. (4.23)
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The next step is to derive analogous estimates for the error term eσ := ūσ −uσ. Taking a test function
ϕh ∈ Vh ⊂ W in the Eq. (2.12) and then integrating over Ik, we obtain that

(Phu(tk) − Phu(tk−1), ϕh)X +
∫

Ik

ν(∇u(t),∇ϕh)X dt −
∫

Ik

(div ϕh, p(t))L2 dt

=
∫

Ik

b(ur(t), ϕh, u(t)) dt +
∫

Ik

(f(t) + q(t), ϕh)X dt

for every k = 1, . . . , Nτ . Let us rewrite the above variational equation as follows:

(dτ ūk
h, ϕh)X + ν(∇ūk

h,∇ϕh)X = b(ūk−Nr

h , ϕh, ūk−1
h )

+
1
τ

∫

Ik

(fσ(t) + q(t), ϕh) dt +
1
τ

Rk
h(ϕh) ∀ϕh ∈ Vh, (4.24)

where dτ ū1
h = τ−1(ū1

h −Phu0), dτ ūk
h = τ−1(ūk

h − ūk−1
h ) for k = 2, . . . , Nτ and the remainder term Rk

h(ϕh)
is given by

Rk
h(ϕh) =

∫

Ik

ν(∇ūk
h − ∇u(t),∇ϕh)X dt +

∫

Ik

(div ϕh, p(t) − Γhp(t))L2 dt

+
∫

Ik

b(ur(t), ϕh, u(t) − ūk−1
h ) dt +

∫

Ik

b(ur(t) − ūk−Nr

h , ϕh, ūk−1
h ) dt

+
∫

Ik

(f(t) − fσ(t), ϕh)X dt.

Here, we used the fact that (div ϕh, Γhp)L2(Ik,L2(Ω)) = 0 since ϕh ∈ Vh.
Let ê0

h := Phu0 − u0h and êk
h := ek

h = ūk
h − uk

h for k �= 0. Subtracting (4.3) from (4.24) and then
choosing the test function ϕk = 2τek

h, we get the following recurrence relation for the errors:

‖ek
h‖2

X − ‖êk−1
h ‖2

X + ‖ek
h − êk−1

h ‖2
X + 2ντ‖∇ek

h‖2
X

= 2τb(ek−Nr

h , ek
h, ūk−1

h ) + 2τb(uk−Nr

h , ek
h, ek−1

h ) + 2Rk
h(ek

h) (4.25)

for each k = 1, . . . , Nτ . Using the Gagliardo–Nirenberg and Young inequalities, we can estimate the
trilinear terms in (4.25) as follows:

2τb(ek−Nr

h , ek
h, ūk−1

h ) ≤ ντ

3
‖∇ek

h‖2
X + cτ‖∇ek−Nr

h ‖2
X‖∇ūk−1

h ‖2
X (4.26)

2τb(uk−Nr

h , ek
h, ek−1

h ) ≤ ντ

3
‖∇ek

h‖2
X +

cτ

ε
‖∇uk−Nr

h ‖2
X‖ek−1

h ‖2
X + ετ‖uk−Nr

h ‖2
X‖∇ek−1

h ‖2
X . (4.27)

From Theorem 4.5 and (4.6), there is a constant c0 > 0 independent on σ such that ‖uk−Nr

h ‖X ≤ c0

for every k = 1, . . . , Nτ . Also, note that ‖∇ūk
h‖X = ‖∇Phu(tk)‖X ≤ c‖u‖L∞(Jr,V ) for every k = 1 −

Nr, . . . , Nτ . By the Cauchy–Schwarz inequality, the remainder term 2Rk
h(ek

h) satisfies

2Rk
h(ek

h) ≤ ντ

3
‖∇ek

h‖2
X + c

∫

Ik

‖∇Phu(tk) − ∇u(t)‖2
X dt + c

∫

Ik

‖p(t) − Γhp(t)‖2
M dt

+ c‖ur‖2
L∞(Ik,V )

∫

Ik

‖∇u(t) − ∇Phu(tk−1)‖2
X dt + c

∫

Ik

‖fσ(t) − f(t)‖2
X dt

+ c‖u‖2
L∞(Ik,V )

∫

Ik

‖∇ur(t) − ∇Phur(tk)‖2
X dt =:

ντ

3
‖∇ek

h‖2
X +

∫

Ik

ρk
h(t) dt. (4.28)

Taking into account (4.26)-(4.28) in (4.25) and choosing ε = ν/(2c2
0), we have

‖ek
h‖2

X − ‖êk−1
h ‖2

X + ντ‖∇ek
h‖2

X ≤ cτ‖∇ek−Nr

h ‖2
X‖u‖2

L∞(Jr,V )

+
2cc2

0

ν
τ‖∇uk−Nr

h ‖2
X‖ek−1

h ‖2
X +

ντ

2
‖∇ek−1

h ‖2
X +

∫

Ik

ρk
h(t) dt.
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Getting the sum of the previous inequality over all k = 1, . . . , j with 1 ≤ j ≤ Nτ , we deduce the existence
of a constant c > 0 independent on σ such that

‖ej
h‖2

X +
ν

2

j∑

k=1

τ‖∇ek
h‖2

X ≤ ‖ê0
h‖2

X + cτ‖∇z1−Nr

h ‖2
X‖e0

h‖2
X

+ c

j−1∑

k=1

τ‖∇uk+1−Nr

h ‖2
X‖ek

h‖2
X + c

j∑

k=1

τ‖∇ek−Nr

h ‖2
X + c

j∑

k=1

∫

Ik

ρk
h(t) dt. (4.29)

For the first two terms on the right hand side of (4.29), we have ‖ê0
h‖2

X = ‖Πhu0 − Phu0‖2
X ≤ ch4 by

(4.5), and τ‖∇z1−Nr

h ‖2
X‖e0

h‖2
X ≤ c‖z‖2

L∞(Ir,V )‖zσ − ūσ‖2
L2(Ir,X) ≤ ch2 by (4.23). To treat the fifth term,

we invoke (A2), (4.7), Proposition 4.1 and Proposition 4.3, so that for each j = 1, . . . , Nτ

j∑

k=1

∫

Ik

ρk
h(t) dt ≤

∫

I

ρk
h(t) dt ≤ ch2.

Utilizing these estimates in (4.29) and applying the discrete Gronwall Lemma 7.2, we get that

max
1≤k≤
Nr

‖ek
h‖2

X +

Nr∑

k=1

ντ‖∇ek
h‖2

X ≤ ceγ�

(

h2 +

Nr∑

k=1

τ‖∇ek−Nr

h ‖2
X

)

(4.30)

for every � = 1, . . . , n0, where the constant γ
 is given by

γ
 = c


Nr−1∑

k=1

τ‖∇uk+1−Nr

h ‖2
X = c

Nr−1∑

k=1

τ‖∇zk+1−Nr

h ‖2
X + c


Nr−1∑

k=Nr

τ‖∇uk+1−Nr

h ‖2
X ≤ c

due to (4.6) and Theorem 4.5.
For � = 1 in the sum on the right hand side of (4.30), one obtains from (4.23) that

Nr∑

k=1

τ‖∇ek−Nr

h ‖2
X = ‖∇zσ − ∇ūσ‖2

L2(Ir,X) ≤ ch2.

Using this estimate along with an induction argument on the inequality (4.30), we have

max
1≤k≤Nτ

‖ūk
h − uk

h‖X + ‖eσ‖L∞(I,X) + ‖eσ‖L2(I,W ) ≤ ch. (4.31)

Combining the error estimates (4.21), (4.22) and (4.31) leads to (4.20) with I in place of Jr. �

Let us now prove an error estimate in terms of the norm in L2(I,X). First, let us state the following
lemma for the error estimate of the temporal shift by τ . Since the proof follows the ideas in Proposition 4.1,
the details are omitted.

Lemma 4.8. There exists a constant c > 0 independent on τ such that for every u ∈ H2,1(Jr) and
w ∈ H2,1(Jr) we have

‖u − uτ‖L2(I,X) +
√

τ‖u − uτ‖L∞(I,X) ≤ cτ‖u‖H2,1(Jr)

‖w − w−τ‖L2(I,X) +
√

τ‖w − w−τ‖L∞(I,X) ≤ cτ‖w‖H2,1(Jr).

Theorem 4.9. Let q ∈ Q, u = S(q) and uσ = Sσ(q). There exists a constant c > 0 depending continuously
on ‖q‖Q, ‖f‖H2,1(I), ‖Au0‖H and ‖z‖H2,1(Jr) but independent of σ such that

‖u − uσ‖L2(I,X) ≤ ch2. (4.32)
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Proof. We shall proceed by an Aubin–Nitsche-type duality argument. We recall the reader of our stability
condition (A5) that will be frequently used in the proof. Given g ∈ L2(I,X) such that ‖g‖L2(I,X) ≤ 1,
Theorem 2.14 implies the existence of a unique weak solution (w, π) ∈ H2,1(Jr)×L2(I, Y ) to the following
dual problem:

{
− ∂tw − νΔw − (ur · ∇)w − (∇w−r)�u−r + ∇π = g in ΩT ,

div w = 0 in ΩT , w = 0 in ΓT , w(T ) = 0 in Ω, w = 0 in ΩT+r.
(4.33)

Furthermore, there is a constant c > 0 independent on g, w and π such that

‖w(0)‖H + ‖w‖H2,1(Jr) + ‖π‖L2(I,Y ) ≤ c. (4.34)

Let wσ ∈ Pτ (Jr, Vh) be given by wk
h = Phw(tk−1) for each k = 1, . . . , Nτ + Nr. Applying (A2) and

Proposition 4.1, one can see that

‖w − wσ‖L2(I,X) + h‖w − wσ‖L2(I,W ) + h‖π − Γhπ‖L2(I,M) ≤ ch2. (4.35)

Moreover, we have ‖∇wσ‖L∞(I,X) ≤ c‖∇w‖L∞(I,X) ≤ c‖w‖H2,1(I) ≤ c by the continuity of the embedding
H2,1(I) ⊂ C(Ī , V ) and boundedness of Ph : L∞(I,W ) → L∞(I,W ).

Denote the error by eσ := u − uσ ∈ L2(Jr,Wh) ⊂ L2(I,W ). Multiplying (4.33) with the test function
eσ, integrating over ΩT and applying Green’s identity yield

∫

I

(g(t), eσ(t))X dt = −
∫

I

(eσ(t), ∂tw(t))X dt +
∫

I

ν(∇eσ(t),∇w(t))X dt

−
∫

I

b(ur(t), w(t), eσ(t)) dt −
∫

I

b(er
σ(t), w(t), u(t)) dt

+
∫

[0,r]

b(er
σ(t), w(t), u(t)) dt +

∫

I

(div eσ(t), π(t) − Γhπ(t))L2 dt

:= −J1 + J2 − J3 − J4 + J5 + J6. (4.36)

In the last term we used the fact that (div eσ(t), Γhπ(t))L2 = −(div uσ(t), Γhπ(t))L2 = 0 for almost
every t ∈ I since u ∈ L2(I, V ), uσ ∈ L2(I, Vh) and Γhπ ∈ L2(I,Mh). The last two terms in (4.36) can be
immediately estimated from above by

|J6| ≤ c‖∇eσ‖L2(I,X)‖π − Γhπ‖L2(I,M) ≤ ch2 (4.37)

|J5| ≤ c‖z − zσ‖L2(Ir,X)‖Δw‖L2(I,H)‖∇u‖L∞(I,X) ≤ ch2 (4.38)

thanks to (4.6), (4.20) and (4.35).
Let us consider the first integral in (4.36). Integrating by parts with respect to time

− J1 = −
∫

I

(u(t), ∂tw(t))X dt +
Nτ∑

k=1

(uk
h, wk+1

h − wk
h)X

= (u0 − u0h, Phw(0))X +
∫

I

(∂tu(t), w(t))X dt −
Nτ∑

k=1

(uk
h − ûk−1

h , wk
h)X =: J7 + J8, (4.39)

where ûk−1
h is defined as in the proof of Theorem 4.5. According to (4.5) and (4.34), it holds that

|J7| = |(u0 − u0h, Phw(0))X | ≤ ch2. On the other hand, from the continuous and discrete state equations
satisfied by u and uσ, respectively, we obtain that

J8 =
∫

I

(f(t) − fσ(t), w(t))X dt +
∫

I

(fσ(t) + q(t), w(t) − wσ(t))X dt −
∫

I

ν(∇u(t),∇w(t))X dt

+
∫

I

b(ur(t), w(t), u(t)) dt +
∫

I

ν(∇uσ(t),∇wσ(t))X dt −
∫

I

b(ur
σ(t), wσ(t), uτ

σ(t)) dt

=: J9 + J10 − J11 + J12 + J13 − J14. (4.40)
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Here, we used the fact that uτ
σ|Ik

= uτ
σ(tk) = uσ(tk−1) = uk−1

h , and similarly ur
σ|Ik

= uk−Nr

h . From (4.7),
(4.34), (4.35), we have |J9| + |J10| ≤ ch2. Collecting what we have obtained in (4.36)-(4.40) gives us

∫

I

(g(t), eσ(t))X dt ≤ ch2 + (J2 − J11 + J13) + (J12 − J14 − J3 − J4). (4.41)

The remaining task is to derive estimates on the terms inside the parentheses. The first group in (4.41)
can be easily done with the aid of Green’s identity, (4.20) and (4.35) so that

J2 − J11 + J13 =
∫

I

ν(∇eσ(t),∇w(t) − ∇wσ(t))X dt −
∫

I

ν(Δu(t), w(t) − wσ(t))X dt

≤ c‖∇eσ‖L2(I,X)‖∇w − ∇wσ‖L2(I,X) + c‖Δu‖L2(I,X)‖w − wσ‖L2(I,X) ≤ ch2. (4.42)

Due to the explicit discretization of the convection term, we need to shift by τ the third argument
involving the trilinear terms in J12, J3 and J4. This is to match the form of the term J14. In this direction,
we split J12 as follows

J12 =
∫

I

b(ur(t), w(t), u(t) − uτ (t)) dt

+
∫

I

b(ur(t), w(t) − wσ(t), uτ (t)) dt +
∫

I

b(ur(t), wσ(t), uτ (t)) dt. (4.43)

The first two terms on the right hand side satisfy
∫

I

|b(ur(t), w(t), u(t) − uτ (t))|dt ≤ c‖∇ur‖L∞(I,X)‖Δw‖L2(I,H)‖u − uτ‖L2(I,X)

∫

I

|b(ur(t), w(t) − wσ(t), uτ (t))|dt ≤ c‖∇ur‖L∞(I,X)‖Δuτ‖L2(I,H)‖w − wσ‖L2(I,X).

In the second inequality, we used the anti-symmetry of b with respect to the second and third arguments.
Using these inequalities in (4.43) and applying (4.35), Lemma 4.8 and (A5), we have

J12 ≤ ch2 +
∫

I

b(ur(t), wσ(t), uτ (t)) dt. (4.44)

Next, the trilinear term J3 can be equivalently written as

J3 =
∫

I

b(ur(t) − ur−τ (t), w(t), eσ(t)) dt +
∫

I

b(ur−τ (t), w(t) − w−τ (t), eσ(t)) dt

−
∫

I1

b(ur(t)s, w(t), eτ
σ(t)) dt +

∫

I

b(ur(t), w(t), eτ
σ(t)) dt. (4.45)

Employing the Hölder inequality and the properties of the trilinear form b to the first three terms on the
right hand side of (4.45), we deduce that

∫

I1

|b(ur(t), w(t), eτ
σ(t))|dt ≤ c

√
τ‖∇ur‖L∞(I1,X)‖Δw‖L2(I1,X)‖eτ

σ‖L∞(I1,X)

∫

I

|b(ur(t) − ur−τ (t), w(t), eσ(t))|dt ≤ c‖ur − ur−τ‖L∞(I,X)‖Δw‖L2(I,X)‖∇eσ‖L2(I,X)

∫

I

|b(ur−τ (t), w(t) − w−τ (t), eσ(t))|dt ≤ c‖Δur−τ‖L2(I,X)‖w − w−τ‖L∞(I,X)‖∇eσ‖L2(I,X).

Again, we utilized in the third inequality the anti-symmetry of b. Plugging these estimates in (4.45) and
then applying Lemma 4.8, (4.20), (4.35) and (A5), we get

J3 ≥ −ch2 +
∫

I

b(ur(t), w(t), eτ
σ(t)) dt. (4.46)
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Finally, for the term J4 we use Lemma 4.8 and (4.20) once again to deduce that

J4 =
∫

I

b(er
σ(t), w(t), u(t) − uτ (t)) dt +

∫

I

b(er
σ(t), w(t), uτ (t)) dt

≥ −c‖∇er
σ‖L2(I,X)‖Δw‖L2(I,H)‖u − uτ‖L2(I,X) +

∫

I

b(er
σ(t), w(t), uτ (t)) dt

≥ −ch2 +
∫

I

b(er
σ(t), w(t), uτ (t)) dt. (4.47)

Hence, if one applies the estimates (4.44), (4.46) and (4.47), then after some rearrangement of the
trilinear terms the following estimate holds:

J12 − J14 − J3 − J4 ≤ ch2 +
∫

I

b(er
σ(t), wσ(t) − w(t), uτ (t)) dt

+
∫

I

b(ur(t), wσ(t) − w(t), eτ
σ(t)) dt +

∫

I

b(er
σ(t), wσ(t), eτ

σ(t)) dt. (4.48)

In virtue of the Hölder inequality, the terms on the right hand side of (4.48) satisfy
∫

I

b(er
σ(t), wσ(t), eτ

σ(t)) dt ≤ c‖∇er
σ‖L2(I,X)‖∇wσ‖L∞(I,X)‖∇eτ

σ‖L2(I,X)

∫

I

b(ur(t), wσ(t) − w(t), eτ
σ(t)) dt ≤ c‖∇ur‖L∞(I,X)‖∇wσ − ∇w‖L2(I,X)‖∇eτ

σ‖L2(I,X)

∫

I

b(er
σ(t), wσ(t) − w(t), uτ (t)) dt ≤ c‖∇er

σ‖L2(I,X)‖∇wσ − ∇w‖L2(I,X)‖∇uτ‖L∞(I,X).

Substituting these in (4.48) and then recalling the previous estimates (4.20) and (4.35), we arrive at
J12−J14−J3−J4 ≤ ch2. This inequality, together with those in (4.41) and (4.42), implies (eσ, g)L2(I,X) ≤
ch2 for every g ∈ L2(I,X) with ‖g‖L2(I,X) ≤ 1. Therefore, (4.32) holds true by duality. The proof of the
theorem is now complete. �

4.4. Error Estimates for the Discrete Linearized State Equation

In this subsection, we consider the discretization of the linearized state equation. In fact, the resulting
scheme will be obtained by taking the derivative of the discrete solution operator. It is easy to see that the
map Sσ belongs to C∞(Q,Pτ (I, Vh)). Moreover, given a direction g ∈ Q, we have vσ = S′

σ(q)g ∈ Pτ (I, Vh)
if and only if vσ =

∑Nτ

k=1 vk
h1Ik

is the solution of
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(d̄τvk
h, ϕh)X + ν(∇vk

h,∇ϕh)X = b(uk−Nr

h , ϕh, vk−1
h )

+ b(vk−Nr

h , ϕh, uk−1
h ) +

1
τ

∫

Ik

(g(t), ϕh)X dt ∀ϕh ∈ Vh,

vj
h = 0 for j = 1 − Nr, . . . , 0.

(4.49)

for every k = 1, . . . , Nτ , where uσ = Sσ(q) and d̄τvk
h := τ−1(vk

h − vk−1
h ). Similarly, if g ∈ Q then

yσ = S′′
σ(q)[g, g] ∈ Pτ (I, Vh) if and only if for each k = 1, . . . , Nτ

⎧
⎪⎪⎨

⎪⎪⎩

(d̄τyk
h, ϕh)X + ν(∇yk

h,∇ϕh)X = b(uk−Nr

h , ϕh, yk−1
h )

+ b(yk−Nr

h , ϕh, uk−1
h ) + 2b(vk−Nr

h , ϕh, vk−1
h ) ∀ϕh ∈ Vh,

yj
h = 0 for j = 1 − Nr, . . . , 0,

(4.50)

where vσ = S′
σ(q)g and uσ = Sσ(q). In the succeeding discussions, we deal with the error estimates for

the solutions of (2.20) and (4.49).
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Theorem 4.10. Let q ∈ Q, g ∈ Q, uσ = Sσ(q) and vσ = S′
σ(q)g. Then there exists a continuous function

c > 0 such that for every σ, we have

‖vσ‖L∞(I,X) + ‖vσ‖L2(I,W ) ≤ c(‖uσ‖L∞(Jr,X) ∩ L2(Jr,W ))‖g‖Q. (4.51)

Proof. Taking the test function ϕh = 2τvk
h in (4.49) and using the Young inequality, we obtain for

k = 1, . . . , Nτ that

‖vk
h‖2

X − ‖vk−1
h ‖2

X + ‖vk
h − vk−1

h ‖2
X + 2ντ‖∇vk

h‖2
X

≤ 2τb(uk−Nr

h , vk
h, vk−1

h ) + 2τb(vk−Nr

h , vk
h, uk−1

h ) +
∫

Ik

(g, vk
h)X dt

≤ ντ‖∇vk
h‖2

X + ετ‖uk−Nr

h ‖2
X‖∇vk−1

h ‖2
X +

cτ

ε
‖∇uk−Nr

h ‖2
X‖vk−1

h ‖2
X

+
cτ

ε
‖vk−Nr

h ‖2
X‖∇uk−1

h ‖2
X + ετ‖∇vk−Nr

h ‖2
X‖uk−1

h ‖2
X +

c

ν

∫

Ik

‖g(t)‖2
X dt.

Let us choose 0 < ε < ν(4‖uσ‖L∞(Jr,X) + 1)−1. Thus, ε‖uk−Nr

h ‖2
X ≤ ν/4 and ε‖uk−1

h ‖2
X ≤ ν/4 for every

k = 1, . . . , Nτ . Given 1 ≤ j ≤ Nτ , take the sum of the above inequality over all k = 1, . . . , j and use
v0

h = 0 so that

‖vj
h‖2

X +
j∑

k=1

ντ

2
‖∇vk

h‖2
X ≤ c

ν

j∑

k=1

∫

Ik

‖g(t)‖2
X dt

+
c

ε

j∑

k=1

τ‖∇uk−Nr

h ‖2
X‖vk−1

h ‖2
X +

c

ε

j∑

k=1

τ‖∇uk−1
h ‖2

X‖vk−Nr

h ‖2
X .

By the discrete Gronwall Lemma 7.2, recalling that vk
h = 0 for every k = 1 − Nr, . . . , 0, we have

max
1≤k≤Nτ

‖vk
h‖2

X +
Nτ∑

k=1

ντ

2
‖∇vk

h‖2
X ≤ ceγ‖g‖2

Q, (4.52)

where the constant γ is given by

γ =
c

ε

Nτ∑

k=1

τ‖∇uk−Nr

h ‖2
X +

c

ε

Nτ∑

k=1

τ‖∇uk−1
h ‖2

X ≤ c‖uσ‖2
L2(Jr,W ). (4.53)

The inequalities (4.52) and (4.53) imply (4.51). �

Theorem 4.11. Let q ∈ Q, g ∈ Q, v = S′(q)g and vσ = S′
σ(q)g. Then there is a constant c > 0 depending

continuously on ‖q‖Q, ‖g‖Q, ‖f‖H2,1(I), ‖Au0‖H and ‖z‖H2,1(Jr) so that for every σ

max
1≤k≤Nτ

‖v(tk) − vk
h‖X + ‖v − vσ‖L∞(Jr,X) + ‖v − vσ‖L∞(Jr,W ) ≤ ch. (4.54)

Furthermore, we also have

‖v − vσ‖L2(I,X) ≤ ch2. (4.55)

Proof. Since both v and vσ vanish on Ir, we only need to prove (4.54) with Jr replaced by I. Let
u = S(q), uσ = Sσ(q) and ūσ ∈ Pτ (Jr,Wh) with ūk

h = Phu(tk) for each k = 1 − Nr, . . . , Nτ . Also,
define v̄σ ∈ L2(Jr, Vh) by v̄k

h = Phv(tk) for k = 1 − Nr, . . . , Nτ . Split the error according to v − vσ =
(v − v̄σ) + (v̄σ − vσ). By construction of v̄σ, we immediately have

max
1≤k≤Nτ

‖v(tk) − v̄k
h‖X + ‖v − v̄σ‖L∞(I,X) + ‖v − v̄σ‖L2(I,W ) ≤ ch. (4.56)
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Following the proof of Theorem 4.7, now with the linearized state problem (2.20) and its discrete
version (4.49), one obtains that the error term ησ := v̄σ −vσ ∈ Pτ (I, Vh) satisfies the variational equation

(d̄τηk
h, ϕh)X + ν(∇ηk

h,∇ϕh)X = b(ek−Nr

h , ϕh, ηk−1
h ) + b(ηk−Nr

h , ϕh, ek−1
h )

+ b(ek−Nr

h , ϕh, vk−1
h ) + b(uk−Nr

h , ϕh, ηk−1
h ) +

1
τ

Rk
h(ϕh) ∀ϕh ∈ Vh, (4.57)

where eσ = ūσ − uσ and the remainder term Rk
h(ϕh) is now given by

Rk
h(ϕh) =

∫

Ik

ν(∇Phv(tk) − ∇v(t),∇ϕh)X dt +
∫

Ik

d(ϕh,
(t) − Γh
(t)) dt

+
∫

Ik

b(vr(t), ϕh, u(t) − Phu(tk−1)) dt +
∫

Ik

b(vr(t) − Phvr(tk), ϕh, Phu(tk−1)) dt

+
∫

Ik

b(ur(t), ϕh, v(t) − Phv(tk−1)) dt +
∫

Ik

b(ur(t) − Phur(tk), ϕh, Phv(tk−1)) dt. (4.58)

If we take ϕh = 2τηk in (4.57) and apply the Gagliardo–Nirenberg and Young inequalities, then

‖ηk
h‖2

X − ‖ηk−1
h ‖2

X + 2ντ‖∇ηk
h‖2

X ≤ ντ‖∇ηk
h‖2

X + ετ‖ek−Nr

h ‖2
X‖∇ηk−1

h ‖2
X

+
cτ

ε
‖∇ek−Nr

h ‖2
X‖ηk−1

h ‖2
X + cτ‖ηk−Nr

h ‖2
X‖∇ek−1

h ‖2
X + cτ‖∇ηk−Nr

h ‖2
X‖ek−1

h ‖2
X

+ cτ‖ek−Nr

h ‖2
X‖∇vk−1

h ‖2
X + cτ‖∇vk−Nr

h ‖2
X‖ek−1

h ‖2
X + ετ‖uk−Nr

h ‖2
X‖∇ηk−1

h ‖2
X

+
cτ

ε
‖∇uk−Nr

h ‖2
X‖ηk−1

h ‖2
X + c|Rk

h(ηk
h)|.

Choose ε > 0 such that 0 < ε < ν(4‖uσ‖L∞(Jr,X) + 1)−1 and 0 < ε < ν(4‖eσ‖L∞(Jr,X) + 1)−1. Since vσ

and ησ are bounded in L∞(Jr,X)∩L2(Jr,W ) and ‖eσ‖L∞(Jr,X) +‖eσ‖L2(I,W ) ≤ ch, the above inequality
implies that, after taking the sum over all k = 1, . . . , j,

‖ηj
h‖2

X +
Nτ∑

k=1

ντ

2
‖∇ηk

h‖2
X ≤ ch2 + c

j∑

k=1

|Rk
h(ηk

h)|

+
c

ε

j∑

k=1

τ(‖∇ek−Nr

h ‖2
X + ‖∇uk−Nr

h ‖2
X)‖ηk−1

h ‖2
X (4.59)

The term Rk
h(ηk

h) can be treated in the same way as with the one given in proof of Theorem 4.7, and
by doing this process we get

c

j∑

k=1

|Rk
h(ηk

h)| ≤ ch2 +
j∑

k=1

ντ

4
‖∇ηk

h‖2
X , j = 1, . . . , Nτ . (4.60)

Plugging (4.60) in (4.59) and then applying the discrete Gronwall Lemma

max
1≤k≤Nτ

‖v̄k
h − vk

h‖X + ‖ησ‖L∞(I,X) + ‖ησ‖L2(I,W ) ≤ ch. (4.61)

Taking the sum (4.56) and (4.61) proves the desired a priori estimate (4.54). Finally, (4.55) can be
established by a duality argument as in Theorem 4.9 with the same adjoint problem. �
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4.5. Error Estimates for the Discrete Adjoint Equation

Let uσ = Sσ(q) be the solution of the discrete state equation (4.3). The fully discretized adjoint problem
that we consider is the following: Find wσ =

∑Nτ

k=1 wk
h1Ik

∈ Pτ (I, Vh) such that for k = Nτ , . . . , 1
⎧
⎪⎪⎨

⎪⎪⎩

(d−τwk
h, ψh)X + ν(∇ψh,∇wk

h)X = b(uk+1−Nr

h , wk+1
h , ψh) + b(ψh, wk+Nr

h , uk−1+Nr

h )

= αΩT
(uk

h − uk
dh, ψh)X + αR(∇ × uk

h,∇ × ψh)L2 ∀ψh ∈ Vh,

wj
h = 0, for j = Nτ + 1, . . . , Nτ + Nr.

(4.62)

where the forward difference operator d−τ is defined by

d−τwk
h :=

{
τ−1(wNτ

h − αT (uNτ

h − uTh)) if k = Nτ ,

τ−1(wk
h − wk+1

h ) if k = Nτ − 1, . . . , 1.

The existence and uniqueness of solution to this problem follows immediately since the corresponding
bilinear form is coercive for each k. Let us introduce the discrete control-to-adjoint state operator Dσ :
Q → Pτ (I, Vh) by Dσ(q) = wσ if and only if wσ is the solution of (4.62). The following lemma is the
discrete versions of (3.1) and (3.2).

Lemma 4.12. The action of the first and second derivatives of jσ : Q → R at q ∈ Q in a direction g ∈ Q
are given by

j′
σ(q)g =

∫

I

(wσ + αq, g)X dt

j′′
σ(q)[g, g] =

∫

I

αΩT
‖vσ‖2

X + αR‖∇ × vσ‖2
L2 + 2b(vr

σ, wσ, vτ
σ) dt + αT ‖vσ(T )‖2

X + α‖g‖2
Q

where vσ = S′
σ(q)g and wσ = Dσ(q).

Proof. From the chain rule and the fact that vσ and wσ are constants with respect to time on each
subinterval Ik, it follows that

j′
σ(q)g = τ

Nτ∑

k=1

[αΩT
(uk

h − uk
dh, vk

h)X + αR(∇ × uk
h,∇ × vk

h)L2 ]

+ αT (uNτ

h − uTh, vNτ

h )X + α(q, g)Q.

Let Iσ := j′
σ(q)g −α(q, g)Q. Taking the test function ψh = τvk

h in the discrete adjoint problem (4.62) and
getting the sum over all k = 1, . . . , Nτ , we have

Iσ = (wNτ

h , vNτ

h )X +
Nτ −1∑

k=1

(wk
h − wk+1

h , vk
h)X +

Nτ∑

k=1

ντ(∇vk
h,∇wk

h)X

−
Nτ∑

k=1

τ [b(uk+1−Nr

h , wk+1
h , vk

h) + b(vk
h, wk+Nr

h , uk−1+Nr

h )]

=
Nτ∑

k=1

[(vk
h − vk−1

h , wk
h)X + ντ(∇vk

h,∇wk
h)X ] −

Nτ∑

k=1

τ [b(uk−Nr

h , wk
h, vk−1

h ) + b(vk−Nr

h , wk
h, uk−1

h )]

=
Nτ∑

k=1

∫

Ik

(g(t), wk
h)X dt =

∫

I

(wσ(t), g(t))X dt

since vk
h = 0 for k = 1 − Nτ , . . . , 0 and wk

h = 0 for k = Nτ + 1, . . . , Nτ + Nr. This proves the case of
the first directional derivative. The second directional derivative can be handled in a similar way using
(4.50). �
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Remark 4.13. If q�
σ is a solution to (Pσ), then q�

σ = −α−1Dσ(q�
σ) ∈ Pτ (I, Vh). Thus, (Pσ) is equivalent

to the minimization problem minqσ∈Pτ (I,Vh) jσ(qσ). Indeed, for a solution q�
σ of (Pσ), it holds that

min
qσ∈Pτ (I,Vh)

jσ(qσ) ≤ jσ(q�
σ) = min

qσ∈Pτ (I,Wh)
jσ(qσ).

The reverse inequality follows from the fact that Pτ (I, Vh) ⊂ Pτ (I,Wh).

We have the following local boundedness of the discrete control-to-adjoint operator Dσ. The proof is
omitted since it is similar to the discrete linearized problem (4.49), see Theorem 4.10.

Theorem 4.14. Let q ∈ Q, uσ = Sσ(q) and wσ = Dσ(q). Then there exists a continuous function c > 0
such that for every σ > 0 we have

‖wσ‖L∞(I,X) + ‖wσ‖L2(I,W )

≤ c(‖uσ‖L∞(Ir,X) ∩ L2(I,W ))(‖uσ − udσ‖L2(I,X) + ‖uNτ

h − uTh‖X + ‖∇ × uσ‖L2(I,L2(Ω))).

In the sequel, we shall derive error estimates by following the procedure already developed in the
previous subsections. Recall that we do not have the compatibility of the terminal data for the adjoint
problem if αT > 0.

Theorem 4.15. Let q ∈ Q, w = D(q) and wσ = Dσ(q). There exists a constant c > 0 depending continu-
ously on ‖q‖Q, ‖f‖H2,1(I), ‖Au0‖H , ‖z‖H2,1(Jr), ‖AuT ‖H and ‖ud‖H2,1(I) such that for every σ, we have
the error estimate

max
1≤k≤Nτ

‖w(tk−1) − wk
h‖X + ‖w − wσ‖L∞(I,X) + ‖w − wσ‖L2(I,W ) ≤ ch. (4.63)

Proof. Let w̄σ ∈ L2(Jr, Vh) with w̄k
h = Phw(tk−1) for k = 1, . . . , Nτ and w̄h,k = 0 for k = Nτ +

1, . . . , Nτ + Nr. Also, let ūσ ∈ L2(Jr,Wh) be as in the proof of Theorem 4.7. As usual, split the error by
w − wσ = (w − w̄σ) + (w̄σ − wσ). By Proposition 4.1, we have

max
1≤k≤Nτ

‖w(tk−1) − w̄k
h‖X + ‖w − w̄σ‖L∞(I,X) + ‖w − w̄σ‖L2(I,W ) ≤ ch. (4.64)

Multiplying the continuous adjoint problem (2.38) by the test function ψh ∈ Vh ⊂ W and then
integrating over Ik × Ω, we deduce that

(Phw(tk−1) − Phw(tk), ψh)X +
∫

Ik

ν(∇ψh,∇w(t))X dt −
∫

Ik

(div ψh, π(t)) dt

=
∫

Ik

b(ur(t), w(t), ψh) dt +
∫

Ik

b(ψh, w−r(t), u−r(t)) dt

+
∫

Ik

αΩT
(u(t) − ud(t), ψh)X dt +

∫

Ik

αR(∇ × u(t),∇ × ψh)L2 dt

for each k = Nτ , . . . , 1. This equation can be rewritten as follows:

(d−τ w̄k
h, ψh)X + ν(∇ψh,∇w̄k

h)X

= b(ūk+1−Nr

h , w̄k+1
h , ψh) + b(ψh, w̄k+Nr

h , ūk−1+Nr

h ) +
1
τ

Rk
h(ψh) (4.65)



   56 Page 32 of 49 G. Peralta and J. S. Simon JMFM

where d−τ w̄Nτ

h := τ−1(w̄Nτ

h − αT (u(T ) − uT )) and d−τ w̄k
h := τ−1(w̄k

h − w̄k+1
h ) for k = Nτ − 1, . . . , 1, and

the residual term Rk
h is given by

Rk
h(ψh) =

∫

Ik

ν(∇w̄k
h − ∇w(t),∇ψh)X dt −

∫

Ik

(div ψh, π(t) − Γhπ(t)) dt

+
∫

Ik

b(ur(t), w(t), ψh) − b(ūk+1−Nr

h , w̄k+1
h , ψh) dt

+
∫

Ik

b(ψh, w−r(t), u−r(t)) − b(ψh, w̄k+Nr

h , ūk−1+Nr

h ) dt

+
∫

Ik

αΩT
((u(t) − ūk

h) − (ud(t) − uk
dh), ψh)X dt +

∫

Ik

αR(∇ × (u(t) − ūk
h),∇ × ψh)L2 dt.

Let eσ := ūσ − uσ and ησ := w̄σ − wσ. Taking the difference of (4.62) and (4.65), we get

(d−τηk
h, ψh)X + ν(∇ψh,∇ηk

h)X = b(ek+1−Nr

h , ηk+1
h , ψh) + b(ψh, ηk+Nr

h , ek−1+Nr

h )

+ b(uk+1−Nr

h , ηk+1
h , ψh) + b(ψh, wk+Nr

h , ek−1+Nr

h ) +
1
τ

Rk
h(ψh) (4.66)

where d−τηNτ

h := τ−1(w̄Nτ

h − w(T ) − αT [(u(T ) − uNτ

h ) − (uT − uTh)]) and d−τηk
h := τ−1(ηk

h − ηk+1
h ) for

k = Nτ − 1, . . . , 1. Observe that (4.66) has the same form as (4.57), however, the superscripts are now
in descending order. Nevertheless, one can adapt the same methods and use the backward version of the
discrete Gronwall Lemma 7.2. For this reason, it suffices to derive an estimate for the term Rk

h(ηk
h). Let

Ih,k and Jh,k denote the third and fourth integrals in Rk
h(ηk

h). By (A2), Proposition 4.2 and Theorem 4.7,
for each ε > 0 we have

Nτ∑

k=1

|Rk
h(ηk

h) − Ih,k − Jh,k| ≤ ε

Nτ∑

k=1

ντ‖∇ηk
h‖2

X + cεh
2. (4.67)

We are now going to estimate Ih,k and Jh,k. To this end, let us write these terms by Ih,k = Ia
h,k + Ib

h,k

and Ih,k = Ja
h,k + Jb

h,k, where

Ia
h,k + Ib

h,k :=
∫

Ik

b(ur(t) − ūk+1−Nr

h , w(t), ηk
h) dt +

∫

Ik

b(ūk+1−Nr

h , w(t) − w̄k+1
h , ηk

h) dt

Ja
h,k + Jb

h,k :=
∫

Ik

b(ηk
h, w−r(t) − w̄k+Nr

h , u−r(t)) dt +
∫

Ik

b(ηk
h, w̄k+Nr

h , ūk−1+Nr

h − u−r(t)) dt.

By the Gagliardo–Nirenberg and Hölder inequalities, Ia
h,k and Ib

h,k satisfy the following estimates:

|Ia
h,k| ≤ εντ‖∇ηk

h‖2
X + cε‖∇w‖2

L∞(Ik,X)

∫

Ik

‖∇ur(t) − ∇Phur(tk+1)‖2
X dt

|Ib
h,k| ≤ εντ‖∇ηk

h‖2
X + cε‖∇ur‖2

L∞(Ik,X)

∫

Ik

‖∇w(t) − ∇Phw(tk)‖2
X dt, k = Nτ − 1, . . . , 1,

|Ib
h,Nτ

| ≤ εντ‖∇ηk
h‖2

X + cετ‖∇ur‖2
L∞(Ik,X)‖∇w‖2

L∞(INτ ,X).

On the other hand, Jh,k = 0 if k = Nτ , . . . , Nτ − Nr + 1, while for k = Nτ − Nr, . . . , 1 we have

|Ja
h,k| ≤ εντ‖∇ηk

h‖2
X + cε‖∇u−r‖2

L∞(Ik,X)

∫

Ik

‖∇w−r(t) − ∇w−r(tk−1)‖2
X dt

|Jb
h,k| ≤ εντ‖∇ηk

h‖2
X + cε‖∇w−r‖2

L∞(Ik,X)

∫

Ik

‖∇u−r(t) − ∇u−r(tk−1)‖2
X dt.
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Combining the previous estimates, taking the sum over all k = 1, . . . , Nτ and then using (4.67) lead
to the following estimate:

Nτ∑

k=1

|Rk
h(ηk

h)| ≤
Nτ∑

k=1

|Rk
h(ηk

h) − Ih,k − Jh,k| +
Nτ∑

k=1

|Ih,k + Jh,k|

≤ 5ε

Nτ∑

k=1

ντ‖∇ηk
h‖2

X + cεh
2. (4.68)

If we take ψh = ηk
h in (4.66), follow the remarks mentioned above and then take ε > 0 small enough so

that the first term on the right hand side of (4.68) can be absorbed to the left, then one would eventually
arrive at the inequality

max
1≤k≤Nτ

‖w̄k
h − wk

h‖X + ‖ησ‖L∞(I,X) + ‖ησ‖L2(I,W ) ≤ ch. (4.69)

Therefore, we can see that (4.63) holds true due to (4.64) and (4.69). �

Theorem 4.16. Under the assumptions of the Theorem 4.15, there exists a constant c > 0 independent on
σ such that

‖w − wσ‖L2(I,X) ≤ c(αΩT
h + αR + αT )h. (4.70)

Proof. We again proceed with a duality argument, but now taking advantage of the error estimates on
the solutions of the state and linearized state equations. Let g ∈ L2(I,X) with ‖g‖L2(I,X) ≤ 1. Then,
according to (3.1) and Lemma 4.12, we have

∫

I

(w(t) − wσ(t), g(t))X dt = j′(q)g − j′
σ(q)g

= αΩT

∫

I

(u(t) − ud(t), v(t))X − (uσ(t) − udσ(t), vσ(t))X dt

+ αR

∫

I

(∇ × u(t),∇ × v(t))L2 − (∇ × uσ(t),∇ × vσ(t))L2 dt

+ αT ((u(T ) − uT , v(T ))X − (uσ(T ) − ΠhuT , vσ(T ))X),

where v = S′(q)g and vσ = S′
σ(q)g. From the Cauchy–Schwarz inequality and the error estimates (4.32)

and (4.55), we deduce that
∫

I

|(u(t), v(t))X − (uσ(t), vσ(t))X |dt

≤ ‖u − uσ‖L2(I,X)‖v‖L2(I,X) + ‖uσ‖L2(I,X)‖v − vσ‖L2(I,X) ≤ ch2

∫

I

|(ud(t), v(t))X − (udσ(t), vσ(t))X |dt

≤ ‖ud − udσ‖L2(I,X)‖v‖L2(I,X) + ‖udσ‖L2(I,X)‖v − vσ‖L2(I,X) ≤ ch2.

Using similar decompositions along with the error estimates (4.20) and (4.54), we get
∫

I

|(∇ × u(t),∇ × v(t))L2 − (∇ × uσ(t),∇ × vσ(t))L2 |dt ≤ ch

|(u(T ), v(T ))X − (uσ(T ), vσ(T ))X | ≤ ch.

Also, (A2) and (4.54) imply that |(uT , v(T ))X − (ΠhuT , vσ(T ))X | ≤ c(h2 + h) ≤ ch. Thus, we obtain
that (w − wσ, g)L2(I,X) ≤ c(αΩT

h + αR + αT )h for every g ∈ L2(I,X) such that ‖g‖L2(I,X) ≤ 1, and this
results into the desired inequality (4.70) by duality. �
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Theorem 4.17. If qσ → q in Q and gσ ⇀ g in Q as σ → 0, then

lim
σ→0

(j′′
σ(qσ)[gσ, gσ] − α‖gσ‖2

Q) = j′′(q)[g, g] − α‖g‖2
Q (4.71)

lim inf
σ→0

j′′
σ(qσ)[gσ, gσ] ≥ j′′(q)[g, g]. (4.72)

Proof. Let v = S′(q)g, w = D(q), vσ = S′
σ(qσ)gσ and wσ = Dσ(qσ). By assumption, {qσ}σ and {gσ}σ

are bounded in Q. This implies that both {vσ}σ and {wσ}σ are bounded in L∞(I,X) ∩ L2(I,W ) by
Theorems 4.5, 4.10 and 4.14 .

Let ṽσ = S′(qσ)gσ and v̂σ = S′(q)gσ, and consider the decomposition vσ − v = (vσ − ṽσ) + (ṽσ −
v̂σ) + (v̂σ − v). By Theorem 4.11, vσ − ṽσ → 0 in L2(I,W ) and vσ(T ) − ṽσ(T ) → 0 in X. Using the mean
value theorem and qσ → q in Q, we have ṽσ − v̂σ → 0 in H2,1(I). As a particular case, ṽσ − v̂σ → 0 in
L2(I,W ) and ṽσ(T ) − v̂σ(T ) → 0 in X up to a subsequence due to the compactness of the embeddings
H2,1(I) ⊂ L2(I,W ) and V ⊂ H. For the third difference, v̂σ − v ⇀ 0 in H2,1(I) by the continuity of the
linear map S′(q) : Q → H2,1(I) and gσ ⇀ g in Q . By compactness of the said embeddings once more,
we get v̂σ − v → 0 in L2(I,W ) and v̂σ(T ) − v(T ) → 0 in H up to a subsequence. Therefore, vσ → v in
L2(I,W ) and vσ(T ) → v(T ) in X.

Let w̃σ = D(qσ). We get from Theorem 4.15 that wσ − w̃σ → 0 in L2(I,W ). On the other hand, the
stability estimate in Corollary 2.17 implies that w̃σ → w in H2,1(I). Hence, wσ → w in L2(I,W ) up to
a subsequence. We can now pass to the limit in the trilinear term in j′′

σ(qσ)[gσ, gσ], that is,

lim
σ→0

∫

I

b(vr
σ(t), wσ(t), vτ

σ(t)) − b(v(t), w(t), v(t)) dt

= lim
σ→0

∫

I

b(vr
σ(t) − vr(t), wσ(t), vτ

σ(t)) dt + lim
σ→0

∫

I

b(vr(t), wσ(t) − w(t), vτ
σ(t)) dt

+ lim
σ→0

∫

I

b(vr(t), w(t), vτ
σ(t) − vτ (t)) dt + lim

σ→0

∫

I

b(vr(t), w(t), vτ (t) − v(t)) dt = 0.

This implies the limit (4.71). To obtain the inequality (4.72), we just need to rewrite j′′
σ(qσ)[gσ, gσ] =

(j′′
σ(qσ)[gσ, gσ] − α‖gσ‖2

Q) + α‖gσ‖2
Q, apply (4.71), take the limit inferior and then apply the lower semi-

continuity of the norm. �

4.6. Error Estimates for the Discrete Optimal Control Problem

The goal of this subsection is to derive error estimates between the solutions of the optimal control
problems (P) and (Pσ). Here, we follow the strategy developed in [11,12]. Let us start with the following
lemma with a sequence of controls that converges weakly.

Lemma 4.18. Let {qσ}σ ⊂ Qσ and q ∈ Q be such that qσ ⇀ q in Q as σ → 0. If u = S(q) and uσ = Sσ(qσ),
then

lim
σ→0

(‖u − uσ‖L2(I,W ) + ‖u(T ) − uσ(T )‖X) = 0.

Proof. Let ūσ = S(qσ) and consider u − uσ = (u − ūσ) + (ūσ − uσ). Since qσ is bounded in Q, it follows
from Theorem 4.7 that ‖ūσ − uσ‖L2(I,W ) + ‖ūσ(T ) − uσ(T )‖X → 0. Recall from Theorem 2.10 that
S : Q → H2,1(I) is weak-weak continuous, hence ūσ ⇀ u in H2,1(I). By compactness arguments, one
can show up to a subsequence that ‖u − ūσ‖L2(I,W ) + ‖u(T ) − ūσ(T )‖X → 0, and the conclusion follows
from the triangle inequality. �

Theorem 4.19. For each σ = (τ, h) satisfying (A5), let q�
σ be a global solution of (Pσ). Then {q�

σ}σ is
bounded in Q. Any weak limit point q̄ ∈ Q of {q�

σ}σ as σ → 0 is a solution to (P) and it satisfies q�
σ → q̄

in Q and jσ(q�
σ) → j(q̄).
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Proof. Suppose that q̂ ∈ Q is a solution of (P) and let qσ = RτPhq̂. Since q̂ ∈ H2,1(I), it follows from
Proposition 4.3 that ‖qσ − q̂ ‖Q → 0. From the previous lemma, if uσ = Sσ(uσ) and û = S(q̂), then
uσ → û in L2(I,W ) and uσ(T ) → û(T ) in X. By construction, udσ → ud in L2(I,X) and uTh → uT

in X. These imply that jσ(qσ) → j(q̂). According to the optimality of q�
σ with respect to jσ, we have

‖q�
σ‖2

Q ≤ 2
αjσ(q�

σ) ≤ 2
αjσ(qσ), where the right hand side is bounded for σ > 0. Hence, {q�

σ}σ has a weak
limit point in Q.

Let q̄ ∈ Q be any such weak limit point. Again, invoking the previous lemma and using the same
argument as above, it follows that jσ(q�

σ) → j(q̄), and if ū = S(q̄) then u�
σ → ū in L2(I,W ) and

u�
σ(T ) → ū(T ) in X. From the definitions of j and jσ, these imply that ‖q�

σ‖Q → ‖q̄‖Q, and therefore
q�
σ → q̄ in Q. Moreover, by the optimality of q�

σ with respect to jσ once more, one has

j(q̄) = lim
σ→0

jσ(q�
σ) ≤ lim

σ→0
jσ(qσ) = j(q̂),

and this shows that q̄ is a solution of (P). �

Corollary 4.20. If q� ∈ Q is a strict local solution of (P), then there exists a sequence {q�
σ}σ ⊂ Qσ of

solutions to (Pσ) such that q�
σ → q� in Q and jσ(q�

σ) → j(q�).

Proof. By assumption, there is δ > 0 such that q� is the only minimizer of j in Bδ(q�) := {q ∈ Q :
‖q − q�‖ < δ}. From the proof of the previous theorem with q̂ = q�, there is a sequence {q�

σ}σ ⊂ Qσ of
solutions to (Pσ) in Br(q�) such that q�

σ → q̄ and jσ(q�
σ) → j(q̄) for some q̄ ∈ Br(q�). Since q� is the only

solution of j in Br(q�), it follows that q̄ = q�. �

Let us now prove error estimates for strict local minimizers having coercive second derivatives.

Theorem 4.21. Suppose that j′(q�)g = 0 for every g ∈ Q and there is a constant μ > 0 such that
j′′(q�)[q, q] ≥ μ‖q‖2

Q for every q ∈ Q, so that q� is a strict local solution of (P). For each σ = (τ, h)
satisfying (A5), let q�

σ ∈ Qσ be a solution to (Pσ) with q�
σ → q� in Q. Then for some constant c > 0

independent on σ, we have

‖q� − q�
σ‖Q ≤ c[(αΩT

+ α + 1)h + αT + αR]h. (4.73)

Proof. The existence of the sequence {q�
σ}σ ⊂ Qσ is guaranteed by the previous corollary. Let q̄�

σ :=
RτPhq� ∈ Qσ. Since q� = −α−1D(q�) ∈ H2,1(I), we have ‖q�

σ − q̄�
σ‖Q ≤ ch2 by Proposition 4.3. Let

eσ := q̄�
σ −q�

σ ∈ Qσ and gσ := eσ/‖eσ‖. Up to a subsequence, gσ ⇀ g in Q for some g ∈ Q. From the mean-
value theorem and the local optimality of q�

σ, there is a λσ ∈ (0, 1) such that if qσ := λσ q̄�
σ + (1 − λσ)q�

σ,
then

j′
σ(q̄�

σ)eσ = j′
σ(q̄�

σ)eσ − j′
σ(q�

σ)eσ = j′′
σ(qσ)[eσ, eσ].

Since qσ → q� in Q, gσ ⇀ g in Q, ‖gσ‖Q = 1 and ‖g‖Q ≤ 1, (4.71) gives us

lim
σ→0

(j′′
σ(qσ)[gσ, gσ] − α) = j′′(q�)[g, g] − α‖g‖2

Q ≥ μ − α.

Hence, there exists σ0 > 0 such that j′′
σ(qσ)[eσ, eσ] ≥ μ

2 ‖eσ‖2
Q whenever |σ| < σ0. By the local optimality

of q� and Qσ ⊂ Q, we have
μ

2
‖eσ‖2

Q ≤ j′
σ(q̄�

σ)eσ = (j′
σ(q̄�

σ)eσ − j′
σ(q�)eσ) + (j′

σ(q�)eσ − j′(q�)eσ). (4.74)

Note that j′
σ(q̄�

σ)eσ − j′
σ(q�)eσ = (Dσ(q̄�

σ) − Dσ(q�), eσ)L2(I,X) + α(q̄�
σ − q�, eσ)Q by Lemma 4.12.

From the invariance property mentioned in Remark 4.4, one has Sσ(q�) = Sσ(RτPhq�) = Sσ(q̄�
σ), and

consequently Dσ(q̄�
σ) = Dσ(q�). Thus,

|j′
σ(q̄�

σ)eσ − j′
σ(q�)eσ| ≤ α‖q̄�

σ − q�‖Q‖eσ‖Q. (4.75)

Similarly, from j′
σ(q�)eσ − j′(q�)eσ = (Dσ(q�) − D(q�), eσ)L2(I,X), we obtain

|j′
σ(q�)eσ − j′(q�)eσ| ≤ ‖Dσ(q�) − D(q�)‖L2(I,X)‖eσ‖Q. (4.76)
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Invoking (4.75) and (4.76) in (4.74) yields

‖q� − q�
σ‖Q ≤ ‖q� − q̄�

σ‖Q + ‖eσ‖Q

≤ ‖q̄�
σ − q�‖Q +

2
μ

(α‖q̄�
σ − q�‖Q + ‖Dσ(q�) − D(q�)‖L2(I,X)).

Utilizing ‖q�
σ − q̄�

σ‖Q ≤ ch2 and Theorem 4.16, we finally obtain (4.73). �

Corollary 4.22. Consider the framework of Theorem 4.21. If u� = S(q�), u�
σ = Sσ(q�

σ), w� = D(q�) and
w�

σ = Dσ(q�
σ) are the optimal states and adjoint states corresponding to q� and q�

σ, then there exists c > 0
such that for each σ, we have

‖u� − u�
σ‖L2(I,X) + ‖w� − w�

σ‖L2(I,X) ≤ c[(αΩT
+ α + 1)h + αT + αR]h.

Furthermore, there is a constant c > 0 not depending on σ such that

‖q� − q�
σ‖L∞(I,X) ∩ L2(I,W ) + ‖u� − u�

σ‖L∞(I,X) ∩ L2(I,W ) + ‖w� − w�
σ‖L∞(I,X) ∩ L2(I,W ) ≤ ch.

Proof. From the mean value theorem, (4.73) and Theorem 4.9, we have

‖u� − u�
σ‖L2(I,X) ≤ ‖S(q�) − S(q�

σ)‖L2(I,X) + ‖S(q�
σ) − Sσ(q�

σ)‖L2(I,X)

≤ c‖q� − q�
σ‖Q + ch2 ≤ c[(αΩT

+ α + 1)h + αT + αR]h.

For the adjoint states, we just need to apply Theorem 4.16, Corollary 2.17 and (4.73) so that

‖w� − w�
σ‖L2(I,X) ≤ ‖D(q�) − D(q�

σ)‖L2(I,X) + ‖D(q�
σ) − Dσ(q�

σ)‖L2(I,X)

≤ c[(αΩT
+ α + 1)h + αT + αR]h.

These prove the first error estimate.
The proof of the second error estimate will be carried out with the help of Theorem 4.7 and Theo-

rem 4.15. In the case of the state variables, using the continuity of the embedding H2,1(I) ⊂ L∞(I,X) ∩
L2(I,W ) and S ∈ C∞(Q,H2,1(I)) one obtains that

‖u� − u�
σ‖L∞(I,X) ∩ L2(I,W ) ≤ ‖S(q�) − S(q�

σ)‖H2,1(I) + ‖S(q�
σ) − Sσ(q�

σ)‖L∞(I,X) ∩ L2(I,W )

≤ c‖q� − q�
σ‖Q + ch ≤ ch.

The case of the adjoint variables can be handled in a similar fashion thanks to Corollary 2.17. Finally,
for the controls, we use q� − q�

σ = −α−1(w� − w�
σ) and apply the error estimate for the adjoint states.

�

5. Approximation of the Optimal Control Problem

This section deals with the specific aspects of computing numerically a solution to the fully discrete
optimal control problem (Pσ). We shall focus the discussion in the case of the triangular Taylor-Hood
element, however, the adaptation to the mini-finite element can be carried out in a similar fashion. The
resulting finite-dimensional optimization problem will be an approximation of (Pσ). This is due to the
variational crimes committed from the use of numerical quadrature and the addition of an artificial com-
pressibility penalty term for the elimination of the pressure. The analysis of additional errors due to these
processes is beyond the scope of the current paper. Nevertheless, artificial compressibility penalizations to
the uncontrolled Navier–Stokes equation without delay has been examined in the series of papers [13–15].
There are several available softwares for the implementation of the finite element method, however, we
shall do our own assembly of the finite element matrices.
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5.1. Penalized Finite-Dimensional Approximation

Let Kh = {Kh} be a shape-regular triangulation of a convex polygonal domain Ω, {xh,s}nph

s=1 be the
corresponding set of nodes and {xh,i}nh

i=nph+1
be the set of edge midpoints of the triangles. Denote by

P
k(Kh) the space of all polynomials on Kh with degree at most k. Consider the finite-dimensional spaces

Mh := {ρh ∈ C(Ω̄) : ρh|K ∈ P
1(Kh) ∀Kh ∈ Kh}

Yh := {φh ∈ C(Ω̄) : φh|K ∈ P
2(Kh) ∀Kh ∈ Kh}

and set Wh := Yh × Yh. Let {φh,i}nh
i=1 be the Lagrange nodal basis for Yh such that φh,i(xhj

) = δij for
every i, j = 1, . . . , nh, where δij is the Kronecker delta symbol. Similarly, let {ρh,s}nph

s=1 be the Lagrange
nodal basis for Mh with ρh,s(xh,
) = δs
 for each s, � = 1, . . . , nph. For i = 1, . . . , nh, let us define
ϕh,i := [φh,i, 0]� and ϕh,nh+i := [0, φh,i]�, so that {ϕh,i}2nh

i=1 forms a basis for Wh.
Given Kh ∈ Kh, let TKh

ξ = AKh
ξ+bKh

, where AKh
∈ R

2×2 and bKh
∈ R

2, be the affine transformation
from the reference triangle Kref , having vertices at (0, 0), (1, 0) and (0, 1), to the physical triangle Kh.
Suppose that {ξ
}g


=1 and {ω
}g

=1 are Gaussian quadrature nodes and weights on Kref . To simplify the

formulas, let ωKh,
 := ω
|det AKh
|, ρKh,s := ρh,s ◦ TKh

, φKh,i := φh,i ◦ TKh
, and ϕKh,i := ϕh,i ◦ TKh

.
In evaluating the integrals for the contributions of the basis functions in the finite element matrices, we

shall apply the transformation formula from Kh to Kref and then use Gaussian quadrature. The entries
of the mass matrix Ñh ∈ R

nh×nh and stiffness matrix Ãh ∈ R
nh×nh can be calculated as follows:

∫

Ω

φh,iφh,j dx ≈
g∑


=1

∑

Kh∈Kh

ωKh,
φKh,i(ξ
)φKh,j(ξ
) =: [Ñh]i,j

∫

Ω

∇φh,i · ∇φh,j dx ≈
g∑


=1

∑

Kh∈Kh

ωKh,
A
−�
Kh

∇ξφKh,i(ξ
) · A−�
Kh

∇ξφKh,j(ξ
) =: [Ãh]i,j

for i, j = 1, . . . , nh. These corresponds to a component of the velocity field. The full mass and stiffness
matrices are given by Nh := Ñh ⊗ I2 and Ah := Ãh ⊗ I2, respectively. Here, ⊗ is the tensor product and
I2 is the 2 × 2 identity matrix.

Write the first and second components of the differential operator A−�
Kh

∇ξ by (A−�
Kh

∇ξ)x1 and (A−�
Kh

∇ξ)x2 ,
respectively. From this, the entries of the discrete divergence matrix Bh = [Bx1

h Bx2
h ] ∈ R

nph×2nh are
computed, for i = 1, . . . , nh and s = 1, . . . , nph, according to

∫

Ω

(∂xa
φh,i)ρh,s dx ≈

g∑


=1

∑

Kh∈Kh

ωKh,
(A−�
Kh

∇ξ)xaφKh,i(ξ
)ρKh,s(ξ
) =: [Bxa

h ]s,i, a = 1, 2.

Given an approximation uh =
∑2nh

m=1 uh,mϕh,m ∈ Wh of u ∈ W , where uh,m ∈ R, the entries of the
associated convection matrix Ch(uh) ∈ R

2nh×2nh and dual convection matrix Dh(uh) ∈ R
2nh×2nh will be

determined as follows:
∫

Ω

(u · ∇)ϕh,j · ϕh,i dx

≈
g∑


=1

∑

Kh∈Kh

2nh∑

m=1

ωKh,
uh,m(ϕKh,m(ξ
) · A−�
Kh

∇ξ)ϕKh,j(ξ
) · ϕKh,i(ξ
) =: [Ch(uh)]i,j

∫

Ω

(∇u)�ϕh,i · ϕh,j dx

≈
g∑


=1

∑

Kh∈Kh

2nh∑

m=1

ωKh,
uh,m(A−�
Kh

∇ξϕKh,m(ξ
))�ϕKh,i(ξ
) · ϕKh,j(ξ
) =: [Dh(uh)]i,j
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for each i, j = 1, . . . , 2nh. Finally, the matrix Rh ∈ R
2Nh×2Nh corresponding to vorticity has the following

entries for each i, j = 1, . . . , 2nh

∫

Ω

(∇ × ϕh,i)(∇ × ϕh,j) dx ≈
g∑


=1

∑

Kh∈Kh

ωKh,
(A−�
Kh

∇ξ × ϕKh,i(ξ
))(A−�
Kh

∇ξ × ϕKh,j(ξ
)) =: [Rh]i,j .

In what follows, a Gaussian quadrature of order 6 having g = 12 nodes on the reference element will be
applied. This is sufficient since this order is the highest possible degree of a polynomial that can appear
in the above integrals with quadratic basis functions, in particular, for the matrices Ch(uh) and Dh(uh).
Further practical aspects in matrix assembly can be found in [23,44].

We shall identify Pτ (I,Wh) to R
Nτ ×2nh and Pτ (Ir,Wh) to R

Nr×2nh . Moreover, we set qσ = {qk
h}Nτ

k=1

where qk
h ∈ R

2nh , and similar representation for the elements of Pτ (Ir,Wh). The discrete state equation
we consider is the following: Given qσ = {qk

h}Nτ

k=1 ∈ R
Nτ ×2nh , u0h ∈ R

2nh and zσ = {zj
h}1−Nr

j=0 ∈ R
Nr×2nh ,

seek uσ = {uk
h}Nτ

k=1 ∈ R
Nτ ×2nh such that uσ|Γ = 0 and for each k = 1, . . . , Nτ

{
(νAh + τ−1Nh + ε−1

p B�
h Bh)uk

h = Ch(uk−Nr

h )uk−1
h + τ−1Nhûk−1

h + Nhfk
h + Nhqk

h

uj
h = zj

h j = 1 − Nr, . . . , 0,
(5.1)

where û0
h = u0h and ûk−1

h = uk−1
h for k > 1. Here, the discrete incompressibility condition Bhuh = 0 has

been replaced by Bhuh + εpp
k
h = 0. Note that the additional error induced from this penalization is of

order O(εp), see [8, Section 4.3] for instance. In the numerical experiments below, we take the penalty
parameter εp = 10−10.

As long as the spatial mesh size h is sufficiently small, the matrix νAh+τ−1Nh+ε−1
p B�

h Bh is symmetric
and positive definite, hence the solvability of the linear system (5.1) at each time step is guaranteed. For
details regarding this matter, we refer to [48] and [17, Theorem 4.1.2].

For the discrete adjoint equation, we consider the following discretization: Seek wσ = {wk
h}Nτ

k=1 ∈
R

Nτ ×2nh such that wσ|Γ = 0 and for each k = Nτ , . . . , 1
⎧
⎪⎪⎨

⎪⎪⎩

(νAh + τ−1Nh + ε−1
p B�

h Bh)wk
h = Ch(uk+1−Nr

h )�wk+1
h + Dh(wk+Nr

h )uk−1+Nr

h

+ τ−1Nhŵk+1
h + αΩT

(Nhuk
h − Nhuk

dh) + αRRhuk
h

wj
h = 0 j = Nτ + 1, . . . , Nτ + Nr,

(5.2)

where ŵNτ+1
h = αT (uNτ

h −uTh) and ŵk+1
h = wk+1

h for k < Nτ . Note that (5.1) and (5.2) are the respective
perturbed versions of the mixed problems (4.8) and the one corresponding to (4.62). The convection matrix
Ch(uk−Nr

h ) has to be assembled at each time step in (5.1). We do not store these matrices for (5.2), but
instead re-assemble them in addition to that of Dh(wk+Nr

h ). Therefore, efficient schemes are necessary in
the construction of these matrices.

In terms of the above finite element matrices, the discrete cost functional can be computed using the
box-rule as follow:

jσ,εp
(qσ) :=

αΩT
τ

2

Nτ∑

k=1

(uk
h − uk

dh)�Nh(uk
h − uk

dh) +
αT

2
(uNτ

h − uTh)�Nh(uNτ

h − uTh)

+
αRτ

2

Nτ∑

k=1

uk�
h Rhuk

h +
ατ

2

Nτ∑

k=1

qk�
h Nhqk

h,

where uσ = {uk
h}Nτ

k=1 ∈ R
Nτ ×2nh is the solution of (5.1). One can now formulate the penalization for (Pσ)

as the finite-dimensional optimization problem:

min
qσ∈Pτ (I,Wh)

jσ,εp
(qσ). (Pσ,εp

)
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To seek for a solution to (Pσ,εp
), the gradient method of Barzilai and Borwein (BB) in [6] will be

utilized. The algorithm is terminated once there is no significant change in the cost values and that the
derivative is close to zero. More precisely, if the relative error of the successive cost values and the gradient
norm is less than a prescribed tolerance 0 < εtol � 1, that is, if the condition

max

{
|jσ,εp

(q(
)
σ ) − jσ,εp

(q(
−1)
σ )|

jσ,εp
(q(
)

σ )
, ‖αq(
)

σ + w(
)
σ ‖L2(I,X)

}

< εtol (5.3)

is satisfied, where q
(
)
σ and w

(
)
σ are the control and adjoint state at the �th iteration. In each of the

experiments below, the control will be initialized to zero and the second point of the gradient method
will be determined by steepest descent. In such a case, we look for solutions in a neighborhood of the
null control. The analysis of the Barzilai-Borwein gradient method has been extended recently to the
infinite-dimensional setting in [4] for strictly convex quadratic problems.

5.2. Experimental Order of Convergence

In this subsection we verify numerically the order of convergences presented in the previous section.
Following the procedure in [43], we shall manufacture a reference numerical solution to the optimal
control problem (Pσ,εp

).
For the computational domain, we take the unit square Ω = (0, 1) × (0, 1) and put T = 1, r = 0.5,

ν = 1, αΩT
= αT = αR = 1 and α = 10−1. Consider the functions

p(t, x1, x2) = sin(πt)(cos(2πx2) − cos(2πx1))

u(t, x1, x2) = cos(πt)[(1 − cos(2πx1)) sin(2πx2), sin(2πx1)(cos(2πx2) − 1)]�. (5.4)

We regard u�
ref,σ :=

∑Nτ

k=1 Πhu(tk)1Ik
as our reference optimal state, with p�

ref,σ :=
∑Nτ

k=1 Πhp(tk)1Ik

as the associated pressure. Here, Πh is the nodal Lagrange interpolation operator. For the history, we
put z = u in Ir × Ω and is discretized by time-averaging and nodal Lagrange interpolation in space, see
Sect. 4.2.

We consider udσ = −u�
ref,σ and uTh = −u�

ref,σ(T ) as the desired velocities. From these, the solution
w�

ref,σ of (5.2) is computed and then q�
ref,σ = −α−1w�

ref,σ is taken as the reference optimal control. In order
for (u�

ref,σ, w�
ref,σ, q�

ref,σ) to be a solution of (Pσ,εp
), we set the forcing function fσ = {fk

h}Nτ

k=1 ∈ R
Nτ ×2nh

in such a way that u�
ref,σ and q�

ref,σ satisfy the discrete state equation (5.1). To investigate the order of
convergence, the step sizes σk = (τk, hk) = (2−2k · 10−1, 21/2−k · 10−1) for k = 0, 1, 2, 3 will be utilized.
For these pairs of time steps and mesh sizes, we have τk = 5h2

k, so that the stability condition (A5) is
satisfied.

The mesh generation, matrix assemblies, sparse linear solvers, and visualizations were done in Python
3.7.6 (Python Software Foundation, https://www.python.org/) on a 2.3 GHz Intel Core i5 with 8GB
RAM. The repository containing the source codes as well as the iteration histories can be downloaded
at https://github.com/grperalta/nsedelay. An LU factorization of the system matrix was obtained via
the built-in-function splu in the SciPy package. In the factorization, a column permutation for sparsity
preservation through a minimum degree ordering on the symmetric structure of the system matrix was
used. The linear systems were solved using the UMFPACK option.

The order of convergences are presented in Table 1. For instance, in the case of the controls, we
compute

eock :=
ln(‖q�

ref,σk−1
− q�

σk−1
‖L2(I,X)/‖q�

ref,σk
− q�

σk
‖L2(I,X))

ln(hk−1/hk)
, k = 1, 2, 3. (5.5)

In the stopping criterion (5.3), we used εtol = 10−6.
As to be expected, the Taylor-Hood finite element performs better than the mini-element, however,

at the expense of additional computing time. In the case of the mini-element, one can observe more or

https://www.python.org/
https://github.com/grperalta/nsedelay
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less a quadratic reduction with respect to the norms of L2(I, L2(Ω)2) and L∞(I, L2(Ω)2), while a linear
reduction in L2(I,H1

0 (Ω)2). For the Taylor-Hood element, we have a quadratic order in these spaces,
which is better than the one predicted in Corollary 4.22, at least for this example. We also observe the
mesh-independence of the gradient method, that is, the number of gradient iterations is independent on
the considered spatial mesh sizes and temporal step sizes.

Let us discuss the order of convergence as the Tikhonov regularization parameter α decreases. For
this example, we shall employ the Taylor-Hood finite element with the step size σ3 = (τ3, h3) = (2−6 ·
10−1, 21/2−3 · 10−1). Denote by u�

ref,αk
, w�

ref,αk
and q�

ref,αk
the reference optimal state, adjoint state and

control associated with the parameter αk = 10−k for k = 0, 1, 2, 3. The results are summarized in Table 2.
Here, the required number of gradient iterations to reach the desired tolerance are given by 3, 6, 12 and
36. Observe that the reduction rate of the errors in the optimal state and optimal adjoint state are
nearly the same. However, the errors for the optimal controls are increasing and we have ‖q�

ref,αk
−q�

αk
‖ ≈

α−1
k ‖w�

ref,αk
−w�

αk
‖ under the norms considered above. Nevertheless, the latter approximation is consistent

with the optimality condition αq� + w� = 0 relating the optimal control and the optimal adjoint, see
Theorem 3.2. Further investigation is needed to obtain a precise representation of the order of convergence,
or at least a suitable bound, for the optimal control as α → 0.

5.3. Velocity Tracking with Local Control

Let us consider the domain Ω = (0, 3) × (0, 1) with the control region ω = (0.5, 2.5) × (0.25, 0.75). In
this situation, the control space is given by L2(I, L2(ω)2) and the optimal control and adjoint state are
related by q� = −α−1w�1ω, where 1ω is the indicator function on ω. For the parameters in the optimal
control problem (P), we take T = 1, r = 0.5, ν = 0.01, αΩT

= αT = 1, αR = 0 and α = 10−3. A
uniform triangulation of Ω with 5124 nodes and 9922 triangles will be employed, with the corresponding
mesh size h ≈ 0.034779. Here, the Taylor-Hood finite element is implemented. For the temporal grid, the
chosen step size is τ = 0.01. With these discretizations, the degrees of freedom for the velocity field is
4033800 ≈ O(106).

The solution of the steady Stokes equation with artificial compressibility and a random source is
taken as the initial data. More precisely, we take u0h = (νAh + ε−1

p B�
h Bh)−1Nhfh, where u0h|Γ = 0 and

−10 ≤ fh ≤ 10 in (5.1), for which ‖u0h‖L∞ ≈ 0.775. Also, z = 0.5u is the initial history, where u is
the function defined by (5.4). The solution of the uncontrolled Navier–Stokes equation without the delay
in the convection term will be the chosen target state. To facilitate better performance, an alternating
step length strategy was employed in the BB gradient algorithm, see [4,19] for instance. For the sake of
the reader, the specific method utilized here is presented below. The gradient method converges, under
the stopping criterion (5.3) with εtol = 10−5, after 123 iterations with jσ,εp

(q�
σ) ≈ 3.646 · 10−3 and

‖αq�
σ + w�

σ‖L2(I×ω)2 ≈ 6.580 · 10−6. One can observe from Fig. 2b the non-monotone property of the BB
gradient method. We observe a fast convergence initially, followed by little changes in the cost values,
while the norm of the derivative still oscillates until it reached the required tolerance, see (b) and (d) of
Fig. 2. This is a typical characteristic of gradient methods.

The optimal solution at t = 0.1, 0.5, 1.0 are given in Fig. 1. A quadric interpolation was rendered
on the image data for better visualization. The magnitudes of the velocity field for the Navier–Stokes
flow without delay, which is the target state, and with delay are depicted in parts (a) and (b) of Fig. 1,
respectively. At t = 0.1, we somewhat have a turbulent flow from the random force for the Stokes flow,
which is then stabilized due to viscosity. The formation of vortices at t = 0.5 and t = 1.0 in Fig. 1c is
due to the profile of the initial history that acts as a convective force on the fluid.

Comparing (a) and (c) in Fig. 1, one can see that the optimal velocity nearly matches the target on
the region where the control is applied. This is a common feature for tracking-type problems with local
controls, for which the influence of the control is more significant on the region where it is applied or
at least near to it. From Fig. 2a, we can see that from the start up to approximately before t = 0.5,
the space-time L2-error between the optimal and target velocities increases. We can also observe from
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Fig. 1. Magnitudes of the target velocity (a), uncontrolled velocity (b), optimal velocity (c) and optimal control (d) at
t = 0.1, t = 0.5 and t = 1.0 in the velocity-tracking problem. Bounding boxes represent the location of the control region ω
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Algorithm: Barzilai-Borwein Gradient Method with Alternating Step Size Selection

Set q
(0)
σ ← 0 and compute g

(0)
σ ← αq

(0)
σ + w

(0)
σ 1ω .

Put q
(1)
σ ← q

(0)
σ − g

(0)
σ , calculate g

(1)
σ ← αq

(1)
σ + w

(1)
σ 1ω and set � ← 1.

while max{|jσ,εp (q
(�)
σ ) − jσ,εp(q

(�−1)
σ )|/jσ,εp(q

(�)
σ ), ‖g

(�)
σ ‖L2(I×ω)2} ≥ εtol do

Choose step size s� ←
{

(q
(�)
σ − q

(�−1)
σ )�(g

(�)
σ − g

(�−1)
σ )/|g(�)σ − g

(�−1)
σ |2 if � is odd,

|q(�)σ − q
(�−1)
σ |2/(q

(�)
σ − q

(�−1)
σ )�(g

(�)
σ − g

(�−1)
σ ) if � is even.

Update the control q
(�+1)
σ ← q

(�)
σ − s�g

(�)
σ .

Update the gradient g
(�+1)
σ ← αq

(�+1)
σ + w

(�+1)
σ 1ω .

� ← � + 1
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Fig. 2. The norms between the difference of the computed optimal and desired velocities in Ω and ω (a), and the
computed optimal control (c) as functions of time. Parts (b) and (d) show the behavior of the cost values and gradient

norms as functions of the number of iterations in the BB method

Fig. 2c that during this period the control is exerted in an increasing magnitude, which shows a very
different control implementation as compared to the results in [32], where the authors considered the
Navier–Stokes flow without delay.

After the time delay, the residual norm in the control region decreases, and the rate is faster near
the final time. This trend can also be observed for the optimal control, see Fig. 2c, with the exception
that there is an increase due to the tracking term at the final time in the objective functional. In this
scenario, the flow is dominated by diffusion and convection has little effect. The magnitude of the control
is relatively larger on the edges of ω, which is very natural if one wishes to steer the flow to a desired
target that is outside of ω.

The results discussed above can be improved by choosing a smaller regularization parameter α. Larger
magnitudes for the optimal control will be expected for this process. In general, this would require more
gradient iterations. A higher resolution of the temporal and spatial mesh will also lead to better results,
especially the tracking part outside of ω.
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Fig. 3. The norm of the curl of computed optimal state in Ω and ω as functions of time (a) in the vorticity minimization
problem. Here, b–d have the same descriptions as in Fig. 2
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Fig. 4. Magnitudes of the optimal velocity (a) and optimal control (b) at t = 0.1, t = 0.5 and t = 1.0 in the vorticity
minimization problem. Bounding boxes represent the location of the control region ω
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5.4. Vorticity Minimization with Local Control

Let us consider the problem of minimizing the vorticity of the fluid flow. The set-up in the previous
subsection will be used, but with the following modifications: αΩT

= αT = 0, αR = 0.1 and εtol = 10−4.
For this problem, the BB method terminated after 173 iterations for which jσ,εp

(q�
σ) ≈ 2.4911 · 10−1 and

‖αq�
σ + w�

σ‖L2(I×ω)2 ≈ 9.2342 · 10−5. Further information is provided in Fig. 3. Again, we have the non-
monotonic property of the BB gradient algorithm. Notice also that the cost values and gradient norms
in (b) and (d) behave analogously as in the previous subsection.

In Fig. 3c, one can see that the time-evolution for the norms of the optimal control share similar
characteristics as in the velocity-tracking problem, that is, more effort is required for t < r. The behavior
at t = r can be attributed to the non-compatibility of the initial data and history.

Snapshots at t = 0.1, 0.5, 1.0 of the magnitudes of the computed optimal state and control are given
in Fig. 4. At the early stages, the control forces the flow inside ω to stabilize, while creating vortices
surrounding it. Most of the activity of the flow is then outside of the control region. In order to minimize
the vorticity, the control needs to exert more work near the boundary of ω until the flow outside is
dissipated.

6. Conclusion

We showed the existence and regularity of solutions to a distributed optimal control problem for the 2D
Navier–Stokes equation with delay in the convection. A full discretization of the control problem based on
the discontinuous Galerkin method and mixed finite elements has been studied, and optimal convergence
rates were established using duality arguments. Finally, numerical examples were provided to validate
the order of convergence and to demonstrate the effectiveness of the theoretical results.

Further analysis is needed to understand the behavior of the optimal solutions as the Tikhonov
regularization parameter α → 0. Mixed methods based on quadrilateral finite elements and/or higher-
order time advancing schemes through multi-step methods are possible extensions of the numerical scheme
proposed in this paper. Under suitable regularity conditions on the domain, initial data, and initial history,
together with an appropriate stability condition for the spatial and temporal mesh sizes analogous to (A5),
higher convergence rates may be obtained. For instance, the biquadratic-linear (Q2/P1) velocity-pressure
element in [30,47] could lead to an optimal convergence rate O(h3) with respect to the space-time L2-
norm.
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7. Appendix

In the following, an extension of the Gronwall Lemma that is needed in the analysis of the state and
linearized state equations is presented. The reader is reminded on the notation of various time intervals
in (2.2).
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Lemma 7.1. Suppose that a ≥ 0, φ ∈ L∞(Ir) ∩ L1(I), ϕ ∈ L1(Jr), α, β, ψ ∈ L1(I), and γ ∈ L∞(I) are
nonnegative and for a.e. t ∈ I it holds that

φ(t) +
∫ t

0

ϕ(s) ds ≤ a +
∫ t

0

α(s)φ(s) + β(s)φr(s) + γ(s)ϕr(s) + ψ(s) ds. (7.1)

Then φ ∈ L∞(I) and there exists a continuous function c > 0 such that

‖φ‖L∞(I) + ‖ϕ‖L1(I) ≤ cT,r,α,β,γ(a + ‖φ‖L∞(Ir) + ‖ϕ‖L1(Ir) + ‖ψ‖L1(I))

where cT,r,α,β,γ := c(T, r, ‖α‖L1(I), ‖β‖L1(I), ‖γ‖L∞(I)).

Proof. Let N be the largest positive integer such that (N − 1)r < T ≤ Nr, and set In := [0, nr] for
n = 1, . . . , N . For each n, we shall demonstrate by induction that

‖φ‖L∞(In) + ‖φ‖L1(In) ≤ cT,r,α,β,γ(a + ‖φ‖L∞(Ir) + ‖ϕ‖L1(Ir) + ‖ψ‖L1(In)). (7.2)

Let us verify this for n = 1. Using the assumption (7.1) restricted to t ∈ I1, we can apply the usual
Gronwall Lemma so that

‖φ‖L∞(I1) ≤ (a + ‖β‖L1(I)‖φ‖L∞(Ir) + ‖γ‖L∞(I)‖ϕ‖L1(Ir) + ‖ψ‖L1(I1))e
‖α‖L1(I) . (7.3)

On the other hand, (7.1) also yields the following estimate

‖ϕ‖L1(I1) ≤ a + ‖α‖L1(I)‖φ‖L∞(I1) + ‖β‖L1(I)‖φ‖L∞(Ir)

+ ‖γ‖L∞(I)‖ϕ‖L1(Ir) + ‖ψ‖L1(I1). (7.4)

Substituting (7.3) in the second term of the right hand side in (7.4) and then adding the resulting
inequality with (7.3) prove (7.2) for n = 1.

Now, suppose that (7.2) holds for n = k. For t ∈ Ik+1, we obtain from (7.1) that

φ(t) +
∫ t

0

ϕ(s) ds ≤ a + ‖β‖L1(I) max{‖φ‖L∞(Ik), ‖φ‖L∞(Ir)}

+ ‖γ‖L∞(I)(‖ϕ‖L1(Ik) + ‖ϕ‖L1(Ir)) +
∫ t

0

α(s)φ(s) + ψ(s) ds.

Thus, applying the Gronwall Lemma once more, one has the estimate

‖φ‖L∞(Ik+1) ≤ (a + ‖β‖L1(I) max{‖φ‖L∞(Ik), ‖φ‖L∞(Ir)}
+ ‖γ‖L∞(I)(‖ϕ‖L1(Ik) + ‖ϕ‖L1(Ir)) + ‖ψ‖L1(Ik+1))e

‖α‖L1(I)

and as a consequence it follows that

‖ϕ‖L1(Ik+1) ≤ a + ‖β‖L1(I) max{‖φ‖L∞(Ik), ‖φ‖L∞(Ir)}
+ ‖γ‖L∞(I)(‖ϕ‖L1(Ik) + ‖ϕ‖L1(Ir)) + ‖α‖L1(I)‖φ‖L∞(Ik+1) + ‖ψ‖L1(Ik+1).

The last two inequalities along with the induction hypothesis imply (7.2) for n = k + 1. This completes
the proof of the induction step. �

Next, we recall the following discrete version of the Gronwall Lemma, see [34] for instance. This is
utilized in the error analysis of the fully-discrete optimal control problem.

Lemma 7.2. Let n ∈ N, a ≥ 0, {ak}n
k=1, {bk}n

k=1, and {ck}n−1
k=1 be nonnegative sequences with

aj +
j∑

k=1

bk ≤ a +
j−1∑

k=1

ckak for all j = 1, . . . , n.

Then it holds that

max
1≤k≤l

ak +
l∑

k=1

bk ≤ a exp
( l−1∑

k=1

ck

)
for all l = 1, . . . , n.
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[50] Tröltzsch, F.: Optimal Control of Partial Differential Equations: Theory, Methods and Applications. Graduate Studies

in Mathematics, vol. 112. American Mathematical Society, Providence, RI (2010)
[51] Varnhorn, W.: Time delay and finite differences for the non-stationary non-linear Navier–Stokes equations. Math.

Methods Appl. Sci. 15(2), 89–108 (1992). https://doi.org/10.1002/mma.1670150204
[52] Varnhorn, W.: A fractional step method for regularized Navier-Stokes equations, In: J.G. Heywood, K. Masuda, R. Raut-

mann R. and V.A Solonnikov V.A. (eds) The Navier-Stokes Equations II: Theory and Numerical Methods, Lecture Notes
in Mathematics, vol 1530, Springer, Berlin, Heidelberg (1992). https://doi.org/10.1007/BFb0090343

[53] Wachsmuth, D.: Optimal control of the unsteady Navier-Stokes equations. PhD Thesis, Technischen Universität Berlin
(2006). https://depositonce.tu-berlin.de/bitstream/11303/1767/1/Dokument 27.pdf

[54] Zeidler, E.: Applied Functional Analysis and its Applications I: Fixed Point Theorems. Springer, New York (1986)

Gilbert Peralta and John Sebastian Simon
Department of Mathematics and Computer Science
University of the Philippines Baguio
Governor Pack Road
Baguio
Philippines
e-mail: grperalta@up.edu.ph

John Sebastian Simon
Division of Mathematical and Physical Sciences Graduate
School of Natural Science and Technology
Kanazawa University
Kakuma Kanazawa
Japan
e-mail: john.simon@stu.kanazawa-u.ac.jp

(accepted: March 21, 2021)

https://doi.org/10.1007/978-3-642-61623-5
https://doi.org/10.1137/S0363012998337400
https://doi.org/10.1137/S0036142997329414
https://doi.org/10.1137/S0036142901385659
https://doi.org/10.1007/s002110050332
https://doi.org/10.1137/050639910
https://doi.org/10.1137/0727022
https://doi.org/10.1137/0727022
https://doi.org/10.1137/S0363012999361810
https://doi.org/10.1016/0022-1236(76)90035-5
https://doi.org/10.3934/dcdsb.2002.2.47
https://doi.org/10.3934/dcdsb.2002.2.47
https://doi.org/10.1016/S1570-8659(98)80010-0
https://doi.org/10.1093/imanum/dry070
https://doi.org/10.1007/978-3-540-85268-1
https://doi.org/10.1007/978-3-0348-0513-1
https://doi.org/10.1007/BF01762360
https://doi.org/10.1090/S0025-5718-1984-0725982-9
https://doi.org/10.1002/mma.1670150204
https://doi.org/10.1007/BFb0090343
https://depositonce.tu-berlin.de/bitstream/11303/1767/1/Dokument_27.pdf

	Optimal Control for the Navier–Stokes Equation with Time Delay in the Convection: Analysis and Finite Element Approximations
	Abstract
	1. Introduction
	2. Analysis of the State, Linearized State and Adjoint Equations
	2.1. Preliminaries
	2.2. Analysis of the State Equation
	2.3. Analysis of the Linearized State Equation
	2.4. Analysis of the Adjoint Equation

	3. Analysis of the Optimal Control Problem
	4. Galerkin Finite Element Discretization
	4.1. Finite Element Spaces and Approximation Operators
	4.2. Fully Discrete Optimal Control Problem
	4.3. Error Estimates for the Discrete State Equation
	4.4. Error Estimates for the Discrete Linearized State Equation
	4.5. Error Estimates for the Discrete Adjoint Equation
	4.6. Error Estimates for the Discrete Optimal Control Problem

	5. Approximation of the Optimal Control Problem
	5.1. Penalized Finite-Dimensional Approximation
	5.2. Experimental Order of Convergence
	5.3. Velocity Tracking with Local Control
	5.4. Vorticity Minimization with Local Control

	6. Conclusion
	Acknowledgements
	7. Appendix
	References




