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Abstract. The well-posedness theory for hyperbolic systems of first-order quasilin-
ear PDE’s with ODE’s boundary conditions (on a bounded interval) is discussed. Such
systems occur in multi-scale blood flow models, as well as valveless pumping and fluid
mechanics. The theory is presented in the setting of Sobolev spaces Hm (m ≥ 3 being
an integer), which is an appropriate set-up when it comes to proving existence of smooth
solutions using energy estimates. A blow-up criterion is also derived, stating that if the
maximal time of existence is finite, then the state leaves every compact subset of the
hyperbolicity region, or its first-order derivatives blow-up. Finally, we discuss physical
examples which fit in the general framework presented.
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1. Introduction

Our aim in this paper is to obtain a well-posedness result for hyperbolic systems of
first-order quasilinear partial differential equations (PDEs) in the bounded interval
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Ω = (0, 1), endowed with dynamic boundary conditions:


ut(t, x) +A(u(t, x))ux(t, x) = f(u(t, x)), t > 0, 0 < x < 1,

B0u(t, 0) = b0(p0(t), h(t)), t > 0,

B1u(t, 1) = b1(p1(t), h(t)), t > 0,

ḣ(t) = H(h(t), q(t), u(t, 0), u(t, 1)), t > 0,

u(0, x) = u0(x), 0 < x < 1,

h(0) = h0.

(1.1)

The unknown state variables are u : [0, T ] × [0, 1] → Rn and h : [0, T ] → Rd

that take values in the open and convex sets U and H, respectively. We assume
for simplicity that 0 ∈ U and 0 ∈ H. This is not too restrictive since one can
shift a general problem to this case. The coefficients appearing in (1.1) are assumed
to have the following properties: The flux matrix A : U → Mn×n(R) and the
source term f : U → Rn are both infinitely differentiable. The boundary matrices
B0 ∈ Mp×n(R) and B1 ∈ M(p−n)×n(R) are of full rank, where p is the number
of incoming characteristics from the left boundary, or equivalently, the number of
positive eigenvalues of the flux matrix.

According to the diagonalizability assumption (D) below, n−p is the number of
incoming characteristics from the right boundary. This assumption further implies
that we are in the non-characteristic case. It should be noted that unlike in multi-
dimensions, cf. [2, Chap. 11], for which the boundary matrix should be of constant
maximal rank along the boundary, in the case of one space dimension the boundary
matrices can have different ranks. However, the sum of their ranks should be the
same as the number of components of the state vector u. The boundary data p0, p1,

and q are given by p0 : [0, T ] → R
n0 , p1 : [0, T ] → R

n1 , q : [0, T ] → R
n2 , while

b0 : R
n0 × H → R

p, b1 : R
n1 × H → R

n−p and H : H × R
n2+2n → R

d. Again for
simplicity we assume that b0, b1 and H are all infinitely differentiable.

If b0 and b1 are independent of h then (1.1) includes systems of balance laws that
are decoupled from the h-dynamics. If H is independent of h then (1.1) includes
balance laws with nonlocal boundary conditions of the form

Byu(t, y) = by

(
py(t),

∫ t

0

H(q(s), u(s, 0), u(s, 1))ds
)
, 0 < t < T, y = 0, 1.

Systems of the form (1.1) occur in multiscale blood flow models [6, 9, 19, 21] and
in valveless pumping [5, 14, 17]. Our well-posedness results are based on Sobolev
spaces. The motivation for studying the well-posedness in Sobolev spaces, rather
than the spaces of continuously differentiable functions [9, 11, 12], lies in the later
study of global-in-time existence of smooth solutions for which energy estimates
formulated in Sobolev norms are used, see [16]. The presence of a damping term,
the bounded space domain and the ordinary differential equation (ODE) boundary
conditions will not cause much technical difficulty, we will address a way on how to
treat them. Broadly speaking, we will adopt the framework in [2, 13].



February 2, 2015 9:13 WSPC/S0219-8916 JHDE 1450022

Hyperbolic PDE–ODE systems on a bounded interval 707

However, there are significant differences, specially when it comes to the full
nonlinear PDE–ODE system where an appropriate linearization and a modified
a priori estimate will be used. Recent results regarding the mixing of conservation
laws and balance laws with ODEs on the boundary, but with another notion of
solutions and on a semi-infinite interval, are given in [3, 4], respectively.

One possible generalization of (1.1) is to consider nonlinear boundary condi-
tions, e.g. B(u, h) = 0 where B satisfies the condition B(0) = 0. To deal with the
nonlinearity, one first study the linearized problem. The linearized boundary con-
dition takes the form B̃(v, g)u = g̃ for which the boundary matrix B̃ depends on
t through the frozen coefficients v and g. We shall not pursue this generalization
and consider the simpler case where the boundary matrices are constant. Regard-
ing time-dependent boundary matrices we refer to [2, Chap. 9]. We believe that the
method applied here work also for these types of problems.

Aside from the assumptions that we have already mentioned, we further consider
the following hypotheses.

(FS) Friedrichs Symmetrizability. The differential operator

Lw = ∂t +A(w)∂x

is Friedrichs symmetrizable for all w ∈ U , i.e. there exists a symmetric positive-
definite matrix-valued function S ∈ C ∞(U ;Mn×n(R)), called the Friedrichs
symmetrizer, that is bounded as well as its derivatives, S(w)A(w) is symmetric
for all w ∈ U , and there exists α > 0 such that S(w) ≥ αIn for all w ∈ U .
(D) Diagonalizability. For each w ∈ U , A(w) is diagonalizable with p positive
eigenvalues and n−p negative eigenvalues. In particular, A(w) is invertible and
has n independent eigenvectors.
(UKL) Uniform Kreiss–Lopatinskĭı Condition. There exists C > 0 such that
for all w ∈ U

‖V ‖ ≤ C‖B0V ‖, for all V ∈ Eu(A(w)),

and

‖V ‖ ≤ C‖B1V ‖, for all V ∈ Es(A(w)),

where Eu(A) and Es(A) denote the unstable and stable subspaces of a matrix
A, respectively.

Friedrichs symmetrizability is used in deriving pointwise-in-time estimates. The
diagonalizability assumption implies that we are in the non-characteristic case.
Finally, the Uniform Kreiss–Lopatinskĭı Condition tells us what forms of the bound-
ary conditions are appropriate.

We also assume that f(0) = 0, H(0) = 0, and b(0) = 0. Again these are not
restrictions since one may consider affine shifts of the state spaces. Other assump-
tions, for example on the initial and boundary data, will be stated later.
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According to our hypotheses, we include the case of non-symmetric fluxes with
symmetrizers. The diagonalizability assumption though, would give us a new diag-
onal system through a change of variables, and thus the flux matrix will be trivially
symmetric. However, the cost of this diagonalization would be that the boundary
matrices will be time-dependent. For this reason, we do not diagonalize the system.

To prove that (1.1) has a unique solution in appropriate function spaces we use
the classical way of linearizing the system and proceeding in an iteration scheme.
In principle there are various ways to linearize (1.1); the choice that we take is
the following: for given functions v and g in appropriate function spaces called the
frozen coefficients, we consider the linear system



ut(t, x) +A(v(t, x))ux(t, x) = f(v(t, x)), t > 0, 0 < x < 1,

B0u(t, 0) = b0(p0(t), h(t)), t > 0,

B1u(t, 1) = b1(p1(t), h(t)), t > 0,

ḣ(t) = H(g(t), q(t), v(t, 0), v(t, 1)), t > 0,

u(0, x) = u0(x), 0 < x < 1,

h(0) = h0.

(1.2)

The system (1.2) is now weakly coupled in u and h in the sense that only u depends
on h and not the other way around. Thus to address the existence and uniqueness
of solutions of (1.2) we only need to consider the PDE and ODE parts separately.
The ODE part is easy since integration gives us immediately

h(t) = h0 +
∫ t

0

H(g(s), q(s), v(s, 0), v(s, 1))ds.

The PDE part is more involved and will be handled within the frameworks in [2,
13]. The linearization (1.2) is advantageous when deriving a priori estimates in
connection with the nonlinear problem (1.1).

We developed well-posedness in the Sobolev space Hm, where m ≥ 3 is an
integer. This assumption is needed in applying commutator estimates, see Propo-
sition 3.2. For first-order equations in one space dimension, it seems desirable to
provide well-posedness for m = 2, but we are not able to improve our results.

The structure of the paper is as follows. Section 2 is devoted to constructing
boundary symmetrizers necessary for L2 well-posedness of linear variable-coefficient
hyperbolic PDEs on a bounded interval. In Sec. 3, we derive various a priori esti-
mates in Sobolev spaces that will be used in Sec. 4 to prove additional regularity of
solutions for the PDE part. The local existence, uniqueness and blow-up criterion
for the nonlinear system (1.1) will be given in Sec. 5. Finally, in Sec. 6 we give some
examples.

2. Symmetrizers and L2 Well-Posedness of the Linear PDE Part

Most of the results in this section are parallel to those in multidimensions given in
[2], and therefore, we only point at the deviating parts; those details that are the
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same or similar are referred to the said text. This will also serve as a venue to realize
that the theory originally developed to treat multidimensional problems simplifies
in the case of one space dimension.

Let us rewrite the boundary conditions in a single equation. Define u|∂Ω(t) =
(u(t, 0), u(t, 1)), p = (p0, p1),

B =
(

B0 Op×n

O(n−p)×n B1

)
∈Mn×2n(R), b(p, h) =

(
b0(p0, h)
b1(p1, h)

)
.

Here Op×n denotes the p × n zero matrix. The boundary conditions in (1.1) can
now be written in a single equation Bu|∂Ω = b(p, h). Given v = v(t, x) consider
the first-order linear differential operator Lv = ∂t + A(v)∂x. As mentioned in the
introduction, the first step requires a well-posedness theory for the initial boundary
value problem (IBVP)


Lvu = f, 0 < t < T, 0 < x < 1,

Bu|∂Ω = g, 0 < t < T,

u|t=0 = u0, 0 < x < 1,

(2.1)

where f, g, u0 are given data in appropriate function spaces and T > 0 is arbitrary.
The existence and uniqueness of solutions of (2.1) follow in a classical way using
energy and duality methods. First, one considers the pure boundary value problem
(BVP) {

Lvu = f, t ∈ R, 0 < x < 1,

Bu|∂Ω = g, t ∈ R,
(2.2)

then go to the case of homogenous IBVP, i.e. (2.1) with u0 = 0, and finally the
general IBVP (2.1).

Energy estimates for (2.2) can be obtained by symmetrizing the boundary con-
ditions with the aid of a functional boundary symmetrizer. Functional boundary
symmetrizers can be obtained if the boundary conditions are strictly dissipative.
However, there are BVPs that are not strictly dissipative, for instance, the examples
we consider in this paper. For the case of smooth coefficients, functional boundary
symmetrizers are derived using pseudo-differential calculus. For systems having coef-
ficients that are only at least Lipschitz, paradifferential calculus is the appropriate
tool in constructing them. In the following, we recall the definition of the functional
boundary symmetrizer on a bounded interval.

Definition 2.1. A functional boundary symmetrizer for (Lv, B) is a two-parameter
family of self-adjoint operators {Rγ

v (x) : γ ≥ γ0, x ∈ [0, 1]}, where γ0 ≥ 1, such that

(1) Rγ
v ∈W 1,∞([0, 1];L(L2(R))) is uniformly bounded in γ ≥ γ0,

(2) there exists C > 0 such that for all x ∈ [0, 1] and γ ≥ γ0,

Re(Rγ
v (x)T γ

Av(x)) ≥ CγIn,
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where ReA = 1
2 (A + A∗) is the real part of an operator A, Av(x) = −(γ +

iδ)A(v(·, x))−1 , δ ∈ R, and T γ
Av(x) is the paradifferential operator associated

with the symbol Av(x) ∈ Γ1
1 with parameters x ∈ [0, 1] and γ,

(3) there exist α, β > 0 such that

−ν(x)〈Rγ
v (x)u, u〉L2(R) + β‖Bxu‖2

L2(R) ≥ α‖u‖2
L2(R)

for x ∈ {0, 1} and u ∈ L2(R)n, where ν(0) = −1 and ν(1) = 1.

For the definition of the class of symbols Γ1
1 we refer to the appendix in [2]. The

above definition is adapted from the one given in [2, Definition 9.1] in the case of
half-space. For general smooth domains, energy estimates can be obtained from the
case of half-space and using coordinate patches. In the case of a bounded interval
the situation is simpler since one can simultaneously include the conditions on the
left and right boundaries.

The reason why we want functional boundary symmetrizers is that they natu-
rally induce a priori estimates, see (2.3), necessary for well-posedness theory. All
throughout this section we assume that A ∈ C ∞(U ;Mn×n(R)) is constant outside a
compact set in U and v ∈W 1,∞(R×Ω) satisfies ‖v‖W 1,∞(R×Ω) ≤ K and ran v ⊂ K,
where 0 ∈ K is a compact and convex subset of U . Then it can be shown [2, Chap. 9]
that there exist c = c(K,K) > 0 and γ0 = γ0(K,K) ≥ 1, both independent of v and
u, such that for all γ ≥ γ0 and u ∈ D(R × Ω)

√
γ‖u‖L2(R×Ω) + ‖u|∂Ω‖L2(R) ≤ c

(
1√
γ
‖Lγ

vu‖L2(R×Ω) + ‖Bu|∂Ω‖L2(R)

)
, (2.3)

where Lγ
v = Lv + γIn, provided that there is a functional boundary symmetrizer

for (Lv, B). Here, In is the n× n identity matrix.
Hence, one technical step is to prove the existence of functional boundary sym-

metrizers. This can be done using the so-called Kreiss symmetrizers which are first
defined locally and then extended to a global one using compactness and homo-
geneity arguments. In the following, we let C+ = {z ∈ C : Re z ≥ 0}, P = C+\{0}
and define the time-space-frequency set X := R× [0, 1]×P. We denote by ran v the
range of a function v.

Definition 2.2. Let A ∈ C∞(U ;Mn×n(R)), B0 and B1 be constant matrices
and v ∈ W 1,∞(R × Ω) such that ran v ⊂ K ⊂ U . A local Kreiss symmetrizer
for (A, v,B0, B1) at X = (t, x, τ) ∈ X is a Hermitian matrix-valued function
r ∈ C∞(Ũ × O;Mn×n(C)), where Ũ × O is open in U × P and v(V(t, x)) ⊂ Ũ for
some neighborhood V(t, x) of (t, x) in R× [0, 1], such that there exists an invertible
matrix-valued function T ∈ C ∞(Ũ × O;GL(n,C)) with the following properties

(a) there exists C > 0 such that Re(r(X)T (X)−1A(X)T (X)) ≥ (C Re τ)In, where
A(X) = −τA(v(t, x))−1, for all X = (v(t, x), τ) with (t, x, τ) ∈ V(t, x) ×O
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(b) if in addition, X ∈ R × {0, 1} × P, then there exist α, β > 0 such that for all
(t, x, τ) ∈ V(t, x) ×O we have

−ν(x)r(X) + βT (X)∗B�
x BxT (X) ≥ αIn,

where X = (v(t, x), τ).

For general constantly hyperbolic systems in multidimensions, the construction
of local Kreiss symmetrizers is long and technical. It utilizes tools in algebraic geom-
etry and matrix analysis. However, for certain physical systems such as the Euler
equations, the construction is relatively easier. The case of one space dimension is
also easy for which the local Kreiss symmetrizers can be taken in diagonal form,
thanks to our assumption (D).

Now we show how to construct the local Kreiss symmetrizers. Using homogeneity
and compactness arguments it is enough to construct local Kreiss symmetrizers at
points on the compact set

X1 := [−M,M ] × [0, 1]× {τ ∈ C
+ : |τ | = 1}

for M > 0 large enough. We start with the case where Re τ > 0. The matrix
A(w, τ) = −τA(w)−1 is hyperbolic for all w ∈ U . Indeed, we have

E−(w, τ) := Es(A(w, τ)) = Eu(A(w)),

E+(w, τ) := Eu(A(w, τ)) = Es(A(w)).

These show that E−(w, τ) and E+(w, τ) are independent of τ as long as Re τ > 0.
Let X = (t, x, τ ) ∈ X1 be such that Re τ > 0 and Ũ × O be an open set in

U ×P containing (v(t, x), τ ), where Ũ and O are open sets in U and P∩{Re τ > 0},
respectively. By continuity of v, there exists an open set V(t, x) in R × [0, 1] such
that v(V(t, x)) ⊂ Ũ . For each w ∈ Ũ we let T0(w) ∈ C∞(U ;Mn×n(C)) be the matrix
consisting of the eigenvectors of A(t, x)−1, arranged in such a way that the first p
columns correspond to the p positive eigenvalues, and the rest correspond to the
n− p negative eigenvalues. Then A(w)−1 can be diagonalized as

T0(w)−1A(w)−1T0(w) =

(
Σ+(w) Op×(n−p)

O(n−p)×p Σ−(w)

)
,

where Σ+(w) = diag(λ1(w), . . . , λp(w)) and Σ−(w) = diag(λp+1(w), . . . , λn(w))
are the diagonal matrices with the positive eigenvalues and negative eigenvalues of
A(w)−1 as entries, respectively. Define

T (w, τ) = T0(w)

for all (w, τ) ∈ Ũ × O. Then we have

T (w, τ)−1A(w, τ)T (w, τ) =

(
−τΣ+(w) Op×(n−p)

O(n−p)×p −τΣ−(w)

)
.
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Suppose 0 < x < 1. Then the Hermitian matrix

r(w, τ) =

(
−Ip Op×(n−p)

O(n−p)×p µIn−p

)
(2.4)

can be chosen as a local Kreiss symmetrizer at X for any µ ≥ 1 and T defined above
is the associated invertible-matrix valued function.

If x = 0, then the same form of r(w, τ) given by (2.4) is possible for suffi-
ciently large µ. This is the place where one requires the Kreiss–Lopantiskĭı condition.
Reducing Ũ if necessary, we can assume without loss of generality that the spectral
projections P−(w, τ) and P+(w, τ) onto E−(w, τ) and E+(τ, w), respectively, are
well-defined. These projections can be written as Dunford–Taylor integrals and by
a classical argument in [10], they can be chosen so that they are C∞ in w and
analytic in τ . Since E−(w, τ) and E+(w, τ) are independent of τ then P−(w, τ) and
P+(w, τ) are also independent of τ . By (UKL), for all V ∈ C

n and (w, τ) ∈ Ũ ×O
we have

‖P−(w, τ)V ‖ ≤ C‖B0P−(w, τ)V ‖ = C‖B0(V − P+(w, τ)V )‖
≤ C1(‖B0V ‖ + ‖P+(w, τ)V ‖). (2.5)

With this estimate it can be shown, see [2, pp. 238–239], that for sufficiently large
µ, r given by (2.4) is a local Kreiss symmetrizer at X. If x = 1 then analogously
one can choose

r(w, τ) =

(
−µIp Op×(n−p)

O(n−p)×p In−p

)

where µ is again sufficiently large.
The next step is to construct symmetrizers at points with Re τ = 0 of the fre-

quency set P ∩ {|τ | = 1} = {±i}. However, for nonzero real number δ, E−(w, iδ) is
not the stable subspace of A(w, iδ) anymore. Note that E−(w, iδ) is the zero sub-
space. Instead, we extend the definition of E−(w, τ) by continuity, or equivalently,
the definition of the spectral projections P−(w, τ). For each (w, δ) ∈ U × (R\{0})
we define

P±(w, iδ) = P±(w, σ + iδ),

where σ > 0. This definition of P± is independent on σ as long as it is a positive
real number. Moreover, one immediately have the continuity of the projections up
to the boundary of the frequency set

lim
U×P�(z,τ)→(w,iδ)

P±(z, τ) = P±(w, iδ).

We define E±(w, τ) := ranP±(w, τ), for Re τ = 0.
Suppose that X = (t, x, τ ) ∈ X1 where Re τ = 0. The neighborhoods Ũ ,O, and V

along with matrices r and T are the same as in the construction above. If 0 < x < 1
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then we choose r as in (2.4). If x = 0, by passing to the limit of projections in (2.5),
we still have the estimate

‖P−(w, τ)V ‖ ≤ C‖B0V ‖ + ‖P+(w, τ)V ‖
for all V ∈ C

n and (w, τ) ∈ Ũ × O. Once we have this estimate we can proceed to
the same manner as before. The case x = 1 is analogous.

With local Kreiss symmetrizers at every point on the compact set X1 in hand,
one can then extend it to a global Kreiss symmetrizer using compactness and homo-
geneity arguments. In other words, there exists a function Rv : X →Mn×n(C) such
that Rv(x) := Rv(·, x, ·) ∈ Γ0

1 for x ∈ [0, 1] and for γ ≥ γ0 it holds that

Re(Rv(t, x, τ)A(v(t, x), τ)) ≥ CγIn,

−ν(x)Rv(t, x, τ) + βB�
x Bx ≥ αIn, x ∈ {0, 1},

for some constants α, β, C > 0 and γ0 ≥ 1 depending only on K and K. Since
Rv(x) ∈ Γ0

1 for each x ∈ Ω, it follows that {T γ
Rv(x) : γ ≥ 1} is a family of para-

differential operators of order 0. Thus, their operator norms in L(L2(R)) are uni-
formly bounded in γ, and since the symbols are Lipschitz in the parameter x, they
are also uniformly bounded in x. The desired functional boundary symmetrizer is
given by

Rγ
v (x) :=

1
2
(T γ

Rv(x) + (T γ
Rv(x))

∗).

Refer to [2, pp. 248–250] for more technical details.

Remark 2.3. We note that with our choice of the local Kreiss symmetrizers we
have the following refined property for (a) in Definition 2.2

r(X)T (X)−1A(X)T (X) = τ∆(X)

with some diagonal matrix ∆ satisfying ∆(X) ≥ CIn uniformly in X . This addi-
tional property can be used to prove (2) in Definition 2.1.

With the aid of the a priori estimates one can prove an existence and uniqueness
result in L2.

Theorem 2.4 (Métivier). Suppose that (FS), (D) and (UKL) hold and let
T > 0 be arbitrary. For all u0 ∈ L2(Ω), f ∈ L2((0, T ) × Ω), g ∈ L2(0, T ) and for
all v ∈ W 1,∞([0, T ] × Ω) such that ran v ⊂ K ⊂ U , where 0 ∈ K is compact and
convex, and ‖v‖W 1,∞([0,T ]×Ω) ≤ K, there exists a unique solution u ∈ L2((0, T )×Ω)
in distributional sense of the linear system (2.1). Furthermore, u|∂Ω ∈ L2(0, T ),
u ∈ C([0, T ];L2(Ω)) and there exists C = C(K,K) > 0 such that

‖u‖C([0,T ];L2(Ω)) +
1√
T
‖u‖L2((0,T )×Ω) + ‖u|∂Ω‖L2(0,T )

≤ C(‖u0‖L2(Ω) +
√
T‖f‖L2((0,T )×Ω) + ‖g‖L2(0,T )).
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Proof. The methods in [2, Chap. 9] or [13] can be adapted in the present case and
for this reason we omit the details here.

We also have a result regarding the intuitive idea that the more regular the data,
the more regular the solutions are. We postpone the statement and proof of this
and derive further a priori estimates required in the proof. These will be discussed
in the next section.

Remark 2.5. Using Theorem 2.4 and a fixed point argument, one can also show
the L2 well-posedness of a linear PDE–ODE system where the coefficients of the
PDE are in W 1,∞ and the coefficients of the ODE are in L∞. In the constant
coefficient case, the solution in L2 coincides with the one given by C0-semigroup
theory. However, the former method yields that the traces u(·, 0) and u(·, 1) are in
L2(0, T ), which cannot be obtained directly from semigroup methods, e.g. [15]. The
regularity of the traces is sometimes called a hidden regularity property.

3. A Priori Estimates in Sobolev Spaces

Given an open set O ⊂ R2 = {(t, x) : t, x ∈ R}, γ ≥ 1 and a non-negative integer m,
the space Hm

γ (O) is defined to be the usual Sobolev space with γ-depending norm

‖u‖Hm
γ (O) :=

∑
|α|≤m

γm−|α|‖∂αu‖L2(O) <∞.

It is not hard to see from the definition that

γm−k‖w‖Hk(O) ≤ ‖w‖Hm
γ (O), 0 ≤ k ≤ m, w ∈ Hm(O). (3.1)

It can be shown that there exist constants 0 < c < C independent of both u

and γ such that

c
∑

|α|≤m

γm−|α|‖e−γt∂αu‖L2(O) ≤ ‖e−γtu‖Hm
γ (O)

≤ C
∑

|α|≤m

γm−|α|‖e−γt∂αu‖L2(O)

whenever e−γtu ∈ Hm(O). When O = R2 then the norm ‖u‖Hm
γ (R2) is equivalent to

‖Op(λm,λ)u‖L2(R2), where Op(λm,λ) is the pseudo-differential operator with symbol
λm,γ(δ, ξ) = (γ2 + δ2 + ξ2)m/2.

Let CH m([0, T ] × Ω) =
⋂m

p=0 C
p([0, T ];Hm−p(Ω)), where m is a non-negative

integer, be equipped with the norm

‖u‖CHm([0,T ]×Ω) =


 m∑

j=0

sup
τ∈[0,T ]

‖∂j
t u(τ)‖2

Hm−j(Ω)




1/2

.

We write CL2([0, T ] × Ω) instead of CH0([0, T ] × Ω). The space CHm([0, T ] × Ω)
equipped with the norm ‖ · ‖CHm([0,T ]×Ω) is a Banach space.
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3.1. Some classical Sobolev estimates

In this section, we state various estimates in Sobolev spaces which can be used to
derive a priori estimates.

Proposition 3.1. Let Ω be an open cube or a strip in Rd. For all real numbers
s, t ≥ 0 such that s + t > 0, if u ∈ Hs(Ω) and v ∈ Ht(Ω) then uv ∈ Hr(Ω)
for all 0 ≤ r ≤ min(s, t) such that r + d/2 < s + t. Furthermore, there exists
C = C(r, s, t,Ω) > 0 such that

‖uv‖Hr(Ω) ≤ C‖u‖Hs(Ω)‖v‖Ht(Ω).

In particular, Hs(Ω) is a Banach algebra for all s > d/2.

Proof. The proof follows from a well-known result in the case Ω = Rd, e.g. [2,
Theorem C.10]. Indeed, we recall that given a real q ≥ 0 there exists a continuous
operator Eq : Hq(Ω) → Hq(Rd) such that (Equ)|Ω = u and

‖Equ‖Hq(Rd) ≤ Cq‖u‖Hq(Ω)

for some constant Cq = Cq(Ω) > 0 independent of u ∈ Hs(Ω), see e.g. [1, pp. 207–
208]. Then uv = (EsuEtv)|Ω ∈ Hr(Ω) and

‖uv‖Hr(Ω) ≤ ‖EsuEtu‖Hr(Rd) ≤ C‖Esu‖Hs(Rd)‖Etv‖Ht(Rd)

≤ C‖u‖Hs(Ω)‖v‖Ht(Ω).

This proves the proposition.

By induction, if s1, . . . , sN ≥ 0 are real numbers such that s1 + · · · + sN > 0
and if ui ∈ Hsi(Ω) for all 1 ≤ i ≤ N , then u1 · · ·uN ∈ Hr(Ω) whenever 0 ≤ r ≤
min1≤i≤N si and r + d/2 < s1 + · · · + sN , and moreover, we have the estimate

‖u1 · · ·uN‖Hr(Ω) ≤ C‖u1‖Hs1 (Ω) · · · ‖uN‖HsN (Ω) (3.2)

for some C > 0 independent of ui for 1 ≤ i ≤ N .
In a similar way the following commutator estimate can be shown.

Proposition 3.2. Let Ω be an open cube or a strip in Rd, s ≥ [d/2]+2, a ∈ Hs(Ω)
and u ∈ Hs−1(Ω). Then for all 1 ≤ |α| ≤ s we have

‖[∂α, a]u‖L2(Ω) ≤ C‖a‖Hs(Ω)‖u‖H|α|−1(Ω).

Proposition 3.3. Let Ω be an open cube or a strip in Rd, s > d/2 and F ∈ C∞(R)
such that F (0) = 0. If u ∈ Hs(Ω) then F (u) ∈ Hs(Ω) and there exists a continuous
function C : [0,∞) → [0,∞) such that

‖F (u)‖Hs(Ω) ≤ C(‖u‖L∞(Ω))‖u‖Hs(Ω).
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Proof. The proof uses the same ideas as in the proof of Proposition 3.1. We note
that the extension operator Eq : Hq(Ω) → Hq(Rd) can be chosen, e.g. successive
application of Seeley’s reflection argument [1, p. 84], in such a way that ‖u‖L∞(Rd) ≤
C(q,Ω)‖u‖L∞(Ω). Using the same extension argument above and [2, Theorem C.12],
one can prove the proposition.

Similarly, using [2, Corollary C.3] one can prove the following.

Proposition 3.4. Let Ω be an open cube or a strip in Rd, s > d/2 and F ∈ C ∞(R).
Then there exists a continuous function C : [0,∞) → (0,∞) such that for all
u, v ∈ Hs(Ω) we have

‖F (u) − F (v)‖Hs(Ω) ≤ C(max(‖u‖Hs(Ω), ‖v‖Hs(Ω)))‖u− v‖Hs(Ω).

3.2. Sobolev estimates with time interval R

Let v ∈ Hm(R × Ω) takes values on a compact set K ⊂ U , ‖v‖W 1,∞(R×Ω) ≤ K,
‖v‖Hm(R×Ω) ≤ R and u ∈ D(R × Ω). First, we estimate in terms of the norm
‖ · ‖Hm

γ
, where m ≥ 3 is an integer. We divide the derivation of the estimates into

pure time derivatives and mixed derivatives.

3.2.1. Time-derivatives

Applying the a priori estimate (2.3) to w = ∂α
t u for α = 0, 1, . . . ,m one obtains

√
γ‖∂α

t u‖L2(Ω;L2(R)) + ‖(∂α
t u)|∂Ω‖L2(R)

≤ c

(
1√
γ
‖Lγ

v∂
α
t u‖L2(Ω;L2(R)) + ‖B(∂α

t u)|∂Ω‖L2(R)

)
. (3.3)

Since B is a constant matrix, the boundary terms on the right-hand side of (3.3)
are given by

m∑
α=0

γm−α‖B(∂α
t u)|∂Ω‖L2(R) =

m∑
α=0

γm−α‖∂α
t (Bu|∂Ω)‖L2(R)

= ‖Bu|∂Ω‖Hm
γ (R). (3.4)

Here, the trace and the derivative commute since u is smooth. The term Lγ
v∂

α
t u is

more involved. We rewrite it as

Lγ
v∂

α
t u = A(v)∂α

t (A(v)−1f) +A(v)[A(v)−1Lγ
v , ∂

α
t ]u, (3.5)

where f = Lγ
vu.

For the first term on the right-hand side of (3.5) we write

A(v)∂α
t (A(v)−1f) = A(v)∂α

t (A(v)f) +A(v)A(0)−1∂α
t f, (3.6)
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where A(v) = A(v)−1 −A(0)−1 satisfies A(0) = 0. Taking the L2-norm in (3.6) and
applying the triangle inequality

‖A(v)∂α
t (A(v)−1f)‖L2(R×Ω) ≤ C‖∂α

t (A(v)f)‖L2(R×Ω) + C‖f‖Hα(R×Ω). (3.7)

Here and below, C is a generic positive constant which depends only on m, K and
K. Let us estimate the first term on the right-hand side of (3.7). Since the case
α = 0 is nothing but the L2-estimate (2.3) we only need to consider the case where
α ≥ 1. If α = 1 then ∂t(A(v)f) = (∂tA(v))f + A(v)∂tf , which can be estimated
immediately

γm−1‖∂t(A(v)f)‖L2(R×Ω) ≤ Cγm−1‖f‖H1(R×Ω) ≤ C‖f‖Hm
γ (R×Ω).

Suppose that α ≥ 2. Then using Proposition 3.1 and (3.1)

γm−α‖∂α
t (A(v)f)‖L2(R×Ω) ≤ Cγm−α‖v‖Hα(R×Ω)‖f‖Hα(R×Ω)

≤ C‖v‖Hα(R×Ω)‖f‖Hα
γ (R×Ω).

Therefore it holds that for all α = 0, 1, . . . ,m,

γm−α‖A(v)∂α
t (A(v)−1f)‖L2(R×Ω) ≤ C(1 + ‖v‖Hm(R×Ω))‖f‖Hm

γ (R×Ω). (3.8)

We can rewrite the commutator in (3.5) in terms of derivatives with respect to
t only. Indeed, a straightforward computation gives us

A(v)[A(v)−1Lγ
v , ∂

α
t ]u = A(v)[∂α

t , A(v)−1]∂tu+ γA(v)[∂α
t , A(v)−1]u. (3.9)

Writing A(v)−1 = (A(v)−1 −A(0)−1) +A(0)−1, applying the commutator estimate
Proposition 3.2 (this is the place where we need the assumption m ≥ 3) in each
term of (3.9) together with (3.1) and Proposition 3.3 we have

γm−α‖A(v)[A(v)−1Lγ
v , ∂

α
t ]u‖L2(R×Ω) ≤ C‖v‖Hm(R×Ω)‖u‖Hm

γ (R×Ω). (3.10)

Applying (3.8) and (3.10) in (3.5) and then taking the sum yield
m∑

α=0

γm−α‖Lγ
v∂

α
t u‖L2(Ω;L2(R))

≤ C(1 + ‖v‖Hm(R×Ω))(‖Lγ
vu‖Hm

γ (R×Ω) + ‖u‖Hm
γ (R×Ω)). (3.11)

Thus, according to (3.3), (3.4) and (3.11) we have the following estimate on the
time derivatives

√
γ‖u‖L2(Ω;Hm

γ (R)) + ‖u|∂Ω‖Hm
γ (R)

≤ C√
γ

(1 + ‖v‖Hm(R×Ω))‖Lγ
vu‖Hm

γ (R×Ω) + C‖Bu|∂Ω‖Hm
γ (R)

+
C√
γ

(1 + ‖v‖Hm(R×Ω))‖u‖Hm
γ (R×Ω) =: CN(u, v).

It is important to note that on the right-hand side, the norms of v are independent
of γ.
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3.2.2. Spatial and mixed derivatives

To obtain estimates involving derivatives with respect to x we use the operator Lγ
v .

We show by strong induction that

γm−k−α+1/2‖∂k
x∂

α
t u‖L2(R×Ω) ≤ CN(u, v)

holds for all k and α such that k + α ≤ m. The case k = 0 only involves time-
derivatives and hence the basis step was already established. Suppose we have shown
that for all j and α such that j = 0, . . . , k and j + α ≤ m we have

γm−(j−1)−α−1/2‖∂j
x∂

α
t u‖L2(R×Ω) ≤ CN(u, v). (3.12)

We show that this also holds for k + 1 and α such that k + 1 + α ≤ m.
First, by applying ∂k

x∂
α
t to the equality

∂xu = A(v)(f − ∂tu− γu) +A(0)−1(f − ∂tu− γu), (3.13)

one obtains

∂k+1
x ∂α

t u = ∂k
x∂

α
t [A(v)(f − ∂tu− γu)]

+A(0)−1(∂k
x∂

α
t f − ∂k

x∂
α+1
t u− γ∂k

x∂
α
t u). (3.14)

The first term in (3.14) may be expanded using the Leibniz’s rule as

∂k
x∂

α
t [A(v)(f − ∂tu− γu)] =

k∑
j=0

α∑
l=0

cjl∂
k−j
x ∂α−l

t A(v)∂j
x∂

l
t(f − ∂tu− γu). (3.15)

By the induction hypothesis (3.12), one has already an estimate for the second term
in (3.14)

γm−k−α−1/2‖A(0)−1(∂k
x∂

α
t f − ∂k

x∂
α+1
t u− γ∂k

x∂
α
t u)‖L2(R×Ω) ≤ CN(u, v). (3.16)

Next, we estimate the terms appearing in the sum (3.15) and for this we consider
different cases.

Case 1. If k−j+α−l ≤ 1 then one has the estimate ‖∂k−j
x ∂α−l

t A(v)‖L∞(R×Ω) ≤ C,
while the terms γm−k−α−1/2∂j

x∂
l+1
t u and γm−k−α+1/2∂j

x∂
l
tu can be estimated using

the induction hypothesis: Since j ≤ k and k + α ≥ j + l

γm−k−α−1/2‖∂k−j
x ∂α−l

t A(v)∂j
x∂

l
t(f − ∂tu− γu)‖L2(R×Ω)

≤ Cγm−k−α−1/2(‖f‖Hj+l(R×Ω) + ‖∂j
x∂

l+1
t u‖L2(R×Ω) + γ‖∂j

x∂
l
tu‖L2(R×Ω))

≤ C

(
1√
γ
γm−(j+l)‖f‖Hj+l(R×Ω) + γm−(j−1)−(l+1)−1/2‖∂j

x∂
l+1
t u‖L2(R×Ω)

+ γm−(j−1)−l−1/2‖∂j
x∂

l
tu‖L2(R×Ω)

)
≤ CN(u, v).

Case 2. If k − j + α − l = 2 then we first estimate with respect to time and
then integrate with respect to space. In the following, for simplicity we write u, v, f
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for u(·, x), v(·, x), f(·, x), respectively. Using an L2 − L∞ estimate, the embedding
H1(R) ↪→ L∞(R) and γ ≥ 1 we have

γm−k−α−1/2‖∂k−j
x ∂α−l

t A(v)∂j
x∂

l
t(f − ∂tu− γu)‖L2(R)

≤ C‖v‖H2(R)γ
m−k−α−1/2(‖∂j

x∂
l
tf‖H1(R) + ‖∂j

x∂
l+1
t u‖H1(R) + γ‖∂j

x∂
l
tu‖H1(R))

≤ C√
γ
‖v‖H2(R)(‖f‖Hm

γ (R) + ‖u‖Hm
γ (R)).

Integrating with respect to x over Ω and applying the embedding H3(R × Ω) ↪→
L∞(Ω;H2(R)) we obtain

γm−k−α−1/2‖∂k−j
x ∂α−l

t A(v)∂j
x∂

l
t(f − ∂tu− γu)‖L2(R×Ω)

≤ C√
γ
‖v‖H3(R×Ω)(‖f‖Hm

γ (R×Ω) + ‖u‖Hm
γ (R×Ω)) ≤ CN(u, v).

Case 3. If k − j + α− l ≥ 3 then j + l + 3 ≤ k + α ≤ m and we have

γm−k−α−1/2‖∂k−j
x ∂α−l

t A(v)∂j
x∂

l+1
t u‖L2(R×Ω)

≤ C‖v‖Hm(R×Ω)γ
m−k−α−1/2‖∂j

x∂
l+1
t u‖L∞(R×Ω)

≤ C‖v‖Hm(R×Ω)γ
m−(k+α)−1/2‖u‖Hj+l+3(R×Ω)

≤ C‖v‖Hm(R×Ω)γ
m−(j+l+3)−1/2‖u‖Hj+l+3(R×Ω)

≤ C√
γ
‖v‖Hm(R×Ω)‖u‖Hm

γ (R×Ω) ≤ C√
γ
N(u, v),

and similar for the other terms ∂k−j
x ∂α−l

t A(v)∂j
x∂

l
tf and γ∂k−j

x ∂α−l
t A(v)∂j

x∂
l
tu.

Combining the three cases in (3.15) one has

γm−k−α−1/2‖∂k
x∂

α
t [A(v)(f − ∂tu− γu)]‖L2(R×Ω) ≤ CN(u, v), (3.17)

and taking the sum of (3.16) and (3.17) in (3.14) we have

γm−k−α−1/2‖∂k+1
x ∂α

t u‖L2(R×Ω) ≤ CN(u, v),

which establishes the induction step.

3.2.3. Weighted-in-time estimates

The above estimates give us finally the following estimate
√
γ‖u‖Hm

γ (R×Ω) + ‖u|∂Ω‖Hm
γ (R)

≤ C

(
1√
γ

(1 + ‖v‖Hm(R×Ω))‖Lγ
vu‖Hm

γ (R×Ω) + ‖Bu|∂Ω‖Hm
γ (R)

)

+
C√
γ

(1 + ‖v‖Hm(R×Ω))‖u‖Hm
γ (R×Ω) (3.18)

for all u ∈ D(R × Ω) where C = C(K,K) > 0. Choosing γ large enough, the last
term on the right-hand side of (3.18) can be absorbed by the first term on the
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left-hand side and therefore

√
γ‖u‖Hm

γ (R×Ω) + ‖u|∂Ω‖Hm
γ (R) ≤ C

(
1√
γ
‖Lγ

vu‖Hm
γ (R×Ω) + ‖Bu|∂Ω‖Hm

γ (R)

)
,

(3.19)

where the constant C > 0 also depends only on the W 1,∞-norm and Hm-norm of v
and the compact set K. The passage from (3.18) from (3.19) by absorption would
not be possible if we have the Hm

γ -norm of v in (3.18) instead of its Hm-norm.
Replacing u by e−γtu, which is still in D(R×Ω) provided that u is, noting that

Lγ
v(e−γtu) = e−γtLvu, and then applying a density argument, we have the following

a priori estimate.

Theorem 3.5. Let v ∈ Hm(R × Ω) taking values on a compact set K ⊂ U ,
‖v‖W 1,∞(R×Ω) ≤ K and ‖v‖Hm(R×Ω) ≤ R. Then there exist Cm = Cm(K,K,R) > 0
and γm = γm(K,K,R) ≥ 1 such that for every γ ≥ γm and for every u ∈
eγtHm+1(R × Ω) it holds that

√
γ‖e−γtu‖Hm

γ (R×Ω) + ‖e−γtu|∂Ω‖Hm
γ (R)

≤ Cm

(
1√
γ
‖e−γtLvu‖Hm

γ (R×Ω) + ‖e−γtBu|∂Ω‖Hm
γ (R)

)
. (3.20)

The proof of Theorem 3.5 given above follows the ideas given in the proof of
[2, Theorem 9.7]. However, we have a different estimate in (3.8). In [2, p. 252], the
authors seem to use the estimate

‖vf‖L2(Ω;eγtHm
γ (R)) ≤ C‖v‖L2(Ω;Hm(R))‖f‖L2(Ω;eγtHm

γ (R))

which does not hold in general. We resolved this by estimating in terms of the norm
in Hm

γ (R × Ω).

3.3. Sobolev estimates with time interval (−∞, T ]

Now suppose that v ∈ Hm((−∞, T ]× Ω) and u ∈ D((−∞, T ]× Ω) with u|t<0 = 0.
Then thanks to (FS) the a priori estimate

‖u(t)‖L2(Ω) +
√
γ‖u‖L2(Ω;L2(−∞,T ]) + ‖u|∂Ω‖L2(−∞,T ]

≤ C

(
1√
γ
‖Lγ

vu‖L2(Ω;L2(−∞,T ]) + ‖Bu|∂Ω‖L2(−∞,T ]

)

holds for all γ ≥ γ0(K,K) ≥ 1. See [13] for a proof of this estimate. The same
procedure as in Sec. 3.1 gives us the inequality

m∑
α=0

γm−α‖∂α
t u(t)‖L2(Ω) +

√
γ‖u‖Hm((−∞,T ]×Ω) + ‖u|∂Ω‖Hm

γ (−∞,T ]
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≤ C√
γ

(1 + ‖v‖Hm((−∞,T ]×Ω))‖Lγ
vu‖Hm

γ ((−∞,T ]×Ω) + C‖Bu|∂Ω‖Hm
γ (−∞,T ]

+
C√
γ

(1 + ‖v‖Hm((−∞,T ]×Ω))‖u‖Hm
γ ((−∞,T ]×Ω) =: CN(u, v).

(3.21)

We proceed by induction for the pointwise in time estimates for the spatial
derivatives. Assume that for k with k + α ≤ m we have already shown that (the
basis step k = 0 is nothing but the L2-estimate, which is already given by (3.21))

γm−k−α‖∂k
x∂

α
t u(t)‖L2(Ω) ≤ CN(u, v), t ∈ (−∞, T ].

We show that this is true for k+ 1 when k+ 1 + α ≤ m. Recall our formula (3.14),
and let J denote the second term, i.e. J := ∂k

x∂
α
t [A(v)(f −∂tu−γu)]. The following

weighted Sobolev estimate will be used.

Proposition 3.6. For every w ∈ H1((−∞, T ] × Ω) and γ > 0 we have

‖w‖2
L∞((−∞,T ];L2(Ω)) ≤ γ‖w‖2

L2((−∞,T ]×Ω) +
1
γ
‖∂tw‖2

L2((−∞,T ]×Ω). (3.22)

Proof. By a standard density argument, we may suppose that w ∈ D((−∞, T ]×Ω).
Let R0 < 0 be such that w vanishes for all t ≤ R0. For simplicity we assume that
w is scalar-valued. Let R ≤ 2R0 − T and T+R

2 ≤ τ ≤ T . Using Young’s inequality

|w(τ, x)|2 =
∫ τ

R

∂t(|w(t, x)|2)dt

= 2
∫ τ

R

w(t, x)wt(t, x)dt

≤ γ

∫ T

R

|w(t, x)|2dt+
1
γ

∫ T

R

|wt(t, x)|2dt.

Letting R → −∞ we have

|w(τ, x)|2 ≤ γ

∫ T

−∞
|w(t, x)|2dt+

1
γ

∫ T

−∞
|wt(t, x)|2dt

for all τ ∈ (−∞, T ] and x ∈ Ω. Integrating the previous inequality over Ω and
taking the supremum over all τ ∈ (−∞, T ] give us (3.22).

Using (3.22) together with the induction hypothesis yields an estimate for the
second term in (3.14)

γm−(k+1)−α‖∂k
x∂

α
t f(t) − ∂k

x∂
α+1
t u(t) − γ∂k

x∂
α
t u(t)‖L2(Ω) ≤ CN(u, v). (3.23)

As in the computation of mixed derivatives, one obtains

γm−k−α−1/2‖J‖L2((−∞,T ]×Ω) ≤ CN(u, v),

γm−(k+1)−α−1/2‖∂tJ‖L2((−∞,T ]×Ω) ≤ CN(u, v).
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Thus, by the weighted Sobolev estimate (3.22) we have the estimate

γm−(k+1)−α‖J(t)‖L2(Ω) ≤ C(γm−(k+1)−α+1/2‖J‖L2((−∞,T ]×Ω)

+ γm−(k+1)−α−1/2‖∂tJ‖L2((−∞,T ]×Ω))

≤ CN(u, v). (3.24)

Combining (3.23) and (3.24) proves the induction step.
Therefore we have the full estimate∑
|β|≤m

γm−|β|‖∂βu(t)‖L2(Ω) +
√
γ‖u‖Hm

γ ((−∞,T ]×Ω) + ‖u|∂Ω‖Hm
γ (−∞,T ]

≤ C√
γ

(1 + ‖v‖Hm((−∞,T ]×Ω))‖Lγ
vu‖Hm

γ ((−∞,T ]×Ω) + C‖Bu|∂Ω‖Hm
γ (−∞,T ]

+
C√
γ

(1 + ‖v‖Hm((−∞,T ]×Ω))‖u‖Hm
γ ((−∞,T ]×Ω)

for all t ∈ (−∞, T ]. Now replace u by e−γtu, choose γ large enough, so that the last
term on the right-hand side can be absorbed by the second term on the left-hand
side, and use the norm-equivalence∑

|β|≤m

γm−|β|‖∂β(e−γtu(t))‖L2(Ω) �
∑

|β|≤m

γm−|β|e−γt‖∂βu(t)‖L2(Ω)

we have the following a priori estimate.

Lemma 3.7 (A Priori Estimate in Weighted Sobolev Spaces). Let
m ≥ 3 be an integer. For each v ∈ Hm((−∞, T ) × Ω) satisfying ran v ⊂ K,
‖v‖W 1,∞((−∞,T ]×Ω) ≤ K and ‖v‖Hm((−∞,T ]×Ω) ≤ R and for all u ∈ Hm+1((0, T )×
Ω) such that u|t=0 = 0, there exist Cm = Cm(K,K,R) > 0 and γm(K,K,R) ≥ 1
such that for all γ ≥ γm and for all τ ∈ [0, T ] the following a priori estimate holds

∑
|α|≤m

γm−|α|e−γτ‖∂αu(τ)‖L2(Ω) +
√
γ‖e−γtu‖Hm

γ ((0,τ)×Ω) + ‖u|∂Ω‖Hm
γ (0,τ)

≤ Cm

(
1√
γ
‖e−γtLvu‖Hm

γ ((0,τ)×Ω) + ‖e−γtBu|∂Ω‖Hm
γ (0,τ)

)
. (3.25)

The a priori estimate (3.25) is different from those in [2, 13] because in (3.25) the
constants Cm and γm depend only on the Hm-norm of v and not on its Hm

γ -norm.

3.4. Gagliardo–Nirenberg type estimates

For IBVPs with zero initial conditions, the a priori estimate (3.25) will be used. The
next step is to derive an a priori estimate which can be used for problems that are
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not starting initially from zero. In preparation we borrow the Gagliardo–Nirenberg
type estimates in [13, pp. 69–71].

Theorem 3.8 (Gagliardo–Nirenberg). Let m be a positive integer and T > 0.
Then there exists C > 0, independent of T, such that for all u ∈ Hm((−∞, T )×Ω)
and 1 ≤ |α| ≤ m we have

‖∂α
xu‖L2m/|α|((−∞,T )×Ω) ≤ C‖u‖1−|α|/m

L∞((−∞,T )×Ω)‖u‖|α|/m
Hm((−∞,T )×Ω).

A similar estimate also holds for u ∈ Hm(−∞, T ).

The following is a modification of [13, Proposition 4.5.5].

Theorem 3.9. For all m ∈ N there exists C = C(m) > 0 such that for all T > 0,
ψ ∈ Hm(0, T ) and 1 ≤ j ≤ m we have

‖ψ(j)‖L2m/j(0,T ) ≤ C(Km,T (ψ)1−m/j(‖ψ‖Hm(0,T ) +Km,T (ψ))m/j +Km,T (ψ)),

where

Km,T (ψ) = ‖ψ‖L∞(0,T ) +
m−1∑
i=0

|ψ(i)(0)|.

In particular,

‖ψ(j)‖L2m/j(0,T ) ≤ C(‖ψ‖Hm(0,T ) +Km,T (ψ)).

Proof. We adjust the proof in [13]. Given ψ ∈ Hm(0, T ), let ψ1 ∈ Hm(R) be such
that ψ(i)

1 (0) = ψ(i)(0) for all i = 0, . . . ,m − 1 and using the fact that the trace
operator has a continuous right inverse

‖ψ1‖Hm(R) ≤ C

m−1∑
i=0

|ψ(i)
1 (0)| = C

m−1∑
i=0

|ψ(i)(0)|, (3.26)

where C > 0 is independent of ψ. Let ψ2 = ψ − ψ1 ∈ Hm(0, T ). Then (3.26) and
the Sobolev embedding theorem Hm(R) ↪→ L∞(R) imply

‖ψ2‖L∞[0,T ] ≤ ‖ψ‖L∞[0,T ] + ‖ψ1‖L∞(R)

≤ ‖ψ‖L∞[0,T ] + C‖ψ1‖Hm(R) ≤ CKm,T (ψ) (3.27)

and

‖ψ2‖Hm(0,T ) ≤ ‖ψ‖Hm(0,T ) + ‖ψ1‖Hm(0,T ) ≤ ‖ψ‖Hm(0,T ) + CKm,T (ψ). (3.28)

By construction, it holds that ψ(i)
2 (0) = 0 for i = 0, . . . ,m − 1 and therefore

extending ψ2 by 0 for t < 0 we have ψ2 ∈ Hm(−∞, T ). By the Gagliardo–Nirenberg
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inequality

‖ψ(j)
2 ‖L2m/j(−∞,T ) ≤ C‖ψ2‖1−j/m

L∞[0,T ]‖ψ2‖j/m
Hm(0,T ), (3.29)

‖ψ(j)
1 ‖L2m/j(R) ≤ C‖ψ1‖1−j/m

L∞(R) ‖ψ1‖j/m
Hm(R) ≤ C‖ψ1‖Hm(R). (3.30)

Hence, (3.27)–(3.30) imply that

‖ψ(j)‖L2m/j(0,T ) ≤ ‖ψ(j)
1 ‖L2m/j(0,T ) + ‖ψ(j)

2 ‖L2m/j(0,T )

≤ C‖ψ2‖1−j/m
L∞[0,T ]‖ψ2‖j/m

Hm(0,T ) + C‖ψ1‖Hm(R)

≤ C(Km,T (ψ)1−j/m(‖ψ‖Hm(0,T ) +Km,T (ψ))j/m +Km,T (ψ)).

This proves the first part. The second part follows immediately using the elementary
inequality a1−r(a+ b)r ≤ a+ b for a, b ≥ 0 and 0 < r < 1.

Theorem 3.10. For each positive integers m there exists C = C(m) > 0 such that
for all T > 0 and u ∈ Hm((0, T )×Ω)∩L∞((0, T )×Ω) satisfying ∂j

t u|t=0 ∈ Hm−j(Ω)
for 0 ≤ j ≤ m− 1 we have

‖∂αu‖L2m/|α|((0,T )×Ω)

≤ C(K̃m,T (u)1−|α|/m(‖u‖Hm((0,T )×Ω) + K̃m,T (u))|α|/m + K̃m,T (u))

for 1 ≤ |α| ≤ m where

K̃m,T (u) = ‖u‖L∞((0,T )×Ω) +
m−1∑
i=0

‖∂i
tu(0)‖Hm−i(Ω).

In particular,

‖∂αu‖L2m/|α|((0,T )×Ω) ≤ C(‖u‖Hm((0,T )×Ω) + K̃m,T (u)).

Proof. The proof is similar as in the previous theorem, see [13, Proposition 4.5.6]
for the details.

A function F is said to be a nonlinear function of u of order k if

F (u) =
N∑

l=1

∑
|α1|+···+|αl|=k

Fl,α1,...,αl
(u)[∂α1u, . . . , ∂αlu],

where αi ∈ N2
0 and Fl,α1,...,αl

are multilinear mappings depending smoothly on u

and there exists (α1, . . . , αl) such that |α1| + · · · + |αl| = k and Fl,α1,...,αl
= 0.

Theorem 3.11. Let m be a positive integer and F be a nonlinear function of order
k ≤ m. There exists C > 0 which depends continuously on its argument, such that
for all T > 0 and u ∈ Hm((0, T )×Ω)∩L∞((0, T )×Ω) satisfying ∂j

t u|t=0 ∈ Hm−j(Ω)
for 0 ≤ j ≤ m− 1

‖F (u)‖L2m/k((0,T )×Ω) ≤ C(K̃m,T (u))(‖u‖Hm((0,T )×Ω) + K̃m,T (u))k/m.
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In particular,

‖F (u)‖L2m/k((0,T )×Ω) ≤ C̃(K̃m,T (u))(‖u‖Hm((0,T )×Ω) + 1),

where C̃ ≥ 1. A similar statement holds for ψ ∈ Hm(0, T ) where m ∈ N.

Proof. For simplicity we assume that u is scalar valued. First, note that we have
‖Fl,α(u)‖L∞((0,T )×Ω) ≤ C(‖u‖L∞((0,T )×Ω)). Suppose that |α1| + · · · + |αl| = k.
Define pi = 2m

|αi| , where we use the convention that pi = ∞ if αi = 0. Then∑l
i=1

1
pi

=
∑l

i=1
|αi|
2m = k

2m . By Hölder’s inequality and Theorem 3.10

‖∂α1u · · ·∂αlu‖L2m/k((0,T )×Ω)

≤ ‖∂α1u‖Lp1((0,T )×Ω) · · · ‖∂αlu‖Lpl((0,T )×Ω)

≤
l∏

i=1

CK̃k,T (u)1−2/pi((‖u‖Hm((0,T )×Ω) + K̃k,T (u))2/pi + K̃k,T (u)2/pi)

≤ ClK̃k,T (u)l−k/m
l∏

i=1

((‖u‖Hm((0,T )×Ω) + K̃k,T (u))2/pi + K̃k,T (u)2/pi)

≤ (2C)lK̃k,T (u)l−k/m
l∏

i=1

(‖u‖Hm((0,T )×Ω) + K̃k,T (u))2/pi

≤ C(K̃k,T (u))(‖u‖Hk((0,T )×Ω) + K̃k,T (u))k/m.

Taking the sum of all terms, we obtain the estimate of the theorem.

Using classical Sobolev embedding theorems and the identity u(t) = u(0) +∫ t

0 u
′(τ)dτ for a.e. t ∈ [0, T ] and for u ∈W 1,1([0, T ];X) where X is a Banach space,

the following estimates can be shown by induction.

Theorem 3.12. Let m be a non-negative integer and T > 0. There exists a C > 0
independent of T such that for all u ∈ Hm+2((0, T )× Ω) we have

‖u‖W m,∞((0,T )×Ω) ≤
m∑

k=0

‖∂k
t u|t=0‖W m−k,∞(Ω) + C

√
T‖u‖Hm+2((0,T )×Ω).

Theorem 3.13. Let m be a positive integer. There exists C > 0 such that for all
T > 0 and u ∈ Hm(0, T ) we have

‖u‖Hm−1(0,T ) ≤ C

(
m−1∑
i=0

√
T |u(i)(0)| + T ‖u‖Hm(0,T )

)
.

Also, there exists C > 0 such that for all T > 0 and u ∈ Hm((0, T ) × Ω) we have

‖u‖Hm−1((0,T )×Ω) ≤ C

(
m−1∑
i=0

√
T ‖∂i

tu|t=0‖Hm−i−1(Ω) + T ‖u‖Hm((0,T )×Ω)

)
.
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4. Well-Posedness of the Linear PDE Part in Sobolev Spaces

The first step is to prove additional time regularity in Theorem 2.4 in the
homogeneous case under additional smoothness assumptions on the frozen coef-
ficient v and on the data f and g. First, we have the following extension result.

Lemma 4.1. Let m ≥ 3 be a positive integer and v ∈ Hm((0, T )× Ω) be such that
‖v‖Hm((0,T )×Ω) ≤ R, ‖v‖W 1,∞((0,T )×Ω) ≤ K and the range of v lies on a compact
and convex set K containing 0. Then there exist v̆ ∈ Hm(R2) and (v̆ε)ε>0 ⊂ C ∞(R2)
such that v̆|(0,T )×Ω = v, ‖v̆ε − v̆‖Hm(R2) → 0 as ε → 0+, and for every ε > 0
sufficiently small we have ‖v̆ε‖Hm(R2) ≤ C(T,R), ‖v̆ε‖W 1,∞(R2) ≤ C(K) and the
range of v̆ε lies on a δ-neighborhood of K, for a fixed δ > 0.

Proof. Let θ ∈ C ∞
0 ([0,∞); [0, 1]) be such that θ(0) = 1 and θ(j)(0) = 0 for every

1 ≤ j ≤ m− 1. For a > 0 define θa : R → [0, T ] by

θa(s) =



θ(−s) if s < 0,

1 if 0 ≤ s ≤ a,

θ(s− a) if s > a.

By construction θa ∈ Hm(R). Let ṽ ∈ Hm([−T, 2T ] × [−1, 2]) be the extension
of v using Seeley’s reflection argument [1, p. 84]. The construction of ṽ implies
that ‖ṽ‖W 1,∞((−T,2T )×(−1,2)) ≤ C(K). Define v̆(t, x) = θT (t)θ1(x)ṽ(t, x), where ṽ is
extended by zero outside [−T, 2T ]× [−1, 2]. Reducing the support of θ if necessary,
it can be shown that v̆ ∈ Hm(R2) and the range of v̆ lies on a δ/2-neighborhood
of K. Let v̆ε = ρε � v̆ ∈ C∞(R2) where ρε is a standard mollifier in the variable
(t, x) and the star denotes convolution. By definition, v̆ = v on (0, T ) × Ω and
‖v̆ε − v̆‖Hm(R2) → 0 as ε → 0+. The remaining properties can be easily checked
using the Sobolev embedding theorem.

Theorem 4.2. In the framework of Theorem 2.4, suppose in addition that we have
v ∈ Hm((0, T ) × Ω) for some integer m ≥ 3 and ‖v‖Hm((0,T )×Ω) ≤ R. If f ∈
Hm((0, T ) × Ω) and g ∈ Hm(0, T ) satisfy (∂j

t f)|t=0 = 0 and (∂j
t g)|t=0 = 0 for

0 ≤ j ≤ m− 1 then the solution u of the IBVP

Lvu = f, Bu|∂Ω = g, u|t=0 = 0 (4.1)

lies in CHm([0, T ]× Ω) with trace u|∂Ω ∈ Hm(0, T ) and (∂j
t u)|t=0 = 0 for 0 ≤ j ≤

m − 1. Furthermore, there exist Cm = Cm(K,K,R, T ) > 0 and γm = γm(K,K,
R, T ) ≥ 1 such that for all γ ≥ γm and for all τ ∈ [0, T ] we have∑

|α|≤m

γm−|α|e−γτ‖∂αu(τ)‖L2(Ω) +
√
γ‖e−γtu‖Hm

γ ((0,τ)×Ω) + ‖u|∂Ω‖Hm
γ (0,τ)

≤ Cm

(
1√
γ
‖e−γtf‖Hm

γ ((0,τ)×Ω) + ‖e−γtg‖Hm
γ (0,τ)

)
. (4.2)
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Proof. Let f̆ ∈ Hm(R×Ω) and ğ ∈ Hm(R) be extensions of f and g both vanishing
for t < 0. Such extensions are possible due to the assumptions on f and g at t = 0.
Let ŭ be the solution of the pure BVP

Lv̆ŭ = f̆ in R × Ω, Bŭ|∂Ω = ğ in R,

where v̆ is the extension of v in Lemma 4.1. Using the a priori estimate (2.3),
it can be shown that this BVP has a unique solution ŭ ∈ L2(R × Ω) with trace
ŭ|∂Ω ∈ L2(R). Furthermore, ŭ ∈ Hm(R × Ω) and ŭ|∂Ω ∈ Hm(R). A proof similar
to the proof of [2, Theorem 9.21] shows that u := ŭ|[0,T ] ∈ Hm((0, T ) × Ω) is the
solution of the homogeneous IBVP (4.1) and it satisfies all the conclusions of the
theorem except the energy estimate (4.2) and the additional regularity in time. To
see this we use the usual weak equals strong argument as suggested in [2]. We will
do this step because this will reveal some important remarks that are required in
the proof of Theorem 4.5. Let ρε be a standard mollifier with respect to t chosen in
such a way that ρε � ŭ =: uε vanishes for t < 0. The notation Rεu = ρε � u will also
be used. Then uε ∈ Hm(Ω;H+∞(R)) where H+∞(R) =

⋂
m∈R

Hm(R).
The next step is to show additional regularity in x. Note that

A−1
v̆ Lv̆ŭ = A−1

v̆ ∂tŭ+ ∂xŭ = A−1
v̆ f̆ .

Let α ∈ N2
0 be a multi-index with |α| ≤ m. Applying ∂α to both sides of the latter

equality gives

A−1
v̆ ∂t(∂αŭ) + ∂x(∂αŭ) = ∂α(A−1

v̆ f̆) + [A−1
v̆ ∂t, ∂

α]ŭ. (4.3)

Since the commutator [A−1
v̆ ∂t, ∂

α] is of order |α| and ŭ ∈ Hm(R × Ω), it follows
that [A−1

v̆ ∂t, ∂
α]ŭ ∈ L2(R × Ω). Mollifying both sides of (4.3) with respect to time

yields

A−1
v̆ ∂t(∂αuε) + ∂x(∂αuε) = Rε(∂α(A−1

v̆ f̆) + [A−1
v̆ ∂t, ∂

α]ŭ) + [A−1
v̆ ∂t, Rε]∂αŭ.

(4.4)

Let Fε be the right-hand side of (4.4). Solving for ∂x(∂αuε) shows that ∂x(∂αuε) ∈
L2(R × Ω). Therefore, uε ∈ Hm+1(Ω;H+∞(R)) ⊂ Hm+1(R × Ω). In other words,
mollification in time gives additional regularity in time, and together with the PDE
one has additional regularity in space.

As ε→ 0 it holds that

Lv̆∂
αuε → Lv̆∂

αŭ, in L2(R × Ω). (4.5)

Indeed, we have Rε(∂α(A−1
v̆ f̆) + [A−1

v̆ ∂t, ∂
α]ŭ) → ∂α(A−1

v̆ f̆) + [A−1
v̆ ∂t, ∂

α]ŭ and
[A−1

v̆ ∂t, Rε]∂αŭ → 0 both in L2(R × Ω), where we used the extension of Friedrichs
theorem [2, Theorem C.14] for the latter. Now (4.5) follows from

[A−1
v̆ ∂t, ∂

α]ŭ = [A−1
v̆ Lv̆, ∂

α]ŭ = A−1
v̆ Lv̆∂

αŭ− ∂α(A−1
v̆ f̆)

since [∂x, ∂
α]ŭ = 0 and Lv̆ŭ = f̆ .



February 2, 2015 9:13 WSPC/S0219-8916 JHDE 1450022

728 G. Peralta & G. Propst

Applying the a priori estimate (3.25) to uε − uε′ ∈ Hm+1(R × Ω) one obtains∑
|α|≤m

γm−|α|e−γT sup
τ∈[0,T ]

‖∂α(uε − uε′)(τ)‖L2(Ω) + ‖(uε − uε′)|∂Ω‖Hm
γ (0,T )

≤ Cm

(
1√
γ
‖e−γtLv̆(uε − uε′)‖Hm

γ ((0,T )×Ω) + ‖e−γtB(uε − uε′)|∂Ω‖Hm
γ (0,T )

)
.

Since gε = Rεğ vanishes for t < 0 and B(uε)|∂Ω = Rε(Bŭ|∂Ω) = gε we have

‖e−γtB(uε − uε′)|∂Ω‖Hm
γ (0,T ) ≤ ‖e−γt(gε − gε′)|∂Ω‖Hm

γ (R) → 0

as ε, ε′ → 0. On the other hand, since uε − uε′ vanishes for t < 0 and the function
t �→ e−γt is uniformly bounded on compact intervals we have

‖e−γtLv̆(uε − uε′)‖Hm
γ ((0,T )×Ω) ≤ C‖Av̆‖Hm

γ (R×Ω)‖A−1
v̆ Lv̆(uε − uε′)‖Hm

γ (R×Ω).

Using commutators we can rewrite

∂α(A−1
v̆ Lv̆(uε − uε′)) = [∂α, A−1

v̆ Lv̆](uε − uε′) −A−1
v̆ Lv̆∂

α(uε − uε′).

Since uε → ŭ in Hm(R × Ω) and [∂α, A−1
v̆ Lv̆] is of order |α| ≤ m, the commutator

term on the right-hand side tends to zero in L2(R × Ω) as ε, ε′ → 0. On the other
hand, the second term also tends to zero in L2(R × Ω) according to (4.5). There-
fore, from (4.6) we can see that (u1/n)n and ((u1/n)|∂Ω)n are Cauchy sequences
in CHm([0, T ] × Ω) and Hm(0, T ), respectively. Their limits are u and u|∂Ω since
u1/n → u in CL2([0, T ]×Ω) and (u1/n)|∂Ω → u|∂Ω in L2(0, T ) by a similar argument
as in the proof of [2, Theorem 9.19].

It remains to establish the energy estimate (4.2). First, let us note that

∂αLv̆uε = [∂α, Lv̆]uε + Lv̆∂
αuε → [∂α, Lv̆]ŭ+ Lv̆∂

αŭ = ∂αf̆ (4.6)

in L2(R×Ω). Thus Lv̆uε → f̆ in Hm(R×Ω). Applying the a priori estimate (3.25)
to u1/n ∈ Hm+1(R × Ω) and letting n→ ∞ proves (4.2).

Now, we will consider the IBVP with nonzero initial condition. For this, one
needs compatibility conditions which we are going to state. Given sufficiently
smooth functions f and u0 define recursively the functions ui : Ω → Rn by

ui(x) = ∂i−1
t f(0, x) −

i−1∑
l=0

(
i− 1
l

)
∂l

tA(v(0, x))∂xui−1−l(x), x ∈ Ω. (4.7)

The data (u0, f, g) are said to be compatible up to order p if

Bui|∂Ω = ∂i
tg(0), i = 0, . . . , p.

By the embedding

Hm((0, T ) × Ω) ↪→ Hj+1((0, T );Hm−j−1(Ω)) ↪→ Cj([0, T ];Hm−j−1(Ω))
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for 0 ≤ j ≤ m− 1, we have ∂j
t v|t=0 ∈ Hm−j−1(Ω). However, stronger assumptions

are needed for these traces in the general IBVP as included in the following theorem.

Theorem 4.3. Consider the framework of Theorem 2.4 and suppose that v satisfies
the conditions of Theorem 4.2. Suppose in addition that ∂j

t v|t=0 ∈ Hm−j(Ω) for all
0 ≤ j ≤ m− 1. If the data

(u0, f, g) ∈ Hm+1/2(Ω) ×Hm((0, T ) × Ω) ×Hm(0, T )

are compatible up to order m− 1, then the IBVP

Lvu = f, Bu|∂Ω = g, u|t=0 = u0 (4.8)

has a unique solution u ∈ CHm([0, T ]× Ω) and u|∂Ω ∈ Hm(0, T ).

Remark 4.4. The proof of this theorem is contained in the second step of the proof
of [2, Theorem 9.22] using an appropriate lifting result. This is where the additional
regularity for u0 is needed. The proof shows that the solution takes the form u =
ua|[0,T ] + uh where ua ∈ Hm+1(R × Ω) and uh is a solution of an IBVP with
zero initial data. Therefore, according to the proof of Theorem 4.2, there exists
(un)n ⊂ Hm+1((0, T ) × Ω) such that

un → u, in CHm([0, T ]× Ω),

(un)|∂Ω → u|∂Ω, in Hm(0, T ), (4.9)

Lvun → Lvu, in Hm(0, T ).

The extra regularity imposed on the data u0 is not necessary since one can have
the same result even when it is only in Hm(Ω). This is the content of the following
theorem.

Theorem 4.5. The conclusions of Theorem 4.3 still hold even for initial data u0 ∈
Hm(Ω).

To prove this theorem, one requires the following a priori estimate. This is
similar to the one given in Lemma 3.7, but with additional terms for the nonzero
initial condition.

Lemma 4.6. For every v ∈Hm((0, T )×Ω) satisfying the conditions in Theorem 4.3
and for every u ∈ Hm+1((0, T )×Ω) we have

‖u‖CHm([0,T ]×Ω) + ‖u|∂Ω‖Hm(0,T )

≤ C

(
‖Lvu‖Hm((0,T )×Ω) + ‖Bu|∂Ω‖Hm(0,T ) +

m∑
i=0

‖∂i
tu|t=0‖Hm−i(Ω)

)
,

where C > 0 depends only on T,K,K,R and ‖∂j
t v|t=0‖Hm−j(Ω) for 0 ≤ j ≤ m− 1.
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Proof. In the following proof, C > 0 will be a generic constant as in the statement
of the lemma independent of τ ∈ [0, T ]. As before, let f = Lvu and g = Bu|∂Ω. We
will use the following a priori estimate

‖w(τ)‖L2(Ω) +
1√
τ
‖w‖L2((0,τ)×Ω) + ‖w|∂Ω‖L2(0,τ)

≤ C(‖w|t=0‖L2(Ω) +
√
τ‖Lvw‖L2((0,τ)×Ω) + ‖Bw|∂Ω‖L2(0,τ)) (4.10)

which holds for all τ ∈ (0, T ] and for all w∈H1((0, T )×Ω), where C =C(K,K)> 0.
By a standard density argument, it is enough to prove the a priori estimate for
u ∈ D([0, T ]×Ω). Applying ∂j

t for j = 0, . . . ,m to the equality Lvu = f , we obtain
Lv∂

j
tu = fj := A(v)∂j

t (A(v)−1f)−A(v)[∂j
t , A(v)−1Lv]u and similarly B(∂j

t u)|∂Ω =
∂j

t g for j = 0, . . . ,m. Taking w = ∂j
t u in (4.10) we have

‖∂j
tu(τ)‖L2(Ω) +

1√
τ
‖∂j

tu‖L2((0,τ)×Ω) + ‖∂j
t (u|∂Ω)‖L2(0,τ)

≤ C(‖∂j
t u|t=0‖L2(Ω) +

√
τ‖fj‖L2((0,τ)×Ω) + ‖∂j

t g‖L2(0,τ)). (4.11)

We are going to estimate each term on the right-hand side of this inequality.
Expanding the commutator in fj for j ≥ 1 we have

A(v)[∂j
t , A(v)−1Lv]u = A(v)

∑
1≤l≤j

cij∂
l−1
t (dA(v)−1∂tv)∂

j−l
t (∂tu),

where dA is the first-order differential of A and cij are constants. Let us estimate
the L2-norm of each term in the above sum. If j = 1, then we immediately have the
estimate ‖(dA(v)−1∂tv)∂tu‖L2((0,τ)×Ω) ≤ C‖∂tu‖L2((0,τ)×Ω). Suppose that j ≥ 2.
Then Hölder’s inequality implies that

‖∂l−1
t (dA(v)−1∂tv)∂

j−l
t (∂tu)‖L2((0,τ)×Ω)

≤ ‖∂l−1
t (dA(v)−1∂tv)‖L2(j−1)/(l−1)((0,τ)×Ω)‖∂j−l

t (∂tu)‖L2(j−1)/(j−l)((0,τ)×Ω).

Since ∂l−1
t (dA(v)−1∂tv) is a nonlinear function of ∂tv with order l−1 the first factor

can be estimated using Theorem 3.11 by

‖∂l−1
t (dA(v)−1∂tv)‖L2(j−1)/(l−1)((0,τ)×Ω)

≤ C(K̃j−1,τ (∂tv))(‖∂tv‖Hj−1((0,τ)×Ω) + 1).

The term involving u can also be estimated using Theorem 3.10

‖∂j−l
t (∂tu)‖L2(j−1)/(j−l)((0,τ)×Ω) ≤ C(‖∂tu‖Hj−1((0,τ)×Ω) + K̃j−1,τ (∂tu)).

Theorem 3.12 and the Sobolev embedding Hk+1(Ω) ↪→ W k,∞(Ω) imply

K̃j−1,τ (∂tu) ≤ C

(
√
τ‖u‖H3((0,τ)×Ω) +

m−1∑
i=0

‖∂i
tu|t=0‖Hm−i(Ω)

)
.
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Furthermore, we have ‖A(v)∂j
t (A(v)−1f)‖L2((0,τ)×Ω) ≤ C‖f‖Hm((0,T )×Ω). Combin-

ing all our estimates and using τ ≤ T , we deduce that

‖fj‖L2((0,τ)×Ω) ≤ C

(
‖f‖Hm((0,T )×Ω) + ‖u‖Hm((0,τ)×Ω) +

m∑
i=0

‖∂i
tu|t=0‖Hm−i(Ω)

)
.

Therefore we obtain the a priori estimate

m∑
j=0

‖∂j
tu(τ)‖L2(Ω) + ‖u|∂Ω‖Hm(0,τ) ≤ C

(
‖f‖Hm((0,T )×Ω) + ‖g‖Hm(0,T )

+
m∑

i=0

‖∂i
tu|t=0‖Hm−i(Ω) + ‖u‖Hm((0,τ)×Ω)

)
.

(4.12)

For convenience we denote by N(u) the term on the right-hand side of (4.12).
The next step is to estimate the mixed derivatives. We proceed by an induction

argument to prove that

‖∂k
x∂

j
tu(τ)‖L2(Ω) ≤ N(u) (4.13)

for all k+ j ≤ m. The basis step k = 0 is given by (4.12). Before proceeding to the
induction step, we prove the estimate in the separate case where k = j = 1. The
PDE gives us

∂x∂tu(τ) = ∂t(A(v(τ))−1f(τ)) − ∂t(A(v(τ))−1)∂tu(τ) −A(v(τ))−1∂2
t u(τ).

The estimates on time-derivatives we have shown above and the Sobolev embedding
theorem imply

‖∂x∂tu(τ)‖L2(Ω) ≤ N(u). (4.14)

Now we go to the induction step. Suppose that (4.13) is true for k and j such
that k + j ≤ m. The PDE gives us

∂k+1
x ∂j

tu = ∂k
x∂

j
t (A(v)−1f) − ∂k

x∂
j
t (A(v)−1∂tu)

for k + 1 + j ≤ m and k ≥ 0. On one hand, by the Sobolev embedding theorem

‖∂k
x∂

j
t (A(v(τ))−1f(τ))‖L2(Ω) ≤ C‖f‖Hm((0,T )×Ω)

for all τ ∈ [0, T ]. On the other hand, Leibniz’s rule gives us

‖∂k
x∂

j
t (A(v(τ))−1∂tu(τ))‖L2(Ω)

≤
k∑

l=0

j∑
i=0

cli‖∂k−l
x ∂j−i

t A(v(τ))−1∂l
x∂

i+1
t u(τ)‖L2(Ω)

for some constants cli.
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Let us consider separate cases. If k − l + j − i ≤ m− 2 then for all τ ∈ [0, T ]

‖∂k−l
x ∂j−i

t A(v(τ))−1∂l
x∂

i+1
t u(τ)‖L2(Ω)

≤ ‖∂k−l
x ∂j−i

t A(v(τ))−1‖L∞(Ω)‖∂l
x∂

i+1
t u(τ)‖L2(Ω)

≤ C‖∂k−l
x ∂j−i

t A(v)−1‖H2((0,T )×Ω)‖∂l
x∂

i+1
t u(τ)‖L2(Ω) ≤ N(u),

where the last inequality is due to the induction hypothesis. If k− l+ j− i = m− 1
then k + j = m− 1 and i = l = 0 and therefore applying (4.14)

‖∂k−l
x ∂j−i

t A(v(τ))−1∂l
x∂

i+1
t u(τ)‖L2(Ω)

≤ ‖∂k−l
x ∂j−i

t A(v(τ))−1‖L2(Ω)‖∂tu(τ)‖L∞(Ω)

≤ C‖∂k−l
x ∂j−i

t A(v)−1‖H1((0,T );L2(Ω))(‖∂tu(τ)‖L2(Ω) + ‖∂x∂tu(τ)‖L2(Ω))

≤ N(u)

for all τ ∈ [0, T ]. Taking the sum completes the proof of the induction.
Combining the estimates for the time derivatives and the mixed derivatives gives∑

|β|≤m

‖∂βu(τ)‖L2(Ω) + ‖u|∂Ω‖Hm(0,T ) ≤ N(u). (4.15)

Squaring this inequality and applying Gronwall’s inequality give the estimate stated
in the lemma.

Proof of Theorem 4.5. It can be shown that there exists a sequence of more
regular functions (uk

0)k ⊂ Hm+1/2(Ω) such that uk
0 → u0 in Hm(Ω) and the data

(uk
0 , f, g) are still compatible up to order m − 1 for all k, see for instance [18].

Let uk be the solution of the corresponding IBVP with data (uk
0 , f, g) given by

Theorem 4.3. Then the difference w = uk − uj satisfies

Lvw = 0 in (0, T )× Ω, Bw|∂Ω = 0 in (0, T ), w|t=0 = uk
0 − uj

0 in Ω.

According to Remark 4.4, there exists a sequence wn ∈ Hm+1((0, T ) × Ω) such
that wn → w in CHm([0, T ] × Ω), Lvwn → 0 in Hm((0, T ) × Ω) and (wn)|∂Ω → 0
in Hm(0, T ). Thus, applying the a priori estimate in the previous lemma to wn and
passing to the limit n→ ∞, we have

‖uk − uj‖CHm([0,T ]×Ω) + ‖(uk)|∂Ω − (uj)|∂Ω‖Hm(0,T )

≤ C

m∑
i=0

‖∂i
tuk(0) − ∂i

tuj(0)‖Hm−i(Ω).

By recursion we have ∂i
tuk(0) = uk,i → ui in Hm−i(Ω), where uk,i are the

functions defined recursively in (4.7) with uk
0 as the initial term. Thus, (uk)k and

((uk)|∂Ω)k are Cauchy sequences in CHm([0, T ] × Ω) and Hm(0, T ), respectively,
and let u and ũ be their limits. Since uk → u in H1((0, T ) × Ω), the continuity of
the trace operator implies (uk)|∂Ω → u|∂Ω in L2(0, T ) and thus ũ = u|∂Ω. Passing
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to the limit k → ∞ in the IBVP satisfied by uk, we can see that u is the required
solution.

Remark 4.7. Given a positive integer k, using Remark 4.4, there exists a func-
tion uk

k ∈ Hm+1((0, T ) × Ω) such that ‖uk
k − uk‖CHm([0,T ]×Ω) <

1
k and ‖(uk

k)|∂Ω −
(uk)|∂Ω‖Hm(0,T ) <

1
k where uk is the solution corresponding to the initial data

uk
0 in the proof of the previous theorem. By the triangle inequality we have
uk

k → u in CHm([0, T ] × Ω) and (uk
k)|∂Ω → u|∂Ω in Hm(0, T ). Moreover, since

Lvu
k
k − Lvu

j
j = Fk − Fj where Fk → f in Hm((0, T )× Ω), see (4.6) for instance, it

follows that (Lvu
k
k)k is a Cauchy sequence in Hm((0, T ) × Ω). Since Lvu

k
k → Lvu

in L2((0, T )× Ω) we have Lvu
k
k → Lvu in Hm((0, T ) × Ω). This implies that the a

priori estimate in Lemma 4.6 holds for the solution u of the IBVP (4.8).

5. The Nonlinear System

The existence of smooth solutions requires and also implies compatibility conditions
between the initial data and the boundary data. These are additional constraints
for the initial and boundary data. The compatibility conditions are obtained by:
(a) formally differentiating the PDE with respect to time, (b) evaluate the time
derivatives at t = 0 and use the initial data to compute the spatial derivatives and
(c) differentiate the boundary conditions, use the information in (b) and evaluate
them along the boundary. The result in (c) will be the compatibility conditions.

Suppose that u and h are Cp-functions satisfying ∂tu + A(u)∂xu = f(u) in
(t, x) ∈ (0, T )×Ω and ḣ = H(h, q, u|∂Ω) in t ∈ (0, T ), respectively. Then by Leibniz’s
rule

∂i
tu = −

i−1∑
l=0

(
i− 1
l

)
∂l

t(A(u))∂x∂
i−1−l
t u+ ∂i−1

t f(u), i = 1, . . . , p.

The terms ∂l
t(A(u)) and ∂i−1

t f(u) can be expanded with the aid of Faá di Bruno’s
formula. If u is Ci up to the boundary then we must have

By∂
i
tu(0, y) = Di

tby(py(t), h(t))|t=0, y = 0, 1.

We can use Faá di Bruno’s formula to expand the right-hand side term and then
use the ODE satisfied by h. Thus, we are led to the following definitions. Given a
sufficiently smooth function u0 : Ω → R

n with values in U , recursively define the
function ui : Ω → Rn as

u1 = −A(u0)∂xu0 + f(u0),

ui = −
i−1∑
l=0

l∑
k=1

∑
l1+···+lk=l

(
i− 1
l

)
cl1,...,lk(dkA)(u0)[ul1 , . . . , ulk ]∂xui−1−l

−A(u0)∂xui−1 +
i−1∑
k=1

∑
l1+···+lk=i−1

cl1,...,lk(dkf)(u0)[ul1 , . . . , ulk ],

for i = 2, . . . , p,

(5.1)
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where dkF denotes the kth order differential of a smooth function F viewed as a
multilinear form. Here, cl1,...,lk are non-negative coefficients which depend only on i.

Given h0 ∈ H define η = (h0, q(0), u0(0), u0(1)),

h1 = H(η),

hi =
i−1∑
k=1

∑
l1+···+lk=i−1

cl1,...,lk(dkH)(η)[zl1 , . . . , zlk ], for i = 2, . . . , p− 1,
(5.2)

where zj = (hj , q
(j)(0), uj(0), uj(1))� and the uj are defined according to (5.1). For

y = 0, 1, define

Cy,0 = by(py(0), h0),

Cy,i =
i∑

k=1

∑
l1+···+lk=i

cl1,...,lk(dmby)(py(0), h0)[wl1,y, . . . , wlk,y],

where wk,y = (p(k)
y (0), hk)�. With these notations, we are now in position to state

the necessary compatibility conditions.

(CCm) Let m ≥ 1 be an integer and T > 0. The data

(u0, h0, p, q) ∈ Hm(0, 1) ×H×Hm(0, T ) ×Hm(0, T )

are said to be compatible up to order m − 1 if Byui(y) = Cy,i for all i =
0, . . . ,m− 1 and y = 0, 1.

We are going to state the regularity properties of the functions ui, i = 1, . . . ,m,
defined in (5.1) for a given u0 ∈ Hm(Ω).

Lemma 5.1. Let s ≥ 1 be an integer. Let u0 ∈ Hs(Ω) with range lying in a
compact subset K of U and u1, . . . , us be defined as in (5.1). Then ui ∈ Hs−i(Ω)
for all 1 ≤ i ≤ s. Moreover, there exist continuous functions Ci : [0,∞) → [0,∞)
such that

‖ui‖Hs−i(Ω) ≤ Ci(‖u0‖Hs(Ω)), 1 ≤ i ≤ s. (5.3)

Proof. We follow the proof in [2, pp. 322–323] and proceed by strong induction on
i. In this proof, all Sobolev spaces are defined in Ω = (0, 1). By redefining A and f
in (1.1) outside a neighborhood of K, one can assume without loss of generality that
A and f are C∞ in Rn. From the assumption that f(0) = 0, we have f(u0) ∈ Hs

by Proposition 3.3. We rewrite

A(u0)∂xu0 = (A(u0) −A(0))∂xu0 +A(0)∂xu0.

Propostion 3.3 can now be applied so that A(u0)−A(0) ∈ Hs, since Ω is bounded.
Thus, (A(u0) −A(0))∂xu0 ∈ Hs−1 by Proposition 3.1. Moreover we have

‖A(u0)∂xu0‖Hs−1 ≤ C‖A(u0) −A(0)‖Hs‖∂xu0‖Hs−1 + |A(0)|‖∂xu0‖Hs−1
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≤ C(‖u0‖L∞)‖u0‖Hs‖∂xu0‖Hs−1 + |A(0)|‖∂xu0‖Hs−1

≤ C(‖u0‖Hs)

by the Sobolev embedding Hs ↪→ L∞. The Hs−1-norm of f(u0) can be estimated
similarly. Thus, u1 ∈ Hs−1 and (3.2) holds for i = 1.

Suppose that for 1 ≤ i ≤ s we have uk ∈ Hs−k and ‖uk‖Hs−k ≤ Ck(‖u0‖Hs)
holds for k = 0, 1, . . . , i − 1. We show that ui ∈ Hs−i and (5.3) holds. A similar
argument as above yields A(u0)∂xui−1 ∈ Hs−i. The triple sum in ui contains terms
of the form

�(u0)ul1,j1 · · ·ulk,jk
∂xui−1−l,σ, (5.4)

where l1 + · · · + lk = l for k = 1, . . . , l, with l = 1, . . . , i − 1 and for some � ∈
C∞. Here ul1,j1 denotes the j1th component of the vector ul1 . By the induction
hypothesis ul1,j1 ∈ Hs−l1 , . . . , ulk,jk

∈ Hs−lk , ∂xui−1−l,σ ∈ Hs−(i−1−l) ⊂ Hs−i+l

and �(u0) ∈ Hs. Since

min(s, s− l1, . . . , s− lk, s− i+ l) ≥ min(s− l, s− i+ 1) = s− i+ 1

and since ks ≥ s > 1/2

s+ (s− l1) + · · · + (s− lk) + (s− i+ l) = (k + 2)s− i > s− i+ 1/2

it follows from the remark succeeding Proposition 3.1 that (5.4) lies in Hs−i.
Similarly, the double sum in ui contains terms of the from

ϑ(u0)ul1,j1 · · ·ulk,jk
, (5.5)

where l1 + · · · + lk = i− 1 for some ϑ ∈ C ∞. Because

min(s, s− l1, . . . , s− lk) ≥ s− (i− 1) = s− i+ 1

and

s+ (s− l1) + · · · + (s− lk) = (k + 1)s− (i− 1) > s− i+ 1/2

the terms of the form (5.5) belong to Hs−i. By collecting all our observations, we
obtain that ui ∈ Hs−i. The estimate ‖ui‖Hs−i(Ω) ≤ Ci(‖u0‖Hs(Ω)) can be shown
from the definition of ui, the induction hypothesis, and (3.2).

Theorem 5.2 (Local Existence). Let m≥ 3, T0> 0 and (u0, h0, p, q)∈Hm(Ω)×
H × Hm(0, T0) × Hm(0, T0). Assume that the range of u0 lies in a compact and
convex set K0 ⊂ K1 ⊂ U , h0 ∈ G0 ⊂ G1 ⊂ H where K1 and G1 are also compact
and convex sets containing neighborhoods of K0 and G0, respectively, and moreover
‖u0‖Hm(Ω) ≤ M . Suppose that (FS), (D), (UKL) and (CCm) hold. Then there
exists T ∈ (0, T0) depending only on (K1,G1,M) such that the nonlinear system
(1.1) has a unique solution (u, h) ∈ CHm([0, T ] × Ω) × Hm(0, T ). Furthermore,
u|∂Ω ∈ Hm(0, T ) and consequently h ∈ Hm+1(0, T ).
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Proof. The proof is a Picard iteration scheme using the linear well-posedness the-
ory of Sec. 4.

Step 1. Existence of initial functions for the iteration scheme. In this step, we find
v ∈ CHm([0, T0] × Ω) such that ∂j

t v(0) = uj for all 0 ≤ j ≤ m − 1. The following
construction is inspired by [8, 22]. Let g ∈ Hm(0, T0) be such that ∂j

t g(0) = hj for
all 0 ≤ j ≤ m− 1 where hj are the constants defined from (5.2) and ‖g‖Hm(0,T0) ≤
C
∑m−1

j=0 |hj |. This is possible by the trace theorem. Consider the IBVP

vt +A(u0)vx = f(u0) +G, Bv|∂Ω = b(p, g), v(0) = u0, (5.6)

for some function G ∈ Hm((0, T0) × Ω) to be specified below.
The existence result Theorem 4.5 for linear systems shows that the system (5.6)

has a unique solution v ∈ CHm([0, T0]×Ω) with v|∂Ω ∈ Hm(0, T0) provided that the
data (u0, f(u0) +G, b(p, g)) are compatible up to order m− 1 for the linear system
(5.6). To ensure this, let vj for 0 ≤ j ≤ m−1 be ∂j

t v|t=0 that is obtained from (5.6)
by formal differentiation. Similarly, let ṽj be ∂j

t ṽ|t=0 that is obtained from

ṽt +A(u0)ṽx = f(u0), ṽ(0) = u0, (5.7)

by differentiating formally. The equation vj = uj holds if

∂j
tG(0) = uj − ṽj ∈ Hm−j(Ω) ⊂ Hm−1−j+1/2(Ω), 0 ≤ j ≤ m− 1. (5.8)

By the trace theorem there exists G ∈ Hm((0, T0) × Ω) such that (5.8) holds and

‖G‖Hm((0,T0)×Ω) ≤ C(‖u0‖Hm(Ω)) (5.9)

for some continuous function C : [0,∞) → [0,∞). This estimate follows from the
trace theorem and a result similar to Lemma 5.1 applied to the PDEs (5.6) and
(5.7). Since Byvj(0, y) = Byuj(0, y) = Cy,j for y = 0, 1 and 0 ≤ j ≤ m − 1, due
to the compatibility condition for the nonlinear system, it follows that the data
(u0, f(u0)+G, b(p, g)) are compatible up to order m− 1 for the linear system (5.6).

Step 2. An invariant set. Let R,K, T > 0. Define V m
T,K,R to be a subset of

CHm([0, T ]× Ω) ×Hm(0, T ) such that (v, g) ∈ V m
T,K,R if and only if:

(V1) Compatibility: ∂j
t v|t=0 = uj for all 0 ≤ j ≤ m − 1 and ∂j

t g(0) = hj for all
0 ≤ j ≤ m− 1 where uj and hj are defined by (5.1) and (5.2).

(V2) Range condition: ran(v, g) ⊂ K1 × G1.
(V3) W 1,∞-bound : ‖v‖W 1,∞((0,T )×Ω) + ‖g‖W 1,∞(0,T ) ≤ K.
(V4) Hm-bound : ‖v‖Hm((0,T )×Ω) + ‖v|∂Ω‖Hm(0,T ) + ‖g‖Hm(0,T ) ≤ R.

Consider the function (v, g) ∈ CHm([0, T0]×Ω)×Hm(0, T0) constructed in the
previous step. By construction of g, we already know that ‖g‖Hm(0,T0) ≤ C(G1,M).
According to Remark 4.7

‖v‖CHm([0,T0]×Ω) + ‖v|∂Ω‖Hm(0,T0)

≤ C

(
‖f(u0) +G‖Hm((0,T0)×Ω) + ‖b(p, g)‖Hm(0,T0) +

m∑
i=0

‖∂i
tv|t=0‖Hm−i(Ω)

)
,
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where C depends on the range of u0, which lies in K0, and on ‖u0‖Hm((0,T0)×Ω) ≤
C(T0,M). From this, it can be seen that

‖v‖Hm((0,T0)×Ω) + ‖v|∂Ω‖Hm(0,T0) ≤ C(K1,G1,M) =: R1

where we removed the explicit dependence of C on T0 since it is fixed from the
beginning. By Theorem 3.12 and the PDE (5.6)

‖v‖W 1,∞((0,T0)×Ω) ≤ ‖u0‖L∞(Ω) + ‖f(u0) +G(0, ·) −A(u0)∂xu0‖L∞(Ω) +
√
T0R1.

Applying the Sobolev embedding theorem and (5.9), we have ‖v‖W 1,∞((0,T0)×Ω) ≤
C(R1,M). One can do the same procedure for the W 1,∞-norm of g. Hence,

‖v‖W 1,∞((0,T0)×Ω) + ‖g‖W 1,∞(0,T0) ≤ C(K1,G1,M) =: K1.

Finally, for the range condition, Theorem 3.12 and v|t=0 = u0 imply that ‖v −
u0‖L∞((0,T )×Ω) ≤ TR1. Therefore, there exists T1 = T1(R1) > 0 such that the
range of v lies in K1 for all T ∈ (0, T1]. Using the same argument, it can be shown
that the range of g also lies in G1 for all T ∈ (0, T1] by reducing T1 if necessary.
Hence, V m

T,K,R is nonempty for all K ≥ K1, R ≥ R1 and for T ∈ (0, T1] for some
T1 = T1(K1,G1,M) > 0.

We will show that there exist K > K1, R = R(K) > R1 and T = T (R) > 0
such that given (v, g) ∈ V m

T,K,R the solution of the linear system


ut +A(v)ux = f(v), t > 0, 0 < x < 1,

Bu|∂Ω = b(p, h), t > 0,

ḣ = H(g, q, v|∂Ω), t > 0,

u|t=0 = u0, 0 < x < 1,

h(0) = h0,

(5.10)

satisfies (u, h) ∈ V m
T,K,R. Let us verify the regularity of (u, h). Note that ∂j

t v ∈
CHm−j([0, T ] × Ω) and so, ∂j

t v ∈ Cm−j−1([0, T ] × Ω) ⊂ C([0, T ] × [0, 1]) for all
0 ≤ j ≤ m− 1. Therefore

∂j
t (v|∂Ω)|t=0 = (∂j

t v)|{t=0}×∂Ω = (∂j
t v|t=0)|∂Ω = uj|∂Ω, 0 ≤ j ≤ m− 1.

Together with (V1), it can be shown that the compatibility conditions are satisfied
by (u, h). Since

h(t) = h0 +
∫ t

0

H(g(s), q(s), v|∂Ω(s))ds,

we have h ∈ Hm+1(0, T ) and therefore u ∈ CHm([0, T ]×Ω) with u|∂Ω ∈ Hm(0, T )
according to Theorem 4.5. Furthermore, u and h satisfy (V1) since v and g satisfy
the same property. Thus, by Theorem 3.12

‖u‖W 1,∞([0,T ]×Ω) + ‖h‖W 1,∞(0,T ) ≤ C(K1,M) +R
√
T .

Take K = 2 max(K1, C(M,K1)). Letting T = T (R,K1,G1,M) > 0 small enough,
condition (V3) is satisfied by (u, h).
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A similar argument using the same Theorem 3.12 implies that (u, h) satisfies
(V2) by reducing T if necessary. It remains to prove that (u, h) also satisfies (V4).
Indeed, as in [13], one can prove the following additional a priori estimate

‖u‖Hm([0,T ]×Ω) + ‖u|∂Ω‖Hm(0,T ) + ‖h‖Hm(0,T ) ≤ R (5.11)

for some R = R(K) > R1. The proof of this estimate is straightforward but lengthy.
For this reason, we postpone its proof. In summary, V m

T,K,R is invariant under the
map (v, g) �→ (u, h) where (u, h) solves (5.10) for some T,K,R > 0.

Step 3. Existence and higher regularity. Let V = V m
T,K,R where the parameters

T,K, and R are those given in the previous step. Let (u0, h0) ∈ V be given and for
each non-negative integer k, define (uk+1, hk+1) recursively to be the solution of



uk+1
t +A(uk)uk+1

x = f(uk), t > 0, 0 < x < 1,
Buk+1 = b(p, hk+1), t > 0,

ḣk+1 = H(hk, q, uk
|∂Ω), t > 0,

uk+1
|t=0 = u0, 0 < x < 1,

hk+1(0) = h0.

(5.12)

Note that the boundary condition in (5.12) depends on hk+1, which is possible
because hk+1 does not depend on uk+1 and at the same time couples the PDE
to the ODE. Then according to Step 2, (uk+1, hk+1) ∈ V for all k = 1, 2, . . . .
Thus, (uk, (uk)|∂Ω, h

k) is bounded in Hm((0, T ) × Ω) ×Hm(0, T ) ×Hm(0, T ) and
one can extract a weakly convergent subsequence. By compact embedding and by
extracting an appropriate subsequence, (uk, (uk)|∂Ω, h

k) converges in L2((0, T ) ×
Ω) × L2(0, T ) × L2(0, T ) and let (u, ũ, h) be the limit. The limit is necessarily in
Hm((0, T )× Ω) ×Hm(0, T )×Hm(0, T ).

Since (uk, (uk)|∂Ω, h
k) is bounded in Hm((0, T )×Ω)×Hm(0, T )×Hm(0, T ), by

interpolation theory for Sobolev spaces, (uk, (uk)|∂Ω, h
k) → (u, ũ, h) in Hs((0, T )×

Ω) × Hs(0, T ) × Hs(0, T ) for all s ∈ [0,m). The continuity of the trace operator
implies that (uk)|∂Ω → u|∂Ω in L2(0, T ) and therefore, u|∂Ω = ũ by uniqueness of
limits in L2(0, T ). By passing to the L2-limit in the system satisfied by (uk, hk), we
can see that the pair (u, h) satisfies the nonlinear system (1.1). Note that ∂j

t u|t=0 =
uj ∈ Hm−j(Ω) for 0 ≤ j ≤ m − 1 from Lemma 5.1. Finally, Theorem 4.5 implies
the additional regularity u ∈ CHm([0, T ]× Ω).

Step 4. Uniqueness. Let (u1, h1) and (u2, h2) be two solutions of the system (1.1)
on the time interval [0, T ]. Introducing the variables w = u1 − u2 and η = h1 − h2,
we have the system



Lu1w = f(u1) − f(u2) − (A(u1) −A(u2))∂xu2, 0 < t < T, 0 < x < 1
Bw|∂Ω = b(p, h1) − b(p, h2), 0 < t < T,

η̇ = H(h1, q, u1|∂Ω) −H(h2, q, u2|∂Ω), 0 < t < T,

w|t=0 = 0, 0 < x < 1,
η|t=0 = 0.
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Let K×G ⊂ U ×H be a compact set both containing the ranges of (u1, h1) and
(u2, h2), and let K > 0 be such that the W 1,∞-norms of (u1, h1) and (u2, h2) are
bounded above by K. According to Theorem 2.4, there exists C = C(K,K) > 0
such that for all 0 < τ ≤ T

‖w‖2
CL2([0,τ ]×Ω) + ‖w|∂Ω‖2

L2(0,τ)

≤ Cτ‖f(u1) − f(u2)‖2
L2((0,τ)×Ω) + Cτ‖(A(u1) −A(u2))∂xu2‖2

L2((0,τ)×Ω)

+C‖b(p, h2) − b(p, h1)‖2
L2(0,τ). (5.13)

By the mean value theorem

‖b(p, h1) − b(p, h2)‖2
L2(0,τ) ≤ C‖η‖2

L2(0,τ). (5.14)

A similar argument proves that

‖f(u1) − f(u2)‖2
L2((0,τ)×Ω) + ‖(A(u1) −A(u2))∂xu2‖2

L2((0,τ)×Ω)

≤ C‖w‖2
L2((0,τ)×Ω) ≤ Cτ‖w‖2

CL2([0,τ ]×Ω). (5.15)

The differential equation for η gives us the following pointwise estimate

|η(t)|2 ≤ Cτ(‖η‖2
L2(0,τ) + ‖w|∂Ω‖2

L2(0,τ)), t ∈ [0, τ ].

Integrating the last inequality and choosing τ = τ(K,K) > 0 small enough

‖η‖2
L2(0,τ) ≤

Cτ2

1 − Cτ2
‖w|∂Ω‖2

L2(0,τ). (5.16)

From (5.13) and (5.14) and reducing τ > 0 if necessary, it can be seen that w = 0
on [0, τ ] and from (5.16) η = 0 as well on [0, τ ]. Repeating the process on intervals
of the form [kτ, (k + 1)τ ] for positive integers k shows that w = 0 and η = 0 on
[0, T ] and therefore the uniqueness of solutions.

Now, we prove the estimate (5.11) used in the third step of the proof of the
previous theorem. The proof of this estimate is similar to the proof of Lemma 4.6.
However, the difference is that the source terms appearing on the PDE and the
boundary condition now depend on the frozen coefficients v and g. From the proof
of Lemma 4.6, we already have the estimate

1√
T
‖u‖L2(Ω;Hm(0,T )) + ‖u|∂Ω‖Hm(0,T )

≤ C


 m∑

j=1

‖∂j
tu|t=0‖2

L2(Ω) +
√
T

m∑
j=1

‖fj‖L2((0,T )×Ω) + ‖b(p, h)‖Hm(0,T )




(5.17)

for all T ∈ (0, T0], where fj = A(v)∂j
t (A(v)−1f(v)) − A(v)[∂j

t , A(v)−1Lv]u.
For the rest of the proof C will denote a positive constant depending only on
T0,K,K1,G1,M , ‖p‖Hm(0,T0), ‖q‖Hm(0,T0), and is independent on R and T . The
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commutator has been estimated uniformly in T in the proof of Lemma 4.6. Let us
consider the first term of fj. Note that it is a nonlinear function of order at most
m and thus, by Theorem 3.11 we have

‖A(v)∂j
t (A(v)−1f(v))‖L2((0,T )×Ω) ≤ C(‖v‖Hm((0,T )×Ω) + 1).

Since (u, h) ∈ V m
T,K,R we have ∂j

t u|t=0 = uj for all 0 ≤ j ≤ m − 1. Using this in
(5.17) and recalling Lemma 5.1, we have

1√
T
‖u‖L2(Ω;Hm(0,T )) + ‖u|∂Ω‖Hm(0,T )

≤ C(1 +
√
T ‖v‖Hm((0,T )×Ω) +

√
T (1 +R)‖u‖Hm((0,T )×Ω)

+ ‖b(p, h)‖Hm(0,T )), (5.18)

where R is a positive constant to be chosen below.
The next step is to estimate the boundary terms on the right-hand side of (5.17).

By Theorem 3.11 once more, we obtain

‖b(p, h)‖Hm(0,T ) ≤ C(Km,T (p, h))(‖p‖Hm(0,T ) + ‖h‖Hm(0,T ) + 1).

The fact that (u, h) ∈ V implies that h(j)(0) = hj for all 0 ≤ j ≤ m − 1. The
differential equation ḣ = H(q, g, v|∂Ω) for h gives us the estimate

‖h‖Hm(0,T ) ≤ C(Km−1,T (q, g, v|∂Ω))(‖q‖Hm−1(0,T ) + ‖g‖Hm−1(0,T ) + 1).

With these together with Theorem 3.13 we have

‖b(p, h)‖Hm(0,T ) ≤ C(T ‖g‖Hm(0,T ) + 1). (5.19)

Using (5.19) in (5.18), we have

1√
T
‖u‖L2(Ω;Hm(0,T )) + ‖u|∂Ω‖Hm(0,T )

≤ C(1 +
√
T‖v‖Hm((0,T )×Ω) +

√
T (1 +R)‖u‖Hm((0,T )×Ω) + T ‖g‖Hm(0,T )).

(5.20)

It remains to estimate the mixed derivatives. As usual we proceed by an induc-
tion argument. Suppose that ‖∂l

x∂
j
t u‖L2((0,T )×Ω) ≤ N(u) for all l = 0, 1 . . . , k − 1

and j such that l + j ≤ m, where N(u) is the right-hand side of (5.20). Let k and
j be integers such that k + j ≤ m. The PDE implies that

∂k
x∂

j
t u = ∂k−1

x ∂j
t (A(v)−1f(v)) − ∂k−1

x ∂j
t (A(v)−1∂tu).

The first term on the right-hand side is a nonlinear function of v of order at
most m− 1, and therefore using Theorem 3.11, Theorem 3.13 and (V1) we have

‖∂k−1
x ∂j

t (A(v)−1f(v))‖L2((0,T )×Ω) ≤ C(T ‖v‖Hm((0,T )×Ω) + 1).



February 2, 2015 9:13 WSPC/S0219-8916 JHDE 1450022

Hyperbolic PDE–ODE systems on a bounded interval 741

We can expand the second term using Leibniz’s rule and estimate each term in the
sum. Let 0 ≤ l ≤ k − 1 and 0 ≤ j ≤ i. If l + i ≤ m− 3 then Theorem 3.11 implies

‖∂k−1−l
x ∂j−i

t (A(v)−1)∂l
x∂

i+1
t u‖L2((0,T )×Ω)

≤ ‖∂k−1−l
x ∂j−i

t (A(v)−1)‖L2((0,T )×Ω)‖∂l
x∂

i+1
t u‖L∞((0,T )×Ω)

≤ C(1 + ‖v‖Hm−1((0,T )×Ω))‖u‖W m−2((0,T )×Ω).

According to Theorem 3.13 we have

‖u‖W m−2((0,T )×Ω) ≤
m−2∑
k=0

‖∂k
t u|t=0‖W m−2−k(Ω) + C

√
T‖u‖Hm((0,T )×Ω)

≤ C

m−2∑
k=0

‖∂k
t u|t=0‖Hm−k−1(Ω) + C

√
T‖u‖Hm((0,T )×Ω).

Thus, ‖∂k−1−l
x ∂j−i

t (A(v)−1)∂l
x∂

i+1
t u‖L2((0,T )×Ω) ≤ N(u).

Suppose that l + i = m − 2,m − 1 then k − 1 − l + j − i = 1, 0. Applying a
standard L∞ − L2 estimate yields

‖∂k−1−l
x ∂j−i

t (A(v)−1)∂l
x∂

i+1
t u‖L2((0,T )×Ω) ≤ C‖∂l

x∂
i+1
t u‖L2((0,T )×Ω) ≤ N(u),

where the last inequality is due to the induction hypothesis. This completes the
proof of the induction step. Therefore we have(

1√
T

− C
√
T (1 +R)

)
‖u‖Hm((0,T )×Ω) + ‖u|∂Ω‖Hm(0,T )

≤ C(1 +
√
T‖v‖Hm((0,T )×Ω) +

√
T‖g‖Hm(0,T )) ≤ C(1 +

√
TR).

Choosing R = max(5C,R1) where C is the constant in the last inequality and
choosing T = T (R) > 0 small enough so that 1√

T
−C√T (1+R) > 1

2 and
√
TR < 1

finally proves (5.11).
To close this section, we prove the following standard blow-up criterion for first

order quasilinear PDEs. The idea of the proof is the following: Boundedness inW 1,∞

of the local solution implies boundedness in Hm, which can be further improved to
show boundedness in CHm. If this is known, then a standard argument shows that
the solution can be extended.

Theorem 5.3 (Blow-Up Criterion in Finite Time). Let (u, h) ∈ CHm([0, T ]×
Ω)×Hm(0, T ) be a solution of (1.1) having a trace u|∂Ω ∈ Hm(0, T ), where m ≥ 3
is an integer, and T ∗ be the maximal time of existence. If T ∗ < ∞ then the range
of (u, h) on [0, T ]× [0, 1] leaves every compact subset of U ×H as T → T ∗, i.e. for
every compact set K× G in U ×H there exists ε > 0 and (t, x) ∈ (0, T ∗ − ε]× [0, 1]
such that (u(t, x), h(t)) /∈ K × G, or

lim sup
t↑T∗

‖∂xu(t)‖L∞[0,1] = ∞.
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Proof. Suppose that the range of (u, h) on [0, T ] × Ω lies in a compact subset
K0 ×G0 of U ×H, ‖u‖W 1,∞([0,T ]×[0,1]) ≤ K0 for some constant K0 > 0 and (u, h) ∈
CHm([0, T ]×Ω)×Hm(0, T ) for all T ∈ (0, T ∗). We show that there exists a τ > 0
such that the solution can be extended to a solution (u, h) ∈ CHm([0, T ∗ + τ ] ×
Ω) ×Hm(0, T ∗ + τ) satisfying u|∂Ω ∈ Hm(0, T ∗ + τ).

Step 1. Uniform boundedness in CHm ×Hm. The following estimates are again in
the same spirit as before, but now, the frozen coefficients are the solutions of the
PDE. For completeness, we include their proof. We will use the following a priori
estimate, see [2, p. 280] for example, for all u ∈ H1((0, T ) × Ω) and for all γ ≥ γ0

√
γ‖u‖L2((0,T )×Ω) + ‖u|∂Ω‖L2(0,T )

≤ C

(
1√
γ
‖Luu‖L2((0,T )×Ω) + ‖Bu|∂Ω‖L2(0,T ) + ‖u|t=0‖L2(Ω)

)

for some constants C > 0 and γ0 ≥ 1 depending only on (K0,G0,K0). Applying this
estimate to ∂j

t u, for j = 0, 1, . . . , j where k = 0, 1, . . . ,m we have
√
γ‖u‖L2(Ω;Hk(0,T )) + ‖u|∂Ω‖Hk(0,T )

≤ C


 1√

γ

k∑
j=0

‖fj‖L2((0,T )×Ω) + ‖b(p, h)‖Hk(0,T ) + 1


,

where fj = A(u)∂j
t (A(u)−1f(u)) − A(u)[∂j

t , A(u)−1Lu]u.
For j ≥ 1, fj is a nonlinear function of ∂tu of order at most j − 1. Thus, using

Theorem 3.11 we have

‖fj‖L2((0,T )×Ω) ≤ C(‖∂tu‖Hj−1((0,T )×Ω) + 1) ≤ C(‖u‖Hj((0,T )×Ω) + 1).

The case of f0 = f(u) can be done merely by the mean-value theorem. On the other
hand, by a similar argument we also have ‖b(p, h)‖Hk(0,T ) ≤ C(‖h‖Hk(0,T ) + 1).
The differential equation for h gives us ‖h‖L2(0,T ) ≤ C and ‖h‖Hk(0,T ) ≤
C(‖h‖Hk−1(0,T ) + ‖u|∂Ω‖Hk−1(0,T ) + 1) for 1 ≤ k ≤ m. Combining all of these
in a recursive manner, we obtain

√
γ‖u‖L2(Ω;Hm(0,T )) + ‖u|∂Ω‖Hm(0,T ) + ‖h‖Hm(0,T )

≤ C

(
1√
γ
‖u‖Hm((0,T )×Ω) + 1

)
.

From the PDE, we note that ∂xu = A(u)−1f(u)−A(u)−1∂tu. Therefore, ∂j
x∂

k
t u

can be written in terms of derivatives of u with respect to t only, and is a nonlinear
function of u of order at most k + j. Fixing x ∈ Ω, we apply Theorem 3.11 to the
function u(·, x) ∈ Hm(0, T ) to obtain

‖∂j
x∂

k
t u(·, x)‖L2(0,T ) ≤ C(‖u(·, x)‖Hm(0,T ) + 1).

Integrating over the bounded domain Ω yields

‖∂j
x∂

k
t u‖L2((0,T )×Ω) ≤ C(‖u‖L2(Ω;Hm(0,T )) + 1).
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Combining this with our estimates above and choosing γ large enough we have

‖u‖Hm((0,T )×Ω) + ‖h‖Hm(0,T ) ≤ C, for all 0 < T < T ∗, (5.21)

for some constant C > 0 independent of T ∈ (0, T ∗).
Let ϕ ∈ D(R) be a cut-off function such that ϕ(t) = 0 if t ≤ T ∗/4 and ϕ(t) = 1

if t ≥ T ∗/2. Multiplying the system (1.1) by this cut-off function, we have the new
homogeneous system for w = ϕu and g = ϕh



wt +A(u)wx = ϕf(u) + ϕ̇u, 0 < t < T, 0 < x < 1,

Bw|∂Ω = ϕb(p, h), 0 < t < T,

ġ = ϕH(h, q, u|∂Ω) + ϕ̇h, 0 < t < T,

w|t=0 = 0, 0 < x < 1,

g|t=0 = 0.

(5.22)

Applying the energy estimates for the IBVP with homogeneous data (4.2), together
with the previous result (5.21) shows that there exists an M > 0 independent of T
such that

‖u‖CHm([0,T ]×Ω) + ‖h‖Hm(0,T ) ≤M, for all 0 < T < T ∗.

Step 2. Extension. According to the previous step there exist an M > 0 and a
sequence (tn)n ⊂ (0, T ) such that tn → T ∗ and ‖u(tn)‖Hm + |h(tn)| ≤M for all n.
Consider the IBVP 



vt +A(v)vx = f(v), t > 0, 0 < x < 1,

Bv|∂Ω = b(p, g), t > 0,

ġ = H(g, q, v|∂Ω), t > 0,

v|t=0 = u(tn), 0 < x < 1,

g|t=0 = h(tn).

(5.23)

The local existence result Theorem 5.2 implies that there exists τ > 0, depending
only onM and in some neighborhoods of K0 and G0, but independent of n, such that
(5.23) has a unique solution on [0, τ ]. Choose n large enough so that tn + τ > T ∗.
Then the pair of functions (w, η) defined by

(w, η)(t) =

{
(u, h)(t), 0 ≤ t ≤ tn,

(v, g)(t− tn), tn ≤ t ≤ tn + τ,

lies in CHm([0, tn + τ ]×Ω)×Hm(0, tn + τ) since (u, h) and (v, g) must coincide in
[tn, (tn + T ∗)/2] by uniqueness. Thus, (w, η) satisfies (1.1). Therefore, the solution
(u, h) can be extended up to the time tn + τ > T ∗. This completes the proof of the
theorem.

6. Examples

In this section we cite some examples that fit in the general system (1.1).
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6.1. Flow in an elastic tube

Consider the following system modeling the velocity v of an incompressible fluid
contained in an elastic tube of length �, cross-section a and is connected to a tank
at each end having cross-section aT and level heights h0, h
, respectively,


at(t, x) + v(t, x)ax(t, x) + a(t, x)vx(t, x) = 0, 0 < t < T, 0 < x < �,

vt(t, x) +
κ2ax(t, x)√
a(t, x)

+ v(t, x)vx(t, x) = −βv(t, x), 0 < t < T, 0 < x < �,

aT ḣ0(t) = −a(t, 0)v(t, 0), 0 < t < T,

aT ḣ
(t) = a(t, �)v(t, �), 0 < t < T,

a(t, 0) = a0(1 + p0(t) + bh0(t))2, 0 < t < T,

a(t, �) = a0(1 + p
(t) + bh
(t))2, 0 < t < T,

(6.1)

see [5, 14, 17]. Here, a0 is the rest cross-sectional area of the tube, b, κ > 0 are
parameters incorporating the material properties of the tube and β ≥ 0 is a param-
eter modeling linear tube friction. The tanks are subjected from above by exter-
nal forcing pressures represented by p0 and p
. Letting u = (u1, u2) := (a, v),
h = (h1, h2) := (h0, h
), and p = (p1, p2) := (p0, p
) we can transform (6.1) into
(1.1) with

A(u) =

(
u2 u1

κ2u
− 1

2
1 u2

)
, f(u) =

(
0

−βu
)
, B0 = B
 = (1 0),

b(p, h) =
(
a0(1 + p1 + bh1)2

a0(1 + p2 + bh2)2

)
, H(h, u, w) =



− 1
aT
u1u2

1
aT
w1w2


.

The eigenvalues of the flux matrix A(u) are given by λ(u) = u2 − κu
1
4
1 and

µ(u) = u2 + κu
1
4
1 with corresponding eigenvectors

eλ(u) =

(
u1

−κu 1
4
1

)
, eµ(u) =

(
u1

κu
1
4
1

)
,

respectively. Let Ũ = {(u1, u2) ∈ R2 : u1 > 0, |u2| < κu
1
4
1 }. It follows that A(w)

has one negative and one positive eigenvalue for every w ∈ Ũ . Thus, Es(A(w)) =
span{eλ(w)} and Eu(A(w)) = span{eµ(w)}. The estimate ‖eµ(w)‖ ≤ C‖B0eµ(w)‖
is equivalent to

u1 ≤ κ−4(C2 − 1)2u4
1. (6.2)

Let Ũε = {w ∈ Ũ : dist(w, ∂Ũ) > ε} for ε > 0. By continuity it can be seen
from (6.2) that there exists Cε > 1 such that ‖eµ(w)‖ ≤ Cε‖B0eµ(w)‖ for all
w ∈ Ũε. By positive homogeneity of the norm it follows that ‖V ‖ ≤ Cε‖B0V ‖ for all
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V ∈ Eu(A(w)) and for all w ∈ Ũε. Similarly, ‖V ‖ ≤ Cε‖B
V ‖ for all V ∈ Es(A(w))
whenever w ∈ Ũε. Therefore, the uniform Kreiss–Lopatinskĭı condition holds in Ũε.

It remains to verify Friedrichs symmetrizability. It can be easily seen that the
matrix

S(w) =

(
κ2u

− 3
2

1 0
0 1

)

is a Friedrichs symmetrizer of the system. For R > 0 define U = {w ∈ Ũε : ‖w‖ <
R}. It is clear that there exists α = α(ε, R) > 0 such that S(w) ≥ αI2 for all
w ∈ U . Therefore, if the initial data for the system (6.1) and the boundary data p
satisfy the conditions of Theorem 5.2 then (6.1) has a unique solution (a, v, h0, h
) ∈
CHm([0, T ]× [0, �])2×Hm+1(0, T )2 for some T > 0. Moreover, if the maximal time
T ∗> 0 of existence is finite then either the range of (a, v, h0, h
) leaves every compact
set of U × R2 or

lim sup
t↑T∗

(‖∂xa(t)‖L∞[0,
] + ‖∂xv(t)‖L∞[0,
]) = ∞.

6.2. Multiscale blood flow model

Consider the following system [9, 20]

at(t, x) + qx(t, x) = 0,

qt(t, x) +
(
q(t, x)2

a(t, x)

)
x

+
1
ρ
a(t, x)px(t, x) = −8πρν

q(t, x)
a(t, x)

(6.3)

with 0 < t < T and 0 < x < �. This models the flow rate q of the blood in a vessel
of cross-section a and length �. The pressure p is given by the constitutive law

p =
√
πhE

a0(1 − σ2)
(
√
a−√

a0). (6.4)

All the parameters are positive and they represent various physical quantities depict-
ing the properties of the blood and the vessel. Here, a0, E, h, σ denote the rest
cross-section, Young’s modulus, thickness and Poisson coefficient of the vessel wall,
respectively, whereas ρ is the blood density and ν is the kinematic blood viscosity.

To have a more realistic description of the cardiovascular system, lumped param-
eter models based on ordinary differential equations were introduced. These ODEs
can be derived by linearizing and integrating the hyperbolic models with respect to
space. Following [9] we have

ẏ0(t) = A0y0(t) + rH0(t, y0(t)) + s0(t, y0(t)), (6.5)

ẏ
(t) = A
y
(t) + rH
(t, y
(t)) + s
(t, y
(t)), (6.6)

where y0(t), y
(t) ∈ Rm, A0, A
 are m ×m matrices and rH0, rH
, s0, s
 are source
terms. The coupling of the hyperbolic PDE (6.3) and the ODEs (6.5) and (6.6) is
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done by imposing the pressure at the boundaries to be equal to a specific entry of
the ODE, i.e.

p(t, 0) = y0i(t), p(t, �) = y
j(t) (6.7)

for some 1 ≤ i, j ≤ m. Writing the system in terms of a and q only by using
the constitutive law (6.4), it can be shown as in the previous example that (6.3)–
(6.6) can be written in the form (1.1) and satisfies (FS), (D) and (UKL) with
appropriate U . Alternatively, one can diagonalize the system as in [9], and thus,
Friedrichs symmetrizability is easily checked. The boundary matrices will be trans-
formed, however, the UKL condition is preserved. This can be verified in the same
manner as in the previous example and for this reason we omit the details.

6.3. 1-Tank model

Consider a 1D tank of length � filled with inviscid incompressible irrotational fluid
which is subjected by a horizontal force. Then using the Saint-Venant equation, one
can derive the following system [7]



Ht(t, x) + v(t, x)Hx(t, x) +H(t, x)vx(t, x) = 0, 0 < t < T, 0 < x < �,

vt(t, x) + gHx(t, x) + v(t, x)vx(t, x) = −u(t), 0 < t < T, 0 < x < �,

v(t, 0) = v(t, L) = 0, 0 < t < T,

ṡ(t) = u(t), 0 < t < T,

Ḋ(t) = s(t), 0 < t < T,

(6.8)

where g is the gravitational force, H is the height of the fluid in the tank, v is the
referential horizontal velocity of water, s is the horizontal velocity of the tank, D is
the horizontal displacement of the tank and u is the horizontal acceleration of the
tank in the absolute referential and is viewed as the control.

Note that the PDE part is not of the same form as the PDE part in (1.1), but
instead, it is of the form

ut(t, x) +A(u(t, x))ux(t, x) = F (t, x).

The results given in the previous sections extend to the case where there is an extra
source term F on the right-hand side of the PDE part.
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