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Abstract. In this paper, we consider weak and veryweak solutions to the viscous Cahn–Hilliard–Oberbeck–
Boussinesq system for non-isothermal, viscous and incompressible binary fluid flows in two-dimensional
bounded domains. The source functions have low spatial regularities, and the initial data belong to some
interpolation spaces. The essential tools employed in the analysis are the extended maximal parabolic
regularity for the associated linearized system and the well-posedness of the nonlinear part with the solution
of the linearized dynamics as the frozen coefficients.We resolve the linear system by decomposition into the
viscous biharmonic heat, Stokes, and heat equations. A spectral Faedo–Galerkin framework shall be pursued
for the nonlinear part. Higher integrability with respect to time will be established using interpolation and
compactness methods.

1. Introduction

Consider an open, bounded and connected domain � ⊂ R
2 with a sufficiently

smooth boundary �. Let 0 < T < ∞ be a given final time, I := (0, T ) be the tempo-
ral domain, Q := I ×� the space–time domain and� := I ×� the lateral boundary
of Q. This paper will investigate the following system of nonlinear partial differen-
tial equations modeling the dynamics of non-isothermal, viscous and incompressible
binary fluids:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂tφ + div (φu) − m�μ = σ in Q,

μ = τ∂tφ − ε�φ + F(φ) + lcθ + λ in Q,

∂tθ − lh∂tφ + div ((θ − lhφ)u) − κ�θ = αg · u + h in Q,

∂tu + div (u ⊗ u) − ν�u + ∇p = K(μ − lcθ)∇φ + �(φ, θ)g + f in Q,

div u = 0 in Q,

φ = �φ = 0, θ = 0, u = 0 on �,

φ(0) = φ0, θ(0) = θ0, u(0) = u0 in �.

(1.1)
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The unknown state variables are φ : Q → R, μ : Q → R, θ : Q → R,
u : Q → R

2 and p : Q → R. These represent the order parameter for the normalized
fractional part of a binary fluid mixture, chemical potential, temperature deviation
with respect to some critical value, mean velocity and pressure, respectively. In (1.1),
F(φ) = β0φ

3 − β1φ is the derivative of a polynomial approximation of the Landau–
Ginzburg–Wilson free energy functional and �(φ, θ) = α0+α1φ+α2θ is a linearized
equation of state for the density, with constant coefficients β0, β1 > 0 and α0, α1, α2 ∈
R. The other constant parameters are the diffusivemobilitym > 0, viscosity coefficient
τ > 0, interfacial thickness ε > 0, thermal conductivity κ > 0, kinematic viscosity
ν > 0, capillarity stress coefficient K > 0 and gravitational force g ∈ R

2. Moreover,
lc, lh > 0 are constants related to the latent heat and α ∈ R for linearized adiabatic
heat. The initial concentration, temperature and velocity are φ0 : � → R, θ0 : � → R

and u0 : � → R
2, respectively.

The order parameter φ describes the concentration of the binary fluid mixture, for
instance, φ = 1 signifies a pure single phase, while φ = −1 represents the other phase
when β0 = β1 = 1. System (1.1) is a coupling of the Cahn–Hilliard system [16] for
non-equilibrium phase transitions and the Oberbeck–Boussinesq system [13,53] in
thermohydraulics that accounts for surface tension due to capillary action. Here, the
coupling between the order parameter and the temperature is of phase-field type [15].
For a derivation of the system (1.1) in the absence of the term τ∂tφ and other relevant
references, we refer to [19,24,46,55]. Concerning the Cahn–Hilliard equation and
the Cahn–Hilliard–Navier–Stokes system with more general potentials that include
the physically meaningful logarithmic energy potentials, one may consult the papers
[1–5,33,35,36,42,43] and the references therein.

The additional viscous term serves as a regularization to the Cahn–Hilliard system,
and it plays a crucial role in the attainment of suitable a priori estimates leading to
the well-posedness of (1.1) with source terms of low regularity. Such a viscous term
has been introduced by Grinfeld and Novick–Cohen [44] to model phase separation
in polymer systems. Recent works related to that model are the boundary optimal
control for the viscous Cahn–Hilliard system in [21] and a finite element scheme for
the viscous Cahn–Hilliard–Navier–Stokes system with dynamic boundary conditions
and its convergence analysis in [20]. An analysis for the long-term dynamics with
respect to the viscous parameter τ can be found in [25].

In the nonlinear system (1.1), the functions f : Q → R
2, h : Q → R, σ : Q → R

and λ : Q → R correspond to external body forces, heat source or sink, concentration-
source and micro-forces, respectively, see [45] for the latter. In this work, we aim to
establish the existence and uniqueness of weak solutions to (1.1) having the source
functions σ ∈ Lr (I ;W−1,q(�)), λ ∈ Lr (I ;W 1,q

0 (�)), h ∈ Lr (I ;W−1,s(�)) and
f ∈ Lr (I ;W−1,p(�)), with suitable range of values for p, q, s and r . In the case
p = q = s = r = 2, a Hilbert space framework can be utilized to prove the
existence and uniqueness of weak solutions. We shall also provide the existence and
uniqueness of veryweak solutionswith source termshaving less regularity, namelyσ ∈
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Lr (I ; [W 2,q(�)∩W 1,q
0 (�)]′), λ ∈ Lr (I ; Lq(�)), h ∈ Lr (I ; [W 2,s(�)∩W 1,s

0 (�)]′)
and f ∈ Lr (I ; [W2,p(�) ∩ W1,p

0 (�)]′), with prime denoting duality. To be more
precise, we shall consider these source functions to lie in sums of reflexive Banach
spaces containing the above function spaces.

In the context of weak solutions, our main interest in this study is the case where
1 < q < 2, 4

3 ≤ s < 2, 4
3 ≤ p < 2, q ≤ s and 4 ≤ r < ∞ that will cover later

the situation of measure-valued sources (Theorem 4.12 and Sect. 4.5). This type of
problem has been studied by Casas and Kunisch for the two-dimensional evolutionary
Navier–Stokes equation in [18] and its application to sparse optimal control in [17].
The analysis of the state equation relies on an extended maximal parabolic regularity
(MPR) for the Stokes equation, see also [59] for a different approach but with a more
regular source function.

Our goal is to develop the corresponding well-posedness theory for non-isothermal,
incompressible and viscous binary flows. Moreover, we shall consider the notion of
very weak solutions with 4

3 < q < ∞, 4 ≤ p, s, r < ∞ and q ≤ s (Theorem 4.11).
The definitions will be in such a way that weak solutions are also very weak solutions.
Note that this is not always the case in the previous literature for the Navier–Stokes
equation. The lower bounds for these parameters are imposed so that a Faedo–Galerkin
approach for the nonlinear part is possible. In contrast to [18], note here that the
parameter r for time integrability is independent of the other parameters p, s and q
related to spatial regularity. This is due to the fact that the convection terms have been
expressed in divergence form. Also, this will provide a unified treatment for the weak
and very weak formulations. For the Navier–Stokes equation in (1.1), the solutions
we consider here belong to the Serrin’s class; hence, uniqueness is to be expected.

Some studies on the maximal parabolic regularity for the Cahn–Hilliard equation
and phase-field systems can be found in [56,57,66]. For very weak solutions of the
Navier–Stokes equation, we refer to [50] for the stationary case and to [8,10,11,29–
31] for the time-dependent case.With respect to (1.1), we consider theMPR theory for
the system that couples the biharmonic heat, Stokes and heat equations. Our strategy is
to study each equation separately, where available known results are applicable, treat
the coupling terms as sources in each component and then apply suitable embedding
theorems. The latter will be done at first in the Hilbertian case, thanks to the analyticity
of the underlying semigroup. It is well known that this is enough to obtain maximal
parabolic regularity in the case of Hilbert spaces [22].

Let us present the main strategy in the study of (1.1) under the scenarios described
above. In principle, by eliminating the chemical potential μ, this system can be put as
an abstract semi-linear parabolic problem

[
∂tBZ + A(Z, p) + N (Z) = F in I,

Z(0) = Z0,
(1.2)
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where Z = (φ, θ, u) and F = (σ + m�λ, h, f ), with an appropriate linear elliptic
operator A, a nonlinear operator N and the linear operator B is given by BZ =
(φ − mτ�φ, θ − lhφ, u).

Suppose that Z0 = Z0L + Z0N and F = FL + FN , where Z0L and FL lie in some
reflexive Banach spaces, while Z0N and FN belong to some Hilbert spaces. We shall
decompose the solution of (1.2) as a sum of a suitable weak or very weak solution of
the linear system

[
∂tBZL + A(ZL , pL) = FL in I,

ZL(0) = Z0L ,
(1.3)

and an appropriate weak solution of the nonlinear system

[
∂tBZN + A(ZN , pN ) + N (ZL + ZN ) = FN in I,

ZN (0) = Z0N .
(1.4)

Then Z = ZL + ZN with the associated pressure p = pL + pN would be a weak
or very weak solution of the semi-linear equation (1.2). For such a decomposition,
extendedMPR theoremswill be used for the linear system (1.3) and a classical spectral
Faedo–Galerkin method will be pursued for the nonlinear system (1.4). We would like
to point out that these are in fact the main ideas that were utilized in [18] for the
in-stationary Navier–Stokes equation, see also [50] for the stationary case and [51] for
the stationary Boussinesq systemwith inhomogeneous Dirichlet boundary conditions.

The main challenge in the derivation of the priori estimates involving the termμ∇φ

is the low regularity of the chemical potential μ. Nevertheless, this is compensated by
the viscous term τ∂tφ in the equation for the chemical potential, leading to a better
regularity for the time derivative of the order parameter φ, and as a result for that φ.
Also, due to the low spatial regularity of the sources, we need to impose the stronger
integrability condition r ≥ 4 compared to the typical Hilbert space framework.

We point out that the results of this paper can be specialized to various situations.
For instance, these are the viscous convective Cahn–Hilliard equation (constant u and
θ ), the coupled viscous isothermal Cahn–Hilliard–Navier–Stokes system (constant
θ ), the Oberbeck–Boussinesq system (constant φ) and the non-isothermal viscous
Cahn–Hilliard system (constant u).

The structure of this paper is organized as follows: We recall some function spaces
needed in the analysis as well as the precise formulations of (1.3) and (1.4) in Sect. 2.
Extended maximal parabolic regularity theorems for the linearized system will be
presented in Sect. 3, and the well-posedness of the nonlinear system will be discussed
in Sect. 4. In Sect. 5, wewill establish the differentiability of the operator that maps the
source functions and initial data to the veryweak orweak solutions. Finally, we present
solutions with higher integrability with respect to time under additional conditions on
the source functions and the initial data in Sect. 6.
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2. Notation and orientation

Let us introduce the notation for the function spaces and operators to be employed
in this work. The last part of this section deals with the precise formulations of (1.3)
and (1.4) when applied to (1.1).

2.1. Interpolation spaces

We denote a continuous embedding by ↪→ and a compact embedding by ↪→
↪→. Sup-

pose that X and Y are Banach spaces such that X ↪→ Z and Y ↪→ Z for some
Hausdorff topological vector space Z . The sum X + Y := {u + v : u ∈ X, v ∈ Y } is
also a Banach space when endowed with the norm

‖z‖X+Y := inf
z = x + y
x∈X, y∈Y

{‖x‖X + ‖y‖Y } ∀z ∈ X + Y.

The notation := means that the expression on the left is defined by the expression on
the right. The intersection X ∩Y is also a Banach space when equipped with the norm

‖v‖X∩Y := max{‖v‖X , ‖v‖Y } ∀v ∈ X ∩ Y.

Given twoBanach spaces X and Y described above, 0 < θ < 1 and 1 ≤ p < ∞, we
consider the real interpolation space (X,Y )θ,p to be the Banach space of all elements
z ∈ X + Y such that the following norm is finite

‖z‖(X,Y )θ,p :=
( ∫ ∞

0
K (t, z)pt−θp dt

t

) 1
p

, K (t, z) := inf
z = x + y
x∈X, y∈Y

{‖x‖X + t‖y‖Y }.

Here, we follow the definition based on Petree’s K -method. It follows that if X0 and
Y0 are Banach spaces with X0 ↪→ X and Y0 ↪→ Y , then (X0,Y0)θ,p ↪→ (X,Y )θ,p .
The space of linear and bounded operators from X into Y will be denoted by

L(X,Y ) and L(X) := L(X, X). All throughout in this paper, by an isomorphism
we mean a topological one. If A ∈ L(X + Y, X1 + Y1) is an isomorphism such that
the restrictions A|X ∈ L(X, X1) and A|Y ∈ L(Y,Y1) are also isomorphisms, then
A(X,Y )θ,p = (X1,Y1)θ,p.
A prime will denote duality. More precisely, X ′ is the space of all linear and contin-

uous functionals in a Banach space X , while p′ = p
p−1 for a real number 1 < p < ∞.

If X ∩ Y is dense in X and Y , then (X ∩ Y )′ = X ′ + Y ′, (X + Y )′ = X ′ ∩ Y ′ and
(X,Y )′θ,p = (X ′,Y ′)θ,p′ for every 0 < θ < 1 and 1 < p < ∞, see [12, Theorem
2.7.1] and [65, Theorem 1.11.2]. If in addition, X and Y are reflexive, then an im-
mediate consequence of these equations is that X ∩ Y , X + Y and (X,Y )θ,p are also
reflexive. With these, the function spaces for the sources, initial data, and weak or very
weak solutions we consider here will be reflexive, with the exception of those source
functions in Sect. 4.5.

For further details on interpolation theory, we refer the reader to the standard texts
[7,12,52,65] on this subject.
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2.2. Lebesgue, Sobolev, and solenoidal function spaces

For 1 ≤ p ≤ ∞ and s ≥ 0, L p(�) and Ws,p(�) indicate the classical Lebesgue
and Sobolev spaces [6]. The subspace of Ws,p(�) having elements that vanish on
the boundary � in the sense of traces will be denoted by Ws,p

0 (�) and its dual by
W−s,p′

(�) := Ws,p
0 (�)′ when 1 < p < ∞. For the vector-valued case, we set

L p(�) := L p(�) × L p(�), W s,p(�) := Ws,p(�) × Ws,p(�) and W s,p
0 (�) :=

Ws,p
0 (�) × Ws,p

0 (�).
Denote by L p

σ (�) the closure of the set of all divergence-free vector fields in
C∞
0 (�)×C∞

0 (�) with respect to the norm of L p(�). We use the notation L̂ p(�) :=
{π ∈ L p(�) : ∫

�
π dx = 0} for the closed subspace of L p(�) with elements hav-

ing zero averages over �. Likewise, we set Ŵ s,p
0 (�) := Ws,p

0 (�) ∩ L̂ p(�) and
Ŵ−s,p′

(�) := Ŵ s,p
0 (�)′.

Given 1 < q < ∞, we consider the Dirichlet Laplacian Aq = −� : D(Aq) ⊂
Lq(�) → Lq(�) with domain D(Aq) = W 2,q(�) ∩ W 1,q

0 (�). Note that there exist
constants c1, c2 > 0 such that c1‖φ‖W 2,q (�) ≤ ‖Aqφ‖Lq (�) ≤ c2‖φ‖W 2,q (�) for every
φ ∈ D(Aq), see [41, Lemma 9.17]. For each s ≥ 0, we let

Xs,q(�) := D(As/2
q ), X−s,q ′

(�) := Xs,q(�)′

with ‖φ‖Xs,q (�) := ‖As/2
q φ‖Lq (�) for φ ∈ Xs,q(�). In particular, X0,q(�) = Lq(�),

X1,q(�) = W 1,q
0 (�), X2,q(�) = W 2,q(�) ∩ W 1,q

0 (�), X3,q(�) = {φ ∈ W 3,q(�) :
φ = �φ = 0 on �} and X4,q(�) = W 4,q(�) ∩ X3,q(�). As usual, we again set
Xs,q(�) := Xs,q(�) × Xs,q(�).
Let us consider the Stokes operator Ap = −P p� : D(Ap) ⊂ L p

σ (�) → L p
σ (�)

for 1 < p < ∞. Here, P p : L p(�) → L p
σ (�) is the Leray–Helmholtz projector for

which P pv + ∇πv = v, where πv ∈ Ŵ 1,p(�) is the weak solution to the boundary
value problem

[
�πv = div v in �,

(∇πv − v) · n = 0 on �,

with n being the unit normal vector outward to �, see [34]. It holds that P2
p = P p and

P ′
p = P p′ for the dual operator. We have D(Ap) = X2,p(�)∩ L p

σ (�) and there exist
positive constants c3 and c4 such that c3‖u‖W2,p(�) ≤ ‖Apu‖L p

σ (�) ≤ c4‖Ap‖W2,p(�)

for every u ∈ D(Ap). In line with the notations for the Dirichlet Laplacian, we set

Xs,p
σ (�) := D(As/2

p ), X−s,p′
σ (�) := Xs,p

σ (�)′

for s ≥ 0 and ‖u‖Xs,p
σ (�) := ‖As/2

p u‖L p
σ (�) for u ∈ Xs,p

σ (�). Thus, we have

X0,p
σ (�) = L p

σ (�), X1,p
σ (�) = W1,p

0 (�) ∩ L p
σ (�), X2,p

σ (�) = X2,p(�) ∩ L p
σ (�)

and X3,p
σ (�) = X3,p(�) ∩ L p

σ (�). For the domains of the fractional powers of the
Stokes operator, we refer to [39] in the case of smooth domains and to [64] for three-
dimensional Lipschitz domains. The analyticity of the Stokes semigroup in the L p

σ (�)

spaces can be found in [38].
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2.3. Lebesgue–Bochner spaces

For time-dependent functions, we shall consider mainly the Lebesgue–Bochner
spaces

W 1,p(I ; X,Y ) := {u ∈ L p(I ; X) : ∂t u ∈ L p(I ; Y )}
for Banach spaces X and Y with X ↪→ Y , where ∂t is to be understood in the sense
of vector-valued distributions. If Y = X , then we simply write W 1,p(I ; X) instead of
W 1,p(I ; X, X). Also,W 1,p(I ; X,Y ) is a Banach space when endowed with the graph
norm

‖u‖W 1,p(I ;X,Y ) := ‖u‖L p(I ;X) + ‖∂t u‖L p(I ;Y ).

The space of continuous functions on Ī = [0, T ] into X with the supremum norm
will be denoted by C( Ī ; X). Then W 1,p(I ; X,Y ) ↪→ W 1,p(I ; Y ) ↪→ C( Ī ; Y ). We
set

W 1,p
0 (I ; X) := {u ∈ W 1,p(I ; X) : u(0) = u(T ) = 0}

and W−1,p′
(I ; X ′) := W 1,p

0 (I ; X)′ for 1 < p < ∞.

2.4. The linear and nonlinear parts

We now consider the decomposition of (1.1) as elucidated in the introduction.
Suppose that the initial data and source functions can be written as follows:

(φ0, θ0, u0) = (φ0L , θ0L , u0L) + (φ0N , θ0N , u0N ) (2.1)

(σ, h, f , λ) = (σL , hL , f L , λL) + (σN , hN , f N , λN ). (2.2)

The subscripts L and N stand for linear part and nonlinear part, respectively. Then,
the components of the solution to (1.1) will be split according to

(φ, θ, u, μ, p) = (φL , θL , uL , μL , pL) + (φN , θN , uN , μN , pN ). (2.3)

In the above decomposition, on the one hand, the first tuple (φL , θL , uL , μL , pL)

constitutes a weak or very weak solution of the linearized system

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂tφL − m�μL = σL in Q,

μL = τ∂tφL − ε�φL − β1φL + lcθL + λL in Q,

∂t θL − lh∂tφL − κ�θL = αg · uL + hL in Q,

∂tuL − ν�uL + ∇pL = (α1φL + α2θL )g + f L in Q,

div uL = 0 in Q,

φL = �φL = 0, θL = 0, uL = 0 on �,

φL (0) = φ0L , θL (0) = θ0L , uL (0) = u0L in �.

(2.4)



   12 Page 8 of 71 G. Peralta J. Evol. Equ.

Notice that the linear system (2.4) is obtainedby simply dropping the nonlinear terms in
(1.1). On the other hand, the second tuple (φN , θN , uN , μN , pN ) satisfies the following
nonlinear system with the frozen coefficients φL , μL , θL and uL :

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂tφN + div ((φL + φN )(uL + uN )) − m�μN = σN in Q,

μN = τ∂tφN − ε�φN + F(φL + φN ) + lcθN + β1φL + λN in Q,

∂tθN − lh∂tφN + div ((θL + θN − lhφL − lhφN )(uL + uN )) − κ�θN

= αg · uN + hN in Q,

∂tuN + div ((uL + uN ) ⊗ (uL + uN )) − ν�uN + ∇pN

= K(μL + μN − lcθL − lcθN )∇(φL + φN ) + �(φN , θN )g + f N in Q,

div uN = 0 in Q,

φN = �φN = 0, θN = 0, uN = 0 on �,

φN (0) = φ0N , θN (0) = θ0N , uN (0) = u0N in �.

(2.5)

The precise functional analytic frameworks to (2.4) and (2.5) will be discussed in
detail in the forthcoming sections.

3. Maximal parabolic regularity for the linearized system

All throughout this section, we shall take q, s, p, r ∈ (1,∞)with q ≤ s. We aim to
present extensions of the MPR theorems for the Stokes, heat, and viscous biharmonic
heat equations. We then combine these in order to prove the MPR for the linearized
system (2.4). Generic positive constants will be denoted by c or with a subscript. In
general, these constants depend on at least one of p, s, q, r,�, T and the parameters
in the nonlinear system (1.1).

3.1. MPR for the Stokes equation

We consider initial data for the Stokes equation in the following real interpolation
spaces:

V 1
p,r (�) := (X−1,p

σ (�), X1,p
σ (�))1/r ′,r

V 0
p,r (�) := (X−2,p

σ (�), L p
σ (�))1/r ′,r .

The superscript on the left signifies the order of weak differentiability with respect to
the smaller function space in the interpolation. This is motivated from the fact that if r
is large then the interpolated space is “closer” to the smaller function space. We have
V 1

p,r (�) ↪→ V 0
p,r (�) since X−1,p

σ (�) ↪→ X−2,p
σ (�) and X1,p

σ (�) ↪→ L p
σ (�). The

weak and very weak solution spaces we take into account are as follows:

V1
p,r (Q) := W 1,r (I ; X1,p

σ (�), X−1,p
σ (�))
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V0
p,r (Q) := W 1,r (I ; L p

σ (�), X−2,p
σ (�)).

In view of the previous embeddings, we have V1
p,r (Q) ↪→ V0

p,r (Q).

Define the continuous bilinear form a p : W1,p
0 (�) × W1,p′

0 (�) → R according to

ap(v, ρ) :=
∫
�

∇v : ∇ρ dx =
2∑
j=1

∫
�

∇v j · ∇ρ j dx ∀ (v, ρ) ∈ W1,p
0 (�) × W1,p′

0 (�).

Definition 3.1. Consider a source function and initial data

f L ∈ Lr (I ; X−1,p
σ (�)), u0L ∈ V 1

p,r (�). (3.1)

We say that uL ∈ V1
p,r (Q) is a weak solution of the Stokes equation

[
∂tuL − ν�uL + ∇pL = f L in Q,

div uL = 0 in Q, uL = 0 on �, uL(0) = u0L in �,
(3.2)

if uL(0) = u0L in V 1
p,r (�) and the following variational equation

∫ T

0
〈∂tuL , ρ〉

X−1,p
σ (�),X1,p′

σ (�)
dt + ν

∫ T

0
a p(uL , ρ) dt

=
∫ T

0
〈 f L , ρ〉

X−1,p
σ (�),X1,p′

σ (�)
dt

holds for every ρ ∈ Lr ′
(I ; X1,p′

σ (�)). �
Thanks to the continuous embeddingV1

p,r (Q) ↪→ C( Ī ; V 1
p,r (�)), see [7, Theorem

III.4.10.2], the point-wise time evaluation uL(0) is meaningful and lies in V 1
p,r (�).

As usual, the pressure has been eliminated in the weak formulation and it will be
recovered by an application of de Rham’s theorem.
The following extension of the maximal parabolic Lr -L p regularity theorem for

the Stokes equation has been demonstrated in [18]. We also refer to [37,40,47] for
related topics and relevant references. Here, we give an alternative demonstration for
the existence of the pressure compared to those that were presented in [14,18,63]. In
this direction, we follow the discussion provided in [27, Chapter 72] for the case of
Hilbert spaces.

Theorem 3.2. Let p, r ∈ (1,∞) and suppose that (3.1) is satisfied. Then, the Stokes
equation (3.2) has a unique weak solution uL ∈ V1

p,r (Q) and there exists a constant
c1 > 0 independent on uL , f L , and u0L such that

‖uL‖V1
p,r (Q) ≤ c1{‖ f L‖

Lr (I ;X−1,p
σ (�))

+ ‖u0L‖V 1
p,r (�)}. (3.3)
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In addition, if f L ∈ Lr (I ;W−1,p(�)), then there is a unique associated pressure
pL ∈ W−1,r (I ; L̂ p(�)) in the sense that

〈∂tuL , �〉
W−1,r (I ;W−1,p(�)),W 1,r ′

0 (I ;W1,p′
0 (�))

+ ν

∫ T

0
a p(uL , �) dt

− 〈pL , div �〉
W−1,r (I ;L̂ p(�)),W 1,r ′

0 (I ;L̂ p′ (�))
=

∫ T

0
〈 f L , �〉

W−1,p(�),W1,p′
0 (�)

dt

(3.4)

for every � ∈ W 1,r ′
0 (I ;W 1,p′

0 (�)) and there is a constant c2 > 0 such that

‖pL‖W−1,r (I ;L̂ p(�)) ≤ c2{‖ f L‖Lr (I ;W−1,p(�)) + ‖u0L‖V 1
p,r (�)}. (3.5)

Proof. The existence and uniqueness of the weak solution uL ∈ V1
p,r (Q) as well

as the stability estimate (3.3) have been established in [18, Theorem 2.4] for f L ∈
Lr (I ;W−1,p(�)). Note that the proof of that theorem covers the case where f L ∈
Lr (I ; X−1,p

σ (�)). We point out that the definition of weak solutions to (3.2) in that
paper is equivalent to the one prescribed by Definition 3.1 with space–time-dependent
test functions. Let us provide an alternative proof for the existence and regularity of
the associated pressure. The following argument will be utilized later in the associated
pressure for the very weak formulation as well as for the nonlinear part.
Since uL ∈ Lr (I ; X1,p

σ (�)) ↪→ Lr (I ; L p(�)) ↪→ Lr (I ;W−1,p(�)), it follows
that uL has a distributional time derivative ∂tuL ∈ W−1,r (I ;W−1,p(�)), that is, the
linear form given by

〈∂tuL , �〉
W−1,r (I ;W−1,p(�)),W 1,r ′

0 (I ;W1,p′
0 (�))

:= −
∫ T

0
〈uL , ∂t�〉

W−1,p(�),W1,p′
0 (�)

dt = −
∫ T

0
〈uL , ∂t�〉L p(�),L p′ (�)

dt

for every � ∈ W 1,r ′
0 (I ;W1,p′

0 (�)). On the other hand, using the density of

C1( Ī ; X1,p
σ (�)) in V1

p,r (Q), see [58, Lemma 7.2] for instance, and then integrat-

ing by parts, we see that the weak derivative ∂tuL ∈ Lr (I ; X−1,p
σ (�)) satisfies the

equation

〈∂tuL , ρ〉
Lr (I ;X−1,p

σ (�)),Lr ′ (I ;X1,p′
σ (�))

=
∫ T

0
〈∂tuL , ρ〉

X−1,p
σ (�),X1,p′

σ (�)
dt = −

∫ T

0
〈uL , ∂tρ〉L p(�),L p′ (�)

dt

for all ρ ∈ W 1,r ′
0 (I ; X1,p′

σ (�)) ↪→ W 1,r ′
0 (I ;W1,p′

0 (�)).
The above equations imply that the weak and distributional time derivatives of

uL coincide in W 1,r ′
0 (I ; X1,p′

σ (�)) and hence the use of the same notation for these
derivatives. Moreover, it follows from the definition of the distributional derivative
∂tuL that

‖∂tuL‖W−1,r (I ;W−1,p(�)) ≤ ‖uL‖Lr (I ;L p(�)) ≤ c‖uL‖
Lr (I ;X1,p

σ (�))
(3.6)
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where c > 0 is the constant associated with the continuous embedding X1,p
σ (�) ↪→

L p(�).
Let L ∈ W−1,r (I ;W−1,p(�)) be the linear form defined by

〈L, �〉
W−1,r (I ;W−1,p(�)),W 1,r ′

0 (I ;W1,p′
0 (�))

:=
∫ T

0
〈 f L , �〉

W−1,p(�),W1,p′
0 (�)

dt − ν

∫ T

0
a p(uL , �) dt

− 〈∂tuL , �〉
W−1,r (I ;W−1,p(�)),W 1,r ′

0 (I ;W1,p′
0 (�))

for all � ∈ W 1,r ′
0 (I ;W1,p′

0 (�)). According to the above discussion and the fact that

uL is a weak solution to (3.2), we see thatL annihilatesW 1,r ′
0 (I ; X1,p′

σ (�)). Applying
Proposition 7.1 in Appendix with k = 1, we deduce the existence and uniqueness of
an element pL ∈ W−1,r (I ; L̂ p(�)) such that L = ∇pL in the sense of distributions,
and for some c̃ > 0 we have

‖pL‖W−1,r (I ;L̂ p(�)) ≤ c̃‖L‖W−1,r (I ;W−1,p(�)). (3.7)

From the definition of the linear form L and the distributional gradient, we see that
(3.4) holds. In addition, one has

‖L‖W−1,r (I ;W−1,p(�))

≤ ‖ f L‖Lr (I ;W−1,p(�)) + ν‖uL‖
Lr (I ;X1,p

σ (�))
+ ‖∂tuL‖W−1,r (I ;W−1,p(�)). (3.8)

Estimate (3.5) now follows from inequalities (3.3), (3.6), (3.7), (3.8) and the continuous
embedding Lr (I ;W−1,p(�)) ↪→ Lr (I ; X−1,p

σ (�)). �
In general, the associated pressure may not exist when we merely have a source

function f L ∈ Lr (I ; X−1,p
σ (�)). For instance, in the Hilbertian case p = r = 2,

it is shown by Simon in [61] that W−1,2(I ;W−1,2(�)) and L2(I ; X−1,2
σ (�)) cannot

be embedded in the same Hausdorff topological vector space, leading to the possible
nonexistence of the pressure.
Now, we turn to the definition of very weak solutions to the Stokes equation, see

also [31].

Definition 3.3. Consider a source function and an initial data satisfying

f L ∈ Lr (I ; X−2,p
σ (�)), u0L ∈ V 0

p,r (�). (3.9)

A function uL ∈ V0
p,r (Q) will be called a very weak solution to (3.2) if uL(0) = u0L

in V 0
p,r (�) and the following equation

∫ T

0
〈∂tuL , ρ〉

X−2,p
σ (�),X2,p′

σ (�)
dt + ν

∫ T

0
〈uL , Ap′ρ〉

L p
σ (�),L p′

σ (�)
dt

=
∫ T

0
〈 f L , ρ〉

X−2,p
σ (�),X2,p′

σ (�)
dt

holds for every ρ ∈ Lr ′
(I ; X2,p′

σ (�)). �
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Time evaluation is again valid in virtue of V0
p,r (Q) ↪→ C( Ī ; V 0

p,r (�)). Due to the

fact thatV1
p,r (Q) ↪→ V0

p,r (Q), Lr (I ; X−1,p
σ (�)) ↪→ Lr (I ; X−2,p

σ (�)),V 1
p,r (�) ↪→

V 0
p,r (�) and

a p(v, �) = 〈v, Ap′�〉
L p
σ (�),L p′

σ (�)
∀ (v, �) ∈ X1,p

σ (�) × X2,p′
σ (�), (3.10)

a weak solution to the Stokes equation (3.2) in the sense of Definition 3.1 is necessarily
a very weak solution in the sense of Definition 3.3. Equation (3.10) follows from
Green’s identity, divergence theorem, the definition of P p′ and that v is divergence-
free in �.

Theorem 3.4. Suppose that p, r ∈ (1,∞) and (3.9) are satisfied. Then, (3.2) admits
a unique very weak solution uL ∈ V0

p,r (Q), and we have

‖uL‖V0
p,r (Q) ≤ c1{‖ f L‖

Lr (I ;X−2,p
σ (�))

+ ‖u0L‖V 0
p,r (�)} (3.11)

for some c1 > 0 independent on uL , f L , and u0L . In addition, if f L ∈ Lr (I ; X−2,p

(�)), thenwe have a unique associated pressure pL ∈ W−1,r (I ; Ŵ−1,p(�)) satisfying

for every � ∈ W 1,r ′
0 (I ;W2,p′

0 (�)) the variational equation

〈∂tuL , �〉
W−1,r (I ;W−2,p(�)),W 1,r ′

0 (I ;W2,p′
0 (�))

− ν

∫ T

0
〈uL ,��〉L p(�),L p′ (�)

dt

− 〈pL , div �〉
W−1,r (I ;Ŵ−1,p(�)),W 1,r ′

0 (I ;Ŵ 1,p′
0 (�))

=
∫ T

0
〈 f L , �〉

W−2,p(�),W2,p′
0 (�)

dt

and for some constant c2 > 0, it holds that

‖pL‖W−1,r (I ;Ŵ−1,p(�)) ≤ c2{‖ f L‖Lr (I ;X−2,p(�)) + ‖u0L‖V 0
p,r (�)}. (3.12)

Proof. The dual operator A′
p′ : L p

σ (�) → X−2,p
σ (�) of Ap′ : X2,p′

σ (�) → L p′
σ (�) is

an isometric isomorphism and extends the Stokes operator Ap : X2,p
σ (�) → L p

σ (�).

Indeed, given u ∈ X2,p
σ (�) ∩ X2,2

σ (�) and v ∈ X2,p′
σ (�) ∩ X2,2

σ (�) we have

〈A′
p′u, v〉

X−2,p
σ (�),X2,p′

σ (�)
= 〈u, Ap′v〉

L p
σ (�),L p′

σ (�)

= (u, A2v)L2
σ (�)

= (A2u, v)L2
σ (�) = 〈Apu, v〉

X−2,p
σ (�),X2,p′

σ (�)

since As = A2 in X2,s
σ (�) ∩ X2,2

σ (�) for s ∈ (1,∞). Invoking the density of
X2,s

σ (�)∩X2,2
σ (�) in X2,s

σ (�) yields A′
p′u = Apu in L p

σ (�) for every u ∈ X2,p
σ (�).

In particular, (A′
p′)−1 = A−1

p as an isomorphism from L p
σ (�) onto X2,p

σ (�).

Define gL := (A′
p′)−1 f L ∈ Lr (I ; L p

σ (�)) and

v0L := (A′
p′)−1u0L ∈ (A′

p′)−1V 0
p,r (�) = (L p

σ (�), X2,p
σ (�))1/r ′,r =: V 2

p,r (�),
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where f L and u0L satisfy (3.9). From the classical maximal parabolic regularity for
the Stokes equation, we obtain a unique weak solution vL ∈ V2

p,r (Q), where

V2
p,r (Q) := W 1,r (I ; X2,p

σ (�), L p
σ (�)),

to the evolution equation

[
∂tvL + νApvL = gL in Lr (I ; L p

σ (�)),

vL(0) = v0L in V 2
p,r (�),

(3.13)

and there is a constant c > 0 independent on vL , gL , and v0L such that

‖vL‖V2
p,r (Q) ≤ c{‖gL‖Lr (I ;L p

σ (�)) + ‖v0L‖V 2
p,r (�)}. (3.14)

By applying A′
p′ to (3.13), setting uL = A′

p′vL ∈ V0
p,r (Q) and then using

A′
p′ ApvL = A′

p′ A′
p′vL = A′

p′uL , we see that uL satisfies

[
∂tuL + νA′

p′uL = f L in Lr (I ; X−2,p
σ (�)),

uL(0) = u0L in V 0
p,r (�).

Thus, uL is a very weak solution to (3.2). The stability estimate (3.11) for this weak
solution follows immediately from (3.14) and the definitions of vL , gL , and v0L . Fur-
thermore, the uniqueness of this veryweak solution is a consequence of the uniqueness
of solutions to (3.13).
Finally, the existence and stability of the associated pressure can be established

as in the proof of the preceding theorem. Indeed, consider the linear form L ∈
W−1,r (I ;W−2,p(�)) given by

〈L, �〉
W−1,r (I ;W−2,p(�)),W 1,r ′

0 (I ;W2,p′
0 (�))

:=
∫ T

0
〈 f L , �〉

W−2,p(�),W2,p′
0 (�)

dt −
∫ T

0
ν〈uL ,��〉L p(�),L p′ (�)

dt

− 〈∂tuL , �〉
W−1,r (I ;W−2,p(�)),W 1,r ′

0 (I ;W2,p′
0 (�))

for all � ∈ W 1,r ′
0 (I ;W2,p′

0 (�)). Note that the duality pairings on the right-hand side
are well defined because uL ∈ Lr (I ; L p(�)) ↪→ Lr (I ;W−2,p(�)), so that ∂tuL ∈
W−1,r (I ;W−2,p(�)), and f L ∈ Lr (I ; X−2,p(�)) ↪→ Lr (I ;W−2,p(�)). From the

definition of the Leray–Helmholtz projector P p′ , for every � ∈ Lr ′
(I ; X2,p′

σ (�)) there
exists π� ∈ Lr ′

(I ; Ŵ 1,p′
(�)) such that

∫ T

0
〈uL ,��〉L p(�),L p′ (�)

dt =
∫ T

0
{〈uL , P p′��〉L p(�),L p′ (�)

+ 〈uL ,∇π�〉L p(�),L p′ (�)
} dt

= −
∫ T

0
〈uL , Ap′�〉

L p
σ (�),L p′

σ (�)
dt
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since div uL = 0 in Q. This implies that L vanishes on W1,r ′
0 (I ;W2,p′

0 (�) ∩
L p′

σ (�)). Thus, we have a unique associated pressure pL ∈ W−1,r (I ; Ŵ−1,p(�)) from
Proposition 7.1 with k = 2. The stability estimate (3.12) for pL follows from (3.11),
the embedding Lr (I ; X−2,p(�)) ↪→ Lr (I ; X−2,p

σ (�)) and the estimates similar to
those with (3.7) and (3.8). �

Let Ae
p ∈ L(X1,p

σ (�), X−1,p
σ (�)) be given by

〈Ae
pv, �〉

X−1,p
σ (�),X1,p′

σ (�)
= a p(v, �) ∀ (v, �) ∈ X1,p

σ (�) × X1,p′
σ (�). (3.15)

It has been shown in [18, Section 3] that Ae
p = (A1/2

p′ )′A1/2
p , and it is an isomorphism

that extends the operator Ap : X2,p(�) → L p
σ (�). The construction of weak solution

to the Stokes equation in that paper was done by an application of the operator Ae
p,

instead of A′
p′ as in the above proof, to the evolution equation (3.13). We claim that

Ae
p = A′

p′ from X1,p
σ (�) to X−1,p

σ (�), so that A′
p′ is also an extension of Ae

p. Indeed,

from (3.10), (3.15), and the embedding X−1,p
σ (�) ↪→ X−2,p

σ (�), one has

〈Ae
pv, �〉

X−2,p
σ (�),X2,p′

σ (�)

= 〈A′
p′v, �〉

X−2,p
σ (�),X2,p′

σ (�)
∀ (v, �) ∈ X1,p

σ (�) × X2,p′
σ (�).

Thus, for every v ∈ X1,p
σ (�) we have Ae

pv = A′
p′v in X−2,p

σ (�), and hence, in

X−1,p
σ (�) since the left-hand side belongs to this space.

3.2. MPR for the heat equation

This short section deals with the analogous results to the heat equation. Initial data
will be taken in the following interpolation spaces:

Z1
s,r (�) := (W−1,s(�),W 1,s

0 (�))1/r ′,r

Z0
s,r (�) := (X−2,s(�), Ls(�))1/r ′,r .

The corresponding function spaces for the weak and very weak solutions will be:

Z1
s,r (Q) := W 1,r (I ;W 1,s

0 (�),W−1,s(�))

Z0
s,r (Q) := W 1,r (I ; Ls(�), X−2,s(�)).

It is clear that Z1
s,r (�) ↪→ Z0

s,r (�) and Z1
s,r (Q) ↪→ Z0

s,r (Q).

Let us introduce the continuous bilinear form as : W 1,s
0 (�) × W 1,s′

0 (�) → R,
which extends the Dirichlet Laplacian, defined by

as(γ, �) :=
∫
�

∇γ · ∇� dx ∀ (γ, �) ∈ W 1,s
0 (�) × W 1,s′

0 (�).
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Definition 3.5. Consider a source function and an initial data such that

hL ∈ Lr (I ;W−1,s(�)), γ0L ∈ Z1
s,r (�). (3.16)

A function γL ∈ Z1
s,r (Q) is called a weak solution of the heat equation

[
∂tγL − κ�γL = hL in Q,

γL = 0 on �, γL(0) = γ0L in �,
(3.17)

if γL(0) = γ0L in Z1
s,r (�), and we have

∫ T

0
〈∂tγL , �〉

W−1,s (�),W 1,s′
0 (�)

dt + κ

∫ T

0
as(γL , �) dt

=
∫ T

0
〈hL , ρ〉

W−1,s (�),W 1,s′
0 (�)

dt

for every � ∈ Lr ′
(I ;W 1,s′

0 (�)). �
The initial condition is meaningful since Z1

s,r (Q) ↪→ C( Ī ; Z1
s,r (�)) according to

[9, Theorem III.4.10.2]. We have the following extended maximal regularity theorem
for the heat equation.

Theorem 3.6. Suppose that s, r ∈ (1,∞) and (3.16) are satisfied. The heat equation
(3.17) admits a unique weak solution γL ∈ Z1

s,r (Q), and there is a constant c > 0
independent of γL , hL , and γ0L such that

‖γL‖Z1
s,r (Q) ≤ c{‖hL‖Lr (I ;W−1,s (�)) + ‖γ0L‖Z1

s,r (�)}.

Proof. The proof stated in Theorem 3.2 can be adapted to (3.17), and for this reason
we omit the details. �

One may also introduce very weak solutions to the heat equation (3.17) similar to
that of the Stokes equation, in such a way that weak solutions are also very weak
solutions. We state without proof the corresponding result in the following theorem.
Time evaluation for very weak solutions is again well-defined due to Z0

s,r (Q) ↪→
C( Ī ; Z0

s,r (�)).

Theorem 3.7. Let s, r ∈ (1,∞) and

hL ∈ Lr (I ; X−2,s(�)), γ0L ∈ Z0
s,r (�). (3.18)

Then, (3.17) has a unique very weak solution γL ∈ Z0
s,r (Q) in the sense that γL(0) =

γ0L in Z0
s,r (�) and the following variational equation

∫ T

0
〈∂tγL , �〉X−2,s (�),X2,s′ (�)

dt + κ

∫ T

0
〈γL , As′�〉Ls (�),Ls′ (�)

dt
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=
∫ T

0
〈hL , �〉X−2,s (�),X2,s′ (�)

dt

holds for every � ∈ Lr ′
(I ; X2,s′(�)). Moreover, there exists a constant c > 0 inde-

pendent of γL , hL , and γ0L such that

‖γL‖Z0
s,r (Q) ≤ c{‖hL‖Lr (I ;X−2,s (�)) + ‖γ0L‖Z0

s,r (�)}.
In what follows, when conditions (3.16) or (3.18) are referred in the context of the

linear system (2.4), then γ0L must be replaced by θ0L .

3.3. MPR for the viscous biharmonic heat equation

We continue our discussion on the maximal parabolic regularity for the viscous
biharmonic heat equation. The function spaces for the initial data in the weak and very
weak formulations are given, respectively, by

Z3
q,r (�) := (W 1,q

0 (�), X3,q(�))1/r ′,r

Z2
q,r (�) := (Lq(�), X2,q(�))1/r ′,r .

In the current situation, the weak and very weak solutions will be taken in

Z3
q,r (Q) := W 1,r (I ; X3,q(�),W 1,q

0 (�))

Z2
q,r (Q) := W 1,r (I ; X2,q(�), Lq(�)).

Applying [9, Theorem III.4.10.2] once more, we deduce the continuity of the embed-
dings Z3

q,r (Q) ↪→ C( Ī ; Z3
q,r (�)) and Z2

q,r (Q) ↪→ C( Ī ; Z2
q,r (�)). It is easy to see

that Z3
q,r (�) ↪→ Z2

q,r (�) and Z3
q,r (Q) ↪→ Z2

q,r (Q). Additional embedding proper-
ties are provided in the succeeding lemmas.

Lemma 3.8. For any q, r, s ∈ (1,∞), we have the continuous embeddings
Z3
q,r (�) ↪→ Z1

s,r (�) and Z2
q,r (�) ↪→ Z0

s,r (�). Similarly, Z3
q,r (Q) ↪→ Z1

s,r (Q)

and Z2
q,r (Q) ↪→ Z0

s,r (Q).

Proof. These follow immediately from the definition of real interpolation spaces and
the continuity of W 1,q

0 (�) ↪→ L2(�) ↪→ W−1,s(�), X3,q(�) ↪→ X2,2(�) ↪→
W 1,s

0 (�), Lq(�) ↪→ X−2,s(�) and X2,q(�) ↪→ X1,2(�) ↪→ Ls(�) by the Sobolev
embedding theorem. �

Lemma 3.9. If q, r ∈ (1,∞), then the continuous embeddings Z3
q,r (�) ↪→

W 3−2/r−δ,q(�) ∩ W 1,q
0 (�) and Z2

q,r (�) ↪→ W 2−2/r−δ,q(�) hold for any δ > 0.

Proof. By definition, we have Z3
q,r (�) ↪→ W 1,q

0 (�). Since X3,q(�) ↪→ W 3,q(�)

and W 1,q
0 (�) ↪→ W 1,q(�), by invoking [65, Theorem 4.3.1] we have

Z3
q,r (�) ↪→ (W 1,q(�),W 3,q(�))1/r ′,r = B3/r ′+1/r

q,r (�) = B3−2/r
q,r (�)
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where the right-hand side denotes a Besov space, see [65, Definition 4.2.1]. We note
that B3−2/r

q,r (�) ↪→ W 3−2/r−δ,q(�) for any δ > 0 by [65, Remark 2.3.3/4] and
applying the extension property [65, Theorem 4.2.2]. This proves the first continuous
embedding. The second one can be established with the same argument. �

Let us now consider the weak formulation for the viscous biharmonic heat equation.

Definition 3.10. Take a source function and an initial data that satisfy

σL ∈ Lr (I ;W−1,q(�)), φ0L ∈ Z3
q,r (�). (3.19)

A functionφL ∈ Z3
q,r (Q) is called aweak solution of the followingviscous biharmonic

heat equation
⎡
⎣ ∂t (φL − mτ�φL) + mε�2φL − ε

mτ 2
φL = σL in Q,

φL = �φL = 0 on �, φL(0) = φ0L in �,
(3.20)

if φL(0) = φ0L in Z3
q,r (�) and the variational equation

∫ T

0
{〈∂tφL , ρ〉Lq (�),Lq′

(�)
+ mτaq(∂tφL , ρ)} dt + mε

∫ T

0
aq(AqφL , ρ) dt

− ε

mτ 2

∫ T

0
〈φL , ρ〉Lq (�),Lq′

(�)
dt =

∫ T

0
〈σL , ρ〉

W−1,q (�),W 1,q′
0 (�)

dt

holds for every ρ ∈ Lr ′
(I ;W 1,q ′

0 (�)). �
Theorem 3.11. Assume that q, r ∈ (1,∞) and (3.19) hold. Then, the viscous bihar-
monic equation (3.20) possesses a unique weak solution φL ∈ Z3

q,r (Q) and there
exists a constant c > 0 independent of φL , σL , and φ0L for which

‖φL‖Z3
q,r (Q) ≤ c{‖σL‖Lr (I ;W−1,q (�)) + ‖φ0L‖Z3

q,r (�)}.

Proof. We adapt the proof provided for the Stokes equation in [18] and utilize the
maximal regularity for linear parabolic equations. Let us introduce the following iso-
morphism

Bq := I + mτ Aq : X2,q(�) → Lq(�)

where Aq is the Dirichlet Laplacian on Lq(�). A simple algebraic calculation shows
that in the space L(X2,q(�), Lq(�)) there holds

A2
q = 1

m2τ 2
(B2

q − 2Bq + I ).

Step 1. Extending the operator Bq . Since Bq ′ : X2,q ′
(�) → Lq ′

(�) and its square

root B1/2
q ′ : W 1,q ′

0 (�) → Lq ′
(�) are isomorphisms, it follows that the dual operator
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(B1/2
q ′ )′ : Lq(�) → W−1,q(�) is also an isomorphism. Consider the linear operator

Be
q : W 1,q

0 (�) → W−1,q(�) defined by

〈Be
qφ, ρ〉

W−1,q (�),W 1,q′
0 (�)

:=
∫
�

(φρ + mτ∇φ · ∇ρ) dx ∀ (φ, ρ) ∈ W 1,q
0 (�) × W 1,q ′

0 (�).

This is an extension of the operator Bq since Be
qφ = Bqφ for every φ ∈ X2,q(�).

Moreover, it is an isomorphism because Be
q = (B1/2

q ′ )′B1/2
q inW 1,q

0 (�), which can be
established using a standard density argument, see [18, Section 3] for the details.
Step 2. Existence of a weak solution. By the maximal parabolic regularity for the
heat equation, see, for instance, [23], given ςL ∈ Lr (I ; Lq(�)) and ψ0L ∈ Z2

q,r (�),
the abstract differential equation

⎡
⎣ ∂tψL + ε

mτ 2
(BqψL − 2ψL) = ςL in Lr (I ; Lq(�)),

ψL(0) = ψ0L in Z2
q,r (�),

(3.21)

admits a unique solution ψL ∈ Z2
q,r (Q). In addition, there exists a constant c > 0

independent on ψL , ςL , and ψ0L such that

‖ψL‖Z2
q,r (Q) ≤ c(‖ςL‖Lr (I ;Lq (�)) + ‖ψ0L‖Z2

q,r (�)). (3.22)

Suppose that σL ∈ Lr (I ;W−1,q(�)) and φ0L ∈ Z3
q,r (�). Consider ςL := B1/2

q

(Be
q)

−1σL andψ0L := B1/2
q φ0L . Since B

1/2
q (Be

q)
−1 : W−1,q(�) → Lq(�) and B1/2

q :
X3,q

(�) → X2,q(�) are isomorphisms, we obtain that ςL ∈ Lr (I ; Lq(�)) and ψ0L ∈
B1/2
q (Z3

q,r (�)) = Z2
q,r (�), along with the estimates

‖ςL‖Lr (I ;Lq (�)) ≤ c‖σL‖Lr (I ;W−1,q (�)), ‖ψ0L‖Z2
q,r (�) ≤ c‖φ0L‖Z3

q,r (�). (3.23)

LetψL be the solution to (3.21) corresponding to these data.Applying (B
1/2
q (Be

q)
−1)−1

= Be
q B

−1/2
q to the differential equation and B−1/2

q to the initial data in (3.21), and by

setting φL := B−1/2
q ψL ∈ Z3

q,r (Q), we have

⎡
⎣ ∂t B

e
qφL + ε

mτ 2
(Be

q BqφL − 2BqφL) = σL in Lr (I ;W−1,q(�)),

φL(0) = φ0L in Z3
q,r (�).

(3.24)

Consider the isomorphism Ae
q := (A1/2

q ′ )′A1/2
q : W 1,q

0 (�) → W−1,q(�). This

operator satisfies Ae
q = 1

mτ
(Be

q − I ) and

Ae
q Aq = 1

m2τ 2
(Be

q Bq − 2Bq + I ),
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with the latter equation taken as equality of isomorphisms from X3,q(�) onto W−1,q

(�). Hence, for each ρ ∈ Lr ′
(I ;W 1,q ′

0 (�)), there holds almost everywhere in I that

〈Be
q BqφL − 2BqφL , ρ〉

W−1,q (�)′,W 1,q′
0 (�)

= m2τ 2aq(AqφL , ρ) − 〈φL , ρ〉Lq (�),Lq′
(�)

.

Substituting this in (3.24) and then using the definition of Be
q in the time derivative,

we see that φL is a weak solution to (3.20). Moreover, from (3.22), (3.23) and the
definition of φL , we obtain the stability estimate stated by the theorem.
Step 3. Uniqueness of the weak solution. By linearity, it suffices to show that we
have a trivial solution corresponding to the equation with zero source term σL = 0
and initial data φ0L = 0. Indeed, suppose that φL ∈ Z3

q,r (Q) is a weak solution to

such a system. Then, if we apply B1/2
q B−e

q to both sides of the differential equation

in (3.24), we observe that ψL := B1/2
q φL ∈ Z2

q,r (Q) is a solution to (3.21) with
ςL = 0 and ψ0L = 0. By uniqueness of solution to (3.21), it follows that ψL = 0, and
consequently, we get φL = 0. �
We also have the existence and uniqueness of very weak solutions to (3.20).

Theorem 3.12. Let q, r ∈ (1,∞) and suppose that

σL ∈ Lr (I ; X−2,q(�)), φ0L ∈ Z2
q,r (�). (3.25)

Then, (3.20) has a unique very weak solution φL ∈ Z2
q,r (Q) in the sense that φL(0) =

φ0L in Z2
q,r (�) and for every ρ ∈ Lr ′

(I ; X2,q ′
(�))

∫ T

0
{〈∂tφL , ρ〉Lq (�),Lq′

(�)
+ mτ 〈A′

q ′∂tφL , ρ〉X−2,q (�),X2,q′
(�)

} dt

+ mε

∫ T

0
〈AqφL , Aq ′ρ〉Lq (�),Lq′

(�)
dt − ε

mτ 2

∫ T

0
〈φL , ρ〉Lq (�),Lq′

(�)
dt

=
∫ T

0
〈σL , ρ〉X−2,q (�),X2,q′

(�)
dt.

Furthermore, there is a constant c > 0 independent of φL , σL , and φ0L for which

‖φL‖Z2
q,r (Q) ≤ c{‖σL‖Lr (I ;X−2,q (�)) + ‖φ0L‖Z2

q,r (�)}.
Proof. Note that the dual operator B ′

q ′ : Lq(�) → X−2,q(�) of Bq ′ : X2,q ′
(�) →

Lq ′
(�) is an isomorphism and is an extension of Bq : X2,q(�) → Lq(�). We then

proceed as in the proof of the preceding theorem, but now by applying B ′
q ′ to the

differential equation (3.24) with ςL = (B ′
q ′)−1σL ∈ Lr (I ; Lq(�)) and ψ0L = φ0L ∈

Z2
q,r (�). The required very weak solution would then be φL = ψL . Note that in order

to pass from the abstract differential equation to the variational equation in the very
weak formulation, we utilize the fact that

A′
q ′ Aq = 1

m2τ 2
(B ′

q ′ Bq − 2Bq + I )

as isomorphisms from X2,q(�) onto X−2,q(�). �
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As in the case of the Stokes operator, we have B ′
q ′ = Be

q and A′
q ′ = Ae

q as isomor-

phisms from W 1,q
0 (�) onto W−1,q(�).

Remark 3.13. Following the strategy in the succeeding subsection, one may drop the
linear term ε

mτ 2
φL in (3.20). However, since the above form of the biharmonic heat

equation is sufficient to our analysis, we do not provide the details here.

3.4. MPR for the linearized system

Having established maximal parabolic regularity theorems for each of the compo-
nents in the linear system (2.4), we are now in position to establish the corresponding
results for the coupled system. The main idea is to treat the coupling terms as external
sources.

Definition 3.14. Suppose that the source functions and the initial data satisfy the
conditions (3.1), (3.16), (3.19), and let

λL ∈ Lr (I ;W 1,q
0 (�)). (3.26)

A tuple (φL , θL , uL , μL) ∈ Z3
q,r (Q)×Z1

s,r (Q)×V1
p,r (Q)×Lr (I ;W 1,q

0 (�)) is said to
be aweak solution to (2.4), provided that the initial condition (φL(0), θL(0), uL(0)) =
(φ0L , θ0L , u0L) holds in Z3

q,r (�) × Z1
s,r (�) × V 1

p,r (�), the variational equations

(a)
∫ T

0
{(∂tφL , ρ)L2(�) + maq(μL , ρ)} dt =

∫ T

0
〈σL , ρ〉

W−1,q (�),W 1,q′
0 (�)

dt

(b)
∫ T

0
{〈∂tθL , �〉

W−1,s (�),W 1,s′
0 (�)

− lh(∂tφL , �)L2(�) + κas(θL , �)} dt

=
∫ T

0
{(αg · uL , �)L2(�) + 〈hL , �〉

W−1,s (�),W 1,s′
0 (�)

} dt
(c)

∫ T

0
{〈∂tuL , ρ〉

X−1,p
σ (�),X1,p′

σ (�)
+ νa p(uL , ρ)} dt

=
∫ T

0
{((α1φL + α2θL)g, ρ)L2(�) + 〈 f L , ρ〉

X−1,p
σ (�),X1,p′

σ (�)
} dt

are satisfied for every ρ ∈ Lr ′
(I ;W 1,q ′

0 (�)), � ∈ Lr ′
(I ;W 1,s′

0 (�)), ρ ∈ Lr ′
(I ; X1,p′

σ

(�)), and we have

μL = τ∂tφL − ε�φL − β1φL + lcθL + λL a.e. Q. (3.27)

If f L ∈ Lr (I ;W−1,p(�)), then we call pL ∈ W−1,r (I ; L̂ p(�)) an associated pres-
sure if

〈∂tuL , �〉
W−1,r (I ;W−1,p(�)),W1,r ′

0 (I ;W1,p′
0 (�))
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+ ν

∫ T

0
a p(uL , �) dt − 〈pL , div �〉

W−1,r (I ;L̂ p(�)),W 1,r ′
0 (I ;L̂ p′ (�))

=
∫ T

0
{((α1φL + α2θL)g, �)L2(�) + 〈 f L , �〉

W−1,p(�),W1,p′
0 (�)

} dt

is satisfied by every � ∈ W 1,r ′
0 (I ;W1,p′

0 (�)). �
Observe that one can view (3.27) as an equality in the space Lr (I ;W 1,q

0 (�)) when
q ≤ s. On the left-hand side of the variational equation (a) and the right-hand sides of
(b) and (c), where we have the appearances of the L2 inner product, we used the fact
that W 1,s(�) ↪→ W 1,1(�) ↪→ L2(�) for every s ≥ 1. In particular, we have in (c)
the equation

∫ T

0
((α1φL + α2θL)g, ρ)L2(�) dt =

∫ T

0
(P2{(α1φL + α2θL)g}, ρ)L2(�) dt

where we recall that P2 is the Leray–Helmholtz projector from L2(�) onto L2
σ (�).

Although the velocities coincide for these two formulations, the associated pressures
will be different, see also Remark 3.17.
It will be advantageous to eliminate the linearized chemical potential μL in system

(2.4) and to introduce the new variable γL := θL − lhφL along with the initial data
γ0L := θ0L − lhφ0L . In this direction, we have the following equivalent linear system

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂t (φL − mτ�φL ) + m{ε�2φL + (β1 − lclh)�φL − lc�γL − �λL } = σL in Q,

∂tγL − κ�γL − κlh�φL = αg · uL + hL in Q,

∂tuL − ν�uL + ∇pL = {(α1 + α2lh)φL + α2γL }g + f L in Q,

div uL = 0 in Q,

φL = �φL = 0, γL = 0, uL = 0 on �,

φL (0) = φ0L , γL (0) = γ0L , uL (0) = u0L in �.

(3.28)

A similar definition of weak solutions to the equivalent linear system (3.28) can
be formulated as in Definition 3.14, but we leave the details to the reader for the
precise statements. In terms of the extended Dirichlet Laplacian and Stokes operator,
the differential equations in (3.28) are equivalent to the following abstract evolution
equations

⎡
⎢⎣

∂t (φL + mτ AqφL ) + mεAe
q AqφL − m{(β1 − lclh)AqφL − lcAe

qγL } = σL − mAe
qλL

∂tγL + κAe
sγL + κlhAe

sφL = αg · uL + hL
∂tuL + νAe

puL = {(α1 + α2lh)φL + α2γL }g + f L

The Laplace and Stokes operators in these equations have to be modified in the context
of very weak solutions.
We wish to establish maximal parabolic regularity theorems for (3.28). For this,

we shall proceed by gradually decreasing the order of spatial differentiability. Let us
start with the Hilbertian case, that is, p = q = r = 2. In the meantime, we ignore
the subscript L . The main tool is a classical theorem in [22], which we state for the
convenience of the reader.
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Theorem 3.15. Let r ∈ (1,∞) and A : D(A) ⊂ H → H be a closed linear operator
on aHilbert space H such that−A generates a strongly continuous analytic semigroup
on H. For each f ∈ Lr (I ; H), the Cauchy problem

[
∂t z + Az = f in Lr (I ; H),

z(0) = 0 in H,

admits a unique solution z ∈ W 1,r (I ; D(A), H). Moreover, there exists a constant
c > 0 independent on z and f such that

‖z‖W 1,r (I ;D(A),H) ≤ c‖ f ‖Lr (I ;H). (3.29)

The aim is to apply this theorem to (3.28) with homogeneous initial conditions. We
introduce the Hilbert space Hω := X2,2(�) × L2(�) × L2

σ (�) equipped with the
weighted inner product

((φ, γ, u), (ψ, η, v))Hω
:= ω(φ,ψ)X2,2(�) + (γ, η)L2(�) + (u, v)L2

σ (�)

where (φ,ψ)X2,2(�) := (B2φ, B2ψ)L2(�) andω > 0. Let us define the linear operator
A : D(A) ⊂ Hω → Hω having the domain

D(A) = D(A2
2) × D(A2) × D(A2) = X4,2(�) × X2,2(�) × X2,2

σ (�)

according to

A(φ, γ, u) =
⎛
⎝
mεB−1

2 A2
2φ − m(β1 − lclh)B

−1
2 A2φ + mlcB

−1
2 A2γ

κA2γ + κlhA2φ − αg · u
νA2u − P2{((α1 + α2lh)φ + α2γ )g}

⎞
⎠ . (3.30)

Note that up to a constant factor, the principal term for the first component ofA is the
Dirichlet Laplacian. Indeed, this component can be expressed solely in terms of A2

using the identities

B−1
2 A2 = 1

mτ
(I − (I + mτ A2)

−1)

B−1
2 A2

2 = 1

m2τ 2
(mτ A2 − I + (I + mτ A2)

−1).

Here, (I + mτ A2)
−1 is a smoothing operator in the sense that it maps Xs,2(�) onto

Xs+2,2(�) for any s ≥ 0. From these, we see that the map A is well-defined.
It is standard to show that−A generates an analyticC0-semigroup onHω, provided

that ω > 0 is small enough. Nevertheless, we present the proof in Appendix for
completeness, see Proposition 7.3. Translating this to the original linear system (2.4)
with vanishing initial data leads to the following theorem. For the proof, we introduce
the following strong solution space for the viscous biharmonic heat equation

Z4
2,r (Q) := W 1,r (I ; X4,2(�), X2,2(�)).



J. Evol. Equ. Weak and very weak solutions Page 23 of 71    12 

Theorem 3.16. Let r ∈ (1,∞). Suppose that σL , hL ∈ Lr (I ; L2(�)), λL ∈ Lr

(I ; X2,2(�)), f L ∈ Lr (I ; L2
σ (�)), φ0L = 0, θ0L = 0, and u0L = 0. Then, the linear

system (2.4) has a unique weak solution

(φL , θL , uL , μL) ∈ Z4
2,r (Q) × Z2

2,r (Q) × V2
2,r (Q) × Lr (I ; X2,2(�)).

We have a unique associated pressure pL ∈ Lr (I ; Ŵ 1,2(�)). Moreover, there is a
constant c > 0 independent on the solution and the source functions such that

‖φL‖Z4
2,r (Q) + ‖θL‖Z2

2,r (Q) + ‖uL‖V2
2,r (Q) + ‖μL‖Lr (I ;X2,2(�)) + ‖pL‖Lr (I ;Ŵ 1,2(�))

≤ c{‖σL‖Lr (I ;L2(�)) + ‖hL‖Lr (I ;L2(�)) + ‖ f L‖Lr (I ;L2
σ (�)) + ‖λL‖Lr (I ;X2,2(�))}.

(3.31)

Proof. From the assumptions on σL and λL , we have B−1
2 (σL − mA2λL) ∈

Lr (I ; X2,2(�)) and

‖B−1
2 (σL − mA2λL)‖Lr (I ;X2,2(�)) ≤ c{‖σL‖Lr (I ;L2(�)) + ‖λL‖Lr (I ;X2,2(�))}.

(3.32)

The analyticity of the C0-semigroup generated by −A (see Proposition 7.3) and
Theorem 3.15 implies that the Cauchy problem

∂t (φL , γL , uL) + A(φL , γL , uL) = (B−1
2 (σL − mA2λL), hL , f L)

with the homogeneous initial condition (φL(0), γL(0), uL(0)) = (0, 0, 0) admits a
unique solution (φL , γL , uL) ∈ Z4

2,r (Q) × Z2
2,r (Q) × V2

2,r (Q). Invoking estimates
(3.32) and (3.29), we deduce that

‖φL‖Z4
2,r (Q) + ‖γL‖Z2

2,r (Q) + ‖uL‖V2
2,r (Q)

≤ c{‖σL‖Lr (I ;L2(�)) + ‖hL‖Lr (I ;L2(�)) + ‖ f L‖Lr (I ;L2
σ (�)) + ‖λL‖Lr (I ;X2,2(�))}.

(3.33)

By applying B2 to the first equation in the above Cauchy problem, we obtain that
(φL , γL , uL) satisfies the evolution equation associated with the linear system (3.28)
with zero initial conditions. Since Z4

2,r (Q) ↪→ Z2
2,r (Q), we have θL := γL + lhφL ∈

Z2
2,r (Q), and by the triangle inequality

‖θL‖Z2
2,r (Q) ≤ c{‖γL‖Z2

2,r (Q) + ‖φL‖Z4
2,r (Q)}. (3.34)

Also, μL defined by (3.27) is an element of Lr (I ; X2,2(�)) and

‖μL‖Lr (I ;X2,2(�)) ≤ c{‖φL‖Z4
2,r (Q) + ‖θL‖Lr (I ;X2,2(�)) + ‖λL‖Lr (I ;X2,2(�))}.

(3.35)

Thus, (φL , θL , uL , μL) ∈ Z4
2,r (Q)×Z2

2,r (Q)×V2
2,r (Q)× Lr (I ; X2,2(�)), and it

is the weak solution to (2.4). The existence of the associated pressure pL ∈ Lr (I ; Ŵ 1,2
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(�)) is a consequence of de Rham’s theorem, see for instance [62, Section IV.1.4],
and we have

‖pL‖Lr (I ;Ŵ 1,2(�)) ≤ c{‖uL‖V2
2,r (Q) + |g|‖φL‖Lr (I ;L2(�))

+ |g|‖γL‖Lr (I ;L2(�)) + ‖ f L‖Lr (I ;L2
σ (�))}. (3.36)

Taking the sum of the estimates (3.33)–(3.36) leads to (3.31). �

Remark 3.17. The preceding theorem is also validwhen the condition f L ∈ L2(I ; L2
σ

(�)) is replaced by f L ∈ L2(I ; L2(�)). Indeed, the weak solution uL is the same
for source functions f L ∈ L2(I ; L2(�)) and its projection P2 f L ∈ L2(I ; L2

σ (�)).
However, the pressures would be different, that is, if pL is the pressure corresponding
to f L , then the pressure associated with P2 f L would be pL − πL , where πL ∈
Lr (I ; Ŵ 1,2(�)) satisfies f L = P2 f L + ∇πL .

The remaining part of this section is concerned with the existence, uniqueness, and
stability of weak and very weak solutions to the linear system (2.4). Let us start with
weak solutions.

Theorem 3.18. Let p, q, s, r ∈ (1,∞) where q ≤ s. Suppose that (3.1), (3.16),
(3.19) and (3.26) hold. Then, the linear system (2.4) admits a unique weak solution

(φL , θL , uL , μL) ∈ Z3
q,r (Q) × Z1

s,r (Q) × V1
p,r (Q) × Lr (I ;W 1,q

0 (�)).

If f L ∈ Lr (I ;W−1,p(�)), then there is a unique associated pressure pL ∈ W−1,r

(I ; L̂ p(�)). In addition, there exists a constant c > 0 independent on the solution,
source functions and initial data for which

‖φL‖Z3
q,r (Q)+‖θL‖Z1

s,r (Q)+‖uL‖V1
p,r (Q) + ‖μL‖

Lr (I ;W 1,p
0 (�))

+ ‖pL‖W−1,r (I ;L̂ p(�))

≤ c{‖φ0L‖Z3
q,r (�) + ‖θ0L‖Z1

s,r (�) + ‖u0L‖V 1
p,r (�) + ‖σL‖Lr (I ;W−1,q (�))

+ ‖λL‖
Lr (I ;W 1,q

0 (�))
+ ‖hL‖Lr (I ;W−1,s (�)) + ‖ f L‖Lr (I ;W−1,p(�))}. (3.37)

Proof. Following the argument in Theorem3.16,wefirst consider the equivalent linear
system (3.28). From Lemma 3.8, note that γ0L = θ0L −lhφ0L ∈ Z1

s,r (�)+Z3
q,r (�) =

Z1
s,r (�).

Step 1. Existence. Consider the following linear system
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂t (φ1 − mτ�φ1) + mε�2φ1 − ε

mτ 2
φ1 = σL + m�λL + mlc�γ1 in Q,

∂tγ1 − κ�γ1 = hL in Q,

∂tu1 − ν�u1 + ∇p1 = f L in Q,

div u1 = 0 in Q,

φ1 = �φ1 = 0, γ1 = 0, u1 = 0 on �,

φ1(0) = φ0L , γ1(0) = γ0L , u1(0) = u0L in �.

(3.38)
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Notice that the differential equations for u1 and γ1 are independent to each other,
while that of φ1 depends only on γ1. From Theorem 3.2 and Theorem 3.6, we infer
that the Stokes and heat equations in this system have respective uniqueweak solutions
u1 ∈ V1

p,r (Q) and γ1 ∈ Z1
s,r (Q), and these enjoy the following estimates:

‖u1‖V1
p,r (Q) ≤ c{‖ f L‖

Lr (I ;X−1,p
σ (�))

+ ‖u0L‖V 1
p,r (�)} (3.39)

‖γ1‖Z1
s,r (Q) ≤ c{‖hL‖Lr (I ;W−1,s (�)) + ‖γ0L‖Z1

s,r (�)}. (3.40)

In addition, if f L ∈ Lr (I ;W−1,p(�)), then we have a unique associated pressure
p1 ∈ W−1,r (I ; L̂ p(�)) satisfying

‖p1‖W−1,r (I ;L̂ p(�)) ≤ c{‖ f L‖Lr (I ;W−1,p(�)) + ‖u0L‖V 1
p,r (�)}. (3.41)

From the condition q ≤ s, we obtain W 1,s
0 (�) ↪→ W 1,q

0 (�) and W−1,s(�) ↪→
W−1,q(�). Thus, m�λL + mlc�γ1 ∈ Lr (I ;W−1,q(�)) and

‖m�λL + mlc�γ1‖Lr (I ;W−1,q (�))

≤ c{‖λL‖
Lr (I ;W 1,q

0 (�))
+ ‖γ1‖Lr (I ;W 1,s

0 (�))
}.

One can then use Theorem 3.11 to the viscous biharmonic heat equation in (3.38) to
obtain a unique weak solution φ1 ∈ Z3

q,r (Q) that satisfies the estimate

‖φ1‖Z3
q,r (Q) ≤ c{‖σL‖Lr (I ;W−1,q (�)) + ‖λL‖

Lr (I ;W 1,q
0 (�))

+ ‖γ1‖Lr (I ;W 1,s
0 (�))

+ ‖ψ0L‖Z3
q,r (�)}. (3.42)

Let us define σ1 := −m(β1 − lclh)�φ1 − ε
mτ 2

φ1, f 1 := ((α1 + α2lh)φ1 + α2γ1)g
and h1 := κlh�φ1 + αg · u1 and consider the following linear system:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂t (φ2 − mτ�φ2) + m{ε�2φ2 + (β1 − lclh)�φ2 − lc�γ2} = σ1 in Q,

∂tγ2 − κ�γ2 − κlh�φ2 = αg · u2 + h1 in Q,

∂tu2 − ν�u2 + ∇p2 = P2{((α1 + α2lh)φ2 + α2γ2)g} + f 1 in Q,

div u2 = 0 in Q,

φ2 = �φ2 = 0, γ2 = 0, u2 = 0 on �,

φ2(0) = 0, γ2(0) = 0, u2(0) = 0 in �.

(3.43)

In virtue of the Sobolev embedding theorem W 1,s(�) ↪→ L2(�) for any s ≥ 1,
we deduce that σ1 ∈ Lr (I ;W 1,q

0 (�)) ↪→ Lr (I ; L2(�)), h1 ∈ Lr (I ;W 1,q
0 (�)) +

Lr (I ;W 1,p
0 (�)) ↪→ Lr (I ; L2(�)) and f 1 ∈ Lr (I ; L2(�)). Furthermore, the fol-

lowing estimates hold

‖σ1‖Lr (I ;L2(�)) ≤ c‖φ1‖Lr (I ;X3,q (�)) (3.44)
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‖h1‖Lr (I ;L2(�)) ≤ c{‖φ1‖Lr (I ;X3,q (�)) + ‖u1‖Lr (I ;X1,p
σ (�))

} (3.45)

‖ f 1‖Lr (I ;L2(�)) ≤ c{‖φ1‖Lr (I ;W 1,q
0 (�))

+ ‖γ1‖Lr (I ;W 1,s
0 (�))

}. (3.46)

According to Theorem 3.16 and Remark 3.17, we have a unique weak solution
(φ2, γ2, u2) ∈ Z4

2,r (Q)×Z2
2,r (Q)×V2

2,r (Q) to the system (3.43), and moreover, the
associated pressure satisfies p2 ∈ Lr (I ; Ŵ 1,2(�)). Based on the estimates (3.31) and
(3.44)–(3.46), we deduce

‖φ2‖Z4
2,r (Q) + ‖γ2‖Z2

2,r (Q) + ‖u2‖V2
2,r (Q) + ‖p2‖Lr (I ;Ŵ 1,2(�))

≤ c{‖φ1‖Lr (I ;X3,q (�)) + ‖u1‖Lr (I ;X1,p
σ (�))

+ ‖γ1‖Lr (I ;W 1,s
0 (�))

}. (3.47)

The Sobolev embedding W 1,2(�) ↪→ Ls(�) for any 1 < s < ∞ yields the
following:

Z4
2,r (Q) ↪→ Z3

q,r (Q), Z2
2,r (Q) ↪→ Z1

s,r (Q), V2
2,r (Q) ↪→ V1

p,r (Q).

(3.48)

As a consequence, the sum (ψL , γL , uL) = (ψ1, γ1, u1)+(ψ2, γ2, u2) lies inZ3
q,r (Q)

× Z1
s,r (Q) × V1

p,r (Q) and constitutes a weak solution to the equivalent linear sys-
tem (3.28). With regard to the associated pressure, we have pL := p1 + p2 ∈
W−1,r (I ; L̂ p(�)) since Lr (I ; Ŵ 1,2(�)) ↪→ W−1,r (I ; L̂ p(�)). From (3.39)–(3.42),
(3.47), and the triangle inequality, we obtain

‖φL‖Z3
q,r (Q) + ‖γL‖Z2

s,r (Q) + ‖uL‖V2
p,r (Q) + ‖pL‖W−1,r (I ;L̂ p(�)) ≤ R (3.49)

where R represents the right-hand side of (3.37).
Using the embedding Z3

q,r (Q) ↪→ Z1
s,r (Q) in the estimation of θL = γL + lhφL

and Lr (I ;W 1,s
0 (�)) ↪→ Lr (I ;W 1,q

0 (�)) for that of μL in (3.27), we obtain

‖θL‖Z1
s,r (Q) ≤ c{‖γL‖Z1

s,r (Q) + ‖φL‖Z3
q,r (Q)} (3.50)

‖μL‖
Lr (I ;W 1,q

0 (�))
≤ c{‖φL‖Z3

q,r (Q) + ‖θL‖Lr (I ;W 1,s
0 (�))

+ ‖λL‖
Lr (I ;W 1,q

0 (�))
}.
(3.51)

The inequalities (3.49)–(3.51) imply estimate (3.37).
Step 2. Uniqueness. Let us now establish the uniqueness of the weak solution to
(3.28). By linearity, it is enough to prove that the solution of (3.28) with zero source
terms and initial data is trivial. Let (φL , γL , uL , pL) be such a weak solution having
the regularity as stated by the theorem. First, consider the heat equation

[
∂t γ̃L − κ�γ̃L = h̃L := κlh�φL + αg · uL in Q,

γ̃L = 0 on �, γ̃L(0) = 0 in �.
(3.52)

We have h̃L ∈ Lr (I ;W 1,q
0 (�))+Lr (I ;W 1,p

0 (�)) ↪→ Lr (I ; L2(�)). The classical
maximal parabolic regularity theory for the heat equation with homogeneous Dirichlet
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boundary condition implies that (3.52) has a weak solution γ̃L ∈ Z2
2,r (Q). From the

second embedding in (3.48), Theorem 3.6 and the uniqueness of solution to the heat
equation in the class Z1

s,r (Q), we have γ̃L = γL .
By adapting a similar argument to the Stokes part of the linear system, we have

uL ∈ V2
2,r (Q) due to ((α1+α2lh)φ+α2γ )g ∈ Lr (I ; L2(�)) and the third embedding

in (3.48). For the viscous biharmonic heat equation, we obtain that φL ∈ Z4
2,r (Q) from

mlc�γL − m(β1 − lclh)�φL − ε
mτ 2

φL ∈ Lr (I ; L2(�)) and the first embedding in

(3.48). Here, we used the fact that γL ∈ Z2
2,r (Q).

We conclude that (φL , γL , uL)must vanish according to Theorem 3.16 since φL(0)
= 0, γL(0) = 0 and uL(0) = 0. Thus, we also have ∇pL = 0 almost everywhere in
Q, so that pL is the zero element in W−1,r (I ; L̂ p(�)). This completes the proof of
uniqueness. �

Remark 3.19. It can be seen from the first step in the proof of the preceding theorem
that if lc = 0, then we can drop the condition q ≤ s.

The definition of very weak solutions to (2.4) can be formulated as in the previous
subsections. We leave the details to the reader for this matter; see also the discussion
in the succeeding section.

Theorem 3.20. Suppose that p, q, s, r ∈ (1,∞) where q ≤ s. Let (3.9), (3.18),
(3.25) and

λL ∈ Lr (I ; Lq(�)) (3.53)

be satisfied. Then, the linear system (2.4) has a unique very weak solution

(φL , θL , uL , μL) ∈ Z2
q,r (Q) × Z0

s,r (Q) × V0
p,r (Q) × Lr (I ; Lq(�)).

In addition, if f L ∈ Lr (I ; X−2,p(�)) holds, then there exists a unique associated
pressure pL ∈ W−1,r (I ; Ŵ−1,p(�)). Furthermore, for some constant c > 0 indepen-
dent on the solution, source terms and initial data, it holds that

‖φL‖Z2
q,r (Q) + ‖θL‖Z0

s,r (Q) + ‖uL‖V0
p,r (Q) + ‖μL‖Lr (I ;L p(�)) + ‖pL‖W−1,r (I ;Ŵ−1,p(�))

≤ c{‖φ0L‖Z2
q,r (�) + ‖θ0L‖Z0

s,r (�) + ‖u0L‖V 0
p,r (�) + ‖σL‖Lr (I ;X−2,q (�))

+ ‖λL‖Lr (I ;Lq (�)) + ‖hL‖Lr (I ;X−2,s (�)) + ‖ f L‖Lr (I ;X−2,p(�))}. (3.54)

Proof. Let us pursue the strategy presented in Theorem 3.18 and follow the notations
there. Under the given hypotheses, the Stokes equation in (3.38) possess a very weak
solution such that

‖u1‖V0
p,r (Q) ≤ c{‖ f L‖

Lr (I ;X−2,p
σ (�))

+ ‖u0L‖V 0
p,r (�)} (3.55)

‖p1‖W−1,r (I ;Ŵ−1,p(�)) ≤ c{‖ f L‖Lr (I ;X−2,p(�)) + ‖u0L‖V 0
p,r (�)} (3.56)
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thanks to Theorem 3.2, provided that f L ∈ Lr (I ; X−2,p(�)) in the case of (3.56).
From Lemma 3.8, we see that γ0L ∈ Z0

s,r (�). Thus, Theorem 3.7 implies that the heat
equation in (3.38) possesses a very weak solution with

‖γ1‖Z0
q,r (Q) ≤ c{‖hL‖Lr (I ;X−2,s (�)) + ‖γ0L‖Z0

s,r (�)}. (3.57)

We have X−2,s(�) ↪→ X−2,q(�) since q ≤ s. Hence, m�λL + mlc�γ1 ∈
Lr (I ; X−2,q(�)), and we get

‖m�λL + mlc�γ1‖Lr (I ;X−2,q (�)) ≤ c{‖λL‖Lr (I ;Lq (�)) + ‖γ1‖Lr (I ;Ls (�))}.

By Theorem 3.12 and the previous estimate, we conclude that the biharmonic heat
equation in (3.38) has a very weak solution such that

‖φ1‖Z2
q,r (Q) ≤ c{‖σL‖Lr (I ;X−2,q (�)) + ‖λL‖Lr (I ;Lq (�))

+ ‖γ1‖Lr (I ;Ls (�)) + ‖ψ0L‖Z2
q,r (�)}. (3.58)

We utilize the above information in the other linear system (3.43). Observe that we
have σ1 ∈ Lr (I ; Lq(�)) ↪→ Lr (I ;W−1,2(�)), f 1 ∈ Lr (I ; X2,q(�)) + Lr (I ; Ls

(�)) ↪→ Lr (I ;W−1,2(�)) and h1 ∈ Lr (I ; Lq(�))+Lr (I ; L p(�)) ↪→ Lr (I ;W−1,2

(�)). Invoking Theorem 3.18 with p = q = s = 2, we see that (3.43) has a weak
solution satisfying the estimate

‖φ2‖Z3
2,r (Q) + ‖γ2‖Z1

2,r (Q) + ‖u2‖V1
2,r (Q) + ‖p2‖W−1,r (I ;L̂2(�))

≤ c{‖φ1‖Lr (I ;X2,q (�)) + ‖u1‖Lr (I ;L p
σ (�)) + ‖γ1‖Lr (I ;Ls (�))}. (3.59)

Due to the continuous embeddings Z3
2,r (Q) ↪→ Z2

q,r (Q), Z1
2,r (Q) ↪→ Z0

s,r (Q),

V1
2,r (Q) ↪→ V0

p,r (Q) andW−1,r (I ; L̂2(�)) ↪→ W−1,r (I ; Ŵ−1,p(�)), it follows that
the sum (ψL , γL , uL) = (ψ1, γ1, u1)+ (ψ2, γ2, u2) belongs toZ2

q,r (Q)×Z0
s,r (Q)×

V0
p,r (Q), and it is a very weak solution to the linear system (2.4) having the associated

pressure pL = p1 + p2 ∈ W−1,r (I ; Ŵ−1,p(�)). Moreover, (3.55)–(3.59) leads to

‖φL‖Z2
q,r (Q) + ‖γL‖Z0

s,r (Q) + ‖uL‖V0
p,r (Q) + ‖pL‖W−1,r (I ;Ŵ−1,p(�)) ≤ R (3.60)

whereR denotes the right-hand side of (3.54). The embeddings Z2
q,r (Q) ↪→ Z0

s,r (Q)

and Lr (I ; Ls(�)) ↪→ Lr (I ; Lq(�)) yield

‖θL‖Z0
s,r (Q) ≤ c{‖γL‖Z0

s,r (Q) + ‖φL‖Z2
q,r (Q)} (3.61)

‖μL‖Lr (I ;Lq (�)) ≤ c{‖φL‖Z2
q,r (Q) + ‖θL‖Lr (I ;Ls (�)) + ‖λL‖Lr (I ;Lq (�))}. (3.62)

From (3.60)–(3.62), we deduce (3.54).
The uniqueness of the very weak solution can be established by following the same

method as in the second step in the proof of Theorem 3.18. �
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4. Well-posedness of the nonlinear system

In this section, we prove the existence, uniqueness and stability of weak and very
weak solutions to the nonlinear system (1.1). This section is divided into several parts,
namely, nonlinear estimates, definition of weak and very weak solutions to (1.1), well-
posedness of an auxiliary system that includes the nonlinear part (2.5), and finally that
of (1.1). Application to sources with values in the duals of some Hölder spaces will
be presented at the end.

4.1. Nonlinear estimates

The aim here is to establish the continuity of the bilinear operators associated
with the convection and surface tension terms. Let s0, s1, s2 ∈ [1,∞] be such that
1
s0

+ 1
s1

+ 1
s2

≤ 1.We define the trilinear forms b : Ls0(�)×Ls1(�)×W1,s2(�) → R

and b : Ls0(�) × Ls1(�) × W 1,s2(�) → R according to

b(u, v,w) := −
∫
�

(u ⊗ v) : ∇w dx

b(u, μ, φ) := −
∫
�

u · (μ∇φ) dx

for u ∈ Ls0(�), v ∈ Ls1(�), w ∈ W1,s2(�), μ ∈ Ls1(�), and φ ∈ W 1,s2(�).
One can easily check that b and b are well-defined and bounded due to the Hölder’s
inequality. Notice that the last argument for b and b contain the gradient. For time-
dependent functions, we have the following lemma, which follows from the Hölder’s
inequality as well.

Lemma 4.1. Let s1, r1 ∈ [1,∞] and s0, s2, r0, r2 ∈ (1,∞) with 1
s0

+ 1
s1

+ 1
s2

≤ 1

and 1
r0

+ 1
r1

+ 1
r2

≤ 1. Then, the following bilinear operators

B : Lr0(I ; Ls0(�)) × Lr1(I ; Ls1(�)) → Lr′
2(I ;W−1,s′

2(�))

C : Lr0(I ; Ls0(�)) × Lr1(I ; Ls1(�)) → Lr′
2(I ;W−1,s′

2(�))

S : Lr1(I ; Ls1(�)) × Lr2(I ;W 1,s2(�)) → Lr′
0(I ; Ls′

0(�))

defined, respectively, by

〈B(u, v),w〉
Lr′

2 (I ;W−1,s′
2 (�)),Lr2 (I ;W1,s2

0 (�))
=

∫ T

0
b(u, v,w) dt

〈C(u, μ), φ〉
Lr′

2 (I ;W−1,s′
2 (�)),Lr2 (I ;W 1,s2

0 (�))
=

∫ T

0
b(u, μ, φ) dt

〈S(μ, φ), u〉
Lr′

0 (I ;Ls′
0 (�)),Lr0 (I ;Ls0 (�))

=
∫ T

0
b(u, μ, φ) dt

are continuous.
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Based on the above definitions, we set div (u⊗ v) = B(u, v), div (μu) = C(u, μ)

and μ∇φ = −S(μ, φ). In the forthcoming analysis, in particular to the estimation of
the time derivatives, we need the function spaces

X 2∞,2(Q) := L∞(I ;W 1,2
0 (�)) ∩ L2(I ; X2,2(�))

X 1∞,2(Q) := L∞(I ; L2(�)) ∩ L2(I ;W 1,2
0 (�))

U1∞,2(Q) := L∞(I ; L2
σ (�)) ∩ L2(I ; X1,2

σ (�)).

The following lemma is concerned with some restrictions of the operators C , B,
and S. These will later play important roles in the Faedo–Galerkin method.

Lemma 4.2. Suppose that q ∈ ( 43 ,∞) and s, p, r ∈ [4,∞). Then, the following
bilinear operators are continuous

B : [V0
p,r (Q) + U1∞,2(Q)] × [V0

p,r (Q) + U1∞,2(Q)] → L2(I ;W−1,2(�))

C : [V0
p,r (Q) + U1∞,2(Q)] × [Z0

s,r (Q) + X 1∞,2(Q)] → L2(I ;W−1,2(�))

S : [Lr (I ; Lq (�)) + L2(I ;W 1,2
0 (�))] × [Z2

q,r (Q) + X 2∞,2(Q)] → L2(I ;W−1,2(�)).

Proof. From the Gagliardo–Nirenberg and Hölder inequalities

‖u‖L4(I ;L4(�)) ≤ c{‖u‖L∞(I ;L2
σ (�))‖u‖L2(I ;X1,2

σ (�))
}

for each u ∈ U1∞,2(Q). Thus, U1∞,2(Q) ↪→ L4(I ; L4(�)). Also, V0
p,r (Q) ↪→

L4(I ; L4(�)) since p, r ≥ 4. The continuity of B with respect to the indicated
function spaces follows immediately from V0

p,r (Q) + U1∞,2(Q) ↪→ L4(I ; L4(�))

and Lemma 4.1 with s0 = s1 = r0 = r1 = 4 and s2 = r2 = 2. In a similar
way, we have the continuity of C with respect to the above function spaces since
Z0
s,r (Q) + X 1∞,2(Q) ↪→ L4(I ; L4(�)).

Let us show the continuity of S. First, we assume that 4
3 < q < 2 and consider four

scenarios. Here, we use Lemma 4.1 in each case.
First, we have Z2

q,r (Q) ↪→ Lr (I ;W 2,q(�)) ↪→ Lr (I ;W 1,2q/(2−q)(�)) from the
Sobolev embedding theorem. With s0 = 2q/(3q − 4), s1 = q, s2 = 2q/(2 − q),
r0 = 2, and r1 = r2 = r in Lemma 4.1, we see that

S : Lr (I ; Lq(�)) × Z2
q,r (Q) → L2(I ; L2q/(4−q)(�)) (4.1)

is continuous since s′
0 = 2q/(4 − q).

Using the Gagliardo–Nirenberg and Hölder inequalities as before, we obtain the
continuous embedding X 2∞,2(Q) ↪→ L4(I ;W 1,4(�)). With the parameters s0 =
4q/(3q − 4), s1 = q, s2 = 4, r0 = 2, r1 = r , and r2 = 4 in Lemma 4.1, we have the
continuity of

S : Lr (I ; Lq(�)) × X 2∞,2(Q) → L2(I ; L4q/(4+q)(�)) (4.2)
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because s′
0 = 4q/(4 + q).

From [9, Theorem III.4.10.2] and Lemma 3.9 with 0 < δ < 1
2 , we have

Z2
q,r (Q) ↪→ C( Ī ; Z2

q,r (�)) ↪→ L∞(I ;W 2−2/r−δ,q(�)) ↪→ L∞(I ;W 1,q(�)).

Also, L2(I ;W 1,2
0 (�)) ↪→ L2(I ; L2q/(q−1)(�)) by the Sobolev embedding theorem.

Hence, using the parameters s0 = s1 = 2q/(q−1), s2 = q, r0 = r1 = 2, and r2 = ∞
in Lemma 4.1, we deduce the continuity of

S : L2(I ;W 1,2
0 (�)) × Z2

q,r (Q) → L2(I ; L2q/(q+1)(�)) (4.3)

since s′
0 = 2q/(q + 1).

Finally, notice that L2(I ;W 1,2
0 (�)) ↪→ L2(I ; L4(�)) and X 2∞,2(Q) ↪→ L∞

(I ;W 1,2(�)). Using s0 = 4, s1 = 4, s2 = 2, r0 = r1 = 2, and r2 = ∞ in Lemma
4.1, we obtain the continuity of

S : L2(I ;W 1,2
0 (�)) × X 2∞,2(Q) → L2(I ; L4/3(�)). (4.4)

Invoking the continuity of the S provided by (4.1)–(4.4), along with the definition
of the norm for the sum of Banach spaces and L2(I ; Ls(�)) ↪→ L2(I ;W−1,2(�)) for
any s ∈ (1,∞), we obtain the continuity of the bilinear operator S under the function
spaces stated by the lemma.
Now for the case q ≥ 2, we just need to use the continuous embeddings Lr (I ; Lq

(�)) ↪→ Lr (I ; Lq∗
(�)) and Z2

q,r (Q) ↪→ Z2
q∗,r (Q) for a q∗ ∈ ( 43 , 2), and apply the

above result. �

Corollary 4.3. Let q ∈ (1,∞), s, p ∈ [ 43 ,∞), and r ∈ [4,∞). Then, the following
bilinear operators are continuous

B : [V1
p,r (Q) + U1∞,2(Q)] × [V1

p,r (Q) + U1∞,2(Q)] → L2(I ;W−1,2(�))

C : [V1
p,r (Q) + U1∞,2(Q)] × [Z1

s,r (Q) + X 1∞,2(Q)] → L2(I ;W−1,2(�))

S : [Lr (I ;W 1,q
0 (�)) + L2(I ;W 1,2

0 (�))] × [Z3
q,r (Q) + X 2∞,2(Q)] → L2(I ;W−1,2(�)).

Proof. The assumptions on p, s, and q give us, due to the Sobolev embedding theorem,
the following continuous embeddings:

V1
p,r (Q) ↪→ V0

4,r (Q), Z1
s,r (Q) ↪→ Z0

4,r (Q), (4.5)

Z3
q,r (Q) ↪→ Z2

2,r (Q), W 1,q
0 (�) ↪→ L2(�). (4.6)

We obtain the corollary by simply applying Lemma 4.2 with q = 2 and
s = p = 4. �

The next lemma will imply the continuity of the cubic function F that appears in
the equation for the chemical potential.
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Lemma 4.4. Let q ∈ ( 43 ,∞), r ∈ [4,∞), and k be a positive integer. Thenφ1 · · ·φk ∈
L2(I ;W 1,2

0 (�)) for every φ1, . . . , φk ∈ Z2
q,r (Q) + X 2∞,2(Q). Moreover, there exists

a constant ck > 0 independent on φ1, . . . , φk such that

‖φ1 · · ·φk‖L2(I ;W 1,2
0 (�))

≤ ck‖φ1‖Z2
q,r (Q)+X 2∞,2(Q) · · · ‖φk‖Z2

q,r (Q)+X 2∞,2(Q).

Proof. Since Z2
q,r (Q) + X 2∞,2(Q) ↪→ L2(I ;W 1,2

0 (�)), we may assume that k > 1.

Taking 0 < δ <
3q−4
2q and using r ≥ 4, we have (2 − 2

r − δ)q ≥ ( 32 − δ)q > 2, and
thus

Z2
q,r (Q) ↪→ L∞(I ;W 2−2/r−δ,q(�)) ↪→ L∞(I ; L∞(�))

by Lemma 3.9 and the Sobolev embedding. Likewise, X 2∞,2(Q) ↪→ L∞(I ; Ls(�))

for any s ∈ [1,∞). Hence, Z2
q,r (Q) + X 2∞,2(Q) ↪→ L2k(I ; L2k(�)) and by the

Hölder’s inequality

‖φ1 · · ·φk‖L2(I ;L2(�)) ≤ ‖φ1‖L2k (I ;L2k (�)) · · · ‖φk‖L2k (I ;L2k (�))

≤ ck‖φ1‖Z2
q,r (Q)+X 2∞,2(Q) · · · ‖φk‖Z2

q,r (Q)+X 2∞,2(Q).

We compute the gradient by the product rule, so that

∇(φ1 · · ·φk) =
k∑
j=1

φ1 · · ·φ j−1φ j+1 · · ·φk∇φ j .

Note that Z2
q,r (Q) + X 2∞,2(Q) ↪→ L2(I ;W 1,4(�)) ∩ L∞(I ; L4(k−1)(�)). Thus, by

applying Hölder’s inequality to the latter equation, one has

‖∇(φ1 · · ·φk)‖L2(I ;L2(�)) ≤
k∑
j=1

‖∇φ j‖L2(I ;L4(�))

∏
l �= j

‖φl‖L∞(I ;L4(k−1)(�))

≤ ck‖φ1‖Z2
q,r (Q)+X 2∞,2(Q) · · · ‖φk‖Z2

q,r (Q)+X 2∞,2(Q).

Combining this with the earlier estimate establishes the lemma. �
The first statement of the succeeding corollary follows immediately from Lemma

4.4, while the second is a result of the first and the embedding Z3
q,r (Q) ↪→ Z2

2,r (Q)

for q ∈ (1,∞).

Corollary 4.5. Let q ∈ ( 43 ,∞) and r ∈ [4,∞). Then, the map F : Z2
q,r (Q) +

X 2∞,2(Q) → L2(I ;W 1,2
0 (�)) defined by F(φ) = β0φ

3−β1φ is continuous and there

is a constant c > 0 such that for every φ ∈ Z2
q,r (Q) + X 2∞,2(Q), we have

‖F(φ)‖L2(I ;W 1,2
0 (�))

≤ c{‖φ‖3Z2
q,r (Q)+X 2∞,2(Q)

+ ‖φ‖Z2
q,r (Q)+X 2∞,2(Q)}.

If q ∈ (1,∞) and r ∈ [4,∞), then F : Z3
q,r (Q) + X 2∞,2(Q) → L2(I ;W 1,2

0 (�))

is continuous and there exists a constant c > 0 such that for every φ ∈ Z3
q,r (Q) +

X 2∞,2(Q), it holds that

‖F(φ)‖L2(I ;W 1,2
0 (�))

≤ c{‖φ‖3Z3
q,r (Q)+X 2∞,2(Q)

+ ‖φ‖Z3
q,r (Q)+X 2∞,2(Q)}.
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4.2. Definitions of weak and very weak solutions to the nonlinear system

Let us begin with the definition of weak solutions to the nonlinear system (1.1). We
consider the following assumption:

1 < q < 2,
4

3
≤ s, p < 2, 4 ≤ r < ∞, q ≤ s. (4.7)

For the regularity of the source functions, we shall take the following:

⎡
⎢⎢⎢⎢⎣

σ ∈ Lr (I ;W−1,q(�)) + L2(I ;W−1,2(�)),

h ∈ Lr (I ;W−1,s(�)) + L2(I ;W−1,2(�)),

f ∈ Lr (I ;W−1,p(�)) + L2(I ;W−1,2(�)),

λ ∈ Lr (I ;W 1,q
0 (�)) + L2(I ;W 1,2

0 (�)).

(4.8)

As for the initial data, we consider

φ0 ∈ Z3
q,r (�) + X2,2(�), θ0 ∈ Z1

s,r (�) + L2(�), u0 ∈ V 1
p,r (�) + L2

σ (�).

(4.9)

These conditions include the situation where a Hilbert space framework can be used,
by simply taking the first components in the above sums to be zero.

Definition 4.6. Suppose that (4.7) is satisfied.A tuple (φ, θ, u, μ) having components
φ ∈ Z3

q,r (Q) + Z3
2,2(Q), θ ∈ Z1

s,r (Q) + Z1
2,2(Q), u ∈ V1

p,r (Q) + V1
2,2(Q) and

μ ∈ Lr (I ;W 1,q
0 (�)) + L2(I ;W 1,2

0 (�)) is called a weak solution to (1.1) if the
initial condition (φ(0), θ(0), u(0)) = (φ0, θ0, u0) holds in [Z3

q,r (�) + X2,2(�)] ×
[Z1

s,r (�) + L2(�)] × [V 1
p,r (�) + L2

σ (�)], the following variational equations

(a)

∫ T

0
{(∂tφ, ρ)L2(�) + b(u, φ, ρ) + maq(μ, ρ)} dt

=
∫ T

0
〈σ, ρ〉

W−1,q (�),W 1,q′
0 (�)

dt

(b)

∫ T

0
{〈∂tθ, �〉

W−1,s (�),W 1,s′
0 (�)

− lh(∂tφ, �)L2(�)} dt

+
∫ T

0
{b(u, θ − lhφ, �) + κas(θ, �) − (αg · u, �)L2(�)} dt

=
∫ T

0
〈h, �〉

W−1,s (�),W 1,s′
0 (�)

dt
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(c)

∫ T

0
{〈∂tu, ρ〉

X−1,p
σ (�),X1,p′

σ (�)
+ b(u, u, ρ) + νa p(u, ρ)} dt

=
∫ T

0
{(�(φ, θ)g, ρ)L2(�) − Kb(ρ, μ − lcθ, φ) + 〈 f , ρ〉

X−1,p
σ (�),X1,p′

σ (�)
} dt

hold for every test functionsρ ∈ Lr ′
(I ;W 1,q ′

0 (�))∩L2(I ;W 1,2
0 (�)),� ∈ Lr ′

(I ;W 1,s′
0

(�)) ∩ L2(I ;W 1,2
0 (�)), ρ ∈ Lr ′

(I ; X1,p′
σ (�)) ∩ L2(I ; X1,2

σ (�)), and

μ = τ∂tφ − ε�φ + F(φ) + lcθ + λ a.e. Q. (4.10)

A function p ∈ P1
p,r (Q) := W−1,r (I ; L̂ p(�)) + W−1,2(I ; L̂2(�)) is called an asso-

ciated pressure if the fourth equation in (1.1) is satisfied in W−1,r (I ;W−1,p(�)) +
W−1,2(I ;W−1,2(�)), that is, we have

〈∂tu, �〉Y1
p,r (Q)′,Y1

p,r (Q) +
∫ T

0
{b(u, u, �) + νa p(u, �)} dt − 〈p, div �〉P1

p,r (Q),P1
p,r (Q)′

=
∫ T

0
{(�(φ, θ)g, �)L2(�) − Kb(�, φ, μ − lcθ) + 〈 f , �〉

W−1,p(�),W1,p′
0 (�)

} dt

for every � ∈ Y1
p,r (Q) := W 1,r ′

0 (I ;W 1,p′
0 (�)) ∩ W 1,2

0 (I ;W 1,2
0 (�)). �

Let us give some comments in the above definition. The duality pairings in the
above variational equations are meaningful. We consider the right-hand side of (a)
as an illustration. From the duality properties between the sum and intersection of
reflexive Banach spaces, we obtain

[Lr ′
(I ;W 1,q ′

0 (�)) ∩ L2(I ;W 1,2
0 (�))]′

= Lr (I ;W−1,q(�)) + L2(I ;W−1,2(�)).

Given ρ ∈ Lr ′
(I ;W 1,q ′

0 (�))∩ L2(I ;W 1,2
0 (�)), we have ρ(t) ∈ W 1,q ′

0 (�) for almost
every t ∈ I . Also, σ(t) ∈ W−1,q(�) + W−1,2(�) = W−1,q(�) for almost every
t ∈ I since q < 2. Thus,

〈σ, ρ〉
Lr (I ;W−1,q (�))+L2(I ;W−1,2(�)),Lr ′ (I ;W 1,q′

0 (�))∩L2(I ;W 1,2
0 (�))

=
∫ T

0
〈σ, ρ〉

W−1,q (�),W 1,q′
0 (�)

dt.

The other bilinear terms in (a)–(c) can be dealt with a similar reasoning.
Next, we justify that the trilinear terms in (a)–(c) are also well-defined. First, note

that

b(u, φ, ρ) = 〈C(u, φ), ρ〉W−1,2(�),W 1,2
0 (�)
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is integrable over I thanks toCorollary4.3 and the embeddingsV1
2,2(Q) ↪→ U1∞,2(Q),

Z3
q,r (Q) ↪→ Z1

s,r (Q), and Z3
2,2(Q) ↪→ X 2∞,2(Q). Second, by using the same argu-

ment along with Z2
2,2(Q) ↪→ X 1∞,2(Q), the following convection terms

b(u, θ − lhφ, �) = 〈C(u, θ − lhφ), �〉W−1,2(�),W 1,2
0 (�)

b(u, u, ρ) = 〈B(u, u), ρ〉W−1,2(�),W1,2
0 (�)

are integrable over I . Finally, the trilinear term

b(ρ, μ − lcθ, φ) = 〈S(φ, μ − lcθ), ρ〉W−1,2(�),W1,2
0 (�)

associated with the surface tension is also integrable over I thanks to the continuity
of the embedding Z1

s,r (Q) + Z1
2,2(Q) ↪→ Lr (I ;W 1,q

0 (�)) + L2(I ;W 1,2
0 (�)) since

q ≤ s. Furthermore, the equation for the chemical potential given by (4.10) can be
taken as equality in the function space Lr (I ;W 1,q

0 (�))+L2(I ;W 1,2
0 (�)) byCorollary

4.5.
We now turn to the definition of very weak solutions to (1.1). In this case, we take

source functions such that
⎡
⎢⎢⎢⎢⎣

σ ∈ Lr (I ; X−2,q(�)) + L2(I ;W−1,2(�)),

h ∈ Lr (I ; X−2,s(�)) + L2(I ;W−1,2(�)),

f ∈ Lr (I ; X−2,p(�)) + L2(I ;W−1,2(�)),

λ ∈ Lr (I ; Lq(�)) + L2(I ;W 1,2
0 (�)),

(4.11)

and initial data for which

φ0 ∈ Z2
q,r (�) + X2,2(�), θ0 ∈ Z0

s,r (�) + L2(�), u0 ∈ V 0
p,r (�) + L2

σ (�).

(4.12)

Compared to that of the weak solutions, observe that the main differences are the
first components in the sums. These are in fact the function spaces corresponding to
the linearized system. The definition of very weak solutions to the nonlinear system
(1.1) can be adapted as in the previous section. Nevertheless, we present the precise
formulation here for the sake of clarity and completeness, in particular, to those non-
linear terms corresponding to convection and surface tension. In this direction, the
following assumption will be considered

4

3
< q < ∞, 4 ≤ s, p, r < ∞, q ≤ s. (4.13)

Definition 4.7. Let (4.13) be satisfied.We say that (φ, θ, u, μ) having the components
φ ∈ Z2

q,r (Q) +Z3
2,2(Q), θ ∈ Z0

s,r (Q) +Z1
2,2(Q), u ∈ V0

p,r (Q) +V1
2,2(Q) and μ ∈

Lr (I ; Lq(�))+L2(I ;W 1,2
0 (�)) a very weak solution to (1.1) if (φ(0), θ(0), u(0)) =

(φ0, θ0, u0) holds in [Z2
q,r (�)+X2,2(�)]×[Z0

s,r (�)+L2(�)]×[V 0
p,r (�)+L2

σ (�)],
the following variational equations
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(a)
∫ T

0
{〈∂tφ, ρ〉Lq (�),Lq′

(�)
+ b(u, φ, ρ) − m〈μ,�ρ〉Lq (�),Lq′

(�)
} dt

=
∫ T

0
〈σ, ρ〉X−2,q (�),X2,q′

(�)
dt

(b)
∫ T

0
{〈∂tθ, �〉X−2,s (�),X2,s′ (�)

− lh〈∂tφ, �〉Lq (�),Lq′
(�)

} dt

+
∫ T

0
{b(u, θ − lhφ, �) − κ〈θ,��〉Ls (�),Ls′ (�)

− 〈αg · u, �〉L p(�),L p′ (�)
} dt

=
∫ T

0
〈h, �〉X−2,s (�),X2,s′ (�)

} dt
(c)

∫ T

0
{〈∂tu, ρ〉

X−2,p
σ (�),X2,p′

σ (�)
+ b(u, u, ρ) − ν〈u, P p′�ρ〉

L p
σ (�),L p′

σ (�)
} dt

=
∫ T

0
{〈�(φ, θ)g, ρ〉Lq (�),Lq′

(�)
− Kb(ρ, μ − lcθ, φ)} dt

+
∫ T

0
〈 f , ρ〉

X−2,p
σ (�),X2,p′

σ (�)
dt

are satisfied by any test functions ρ ∈ Lr ′
(I ; X2,q ′

(�)) ∩ L2(I ;W 1,2
0 (�)), � ∈

Lr ′
(I ; X2,s′(�)) ∩ L2(I ;W 1,2

0 (�)), ρ ∈ Lr ′
(I ; X2,p′

σ (�)) ∩ L2(I ; X1,2
σ (�)), and

(4.10) holds. Also, p ∈ P0
p,r (Q) := W−1,r (I ; Ŵ−1,p(�)) + W−1,2(I ; L̂2(�)) is

called an associated pressure if the fourth equation in (1.1) is satisfied in W−1,r

(I ;W−2,p(�)) + W−1,2(I ;W−1,2(�)), that is, the equation

〈∂tu, �〉Y0
p,r (Q)′,Y0

p,r (Q) +
∫ T

0
{b(u, u, �) − ν〈u,��〉L p(�),L p′ (�)

} dt

− 〈p, div �〉P0
p,r (Q),P0

p,r (Q)′ =
∫ T

0
〈�(φ, θ)g, �〉Lq (�),Lq′

(�)
dt

−
∫ T

0
Kb(�, φ, μ − lcθ) dt +

∫ T

0
〈 f , �〉

W−2,p(�),W2,p′
0 (�)

dt

holds for every � ∈ Y0
p,r (Q) := W 1,r ′

0 (I ;W 2,p′
0 (�)) ∩ W 1,2

0 (I ;W 1,2
0 (�)). �

By arguing as in the case of the weak solutions, each term in the above variational
equations is well-defined. In particular, due to Lemma 4.2 and Corollary 4.5, the
nonlinear terms are meaningful.

Remark 4.8. A weak solution in the sense of Definition 4.6 is also a very weak so-
lution in the sense of Definition 4.7. This follows immediately from the continu-
ous embeddings (4.5) and (4.6). For the associated pressure, we use the fact that
L̂ p(�) ↪→ Ŵ−1,p(�) ↪→ Ŵ−1,4(�) for p ≥ 4.
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4.3. Well-posedness of an auxiliary PDE system

To accommodate the analysis both for the existence and uniqueness of weak solu-
tions to the nonlinear part (2.5), we consider the following auxiliary PDE system:
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂tφN + χdiv (φNuN ) + div (φN ũ) + div (φ̃uN ) − m�μN = σ̃ in Q,

μN = τ∂tφN − ε�φN + χ(F(φ̃ + φN ) − F(φ̃)) + G(φ̃)φN + lcθN + λ̃ in Q,

∂tθN − lh∂tφN + χdiv ((θN − lhφN )uN ) + div ((θN − lhφN )̃u)

+ div ((θ̃ − lhφ̃)uN ) − κ�θN = αg · uN + h̃ in Q,

∂tuN + χdiv (uN ⊗ uN ) + div (uN ⊗ ũ) + div (̃u ⊗ uN )

− ν�uN + ∇pN = χK(μN − lcθN )∇φN + K(μ̃ − lcθ̃ )∇φN

+K(μN − lcθN )∇φ̃ + �(φN , θN )g + f̃ in Q,

div uN = 0 in Q,

φN = �φN = 0, θN = 0, uN = 0 on �,

φN (0) = φ0N , θN (0) = θ0N , uN (0) = u0N in �,

(4.14)

where χ ≥ 0 and G(φ̃) is a polynomial of degree at most 2, that is, G(φ̃) = χ1φ̃
2 +

χ2φ̃ +χ3 with χ1, χ2, χ3 ∈ R. This auxiliary system also appears later in the proof of
smoothness of the operator that maps the source functions and the initial data to the
weak or very weak solution. In (4.14), (φN , θN , uN , μN , pN ) is the unknown vector
function, while the components of (φ̃, θ̃ , ũ, μ̃) are called the frozen coefficients. These
coefficients will correspond to the solution of the linear part (2.4).

We now proceed with a classical spectral Faedo–Galerkin method for the well-
posedness of (4.14). To this end, let {w j }∞j=1 ⊂ X2,2

σ (�) and {ρ j }∞j=1 ⊂ X2,2(�) be

orthonormal bases for L2
σ (�) and L2(�) that consist of eigenfunctions of the Stokes

operator A2 and the Dirichlet Laplacian A2, respectively. The existence of such bases
is guaranteed from the fact that A2 : X2,2

σ (�) → L2
σ (�) and A2 : X2,2(�) → L2(�)

are positive operators, respectively, having compact resolvents.
Denote byW k and Rk the linear spans of {w j }kj=1 and {ρ j }kj=1, respectively. Define

the orthogonal projections Πk : L2
σ (�) → W k and Pk : L2(�) → Rk by

Πkw =
k∑
j=1

(w,w j )L2
σ (�)u j , Pkϕ =

k∑
j=1

(ϕ, ρ j )L2(�)ρ j .

Note that Πk ∈ L(W k, X1,2
σ (�)) and Pk ∈ L(Rk,W

1,2
0 (�)), and hence, for the

duals we have Π ′
k ∈ L(X1,2

σ (�)′,W k) and P ′
k ∈ L(W−1,2(�), Rk). Here, we have

identified the duals of the finite-dimensional spaces W k and Rk with themselves.

Theorem 4.9. Let (4.13)be satisfiedand suppose thatwehave source functions σ̃ , h̃ ∈
L2(I ;W−1,2(�)), f̃ ∈ L2(I ;W−1,2(�)), λ̃ ∈ L2(I ;W 1,2

0 (�)), and initial data
φ0N ∈ X2,2(�), θ0N ∈ L2(�), u0N ∈ L2

σ (�) in (4.14). Moreover, suppose that
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the frozen coefficients satisfy φ̃ ∈ Z2
q,r (Q) + X 2∞,2(Q), θ̃ ∈ Z0

s,r (Q) + X 1∞,2(Q),

ũ ∈ V0
p,r (Q) + U1∞,2(Q) and μ̃ ∈ Lr (I ; Lq(�)) + L2(I ;W 1,2

0 (�)). Then, (4.14)
has a unique weak solution

(φN , θN , uN , μN ) ∈ Z3
2,2(Q) × Z1

2,2(Q) × V1
2,2(Q) × L2(I ;W 1,2

0 (�)). (4.15)

Furthermore, there is a unique associated pressure pN ∈ W−1,2(I ; L̂2(�)) and a
continuous and monotone increasing function C : [0,∞) → [0,∞), depending
continuously on the norms of the frozen coefficients but not on the source functions,
initial data and weak solution, for which C (0) = 0 and

‖φN‖Z3
2,2(Q) + ‖θN‖Z1

2,2(Q) + ‖uN‖V1
2,2(Q) + ‖μN‖L2(I ;W 1,2

0 (�))
+ ‖pN‖W−1,2(I ;L̂2(�))

≤ C (‖φ0N‖X2,2(�) + ‖θ0N‖L2(�) + ‖u0N‖L2
σ (�) + ‖σ̃‖L2(I ;W−1,2(�))

+ ‖̃λ‖L2(I ;W 1,2
0 (�))

+ ‖h̃‖L2(I ;W−1,2(�)) + ‖ f̃ ‖L2(I ;W−1,2(�)) + |α0g|). (4.16)

Proof. We follow the demonstration given in [55] and divide the proof into four steps:
discretization, a priori estimates, passage to limit and uniqueness. The derivation of
the a priori estimates is more involved due to the limited regularity of the frozen
coefficients. In the proof, C : [0,∞) → [0,∞) will denote a generic monotone
increasing and continuous function such that C (0) = 0.
Step 1. Discretization. Given a positive integer k, consider the projected initial data
φ0Nk = Pkφ0N ∈ Rk , θ0Nk = Pkθ0N ∈ Rk , u0Nk = Πku0N ∈ W k , and the ansatz

φk(t) =
k∑
j=1

αk j (t)ρ j , θk(t) =
k∑
j=1

γk j (t)ρ j , uk(t) =
k∑
j=1

βk j (t)w j ,

where αk j , βk j , γk j ∈ W 1,2(I ) for j = 1, . . . , k, to the following finite-dimensional
approximation of (4.14):
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂tφk + P ′
k[χC(uk, φk) + C (̃u, φk) + C(uk, φ̃)] + mA2μk = P ′

k σ̃

μk = τ∂tφk + εA2φk + Pk[χ(F(φ̃ + φk) − F(φ̃)) + G(φ̃)φk + λ̃] + lcθk

∂tθk − lh∂tφk + P ′
k[χC(uk, θk − lhφk) + C (̃u, θk − lhφk) + C(uk, θ̃ − lhφ̃)]

+ κA2θk = P ′
k[αg · uk + h̃]

∂tuk + Π ′
k[χB(uk, uk) + B(̃u, uk) + B(uk, ũ)] + νA2u = Π ′

k[�(φk, θk)g]
+Π ′

k[ f̃ − χKS(μk − lcθk, φk) − KS(μ̃ − lcθ̃ , φk) − KS(μk − lcθk, φ̃)]
φk(0) = φ0Nk, θk(0) ∈ θ0Nk, uk(0) = u0Nk .

(4.17)

The first three equations are to be understood in the function space L2(I ; Rk), while
the fourth equation in L2(I ;W k). From the Cauchy–Lipschitz theorem, this system
has a unique maximal solution with components φk , μk , θk ∈ W 1,2(Ik; Rk) and
uk ∈ W 1,2(Ik;W k) for some time interval Ik = (0, tk) with 0 < tk ≤ T . The a priori
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estimates that we will derive along with a standard continuation argument will show
that Ik = I for each k.
Step 2. A priori estimates. This is the bulk of the proof. For clarity, we derive these
estimates in several steps, with the corresponding result in bullets.
• L∞(I ;W 1,2

0 (�)) ∩ L2(I ; X2,2(�))-estimate for φk . Taking φk(t) as a test function
in the first equation in (4.17), using b(χuk + ũ, φk, φk) = 0 and integrating by parts
for the term involving μk , we get

1

2

d

dt
‖φk‖2L2(�)

+ b(uk, φk, φ̃)

= m(μk,�φk)L2(�) + 〈̃σ , φk〉W−1,2(�),W 1,2
0 (�)

. (4.18)

The trilinear term can be estimated by Hölder’s inequality andW 1,2
0 (�) ↪→ L4(�) as

follows:

|b(uk, φk, φ̃)| ≤ ‖uk‖L2(�)‖φk‖L4(�)‖∇φ̃‖L4(�)

≤ c{‖uk‖2L2
σ (�)

+ ‖φ̃‖2
W 1,4

0 (�)
‖φk‖2W 1,2

0 (�)
}. (4.19)

For the first term on right-hand side in (4.18), we use the equation for μk given by
the second equation in (4.17) and integrate by parts to obtain

m(μk,�φk)L2(�) = −mτ

2

d

dt
‖∇φk‖2L2(�)

− mε‖�φk‖2L2(�)

+ m(lcθk + λ̃,�φk)L2(�)

+ m(χ(F(φ̃ + φk) − F(φ̃)) + G(φ̃)φk,�φk)L2(�). (4.20)

For the second term on the right-hand side of (4.18), we have

|〈̃σ , φk〉W−1,2(�),W 1,2
0 (�)

| ≤ c{‖σ̃‖2W−1,2(�)
+ ‖φk‖2W 1,2

0 (�)
}. (4.21)

Applying Young’s inequality to the third term on the right-hand side of (4.20) yields

|m(lcθk + λ̃,�φk)L2(�)|
≤ δ‖�φk‖2L2(�)

+ cδ{‖θk‖2L2(�)
+ ‖̃λ‖2L2(�)

}. (4.22)

In what follows, δ will denote a positive constant, taken to be sufficiently small.
Expanding the cubic term in F(φ̃ + φk) and rearranging the terms yield

χ(F(φ̃ + φk) − F(φ̃)) + G(φ̃)φk

= χβ0φ
3
k + 3χβ0φ̃φ

2
k + [G(φ̃) + 3χβ0φ̃

2 − χβ1]φk .
Using Green’s identity and the Hölder and Young inequalities, one has

m(χβ0φ
3
k ,�φk)L2(�) = − 3mχβ0‖φk∇φk‖2L2(�)

(4.23)



   12 Page 40 of 71 G. Peralta J. Evol. Equ.

|m([G(φ̃) + 3χβ0φ̃
2 − χβ1]φk,�φk)L2(�)|

≤ δ‖�φk‖2L2(�)
+ cδ{‖φ̃‖4L8(�)

+ 1}‖φk‖2W 1,2
0 (�)

. (4.24)

In the last inequality, we used the assumption that G is a quadratic form. Integrating
by parts, using Hölder’s inequality and invoking the embeddingsW 1,4

0 (�) ↪→ L∞(�)

and W 1,2
0 (�) ↪→ L4(�), we have

|m(3χβ0φ̃φ
2
k ,�φk)L2(�)|

≤ mχβ0{6|(φk∇φk , φ̃∇φk)L2(�)| + 3|(φk∇φk , φk∇φ̃)L2(�)|}
≤ mχβ0{6‖φk∇φk‖L2(�)‖φ̃‖L∞(�)‖∇φk‖L2(�) + 3‖φk∇φk‖L2(�)‖φk‖L4(�)‖∇φ̃‖L4(�)}
≤ mχβ0‖φk∇φk‖2L2(�)

+ c‖φ̃‖2
W 1,4

0 (�)
‖φk‖2W 1,2

0 (�)
. (4.25)

Define J1 := ‖φ̃‖2
W 1,4

0 (�)
+ ‖φ̃‖4

L8(�)
+ 1. Note that J1 ∈ L1(I ) since Z2

q,r (Q) +
X 2∞,2(Q) ↪→ L∞(I ; Ls(�))∩ L4(I ;W 1,4

0 (�)) for any 1 < s < ∞. In particular, we
have

‖J1‖L1(I ) ≤ C (‖φ̃‖Z2
q,r (Q)+X 2∞,2(Q) + 1). (4.26)

Here, C is a continuous function as described from the beginning of the proof. Now,
by plugging the estimates (4.19)–(4.25) in (4.18), it follows that

1

2

d

dt
{‖φk‖2L2(�)

+ mτ‖∇φk‖2L2(�)
} + (mε − 2δ)‖�φk‖2L2(�)

+ 2mχβ0‖φk∇φk‖2L2(�)
≤ cδ{‖σ̃‖2W−1,2(�)

+ ‖̃λ‖2L2(�)
}

+ cδ J1{‖φk‖2W 1,2
0 (�)

+ ‖θk‖2L2(�)
+ ‖uk‖2L2

σ (�)
}. (4.27)

• L2(I ; L2(�))-estimate for ∂tφk and L2(I ;W 1,2
0 (�))-estimate for μk . Applying the

test function μk(t) on the first equation in the approximate system (4.17) and using
the antisymmetry of b with respect to its second and third arguments, we get

(∂tφk, μk)L2(�) − χb(uk, μk, φk) + b(̃u, φk, μk) + b(uk, φ̃, μk)

+ m‖∇μk‖2L2(�)
= 〈̃σ ,μk〉W−1,2(�),W 1,2

0 (�)
. (4.28)

From the Poincaré inequality, we can estimate the right-hand side by

|〈̃σ ,μk〉W−1,2(�),W 1,2
0 (�)

|
≤ δ‖∇μk‖2L2(�)

+ cδ‖σ̃‖2W−1,2(�)
. (4.29)

For the second trilinear term in (4.28), we use W 1,2
0 (�) ↪→ L4(�) and for the third

we apply W 1,4
0 (�) ↪→ L∞(�), so that

|b(̃u, φk, μk)| ≤ ‖ũ‖L4(�)‖φk‖L4(�)‖∇μk‖L2(�)
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≤ δ‖∇μk‖2L2(�)
+ cδ‖ũ‖2

L4(�)
‖φk‖2W 1,2

0 (�)
(4.30)

|b(uk, φ̃, μk)| ≤ ‖uk‖L2(�)‖φ̃‖L∞(�)‖∇μk‖L2(�)

≤ δ‖∇μk‖2L2(�)
+ cδ‖φ̃‖2

W 1,4
0 (�)

‖uk‖2L2
σ (�)

. (4.31)

Now, by taking the L2-inner product of μk and ∂tφk , one has the equation

(μk, ∂tφk)L2(�) = τ‖∂tφk‖2L2(�)
+ ε

2

d

dt
‖∇φk‖2L2(�)

+ (χ(F(φ̃ + φk) − F(φ̃)) + G(φ̃)φk, ∂tφk)L2(�)

+ (lcθk + λ̃, ∂tφk)L2(�). (4.32)

By Young’s inequality, the last term on the right-hand side of (4.32) can be estimated
by

|(lcθk + λ̃, ∂tφk)L2(�)|
≤ δ‖∂tφk‖2L2(�)

+ cδ{‖θk‖2L2(�)
+ ‖̃λ‖2L2(�)

}. (4.33)

On the other hand, for the term involving F and G in (4.32), we can adapt the methods
presented in the previous step to deduce the following bound from below

|(χ(F(φ̃ + φk) − F(φ̃)) + G(φ̃)φk, ∂tφk)L2(�)|
≥ χβ0

4

d

dt
‖φk‖4L4(�)

− δ‖∂tφk‖2L2(�)

− cδ J1{χβ0‖φk‖4L4(�)
+ ‖φk‖2W 1,2

0 (�)
}. (4.34)

Thus, upon substitution of (4.29)–(4.34) in (4.28), we obtain

1

4

d

dt
{2ε‖∇φk‖2L2(�)

+ χβ0‖φk‖4L4(�)
} + (τ − 2δ)‖∂tφk‖2L2(�)

+ (m − 3δ)‖∇μk‖2L2(�)
≤ cδ{‖σ̃‖2W−1,2(�)

+ ‖̃λ‖2L2(�)
} + χb(uk, μk, φk)

+ cδ J2{χβ0‖φk‖4L4(�)
+ ‖φk‖2W 1,2

0 (�)
+ ‖θk‖2L2(�)

+ ‖uk‖2L2
σ (�)

} (4.35)

where J2 := J1 + ‖ũ‖2
L4(�)

. Note that J2 ∈ L1(I ) since V0
p,r (Q) + U1∞,2(Q) ↪→

L4(I ; L4(�)), and in particular,

‖J2‖L1(I ) ≤ ‖J1‖L1(I ) + C (‖ũ‖V0
p,r (Q)+U1∞,2(Q)). (4.36)

• L∞(I ; L2(�))∩L2(I ;W 1,2
0 (�))-estimate for θk . Choosing θk(t) as a test function in

the third equation of the approximate system (4.17) and using b(χuk + ũ, θk, θk) = 0
give us

1

2

d

dt
‖θk‖2L2(�)

+ χlhb(uk, θk, φk) − lhb(̃u, φk, θk) + b(uk, θ̃ − lhφ̃, θk)
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+ κ‖∇θk‖2L2(�)
= (αg · uk + lh∂tφk, θk)L2(�)

+ 〈̃h, θk〉W−1,2(�),W 1,2
0 (�)

. (4.37)

By the Cauchy–Schwarz inequality, we can estimate the terms on right-hand side by

|〈̃h, θk〉W−1,2(�),W 1,2
0 (�)

| ≤ δ‖∇θk‖2L2(�)
+ cδ‖h̃‖2W−1,2(�)

(4.38)

|(αg · uk + lh∂tφk, θk)L2(�)| ≤ δ‖∂tφk‖2L2(�)
+ cδ{‖θk‖2L2(�)

+ ‖uk‖2L2
σ (�)

}.
(4.39)

For the last two trilinear terms in (4.37), we estimate as follows:

|lhb(̃u, φk, θk)| ≤ lh‖ũ‖L4(�)‖φk‖L4(�)‖∇θk‖L2(�)

≤ δ‖∇θk‖2L2(�)
+ cδ‖ũ‖2

L4(�)
‖φk‖2W 1,2

0 (�)
(4.40)

|b(uk, θ̃ − lhφ̃, θk)| ≤ c‖uk‖1/2L2(�)
‖∇uk‖1/2L2(�)2

‖θ̃ − lhφ̃‖L4(�)‖∇θk‖L2(�)

≤ δ‖∇θk‖2L2(�)
+ δ‖∇uk‖2L2(�)2

+ cδ{‖θ̃‖4L4(�)
+ ‖φ̃‖4L4(�)

}‖uk‖2L2(�)

(4.41)

where we used the Gagliardo–Nirenberg inequality in the second trilinear term.
Let J3 := ‖φ̃‖4

L4(�)
+ ‖θ̃‖4

L4(�)
+ ‖ũ‖2

L4(�)
+ 1. Then, we have J3 ∈ L1(I ) and

‖J3‖L1(I ) ≤ C (‖φ̃‖Z2
q,r (Q)+X 2∞,2(Q) + ‖θ̃‖Z0

s,r (Q)+X 1∞,2(Q)

+ ‖ũ‖V0
p,r (Q)+U1∞,2(Q) + 1). (4.42)

Thus, plugging the inequalities (4.38)–(4.41) into (4.37), we obtain the estimate

1

2

d

dt
‖θk‖2L2(�)

+ (κ − 2δ)‖∇θk‖2L2(�)
− δ‖∂tφk‖2L2(�)

− δ‖∇u‖2
L2(�)2

≤ cδ‖h̃‖2W−1,2(�)
+ cδ J3{‖φk‖2W 1,2

0 (�)
+ ‖θk‖2L2(�)

+ ‖uk‖2L2
σ (�)

} − χlhb(uk , θk , φk).

(4.43)

• L∞(I ; L2
σ (�)) ∩ L2(I ; X1,2

σ (�))-estimate for uk . Testing the fourth equation in
system (4.17) by uk(t) leads to the following equation

1

2

d

dt
‖uk‖2L2

σ (�)
+ b(uk, ũ, uk) + ν‖∇uk‖2L2(�)2

= (�(φk, θk)g, uk)L2(�) + 〈 f̃ , uk〉W−1,2(�),W1,2
0 (�)

− χKb(uk, μk − lcθk, φk) − Kb(uk, μ̃ − lcθ̃ , φk) + Kb(uk, φ̃, μk − lcθk)
(4.44)

where we used b(χuk + ũ, uk, uk) = 0. By the Cauchy–Schwartz inequality

|〈 f̃ , uk〉W−1,2(�),W1,2
0 (�)

| ≤ δ‖∇uk‖2L2(�)2
+ cδ‖ f̃ ‖2

W−1,2(�)
(4.45)
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|(�(φk, θk)g, uk)L2(�)| ≤ c{|α0g|2 + ‖φk‖2L2(�)
+ ‖θk‖2L2(�)

+ ‖uk‖2L2
σ (�)

}.
(4.46)

Here, we recall that �(φk, θk)g = (α0 + α1φk + α2θk)g. The trilinear term on the
left-hand side of (4.44) is bounded from above by

|b(uk, ũ, uk)| ≤ c‖uk‖1/2L2(�)
‖∇uk‖3/2L2(�)2

‖ũ‖L4(�)

≤ δ‖∇uk‖2L2(�)2
+ cδ‖ũ‖4

L4(�)
‖uk‖2L2

σ (�)
. (4.47)

The estimation of the second trilinear term in (4.44) is more delicate. In this direction,
consider an arbitrary representation μ̃ = μ̃L + μ̃N , where μ̃L ∈ Lr (I ; Lq(�)) and
μ̃N ∈ L2(I ;W 1,2

0 (�)). We write b(uk, μ̃ − lcθ̃ , φk) = b(uk, μ̃L , φk) + b(uk, μ̃N −
lcθ̃ , φk) and estimate the termson the right-hand side.UsingW1,2

0 (�) ↪→ L4q/(3q−4)(�)

and the Hölder and Gagliardo–Nirenberg inequalities, we have

|Kb(uk , μ̃L , φk)| ≤ c‖uk‖L4q/(3q−4)(�)‖μ̃L‖Lq (�)‖∇φk‖L4(�)

≤ c‖∇uk‖L2(�)2‖μ̃L‖Lq (�)‖∇φk‖1/2L2(�)
‖�φk‖1/2L2(�)

≤ δ‖∇uk‖2L2(�)2
+ δ‖�φk‖2L2(�)

+ cδ‖μ̃L‖4Lq (�)‖φk‖2W 1,2
0 (�)

(4.48)

|Kb(uk , μ̃N − lcθ̃ , φk)| ≤ c‖uk‖L4(�)‖μ̃N − lcθ̃‖L4(�)‖∇φk‖L2(�)

≤ c‖uk‖1/2L2(�)
‖∇uk‖1/2L2(�)2

‖μ̃N − lcθ̃‖L4(�)‖φk‖1/2W 1,2
0 (�)

‖�φk‖1/2L2(�)

≤ δ‖∇uk‖2L2(�)2
+ δ‖�φk‖2L2(�)

+ cδ{‖μ̃N‖2L4(�)
+ ‖θ̃‖2L4(�)

}{‖φk‖2W 1,2
0 (�)

+ ‖uk‖2L2
σ (�)

}. (4.49)

Finally, the remaining trilinear term in (4.44) satisfies

|Kb(uk, φ̃, μk − lcθk)|
≤ c‖uk‖L2(�)‖φ̃‖L∞(�)‖∇(μk − lcθk)‖L2(�)

≤ δ‖∇θk‖2L2(�)
+ δ‖∇μk‖2L2(�)

+ cδ‖φ̃‖2
W 1,4

0 (�)
‖uk‖2L2

σ (�)
. (4.50)

Utilizing estimates (4.45)–(4.50) in (4.44) and by setting J4 := ‖ũ‖4
L4(�)

+‖μ̃L‖4Lq (�)

+ ‖μ̃N‖2
L4(�)

+ ‖θ̃‖2
L4(�)

+ ‖φ̃‖2
W 1,4

0 (�)
+ 1, we obtain

1

2

d

dt
‖uk‖2L2

σ (�)
+ (ν − 4δ)‖∇uk‖2L2(�)2

− 2δ‖�φk‖2L2(�)

− δ‖∇θk‖2L2(�)
− δ‖∇μk‖2L2(�)

≤ cδ{|α0g|2 + ‖ f̃ ‖2
W−1,2(�)

}
+ cδ J4{‖φk‖2W 1,2

0 (�)
+ ‖θk‖2L2(�)

+ ‖uk‖2L2
σ (�)

} − χKb(uk, μk − lcθk, φk).

(4.51)

Furthermore, J4 ∈ L1(I ) and it holds that

‖J4‖L1(I ) ≤ C (‖φ̃‖Z2
q,r (Q)+X 2∞,2(Q) + ‖θ̃‖Z0

s,r (Q)+X 1∞,2(Q)
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+ ‖ũ‖V0
p,r (Q)+U1∞,2(Q) + ‖μ̃L‖Lr (I ;Lq (�)) + ‖μ̃N‖L2(I ;W 1,2

0 (�))
+ 1).

(4.52)

We now combine the above a priori estimates. Multiply (4.43) byKlc/ lh and (4.35)
by K, and then take the sum of the resulting inequalities with (4.27) and (4.51). After
that we choose δ > 0 small enough to obtain the differential inequality

1

2

d

dt
Ek + c1Dk ≤ c2(F + JEk) in Ik . (4.53)

for some constants c1, c2 > 0, where J := J1 + J2 + J3 + J4,

Ek := Kχβ0

2
‖φk‖4L4(�)

+ ‖φk‖2L2(�)
+ (Kε + mτ)‖∇φk‖2L2(�)

+ Klc
lh

‖θk‖2L2(�)
+ ‖uk‖2L2

σ (�)

Dk := χ‖φk∇φk‖2L2(�)
+ ‖�φk‖2L2(�)

+ ‖∇μk‖2L2(�)
+ ‖∇θk‖2L2(�)

+ ‖∇uk‖2L2(�)2

F := ‖σ̃‖2W−1,2(�)
+ ‖̃λ‖2L2(�)

+ ‖h̃‖2W−1,2(�)
+ ‖ f̃ ‖2

W−1,2(�)
+ |α0g|2.

From (4.26), (4.36), (4.42) and (4.52), we have J ∈ L1(I ). Also, F ∈ L1(I ) based
on the assumptions on the source functions. Using Gronwall’s lemma to (4.53), we
obtain that Ek ∈ L∞(Ik) and

‖Ek‖L∞(Ik ) ≤ (Ek(0) + 2c2‖F‖L1(I ))e
2c2‖J‖L1(I ) (4.54)

and as a result, by integrating (4.53) over Ik , one has Dk ∈ L1(Ik) and

2c1‖Dk‖L1(Ik ) ≤ (Ek(0) + 2c2‖F‖L1(I ) + 2c2‖J‖L1(I )‖Ek‖L∞(Ik )). (4.55)

From the definition of the approximate initial data and the uniform boundedness of
the projection operators Pk ∈ L(L2(�))∩L(X2,2(�)) andΠk ∈ L(L2

σ (�)), for each
k one has

Ek(0) ≤ C (‖φ0N‖X2,2(�) + ‖θ0N‖L2(�) + ‖u0N‖L2
σ (�)). (4.56)

Let us denote the right-hand side of the inequality (4.16) by R. With abuse of
notation, we shall write R in place of C (R), that is, the function C in the definition
of R has to be modified at each step. With this convention, we get Ek(0) ≤ R from
(4.56) and ‖F‖L1(I ) ≤ R. Plugging these in (4.54) and (4.55), we have

‖Ek‖L∞(Ik ) + ‖Dk‖L1(Ik ) ≤ R.

Here, we took the infimumover all representations of μ̃ in Lr (I ; Lq(�))+L2(I ;W 1,2
0

(�)) to pass from the estimate involving μ̃L and μ̃N to that of μ̃ that appears in
‖J‖L1(I ). Based on the definitions of Ek and Dk , we get the priori estimate

‖φk‖X 2∞,2(Ik×�) + ‖θk‖X 1∞,2(Ik×�) + ‖uk‖U1∞,2(Ik×�) + ‖μk‖L2(Ik ;W 1,2
0 (�))

≤ R.

(4.57)



J. Evol. Equ. Weak and very weak solutions Page 45 of 71    12 

• L2(I ;W 1,2
0 (�))-estimates for �φk and ∂tφk . Testing the first equation in the ap-

proximate system (4.17) by −�φk(t) leads to

1

2

d

dt
‖∇φk‖2L2(�)

− b(χuk + ũ, φk,�φk) − b(uk, φ̃,�φk)

+ m(�μk,�φk)L2(�) = −〈̃σ ,�φk〉W−1,2(�),W 1,2
0 (�)

. (4.58)

For this equation, we have the following estimates:

|b(uk, φ̃,�φk)| ≤ δ‖∇�φk‖2L2(�)
+ cδ‖φ̃‖2

W 1,4
0 (�)

‖uk‖2L2(�)
(4.59)

|b(χuk + ũ, φk,�φk)| ≤ δ‖∇�φk‖2L2(�)
+ cδ{‖uk‖2L4(�)

+ ‖ũ‖2
L4(�)

}‖φk‖2W 1,2
0 (�)

(4.60)

|〈̃σ ,�φk〉W−1,2(�),W 1,2
0 (�)

| ≤ δ‖∇�φk‖2L2(�)
+ cδ‖σ̃‖2W−1,2(�)

. (4.61)

From the equation for μk in (4.17), we obtain

m(�μk,�φk)L2(�) = mτ

2

d

dt
‖�φk‖2L2(�)

− m(∇(lcθk + λ̃),∇�ϕk)L2(�)

+ mε‖∇�φk‖2L2(�)
− m(χ∇(F(φ̃ + φk) − F(φ̃))

+ ∇(G(φ̃)φk),∇�φk)L2(�). (4.62)

By Young’s inequality, one can estimate the second and fourth terms on the right-hand
side of (4.62) according to

|m(∇(lcθk + λ̃),∇�ϕk)L2(�)|
≤ δ‖∇�φk‖2L2(�)

+ cδ{‖∇θk‖2L2(�)
+ ‖∇λ̃‖2

L2(�)
} (4.63)

|m(χ(∇F(φ̃ + φk) − ∇F(φ̃)) + ∇(G(φ̃)φk),∇�φk)L2(�)|
≤ δ‖∇�φk‖2L2(�)

+ cδ{‖∇F(φ̃ + φk)

− ∇F(φ̃)‖2
L2(�)

+ ‖∇(G(φ̃)φk)‖2L2(�)
}. (4.64)

Let us set J5 := ‖∇F(φ̃+φk)−∇F(φ̃)‖2
L2(�)

+‖∇(G(φ̃)φk)‖2L2(�)
+‖∇θk‖2L2(�)

and J6 := ‖φ̃‖2
W 1,4

0 (�)
+ ‖uk‖2L4(�)

+ ‖ũ‖2
L4(�)

+ 1. Note that J6 ∈ L1(I ), and by

invoking Lemma 4.4 for the first two terms in J5, we obtain J5 ∈ L1(I ). In fact, we
have

‖J5‖L1(Ik ) ≤ C (‖φk‖X 2∞,2(Ik×�) + ‖θk‖X 1∞,2(Ik×�)) (4.65)

‖J6‖L1(Ik ) ≤ C (‖φ̃‖Z2
q,r (Q)+X 2∞,2(Q) + ‖ũ‖V0

p,r (Q)+U1∞,2(Q) + ‖uk‖U1∞,2(Ik×�) + 1).

(4.66)

Here, we used X 1∞,2(Ik × �) ↪→ L2(Ik;W 1,2
0 (�)) and U1∞,2(Ik × �) ↪→ L2(I ; L4

(�)). Applying the estimates (4.59)–(4.64) in (4.58), we obtain after integrating by
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parts

1

2

d

dt
{‖∇φk‖2L2(�)

+ mτ‖�φk‖2L2(�)
} + (mε − 5δ)‖∇�φk‖2L2(�)

≤ cδ{J5 + ‖σ̃‖2W−1,2(�)
+ ‖̃λ‖2

W 1,2
0 (�)

} + cδ J6{‖uk‖2L2(�)
+ ‖φk‖2W 1,2

0 (�)
}.
(4.67)

Taking the gradient of the equation for μk leads to the following estimate:

‖∇∂tφk‖2L2(�)
≤ cδ{J5 + ‖∇μk‖2L2(�)

+ ‖̃λ‖2
W 1,2

0 (�)
}. (4.68)

Applying Gronwall’s lemma in (4.67), taking the sum of the resulting estimate with
(4.68), and then using (4.65), (4.66) and (4.57), one would get

‖∇�φk‖L2(Ik ;L2(�)) + ‖∇∂tφk‖L2(Ik ;L2(�)) ≤ R. (4.69)

Thanks to the estimates for the trilinear terms in Lemma 4.2, one can also bound the
norm of the time derivatives ∂tθk in L2(Ik;W−1,2(�)) and ∂tuk in L2(Ik; X−1,2

σ (�))

according to

‖∂tθk‖L2(Ik ;W−1,2(�)) + ‖∂tuk‖L2(Ik ;X−1,2
σ (�))

≤ R. (4.70)

Inequalities (4.57), (4.69) and (4.70) lead to the a priori estimate

‖φk‖Z3
2,2(Ik×�) + ‖θk‖Z1

2,2(Ik×�)

+ ‖uk‖V1
2,2(Ik×�) + ‖μk‖L2(Ik ;W 1,2

0 (�))
≤ R. (4.71)

This uniform bound implies that the approximate system (4.17) has a unique solution
over the whole interval I , and we can replace the time interval Ik in (4.71) by I .
Step 3. Passage to limit. From the uniform a priori bound (4.71) with Ik replaced by
I , we deduce the existence of (φN , θN , uN , μN ) satisfying (4.15) and such that for
appropriate subsequences (using the same index k for simplicity), the following weak
and weak∗ convergence hold:

φk
∗
⇀ φN in L∞(I ; X2,2(�)), uk

∗
⇀ uN in L∞(I ; L2

σ (�)),

θk
∗
⇀ θN in L∞(I ; L2(�)), φk ⇀ φN in L2(I ; X3,2(�)),

uk ⇀ uN in L2(I ; X1,2
σ (�)), θk ⇀ θN in L2(I ;W 1,2

0 (�)),

∂tφk ⇀ ∂tφN in L2(I ;W 1,2
0 (�)), ∂tuk ⇀ ∂tuN in L2(I ; X−1,2

σ (�)),

∂tθk ⇀ ∂tθN in L2(I ;W−1,2(�)), μk ⇀ μN in L2(I ;W 1,2
0 (�)).

In addition to these, we have the strong convergence φk → φN in L2(I ; X2,2(�)),
θk → θN in L2(I ; L2(�)), and uk → uN in L2(I ; L2

σ (�)) by the Aubin–Lions–
Simon lemma [60]. The a priori estimate (4.16) follows by taking the limit inferior to
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(4.71) and using the lower semicontinuity of the norms with respect to the underlying
weak topologies.

It is now standard to pass to the limit in the variational formulation of the approxi-
mate system and obtain a weak solution to (4.14). We outline this process for the sake
of the reader. The only crucial parts are the passage to the limit for the nonlinear terms.

For each ρ ∈ L∞(I ;W1,2
0 (�)), we have φkρ → φNρ in L2(I ; L2(�)) due to the

estimate

‖φkρ − φNρ‖L2(I ;L2(�)) ≤ c‖φk − φN‖L2(I ;X2,2(�))‖ρ‖L∞(I ;W1,2
0 (�))

.

Together with ∇μk ⇀ ∇μN in L2(I ; L2(�)), one obtains

〈S(μk, φk) − S(μN , φN ), ρ〉L2(I ;W−1,2(�)),L2(W1,2
0 (�))

=
∫ T

0
{(∇μN , φNρ)L2(�) − (∇μk, φkρ)L2(�)} dt → 0.

Using the density of L∞(I ;W1,2
0 (�)) in L2(I ;W1,2

0 (�)) and applying the bounded-
ness of the sequence {S(μk, φk)}∞k=1 in L2(I ;W−1,2(�)), we deduce that

S(μk, φk) ⇀ S(μN , φN ) in L2(I ;W−1,2(�)).

Similarly, S(θk, φk) ⇀ S(θN , φN ) in L2(I ;W−1,2(�)).We can adapt the same idea to
prove that B(uk, uk) ⇀ B(uN , uN ) in L2(I ;W−1,2(�)), C(uk, θk) → C(uN , θN )

in L2(I ;W−1,2(�)), and C(uk, φk) → C(uN , φN ) in L2(I ;W−1,2(�)). Let us
note that a weak convergence in L2(I ;W−1,2(�)) implies a weak convergence in
L2(I ; X−1,2

σ (�)) since the former space is continuously embedded to the latter space.

Finally, passing to the weak limit in L2(I ; L2(�)) to the second equation of the
approximate system (4.17), we obtain the second equation in (4.14) since χ(F(φ̃ +
φk) − F(φ̃)) + G(φ̃)φk → χ(F(φ̃ + φN ) − F(φ̃)) + G(φ̃)φN in L2(I ; L2(�)).

From the above discussion, together with the weak convergence for the linear terms,
we conclude that (φN , θN , uN , μN ) is aweak solution to (4.14).As usual, the existence
of a unique pressure pN ∈ W−1,2(I ; L̂2(�)) as well as the required stability estimate
follows from de Rham’s theorem, see Proposition 7.1 with k = 1 and p = 2. The
details are similar to that in the proof of Theorem 3.2.

Step 4. Uniqueness. Let (φ j
N , θ

j
N , u j

N , μ
j
N , p

j
N ) for j = 1, 2 be two weak solutions

of (4.14) and denote their difference by

(φN , θN , uN , μN , pN ) = (φ1
N , θ1N , u1N , μ1

N , p1N ) − (φ2
N , θ2N , u2N , μ2

N , p2N ).
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Then, this difference is a weak solution to the following nonlinear system:
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂tφN + div ((χφ1
N + φ̃)uN ) + div (φN (χu2N + ũ)) − m�μN = 0 in Q,

μN = τ∂tφN − ε�φN + [χG0(φ̃, φ
1
N , φ2

N ) + G(φ̃)]φN + lcθN in Q,

∂tθN − lh∂tφN + div ((χθ1N − χlhφ1
N + θ̃ − lhφ̃)uN )

+ div ((θN − lhφN )(χu2N + ũ)) − κ�θN = αg · uN in Q,

∂tuN + div (uN ⊗ (χu1N + ũ)) + div ((χu2N + ũ) ⊗ uN )

− ν�uN + ∇pN = K(μN − lcθN )∇(χφ1
N + φ̃)

+K(χμ2
N − χlcθ2N + μ̃ − lcθ̃ )∇φN + (α1φN + α2θN )g in Q,

div uN = 0 in Q,

φN = �φN = 0, θN = 0, uN = 0 on �,

φN (0) = 0, θN (0) = 0, uN (0) = 0 in �,

(4.72)

where G0(φ̃, φ
1
N , φ2

N ) is a quadratic function in three variables.
Notice that (4.72) has the same form as that of (4.14) with χ = 0 and α0 =

0 in the latter equation. The main difference though is that there are more frozen
coefficients in the convection and surface tension terms, namely the components of
the two weak solutions. Nonetheless, these components belong to the function spaces
that are required by the theorem for the frozen coefficients. Therefore, we can follow
the derivation of the a priori estimates provided in Step 2 and obtain (4.16) for the
solution of (4.72). Since we have vanishing source functions and initial data as well
as the absence of the term α0g, we deduce that (φN , θN , uN , μN , pN ) must be the
trivial solution to (4.72). Hence, the weak solution to (4.14) is unique. The proof of
Theorem 4.9 is now complete. �
Remark 4.10. Adapting the process in the uniqueness proof, it follows that the map

((̃σ , h̃, f̃ , λ̃), (φ0N , θ0N , u0N )) �→ (φN , θN , uN , μN , pN )

is locally Lipschitz continuous with respect to the function spaces for the sources,
initial data and weak solution as stated by Theorem 4.9. In fact, this map is of class
C∞, and this will be shown in the next section.

4.4. Existence and uniqueness of weak and very weak solutions

We now combine the results for the linear and nonlinear parts to establish the well-
posedness of (1.1). In contrast to the discussion with the linear system, we shall start
on the very weak solutions, see Definition 4.7.

Theorem 4.11. Suppose that (4.13) holds, the source functions satisfy (4.11), and the
initial data satisfy (4.12). Then, the nonlinear system (1.1) admits a unique very weak
solution

(φ, θ, u, μ) ∈ [Z2
q,r (Q) + Z3

2,2(Q)] × [Z0
s,r (Q) + Z1

2,2(Q)]
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× [V0
p,r (Q) + V1

2,2(Q)] × [Lr (I ; Lq(�)) + L2(I ;W 1,2
0 (�))]

(4.73)

with an associated pressure p ∈ W−1,r (I ; Ŵ−1,p(�)) + W−1,2(I ; L̂2(�)) in the
sense of Definition 4.7. Furthermore, the solution depends continuously on the initial
data and source functions, that is, there is a continuous and monotone increasing
function C : [0,∞) → [0,∞) such that C (0) = 0 and

‖φ‖Z2
q,r (Q)+Z3

2,2(Q) + ‖θ‖Z0
s,r (Q)+Z1

2,2(Q) + ‖u‖V0
p,r (Q)+V1

2,2(Q)

+‖μ‖Lr (I ;Lq (�))+L2(I ;W 1,2
0 (�))

+ ‖p‖W−1,r (I ;Ŵ−1,p(�))+W−1,2(I ;L̂2(�))

≤ C (‖φ0‖Z2
q,r (�)+X2,2(�) + ‖θ0‖Z0

s,r (�)+L2(�) + ‖u0‖V 0
p,r (�)+L2

σ (�)

+|α0g| + ‖σ‖Lr (I ;X−2,q (�))+L2(I ;W−1,2(�)) + ‖λ‖Lr (I ;Lq (�))+L2(I ;W 1,2
0 (�))

+‖h‖Lr (I ;X−2,s (�))+L2(I ;W−1,2(�)) + ‖ f ‖Lr (I ;X−2,p(�))+L2(I ;W−1,2(�))).

(4.74)

Finally, the map ((σ, h, f , λ), (φ0, θ0, u0)) �→ (φ, θ, u, μ, p) is locally Lipschitz
continuous with respect to the above function spaces for the sources, initial data and
very weak solutions.

Proof. Let us express the source functions and initial data according to (2.2) and
(2.1), respectively. First, recall from Theorem 3.20 that the linear system (2.4) admits
a very weak solution. Second, by taking χ = 1, G ≡ 0, φ̃ = φL ∈ Z2

q,r (Q),

θ̃ = θL ∈ Z0
s,r (Q), ũ = uL ∈ V p,r (Q), μ̃ = μL ∈ Lr (I ;W 1,q

0 (�)),

σ̃ = σN − div (φLuL) ∈ L2(I ;W−1,2(�)) (4.75)

h̃ = hN − div ((θL − lhφL)uL) ∈ L2(I ;W−1,2(�)) (4.76)

f̃ = f N − div (uL ⊗ uL) ∈ L2(I ;W−1,2(�)) (4.77)

λ̃ = λN + β1φL + F(φL) ∈ L2(I ;W 1,2
0 (�)) (4.78)

in (4.14), we obtain from Theorem 4.9 that (2.5) admits a weak solution. Note that
(4.75)–(4.77) follows from Lemma 4.2, while (4.78) is a consequence of Corollary
4.5. Then, the sum (2.3) constitutes a very weak solution to (1.1). Indeed, we obtain
the variational equations in Definition 4.7 by simply taking the sum of the variational
equations from the very weak formulation of (2.4) and the weak formulation of (2.5).
Here, one has to take the intersection of the space of test functions for each system,
which is precisely the one being prescribed by Definition 4.7. Furthermore, we have
an associated pressure p = pL + pN ∈ W−1,r (I ; Ŵ−1,p(�)) + W−1,2(I ; L̂2(�))

The constructed very weak solution, along with the associated pressure, satisfies the
stability estimate stated by the theorem due to Theorem 3.20 and Theorem 4.9, and
after taking the infima over all possible sum representations for the source functions
and initial data.
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Let us prove that the very weak solution is unique. As usual, let (φk, θk, uk, μk, pk)

for k = 1, 2 be very weak solutions to (1.1). Then, their difference

(φ, θ, u, μ, p) = (φ1, θ1, u1, μ1, p1) − (φ2, θ2, u2, μ2, p2)

is a very weak solution to the following system:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂tφ − m�μ = − div (φu1) − div (φ2u) in Q,

μ = τ∂tφ − ε�φ + lcθ + G1(φ
1, φ2)φ in Q,

∂tθ − lh∂tφ − κ�θ − αg · u = − div ((θ − lhφ)u1) − div ((θ2 − lhφ2)u) in Q,

∂tu − ν�u + ∇p − (α1φ + α2θ)g = − div (u ⊗ u1) − div (u2 ⊗ u)

+K(μ1 − lcθ1)∇φ + K(μ − lcθ)∇φ2 in Q,

div u = 0 in Q,

φ = �φ = 0, θ = 0, u = 0 on �,

φ(0) = 0, θ(0) = 0, u(0) = 0 in �,

(4.79)

for some quadratic function G1(φ
1, φ2).

According to the following list of continuous embeddings: X3,2(�) ↪→ X2,q(�),
W 1,2

0 (�) ↪→ Ls(�) ↪→ Lq(�), W−1,2(�) ↪→ X−2,s(�), X1,2
σ (�) ↪→ L p

σ (�),

W−1,2(�) ↪→ X−2,p
σ (�), and L̂2(�) ↪→ Ŵ−1,p(�), we deduce that

Z3
2,2(Q) × Z1

2,2(Q) × V1
2,2(Q) × L2(I ;W 1,2

0 (�)) × W−1,2(I ; L̂2(�))

↪→ Z2
q,2(Q) × Z0

s,2(Q) × V0
p,2(Q) × L2(I ; Lq(�)) × W−1,2(I ; Ŵ−1,p(�)).

(4.80)

From this embedding, together with r ≥ 4, we get

(φ, θ, u, μ,p) ∈ Z2
q,2(Q) × Z0

s,2(Q) × V0
p,2(Q) × L2(I ; Lq (�)) × W−1,2(I ; Ŵ−1,p(�)).

Observe that div (φu1), div (φ2u), div ((θ − lhφ)u1), div ((θ2 − lhφ2)u) ∈ L2

(I ;W−1,2(�)) and div (u ⊗ u1), div (u2 ⊗ u), (μ1 − lcθ1)∇φ, (μ − lcθ)∇φ2 ∈
L2(I ;W−1,2(�)) from Lemma 4.2. Moreover, G1(φ

1, φ2)φ ∈ L2(I ;W 1,2
0 (�)) ac-

cording to Lemma 4.4. From these, we obtain from Theorem 3.18 a weak solution

(φ̃, θ̃ , ũ, μ̃, p̃) ∈ Z3
2,2(Q) × Z1

2,2(Q) × V1
2,2(Q) × L2(I ;W 1,2

0 (�)) × W−1,2(I ; L̂2(�))

to the system (4.79) for the difference. In view of the uniqueness of veryweak solutions
in Theorem 3.20 and the embedding (4.80), we have (φ̃, θ̃ , ũ, μ̃, p̃) = (φ, θ, u, μ, p).
Since (4.79) is in the form of (4.14) and only differs on the frozen coefficients, if we

adapt the proof of Theorem 4.9, then we obtain that (φ, θ, u, μ, p) must be the trivial
solution. Therefore, the very weak solution to (1.1) is unique. The local Lipschitz
continuity of the solution operator is a direct consequence of the same property for
the solution operators of the linear part (2.4) and the nonlinear part (2.5). �

The case of weak solutions can be easily shown.



J. Evol. Equ. Weak and very weak solutions Page 51 of 71    12 

Theorem 4.12. Let (4.7), (4.8) and (4.9) are satisfied. Then, the system (1.1) has
unique weak solution

(φ, θ, u, μ) ∈ [Z3
q,r (Q) + Z3

2,2(Q)] × [Z1
s,r (Q) + Z1

2,2(Q)]
× [V1

p,r (Q) + V1
2,2(Q)] × [Lr (I ;W 1,q

0 (�)) + L2(I ;W 1,2
0 (�))]

(4.81)

with an associated pressure p ∈ W−1,r (I ; L̂ p(�)) + W−1,2(I ; L̂2(�)) in the sense
of Definition 4.6. Moreover, as in Theorem 4.11, the solution depends continuously
with respect to the source functions and the initial data, and the map ((σ, h, f , λ),
(φ0, θ0, u0)) �→ (φ, θ, u, μ, p) is locally Lipschitz continuous.

Proof. Follow the proof of the preceding theorem, but now using Theorem 3.18 in
place of Theorem 3.20. Moreover, the uniqueness of the weak solution follows from
the fact that any weak solution is also a very weak solution, see Remark 4.8, and that
the very weak solutions are unique according to Theorem 4.11. �

Corollary 4.13. The conclusions of Theorem 4.12 are also valid in the case where
q, s, p, r ≥ 2 and s ≥ q.

Proof. The assumptions on q, s, p and r imply that Z3
q,r (Q) ↪→ Z3

2,2(Q) ↪→
X 2∞,2(Q), Z1

s,r (Q) ↪→ Z1
2,2(Q) ↪→ X 1∞,2(Q), V1

p,r (Q) ↪→ V1
2,2(Q) ↪→ U2∞,2(Q)

and Lr (I ;W 1,q
0 (�)) ↪→ L2(I ;W 1,2

0 (�)). These mean that the components of the
weak solution for the linearized system (2.4) satisfy the regularity requirements for
the frozen coefficients in Theorem 4.9. We can then proceed as before to obtain the
conclusions of Theorem 4.12. �

4.5. Sources with values in duals of Hölder spaces

Let C0(�̄) be the Banach space of all continuous functions on the closure of� that
vanish on � equipped with the supremum norm, Ck,a(�̄) be the Hölder space, where
k is a nonnegative integer and a ∈ (0, 1), and set Ck,a

0 (�̄) := Ck,a(�̄) ∩ C0(�̄) and

Ck,a
0 (�̄) := Ck,a

0 (�̄) × Ck,a
0 (�̄).

For 1 < r < ∞, let Lr
w(I ;Ck,a

0 (�̄)′) be the Banach space of equivalence classes of
Ck,a
0 (�̄)-weakly measurable functions from I into Ck,a

0 (�̄)′ equipped with the norm

‖σ‖Lrw(I ;Ck,a
0 (�̄)′) :=

⎛
⎝ inf

ρ ≈ σ
inf

ϕ≥‖ρ‖
Ck,a
0 (�̄)′

∫ T

0
ϕ(t)r dt

⎞
⎠

1/r

where the inner infimum is taken over all Lebesgue measurable functions ϕ : I → R

and ρ ≈ σ in the outer infimum means that for each φ ∈ Ck,a
0 (�̄) there exists Iφ ⊂ I

with Lebesgue measure zero and 〈ρ, φ〉Ck,a
0 (�̄)′,Ck,a

0 (�̄)
= 〈σ, φ〉Ck,a

0 (�̄)′,Ck,a
0 (�̄)

in

I \ Iφ . Then, we have Lr
w(I ;Ck,a

0 (�̄)′) = Lr ′
(I ;Ck,a

0 (�̄))′. In the same manner,
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Lr
w(I ;Ck,a

0 (�̄)′) = Lr ′
(I ;Ck,a

0 (�̄))′. We refer the reader to [32, Section 12.9] or
[49, Chapter 7] for the details and the proof of the duality identification.
Consider the framework of Theorem 4.12, but now we have the source functions

σ ∈ Lr
w(I ;C0,2/q−1

0 (�̄)′), h ∈ Lr
w(I ;C0,2/s−1

0 (�̄)′), f ∈ Lr
w(I ;C0,2/p−1

0 (�̄)′)
(4.82)

where the parameters q, s, p and r satisfy (4.7). By the Sobolev embedding theorem,

see [28, Section 5.6.3] for instance, we have the continuous embedding W 1,q ′
0 (�) ↪→

C0,1−2/q ′
0 (�̄) = C0,2/q−1

0 (�̄). Thus, one has Lr
w(I ;C0,2/q−1

0 (�̄)′) ↪→ Lr
w(I ;W−1,q

(�)) = Lr (I ;W−1,q(�)) by duality and the equality is due to the fact that W 1,q ′
0 (�)

is reflexive [32, Example 12.9.6]. In a similar way, Lr
w(I ;C0,2/s−1

0 (�̄)′) ↪→ Lr

(I ;W−1,s(�)) and Lr
w(I ;C0,2/p−1

0 (�̄)′) ↪→ Lr
w(I ;W−1,p(�)). With these, we de-

duce from Theorem 4.12 that (1.1) with source functions in (4.82) admits a unique
weak solution satisfying (4.81).
Now, let us suppose that the assumptions of Theorem 4.11 hold, with q, s, p and r

obeying (4.13), and in addition, we have q > 2 and source functions that satisfy

σ ∈ Lr
w(I ;C0,2/q

0 (�̄)′), h ∈ Lr
w(I ;C0,2/s

0 (�̄)′), f ∈ Lr
w(I ;C0,2/p

0 (�̄)′).
(4.83)

Using theSobolev embedding theoremoncemore,wehave X2,q ′
(�) ↪→ C0,2−2/q ′

0 (�̄)

= C0,2/q
0 (�̄). Hence, we get Lr

w(I ;C0,2/q
0 (�̄)′) ↪→ Lr (I ; X−2,q(�)). Likewise,

we also have Lr
w(I ;C0,2/s

0 (�̄)′) ↪→ Lr (I ; X−2,s(�)) and Lr
w(I ;C0,2/p

0 (�̄)′) ↪→
Lr (I ;W−2,p(�)). Based on these embeddings, Theorem 4.11 implies that (1.1) with
the source functions (4.83) has a unique very weak solution with the regularity (4.73).
If we have 4

3 < q < 2, then the same conclusion holdswhenσ ∈ Lr
w(I ;C1,2/q−1

0 (�̄)′)
since X2,q ′

(�) ↪→ C1,1−2/q ′
0 (�̄) = C1,2/q−1

0 (�̄).

As M(�) := C0(�̄)′ ↪→ C0,a
0 (�̄)′ for any a ∈ (0, 1), the previous statements are

also valid for source functions

σ ∈ Lr
w(I ; M(�)), h ∈ Lr

w(I ; M(�)), f ∈ Lr
w(I ; M(�))

where as usual M(�) = M(�) × M(�). Recall that M(�) can be topologically
identified with the Banach space of real and regular Borel measures in � equipped
with the total variationnorm.Anoptimal control problem for the nonlinear system (1.1)
with controls taking values in the space of regular Borel measures will be considered
in future work.

5. Differentiability of the solution operator

In this section, we prove that the operator mapping the source functions and initial
data to the very weak or weak solution is of class C∞. For convenience, we denote
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the space of source functions associated with the very weak and weak solutions by

Fvw,r
q,s,p(Q) := [Lr (I ; X−2,q(�)) + L2(I ;W−1,2(�))]

× [Lr (I ; X−2,s(�)) + L2(I ;W−1,2(�))]
× [Lr (I ; X−2,p(�)) + L2(I ;W−1,2(�))]
× [Lr (I ; Lq(�)) + L2(I ;W 1,2

0 (�))]
Fw,r

q,s,p(Q) := [Lr (I ;W−1,q(�)) + L2(I ;W−1,2(�))]
× [Lr (I ;W−1,s(�)) + L2(I ;W−1,2(�))]
× [Lr (I ;W−1,p(�)) + L2(I ;W−1,2(�))]
× [Lr (I ;W 1,q

0 (�)) + L2(I ;W 1,2
0 (�))].

For the function spaces of initial data, we introduce the notation

Uvw,r
q,s,p(�) := [Z2

q,r (�) + X2,2(�)] × [Z0
s,r (�) + L2(�)]

× [V 0
p,r (�) + L2

σ (�)]
Uw,r

q,s,p(�) := [Z3
q,r (�) + X2,2(�)] × [Z1

s,r (�) + L2(�)]
× [V 1

p,r (�) + L2
σ (�)].

The corresponding very weak and weak solution spaces are then denoted by

Uvw,r
q,s,p(Q) := [Z2

q,r (Q) + Z3
2,2(Q)] × [Z0

s,r (Q) + Z1
2,2(Q)]

× [V0
p,r (Q) + V1

2,2(Q)] × [Lr (I ; Lq(�)) + L2(I ;W 1,2
0 (�))]

Uw,r
q,s,p(Q) := [Z3

q,r (Q) + Z3
2,2(Q)] × [Z1

s,r (Q) + Z1
2,2(Q)]

× [V1
p,r (Q) + V1

2,2(Q)] × [Lr (I ;W 1,q
0 (�)) + L2(I ;W 1,2

0 (�))].
Let us start with the case of very weak solutions and later state the corresponding

result for weak solutions. Consider the so-called solution operator

S : Fvw,r
q,s,p(Q) × Uvw,r

q,s,p(�) → Uvw,r
q,s,p(Q)

defined as follows: S((σ, h, f , λ), (φ0, θ0, u0)) = (φ, θ, u, μ) if and only if
(φ, θ, u, μ) ∈ Uvw,r

q,s,p(Q) is the very weak solution of (1.1) in the sense of Definition
4.7, having the source terms (σ, h, f , λ) ∈ Fvw,r

q,s,p(Q) and initial data (φ0, θ0, u0) ∈
Uvw,r

q,s,p(�).

Theorem 5.1. Under condition (4.13), we have

S ∈ C∞(Fvw,r
q,s,p(Q) × Uvw,r

q,s,p(�),Uvw,r
q,s,p(Q)).

Proof. We shall proceed with the implicit function theorem. Let Gvw,r
q,s,p(Q) be as

that of Fvw,r
q,s,p(Q) but with the third function space replaced by Lr (I ; X−2,p

σ (�)) +
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L2(I ; X−1,2
σ (�)). Also, let S̃ : Gvw,r

q,s,p(Q) → Uvw,r
q,s,p(Q) be the associated solution

operator.
Consider the linear operators

A : Lr (I ; Ls(�)) + L2(I ; X1,2(�)) → Lr (I ; X−2,s(�)) + L2(I ;W−1,2(�))

Aθ = A′
s′θL + A2θN , θ = θL + θN , θL ∈ Lr (I ; Ls(�)), θN ∈ L2(I ; X1,2(�))

A : Lr (I ; L p
σ (�)) + L2(I ; X1,2

σ (�)) → Lr (I ; X−2,p
σ (�)) + L2(I ; X−1,2

σ (�))

Au = A′
p′uL + A2uN , u = uL + uN , uL ∈ Lr (I ; L p

σ (�)), uN ∈ L2(I ; X1,2
σ (�)).

With abuse of notation, we shall also define the linear operator

A : Lr (I ; X2,q (�)) + L2(I ; X3,2(�)) → Lr (I ; Lq (�)) + L2(I ; X1,2(�))

Aφ = AqφL + A2φN , φ = φL + φN , φL ∈ Lr (I ; X2,q (�)), φN ∈ L2(I ; X3,2(�)).

These operators are well-defined, that is, they are independent with respect to the
representation of the arguments as sums, and moreover, they are continuous.
We introduce the nonlinear operator

N : Uvw,r
q,s,p(Q) × Gvw,r

q,s,p(Q) × Uvw,r
q,s,p(�) → Gvw,r

q,s,p(Q) × Uvw,r
q,s,p(�)

with components N(u, f,u0) = (N1(u, f),N0(u,u0)), where

N0(u,u0) :=
⎛
⎝
φ(0) − φ0

θ(0) − θ0

u(0) − u0

⎞
⎠

N1(u, f) :=

⎛
⎜⎜⎝

∂tφ + mAμ + C(u, φ) − σ

∂t (θ − lhφ) + κAθ − αg · u + C(u, θ − lhφ) − h
∂tu + νAu + B(u, u) − �(φ, θ)g + KS(μ − lcθ, φ) − f

μ − τ∂tφ − εAφ − lcθ − F(φ) − λ

⎞
⎟⎟⎠

with u = (φ, θ, u, μ), u0 = (φ0, θ0, u0) and f = (σ, h, f , λ). The linear terms are
clearly of classC∞. Also, the bilinear terms and the function F are of classC∞ thanks
to Lemma 4.2 and Lemma 4.4. Therefore, N is a C∞ mapping.
Given f = (σ, h, f , λ) ∈ Gvw,r

q,s,p(Q) and u0 = (φ0, θ0, u0) ∈ Uvw,r
q,s,p(�), we see

from the definition of N that the very weak solution u = (φ, θ, u, μ) = S̃(f,u0) to
(1.1) satisfies N(S̃(f,u0), f,u0) = 0. Taking the derivative with respect to the very
weak solution, we have

∂uN(S̃(f,u0), f,u0) = A(u)

where A : Uvw,r
q,s,p(Q) → L(Uvw,r

q,s,p(Q),Gvw,r
q,s,p(Q) × Uvw,r

q,s,p(�)) is the operator-
valued mapping given by

[A(u)]y = ((̃σ , h̃, f̃ , λ̃), (ψ(0), ζ(0),w(0)))
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with y = (ψ, ζ,w, ξ) ∈ Uvw,r
q,s,p(Q), and the first four components are:

σ̃ := ∂tψ + mAξ + C(w, φ) + C(u, ψ)

h̃ := ∂t (ζ − lhψ) + κAζ − αg · w + C(w, θ − lhφ) + C(u, ζ − lhψ)

f̃ := ∂tw + νAw + B(w, u) + B(u,w) − (α1ψ + α2ζ )g

+ KS(ξ − lcζ, φ) + KS(μ − lcθ, ψ)

λ̃ := ξ − τ∂tψ − εAψ − lcζ − F ′(φ)ψ.

Following the proof of Theorem 4.11, it can be shown thatA(u) is an isomorphism
from Uvw,r

q,s,p(Q) onto Gvw,r
q,s,p(Q)×Uvw,r

q,s,p(�) for every u ∈ Uvw,r
q,s,p(Q). Hence, by the

implicit function theorem [68, Section 4.7], we deduce that S̃ ∈ C∞(Gvw,r
q,s,p(Q) ×

Uvw,r
q,s,p(�),Uvw,r

q,s,p(Q)). Now, the result follows from S = S̃ ◦ I, where I is the
canonical injection fromFvw,r

q,s,p(Q) × Uvw,r
q,s,p(�) into Gvw,r

q,s,p(Q) × Uvw,r
q,s,p(�) that is

obviously of class C∞, and the chain rule. �

Let us present the action of the first two derivatives ofS. These play important roles
in the area of optimal control, for instance, to the first and second order necessary and
sufficient conditions for local optimality. The action of the first and second derivatives

DS : Fvw,r
q,s,p(Q) × Uvw,r

q,s,p(�) → L(Fvw,r
q,s,p(Q)

× Uvw,r
q,s,p(�),Uvw,r

q,s,p(Q))

D2S : Fvw,r
q,s,p(Q) × Uvw,r

q,s,p(�) → L([Fvw,r
q,s,p(Q)

× Uvw,r
q,s,p(�)]2,Uvw,r

q,s,p(Q))

are given as follows: For every f, f1, f2 ∈ Fvw,r
q,s,p(Q) and u0,u01,u02 ∈ Uvw,r

q,s,p(�),
we have

DS(f,u0)(f1,u01) = A(u)−1(f1,u01)

D2S(f,u0)((f1,u01), (f2,u02)) = −A(u)−1((̃σ , h̃, f̃ , λ̃), (0, 0, 0))

σ̃ := C(w1, ψ2) + C(w2, ψ1)

h̃ := C(w1, ζ2 − lhψ2) + C(w2, ζ1 − lhψ1)

f̃ := B(w1,w2) + B(w2,w1) + KS(ξ1 − lcζ1, ψ2) + KS(ξ2 − lcζ2, ψ1)

λ̃ := − F ′′(φ)ψ1ψ2

where u = (φ, θ, u, μ) = S(f,u0) and (ψk, ζk,wk, ξk) = DS(f,u0)(fk,u0k) for
k = 1, 2. It is possible to write down the corresponding linear PDE systems for the
actions of these derivatives by simply applying the operatorA(u) to these equations,
see for instance [55, Section 4]. In particular, the PDE system for the second-order
derivative has homogeneous initial data.
We close this section by stating without proof the corresponding result for the case

of weak solutions. We still denote the associated solution operator byS.
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Theorem 5.2. With respect to the assumption (4.7), we have

S ∈ C∞(Fw,r
q,s,p(Q) × Uw,r

q,s,p(�),Uw,r
q,s,p(Q)).

6. Higher time integrability

In this section, we consider higher integrability conditions with respect to time on
the source functions. Here, we follow the ideas of the papers [17,18], see also Remark
6.5. The crucial part here is on how to deal with the coupling terms in the nonlinear
system.
First, let us state the following theorem in [9] for the sake of the reader.

Theorem 6.1. [9, Theorem 3] Let X1 and X0 be Banach spaces such that X1 is dense
in X0. If 1 ≤ r < ∞, 0 < s < 1/r, and 0 < t < 1 − s, then

W 1,r(I ; X1, X0) ↪→
↪→ Lr/(1−rs)(I ; (X0, X1)t,1).

We shall start with a simplified version of the auxiliary PDE system (4.14).

Theorem 6.2. Assume that 4 ≤ q, s, p < ∞, q ≤ s and 8 ≤ r < ∞. Let χ = 1
and G ≡ 0 in (4.14) and consider source functions σ̃ , h̃ ∈ Lr/2(I ;W−1,2(�)),
f̃ ∈ Lr/2(I ;W−1,2(�)), λ̃ ∈ Lr/2(I ;W 1,2

0 (�)) and initial data φ0N ∈ Z3
2,r/2(�),

θ0N ∈ Z1
2,r/2(�), u0N ∈ V 1

2,r/2(�). Moreover, suppose that the frozen coefficients

satisfy φ̃ ∈ Z2
q,r (Q), θ̃ ∈ Z0

s,r (Q), ũ ∈ V0
p,r (Q) and μ̃ ∈ Lr (I ; Lq(�)). Then (4.14)

admits a unique weak solution

(φN , θN , uN , μN ) ∈ Z3
2,r/2(Q) × Z1

2,r/2(Q)

× V1
2,r/2(Q) × Lr/2(I ;W 1,2

0 (�)) (6.1)

with an associated pressure pN ∈ W−1,r/2(I ; L̂2(�)).

Proof. As we have done in the linear case, let us introduce γN := θN − lhφN , γ0N :=
θ0N −lhφ0N , and γ̃ := θ̃ −lhφ̃. With these, (4.14) with χ = 1 andG ≡ 0 is equivalent
to

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂tφN + div (φN uN ) + div (φN ũ) + div (φ̃uN ) − m�μN = σ̃ in Q,

μN = τ∂tφN − ε�φN + F(φ̃ + φN ) − F(φ̃) + lclhφN + lcγN + λ̃ in Q,

∂tγN + div (γN uN ) + div (γN ũ) + div (γ̃ uN ) − κ�γN − κlh�φN

= αg · uN + h̃ in Q,

∂tuN + div (uN ⊗ uN ) + div (uN ⊗ ũ) + div (̃u ⊗ uN ) − ν�uN + ∇pN

= K(μN − lcγN − lclhφN )∇φN + K(μ̃ − lcθ̃ − lclhφ̃)∇φN

+K(μN − lcγN − lclhφN )∇φ̃ + (α0 + (α1 + α2lh)φN + α2γN )g + f̃ in Q,

div uN = 0 in Q,

φN = �φN = 0, γN = 0, uN = 0 on �,

φN (0) = φ0N , γN (0) = γ0N , uN (0) = u0N in �.

(6.2)
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We shall proceed with a fixed point argument as in [18].

Step 1. Local Existence. Consider φ̃N ∈ Lr (I ;W 2,4(�)), γ̃N ∈ Lr (I ; L4(�)), and
ũN ∈ Lr (I ; L4(�)). First, let us take the following heat equation

[
∂tγN − κ�γN = h̃N in Q,

γN = 0 on �, γN (0) = γ0N in �,
(6.3)

with the source function

h̃N := h̃ + αg · ũN + κlh�φ̃N − div (γ̃N ũN )

−div (γ̃N ũ) − div (γ̃ ũN ).

Using Hölder’s inequality, it is not difficult to see that h̃N ∈ Lr/2(I ;W−1,2(�)) and

‖h̃N‖Lr/2(I ;W−1,2(�)) ≤ c{‖h̃‖Lr/2(I ;W−1,2(�)) + ‖ũN‖Lr/2(I ;L2(�))

+ ‖φ̃N‖Lr/2(I ;W 1,2(�))

+ ‖γ̃N‖2Lr (I ;L4(�))
+ ‖ũN‖2

Lr (I ;L4(�))

+ ‖γ̃ ‖2Lr (I ;L4(�))
+ ‖ũ‖2

Lr (I ;L4(�))
}. (6.4)

Thus, according to the maximal parabolic regularity for the heat equation in Theorem
3.6, (6.3) possesses a weak solution γN ∈ Z1

2,r/2(Q), and we have

‖γN‖Z1
2,r/2(Q) ≤ c{‖h̃N‖Lr/2(I ;W−1,2(�)) + ‖γ0N‖Z1

2,r/2(�)}. (6.5)

Applying the properties of real interpolation spaces, one has

(W−1,2(�),W 1,2
0 (�)) 3

4 ,1
↪→ (W−1,2(�),W 1,2

0 (�)) 3
4 ,2

= W
1
2 ,2(�) ↪→ L4(�).

Hence, we obtain from Theorem 6.1 with r = r
2 , s = 1

r and t = 3
4 the compact

embedding Z1
2,r/2(Q) ↪→

↪→ Lr (I ; L4(�)). On the other hand, applying [65, Theorem
4.3.1 and Theorem 4.6.1(d)] we get

Z1
2,4(�) ↪→ (W−1,2(�),W 1,2(�)) 3

4 ,4

= B1/2
2,4 (�) ↪→ L4(�).

Since r ≥ 8, this leads us to the embeddings Z1
2,r/2(Q) ↪→ Z1

2,4(Q) ↪→ C( Ī ; Z1
2,4

(�)) ↪→ C( Ī ; L4(�)), and as a result it holds that

‖γN‖Lr ((0,t);L4(�)) ≤ t1/r‖γN‖C([0,t];L4(�)) ≤ ct1/r‖γN‖Z1
2,r/2(Q). (6.6)

Next, we turn our attention to the biharmonic heat equation
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⎡
⎣ ∂t (φN − mτ�φN ) + mε�2φN − ε

mτ 2
φN = m�λ̃N + σ̃N in Q,

φN = �φN = 0 on �, φN (0) = φ0N in �,
(6.7)

where the right-hand sides are given by:

λ̃N := λ̃ + F(φ̃ + φ̃N ) − F(φ̃) + lcγN + lclhφ̃N

σ̃N := σ̃ − ε

mτ 2
φ̃N − div (φ̃N ũN )

− div (φ̃N ũ) − div (φ̃ũN ).

Here, γN is the solution to (6.3). With Hölder’s inequality, we can estimate the second
and third terms in the definition of λ̃N according to

‖F(φ̃ + φ̃N ) − F(φ̃)‖Lr/2(I ;W 1,2
0 (�))

≤ c(‖φ̃‖2L∞(I ;L∞(�)) + ‖φ̃N‖2L∞(I ;L∞(�)))(‖φ̃‖Lr/2(I ;W 1,2(�))

+‖φ̃N‖Lr/2(I ;W 1,2(�)))

≤ C (‖φ̃‖Z2
q,r (Q) + ‖φ̃N‖Z3

2,2(Q))

where C : [0,∞) → [0,∞) is a cubic polynomial with C (0) = 0. Thus, we have
λ̃N ∈ Lr/2(I ;W 1,2

0 (�)), σ̃N ∈ Lr/2(I ;W−1,2(�)), and these satisfy

‖�λ̃N‖Lr/2(I ;W−1,2(�)) ≤ ‖̃λN‖Lr/2(I ;W 1,2
0 (�))

≤ c{‖̃λ‖Lr/2(I ;W 1,2
0 (�))

+ C (‖φ̃‖Z2
q,r (Q)

+ ‖φ̃N‖Z3
2,2(Q)) + ‖γN‖Lr/2(I ;W 1,2

0 (�))
} (6.8)

‖σ̃N‖Lr/2(I ;W−1,2(�)) ≤ c{‖σ̃‖Lr/2(I ;W−1,2(�))

+ ‖φ̃N‖Lr (I ;L2(�)) + ‖φ̃N‖2Lr (I ;L4(�))

+ ‖ũN‖2
Lr (I ;L4(�))

+ ‖φ̃‖2Lr (I ;L4(�))
+ ‖ũ‖2

Lr (I ;L4(�))
}.
(6.9)

The maximal parabolic regularity for the biharmonic heat equation provided in
Theorem 3.11 is applicable, and hence, (6.7) admits a weak solution φN ∈ Z3

2,r/2(Q)

and

‖φN‖Z3
2,r/2(Q) ≤ c{‖̃λN‖Lr/2(I ;W 1,2

0 (�))
+ ‖σ̃N‖Lr/2(I ;W−1,2(�)) + ‖φ0N‖Z3

2,r/2(�)}.
(6.10)

Using Theorem 6.1 with r = r
2 , s = 1

r and t = 3
4 , we obtain the compact embedding

Z3
2,r/2(Q) ↪→

↪→ Lr (I ;W 2,4(�)) thanks to
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(W 1,2
0 (�), X3,2(�)) 3

4 ,1
= (W 1,2

0 (�),W 3,2(�) ∩ W 1,2
0 (�)) 3

4 ,2

↪→ W
5
2 ,2(�) ∩ W 1,2

0 (�) ↪→ W 2,4(�).

Invoking [65, Theorem 4.3.1 and Theorem 4.6.1(d)] leads to the continuous embed-
dings

Z3
2,4(�) ↪→ (W 1,2(�),W 3,2(�)) 3

4 ,4
= B5/2

2,4 (�) ↪→ W 2,4(�).

This implies that Z3
2,r/2(Q) ↪→ Z3

2,4(Q) ↪→ C( Ī ; Z3
2,4(�)) ↪→ C( Ī ;W 2,4(�)), and

thus, we have the estimate

‖φN‖Lr ((0,t);W 2,4(�)) ≤ t1/r‖φN‖C([0,t];W 2,4(�)) ≤ ct1/r‖φN‖Z3
2,r/2(Q). (6.11)

Finally, we will deal with the following Stokes equation

[
∂tuN − ν�uN + ∇pN = f̃ N in Q,

div uN = 0 in �, uN = 0 on �, uN (0) = u0N in �,
(6.12)

where the source function f N is given by

f̃ N := f̃ + (α0 + (α1 + α2lh)φN + α2γN )g − div (̃uN ⊗ ũN )

− div (̃uN ⊗ ũ) − div (̃u ⊗ ũN ) + K(μ̃N − lcγN − lclhφN )∇φN

+ K(μ̃ − lcγ̃ − lclhφ̃)∇φN + K(μ̃N − lcγN − lclhφN )∇φ̃

μ̃N := λ̃N + τ∂tφN − ε�φN .

Here, γN and φN are the weak solutions to (6.3) and (6.7), respectively.
Applying Hölder’s inequality, we see that the f̃ N and μ̃N obey the following esti-

mates:

‖ f̃ N‖Lr/2(I ;W−1,2(�))

≤ c{|α0g| + ‖ f̃ ‖Lr/2(I ;W−1,2(�)) + ‖φN‖Lr/2(I ;L2(�)) + ‖γN‖Lr/2(I ;L2(�))

+ ‖ũN‖2
Lr (I ;L4(�))

+ ‖ũ‖2
Lr (I ;L4(�))

+ ‖γN‖2Lr/2(I ;L4(�))
+ ‖φN‖2Lr/2(I ;L4(�))

+ ‖∇φN‖2
L∞(I ;L4(�))

+ ‖∇φ̃‖2
L∞(I ;L4(�))

+ ‖μ̃‖2Lr/2(I ;Lq (�))
+ ‖γ̃ ‖2Lr/2(I ;L4(�))

+ ‖φ̃‖2Lr/2(I ;L4(�))
+ ‖μ̃N‖Lr/2(I ;L4(�))(‖∇φN‖L∞(I ;L4(�)) + ‖∇φ̃‖L∞(I ;L4(�)))}

(6.13)

‖μ̃N‖Lr/2(I ;W 1,2
0 (�))

≤ c{‖̃λN‖Lr/2(I ;W 1,2
0 (�))

+ ‖φN‖Z3
2,r/2(Q)}. (6.14)

We use the fact that q ≥ 4 in the estimate involving the term μ̃. Invoking the maximal
parabolic regularity for the Stokes equation stated by Theorem 3.2, (6.12) has a weak
solution uN ∈ V1

2,r/2(Q) such that
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‖uN‖V1
2,r/2(Q) ≤ c{‖ f̃ N‖Lr/2(I ;W−1,2(�)) + ‖u0N‖V 1

2,r/2(�)}. (6.15)

On the one hand, owing to the interpolation theory for complemented subspaces
in [65, Section 1.17.1] and the fact that A2 is an isomorphism from X1,2

σ (�) onto
X−1,2

σ (�) and from X3,2
σ (�) onto X1,2

σ (�), we have
(X−1,2

σ (�), X1,2
σ (�)) 3

4 ,1
= A2(X1,2

σ (�), X3,2
σ (�)) 3

4 ,1

= A2((X1,2(�), X3,2(�)) 3
4 ,1

∩ L2
σ (�))

↪→ A2((X1,2(�), X3,2(�)) 3
4 ,2

∩ L2
σ (�))

= A2(W
5
2 ,2(�) ∩ W1,2

0 (�) ∩ L2
σ (�)) ↪→ W

1
2 ,2(�) ↪→ L4(�).

These embeddings and Theorem 6.1 with r = r
2 , s = 1

r and t = 3
4 give us the

compact embedding V1
2,r/2(Q) ↪→

↪→ Lr (I ; L4(�)). On the other hand, by invoking
[65, Theorem 4.3.1 and Theorem 4.6.1(d)] once again, we deduce that

V 1
2,4(�) = A2((X1,2(�), X3,2(�)) 3

4 ,4
∩ L2

σ (�))

↪→ A2((W1,2(�),W3,2(�)) 3
4 ,4

∩ W1,2
0 (�) ∩ L2

σ (�))

= A2(B
5/2
2,4 (�) ∩ W1,2

0 (�) ∩ L2
σ (�))

↪→ A2(W2,4(�) ∩ W1,2
0 (�) ∩ L2

σ (�)) ↪→ L4(�). (6.16)

Thus, the following continuous embeddings hold

V1
2,r/2(Q) ↪→ V1

2,4(Q) ↪→ C( Ī ; V 1
2,4(�)) ↪→ C( Ī ; L4(�)),

and moreover, we have the estimate

‖uN‖Lr ((0,t);L4(�)) ≤ t1/r‖uN‖C([0,t];L4(�)) ≤ ct1/r‖uN‖V1
2,r/2(Q). (6.17)

Given R > 0, let BR,t denote the closed ball with radius R in the space Lr ((0, t);
W 2,4(�)) × Lr ((0, t); L4(�)) × Lr ((0, t); L4(�)). Based on the above discussion,
we have

Z3
2,r/2((0, t) × �) × Z1

2,r/2((0, t) × �) × V1
2,r/2((0, t) × �)

↪→
↪→ Lr ((0, t);W 2,4(�)) × Lr ((0, t); L4(�)) × Lr ((0, t); L4(�)). (6.18)

It can be deduced from inequalities (6.4)–(6.6), (6.8)–(6.11) and (6.13)–(6.17) that
(φ̃N , γ̃N , ũN ) �→ (φN , γN , uN ) maps BR,t into itself for sufficiently small t and this
map is compact. By the Schauder fixed point theorem, we obtain the existence of a
fixed point, and this corresponds to a local solution of (6.2) belonging to the function
space on the left-hand side of (6.18), and in turn, we obtain a local solution to (4.14)
with χ = 1 and G ≡ 0. Note that this solution coincides with that in Theorem 4.9.
Step 2. Existence over the interval I. Let (0, t∗) be the maximal interval of existence.
There are two alternatives, namely t∗ = T or t∗ < T and

lim
t ↑ t∗

{‖φN‖Z3
2,r/2((0,t)×�) + ‖γN‖Z1

2,r/2((0,t)×�) + ‖uN‖V1
2,r/2((0,t)×�)} = ∞.

(6.19)
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We shall show that the second alternative is not possible, that is, blow-up does not
occur. In the meantime, let us temporarily assume that

(γN , uN ) ∈ Lr/2((0, t); L4(�)) × Lr/2((0, t); L4(�)) ∀ t ∈ (0, t∗). (6.20)

In order to simplify the succeeding estimates, we introduce the following notations:

N := ‖φN‖Z3
2,2(Q) + ‖γN‖Z1

2,2(Q) + ‖uN‖V1
2,2(Q)

F := ‖φ̃‖Z2
q,r (Q) + ‖γ̃ ‖Z0

s,r (Q) + ‖ũ‖V0
p,r (Q) + ‖μ̃‖Lr (I ;Lq (�))

B := ‖σ̃‖Lr/2(I ;W−1,2(�)) + ‖h̃‖Lr/2(I ;W−1,2(�)) + ‖ f̃ ‖Lr/2(I ;W−1,2(�))

+ ‖̃λ‖Lr/2(I ;W 1,2
0 (�))

+ |α0g|
D(t) := ‖φN (t)‖Z3

2,r/2(�) + ‖γN (t)‖Z1
2,r/2(�) + ‖uN (t)‖V 1

2,r/2(�).

Given δ > 0, (6.20) and the absolute continuity of the Lebesgue integral imply the
existence of ηδ > 0 such that

‖γN‖Lr/2((t0,t∗);L4(�)) + ‖uN‖Lr/2((t0,t∗);L4(�)) < δ (6.21)

whenever 0 < t∗ − t0 < ηδ . Let (σN , hN , f N , λN ) be as that with (̃σN , h̃N , f̃ N , λ̃N )

in Step 1 but with (φ̃N , γ̃N , ũN , μ̃N ) replaced by (φN , γN , uN , μN ). In what follows,
the estimates in the previous step involving the time interval (0, t) will be replaced by
(t0, t).
By Hölder’s inequality, Z1

2,r/2((t0, t) × �) ↪→ C([t0, t]; L4(�)) and (6.21), we
have

‖γN‖2Lr ((t0,t);L4(�))
≤ ‖γN‖Lr/2((t0,t∗);L4(�))‖γN‖C([t0,t];L4(�))

≤ δ‖γN‖Z1
2,r/2((t0,t)×�). (6.22)

Similarly, using V1
2,r/2((t0, t) × �) ↪→ C([t0, t]; L4(�)), we obtain

‖uN‖2
Lr ((t0,t);L4(�))

≤ δ‖uN‖V1
2,r/2((t0,t)×�). (6.23)

From the embeddings V1
2,2(Q) ↪→ Lr/2((t0, t); L2(�)), Z3

2,2(Q) ↪→ Lr/2((t0, t);
W 1,2(�)), Z2

q,r (Q) ↪→ Lr ((t0, t); L4(�)) and V0
p,r (Q) ↪→ Lr ((t0, t); L4(�)), we

have the following

‖γ̃ ‖Lr ((t0,t);L4(�)) + ‖ũ‖Lr ((t0,t);L4(�)) ≤ cF

‖uN‖Lr/2((t0,t);L2(�)) + ‖φN‖Lr/2((t0,t);W 1,2(�)) ≤ cN.

Substituting these, along with (6.22) and (6.23), in (6.4) with I replaced by (t0, t), we
get

‖hN‖Lr/2((t0,t);W−1,2(�)) ≤ c{N + B + F2 + δ‖γN‖Z1
2,r/2((t0,t)×�)



   12 Page 62 of 71 G. Peralta J. Evol. Equ.

+ δ‖uN‖V1
2,r/2((t0,t)×�)}.

Here, c > 0 is a constant that is independent on δ. Plugging this in (6.5) yields

(1 − cδ)‖γN‖Z1
2,r/2((t0,t)×�) − cδ‖uN‖V1

2,r/2((t0,t)×�)

≤ c{N + B + F2 + D(t0)}. (6.24)

For the source term in the viscous biharmonic equation, using Z3
2,2(Q) ↪→ C

( Ī ;W 2,2(�)) ↪→ Lr ((t0, t);W 1,2(�)) and Z1
2,r/2((t0, t) × �) ↪→ Lr/2((t0, t);W 1,2

0
(�)), we obtain from (6.8), (6.9) and (6.23) the following estimates:

‖λN‖Lr/2((t0,t);W 1,2
0 (�))

≤ c{C (F + N) + B + ‖γN‖Z1
2,r/2((t0,t)×�)}

‖σN‖Lr/2((t0,t);W−1,2(�)) ≤ c{N2 + N + B + F2 + cδ‖uN‖V1
2,r/2((t0,t)×�)}.

Recall that C is a cubic polynomial. Utilizing these in (6.10), multiplying (6.14) by
1
2c , taking the sum of the resulting inequalities, and then rearranging the terms, one
has

1

2
‖φN‖Z3

2,r/2((t0,t)×�) + 1

2c
‖μN‖Lr/2((t0,t);W 1,2

0 (�))
− c‖γN‖Z1

2,r/2((t0,t)×�)

− cδ‖uN‖V1
2,r/2((t0,t)×�) ≤ c{C (F + N) + N2 + N + B + F2 + D(t0)}.

(6.25)

Now, let us consider the source term f N in the Stokes equation. It is not difficult
to deduce from the definitions of F and N the inequalities

‖ũ‖Lr ((t0,t);L4(�)) + ‖γ̃ ‖Lr/2((t0,t);L4(�)) + ‖μ̃‖Lr/2((t0,t);Lq (�))

+ ‖φ̃‖Lr/2((t0,t);L4(�)) + ‖φ̃‖C([t0,t];W1,4(�)) ≤ cF

‖φN‖Lr/2((t0,t);L2(�)) + ‖γN‖Lr/2((t0,t);L2(�)) + ‖φN‖Lr/2((t0,t);L4(�))

+ ‖φN‖C([t0,t];W1,4(�)) ≤ cN.

These inequalities, together with (6.22) and (6.23), when applied in (6.13) lead to

‖ f N‖Lr/2((t0,t);W−1,2(�)) ≤ c{N2 + N + B + F2 + δ‖γN‖Z1
2,r/2((t0,t)×�)

+ δ‖uN‖V1
2,r/2((t0,t)×�) + (N + F)‖μN‖Lr/2((t0,t);W 1,2

0 (�))
}.

Thus, we obtain from (6.15) the remaining estimate that we need

(1 − cδ)‖uN‖V1
2,r/2((t0,t)×�) − c(N + F)‖μN‖Lr/2((t0,t);W 1,2

0 (�))

− cδ‖γN‖Z1
2,r/2((t0,t)×�) ≤ c{N2 + N + B + F2 + D(t0)}. (6.26)

We combine the above estimates with suitable weights. Multiplying both sides of
(6.25) by ξ and (6.26) by ξ2 and then taking the sum of the resulting inequalities to
(6.24), we get

(1 − c(δ + ξ + δξ2))‖γN‖Z1
2,r/2((t0,t)×�) + ξ

2
‖φN‖Z3

2,r/2((t0,t)×�)
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+ ξ

(
1

2c
− cξ(N + F)

)
‖μN‖Lr/2((t0,t);W 1,2

0 (�))

+ (ξ2(1 − cδ) − cδ(1 + ξ))‖uN‖V1
2,r/2((t0,t)×�)

≤ cξ {C (F + N) + N2 + N + B + F2 + D(t0)}. (6.27)

Note that we can choose ξ > 0 and δ > 0 small enough so that the coefficients on the
left-hand side are positive. Indeed, one may take

0 < ξ < min

{
1

2c2(N + F)
,
1

2c

}
, 0 < δ < min

{
ξ2

c(1 + ξ + ξ2)
,

1

2c(1 + ξ2)

}
.

(6.28)

After choosing δ, we take t0 close enough to t∗ such that 0 < t∗ − t0 < ηδ . Observe
that the right-hand side of (6.27) is independent of t .
We finish the proof by a simple bootstrap argument. From Theorem 4.9, it is easy

to see that (6.20) is satisfied when r = 8. Indeed, from the Gagliardo–Nirenberg in-
equality we have (γN , uN ) ∈ Z1

2,2(Q)×V1
2,2(Q) ↪→ L4(I ; L4(�))×L4(I ; L4(�)).

Thus, (6.27) with (6.28) implies that the blow-up (6.19) with r = 8 is not possible. As
a consequence, this proves that we have a solution over the whole interval I satisfying
(6.1) in the case where r = 8. Moreover, from Step 1 we know that

Z1
2,4(Q) × V1

2,4(Q) ↪→ C( Ī ; L4(�)) × C( Ī ; L4(�)).

Now, suppose that r > 8. Applying the previous case r = 8 and the above embed-
ding, we infer that (6.20) holds when r > 8. Again, the uniform a priori bound (6.27)
with (6.28) implies that the blow-up scenario (6.19) will not occur, thereby proving
that the weak solution constructed from the previous step exists in I . Finally, the regu-
larity of the associated pressure pN ∈ W−1,r/2(I ; L̂2(�)) follows from Theorem 3.2
with p = 2 and r replaced by r/2. This completes the proof of the theorem. �

Let us now state themain result of this section. In the following, the source functions
are taken such that

⎡
⎢⎢⎢⎢⎣

σ ∈ Lr (I ; X−2,q(�)) + Lr/2(I ;W−1,2(�)),

h ∈ Lr (I ; X−2,s(�)) + Lr/2(I ;W−1,2(�)),

f ∈ Lr (I ; X−2,p(�)) + Lr/2(I ;W−1,2(�)),

λ ∈ Lr (I ; Lq(�)) + Lr/2(I ;W 1,2
0 (�))

(6.29)

and the initial data satisfy

φ0 ∈ Z2
q,r (�) + Z3

2,r/2(�), θ0 ∈ Z0
s,r (�) + Z1

2,r/2(�), u0 ∈ V 0
p,r (�)

+V 1
2,r/2(�). (6.30)
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Theorem 6.3. Suppose that 4 ≤ q, s, p < ∞, q ≤ s, 8 ≤ r < ∞, (6.29) and (6.30)
hold. Then, the nonlinear system (1.1) possesses a unique very weak solution

(φ, θ, u, μ) ∈ [Z2
q,r (Q) + Z3

2,r/2(Q)] × [Z0
s,r (Q) + Z1

2,r/2(Q)]
× [V0

p,r (Q) + V1
2,r/2(Q)] × [Lr (I ; Lq(�)) + Lr/2(I ;W 1,2

0 (�))]
with an associated pressure p ∈ W−1,r (I ; Ŵ−1,p(�)) + W−1,r/2(I ; L̂2(�)).

Proof. One can follow the proof provided in Theorem 4.11 and apply the result of
Theorem 6.2 with (φ̃, θ̃ , ũ, μ̃) = (φL , θL , uL , μL). Note that the functions defined
in (4.75)–(4.78) satisfy σ̃ , h̃ ∈ Lr/2(I ;W−1,2(�)), λ̃ ∈ Lr/2(I ;W 1,2

0 (�)) and f̃ ∈
Lr/2(I ;W−1,2(�)). �

Consider a set of initial data for which

φ0 ∈ Z3
q,r (�) + Z3

2,r/2(�), θ0 ∈ Z1
s,r (�) + Z1

2,r/2(�), u0 ∈ V 1
p,r (�)

+V 1
2,r/2(�) (6.31)

and let the source functions satisfy
⎡
⎢⎢⎢⎢⎣

σ ∈ Lr (I ;W−1,q(�)) + Lr/2(I ;W−1,2(�)),

h ∈ Lr (I ;W−1,s(�)) + Lr/2(I ;W−1,2(�)),

f ∈ Lr (I ;W−1,p(�)) + Lr/2(I ;W−1,2(�)),

λ ∈ Lr (I ;W 1,q
0 (�)) + Lr/2(I ;W 1,2

0 (�)).

(6.32)

Under these conditions, the analogue of Theorem 6.3 in the context of weak solutions
is given in the following theorem.

Theorem 6.4. Let 43 ≤ q, s, p < 2, q ≤ s, 8 ≤ r < ∞, (6.31) and (6.32) be satisfied.
Then, the nonlinear system (1.1) has a unique weak solution

(φ, θ, u, μ) ∈ [Z3
q,r (Q) + Z3

2,r/2(Q)] × [Z1
s,r (Q) + Z1

2,r/2(Q)]
× [V1

p,r (Q) + V1
2,r/2(Q)] × [Lr (I ;W 1,q

0 (�)) + Lr/2(I ;W 1,2
0 (�))]

with an associated pressure p ∈ W−1,r (I ; L̂ p(�)) + W−1,r/2(I ; L̂2(�)).

Proof. Adapt the proof in Theorem 4.12, apply the continuous embeddings Z3
q,r (Q)

↪→ Z2
4,r (Q), Z1

s,r (Q) ↪→ Z0
4,r (Q), V1

p,r (Q) ↪→ V0
4,r (Q) and Lr (I ;W 1,q

0 (�)) ↪→
Lr (I ; L4(�)) for the frozen coefficients, and then utilize Theorem 6.3. �

Remark 6.5. We would like to point out that the proof for the embedding

V1
2,4(Q) = W 1,4(I ; X1,2

σ (�), X−1,2
σ (�)) ↪→ C( Ī ; L4(�))

provided in [18, Theorem 2.9] was not entirely correct. The mistake was due to the use
of the invalid embedding W−1,2(�) ↪→ W−1,4(�). Nevertheless, we have resolved
this issue thanks to (6.16).
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7. Appendix

7.1. A space–time version of de Rham’s theorem

We prove a space–time version of the classical de Rham’s theorem. The following
proposition is an extension of the one stated in [27, Lemma 72.8], in particular, the
case where p = r = 2 and k = 1.

Proposition 7.1. Let p, r ∈ (1,∞) and k be a positive integer. Then L ∈ W−1,r

(I ;W−k,p(�)) satisfies

〈L, �〉
W−1,r (I ;W−k,p(�)),W 1,r ′

0 (I ;W k,p′
0 (�))

= 0 ∀ � ∈ W 1,r ′
0 (I ;W k,p′

0 (�) ∩ L p′
σ (�))

if and only if there exists a unique p ∈ W−1,r (I ; Ŵ 1−k,p(�)) such that L = ∇p in
the distributional sense, that is,

〈L, ρ〉
W−1,r (I ;W−k,p(�)),W 1,r ′

0 (I ;W k,p′
0 (�))

= −〈p, div ρ〉
W−1,r (I ;Ŵ 1−k,p(�)),W 1,r ′

0 (I ;Ŵ k−1,p′
0 (�))

for every ρ ∈ W 1,r ′
0 (I ;W k,p′

0 (�)). In this case, there exists a constant c > 0 such
that

‖p‖W−1,r (I ;Ŵ 1−k,p(�)) ≤ c‖L‖W−1,r (I ;W−k,p(�)).

Proof. We proceed by a duality argument. First, let us note that the linear operator

div : Lr ′
(I ;W k,p′

0 (�)) → Lr ′
(I ; Ŵ k−1,p′

0 (�))

is bounded and surjective, see for instance Lemma II.2.1.1 and Lemma II.2.3.1 in [62]
for the time-independent case. We claim that the restriction

d̃iv := div : W 1,r ′
0 (I ;W k,p′

0 (�)) → W 1,r ′
0 (I ; Ŵ k−1,p′

0 (�)) (7.1)

is also bounded and surjective. It is clear that (7.1) is well-defined, linear and bounded.

Let g ∈ W 1,r ′
0 (I ; Ŵ k−1,p′

0 (�)) ↪→ C( Ī ; Ŵ k−1,p′
0 (�)) ↪→ Lr ′

(I ; Ŵ k−1,p′
0 (�)).

Then there is a v ∈ Lr ′
(I ;W k,p′

0 (�)) such that div v = ∂t g almost everywhere in Q.
For each t ∈ [0, T ], let us define

w(t) := T − t

T

∫ T

0
v(s) ds −

∫ T

t
v(s) ds.
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It is easy to see that w ∈ W 1,r ′
0 (I ;W k,p′

0 (�)), and for all t ∈ [0, T ] we have

d̃ivw(t)

= T − t

T

∫ T

0
∂t g(s) ds −

∫ T

t
∂t g(s) ds = g(t)

since g(0) = g(T ) = 0 in Ŵ k−1,p′
0 (�). We point out that the insertion of the diver-

gence operator inside the integral is valid since div is linear and continuous, see for
instance [48, Chap. III, Theorem 3.7.12]. This shows that the map (7.1) is surjective.
It follows from the closed range theorem [67, page 205] that the dual operator−∇ =

d̃iv
′ : W−1,r (I ; Ŵ 1−k,p(�)) → W−1,r (I ;W−k,p(�)) has a trivial kernel and a range

Ran(−∇) that is closed with respect to the topology of W−1,r (I ;W−k,p(�)). As a
consequence, the inverse (−∇)−1 is a well-defined, linear and bounded operator from
Ran(−∇) onto W−1,r (I ; Ŵ 1−k,p(�)). Thus, if L ∈ W−1,r (I ;W−k,p(�)) vanishes
on W 1,r ′

0 (I ;W k,p′
0 (�) ∩ L p′

σ (�)) = Ker(d̃iv), then L ∈ Ker(d̃iv)⊥ = Ran(−∇).
Therefore, we may take p = −(−∇)−1L = ∇−1L ∈ W−1,r (I ; Ŵ 1−k,p(�)) with
norm

‖p‖W−1,r (I ;Ŵ 1−k,p(�)) ≤ ‖(−∇)−1‖L(Ran(−∇),W−1,r (I ;Ŵ 1−k,p(�)))‖L‖W−1,r (I ;W−k,p(�)).

The converse of the first statement in the proposition is trivial. �

7.2. Analyticity of the semigroup for the linearized system

In the following, we prove that the linear operator −A generates a strongly con-
tinuous analytic semigroup on Hω, where A is defined by (3.30). The sesqui-linear
form associated withA is given by

(A(φ, γ, u), (ψ, η, v))Hω = a((φ, γ, u), (ψ, η, v))

where a = a1 + a2 and

a1((φ, γ, u), (ψ, η, v)) :=
∫
�

{ωm2τε∇�φ · ∇�ψ + κ∇γ · ∇η + ν∇u : ∇v} dx

a2((φ, γ, u), (ψ, η, v)) := −
∫
�

ωm[(β1 − lclh)�φ − lc�γ ](mτ�ψ − ψ) dx

−
∫
�

{(κlh�φ)η + (αg · u)η + [(α1 + α2lh)φ + α2γ ]g · v} dx .

Given β ∈ (0, π), we denote the sector �β := {ζ ∈ C \ {0} : |arg ζ | < π − β}.
First, we prove the following elementary inequality.

Lemma 7.2. For each β ∈ (0, π), there exists τβ > 0 such that for every a, b ≥ 0
and ζ ∈ �β there holds |aζ + b| ≥ τβ(a|ζ | + b).
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Proof. Supposea, b > 0. Setting z = aζ/b, it suffices to show that |z+1| ≥ τβ(|z|+1)
for every z ∈ �β . Write z in its polar form z = reiϑ where |ϑ | < π − β and r > 0.
Let δβ := cos(π − β) > −1. Then

|z + 1|2
(|z| + 1)2

= r2 + 2r cosϑ + 1

(r + 1)2
≥ 1 − 2(1 − δβ)r

(r + 1)2
≥ 1 − 1 − δβ

2
=: cβ

for every r > 0, where cβ > 0. We may then take τβ = min{1, c1/2β }, and this clearly
covers the case when a = 0 or b = 0. �

Proposition 7.3. For small enoughω > 0, the linear operator−A : D(A) ⊂ Hω →
Hω generates an analytic C0-semigroup on Hω.

Proof. It is clear that A is a closed and densely defined linear operator. Let δ > 0 be
a constant to be chosen later. Applying integration by parts and Young’s inequality, it
is not hard to see that for each (φ, γ, u) ∈ X3,2(�) × W 1,2

0 (�) × X1,2
σ (�), we have

a1((φ, γ, u), (φ, γ, u)) ≥ c{ω‖φ‖2X3,2(�)
+ ‖γ ‖2

W 1,2
0 (�)

+ ‖u‖2
X1,2

σ (�)
}

|a2((φ, γ, u), (φ, γ, u))| ≤ cω‖(φ, γ, u)‖2Hω
+ ω{δ‖φ‖2X3,2(�)

+ cδ‖γ ‖2
W 1,2

0 (�)
}

where c = min{m2τε, κ, ν} > 0 and cω, cδ > 0 are independent of (φ, γ, u). Let
β ∈ (0, π) be fixed. If " ≥ 0 and ζ ∈ �β , then by invoking the estimate in the
previous lemma, we obtain

|(ζ + ")‖(φ, γ, u)‖2Hω
+ a((φ, γ, u), (φ, γ, u))|

≥ |(ζ + ")‖(φ, γ, u)‖2Hω
+ a1((φ, γ, u), (φ, γ, u))|

− |a2((φ, γ, u), (φ, γ, u))|
≥ τβ{(|ζ | + ")‖(φ, γ, u)‖2Hω

+ a1((φ, γ, u), (φ, γ, u))}
− |a2((φ, γ, u), (φ, γ, u))|

≥ {τβ(|ζ | + ") − cω}‖(φ, γ, u)‖2Hω
+ cω,δ,β‖(φ, γ, u)‖2

X3,2(�)×W 1,2
0 (�)×X1,2

σ (�)

where cω,δ,β = min{ω(cτβ − δ), cτβ − ωcδ}. Taking 0 < δ < cτβ , 0 < ω < cτβ/cδ ,
and " ≥ cω/τβ > 0, we have cω,δ,β > 0 and

|(ζ + ")‖(φ, γ, u)‖2Hω
+ a((φ, γ, u), (φ, γ, u))|

≥ τβ |ζ |‖(φ, γ, u)‖2Hω
+ cω,δ,β‖(φ, γ, u)‖2

X3,2(�)×W 1,2
0 (�)×X1,2

σ (�)
. (7.2)

Thus, the sesqui-linear form (ζ+")(·, ·)Hω+a is bounded and coercive on X3,2(�)×
W 1,2

0 (�) × X1,2
σ (�).

For each (σ, h, f ) ∈ X2,2(�)× L2(�)× L2
σ (�) the following variational equation

for all (ψ, η, v) ∈ X3,2(�) × W 1,2
0 (�) × X1,2

σ (�)

(ζ + ")((φ, γ, u), (ψ, η, v))Hω + a((φ, γ, u), (ψ, η, v))
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= ((σ, h, f ), (ψ, η, v))Hω (7.3)

admits a unique solution (φ, γ, u) ∈ X3,2(�) × W 1,2
0 (�) × X1,2

σ (�) in virtue of the
Lax–Milgram lemma. Moreover, it follows from the definition of A that (φ, γ, u) is
a weak solution to the following system of boundary value problems:

⎡
⎢⎢⎢⎢⎢⎢⎣

(ζ + ")(φ − mτ�φ) + mε�2φ + m(β1 − lclh)�φ − mlc�γ = σ − mτ�σ in �,

(ζ + ")γ − κ�γ − κlh�φ − αg · u + ∇p = h in �,

(ζ + ")u − ν�u − ((α1 + α2lh)φ + α2γ )g = f in �,

div u = 0 in �,

φ = �φ = 0, γ = 0, u = 0 on �.

By classical elliptic regularity theory for the Poisson and stationary Stokes equations,
we have γ ∈ X2,2(�) and u ∈ X2,2

σ (�). Thus, we also have φ ∈ X4,2(�) for the
solution of the above bi-Laplace equation since σ − mτ�σ + mlc�γ ∈ L2(�).
Consequently, it holds that (φ, γ, u) ∈ D(A).
The variational equation (7.3) is equivalent to [ζ I + (" I + A)](φ, γ, u) =

(σ, h, f ), and moreover, from (7.2) and the Cauchy–Schwarz inequality, one has

τβ |ζ |‖(φ, γ, u)‖Hω ≤ ‖(σ, h, f )‖Hω . (7.4)

Hence, the sector�β lies in the resolvent set of−(" I+A), and for every ζ ∈ �β the
resolvent estimate ‖[ζ I + (" I +A)]−1‖L(Hω) ≤ τ−1

β /|ζ | holds due to (7.4). These
show that −(" I +A) is sectorial, and hence, it generates an analytic C0-semigroup
on Hω by [26, Theorem 4.6]. Thanks to the bounded perturbation theorem in [54,
Chapter 3, Corollary 2.2], we conclude that −A = −(" I + A) + " I is also a
generator of an analytic C0-semigroup on Hω. The proposition is now established.

�
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