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Weak and very weak solutions to the viscous Cahn-Hilliard—
Oberbeck-Boussinesq phase-field system on two-dimensional
bounded domains

GILBERT PERALTA

Abstract. In this paper, we consider weak and very weak solutions to the viscous Cahn—Hilliard—Oberbeck—
Boussinesq system for non-isothermal, viscous and incompressible binary fluid flows in two-dimensional
bounded domains. The source functions have low spatial regularities, and the initial data belong to some
interpolation spaces. The essential tools employed in the analysis are the extended maximal parabolic
regularity for the associated linearized system and the well-posedness of the nonlinear part with the solution
of the linearized dynamics as the frozen coefficients. We resolve the linear system by decomposition into the
viscous biharmonic heat, Stokes, and heat equations. A spectral Faedo—Galerkin framework shall be pursued
for the nonlinear part. Higher integrability with respect to time will be established using interpolation and
compactness methods.

1. Introduction

Consider an open, bounded and connected domain Q C R? with a sufficiently
smooth boundary I'. Let 0 < 7' < oo be a given final time, / := (0, T') be the tempo-
ral domain, Q := I x 2 the space—time domain and ¥ := [ x I" the lateral boundary
of Q. This paper will investigate the following system of nonlinear partial differen-
tial equations modeling the dynamics of non-isothermal, viscous and incompressible
binary fluids:

0rp + div (pu) —mAp = o in Q,
Uw=710¢—€e€Ap+ F(p)+ 10+ A in Q,
010 — Ihorp +div (0 — lnp)u) — kA0 =ag-u+h in Q,
dru+diviu@u) —vAu+Vp =K(u —10)Vep + L(¢p,0)g + f in Q, (1.1)
divu =0 in Q,
p=Ap=0, 6=0, u=0 on X,

| 60) =¢o, 0(0)=0), u®) =up in Q.
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The unknown state variables are ¢ : O — R, u : 0 — R, 60 : Q0 — R,
u:Q — R*andp: Q — R. These represent the order parameter for the normalized
fractional part of a binary fluid mixture, chemical potential, temperature deviation
with respect to some critical value, mean velocity and pressure, respectively. In (1.1),
F(¢) = Bod> — B1¢ is the derivative of a polynomial approximation of the Landau—
Ginzburg—Wilson free energy functional and £(¢, 6) = ag+1¢ + 20 is a linearized
equation of state for the density, with constant coefficients By, 81 > 0 and «g, @1, a2 €
R. The other constant parameters are the diffusive mobility m > 0, viscosity coefficient
T > 0, interfacial thickness € > 0, thermal conductivity ¥ > 0, kinematic viscosity
v > 0, capillarity stress coefficient X > 0 and gravitational force g € R?. Moreover,
le, In > 0 are constants related to the latent heat and o € R for linearized adiabatic
heat. The initial concentration, temperature and velocity are ¢ : 2 — R,60p : @ — R
and ugp : Q — R2, respectively.

The order parameter ¢ describes the concentration of the binary fluid mixture, for
instance, ¢ = 1 signifies a pure single phase, while ¢ = —1 represents the other phase
when By = 81 = 1. System (1.1) is a coupling of the Cahn—Hilliard system [16] for
non-equilibrium phase transitions and the Oberbeck—Boussinesq system [13,53] in
thermohydraulics that accounts for surface tension due to capillary action. Here, the
coupling between the order parameter and the temperature is of phase-field type [15].
For a derivation of the system (1.1) in the absence of the term td;¢ and other relevant
references, we refer to [19,24,46,55]. Concerning the Cahn—Hilliard equation and
the Cahn—Hilliard—Navier-Stokes system with more general potentials that include
the physically meaningful logarithmic energy potentials, one may consult the papers
[1-5,33,35,36,42,43] and the references therein.

The additional viscous term serves as a regularization to the Cahn—Hilliard system,
and it plays a crucial role in the attainment of suitable a priori estimates leading to
the well-posedness of (1.1) with source terms of low regularity. Such a viscous term
has been introduced by Grinfeld and Novick—Cohen [44] to model phase separation
in polymer systems. Recent works related to that model are the boundary optimal
control for the viscous Cahn—Hilliard system in [21] and a finite element scheme for
the viscous Cahn—Hilliard—Navier—Stokes system with dynamic boundary conditions
and its convergence analysis in [20]. An analysis for the long-term dynamics with
respect to the viscous parameter t can be found in [25].

In the nonlinear system (1.1), the functions f : Q - RZh: Q - R,0: Q0 - R
and A : Q@ — Rcorrespond to external body forces, heat source or sink, concentration-
source and micro-forces, respectively, see [45] for the latter. In this work, we aim to
establish the existence and uniqueness of weak solutions to (1.1) having the source
functions o € L"(I; W=14(Q)), » € L"(I; Wol’q(Q)), h e L"(I; W=15(Q)) and
f el ; W_l""(Q)), with suitable range of values for p, ¢, s and r. In the case
p =q = s = r = 2, a Hilbert space framework can be utilized to prove the
existence and uniqueness of weak solutions. We shall also provide the existence and
uniqueness of very weak solutions with source terms having less regularity, namely o €
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L7 (1 W1 (@ N Wy (@)1), 1 € L7 (13 LY, h € LT (13 [W5 (@) N Wy (@)])
and f € L' (I; [W>P(Q) N W(l)’p(Q)]/), with prime denoting duality. To be more
precise, we shall consider these source functions to lie in sums of reflexive Banach
spaces containing the above function spaces.

In the context of weak solutions, our main interest in this study is the case where
1l <qg < 2,%‘ <s < 2,% <p<2qg<sand4 <r < oo that will cover later
the situation of measure-valued sources (Theorem 4.12 and Sect. 4.5). This type of
problem has been studied by Casas and Kunisch for the two-dimensional evolutionary
Navier—Stokes equation in [18] and its application to sparse optimal control in [17].
The analysis of the state equation relies on an extended maximal parabolic regularity
(MPR) for the Stokes equation, see also [59] for a different approach but with a more
regular source function.

Our goal is to develop the corresponding well-posedness theory for non-isothermal,
incompressible and viscous binary flows. Moreover, we shall consider the notion of
very weak solutions with % <qg<00,4<p,s,r <ooandqg < s (Theorem 4.11).
The definitions will be in such a way that weak solutions are also very weak solutions.
Note that this is not always the case in the previous literature for the Navier—Stokes
equation. The lower bounds for these parameters are imposed so that a Faedo—Galerkin
approach for the nonlinear part is possible. In contrast to [18], note here that the
parameter r for time integrability is independent of the other parameters p, s and ¢
related to spatial regularity. This is due to the fact that the convection terms have been
expressed in divergence form. Also, this will provide a unified treatment for the weak
and very weak formulations. For the Navier—Stokes equation in (1.1), the solutions
we consider here belong to the Serrin’s class; hence, uniqueness is to be expected.

Some studies on the maximal parabolic regularity for the Cahn—Hilliard equation
and phase-field systems can be found in [56,57,66]. For very weak solutions of the
Navier—Stokes equation, we refer to [50] for the stationary case and to [8,10,11,29-
31] for the time-dependent case. With respect to (1.1), we consider the MPR theory for
the system that couples the biharmonic heat, Stokes and heat equations. Our strategy is
to study each equation separately, where available known results are applicable, treat
the coupling terms as sources in each component and then apply suitable embedding
theorems. The latter will be done at first in the Hilbertian case, thanks to the analyticity
of the underlying semigroup. It is well known that this is enough to obtain maximal
parabolic regularity in the case of Hilbert spaces [22].

Let us present the main strategy in the study of (1.1) under the scenarios described
above. In principle, by eliminating the chemical potential u, this system can be put as
an abstract semi-linear parabolic problem

(1.2)

WBZ+ AZ,p)+N(Z)=F inl,
Z(0) = Zo,
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where Z = (¢,0,u) and F = (o + mAA, h, f), with an appropriate linear elliptic
operator A, a nonlinear operator A and the linear operator B is given by BZ =
(¢ —mtAP,0 —Iho, u).

Suppose that Zg = Zor, + Zoy and F = F + F y, where Zo;, and F lie in some
reflexive Banach spaces, while Zoy and F y belong to some Hilbert spaces. We shall
decompose the solution of (1.2) as a sum of a suitable weak or very weak solution of
the linear system

BZ, +A(Zy,p)=Fr inl, (13)
Z1(0) = Zo. '
and an appropriate weak solution of the nonlinear system
WBZy+ AZn,pN) +N(ZL +Zy)=Fy inl, (1.4)
ZN(0) = Zon.

Then Z = Z; + Zy with the associated pressure p = p; + py would be a weak
or very weak solution of the semi-linear equation (1.2). For such a decomposition,
extended MPR theorems will be used for the linear system (1.3) and a classical spectral
Faedo—Galerkin method will be pursued for the nonlinear system (1.4). We would like
to point out that these are in fact the main ideas that were utilized in [18] for the
in-stationary Navier—Stokes equation, see also [50] for the stationary case and [51] for
the stationary Boussinesq system with inhomogeneous Dirichlet boundary conditions.

The main challenge in the derivation of the priori estimates involving the term uV¢
is the low regularity of the chemical potential p. Nevertheless, this is compensated by
the viscous term 79;¢ in the equation for the chemical potential, leading to a better
regularity for the time derivative of the order parameter ¢, and as a result for that ¢.
Also, due to the low spatial regularity of the sources, we need to impose the stronger
integrability condition > 4 compared to the typical Hilbert space framework.

We point out that the results of this paper can be specialized to various situations.
For instance, these are the viscous convective Cahn—Hilliard equation (constant # and
), the coupled viscous isothermal Cahn—Hilliard—Navier—Stokes system (constant
0), the Oberbeck—Boussinesq system (constant ¢) and the non-isothermal viscous
Cahn—Hilliard system (constant ).

The structure of this paper is organized as follows: We recall some function spaces
needed in the analysis as well as the precise formulations of (1.3) and (1.4) in Sect. 2.
Extended maximal parabolic regularity theorems for the linearized system will be
presented in Sect. 3, and the well-posedness of the nonlinear system will be discussed
in Sect. 4. In Sect. 5, we will establish the differentiability of the operator that maps the
source functions and initial data to the very weak or weak solutions. Finally, we present
solutions with higher integrability with respect to time under additional conditions on
the source functions and the initial data in Sect. 6.
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2. Notation and orientation

Let us introduce the notation for the function spaces and operators to be employed
in this work. The last part of this section deals with the precise formulations of (1.3)
and (1.4) when applied to (1.1).

2.1. Interpolation spaces

We denote a continuous embedding by < and a compact embedding by . Sup-
pose that X and Y are Banach spaces such that X < Z and ¥ < Z for some
Hausdorff topological vector space Z. Thesum X +Y :={u+v:u € X,ve Y}is
also a Banach space when endowed with the norm

lzllx+y := inf {lxllx +lyly} Vze X +Y.
z=x+y
xeX, yeY

The notation := means that the expression on the left is defined by the expression on
the right. The intersection X NY is also a Banach space when equipped with the norm

lvllxny = max{[vlx, [lvly} YveXnNY.

Given two Banach spaces X and Y described above,0 < 6 < land1 < p < oo, we
consider the real interpolation space (X, Y )y, ,, to be the Banach space of all elements
z € X + Y such that the following norm is finite

o0 _p, dt 7 .
lzllx,vye,, = / K(t, )Pt - K(t,2)== inf Allxlx +llyly}
0 vaX,yE’Y

Here, we follow the definition based on Petree’s K-method. It follows that if X and
Yy are Banach spaces with X¢g < X and Yy < Y, then (Xo, Y0)g,p — (X, Y)g,p.

The space of linear and bounded operators from X into Y will be denoted by
L(X,Y) and L(X) := L(X, X). All throughout in this paper, by an isomorphism
we mean a topological one. If A € £(X + Y, Xy 4 Y1) is an isomorphism such that
the restrictions Aly € L£(X, X1) and Aly € L(Y, Y) are also isomorphisms, then
A(X,Y)g,p = (X1, Y1), p-

A prime will denote duality. More precisely, X’ is the space of all linear and contin-
uous functionals in a Banach space X, while p’ = % for areal number 1 < p < oo.
If XNYisdensein X and Y, then (X NY) =X +Y, (X +Y) = X' NY' and
(X, Y)/Q’[7 = (X",Y)g, forevery 0 < 0 < land 1 < p < o0, see [12, Theorem
2.7.1] and [65, Theorem 1.11.2]. If in addition, X and Y are reflexive, then an im-
mediate consequence of these equations is that X N'Y, X + Y and (X, Y)g, , are also
reflexive. With these, the function spaces for the sources, initial data, and weak or very
weak solutions we consider here will be reflexive, with the exception of those source
functions in Sect. 4.5.

For further details on interpolation theory, we refer the reader to the standard texts
[7,12,52,65] on this subject.
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2.2. Lebesgue, Sobolev, and solenoidal function spaces

For1l < p <ooands > 0, L?(Q2) and W*?(Q2) indicate the classical Lebesgue
and Sobolev spaces [6]. The subspace of W*”(2) having elements that vanish on
the boundary I' in the sense of traces will be denoted by W,'”(2) and its dual by
W_s'p/(Q) = Wg’p(Q)/ when 1 < p < oo. For the vector-valued case, we set
LP(Q) := LP(Q) x LP(Q), WHP(Q) := WSP(Q) x WSP(Q) and W' (Q) :=
Wyl () x Wy’ ().

Denote by L () the closure of the set of all divergence-free vector fields in
C5°(R2) x C§°(2) with respect to the norm of L” (€2). We use the notation ZP(Q) =
{mr e LP(Q) : fQ  dx = 0} for the closed subspace of L”(€2) with elements hav-

ing zero averages over Q. Likewise, we set Wg’p(ﬂ) = WyP(@n LP(Q) and
WP (@) = Wy P().
Given 1 < g < oo, we consider the Dirichlet Laplacian A; = —A : D(A,) C

L9(2) — L4(S2) with domain D(A,) = W24(Q) N Wé’q(Q). Note that there exist
constants ¢y, ¢ > Osuchthatc ||@llw2q ) < 1AgPllLa@) < c2lPllw2q(q) forevery
¢ € D(Ay), see [41, Lemma 9.17]. For each s > 0, we let

s/2

X49(Q) := DAY, X707 (Q) = XV(Q)

with [[¢[l xs.a(q) = ||A;/2¢||Lq(9) for ¢ € X*4(2). In particular, X%9(Q) = L1(Q),
X)) = Wy (Q), X29(Q) = W2I(Q) N Wy 1(Q), X34(Q) = (¢ € WH(Q) :
¢ = Ap = OonT} and X*9(Q) = WH4(Q) N X>9(Q). As usual, we again set
X59(Q) = X59(R) x X39(Q).

Let us consider the Stokes operator A, = —P,A : D(A,) C LE(Q) — L5(Q)
forl < p < co. Here, P, : L?(Q2) — LY (Q) is the Leray—Helmholtz projector for
which P,v + Vm, = v, where 7, € wihp (R2) is the weak solution to the boundary
value problem

Amy, =divov in 2,
(Vay—v)-n=0 onT,

with n being the unit normal vector outward to I', see [34]. It holds that P2p = P, and
P’,7 = P, for the dual operator. We have D(A ) = X%P(Q)NLE () and there exist
positive constants ¢3 and ¢4 such that c3||u || w2r(Q) = |Apull L) = C4 1A, W2P(Q)
for every u € D(A ). In line with the notations for the Dirichlet Laplacian, we set

2 _ /
X5P(Q) == DAY,  X;%7(Q) = XLP(Q)
for s > 0 and [[ullysr g = IAY ullrq for u € X57(K). Thus, we have
XoP(Q) = LE®). X;7(Q) = Wy (@) N LEQ), X2 (Q) = X>P(2) N LE(Q)
and X (3,’[7 (Q) = X>P(Q) N LY(Q). For the domains of the fractional powers of the
Stokes operator, we refer to [39] in the case of smooth domains and to [64] for three-

dimensional Lipschitz domains. The analyticity of the Stokes semigroup in the LY ()
spaces can be found in [38].
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2.3. Lebesgue—Bochner spaces

For time-dependent functions, we shall consider mainly the Lebesgue—Bochner
spaces

WUP(L X, Y):={ue LP(I;X) : du € LP(I;Y))}

for Banach spaces X and Y with X < Y, where 0; is to be understood in the sense
of vector-valued distributions. If ¥ = X, then we simply write W7 (I; X) instead of
whr(I: X, X). Also, Wh-P(I; X, Y) is a Banach space when endowed with the graph
norm

lullwrrr.x,yy = lullLea:x) + 10ullLea:y)-

The space of continuous functions on I = [0, 7] into X with the supremum norm
will be denoted by C(I; X). Then WhP(I; X, Y) — WLP(I;Y) — C(I;Y). We
set

Wol’p(I; X):={uce W]’P(I; X) :u(0) =u(T) =0}
and WP (I; X'y := Wy P (I; X) for 1 < p < o0.
2.4. The linear and nonlinear parts

We now consider the decomposition of (1.1) as elucidated in the introduction.
Suppose that the initial data and source functions can be written as follows:

(90, 0o, uo) = (PoL, boL, uor) + (don, fon, uon) 2.1
(U, hv fv )‘) = (O-L? hL’ va )‘L) + (GNv hN» fN’ )‘*N) (22)

The subscripts L and N stand for linear part and nonlinear part, respectively. Then,
the components of the solution to (1.1) will be split according to

(9,0, u,u,p) = (b, 0L, up, jur,pr) + (dN,ON, uN, UN, PN)- (2.3)

In the above decomposition, on the one hand, the first tuple (¢, 0, ur, 1r, pr)
constitutes a weak or very weak solution of the linearized system

Orpp —mAup =op in O,
ur =t¢r —€APr — Pror + 100 + AL in O,
00, — Indrpy — kA0, =ag-up +hp in Q,
dup —vAup +Vpp = (@19 +o20)g+ fr inQ, (2.4)
divu; =0 in Q,
¢ =A¢pr =0, 0 =0, up =90 on X,
| oL 0) =¢or, 0L(0) =6pr, up(0)=uoL in Q.
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Notice that the linear system (2.4) is obtained by simply dropping the nonlinear terms in
(1.1). On the other hand, the second tuple (¢n, On, un, 1y, P ) satisfies the following
nonlinear system with the frozen coefficients ¢, pr, 6 and uy:

0N +div ((PL + ¢N) (UL +un)) —mApuy = on in Q,

UN = THPN — €AdN + F(L + dN) + 10N + BidL + AN in Q,

00N — horpy +div (0L + Oy — hédpp — hpn)(urp +upy)) — cAby
=og-uy+hy in Q,

duy +div((up +un) ® (up +un)) —vAuy + Vpy
=K(up +puny =10, —1ON)V(PL + dn) +L(dy.On)g+ fy in O,

divuy =0 in Q,

on =Apy =0, Oy =0, uy=0 on Y,

| on(0) =don, On(0) =0on, un(0)=uoy in Q.
2.5)

The precise functional analytic frameworks to (2.4) and (2.5) will be discussed in
detail in the forthcoming sections.

3. Maximal parabolic regularity for the linearized system

All throughout this section, we shall take g, s, p, r € (1, 00) with g < 5. We aim to
present extensions of the MPR theorems for the Stokes, heat, and viscous biharmonic
heat equations. We then combine these in order to prove the MPR for the linearized
system (2.4). Generic positive constants will be denoted by ¢ or with a subscript. In
general, these constants depend on at least one of p, s, g, r, 2, T and the parameters
in the nonlinear system (1.1).

3.1. MPR for the Stokes equation

We consider initial data for the Stokes equation in the following real interpolation
spaces:

V() = (X 1P(Q), X )P ()1

VY Q) = (X, 2P(Q), LE(Q)1/r-
The superscript on the left signifies the order of weak differentiability with respect to
the smaller function space in the interpolation. This is motivated from the fact that if r
is large then the interpolated space is “closer” to the smaller function space. We have

V5 (Q) < VO () since X, 7 (Q) < X, 77(Q) and X" (Q) = LY(Q). The
weak and very weak solution spaces we take into account are as follows:

Y, (0) =W (I X7 (Q), X, 1P (Q)
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V) Q) == W (I L2(RQ), X ;2P (Q)).

In view of the previous embeddings, we have V;,,,(Q) — V(,),,,(Q).

Define the continuous bilinear form a, : W(l)’p (2) x W(l)’p /(Q) — R according to

2
ap(v, p) ::/QVv:Vpdx:Z/Qij-ijdx V(v,p)eW(l)’p(Q)xW(l)"" (2).
j=1

Definition 3.1. Consider a source function and initial data
fL el ;X P(Q), uoL e V), (9. G.1)

We say thatu;, € V},y,(Q) is a weak solution of the Stokes equation

oiurp —vAup + Vpr = f; in Q, (32)
divuy =0 inQ, up =0 on X, u;(0) = ugz in 2, '
ifur(0) =uogr inV },’r(Q) and the following variational equation
T T
-/(; <8tuLﬂ p)X;Lp(Q),X},’p/(Q) dt + % /(; ap(uL, p) dt
T
=f0 SrLePhyirg) xir' @
holds for every p € L" (I; X},’p/(ﬂ)). &

Thanks to the continuous embedding V }, Q)= C (I; V},’ +(£2)), see [7, Theorem
I1.4.10.2], the point-wise time evaluation u, (0) is meaningful and lies in V ;,’,(Q).
As usual, the pressure has been eliminated in the weak formulation and it will be
recovered by an application of de Rham’s theorem.

The following extension of the maximal parabolic L"-L” regularity theorem for
the Stokes equation has been demonstrated in [18]. We also refer to [37,40,47] for
related topics and relevant references. Here, we give an alternative demonstration for
the existence of the pressure compared to those that were presented in [14,18,63]. In
this direction, we follow the discussion provided in [27, Chapter 72] for the case of
Hilbert spaces.

Theorem 3.2. Let p,r € (1, 00) and suppose that (3.1) is satisfied. Then, the Stokes
equation (3.2) has a unique weak solution uy, € V},,r(Q) and there exists a constant
c1 > 0 independent on uy, f;, and uor such that

lezlivy (o) = L L gy + MLy (o) (33)
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In addition, if f; € L"(I; Wfl’p(Q)), then there is a unique associated pressure
pr € WL (I; LP(RQ)) in the sense that

T
(atuLv Q)W_l’r(l;Wﬁl’p(Q)),W(;'r/(];W(l)’p,(Q)) + V/é ap(uLs Q) d[
T

~ L AV @)y o, Wi T @) T fo Sy wi o) ¥
(3.4)
for every g € W(}’r,(l; Wol’p/(Q)) and there is a constant ¢o > 0 such that
”pL”W*l,V(];ZI?(Q)) = CZ{HfL”Lr([;W—LP(Q)) + lluoL ”V}”(Q)}- (3.5)

Proof. The existence and uniqueness of the weak solution u; € V},’,(Q) as well
as the stability estimate (3.3) have been established in [18, Theorem 2.4] for f; €
L"(I; W~=1-P()). Note that the proof of that theorem covers the case where f; €
L' (I; X;l’p(Q)). We point out that the definition of weak solutions to (3.2) in that
paper is equivalent to the one prescribed by Definition 3.1 with space—time-dependent
test functions. Let us provide an alternative proof for the existence and regularity of
the associated pressure. The following argument will be utilized later in the associated
pressure for the very weak formulation as well as for the nonlinear part.

Since u;, € L"(I; X(l,’p(Q)) < L'(I; LP(Q)) < L"(I; W~1P(Q)), it follows
that u;, has a distributional time derivative d,;u;, € W17 (1; w-Lp (2)), that is, the
linear form given by

(djur, Q>Wﬁl'r(l;W_]‘p(Q)),W(}”J(I;W(I).I)/(Q))

g T
= —/0 (uLs atQ)W’l'P(Q),W(l)’p,(Q) dr = _/0 (uL’ 3IQ>LP(Q)’LP,(Q) d

for every 0 € Wol’r/(l ; W(l)’p ,(Q)). On the other hand, using the density of
cl(I; X};p(Q)) in V},,r(Q), see [58, Lemma 7.2] for instance, and then integrat-
ing by parts, we see that the weak derivative d,u; € L"(I; X, L.p (R2)) satisfies the
equation

(wrs P) g r )L (1:x 7 (@)

T T
=/o Oz Pl -1 gy x1v' (@) 4 = _/0 WL, 9P oy, @) ¥

forall p € Wi (I; X57' () < WL (1: Wh”' ().
The above equations imply that the weak and distributional time derivatives of

uj coincide in W& T X cl,’p (£2)) and hence the use of the same notation for these
derivatives. Moreover, it follows from the definition of the distributional derivative
o;uy, that

ocwplly-1r w10y = NuLllLrainr@) = cllucly, . xir gy (3.6)



J. Evol. Equ. Weak and very weak solutions Page 11 of 71 12

where ¢ > 0 is the constant associated with the continuous embedding X (lf‘p () —
LP(Q).
Let £ € W17 (1; W=1.P(Q)) be the linear form defined by

& Q>W*“(l;W*me)),wg*"(l;Wé"’/(sz»

T T
::/(; (fL,Q)W_L,,(Q)’W(l),,,/(mdt—v/o a,(ur,o)dt

— (Oruy, Q>W*I”(l;Wﬁl”’(Q)),Wol’r/(I;W(‘)<P/(Q))

for all o € Wol’r/(l ; W(l)’p /(Q)). According to the above discussion and the fact that

uy is a weak solution to (3.2), we see that £ annihilates Wol’r/ (I X(l,’p/ (2)). Applying
Proposition 7.1 in Appendix with kK = 1, we deduce the existence and uniqueness of
an element p; € W=7 (I; ZP(Q)) such that £ = Vjp in the sense of distributions,
and for some ¢ > 0 we have

||pL||W71.r([;'L\p(Q)) = EHSHW—LV(I;W*LP(Q))' 3.7

From the definition of the linear form £ and the distributional gradient, we see that
(3.4) holds. In addition, one has

”'SHWfl,r([;W-lv]’(Q))
=< “fL”LY(];W*lvP(Q)) + v”uL“L’(I;X{l;”(Q)) + ”atuL”W*l,r(];W*I»P(Q))- (3.8)
Estimate (3.5) now follows from inequalities (3.3), (3.6), (3.7), (3.8) and the continuous
embedding L' (I; WP (Q)) — L' (I; X;l’p(Q)). O

In general, the associated pressure may not exist when we merely have a source
function f; € L"(/; X;l’p(Q)). For instance, in the Hilbertian case p = r = 2,
it is shown by Simon in [61] that W—"2(1; W~12(Q)) and L?(I; X '?(2)) cannot
be embedded in the same Hausdorff topological vector space, leading to the possible
nonexistence of the pressure.

Now, we turn to the definition of very weak solutions to the Stokes equation, see
also [31].

Definition 3.3. Consider a source function and an initial data satisfying
frLe /(X 2P(Q), wuor € V) (). (3.9)

A functionuy € Vg’,(Q) will be called a very weak solutionto (3.2) if uy (0) = ugy,
in V([),’r (£2) and the following equation

T T
/0 Ot P)y2r gy x2v' () 4 U/o W ApP) pg 1y @ %

T
= /(; (fL’ p)X;ZP(Q),X(Z;p/(Q) dt

holds for every p € L” (I; X2 (Q)). o
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Time evaluation is again valid in virtue of V(I),’ Q)= C (I; V([)LF(Q))' Due to the
factthat V!, .(Q) = V9 (Q). L' (I: X5 "7 (Q) = L' (I: X" (@), V] (@) —
VY ,(Q) and
V(v @) € XbP(@) x X27'(Q),  (3.10)

ap(va 0) = (v, AP/Q)L(’;(Q),L,@,(Q)

a weak solution to the Stokes equation (3.2) in the sense of Definition 3.1 is necessarily
a very weak solution in the sense of Definition 3.3. Equation (3.10) follows from
Green’s identity, divergence theorem, the definition of P and that v is divergence-
free in 2.

Theorem 3.4. Suppose that p,r € (1, 00) and (3.9) are satisfied. Then, (3.2) admits
a unique very weak solution uj, € V(Z,’r (Q), and we have

luzlivg, gy < etllf Ll g2y + 0L llve (@) 3.11)

for some ¢ > 0 independent on uy, f;, and uor. In addition, i]ifL e L"(I; XZ»p
(R2)), then we have a unique associated pressure pj, € w=br, w=hr(Q)) satisfying
for every g € W(}’r I; W(z)’p (R2)) the variational equation

T
(Oup, Q>W‘lv’(l;W’z'p(Q)),Wol'r/(l;Wé”’/(Q)) — v‘/(; (ug, AQ)LP(Q),LP/(Q) dr

T
P ANV @)y o, Wl s @) T /0 i@y wer @Y

and for some constant ¢y > 0, it holds that
Clrer < P . 3.12
||pL||W L, w-lr() = C2{||fL||L (I:X~27(Q)) + ”uOL”V%r(Q)} ( )

Proof. The dual operator A’ : LE(R) — X, 7 () of A,y : X7 () — LE (@) is
an isometric isomorphism and extends the Stokes operator A, : X (2,”’ () —> LE(Q).
Indeed, given u € X27 () N X22(Q) and v € X27 () N X22(Q) we have

(A" u,v)

Ve g x20 @ = W ArY)

L@, L2 (@)
= (u, A2v)L§(Q)

= (A, 0) 2 (@) = {Apt V) 25 ) 20 )

since As = Ay in X25(Q) N X22(Q) for s € (1, 00). Invoking the density of
X25(Q)NX22(Q) in X2 (Q) yields Al u=Apuin LE(Q) foreveryu € X27(Q).

In particular, (A’p/)_1 = A;l as an isomorphism from L% () onto X2 ().

Define g; := (A/p,)‘lfL e L"(I; LY (Q)) and

vor = (A)) " 'wor € (A)) TV (@) = (LL(Q), X2P (@)1 = V5 (D),
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where f; and ugy, satisfy (3.9). From the classical maximal parabolic regularity for
the Stokes equation, we obtain a unique weak solution vy, € V%,, +(Q), where

V3 (Q) =W (I X2P(Q), LE (),

to the evolution equation

vy +vA,v, =g, inL"(I; L5(Q), 3.13)
v2(0) = vor in V3, (Q), '
and there is a constant ¢ > 0 independent on vy, g, and vz such that
<
||vL||\;f”(Q) = C{”gL”L’([;Lg(Q)) + ”vOL”V%‘,(Q)}' (3.14)

By applying A’p, to (3.13), setting u; = A’p/vL € V?,’r(Q) and then using
A;,A,,vL = A;,A’p,vL = A;,uL, we see that u;, satisfies

dup +vAup = f inL"(I: X5 (),
ur(0) = uor in V9 ().

Thus, uy is a very weak solution to (3.2). The stability estimate (3.11) for this weak
solution follows immediately from (3.14) and the definitions of vz, g, and v . Fur-
thermore, the uniqueness of this very weak solution is a consequence of the uniqueness
of solutions to (3.13).

Finally, the existence and stability of the associated pressure can be established
as in the proof of the preceding theorem. Indeed, consider the linear form £ €
W=Lr(1; W=2P(Q)) given by

(£, 0)

WLr (W2 @), Wi (W ()

T T
= /O <fL’ Q>W72’p(Q),Wg’p/(Q) dr — /(; l)(llL, AQ)LP(Q),LP/(Q) dr

_ (atuLv Q)W’I'V(I;W_z’p(Q)),Wd’r/(];W(Z)’P,(Q))

for all g € Wol’r/(l ; Wé’p /(Q)). Note that the duality pairings on the right-hand side
are well defined because u; € L"(I; LP(R2)) — L’ (I; W‘“’(Q)), so that d;uy €
W=Lr (1, W2P(Q)), and f; € L' (I; X~ >P(Q)) — L"(I; W>P()). From the
definition of the Leray-Helmholtz projector P, forevery @ € L" ;X ,2,‘1) / (£2)) there
exists my € Lr/(I; Wl’P/(Q)) such that

T T
/0 <uLa AQ)LV(Q),LP/(Q) dr = [) {(uL7 PP/AQ>LF(Q),L”,(Q) + (uL7 VﬂQ>LF(Q),L"/(Q)}dt

T
- _/0 e Ap@ pg) 1 @
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since divuy = 0 in Q. This implies that £ vanishes on W(l)’rl(l; W(z)’pl(Q) N
Lg/ (£2)). Thus, we have a unique associated pressure p;, € w=br(1; W’LP(Q)) from
Proposition 7.1 with k = 2. The stability estimate (3.12) for p; follows from (3.11),
the embedding L" ([; X‘z’P(Q)) — L"(I; X;2’p(§2)) and the estimates similar to
those with (3.7) and (3.8). O

Let AS € L(Xo" (), X5 "7 () be given by

e _ 1, L.p
(A50.0) 10 x1 iy = @10 V(0. 0) € XLP(@) x X3P (@, (3.15)

It has been shown in [18, Section 3] that A; = (Azlj/,2

that extends the operator A, : X 2r(Q) — LY (€2). The construction of weak solution
to the Stokes equation in that paper was done by an application of the operator AS,
instead of A’p, as in the above proof, to the evolution equation (3.13). We claim that

A‘; = A’p, from X},’p(Q) to X;l’p (), so that A’p, is also an extension of A;. Indeed,

from (3.10), (3.15), and the embedding X;l‘p(Q) — X;z’p(Q), one has

1/2 ... . .
) A p/ , and it is an isomorphism

(S
(Apv- @)y arg) x27 @)

/ , Lp 2,p'
(Ay0.0)y gy ¥ (00 € K@) x X3P (@)

Thus, for every v € Xo7 () we have Ajv = Al vin X, 2P (), and hence, in

X5 L.p (£2) since the left-hand side belongs to this space.

3.2. MPR for the heat equation

This short section deals with the analogous results to the heat equation. Initial data
will be taken in the following interpolation spaces:

21,@ = 0@, W
Z0,(Q) = (X2, L' (@)1 -

The corresponding function spaces for the weak and very weak solutions will be:

2 () =W wyt (@), w @)
20,.(0) == W (I; L (Q), X 25 (Q).

It is clear that Z! .(Q) < Z0 (Q) and Z!,(Q) — 22,(0Q).

Let us introduce the continuous bilinear form a; : W(} Q) x Wg "Y/(Q) — R,
which extends the Dirichlet Laplacian, defined by

4 (v, 0) = /Q Vy Vodr V(y.0) € WS(@ x Wi (.
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Definition 3.5. Consider a source function and an initial data such that
hp € L'(I; W5 (Q),  yL € Z; (). (3.16)

A function yy, € Z;’r (Q) is called a weak solution of the heat equation

[ OyL —kAyp =hy inQ, (3.17)

yo =0 on X, y.(0) =y in €2,
if y2(0) = yoL in Z{ (), and we have

T T
/(; (at)/L5 Q)W—I,S(Q)’W(},S/(Q) dt + K /(‘) aS()/L’ Q) dt

T
2/0 (hg, p)W—l,x(Q),W(}’Aj(Q) ds

forevery o € L™ (I; Wl (). o

The initial condition is meaningful since Z;’F(Q) — C(; Z;’r(Q)) according to
[9, Theorem II1.4.10.2]. We have the following extended maximal regularity theorem
for the heat equation.

Theorem 3.6. Suppose that s, r € (1, 00) and (3.16) are satisfied. The heat equation
(3.17) admits a unique weak solution y;, € Zsly,(Q), and there is a constant ¢ > 0
independent of yr, hy, and yoy, such that

”)/L“ZSIJ(Q) = C{||hL||Lr(1;W*1~S(Q)) + ||VOL||zsl_r(g2)}~

Proof. The proof stated in Theorem 3.2 can be adapted to (3.17), and for this reason
we omit the details. O

One may also introduce very weak solutions to the heat equation (3.17) similar to
that of the Stokes equation, in such a way that weak solutions are also very weak
solutions. We state without proof the corresponding result in the following theorem.
Time evaluation for very weak solutions is again well-defined due to Zgr(Q) —
C(; Z2,.(Q)).

Theorem 3.7. Lets,r € (1, o0) and
hp € L'(I; X%(Q), wor € Z (). (3.18)

Then, (3.17) has a unique very weak solution yj, € Zg, (Q) in the sense that y (0) =
oL in Z?’r(Q) and the following variational equation

T T
/0 Oy, @) x-25(0), x25 (@) dt+’f/0 (YL, As0) s ()15 (@) U
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T
= /O <hL, Q)X—Z,x(Q)’XZ.s’(Q) dr

holds for every o € L’,(I; XZ'S/(Q)). Moreover, there exists a constant ¢ > 0 inde-
pendent of vy, hy, and yor, such that

lvellzo (o) = etlhLlira;x-25@) + Ivorllzo (@)}-
In what follows, when conditions (3.16) or (3.18) are referred in the context of the

linear system (2.4), then yp; must be replaced by 6y .

3.3. MPR for the viscous biharmonic heat equation

We continue our discussion on the maximal parabolic regularity for the viscous
biharmonic heat equation. The function spaces for the initial data in the weak and very
weak formulations are given, respectively, by

Z3 ,(Q) = Wy ()., X39(Q))1/0,,
Z7(Q) = (L1(Q), X ()1

In the current situation, the weak and very weak solutions will be taken in

23 ,(0) = W (1; X39(Q), Wy ! ()
Z5 ,(Q) == W' (I; X*9(Q), LY(Q)).

Applying [9, Theorem 111.4.10.2] once more, we deduce the continuity of the embed-
dings zg,,(Q) — C(I; zg,,(sz)) and Zq%,(Q) — C(I; zg,r(sz)). It is easy to see
that Zg,r(Q) — Z;,(Q) and Z;,(Q) — Z;,(Q). Additional embedding proper-
ties are provided in the succeeding lemmas.

Lemma 3.8. For any q,r,s € (1,00), we have the continuous embeddings
73 ,(Q) = Z),.(Q) and 77 (Q) — Z2,.(Q). Similarly, Z] (Q) — Z! ()
and 22,(0) < 2°.(0).

Proof. These follow immediately from the definition of real interpolation spaces and
the continuity of W(}"f(sz) — L2(Q) — W 5(Q), X31(Q) — X>2(Q) —
WOI’S(Q), L9(Q) — X2%(Q) and X>9(Q) — X2(Q) — L*(Q) by the Sobolev
embedding theorem. 0
Lemma3.9. If q,r € (1,00), then the continuous embeddings Z;r(Q) <
W3=2/r=5.4(Q) N Wy () and 77 (Q) — W 7=34(Q) hold for any § > 0.

Proof. By definition, we have Z] (Q) — Wol’q (). Since X31(Q) — W34(Q)
and Wé’q (Q) = W4(Q), by invoking [65, Theorem 4.3.1] we have

23,9 = WH(Q), W @)y, = Bl (@) = By, ()
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where the right-hand side denotes a Besov space, see [65, Definition 4.2.1]. We note

that B, /" (Q) — W3=2/754(Q) for any § > 0 by [65, Remark 2.3.3/4] and

applying the extension property [65, Theorem 4.2.2]. This proves the first continuous
embedding. The second one can be established with the same argument. 0

Let us now consider the weak formulation for the viscous biharmonic heat equation.

Definition 3.10. Take a source function and an initial data that satisfy
oL € L'(ILW™H(Q). doL € Z3 (). (3.19)

Afunction ¢y, € Z; ,+(Q) is called a weak solution of the following viscous biharmonic
heat equation

3 (pr — mTApL) +me APy, — #m — o, in Q.
¢ = ApL =0 on %, ¢,(0) = o in 2,

(3.20)

if ¢ (0) = ¢or in Z;,r(Q) and the variational equation

T T
| (@191 iy @y + ey @i o) bt me [ ay (A
0 0
€ T T
T ) <¢L’p)m(9),m’<sz)d’:/0 (0L P yyra gy, w2

holds for every p € L" (I; Wol"/(sz)). o

Theorem 3.11. Assume that q,r € (1, 00) and (3.19) hold. Then, the viscous bihar-
monic equation (3.20) possesses a unique weak solution ¢ € Z;)r(Q) and there
exists a constant ¢ > 0 independent of ¢1,, o, and ¢or, for which

6Ll 23, o) = cllloLllera;w-ra) + IdoLliz3 @)}

Proof. We adapt the proof provided for the Stokes equation in [18] and utilize the
maximal regularity for linear parabolic equations. Let us introduce the following iso-
morphism

B, :=1+mtA,: X*(Q) — L1(Q)

where A, is the Dirichlet Laplacian on L7(£2). A simple algebraic calculation shows
that in the space L(X>9(2), L1(S)) there holds

A2 ! (B2 —2B,+ 1)
2 \Pa 4 :

a7 2

STEP 1. Extending the operator B,. Since By : Xz*q/(SZ) — qu(Q) and its square
root Bql,/ 2. W(;’ql (Q) —»> LY l(Q) are isomorphisms, it follows that the dual operator
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(Bl/z

BS : Wy () — W~4(R) defined by

Y 1 L1(Q2) - WL49(Q) is also an isomorphism. Consider the linear operator

(Bgo, p) = fﬂ(¢p+mrw-vm dx V(. p) € Wyl (@) x Wp! (9.

w-ta(@), Wl @

This is an extension of the operator B, since Beqb = B,¢ for every ¢ € X 2.4(Q).

Moreover, it is an isomorphism because Be = (31/2) 31/2 (}’q (€2), which can be
established using a standard density argument see [18, Section 3] for the details.
STEP 2. Existence of a weak solution. By the maximal parabolic regularity for the
heat equation, see, for instance, [23], given ¢; € L"(I; L9(S2)) and yor € Z(?’r(Q),
the abstract differential equation

L + #(Bm —2y) = ¢ inL7(I; L9(Q)),

(3.21)
YL (0) = YoL in 3 (),

admits a unique solution {;, € Zg’r( Q). In addition, there exists a constant ¢ > 0
independent on V7, 1, and oz, such that

IWelz2, o) < cllsLlier Loy + 1¥oLllz2 ()- (3.22)

Suppose that o7 € L"(1; W™4(R)) and ¢o; € Z +(82). Consider ¢, := Bl/2
(B~ 'op and Yor == By *¢or.. Since By (BH) ™ W ~La(@) - L9($) and B”2
X34
(Q) — X>9(Q) are isomorphisms, we obtain that ¢; € L’ (I; L4(R)) and o7, €

1/2( () = 6?’,(Q), along with the estimates

lselirasea@) = cllovliprasw-ra@y:  1Worllzz @ = cligorllzz @) (3:23)

Let ¢, be the solution to (3.21) corresponding to these data. Applying (B,}/ 2 (By)~ h-1
= BB; —1/2
setting ¢, := By

to the differential equation and B, 12 to the initial data in (3.21), and by
—-1/2
"y € 2} ,(0). we have

€
I BSpL + —5 (B BydL —2By¢pr) = o in L' (1; W H1(Q)),
mtT

(3.24)
#L(0) = gor in Zg’,(Q).

Consider the isomorphism Ae = (Al/z) Al/2 : Ol’q(Q) — W14(Q). This

operator satisfies AZ = = (Be —I)and
ASA, = ;(BCB — 2B, +1)
979 T 22 a7l 4q ’
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with the latter equation taken as equality of isomorphisms from X3 (£2) onto W14
(2). Hence, for each p € Lr/(I ; Wé "1 (Q)), there holds almost everywhere in I that

(Bg By — 2By o1, p) = m*ag(Agdr, ) = (DL, P) a(ay 14 )

WL @y, Wy ! (@)

Substituting this in (3.24) and then using the definition of B; in the time derivative,
we see that ¢, is a weak solution to (3.20). Moreover, from (3.22), (3.23) and the
definition of ¢, we obtain the stability estimate stated by the theorem.

STEP 3. Uniqueness of the weak solution. By linearity, it suffices to show that we
have a trivial solution corresponding to the equation with zero source term o = 0

and initial data ¢9;, = 0. Indeed, suppose that ¢y € Z;r(Q) is a weak solution to
such a system. Then, if we apply BC}/ qu_ ¢ to both sides of the differential equation

in (3.24), we observe that ¥ := By°¢p € Z2,(Q) is a solution to (3.21) with
¢r = 0and Yor = 0. By uniqueness of solution to (3.21), it follows that ¥/, = 0, and
consequently, we get ¢;, = 0. U

We also have the existence and uniqueness of very weak solutions to (3.20).

Theorem 3.12. Let g, r € (1, 00) and suppose that
o € L'(I; X29(Q), ¢or € Z; (D). (3.25)

Then, (3.20) has a unique very weak solution ¢y, € Zqzyr (Q) in the sense that ¢ (0) =
oL in Z2 () and for every p € L" (I; X*1'(Q))

T
/O\ {(8I¢La 'O)L‘i(Q),Lq/(Q) + mf(A;/at(pL, ’O>X72*‘7(Q),X2vq/(9)} dr
T € T
" mE/o (AgbL AgP) o), 1a @ 9 = 3 /0 (DL, P) 1a(@). L0 @ 91

T
= /0 <6La 10>X72,q (Q)’qu’(g) dz.
Furthermore, there is a constant ¢ > 0 independent of ¢r,, o1, and ¢y, for which
IéLllz2,0) = clloLllpr . x—24()) + lldoL ”Z;J(Q)}-

Proof. Note that the dual operator B;, D LI(Q) > X~29(Q) of By Xz*q,(SZ) —
Lq/(Q) is an isomorphism and is an extension of B, : X24(Q) — L9(R2). We then
proceed as in the proof of the preceding theorem, but now by applying B; , to the
differential equation (3.24) with ¢;, = (B(’]/)’IGL e L"(I; L1(R)) and Yor, = ¢oL €
Zg,, (£2). The required very weak solution would then be ¢y = ;. Note that in order

to pass from the abstract differential equation to the variational equation in the very
weak formulation, we utilize the fact that

1
AL Ag = mz—TZ(B;,Bq — 2B, +1)

as isomorphisms from X24(Q) onto X ~24(Q). O
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As in the case of the Stokes operator, we have B; ) = B; and A/q ) = Ag as isomor-

phisms from W, () onto W14 (%).

Remark 3.13. Following the strategy in the succeeding subsection, one may drop the
linear term m%zfﬁL in (3.20). However, since the above form of the biharmonic heat
equation is sufficient to our analysis, we do not provide the details here.

3.4. MPR for the linearized system

Having established maximal parabolic regularity theorems for each of the compo-
nents in the linear system (2.4), we are now in position to establish the corresponding
results for the coupled system. The main idea is to treat the coupling terms as external
sources.

Definition 3.14. Suppose that the source functions and the initial data satisfy the
conditions (3.1), (3.16), (3.19), and let

ap € LT (I; Wy (). (3.26)

Atuple (¢, 0L, up, pur) € Zs’,(Q) xZ!,.(0) XV},’,(Q) x L' (I; W(}’q(sz)) is said to
be a weak solutionto (2.4), provided that the initial condition (¢, (0), 61 (0), uy (0)) =
(¢or, Bor, uor) holds in Zg,r(Q) X Zsl,,(Q) X V},’r(Q), the variational equations

T T
(a) /(\) {(al(;va IO)LZ(Q) + mat] (/-’LL9 10)} dt = /0 (GLv p)W_l‘q(Q),Wg'q,(Q) dt
(b)
T
/0 {(0:0L, Q>W*1~S(Q),W5’S/(Q) — (% PL, 0)12(q) + Kas(OL, 0)} dr
T
= [) {(ag-uyp, Q)LZ(Q) ~+ (hr, Q>W"v‘(Q),W()1"Y/(Q)}dt
(©

T
[ @011 gy vt )
T
= [ t@is+ ot )20y + 1Py g1}

are satisfied for every p € L" (I; Wé’q/(Q)), o€ LI W(;’S/(Q)), pe L (I X(l,’p/
(2)), and we have

mL =10¢r —€App — 1o +1.0L + A1 ae. Q. (3.27)

If f; € L"(I; W='-P(Q)), then we call p;, € W17 (I; LP(S)) an associated pres-
sure if

(Oiup, Q)W_]‘r(1§Wﬁl’p(Q)),W(l)’r/(I;W(l)’p,(gz))
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T
+v a,(uy,o0)dr — , div ~ o~
/(; p( L, Q) (pL Q)W—lv’(l;L”(Q)),Wol (I; 2V ()
T
= /(; {((1¢ +2201)g, Q)L2(Q) +(fL, Q)W—l.p(Q)’W(l)vp/(Q)}dt

is satisfied by every o € Wol’r/(l; W(l)’p/(Q)). O

Observe that one can view (3.27) as an equality in the space L (/; WO1 “1(Q)) when
g < s. On the left-hand side of the variational equation (a) and the right-hand sides of
(b) and (c), where we have the appearances of the L? inner product, we used the fact
that W15(Q) — WL1(Q) < L2(Q) for every s > 1. In particular, we have in (c)
the equation

T T
|| @+ artirg p)pzydt = [ Patteass +atiig. o)y
0 0

where we recall that P, is the Leray—Helmholtz projector from L?(£2) onto L?, ().
Although the velocities coincide for these two formulations, the associated pressures
will be different, see also Remark 3.17.

It will be advantageous to eliminate the linearized chemical potential p7 in system
(2.4) and to introduce the new variable y; := 0 — lh¢; along with the initial data
oL = 6oL — Ih¢or . In this direction, we have the following equivalent linear system

[ 3 (pr —mtAPL) +m{e A%, + (B — ) Apr — I Ay, — Adp} =0y in Q,
OryL —kAyp —klhAgp =ag-up +hy in O,
oy —vAup +Vpp = {(a1 + a2ln)¢r +a2yLlg + fo in Q, (3.28)
divu; =0 in Q,
¢ =A¢pr =0, yr =0, ur=0 on X,
L #0(0) =¢or, vL(0)=1yor, ur(0)=uoL in Q.

A similar definition of weak solutions to the equivalent linear system (3.28) can
be formulated as in Definition 3.14, but we leave the details to the reader for the
precise statements. In terms of the extended Dirichlet Laplacian and Stokes operator,
the differential equations in (3.28) are equivalent to the following abstract evolution
equations

0 (L + mtAgdL) + meAg Ay —m{(B1 — leln) Agdr — lcAgyL} = o —mAGAL
OyL +KkASYL + kWAL =ag -up +hy
dur +vAjuL = {(ar +eoln)dr +e2yrlg + 1

The Laplace and Stokes operators in these equations have to be modified in the context
of very weak solutions.

We wish to establish maximal parabolic regularity theorems for (3.28). For this,
we shall proceed by gradually decreasing the order of spatial differentiability. Let us
start with the Hilbertian case, that is, p = ¢ = r = 2. In the meantime, we ignore
the subscript L. The main tool is a classical theorem in [22], which we state for the
convenience of the reader.
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Theorem 3.15. Letr € (1,00)and A : D(A) C H — H be a closed linear operator
ona Hilbert space H suchthat — A generates a strongly continuous analytic semigroup
on H. For each f € L"(I; H), the Cauchy problem

oriz+Az=f inL"(I; H),
z(0) =0 in H,

admits a unique solution z € WLr(I; D(A), H). Moreover, there exists a constant
¢ > 0 independent on z and f such that

||Z||W1vr(1;D(A),H) < C||f||L’(1;H)- (3-29)

The aim is to apply this theorem to (3.28) with homogeneous initial conditions. We
introduce the Hilbert space H,, := X>2(Q) x L*(Q) x L2(Q) equipped with the
weighted inner product

((d’a Y u)’ (‘W9 n, I)))Hm = w(d)’ w)XZJ(Q) + (y’ n)Lz(Q) + (uv v)L(zy(Q)

where (¢, ¥) x22(q) = (B2¢, B2Y)2(q) and @ > 0. Let us define the linear operator
A:D(A) Cc H, — H, having the domain

D(A) = D(A3) x D(Ay) x D(Az) = X*2(Q) x X*3(Q) x X24(Q)
according to

meBy ' A3p —m(By — leln) By ' Asgp + micBy ' Asy
A, y,u) = kAyy +klhArp —ag-u . (3.30)
vAsyu — Po{((o1 + aoln)¢ + any) g}

Note that up to a constant factor, the principal term for the first component of A is the
Dirichlet Laplacian. Indeed, this component can be expressed solely in terms of Aj
using the identities

1
By'Ay = — (I — (I +mrAy)™h
mTt
_ 1 _
By'A3 = ——(mtAy— I+ (I +mrAy)™").
m<tT

Here, (I + mtA>) Lisa smoothing operator in the sense that it maps X5'2(Q) onto
X 54‘2'2(52) for any s > 0. From these, we see that the map A is well-defined.

It is standard to show that —.A generates an analytic Cp-semigroup on M., provided
that @ > 0 is small enough. Nevertheless, we present the proof in Appendix for
completeness, see Proposition 7.3. Translating this to the original linear system (2.4)
with vanishing initial data leads to the following theorem. For the proof, we introduce
the following strong solution space for the viscous biharmonic heat equation

23 ,.(Q) = W (I X¥2(Q), X2 ().
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Theorem 3.16. Let r € (1, 00). Suppose that o, hy € L"(I; L2(Q)), Ap € L"
(I; X>2(Q)), fr € L'(I; LX(Q)), por. =0, o, = 0, and ugr, = 0. Then, the linear
system (2.4) has a unique weak solution

(Gr. 01, ur, nr) € 25 ,(Q) x 23,(0) x V3,(0) x L"(I; X**(Q)).

We have a unique associated pressure p; € L"(I,; VT/I’Z(Q)). Moreover, there is a

constant ¢ > 0 independent on the solution and the source functions such that

||¢L||Z§,r(Q) + ||9L||222’Y(Q) + ”uL”V%,,(Q) + ||ML||Lr([;X2~2(Q)) + ||pL||Lr(1;WL2(Q))
< cllloclizra:rzy T Wheliera:iz@) + W Ll g2 @) + 1ALl x22@p) -

(3.31)

Proof. From the assumptions on o and Ar, we have B, 1(oL — mAyhy) €
L"(I; X*>2(Q)) and

||B£1(UL - mAZ)»L)”Lr([;XZi(Q)) = C{||UL||Lr(1;L2(Q)) + ||)~L||Lr(1;x2-2(s2))}o
(3.32)

The analyticity of the Co-semigroup generated by —.A (see Proposition 7.3) and
Theorem 3.15 implies that the Cauchy problem

d(bL, L, ur) + Alpr, yo,ur) = (By (o1 —mAn), hr, f1)

with the homogeneous initial condition (¢ (0), yr(0), ur (0)) = (0,0, 0) admits a
unique solution (¢, yr,ur) € Zir(Q) X Zzz’r(Q) X V%J(Q). Invoking estimates
(3.32) and (3.29), we deduce that

loLlzs )+ I7Lllz2 o) + IuLllv2 (o)

< clllowlira:rzy) + WLl a2y + 1 Ll g:o2 @) T 1ALl a:x22@)p))-
(3.33)

By applying B; to the first equation in the above Cauchy problem, we obtain that
(¢L, yL, ur) satisfies the evolution equation associated with the linear system (3.28)
with zero initial conditions. Since Zir(Q) — Zzzyr(Q), we have 0y, := yr + lh¢r €
222, ,(Q), and by the triangle inequality

||9L||222’r(Q) =< C{”J/L ”222"‘(@ + ||¢L||Z§_;~(Q)}' (3-34)
Also, 1 defined by (3.27) is an element of L" (/; X22()) and

Ll xz2@) = el zg o) + 0Ll raix22@) + 1ALl :x22 @)
(3.35)

Thus, (., 0r, ur, 1) € 23 ,(0) x 23 ,.(Q) x V3 ,(Q) x L' (I; X**(R)), and it
is the weak solution to (2.4). The existence of the associated pressure p; € L" (/; wi2



12 Page 24 of 71 G. PERALTA J. Evol. Equ.

(£2)) is a consequence of de Rham’s theorem, see for instance [62, Section IV.1.4],
and we have

IpLllLr sz = cllluclvz o) +18lIeLllLra:2@)
+ |g|||VL||L’(I;L2(Q)) + ||fL||Lr(1;L§(Q))}~ (3.36)
Taking the sum of the estimates (3.33)—(3.36) leads to (3.31). U

Remark 3.17. The preceding theorem is also valid when the condition f; € L>(I; L?,
(2)) is replaced by f; € L%(I; L*(€2)). Indeed, the weak solution z; is the same
for source functions f; € L*(I; L*(2)) and its projection Prf, € L2(I; L(ZI ().
However, the pressures would be different, that is, if pz, is the pressure corresponding
to f, then the pressure associated with P, f; would be p; — 7y, where n; €
L7 (I; W'2(Q)) satisfies f;, = Pof, + VL.

The remaining part of this section is concerned with the existence, uniqueness, and
stability of weak and very weak solutions to the linear system (2.4). Let us start with
weak solutions.

Theorem 3.18. Let p,q,s,r € (1,00) where g < s. Suppose that (3.1), (3.16),
(3.19) and (3.26) hold. Then, the linear system (2.4) admits a unique weak solution

(¢, 6L, ur. pur) € 23 ,(0) x 21 (0) x V! () x L' (I; Wy ().

If fr € L"; W=LP(Q)), then there is a unique associated pressure p;, € W=7
(I; LP(2)). In addition, there exists a constant ¢ > 0 independent on the solution,
source functions and initial data for which

llor ”Z;J(Q)"'HOL”Zl‘lyr(Q)'HluL”\J;U(Q) + e ”L'(I;W(}'p(Q)) +pLliw-1r . 2r @y
= cllidorllzy, @ + 16oLliz1, @) + ”uoL”VIl)r(Q) +lorlipr;w-1a)

+ ”)”L“L’(I;Wol“’(ﬂ)) + HhL”Lr(];W—LS(Q)) + ”fL”LV(];W—lvl’(Q))}' (337)

Proof. Following the argument in Theorem 3.16, we first consider the equivalent linear
system (3.28). From Lemma 3.8, note that yo, = 6oz — o € Z] ,(Q) + Z;r(Q) =
Z] ().

STEP 1. Existence. Consider the following linear system

[ 091 —mTAG) +meA g1 — — 1 = o1 +mAhL +mlcAy in Q.
ay1 —kAyr = hg in Q,
duy —vAur+ Vo = fr in 0,
divu; =0 in Q,
$r=A0¢61=0, y1=0, u;=90 on X,

| 91(0) =¢orL. ¥1(0) =yoL. u1(0) =uoL in €.

(3.38)
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Notice that the differential equations for #; and y; are independent to each other,
while that of ¢; depends only on y;. From Theorem 3.2 and Theorem 3.6, we infer
that the Stokes and heat equations in this system have respective unique weak solutions
uj € V;,_y +(Q)and y; € ZSI, +(Q), and these enjoy the following estimates:

”)/IHZSIJ(Q) = C{”hL”LV(I;W*l-S(Q)) + ||)’0L||z}_r(gz)}~ (3.40)

In addition, if f; € L"(I; w-Lp (£2)), then we have a unique associated pressure
p1 € WL (I; LP(Q)) satisfying

lIp1 ”W*I»V(I;ZP(Q)) = C{“.fL”Lf([;W*LP(Q)) + ”uOLl'V;,r(Q)}. (341

From the condition ¢ < s, we obtain W(}’S(Q) — W(;’q(Q) and W 15(Q) —
W=14(Q). Thus, mAry + ml.Ay; € L™ (I; W~14(Q)) and

ImArL +mlcAyillLr g w-1a ()
= C{”)‘L ”L"([;W(}’q Q) + ”Vl ” L (I; W(;S(Q))}
One can then use Theorem 3.11 to the viscous biharmonic heat equation in (3.38) to
obtain a unique weak solution ¢; € 23’ ,(Q) that satisfies the estimate
Io1llz3,0) = cllloLlr;w—ra@) + ”)\‘L“Lr(I;WOL‘I(Q))

+ ”yl“LV([;WOle(Q)) + ”woL”Z;r(Q)} (342)

Letus define 01 := —m(B1 — lcln) A1 — 551, f1 == (a1 +ealn)1 +a2y1)g
and h := klhA¢1 + ag - u; and consider the following linear system:

[ 0/(¢2 — mTAG) + mie A’y + (B1 — lehh) Ady — [ Ay} = o1 in Q,

Y2 — KAy, —klhwAgy = ag -ux + hy in Q,

oy — vAuy + Vpy = Po{((a1 + axln)do + a2y2) g} + [ in Q,

divuy =0 in Q,

pr=A¢py=0, =0, ur=0 on %,

| $200) =0, »(0)=0, u0)=0 in Q.
(3.43)

In virtue of the Sobolev embedding theorem whs(Q) — L%(Q) for any s > 1,
we deduce that oy € L"(I; Wg’q(sz)) s L"(I; L*()), hy € L"(I; Wol’q(sz)) +
L"(I; Wg”’(sz)) < L"(I; L*(Q)) and f, € L"(I; L*(R)). Furthermore, the fol-
lowing estimates hold

lloi ||L’(1;L2(Q)) <cll¢1 ”L"([;qu(Q)) (3.44)



12 Page 26 of 71 G. PERALTA J. Evol. Equ.

A~ ||Lr(1;L2(Q)) < c{ll¢n ||Lr(1;x3vq(§z)) + [l “Lr(];X;-P(Q))} (3.45)
”fl ||L"(];L2(Q)) = C{|I¢)1 ”L’(I;W(;'q(Q)) + ”yl”Lr(I’W(}A(Q))} (346)

According to Theorem 3.16 and Remark 3.17, we have a unique weak solution
(2, y2, U2) € Zir(Q) X Zir(Q) X V%’r(Q) to the system (3.43), and moreover, the
associated pressure satisfies py € L"([; WI*Z(Q)). Based on the estimates (3.31) and
(3.44)—(3.46), we deduce

”¢2”Z§.r(Q) + ||V2||222‘V(Q) + ”quV%J(Q) + ”pZ”LV(];WLZ(Q))
S C{“¢] ||L'(I;X31‘1(Q)) + ”u] “L’(];X(I,’p(S'Z)) + ”V] ”Lr(];W(}'S(Q))}' (347)

The Sobolev embedding W!2(Q) — L%(Q) for any 1 < s < oo yields the
following:

25,0 = 2] .(0),  Z5,.(0) = 2,(0), V;,(0) =V, Q).
(3.48)

As aconsequence, the sum (Y, yr, ur) = (Y1, y1, u1)+ @2, y2, up) liesin Z;r(Q)
X ZSI’ Q) x V},’ ,+(Q) and constitutes a weak solution to the equivalent linear sys-
tem (3.28). With regard to the associated pressure, we have p; = p; + p2 €
WL (1; LP () since L” (I; W2(Q)) — W=L7(1; LP(Q)). From (3.39)-(3.42),
(3.47), and the triangle inequality, we obtain

”¢L“Z;j,r(Q) + ||VL||Z§r(Q) + ||uL||v%”(Q) + ”pL”Wfl,r([;Zp(Q)) <R (3.49)

where R represents the right-hand side of (3.37).
Using the embedding Zgﬁr(Q) < Z! .(Q) in the estimation of 0, = y + lh¢

and L" (I; W(}’S(Q)) — L"(I; Wol’q (€2)) for that of wy, in (3.27), we obtain

6L "Z;J_(Q) = C{||J/L||ZS1J_(Q) + llor "Zg,r(Q)} (3.50)

”'LLLHL’(I;WOI’q(Q)) S C{”¢L”23r(Q) + ||6L“Lr([;w(}vx(9)) + ”)\'L”Lr(I,W(}q(Q))}
(3.51)

The inequalities (3.49)—(3.51) imply estimate (3.37).

STEP 2. Uniqueness. Let us now establish the uniqueness of the weak solution to
(3.28). By linearity, it is enough to prove that the solution of (3.28) with zero source
terms and initial data is trivial. Let (¢r, yr, ur, pr) be such a weak solution having
the regularity as stated by the theorem. First, consider the heat equation

[ VL — kAVL =hp ==kl Ady +ag -uy in Q, 352

y1=0o0nX, y.(0) =0 in Q.

Wehave i € L (1; Wy 4 () + L7 (I; WP (Q)) < L"(I; L*(2)). The classical
maximal parabolic regularity theory for the heat equation with homogeneous Dirichlet
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boundary condition implies that (3.52) has a weak solution Y7 € 222’ +(Q). From the
second embedding in (3.48), Theorem 3.6 and the uniqueness of solution to the heat
equation in the class Zsl’ +(0), we have ¥, = yr.

By adapting a similar argument to the Stokes part of the linear system, we have
uj € V%’r(Q) due to ((or; +azlp)p+ary)g € L7 (I; L*(S2)) and the third embedding
in (3.48). For the viscous biharmonic heat equation, we obtain that ¢; € Z; +(Q) from
ml.Ayp, — m(B1 — ldh)A¢p — #¢>L € L (I; L*()) and the first embedding in
(3.48). Here, we used the fact that y;, € Z%’r(Q).

We conclude that (¢, yr, uy) must vanish according to Theorem 3.16 since ¢ (0)
=0, y.(0) = 0 and u (0) = 0. Thus, we also have Vp; = 0 almost everywhere in
0, so that py, is the zero element in w-Lrr, ZP(Q)). This completes the proof of
uniqueness. O

Remark 3.19. Tt can be seen from the first step in the proof of the preceding theorem
that if /. = 0, then we can drop the condition g < s.

The definition of very weak solutions to (2.4) can be formulated as in the previous
subsections. We leave the details to the reader for this matter; see also the discussion
in the succeeding section.

Theorem 3.20. Suppose that p,q,s,r € (1,00) where g < s. Let (3.9), (3.18),
(3.25) and

AL € L'(I; L1(2)) (3.53)
be satisfied. Then, the linear system (2.4) has a unique very weak solution

(@r. 00 ur. 1) € 27 ,(Q) x Z0,.(0) x V9 .(Q) x L"(I: L(Q)).

In addition, if f; € L"(I; X~2P(Q)) holds, then there exists a unique associated
pressure pp € WL (I; W—LP(Q)). Furthermore, for some constant ¢ > 0 indepen-
dent on the solution, source terms and initial data, it holds that

IpLliz2, o) + 162l 20, c0) + NluLlye (o) + lILliLraser) +IPLllw-1r w10 @)
=< C{||¢OL||23J(Q) + 1o llz0, (@) + ”uOL”Vgr(Q) +llonllpr . x-29@)
+lALllzrasio@) + 1Ll x-2s@y + 1F Ll gex-20p)- (3.54)
Proof. Let us pursue the strategy presented in Theorem 3.18 and follow the notations

there. Under the given hypotheses, the Stokes equation in (3.38) possess a very weak
solution such that

”ul”\}gr(Q) S c{“fL”Lr([;X;LP(Q)) + ”uOL”V?]r(Q)} (355)

[Ip1 ||W—Lr(1;v'[7—|,p(gz)) = C{”fL”LT([;X*LP(Q)) + ”uOL”V%r(Q)} (3.56)
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thanks to Theorem 3.2, provided that f; € L"(/; X~2P(Q)) in the case of (3.56).
From Lemma 3.8, we see that o7, € Z?’ +(£2). Thus, Theorem 3.7 implies that the heat
equation in (3.38) possesses a very weak solution with

lyillzo, oy = elllhrllLr ;x5 + IoLlizo, @)} (3.57)

We have X~ 2%(Q) — X 29(Q) since ¢ < s. Hence, mAr; + ml. Ay, €
L"(I; X~29(Q)), and we get

lmAxL +mleAyillprx-20(@)) < ALl a;La) + IVillLra.s @)}

By Theorem 3.12 and the previous estimate, we conclude that the biharmonic heat
equation in (3.38) has a very weak solution such that

ll$1 ”ZI%J(Q) < cllocliprg.x-—2ac) T 1IALlLr ;L9 )
Flvillera; @) + 1dorliz2 @) (3.58)

We utilize the above information in the other linear system (3.43). Observe that we
have o1 € L"(I; LY(2)) — L"(I; W~12(Q)), fi1 e L, X>9(Q)) + L' (I; L*
(Q) — L"(I; W 2(Q))andhy € L (I; L9(Q)+L"(I; LP(Q)) — L' (I; W—12
(£2)). Invoking Theorem 3.18 with p = g = s = 2, we see that (3.43) has a weak
solution satisfying the estimate

”¢2”Zg,r(Q) + ||)’2||321J(Q) + ”uZH\)%_,(Q) + ||p2||w—1,r(1;’[2(9))
=< C{”Cbl”Lr(I;X?ﬂ(Q)) + ||ul||Lr(1;Lg(Q)) + Iyt ”L"([;L»‘(Q))}' (3.59)

Due to the continuous embeddings Z%r(Q) — Zgyr(Q), Zzlﬁr(Q) — Zg,(Q),
V3 ,(0) = V9 (@) and W7 (1 L2(Q)) < W17 (1; WhP(R)), it follows that

the sum (Yr, yr, ur) = (Y1, y1, 1) + (Y2, y2, u2) belongs to Z7 . (Q) x Z,(Q) x
V(l),’r (Q), and itis a very weak soluticllj to the linear system (2.4) having the associated
pressure p; = p1 4+ po € WL (I; W=L.P(Q)). Moreover, (3.55)—(3.59) leads to

”¢L“53,r(Q) + ||VL||ZQr(Q) + ”uL”V(,);,r(Q) + ||pL||Wfl.r([;ﬁ771,p(Q)) <R (3.60)

where R denotes the right-hand side of (3.54). The embeddings Zg,r Q) — Z? Q)
and L"(I; L*(RQ)) — L"(I; L9(R2)) yield

1621120,y = clllveLliz, o) + PLliz2, (o)} (3.61)
lelier ;L) < clldellzz o) + 0Ll ass@) + ALl asea@p). (3.62)
From (3.60)—(3.62), we deduce (3.54).

The uniqueness of the very weak solution can be established by following the same
method as in the second step in the proof of Theorem 3.18. U
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4. Well-posedness of the nonlinear system

In this section, we prove the existence, uniqueness and stability of weak and very
weak solutions to the nonlinear system (1.1). This section is divided into several parts,
namely, nonlinear estimates, definition of weak and very weak solutions to (1.1), well-
posedness of an auxiliary system that includes the nonlinear part (2.5), and finally that
of (1.1). Application to sources with values in the duals of some Holder spaces will
be presented at the end.

4.1. Nonlinear estimates
The aim here is to establish the continuity of the bilinear operators associated
with the convection and surface tension terms. Let sq, 51, 57 € [1, 0o] be such that

%—i—é—}—% < 1. We define the trilinear forms & : L9 () x L' () x W'92(Q) — R
and b : L%(Q) x L®(Q) x WH%2(Q) — R according to

b(u,v,w) :=—/(u®v):dex
Q
b(u’M7¢) :_\/Qu(MV(p)dx

foru € L(Q), v € L°(Q), w € WH2(Q), u € L*(Q), and ¢ € WH52(Q).
One can easily check that b and b are well-defined and bounded due to the Holder’s
inequality. Notice that the last argument for » and b contain the gradient. For time-
dependent functions, we have the following lemma, which follows from the Holder’s
inequality as well.

Lemma 4.1. Let s1,t; € [1, o0] and sg, 57, to, t2 € (1, 00) with % + é + % <1

and tl—o + % + tl—z < 1. Then, the following bilinear operators

B : LY(I; L% (Q)) x L' (I: L' (Q)) — L*2(I: W 2(Q))
C: L¥(I; L*(RQ)) x LY(I; L1 (Q)) — L2(I; W™2(Q))
S LY (I; L(Q)) x L2(I; Wh2(Q)) — L¥0(I; L%0())

defined, respectively, by
T
(B, v). w) f b(u. v, w)di
0

T
/ b(u, ju, ¢)dt
0

L2 W 2 (@), L2 (W 2 (@)

(Cu, 1), ¢)

’ ’ =
L¥2(1 W22 (@), L¥2 (1 Wy ()

(S(i, @), u)

LEO(1;L°0 (), L¥0(1;L°0(R)

T
/ b(u, 1, ¢)dt
0

are continuous.
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Based on the above definitions, we set div (u ® v) = B(u, v), div (uu) = C(u, )
and uV¢ = —S(u, ¢). In the forthcoming analysis, in particular to the estimation of
the time derivatives, we need the function spaces

X2 5(0) i= L®(I; Wy 2 () N L2(1; X>2(2))
X1 5(0) i= L®(I; L () N L2(1; Wy ()
UL, 5(Q) = LU LL(Q) N L*(I; X2 (Q).

The following lemma is concerned with some restrictions of the operators C, B,
and S. These will later play important roles in the Faedo—Galerkin method.

Lemma 4.2. Suppose that q € (%, o0) and s, p,r € [4,00). Then, the following
bilinear operators are continuous

B :[V) (Q)+UL (D)) x [V (Q) + UL ,(O)] - L*(I; W™ ()
C: VY, (Q) +UL (D] x [22,(0) + XL, »(Q)] — L*(I; W)
S [L (13 L) + L2 Wy P ()] x [22,(0) + X2 ,(Q)] — L2(1: W2(9)).

Proof. From the Gagliardo—Nirenberg and Holder inequalities

||u||L4(1;L4(Q)) = c{”u”LOO(I;Lg(Q)) ”u”LZ(I;X},‘z(SZ))}

for each u € UL, ,(Q). Thus, UL, ,(Q) — L*(I; L*(Q)). Also, VY (Q) —
L*(I; L*()) since p,r > 4. The continuity of B with respect to the indicated
function spaces follows immediately from V(I),’F(Q) + Lléoyz(Q) — L%(I; L*(Q))
and Lemma 4.1 with so = s; = t9p = vy = 4 and s = tvp = 2. In a similar
way, we have the continuity of C with respect to the above function spaces since
Z0(0) + X ,(Q) = LI LY(Q)).

Let us show the continuity of S. First, we assume that ‘3‘ < g < 2 and consider four
scenarios. Here, we use Lemma 4.1 in each case.

First, we have Z7 (Q) < L'(I; W>4(Q)) — L' (I; W!24/C=9(Q)) from the
Sobolev embedding theorem. With so = 2g/(3q — 4), s1 = g, s2 = 29/(2 — q),
to = 2,and t{ = vp» = r in Lemma 4.1, we see that

S:L'(I; LYQ) x 27 ,(Q) — L*(I; L*/4~9(Q)) @.1)

is continuous since s, = 2¢/(4 — q).

Using the Gagliardo—Nirenberg and Holder inequalities as before, we obtain the
continuous embedding Xgog(Q) < L*I; WH(Q)). With the parameters sp =
4q/(Bq —4),8s1 =q,50 =4,vg = 2,t; =r,and t, = 4 in Lemma 4.1, we have the
continuity of

S L'(I; LYQ) x X2 ,(Q) — L*(I; LY+ (Q)) (4.2)
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because s, = 4q /(4 + q).
From [9, Theorem I11.4.10.2] and Lemma 3.9 with 0 < § < %, we have

27 (Q) = C(I: Z; () > L™(I; W7 724(Q)) > L¥(I; WH(Q)).

Also, L2(I: Wé’z(Q)) — L%(I; L*1/4=1(Q)) by the Sobolev embedding theorem.
Hence, using the parameters s) = 51 = 2¢g/(q—1),50 = ¢,t0 =t; = 2,andty; = o0
in Lemma 4.1, we deduce the continuity of

S L2 (1 Wy () x 22,.(Q) — L2(I; L*/@D (@) 4.3)

since s, = 2¢/(q + 1).

Finally, notice that L2(I; Wy*(2)) <> L*(I; L*()) and X2 ,(Q) — L*
(I; W1'2(Q)). Using s = 4,51 = 4,50 = 2,t90 = t1 = 2, and tvp = 0o in Lemma
4.1, we obtain the continuity of

S L2(1; Wy () x X2 ,(0) — L2(I; LY3(9)). 4.4)

Invoking the continuity of the S provided by (4.1)—(4.4), along with the definition
of the norm for the sum of Banach spaces and L2(I; L°(Q)) — L2(; W’I’Z(Q)) for
any s € (1, 0o), we obtain the continuity of the bilinear operator S under the function
spaces stated by the lemma.

Now for the case ¢ > 2, we just need to use the continuous embeddings L" (/; L?
(Q)) <= L"(I; L (Q)) and 22 ,(Q) — zg*,r(Q) forag* € (%,2), and apply the
above result. 0

Corollary 4.3. Letqg € (1,00), s, p € [%, o0), and r € [4, 00). Then, the following
bilinear operators are continuous

B: [V, (Q)+UL (D] X[V} (Q) + UL, ()] — L*(I: W)
C:IV, (@) +UL (D] X [Z],(0)+ XL (D] — L*(I; W)
S [L7 (1 Wy (@) + LA Wy (@) % [22,.(0) + X2 ,(Q)] — L2(1: Wh2(@)).

Proof. The assumptions on p, s, and g give us, due to the Sobolev embedding theorem,
the following continuous embeddings:

V), (Q) = V) ,(Q). 2! ,(Q) = 2] (0, (4.5)
2 (0) = Z3,(0). Wy (Q) = LX(Q). (4.6)
We obtain the corollary by simply applying Lemma 4.2 with ¢ = 2 and

The next lemma will imply the continuity of the cubic function F that appears in
the equation for the chemical potential.
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Lemma 4.4. Letqg € (%, 00), r € [4, 00), and k be a positive integer. Then ¢y - - - ¢y €

L3(I; Wé’z(Q))for every @1, ..., Qr € Z;,(Q) + XgO’Z(Q). Moreover, there exists
a constant ¢y > 0 independent on ¢1, . . ., ¢ such that

||¢1 e ¢k”L2(1;W01’2(Q)) = Ck”(;bl ”Zir(Q)_"Xso,z(Q) e ”(bk”Z‘%,(Q)'FXOZCZ(Q)

Proof. Since Z2,(Q) + X2 ,(Q) < L(I; Wy* (%)), we may assume that k > 1.
Taking 0 < § < % and using r > 4, we have (2 — % —8)q > (% —8)g > 2,and
thus

Z7 (Q) = L™ W2 =04(Q)) e L®(1; L¥(R))

by Lemma 3.9 and the Sobolev embedding. Likewise, X020,2(Q) — L*®(; L*())
for any s € [1, c0). Hence, zq%,(Q) + X;’Z(Q) — L?X(I; L% ()) and by the
Holder’s inequality
1 - '¢k||L2(1;L2(Q)) < li¢n ||L2k(1;L2k(Q)) T ||¢k||L2k(1;L2k(Q))
< ckll¢1 ||Z§.r(Q)+X§O,2(Q) T ”¢k”23,r(Q)+ono,2(Q)'
We compute the gradient by the product rule, so that

k
Vg o)=Y ¢1--¢j1¢j41- G V.
j=1

Note that Zg’r(Q) + Xgo’z(Q) — L*(I; Wh4(Q)) n L>®(I; L**=D(Q)). Thus, by
applying Holder’s inequality to the latter equation, one has

k
V(g --- ¢k)||L2(];L2(Q)) = Z ||V¢j ||L2(];L4(Q)) l_[ ||¢l||LOO(1;L4(k—1)(Q))
j=1 I#]

< ckllgn ”ZL%,F(Q)J'_XOZO,Z(Q) T ”(ﬁk”Zqz‘r(Q)J’_ono,Z(Q).
Combining this with the earlier estimate establishes the lemma. 0

The first statement of the succeeding corollary follows immediately from Lemma
4.4, while the second is a result of the first and the embedding Z;gr(Q) SN Zzz,r( 0)
for g € (1, 00).

Corollary 4.5. Let g € (%, o0) and r € [4,00). Then, the map F : Zgyr(Q) +
Xc%o,z(Q) — LZ(I; W(}’Z(Q)) defined by F(¢) = ,30¢3 — B1¢ is continuous and there
is a constant ¢ > 0 such that for every ¢ € Z;r(Q) + Xgo,z(Q): we have

3

Ifq € (1,00) and r € [4,00), then F : 2} ,(Q) + X2 ,(Q) — L2(I; Wy ()
is continuous and there exists a constant ¢ > 0 such that for every ¢ € Zg’,,( o)+
X2 ,(Q), it holds that

3
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4.2. Definitions of weak and very weak solutions to the nonlinear system

Let us begin with the definition of weak solutions to the nonlinear system (1.1). We
consider the following assumption:

1<qg<?2, <s,p<2, 4<r<oo, gq<s. 4.7

W

For the regularity of the source functions, we shall take the following:

oe L' (I; W h(Q)) + L>(I; W 12(Q)),
helL (I; W h(Q)) + L>(I; W2(Q)),

feL (I; Wtr(Q) + L2(I; W12(Q)),
hoe L7 (I Wy (@) + LI Wy P ().

4.8)

As for the initial data, we consider

b0 € Z, () + XPHQ). € Z (2 +LHQ). upeV), (Q+LIQ).
“4.9)

These conditions include the situation where a Hilbert space framework can be used,
by simply taking the first components in the above sums to be zero.

Definition 4.6. Suppose that (4.7) is satisfied. A tuple (¢, 6, u, 1) having components
¢ € Z,(Q)+ 23,(0).0 € 2 (Q) + Z,(0). u € V), (Q) + V;,(Q) and
e L (I; Wy () + LA(I; W (Q)) is called a weak solution to (1.1) if the
initial condition (¢(0), 6(0), u(0)) = (¢, 60, o) holds in [Z] ,(2) + X**(Q)] x
[Z],(Q) + LA2(Q)] x [V}, ,(2) + L ()], the following variational equations

(a)

T
[) {(al‘(l)’ p)Lz(Q)+b(u7 ¢’ P)+maq(,U«, p)}dt

T
= /(; (01 p)W_l’q(Q),Wol'q/ () dt

(b)
T
/0 00, 0)yy 1.5 gy Wi () ~ I (P19 @) 12} At
T
+f0 {b(u,0 —Inep, 0) +kas 0, 0) — (ag - u,0) 2} dt

T
=/(; (h,Q)Wfl,s(Q),WOI’X/(Q) dr
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()
T
[ 001011 1+ B0 ) v )

T
=/0 (9, 0)8, P20y = Kb(p, p =10, d) +(f, p) . pdr

-1, 1,p'
s T (). X" ()

hold for every test functions p € L’/(I; Wé’q/(Q))ﬂLz(l; Wol’z(Q)),Q € Lr/(I; WOI’S/
(@) N L2(I; W), p € L7 (I; X7 () N LA(I; X12()), and

UW=T10¢p —ecAp+ F(p)+1.0+ 1 ae. Q. (4.10)

A function p € Pll,’,(Q) = w1, Z"(Q)) + wL2(r; ZZ(Q)) is called an asso-
ciated pressure if the fourth equation in (1.1) is satisfied in W=7 (I; W12 (Q)) +
W=L2(1; W=12(Q)), that is, we have

(dru, 0)y1

p.r

T
(Q/.V},(0) +/O {b(u.u.0) +va,u.@)}dr — (p.dive)pi (o) P10y
T
= [ 1. 008 00120 = Kbl b1 = 8)+ 0y gy 1)

for every @ € V) .(Q) = Wy (I3 Wy'” () N Wy (I; Wy (). o

Let us give some comments in the above definition. The duality pairings in the
above variational equations are meaningful. We consider the right-hand side of (a)
as an illustration. From the duality properties between the sum and intersection of
reflexive Banach spaces, we obtain

(L7 (1; Wo (@) N L2 W2 @)Y
=L"(I; W Q) + L*(1; W 2(Q)).

Given p € L (I; Wy () N L2(I; W2 ()), we have p(1) € W7 () for almost
every t € I. Also, o(r) € W= H9(Q) + w—12(Q) = w—14(Q) for almost every
t € I since g < 2. Thus,

(o, ’O)L"(I;W—'JI(Q))+L2(I;W—lvz(Q)),L"/(I;Wé‘q,(Q))ﬂLz(l;Wg’z(Q))

T
= ‘/(‘) <U5 IO)W?l'q(Q),WOI’q/(Q) dt.

The other bilinear terms in (a)—(c) can be dealt with a similar reasoning.
Next, we justify that the trilinear terms in (a)—(c) are also well-defined. First, note
that

b(u’ ¢a /0) = (C(ua ¢)a 'O)W—W(Q),W(}'z(sz)
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isintegrable over I thanks to Corollary 4.3 and the embeddings V%’ 2(0) = Ll})o’z (0),
23 ,.(0) = Z!,(Q), and 23 ,(Q) — X3 ,(0). Second, by using the same argu-
ment along with 222’2(Q) — X olo,Z(Q)’ the following convection terms

b(u, 9 - lh¢v Q) = (C(uv 0 - lhd))a Q)Wfl,Z(Q)’W(}’Z(Q)
b(uv u, P) = <B(u7 u)v p)Wfl,Z(Q)’W(l)J(Q)

are integrable over /. Finally, the trilinear term
b(P’ n—10,¢)= (S(¢, n—1:0), P>W—1.2(Q)’W(1],2(Q)

associated with the surface tension is also integrable over I thanks to the continuity
of the embedding 2/, (Q) + 21 ,(Q) < L' (I; Wy (Q)) + L2(I; Wy () since
q < s. Furthermore, the equation for the chemical potential given by (4.10) can be
taken as equality in the function space L” (/; WO1 Q) +L2(I; W(}’Z (2)) by Corollary
4.5.

We now turn to the definition of very weak solutions to (1.1). In this case, we take
source functions such that

o e L' (I; X~29(Q)) + L>(I; W 12(Q)),
heL (I; X>5(Q)) + L*(I; W 2(Q)),

feL (I; X72P(Q) + L*(1; W (Q)),
A€ L7 (I; LY() + L*(I; Wy (),

4.11)

and initial data for which

b0 € Z7 () + XPH(Q), 6 € Z) () +LXQ)., ugeV) () + L.
4.12)

Compared to that of the weak solutions, observe that the main differences are the
first components in the sums. These are in fact the function spaces corresponding to
the linearized system. The definition of very weak solutions to the nonlinear system
(1.1) can be adapted as in the previous section. Nevertheless, we present the precise
formulation here for the sake of clarity and completeness, in particular, to those non-
linear terms corresponding to convection and surface tension. In this direction, the
following assumption will be considered

3<9<% 4<s,pr<oo, qg=<s. (4.13)

Definition 4.7. Let (4.13) be satisfied. We say that (¢, 6, u, ) having the components
¢ € 22,(0)+23,(0).0 € 20,(0) + 2} ,(Q). u € V) ,(Q) + V} ,(Q) and pu
L"(I; L1())+ L(I; WOI’Z(Q)) a very weak solution to (1.1) if (¢ (0), 6(0), u(0)) =
(0. 6., uo) holds in [ Z7 () +X>2(Q)]x [Z) (Q)+L* (] [V () +L ()],
the following variational equations
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(a)

T
/(; ({09, p>Lq(Q)’Lt],(Q) +Db(u, ¢, p) —m(u, AP)Lq(Q)’Lq’(Q)} dr

T
= /0 (O’, p)x—lq(g)’xz,q/(g) dr

(b)

/ {{3:6, 0) x- “2,5(Q), X2 (Q) — {09, Q)Lq(Q) L4 (Q)}dt
/ {b(u lh¢, Q) - K(e, AQ)LS(Q),LS,(Q) - <Olg - u, Q)LP(Q),LP'(Q)} dt

= /0 (h, Q)x—ZJ(Q),Xz"‘/ (Q)} dr

()

T
[ 000 21 g2+ b ) = vl P, Jar

2@),LY (%)

T
- /0 (6. 0)2. 9) 1oy 14/ ) — Kb(P. 1t — 10, $)}

T
+/0 (f? p)ng,P(Q)’X(ZT-P/ (Q) dt

are satisfied by any test functions p € L” (I; X>4'(Q)) N L2(I; Wy (Q)), o €
L7 (I X2 (@) 0 LA W (@), p o€ L7 (1 X3P (@) 0 L2(1; X22(9), and
(4.10) holds. Also, p € PY (Q) == W=l (I; W=hP(Q)) + W21, L2()) is
called an associated pressure if the fourth equation in (1.1) is satisfied in W—!"
(I; W=2P(Q)) + W= L2(1; w—1-2(Q)), that is, the equation

T
(Btu, Q>y2r(Q)/’y2,r(Q) + [) {b(u, u, Q) - V<u7 AQ)LP(Q)’Lp’(Q)} dt
T
— (p, div Q>732’,.(Q),732,,(Q)’ = /0 (t(9,0)g, Q>LQ(Q)’L‘7/(Q) dr

T T
_fo ;Cb(g,¢,u—lc9)dt+/o <f,a>wfz.p(m,wg.p’(g)d’

holds for every o € ygy,(Q) = Wol’r/(l; Wg’p/(Q)) N W(}’Z(I; W&’Z(Q)). <o
By arguing as in the case of the weak solutions, each term in the above variational

equations is well-defined. In particular, due to Lemma 4.2 and Corollary 4.5, the
nonlinear terms are meaningful.

Remark 4.8. A weak solution in the sense of Definition 4.6 is also a very weak so-
lution in the sense of Definition 4.7. This follows immediately from the continu-
ous embeddings (4.5) and (4.6). For the associated pressure, we use the fact that
LP(Q) < W P(Q) — W14(Q) for p > 4.
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4.3. Well-posedness of an auxiliary PDE system

To accommodate the analysis both for the existence and uniqueness of weak solu-
tions to the nonlinear part (2.5), we consider the following auxiliary PDE system:

ey + xdiv (pyun) + div (pnE) + div (puy) —mAuy =& in Q,
1N = TN — €ApN + X (F( +dn) — F(@) + G(@)dy + by + 4 in O,
00N — hdipn + xdiv ((On — lnpn)un) + div ((On — lngn)u)

+div (6 — lhdp)uy) —kAOy =ag -un +h in Q,
Oy + xdiv(uy Quy) +div(uy @u) +div(a Quy)

—vAuy + Vpy = xK(uy — 108)Von + KF — 1) Voy

+K(un = 1OV + Uy, On)E + | in Q.
divuy =0 in Q,
N =Apny =0, Oy =0, uy=0 on X,

| on(0) =¢don, ON(0) =bon, un(0) =uon in €2,
(4.14)

where x > 0 and G(a) is a polynomial of degree at most 2, that is, G(q?) =x 1¢~>2 +
x2$ + x3 with x1, x2, x3 € R. This auxiliary system also appears later in the proof of
smoothness of the operator that maps the source functions and the initial data to the
weak or very weak solution. In (4.14), (¢n, On, un, iy, pn) is the unknown vector
function, while the components of (5 , 9. , U, 0) are called the frozen coefficients. These
coefficients will correspond to the solution of the linear part (2.4).

We now proceed with a classical spectral Faedo—Galerkin method for the well-
posedness of (4.14). To this end, let {wj};?';l C Xg’z(Q) and {p; ?‘;1 C X%2(Q) be
orthonormal bases for L(zr () and L2(2) that consist of eigenfunctions of the Stokes
operator A and the Dirichlet Laplacian A, respectively. The existence of such bases
is guaranteed from the fact that A; : Xg’z(Q) — Lg () and Ay : X22(Q) —» L2()
are positive operators, respectively, having compact resolvents.

Denote by W and Ry the linear spans of {w ; }";:1 and {p; }];:1 ,
the orthogonal projections Iy : L(Z7 () — Wy and P, : L>(Q2) — Ry by

respectively. Define

k k

INyw = Z(w, w./)Lg(Q)u./’ Pk‘P = Z((p’ IOI)LZ(Q)p/
j=1 =1

Note that Iy € L(Wy, X:2(R2)) and Py € L(Ry, Wy'*(R)), and hence, for the
duals we have IT}, € L(X)*(Q)', W) and P| € L(W~12(Q), Ry). Here, we have
identified the duals of the finite-dimensional spaces Wy and Rj with themselves.

Theorem 4.9. Let (4.13) be satisfied and suppose that we have source functions o , he
LA W), f e LA, Wh2(Q), & e LA Wy (), and initial data
don € X>2(Q), bon € L*(Q), uoy € L2(Q) in (4.14). Moreover, suppose that



12 Page 38 of 71 G. PERALTA J. Evol. Equ.

the frozen coefficients satisfy é e Z;,(Q) + ono,z(Q)y 0 e Zgr(Q) + Xolo,z(Q)’
eV, (Q)+UL,(Q)and i € L' (I; LY(RQ)) + L*(I; Wy% (). Then, (4.14)
has a unique weak solution

@GN, O N, 11N) € 23 ,(0) X 23 ,(0Q) x V3,(0) x L2(I; Wy * (). (4.15)

Furthermore, there is a unique associated pressure py € W~ 12(I; ZZ(Q)) and a
continuous and monotone increasing function ¢ : [0,00) — [0, 00), depending
continuously on the norms of the frozen coefficients but not on the source functions,
initial data and weak solution, for which € (0) = 0 and

||¢N||Z§,2(Q) + 10N szl.z(Q) + ||uN||\;é.2(Q) + llun ”LZ(I;W({'Z(Q)) + ”pN”Wfl,Z(];ZZ(Q))
= Cllgon lx22(0) + 160w I 22¢) + luon Il 2 () + 151 221 w12 ()

+ ||X||L2(,;W(},2(Q)) + 1Rl 2 w126 + 1 F N2 w120 + 08D (4.16)

Proof. We follow the demonstration given in [55] and divide the proof into four steps:
discretization, a priori estimates, passage to limit and uniqueness. The derivation of
the a priori estimates is more involved due to the limited regularity of the frozen
coefficients. In the proof, ¥ : [0, 00) — [0, o) will denote a generic monotone
increasing and continuous function such that ’(0) = 0.

STEP 1. Discretization. Given a positive integer k, consider the projected initial data
donk = Prdon € Ry, Oonk = Prbon € Ry, uonr = I ugy € Wy, and the ansatz

k k k
G () =Y ajpj, ) =Y mjOpj,  w®) =Y BiOw;,

j=1 j=1 j=1

where oy, Brj, vij € W1’2(1) for j =1, ..., k, to the following finite-dimensional
approximation of (4.14):

[ d¢n + P{IXC (uk, 1) + C @, di) + C(ug, §)1 + mArpuy = P&
1k = Tk + €Aady + Pilx (F( + di) — F()) + G(d)x + Al + Lotk
360k — Ind;dx + PLIxC (up, Ok — ladpp) + C (@, O — Ing) + C g, 0 — h)]
+ Kk A2by = Pllag - ug + h]
drur + I [ x B(uy, ux) + B(@, uy) + B(uy, w)] + vAsu = I, [€(¢y, k) g1
FILf — xKSGu — Lk, ) — KS(H — 1, i) — KS (k. — IOk, )]
| 9x(0) = donk, Ok(0) € bonk, uk(0) = uonk.

4.17)

The first three equations are to be understood in the function space LZ(I ; Ry), while
the fourth equation in L>(1; Wy). From the Cauchy—Lipschitz theorem, this system
has a unique maximal solution with components ¢, i, 6k € Wl’z(lk; Ry) and
ui € Wl’z(lk; W) for some time interval Iy = (0, tx) with O < # < T. The a priori
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estimates that we will derive along with a standard continuation argument will show
that I = I for each k.

STEP 2. A priori estimates. This is the bulk of the proof. For clarity, we derive these
estimates in several steps, with the corresponding result in bullets.

o L°(I,; Wé’z(Q)) N LI, XQ’Z(Q))—estimatefor ¢dr. Taking ¢ (¢) as a test function
in the first equation in (4.17), using b(xuy + U, ¢, ¢r) = 0 and integrating by parts
for the term involving ux, we get

1d ) ~
za”(bk”Lz(Q) + (uk7 ¢ka ¢)
= m(Mks A¢k)L2(Q) + (c~r, ¢k>W’lv2(Q),W01’2(Q)' (4]8)

The trilinear term can be estimated by Holder’s inequality and W(; ’2(9) — LYQ)as
follows:

bk, dr. $)| < Nkl g2 Dkl 3y | VOl 130
2 12 2
< C{||uk||L§(Q) + ”¢”W01’4(Q) ”¢k”W3*2(9)}' (4.19)

For the first term on right-hand side in (4.18), we use the equation for p; given by
the second equation in (4.17) and integrate by parts to obtain

mt d
2 dt N

+ m(lCOk + )\, A¢k)L2(Q)

+m(x(F( +dr) — F@) + G, Api) 21y (4.20)

m(ie, A 120) = =~ IVl 72 ) — mel Adel 72 g

For the second term on the right-hand side of (4.18), we have

~ ~2 2
|<0’ d’k)W—l,Z(Q)’WJvz(Q)' =< C{||G||W—I,Z(Q) + ||¢k”W(}2(Q)} (421)

Applying Young’s inequality to the third term on the right-hand side of (4.20) yields
Im(UeOk + A Adr) 12|

< Sl AGKIT 2 gy + csllibklFa g + 17172 )- (4.22)

In what follows, § will denote a positive constant, taken to be sufficiently small.
Expanding the cubic term in F(¢ + ¢x) and rearranging the terms yield

X(F(d+¢r) — F() + G(d)px
= xBodi + 3xBoddi + (G (D) + 3xPod* — xB1ldx.

Using Green’s identity and the Holder and Young inequalities, one has

mOBodis Ade) 12y = — 3mxBoll o Vel g (4.23)
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Im([G () + 3xPod” — xP11dx. Adi) 20|
< S AGKIT 2 g + cslllBl]s ) + 1}||¢k||3vé.z(m. (4.24)
In the last inequality, we used the assumption that G is a quadratic form. Integrating

by parts, using Holder’s inequality and invoking the embeddings W(} 4 () — L*®(Q)
and Wy *(Q) <> L*(R), we have

ImBxPoddR. Ad) 2

< mxBol6l( @ Vi, Vi) 12| + 31k Vb, di V) 12 ) I}

=< mxﬂ0{6”¢kv¢kl|Lz(Q)||$HL°O(Q) ||V¢k||L2(Q) + 3”¢kv¢k”L2(Q)”¢)k”L4(Q)”v$HL4(Q)}

2 T2 2
= mXﬂ0||¢kV¢kHL2(Q) + C”¢”WJ’4(Q) ||¢k||w[}‘z(9)- (4.25)
e A2 4 1 : 2

Define J; := ”¢”Wé'4(9) + ”¢”L8(Q) + 1. Note that J; € L' (1) since Z ,(Q) +
X2 ,(Q) = L®W; L* () N LY(I; Wyt () forany 1 < s < oo. In particular, we
have

11lay < €Ul 22 oreaz o+ D- (4.26)
Here, € is a continuous function as described from the beginning of the proof. Now,
by plugging the estimates (4.19)—(4.25) in (4.18), it follows that
Ld 2 Vorl? 28) | Agy >
EE{”(bk ”LZ(Q) + mr|| ¢k ||L2(Q)} + (me - )” ¢k ”LZ(Q)
+2mxBoll gk Vill7 2 ) < sl Ny 120g) + 17172()
2 2 2
s Til19ul312.g) + 106172 gy + Il ) 4.27)
o L>(I; L*(Q))-estimate for 3;¢y and L (I; W()I’Z(Q))—estimatefor k. Applying the

test function wx(¢) on the first equation in the approximate system (4.17) and using
the antisymmetry of b with respect to its second and third arguments, we get

@i, 1) 20y — XbWk, 1, $i) + b, P, 1) + b(ug, b, i)

+ml Vil g, = @ i)y -120) w20 (4.28)

From the Poincaré inequality, we can estimate the right-hand side by
| <87 Mk) W—I,Z(Q)’ WOIZ(Q) |
< SVl 2 g + s 13120 (4.29)

L

For the second trilinear term in (4.28), we use WOI’Z(Q) <> L*($2) and for the third
we apply W01’4(Q) < L%°(R), so that

6@, g, )| =< Nll g2l L4 I Vil 2q)
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<8IVikl?a,o + el o gl (4.30)
Hillp2 o) 4o 1912 g
bur. ¢, i)l < lluell 20 101L@ I Vil 20
2 2 2
= OIVAk N2 ) + sl 10 0 N2 (4.31)

Now, by taking the L2-inner product of 1 and 9; ¢, one has the equation

2 €d 2
(ks 0 dr) 200y = T||3t¢k||L2(Q) + EE”V@‘”LZ(Q)
+ (U(F@ + ¢ — F@) + C@)r. 01 12
+ (b + Xy 3) 120 - (4.32)
By Young’s inequality, the last term on the right-hand side of (4.32) can be estimated
by
(b + X, 3r00) 120 |
< 8119 Bkl17 2 gy + stlbklIFo g + IR0 g )- (4.33)

On the other hand, for the term involving F and G in (4.32), we can adapt the methods
presented in the previous step to deduce the following bound from below

|(X(F (¢ + ) — F(@) + G(@)pr. i) 12|

xPo d 4 2
> TEHQSI{HLZ‘(Q) - 8||al¢k||L2(Q)

= s i {xBoll9l o) + eIz g ) (4.34)

)
Thus, upon substitution of (4.29)—(4.34) in (4.28), we obtain

1d
m{zenvmniz(m + xBolldell 14} + (¢ = 28)19:Bell7 5
+(m =38 Vil g2 < sl 13120, + 1M172g)) + xbk, i d1)

+ es BBkl gy + N0kl o + 1020 + il ) (435
where Jo := Ji + || Note that J, € L1(I) since V([)Lr(Q) + U&’Z(Q) s

LY@
L*(I; L*()), and in particular,

||J2||L1(I) = ||Jl||L1(I) + Cg(”ﬁ”v%r(Q)_Fuéo’z(Q))' (4.36)

o L°(I; LE(Q)NLA(I; W(; 2 (Q))-estimate for 6. Choosing 6 () as a test function in
the third equation of the approximate system (4.17) and using b(xuy +u, 0y, 6) = 0
give us

1d

5 7 1032 ) + Xlnb Gk, Ok, $) = Inb @, . 00) + bu, 0 — he. 0%)
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+ [V
+ (k. 0))

W*I»Z(Q),W(}’Z(Q)‘ (437)

By the Cauchy—Schwarz inequality, we can estimate the terms on right-hand side by

1. 81) 12000 i) < S1VBI 2 g + €l 1.2 (4.38)
(g - us + hdide. 0) 20| < 81009el1F2 ) + s {l0k11 72y + k1132 g )
(4.39)
For the last two trilinear terms in (4.37), we estimate as follows:
Inb (@, P, )| < I 4 g 10l 4o I VO N 2
< 311 VOI32 ) + collTlT g 981, 12 g (4.40)

172

b, & = ind, 001 < elluill/o g 1Vl 218 = 1l s V0 2

< 811 V6klI3 2 g + I VUKl 2 g0 + csll0N]4 g + 114 g M Ikl 72 g
(4.41)

where we used the Gagliardo—Nirenberg inequality in the second trilinear term.

Let J3 := @114 o + 10144 + 7|2, + 1. Then, we have J3 € L!(I) and

LY () LY () LY(Q)

131y = €Ul 22 o)+ 2,0 T 10120, 00421 ,0)
1l o)+ 0+ D- (4.42)

Thus, plugging the inequalities (4.38)—(4.41) into (4.37), we obtain the estimate

1d
5 210k T2 g + G =29 I1V0IT 2 ) = Sl e} 2 ) = S Va2 g0

= csllhllfy 1) + o3BG 126 + 16k 2 0 + Ik 2 )} = XInbk. Ok 9.
(4.43)

o L°°(1; L(ZT () N L(I; X},’Z(Q))-estimate for uy. Testing the fourth equation in
system (4.17) by uy (t) leads to the following equation
d

il )+ bk, . wi) + v Va ]

2d L%(Q)?

= (L(P, 018, uk)LZ(Q) + (f, llk>W—| 2(Q). Wl 2Q)
— x Kb, wi — 1Ok, ¢r) — Kb(uy, L — 10, ¢p) + Kby, ¢, pux — 1ebr)
(4.44)

where we used b(xuy + U, uy, uy) = 0. By the Cauchy—Schwartz inequality

~

i yy120) wize| < 81V 2 + sl F 120 (4.45)
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|(Er 008 i) 120y | = lleogl® + 19el T2 ) + 166172 ) + Nukll72 g )
(4.46)

Here, we recall that £(¢y, 0k)g = (o + a1¢r + @26;)g. The trilinear term on the
left-hand side of (4.44) is bounded from above by

3/2 ~
B B, )] = el Vel g o 17 s

< 81Vl 0 + sl 4.47)

LYQ) (1773 ||L2 @

The estimation of the second trilinear term in (4.44) is more delicate. In this direction,
consider an arbitrary representation t = [ty + iy, where ;i € L"(I; L9(S2)) and
fiy € L2(I3 Wy (). We write bu, fi — 1. i) = bu. fiL. ¢i) + blug. fiy —
1.6, ¢r) and estimate the terms on the right-hand side. Using W(l)’z(Q) s L%/Ga=4 ()
and the Holder and Gagliardo—Nirenberg inequalities, we have

IKb(uk, i, i)l < cllukll pra/ca- ) IEL N La @ IVl 14
12 12
< clIVuel 2 g L s o IVl 2 A2,

<8IVl G2 g2 + 81 MGk N2 gy + s ITLIT (@) I8N, 12
0

(4.48)
IICh (g, iy — lcgs o) < cllug ”L4(Q) iy — lc5||L4(g) ||V¢k||L2(Q)

1/2 ~ g 1/2 1/2
P Vukll g I = B ls@ 9wl o 1A% o

< cllug|
< 81 Vurl g2 g + 818072,

+ e (N 174 + 16 ||§4(Q)}{||¢k||$vl 2 Ikl 2 o)) (4.49)

Finally, the remaining trilinear term in (4.44) satisfies

(Kb, ¢, i — 100
= C”uk||L2(Q)||($||L°°(Q)||V(Mk - lcek)”LZ(Q)
2 2 T2 2

= 81IV0lI 72 + 8 Vitkl 72 gy + sl 1 0 k1172 g (4.50)

Utilizing estimates (4.45)—(4.50) in (4.44) and by setting J4 := ||u ”L“(sz) +iL ”Lq(sz)
2
+ ”“N”L“(Q) + HGHL“(Q) + ”¢”W01'4(Q) + 1, we obtain

2 2
5 2 el ) + (v = 4DIVak 72 g 0 — 201 Akl 72
— 311Vl 2.y = 81 ViklI 72 gy < clloogl® + 1F 1512}
s Jall el 12 ) + 1012 0 + Itk )} = XICh i i = 1k 1),
(4.51)

Furthermore, J4 € L!(I) and it holds that

a1y < €GN 22 o2 400 + 10120, 0141 500
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+ ”’ﬁ”v?),r(Q)""uéo,z(Q) + Il lorr:a@) + [y ||L2([;W01’2(§2)) + 1.
(4.52)

We now combine the above a priori estimates. Multiply (4.43) by Kl./ I and (4.35)
by /C, and then take the sum of the resulting inequalities with (4.27) and (4.51). After
that we choose 6 > 0 small enough to obtain the differential inequality

1d
EEEk +c1Dy < ep(F+JE) in Iy. (4.53)
for some constants ¢y, ¢; > 0, where J := J| + Jo + J3 + J4,
KxBo
Ei 1= == 19e 40y + 19l172q) + (e +mDIVerlip2 g
+ T ||9k||L2(Q) + ”uk”Lg(Q)

D == X0k Vel 72 ) + 1 AKI172 ) + IVl G2 ) + IVOEIT2 g
+ 1 Vagll3 g0
Fi= 1515120y + 171720y + IRy 120y + 115512, + laog .

From (4.26), (4.36), (4.42) and (4.52), we have J € L' (I). Also, F € L' (I) based

on the assumptions on the source functions. Using Gronwall’s lemma to (4.53), we
obtain that E; € L°°(l;) and

IEkll o) < (Ex(0) + 22 [Fll e MLt (4.54)
and as a result, by integrating (4.53) over I;, one has Dy € L (1) and
2¢1IDell L1y = (Ex(0) + 2c2lIF Nl L1y + 2200 1y 1Ek Nl Loo 1)) - (4.55)

From the definition of the approximate initial data and the uniform boundedness of
the projection operators P, € L(L*(2))NL(X>?(R2)) and I}, € E(L(Z, (2)), for each
k one has

Er(0) = Cllgonllx22(0) + 10wl L2(0) + llHon 12 ))- (4.56)

Let us denote the right-hand side of the inequality (4.16) by R. With abuse of
notation, we shall write R in place of % (R), that is, the function % in the definition
of R has to be modified at each step. With this convention, we get Ex(0) < R from
(4.56) and |[F|l .1y < R. Plugging these in (4.54) and (4.55), we have

1Bkl Loy + 1Dkl L1 gy < R-

Here, we took the infimum over all representations of 7 in L” (1; L9 (2))+L>(I; Wol’2
(2)) to pass from the estimate involving ji; and iy to that of ji that appears in
91l 1 (1) Based on the definitions of E and Dy, we get the priori estimate

||¢k”)(§o,2(1k><gz) + ||9k||xo'c‘2([k><gz) + ||uk”ucl>o,2(lkxg) + ”/“Lk||L2(Ik;W3‘2(§2)) <R
(4.57)
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o L2(I; W(}’z(Q))—estimates for A¢y and 9;¢y. Testing the first equation in the ap-
proximate system (4.17) by —A¢y (¢) leads to

1 ~ -
SV o) — bOCUK + T, $i Adr) — bluk, $, Ar)
+ m(A/’Lkv A(ﬁk)Lz(Q) = —(3, Ad)k)Wfl,Z(Q)’WOlyz(Q)' (458)

For this equation, we have the following estimates:

b, §. Adi)| < SIIVAGNT +ca||$||2 Lo k72 g (4.59)
IbCcuk + 1, g Ag)| < SIVAGNT> +C¢S{||uk||L4(Q)+ 114 g M1 12

(4.60)
|(a:v A¢k)W71'2(Q),W01'2(Q)| < 6”VA¢]€”L2(Q) + ("5”5:”%}[/71,2(9)- (461)

From the equation for uy in (4.17), we obtain

m(Api, Ap) 22y = - ||A¢k||L2(Q> m(V(leb + 2. VAQL) 12 ()
+mel|VAG ]2 —m(XV(F (@ + 1) = F(§))
+ V(G(¢)¢k), VA¢k)L2(Q)- (4.62)

By Young’s inequality, one can estimate the second and fourth terms on the right-hand
side of (4.62) according to

m(V etk +3), VAQR) 120

< SIVAGIT2 g + sl VI G2 + VA2 ) (4.63)
m(X (VF (@ +¢) = VE @) + V(G@)pr), VA 12(q|
< SIVAGIG» ) + 5 UIVE@ + 1)
~ VE@) 2 T IVG@POI72 ) )- (4.64)

Letus set Js := |V F(@+i) — VF<¢)||L2(Q)+||V(G<¢>¢k>||L2(Q)+||vek||L2(Q)

— 2
and Js = 181310 g + Ikl g, + 1804 g, + 1. Note that Jo € L!(1), and by

invoking Lemma 4.4 for the first two terms in J5, we obtain J5 € L'(I). In fact, we
have

sl < E ez o + 18t xq) (4.65)

I ellLicry < %(”45”22 HQ)+X2,(0) + ”u”vo AO)+UL ,(0) + ||uk||u1 SUx9) +D.
(4.66)

Here, we used X} ,(Ix x Q) < L*(Ii; Wy (%)) and Ul (I x Q) < L*I; L*
(£2)). Applying the estimates (4.59)—(4.64) in (4.58), we obtain after integrating by
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parts
L9l + mT I AdelPagy) + (me — 58IV Ay
24" P @) k2@ KLz @)
~2 2 2 2
= aslds Hllollyy-12) + II)\IIWOl,z(Q)} +esJolllullys g + ||¢k||W01,2(Q)}-
(4.67)
Taking the gradient of the equation for w leads to the following estimate:
2 2 2
IVObiclly2 g = colds +IVIkliy2 ) + IIXIIW(;,z(Q)k (4.68)

Applying Gronwall’s lemma in (4.67), taking the sum of the resulting estimate with
(4.68), and then using (4.65), (4.66) and (4.57), one would get

||VA¢k||L2(1k;L2(Q)) + ||V8t¢k||L2(]k;L2(Q)) <R (4-69)

Thanks to the estimates for the trilinear terms in Lemma 4.2, one can also bound the
norm of the time derivatives 9,6y in L>(I; W~12(2)) and d,uy in L*>(I;; X; '2(R))
according to

”aIQkHLZ(Ik;W*LZ(Q)) + ”atuk ”LZ(Ik;X;l’z(Q)) S R (4’70)

Inequalities (4.57), (4.69) and (4.70) lead to the a priori estimate

||¢k ”Ziz(lka) + ||9k||221.2(1k><§2)

+ lkllyy ey + Nk 2 g2 o) < R- @71)

This uniform bound implies that the approximate system (4.17) has a unique solution
over the whole interval /, and we can replace the time interval I in (4.71) by 1.
STEP 3. Passage to limit. From the uniform a priori bound (4.71) with I; replaced by
I, we deduce the existence of (¢y, Oy, un, ny) satisfying (4.15) and such that for
appropriate subsequences (using the same index k for simplicity), the following weak
and weak™ convergence hold:

¢k — dn in L¥(1; X>2(Q)), up — uy in L5 L2(Q),

6 — Oy in L¥(1; LX(Q)), ¢ — ¢y in L*(I; X 2(Q)),

u, — uy in L2(I; X12(Q)), O — Oy in L*(I; Wy (),

d — By in L2(I; Wy * (), . — duy in L2(1; X;12()),
30k — 80N in L2(1; W 12(Q)), [ — oy in L2(1; Wy 2 ().

In addition to these, we have the strong convergence ¢ — ¢y in L2(I; X>2(Q)),
O — Oy in L2(I; L*(Q)), and ux — uy in L*(I; L2(2)) by the Aubin-Lions—
Simon lemma [60]. The a priori estimate (4.16) follows by taking the limit inferior to
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(4.71) and using the lower semicontinuity of the norms with respect to the underlying
weak topologies.

It is now standard to pass to the limit in the variational formulation of the approxi-
mate system and obtain a weak solution to (4.14). We outline this process for the sake
of the reader. The only crucial parts are the passage to the limit for the nonlinear terms.

For each p € L*°(I; W(l)’z(Q)), we have ¢rp — ¢y p in L2(I; LZ(Q)) due to the
estimate

||¢kp - ¢Np||L2([;L2(Q)) S C”¢k - ¢)N ||L2(];X2=2(Q)) ”p”Loou’W(l)z(Q))
Together with Vi — Vi in L2(I; L*(2)), one obtains

<S(/~'Lk’ ¢k) - S(/"LNa ¢N)5 p)LZ(I;W—I,Z(Q))’L2(W(])~2(Q))

T
- /0 (Vi ) 120 — (Vi Bk 20} At — 0.

Using the density of L°°(; W(l)’z(SZ)) in L2(I; W(l)‘z(Q)) and applying the bounded-
ness of the sequence {S(u, q‘)k)},fil in L2(I; W*]’z(SZ)), we deduce that

S(ik, dk) — S(uw, gn) in L2(1; WH2(Q)).

Similarly, S0k, ¢r) — S(On, dn)in L2(I; W-12(Q)). We can adapt the same idea to
prove that B(uy, uy) — B(uy,uy) in L2(1; W™2(Q)), C(uy, 6r) — C(uy, 0y)
in L2(I; W=12(Q)), and C(uy, pp) — C(uy, dy) in LE2(I; W—12(Q)). Let us
note that a weak convergence in L>(1; W~12(Q)) implies a weak convergence in
L*(I: X ;1’2(9)) since the former space is continuously embedded to the latter space.

Finally, passing to the weak limit in L2(I; L*(Q)) to the second equation of the
approximate system (4.17), we obtain the second equation in (4.14) since x (F (5 +
$) — F(@) + G(@)pe — x(F($+¢n) — F(@) + G(@)pw in L2(1; L* ().

From the above discussion, together with the weak convergence for the linear terms,
we conclude that (¢n, Oy, un, ) is aweak solution to (4.14). As usual, the existence
of a unique pressure py € W~ 12(1; P(Q)) as well as the required stability estimate
follows from de Rham’s theorem, see Proposition 7.1 with k = 1 and p = 2. The
details are similar to that in the proof of Theorem 3.2.

STEP 4. Uniqueness. Let (¢1];,, 91{,, u{\,, ;L{\,, p{\,) for j = 1, 2 be two weak solutions
of (4.14) and denote their difference by

(DN, ONs uN s AN, PN) = (P, Oy, ik, DY) — (9%, 0%, uX, 13, p3)-
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Then, this difference is a weak solution to the following nonlinear system:

dhpn +div (xpk + Puy) + div (pn (xu% + @) —mAuy =0 in Q,
1y =Thon — €Apy + [XGo(@. pY. #3) + Gy + 1Oy in O,
%ON — Ihdpn + div (X0} — xlnd) + 0 — lhd)uy)

+div (On — lhdn) (xu3 + 1) — Kk Aby = ag -uy in Q,
uy +div(uy ® (Xull\, + 1)) + div ((Xu%\, +u)Quy)

—vAuy + Vpy = K(uy — 0NV (XY + ¢)

+ K — xleb} + 1 — 1.0)Vhy + (a1¢n + 020y)g in Q,

divauy =0 in Q,

oN =A2py =0, Oy =0, uy=0 on X,

| ¢n(0) =0, 6x(0)=0, uy(©0) =0 inQ,
(4.72)

where Go($ , P }\,, ¢12v) is a quadratic function in three variables.

Notice that (4.72) has the same form as that of (4.14) with x = 0 and o9 =
0 in the latter equation. The main difference though is that there are more frozen
coefficients in the convection and surface tension terms, namely the components of
the two weak solutions. Nonetheless, these components belong to the function spaces
that are required by the theorem for the frozen coefficients. Therefore, we can follow
the derivation of the a priori estimates provided in STEP 2 and obtain (4.16) for the
solution of (4.72). Since we have vanishing source functions and initial data as well
as the absence of the term g, we deduce that (¢n, On, un, uy, py) must be the
trivial solution to (4.72). Hence, the weak solution to (4.14) is unique. The proof of
Theorem 4.9 is now complete. g

Remark 4.10. Adapting the process in the uniqueness proof, it follows that the map

(G, 7, £, 5, (Pon, Bon» won)) + (B, On, Uy, N, PN)

is locally Lipschitz continuous with respect to the function spaces for the sources,
initial data and weak solution as stated by Theorem 4.9. In fact, this map is of class
C°, and this will be shown in the next section.

4.4. Existence and uniqueness of weak and very weak solutions

We now combine the results for the linear and nonlinear parts to establish the well-
posedness of (1.1). In contrast to the discussion with the linear system, we shall start
on the very weak solutions, see Definition 4.7.

Theorem 4.11. Suppose that (4.13) holds, the source functions satisfy (4.11), and the
initial data satisfy (4.12). Then, the nonlinear system (1.1) admits a unique very weak
solution

(¢, 0,4, 1) €127 ,(Q) + 25,(D)] X [2,(Q) + 23 ,(Q)]
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X [V?,,(Q) + V%Z(Q)] x [L"(I; L1(R)) + L2(I; W(}z(Q))]
(4.73)

with an associated pressure p € W1 (I; W‘l"’(Q)) + wL2(r; EZ(Q)) in the
sense of Definition 4.7. Furthermore, the solution depends continuously on the initial
data and source functions, that is, there is a continuous and monotone increasing
Sfunction € : [0, 00) — [0, 00) such that € (0) = 0 and

19122, 01+23,00) T 19120 (01421 ,00) T 18I0 (0)+v1,(0)
Fllpr . Lo @py 2wty T WP lw-1r@w-1r@prw-12a:22@)
< ‘5(||¢0||zgy,(sz)+x2v2(sz) + 160l 20 (@)+12(02) + ”uO”V%r(Q)J,.Lg(Q)
Floogl+ ol x-2a@p+2a:w=12@) I e Loy 2a:wi2 @)

+||h”L’(I;X*“(SZ))+L2(I;W*lvz(Q)) + ”f“L’(I;X’z’l’(Q))-i-LZ(I;W’I*Z(Q)))'
4.74)

Finally, the map ((o, h, f, L), (¢o, 00, ug)) — (¢, 0, u, u,p) is locally Lipschitz
continuous with respect to the above function spaces for the sources, initial data and
very weak solutions.

Proof. Let us express the source functions and initial data according to (2.2) and
(2.1), respectively. First, recall from Theorem 3.20 that the linear system (2.4) admits
a very weak solution. Second, by taking x = 1, G = 0, ¢ = ¢ € Z;,(Q),

0=00€Z0.(Q)ii=up eV, (0),1=nLel ;W Q),

& =oy —div(prur) € L>(I; W 12(Q)) (4.75)
h=hy —div((Or — lngr)ur) € L>(I; W H2(Q) (4.76)
f=fy—diva,®uy) e L2 W) 4.77)
K=y +BiooL + F(pr) € L2(1: Wy () (4.78)

in (4.14), we obtain from Theorem 4.9 that (2.5) admits a weak solution. Note that
(4.75)—(4.77) follows from Lemma 4.2, while (4.78) is a consequence of Corollary
4.5. Then, the sum (2.3) constitutes a very weak solution to (1.1). Indeed, we obtain
the variational equations in Definition 4.7 by simply taking the sum of the variational
equations from the very weak formulation of (2.4) and the weak formulation of (2.5).
Here, one has to take the intersection of the space of test functions for each system,
which is precisely the one being prescribed by Definition 4.7. Furthermore, we have
an associated pressure p = pr + py € w=brr; W‘l*p(Q)) + w2, Zz(Q))

The constructed very weak solution, along with the associated pressure, satisfies the
stability estimate stated by the theorem due to Theorem 3.20 and Theorem 4.9, and
after taking the infima over all possible sum representations for the source functions
and initial data.
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Let us prove that the very weak solution is unique. As usual, let (¢*, 6, u*, u*, p)
for k = 1, 2 be very weak solutions to (1.1). Then, their difference

(d)’ 09 u, M, p) = (¢11 91’ u17 I‘Llr pl) - (¢27 627 uz’ /~'L21 pz)

is a very weak solution to the following system:

[ 9,0 —mAp = —div (pu') — div (¢%u) in Q,
=1 —eAp+10+Gi(p', $Pp inQ,
9,0 —Inop — kA0 —ag -u=—div((0 — lhp)u') — div (02 — lh¢Pu) in Q,
du—vAu+ Vp — (a1 + a20)g = —div(u @ u') — div (u? @ u)

. . ) . 4.79)
+ K —10)Ve + K(u —1.0)Ve in Q,
divu =0 in Q,
p=Ap =0, 6=0, u=0 on X,
#0)=0, 6(0)=0, u(0) =0 in Q,

for some quadratic function G1(¢!, ¢?).

According to the following list of continuous embeddings: X 32(Q) — X21(Q),
W2 (Q) > L5(Q) = LI(Q), W 2(Q) — X 2(Q), XL (Q) — LIQ),
W12(Q) < X5 2P(Q), and L2(Q) < W—1P(Q), we deduce that

23,(0) x 23,(0) x V3 ,(0) x L*(I; Wy * () x W 12(1; L2())

— 22,5(0) x 20,(0) x V9 1(Q) x LA(I; LI(Q)) x W™ 2(1; W=7 ().
(4.80)

From this embedding, together with r > 4, we get
(@.0.u,1.p) € 27 ,(0) x 22,(Q) x V4 5(Q) x L*(I; LY(Q)) x W™ "2(I; WP ().

Observe that div (¢ul), div (¢p%u), div ((0 — Ihp)ul), div (0% — hp>)u) € L?
(I; W=12(Q)) and div (z @ u), div(@? ® u), (u' — 1OV, (u — [.0)VP?* €
L2(I; W="2(Q)) from Lemma 4.2. Moreover, G1(¢', $?)p € L2(I; Wy (R)) ac-
cording to Lemma 4.4. From these, we obtain from Theorem 3.18 a weak solution

@.0,5,11.7) € 23,(0) x Z1,(0) x V},(0) x LA(I; Wy () x W21, L2(2))

to the system (4.79) for the difference. In view of the uniqueness of very weak solutions
in Theorem 3.20 and the embedding (4.80), we have (¢, 0, &, i, F) = (6,6, u, ., p).

Since (4.79) is in the form of (4.14) and only differs on the frozen coefficients, if we
adapt the proof of Theorem 4.9, then we obtain that (¢, 0, u, i, p) must be the trivial
solution. Therefore, the very weak solution to (1.1) is unique. The local Lipschitz
continuity of the solution operator is a direct consequence of the same property for
the solution operators of the linear part (2.4) and the nonlinear part (2.5). O

The case of weak solutions can be easily shown.
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Theorem 4.12. Let (4.7), (4.8) and (4.9) are satisfied. Then, the system (1.1) has
unique weak solution

(@,6,u, 1) €[Z;,(0) + 235,(Q)] x [Z],(Q) + Z3,(0)]

X [V](0) + V3 ,(0)] x [L" (s Wy () + L2(I; Wy ()]
(4.81)

with an associated pressure p € W17 (I; ZP(Q)) + w21, ZZ(Q)) in the sense
of Definition 4.6. Moreover, as in Theorem 4.11, the solution depends continuously
with respect to the source functions and the initial data, and the map ((o, h, f, ),
(¢, 6o, up)) — (¢, 0, u, u, p) is locally Lipschitz continuous.

Proof. Follow the proof of the preceding theorem, but now using Theorem 3.18 in
place of Theorem 3.20. Moreover, the uniqueness of the weak solution follows from
the fact that any weak solution is also a very weak solution, see Remark 4.8, and that
the very weak solutions are unique according to Theorem 4.11. U

Corollary 4.13. The conclusions of Theorem 4.12 are also valid in the case where
q,8,p,r=>2ands > q.

Proof. The assumptions on ¢, s, p and r imply that Z;)r(Q) — ZS,Z(Q) <
X2 (0), 2] (0) = 2 ,(Q) = XL ,(Q), V) (Q) = V;,(Q) = U, ,(Q)
and L"(I; WOI“’(Q)) — L(I; W(;’Z(SZ)). These mean that the components of the
weak solution for the linearized system (2.4) satisfy the regularity requirements for
the frozen coefficients in Theorem 4.9. We can then proceed as before to obtain the
conclusions of Theorem 4.12. 0

4.5. Sources with values in duals of Holder spaces

Let Co(2) be the Banach space of all continuous functions on the closure of €2 that
vanish on I" equipped with the supremum norm, C*% () be the Holder space, where
k is a nonnegative integer and a € (0, 1), and set Cg’a(S_Z) = Ck9(Q) N Cy(R) and
CHH Q) = Cy™(Q) x CE ().

Forl <r < oo,let L] (I; Cg’a(S_Z)/) be the Banach space of equivalence classes of
C](; % (Q)-weakly measurable functions from I into Cg *%(Q2)’ equipped with the norm

1/r

T
loll,, ;. ~ka ey, = | inf inf / ()" dr
Ly (G (") P pzlol ka gy Jo

where the inner infimum is taken over all Lebesgue measurable functions ¢ : I — R
and p ~ ¢ in the outer infimum means that for each ¢ € Cg’“(Q) there exists Iy C [
with Lebesgue measure zero and (p, qb)c(/;,a@),’cg.u@) = (o, ¢>C(l§.u(§2),’cg,a(§2) in

I\ Iy. Then, we have L., (I; Co*(Q)) = L”(I; C{*(€))'. In the same manner,
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Lo, (I; CE Q) = L7 (I; €5 (). We refer the reader to [32, Section 12.9] or
[49, Chapter 7] for the details and the proof of the duality identification.
Consider the framework of Theorem 4.12, but now we have the source functions

o e Ll (I; oM@, hell,d;cg? Q). felLld;cy?’ @)

(4.82)

where the parameters ¢, s, p and r satisfy (4.7). By the Sobolev embedding theorem,
see [28, Section 5.6.3] for instance, we have the continuous embedding Wol’q/ (Q) —
c' (@) = c0¥171(Q). Thus, one has LT, (I; €017 (Q)) < LI,(1; w4
(Q)) = L"(I; W~14()) by duality and the equality is due to the fact that Wol’q/(Q)
is reflexive [32, Example 12.9.6]. In a similar way, L (I; Cg’z/s_l(fz)’) — L'
(I; W=15(Q)) and L., (I; C0*/P71(Q)) < LI, (I; W17 (Q)). With these, we de-
duce from Theorem 4.12 that (1.1) with source functions in (4.82) admits a unique
weak solution satisfying (4.81).

Now, let us suppose that the assumptions of Theorem 4.11 hold, with ¢, s, p and r
obeying (4.13), and in addition, we have g > 2 and source functions that satisfy

o€ Ll (I; CoY(Q)), helLl ;¢ (@)), felLld;cy” ).
(4.83)

Using the Sobolev embedding theorem once more, we have x2d' () — Cg’zfz/ql(S_Z)
= P (). Hence, we get Li,(I; Co*9(Q)) < L' (I; X~24(RQ)). Likewise,
we also have L%, (I; CO¥*(Q)) « L™(I; X~25(Q)) and L’,(I; Cy*"(Q)) —
L"(I; sz'P(Q)). Based on these embeddings, Theorem 4.11 implies that (1.1) with
the source functions (4.83) has a unique very weak solution with the regularity (4.73).
If we have% < g < 2,then the same conclusion holds wheno € L7 (I; Cé’z/q_l(S_Z)’)
since X24'(Q) — ¢} Y1 (Q) = ¢ ().

As M(Q) := Co(Q) — Cg’a(S_Z)/ for any a € (0, 1), the previous statements are
also valid for source functions

o€ Ly(I; M(Q), heLy(I; M(Q), feLyU;M)

where as usual M (2) = M(2) x M(2). Recall that M (£2) can be topologically
identified with the Banach space of real and regular Borel measures in 2 equipped
with the total variation norm. An optimal control problem for the nonlinear system (1.1)
with controls taking values in the space of regular Borel measures will be considered
in future work.

5. Differentiability of the solution operator

In this section, we prove that the operator mapping the source functions and initial
data to the very weak or weak solution is of class C*°. For convenience, we denote
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the space of source functions associated with the very weak and weak solutions by

Fohr(Q) = [L"(I: X 29() + L*(I; W ()]
X [L7(1; X725(Q) + L*(1; W2 ()]
x [L"(I; X™2P(Q)) + L*(I; W™ 2(Q)]
x [L" (I3 L)) + L*(I; Wy * ()]

Fl Q) =L (I; W™h9(Q) + L*(I; W™ 2())]
X [L7(1; WS (@) + L2 (1 w2(Q)]
X [L7(1; WP (@) + L2(1; W)
x [L"(I; Wy () + L2(I; Wy 2 ()],

For the function spaces of initial data, we introduce the notation

UM (@) = [Z22,(2) + X*2()] x [2°,(2) + LA(Q)]
< [V9 () + L ()]

Uyl Q) =12, () + X**(Q)] x [Z] (Q) + L*(Q)]
x [V),,(2) + LZ(Q)].

The corresponding very weak and weak solution spaces are then denoted by

UNL(Q) = 127,(0) + Z3,( QN x [2],(Q) + Z5,(0)]
x [V (Q) + V3, (Q)] x [L" (I3 LY()) + L*(I: Wy * ()]
Uyl Q) :=12,(0)+ Z3,( Q1 x [Z],(Q) + Z5,(0)]
X [V).(Q) + V()1 x [L"(1: Wy () + L2(1; Wy 2 ()]

Let us start with the case of very weak solutions and later state the corresponding
result for weak solutions. Consider the so-called solution operator

S FLNHQ) X< ULk @ — U (0

defined as follows: &((o, h, f, L), (¢o, 6o, uo)) = (¢,0,u, ) if and only if

(0,0,u, n) € le*;(Q) is the very weak solution of (1.1) in the sense of Definition

4.7, having the source terms (o, i, f, 1) € .’F(‘;‘K"VP(Q) and initial data (¢g, 89, uo) €
Uy, @)

Theorem 5.1. Under condition (4.13), we have

& € CX(FN(Q) x UL! (Q), UM (0)).

Proof. We shall proceed with the implicit function theorem. Let G2, (Q) be as

that of Tm’;,(Q) but with the third function space replaced by L"(I; X, 2P () +
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L2(I; X-12(Q)). Also, let & : G¥¥" (Q) — U'™" (Q) be the associated solution
o q.8,P q.8,p

operator.
Consider the linear operators

A L7 (I3 LY(Q) + L3 (1 XV2(Q) — L' (I; X25(Q) + L2 W H(Q)
A0 = ALOL + Ay, 6 =0, +0N, 0 € L'(I; L(Q), Oy € L*(I; X"*(Q))

A LTI LE(Q) + L (1 X p2(Q) — L (I; X;27(Q) + L (I: X, 2(Q)
Au=Alur + Asuy, uw=up+uy,up €L (I;LE(Q), uy € L2(I; X2 ().

With abuse of notation, we shall also define the linear operator

AL (I X29(Q) + LA XP2(Q) — L7 (13 LY(Q) + L2 X2 ()
Ap = Agpr + Arpn, ¢ =¢r +dn. ¢ € L'(I; X>9(Q)), ¢y € L*(I; X*(Q)).
These operators are well-defined, that is, they are independent with respect to the

representation of the arguments as sums, and moreover, they are continuous.
We introduce the nonlinear operator

MU, (0) x G, (0) x U (Q) — G, (0) x Uy (Q)

with components Dt (u, f, ug) = (I (u, §), DNo(u, up)), where

#(0) — ¢o
Mo (u, up) := | 6(0) — 6
u(0) — uop

0P +mAu+Cu,¢p) —o
0;(0 —lhe) + kA0 —ag-u+Cu,0 —ho)—h
ou+vAu+ B(u,u) — L(p,0)g + KS(u —1.0,¢) — f
n—10¢p —€Ap =10 — F(¢p) — A

ml (u’ f) =

with u = (¢, 6, u, n), up = (¢o, 6o, ug) and f = (o, h, f, A). The linear terms are
clearly of class C*°. Also, the bilinear terms and the function F are of class C°° thanks
to Lemma 4.2 and Lemma 4.4. Therefore, 9t is a C* mapping.

Given f = (o, h, f,)) € g;f’é’;,(Q) and uy = (¢, 0o, ug) € UZ/\,X',;:(Q)’ we see
from the definition of % that the very weak solution u = (¢, 0, u, n) = (%(f, 1ug) to
(1.1) satisfies ‘)’t(é(f, o), f, up) = 0. Taking the derivative with respect to the very

weak solution, we have
WIS (. up). . o) = A(w)

where 2 : L{ZI‘fg"’p(Q) — C(U;?‘;”rp(Q), g;ﬁ’,’p(Q) x Uy%!', () is the operator-

valued mapping given by

Ay = (F, h, £,7), (¥(0), £(0), w(0)))
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withy = (Y, ¢, w, &) € L{;‘i’;’rp(Q), and the first four components are:

=Y +mAE + C(w, ) +C(u, V)
= (¢ —Inp) + kAL —ag - w+ Cw, 0 — he) + Cw, § — )
=0w+vAw + B(w,u) + B(u, w) — (1Y + «28)g
+ KSE — 1L, ¢) + KS(1 — 16, ¥)
=& -1y — €AY — 1L — F' (@)Y

U3 QR

Following the proof of Theorem 4.11, it can be shown that 2((u) is an isomorphism
from UZI"‘;:’I,(Q) onto g;‘,";’;(Q) x U ;";’p (2) forevery u € le";”’p(Q). Hence, by the
implicit function theorem [68, Section 4.7], we deduce that & € COO(Q‘VI‘:’Y’,’I)(Q) X
U ;‘,‘;’,’I,(Q), U;?‘;’;(Q)). Now, the result follows from & = & o J, where J is the
canonical injection from F ;Vé’p (Q) x Uy%'", () into g;ﬁ’;(g) x U, () that is

obviously of class C*, and the chain rule. O

Let us present the action of the first two derivatives of &. These play important roles
in the area of optimal control, for instance, to the first and second order necessary and
sufficient conditions for local optimality. The action of the first and second derivatives

D& 1 F3N7,(0) x UL, (Q) — LIFLY(0)

q:8,P q,s,p q,8,p
x U (), U (0))
D’G : FINm(Q) x U () — LAF)N(0)
< U QP U (Q))

are given as follows: For every f, f;, f, € .’F;YZ,’G,(Q) and ug, ugy, U2 € U;YVS”’p(Q),
we have

DS (f, uo) (f1, uo1) = A~ (1, uor)
D?S(f, uo) (1, wo1), (2, u02)) = =AW~ (@, 7, £, %), 0,0, 0))

o = C(wy, ¥) + C(wa, ¥r)

h = C(wi, & — ) + C(wa, &1 — Inr)

f = B(wi, w2) + B(wy, wy) + KSE — L1, ¥2) + KS(E — lela, Y1)
*i=—F (@)1

where u = (¢, 0, u, ) = &(f, uo) and (Y, &k, i, &) = DS(F, uo) (Fi, uox) for
k = 1,2. It is possible to write down the corresponding linear PDE systems for the
actions of these derivatives by simply applying the operator 2((u) to these equations,
see for instance [55, Section 4]. In particular, the PDE system for the second-order
derivative has homogeneous initial data.

We close this section by stating without proof the corresponding result for the case
of weak solutions. We still denote the associated solution operator by &.
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Theorem 5.2. With respect to the assumption (4.7), we have

S e COO(}'X‘;J,(Q) X U;”’;’p(Q),U;‘Sr’p(Q)).

6. Higher time integrability

In this section, we consider higher integrability conditions with respect to time on
the source functions. Here, we follow the ideas of the papers [17,18], see also Remark
6.5. The crucial part here is on how to deal with the coupling terms in the nonlinear
system.

First, let us state the following theorem in [9] for the sake of the reader.

Theorem 6.1. [9, Theorem 3] Let X| and X be Banach spaces such that X is dense
inXo. Ifl <t<oo,0<s<1/t,and) <t < 1—s5, then

WIS X, Xo) & L9715 (Xo, X))

We shall start with a simplified version of the auxiliary PDE system (4.14).

Theorem 6.2. Assume that4 < q,s,p < 00, q <sand8 <r < oo. Let xy =1
and G = 0 in (4.14) and consider source functions o, h e Lr/z(l; W_I’Z(Q)),
f el Puwlk@), X e LI Wy () and initial data goy € 73, (),
Oon € Z%’r/z(Q), Uy € Vé’r/z(Q). Moreover, suppose that the frozen coefficients
satisfy ¢ € 22,(0),0 € 22,(0), 4 € VS (Q) and [i € L' (I; LI()). Then (4.14)

admits a unique weak solution

@GN On.un. 1N) € 23 ,7(Q) X 23,5(Q)
X V3, n(0) x L'2(I; Wy () (6.1)

with an associated pressure py € w=br2(r, EZ(Q)).

Proof. As we have done in the linear case, let us introduce yn := Oy — lhdn, Yon =
Oon —Ihdon,and ¥ := 0 — I . With these, (4.14) with x = 1 and G = 01is equivalent
to

dpn + div (pyuy) + div (py @) + div (Puy) —mApuy =& inQ,
1N = TdhoN — €Apy + F (@ + ¢n) — F(@) + Ly + leyn + & in Q,
dryn +div (yyuy) + div (yni) + div (Yun) — k Ayn — klnAgy

=og-uy+ n in Q,

duy +div(uy Quy) +div(uy @u) +div(d @ uy) — vAuy + Vpy

= K(uy — leyn — lehdn)Vén + KT — 10 — L) Vy

+K(un — leyn — lehhdn)V + (@0 + (@1 + aaln)py + aoyn)g + f in O,
divuy =0 in Q,
on =Adpy =0, yvn =0, uy=0 on X,
dn(O0) =don, yn(O0) =yon, un(0)=uon in Q.

(6.2)
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We shall proceed with a fixed point argument as in [18].
STEP 1. Local Existence. Consider ¢y € L"(I; W24(Q)), v € L"(I; L*()), and
uy e L' (I; L4(Q)). First, let us take the following heat equation

) (6.3)
yNn =0 on X, yn(0) = yon in £,

|: 0ryN — KAyN = ﬁN in Q,
with the source function

EN = ]’~l+ og - uy + thA(ZN — div ()7Nﬁ/\/)
—div ()71\]’17) —div (?ﬁN)

Using Holder’s inequality, it is not difficult to see that ﬁN e L'"/>(I; W=12(Q)) and

Nl aw=12) < cUBlLraw-12@) + 10N T2 g2 @)
+ ||¢N||Lr/2(1;wl,2(g))
~ 2 ~ 112
+ ”)/N”Lr([;LAt(Q)) + ||uN||L’"(I;L4(SZ))

~2 ~ 2
+ ||V||Lr(1;L4(Q)) + ||u||L’([;L4(Q))}' (64)

Thus, according to the maximal parabolic regularity for the heat equation in Theorem
3.6, (6.3) possesses a weak solution yy € Zzl,r/z(Q), and we have

Ivwllzy, o) = N lraw-12@) + Ivonllzy, @) (6.5)
Applying the properties of real interpolation spaces, one has
W12@), Wo @) | = W2@), W@, = W) — LY.
Hence, we obtain from Theorem 6.1 with t = %, 5 = % and t = % the compact
embedding 2217 p /Z(Q) = L"(I; L*(R)). On the other hand, applying [65, Theorem

4.3.1 and Theorem 4.6.1(d)] we get

Z34(Q) = W@, WH2(@):

1/2
= B,/ (Q) — LY Q).

Since r > 8, this leads us to the embeddings 2, , ,(Q) < 2, 4(Q) = C(; Z,,
() — C; L*(RQ)), and as a result it holds that

1 1
Ivn e q.nizsqny = 0 Ivwlcqomzaey < et Mivllzy o) (6.6)

Next, we turn our attention to the biharmonic heat equation
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€ ~ ~ .
¥ (py —mTAPy) +meA?py — —3éN =mAhy +3Gy in 0,
on = A¢py =0 on X, ¢n(0) = ¢on 1n €2,

6.7)

where the right-hand sides are given by:

AN =4 F(@+n) — F(@) +leyn + Llhdy
ON =0 — %5N — div (¢niln)
mt
— div (dna) — div (Pl y).

Here, yy is the solution to (6.3). With Holder’s inequality, we can estimate the second
and third terms in the definition of A according to

”F(¢ + ¢)N) - F(¢)||LV/Z(I§W(;’2(Q))
=< C(||¢||2LOO(1;LOO(Q)) + ”¢N||i°0(l;L00(Q)))(”¢”Lf/z(l;WLZ(Q))

+lin I L2 W12(@)
<CUolz2, 0 +I16xz3,00)

where € : [0, 00) — [0, c0) is a cubic polynomial with €’ (0) = 0. Thus, we have
v € L72(1; Wy 2(), &y € L72(1; WH2(R)), and these satisfy

”A)"N”L"/Z(I;W*I»Z(Q)) < ”)\'N”L’/Z(I;WOI'Z(Q))
= C{”)\'”Lr/Z(];W(;wz(Q)) + CK(”‘P”Z{%V(Q)
||5N||Lr/2(1;w—l,2(g2)) = C{||3||Lr/2(1;w—1~2(s2))
+ “¢N”Lr(1;L2(Q)) + ||¢N ”i’(l;L“(Q))

~ 12 2 ~n2
+ ||uN||L"(I;L4(Q)) + |I¢||L’(1;L4(Q)) + ||u||L"(I;L4(Q))}'
(6.9

The maximal parabolic regularity for the biharmonic heat equation provided in
Theorem 3.11 is applicable, and hence, (6.7) admits a weak solution ¢ € ZS p /Q(Q)
and

”d)N”Z;r/Z(Q) = C{H,XN”Lr/Z(I;WOI’Z(Q)) + ”6:N||Lr/2(I;W’1'2(Q)) + ”¢0N”Z;r/2(§2)}-
(6.10)
Using Theorem 6.1 witht = 7,5 = % and t = %, we obtain the compact embedding
Z3,.,(0) & L"(I; W>*(Q)) thanks to
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(Wo (), X3 ()3 | = (WP (), W) N Wy (Q):
el I
o W2Q) N W AQ) = WHQ).
Invoking [65, Theorem 4.3.1 and Theorem 4.6.1(d)] leads to the continuous embed-
dings

5/2
Z34(Q) = (W), WQ); 4 = B (@) — W),

This implies that 23, ,(Q) < 23 ,(Q) < C(I; Z3 4(Q)) < C(; W**(Q)), and
thus, we have the estimate

ol o.wasan < e leqomwes@y < et lIonlz o ©11)

Finally, we will deal with the following Stokes equation

[ diuy — vAuy + Vpy = fy in O, 6.12)

divuy =0 inQ, uy =0 on X, uy(0) = uogy in 2,
where the source function f  is given by

Frn=TF+ @+ (@ + aal)dy + aryn)g — div @y ®iy)
—div @y ®@u) —div@ @uy) + Ky — lyn — lelhdn)Von
+ K = 1Y = leh@)Von + K(fy — leyn — Lhh¢n) VP
N =N+ TOpN — €Ady.
Here, yy and ¢y are the weak solutions to (6.3) and (6.7), respectively.

Applying Holder’s inequality, we see that the 7 n and iy obey the following esti-
mates:

||.?N||Lr/2(1;wfl»2(g))
< c{lapg| + ||7||Lr/2(1;wfl,2(g)) + ||¢N||Lr/2(1;L2(Q)) + ||VN||Lr/2(1;L2(Q))
NN T, g paay T 11T gty T 1PV T2 oy + 191122 10
FIVON I o ptec + IVON e ptayy F NN 2 Loy F 17120100

+ ||¢||ir/2(1;L4(Q)) + ”ﬁN||Lr/2(I;L4(Q))(||V¢N||LOO(];L4(Q)) + ||V¢||LOO([;L4(Q)))}
(6.13)

”ﬁN ”Lr/z(I;W(}’z(Q)) S C{HXN ||L’/2(I;W(}’2(Q)) + ||¢N ”ZSr/Z(Q)} (614)
We use the fact that ¢ > 4 in the estimate involving the term /. Invoking the maximal
parabolic regularity for the Stokes equation stated by Theorem 3.2, (6.12) has a weak
solution uy € V;,r/z(Q) such that
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”uN”vé,r/z(Q) = C{HfN”Lr/Z(I;W—l.z(Q)) + “uONl'V%J/Z(Q)}- (6.15)

On the one hand, owing to the interpolation theory for complemented subspaces
in [65, Section 1.17.1] and the fact that A, is an isomorphism from X (1;2(9) onto
X 12(Q) and from X2-2(Q) onto X1-2(Q2), we have

(X2, X2(Q)3 ) = 42X (@), X2 Q)3

= A (X1, X32(Q)3 , N L3 ()
= A ((X"2(@), X*2(Q)3 , N L3(Q)

— A(W3Q) N W) N LA () — W22(Q) — LYQ).

These embeddings and Theorem 6.1 with v = %, 5 = % and t = % give us the

compact embedding Véyrﬂ(Q) S L"(I; L*(R)). On the other hand, by invoking
[65, Theorem 4.3.1 and Theorem 4.6.1(d)] once again, we deduce that

V34(®) = A2((X (), X32(Q))3 , N L3 (Q)
< A (W'2(Q), WH(Q)3 , N WP (@) N L3 ()
= Ay(BY; (@) N Wyt (@) N L2(Q)
> A (WHHQ) N WA (Q) N L2(Q) — LY(Q). (6.16)
Thus, the following continuous embeddings hold
V3,2(Q) = V3 4(Q) > C(I: V3 4(Q) — CU; L*(Q)).
and moreover, we have the estimate

7 <ctl/r (6.17)

lenllzr .ty = U licqon:L4@) lunlvi o

Given R > 0, let Bg ; denote the closed ball with radius R in the space L ((0, ¢);
W24(Q)) x L™((0, 1); L*(2)) x L"((0, 1); L*(£2)). Based on the above discussion,
we have

23, 2(0,1) x Q) x 23,,((0,1) x Q) x V), (0, 1) x Q)
S L0, 1); W) x L™((0,1); L*(Q)) x L"((0,1); L*(Q)).  (6.18)

It can be deduced from inequalities (6.4)—(6.6), (6.8)—(6.11) and (6.13)—(6.17) that
($N, YN, Un) = (PN, YN, un) maps Bg , into itself for sufficiently small ¢ and this
map is compact. By the Schauder fixed point theorem, we obtain the existence of a
fixed point, and this corresponds to a local solution of (6.2) belonging to the function
space on the left-hand side of (6.18), and in turn, we obtain a local solution to (4.14)
with x = 1 and G = 0. Note that this solution coincides with that in Theorem 4.9.
STEP 2. Existence over the interval I. Let (0, t*) be the maximal interval of existence.
There are two alternatives, namely t* = T or t* < T and

tliﬁl*{”‘ﬁN||z§.r/2((o’t)><g) + ”yN”ZZI,r/z((O*’)XQ) + ||uN||v£r/2(((),;)XQ)} = Q.
(6.19)
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We shall show that the second alternative is not possible, that is, blow-up does not
occur. In the meantime, let us temporarily assume that

(ynsun) € L2((0,0; LY Q) x L'2((0,0); LY(Q)) Vi e (0,1,  (620)
In order to simplify the succeeding estimates, we introduce the following notations:

N:= ||¢N||Z§‘2(Q) + ||VN||221‘2(Q) + ||uN||v£2(Q)
Fi= 18122, 0 + 17120, 01 + 1@yt (g + IElzrrsnoce
B:.= ”8:”Lr/2(1;W’1~2(Q)) + ||h||L’/2(I;W*1-2(SZ)) + ”f”L’/z(I;W*lJ(Q))
+ “)‘”Lr/Z(l;ngz(Q)) + |O{0g|
D@) = ||¢N(t)||zg,r/2(g) + ”yN(t)szl,r/z(Q) + “uN(t)”VQ,r/Z(Q)'

Given § > 0, (6.20) and the absolute continuity of the Lebesgue integral imply the
existence of ns > 0 such that

1PN L2 ooyt + N8N 2 oy 14 @) <8 (6.21)

whenever 0 < t* — 1y < n;. Let (oy, hy, f, An) be as that with (G, EN, 7N, XN)
in STEP 1butwith (¢n, Y, Un, in) replaced by (¢n, ¥, un, ). In what follows,
the estimates in the previous step involving the time interval (0, ¢) will be replaced by

(to, 1).
By Holder’s inequality, 2 , (0, 1) x Q) = Clto, 11; L4()) and (6.21), we
have
2
Y~ ||L;-((,OJ);L4(Q)) <llyn ||Lr/2((;0,¢*);L4(Q)) 102 ||C([t0,t];L4(Q))
<éllyn szl,r/z((’()”)xg)' (6.22)

Similarly, using Vé’r/z((to, 1) x Q) < C([f9, t]; L*(2)), we obtain

2
”uN ||Lr((l(),l‘);L4(Q)) S 8””}\] ”v%,r/z((m’t)xg). (623)

From the embeddings V) ,(Q) < L'/*((t0. 1); L*(RQ)), Z3 ,(Q) = L"/*((10. 1);
W(Q)), 27 (Q) <= L' ((to, 1); L*(Q)) and V), (Q) = L ((t0, 1); L*(Q)), we
have the following

IV 1z o0y ) + 180 L g,00: 1402y = €F

Nl zrr2 0,00 22 (20) F 1OV L (g, w12@)) = €N

Substituting these, along with (6.22) and (6.23), in (6.4) with I replaced by (79, 1), we
get

WAN 2.0 w120y < cIN+B+ F2 + 5||yN”Zzl,r/z((fOJ)XQ)
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+ 8llun Hvé_,/z((l‘(),t)XQ)}'

Here, ¢ > 0 is a constant that is independent on §. Plugging this in (6.5) yields

(- 08)||J/N||221J/2((,0y,)><g) - Cs”“N||v£r/2((,0,,)><9)
< c¢{N+B+F>+ D)} (6.24)

For the source term in the viscous biharmonic equation, using Zg,z(Q) — C
(I; W*2(Q)) > L7 (10, 1); W(Q)) and 23 , (10, 1) x Q) > L™ ((19, 1); W2
(£2)), we obtain from (6.8), (6.9) and (6.23) the following estimates:

AN e w2y < ACE+HNI B+ lywllzy | ynxe)

||UN”Lr/z((to,t);W*l’z(Q)) < C{N2 + N + B + F2 + CB””N”V% r/z((vat)XQ)}'
Recall that % is a cubic polynomial. Utilizing these in (6.10), multiplying (6.14) by

2—16, taking the sum of the resulting inequalities, and then rearranging the terms, one
has

1 1
5 lén ”ZS_,/z((IOJ)XQ) + 2_6 lln ”L’/Z((to,t);WOl’z(Q)) —cllyn ||321,r/2((,0,t)xg2)
— C8||uN"V£’,/2((to,t)><Q) <c{€F+N)+ N> +N+B+F>+ D(1)}.
(6.25)

Now, let us consider the source term f in the Stokes equation. It is not difficult
to deduce from the definitions of F and N the inequalities

1% 2 (rg.09: 22y TNV Lo, mszbcey + W L2019 ()
RN L2 y: 24 @) + 18l . n w4 ey < €F
IEN L2 g,0: 222 + NN 2o, 0:02@)) + 1PN Lr2 (0,00 42
Flonlleqr.nwi 4@y = eN-
These inequalities, together with (6.22) and (6.23), when applied in (6.13) lead to
1 Wl ap.nw-12@y < €N? + N+ B+ F2 4+ 8llynll ) xe
+Hollunllvy o.nxe) + NFEIRN L2 0w 2@
Thus, we obtain from (6.15) the remaining estimate that we need

(1 - C(S)”uN”V;‘r/z((t(),t)xQ) - C(N + F)”H’N”L’/z((to,t);W(;‘z(Q))

—dllnllz) o nxey < cN?+N+B+F? + Do)}, (6.26)

(
/2

We combine the above estimates with suitable weights. Multiplying both sides of
(6.25) by & and (6.26) by 52 and then taking the sum of the resulting inequalities to
(6.24), we get

2 §
(I —c(6+&+688 ))||VN||3211/2((I0J)XQ) + ) ”¢N”Z§_r/2((to,t)x9)
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1
+‘$;: 2_C - Cs(N + F) ”MN”Lr/z((t(),t);Wé’z(Q))
2
+@E°(1 —cd) —cd(1 + 5))||MN||v5_r/2((,0,,)xg)
< ce{€(F+N) + N>+ N+ B+ F> + D(1)}. (6.27)

Note that we can choose & > 0 and § > 0 small enough so that the coefficients on the
left-hand side are positive. Indeed, one may take

0 . 1 1 05 mi g2 1
<E<mm{2c2<N+F>’Z}’ = <mm{c(1+s+52>’2c<1+s2>}‘
(6.28)

After choosing 8, we take o close enough to t* such that 0 < t* — 1y < ns. Observe
that the right-hand side of (6.27) is independent of 7.

We finish the proof by a simple bootstrap argument. From Theorem 4.9, it is easy
to see that (6.20) is satisfied when r = 8. Indeed, from the Gagliardo—Nirenberg in-
equality we have (yy, uy) € Zzl’z(Q) X Viz(Q) s L4(I; L*()) x L*(I; L*(Q)).
Thus, (6.27) with (6.28) implies that the blow-up (6.19) with » = 8 is not possible. As
a consequence, this proves that we have a solution over the whole interval [ satisfying
(6.1) in the case where r = 8. Moreover, from STEP 1 we know that

23 4(0) x V3 4(0) = C(I; LY()) x C(I; LY()).

Now, suppose that » > 8. Applying the previous case »r = 8 and the above embed-
ding, we infer that (6.20) holds when r > 8. Again, the uniform a priori bound (6.27)
with (6.28) implies that the blow-up scenario (6.19) will not occur, thereby proving
that the weak solution constructed from the previous step exists in /. Finally, the regu-
larity of the associated pressure py € WL, Zz(Q)) follows from Theorem 3.2
with p = 2 and r replaced by r/2. This completes the proof of the theorem. 0

Let us now state the main result of this section. In the following, the source functions
are taken such that

o e L’ (I; X~29(Q)) + L">(I; W=12(Q)),
heL (I; X™25(Q)) + L">(I; W=12(Q)),
feL (I; X2P(Q) + L2(I; W 2(Q)),
A€ L' (I; LY(R) + L72(1; Wy * ()

(6.29)

and the initial data satisfy

b0 € Z; () +Z3,(Q). o€ Z)(+Z},,(Q. ueV (Q)
+V3,0(Q).  (6.30)
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Theorem 6.3. Suppose that4 < q,s,p <00, q <s,8 <r < 00, (6.29) and (6.30)
hold. Then, the nonlinear system (1.1) possesses a unique very weak solution

@.0.u.p) €127 ,.(Q)+ 23, n(D] x [20,.(0) + 23 ,,(D)]
x [V .(Q) + Vi, ()] x [L" (I3 L)) + L' (I; Wy ()]
with an associated pressure p € W17 (I; Wﬁl’p(Q)) + W21, ZZ(Q)).

Proof. One can follow the proof provided in Theorem 4.11 and apply the result of
Theorem 6.2 with (a, 0,1, ) = (¢r,01,ur, ur). Note that the functions defined
in (4.75)-(4.78) satisfy &, i € L'/2(I; W=12(Q)), % € L'/*(I; Wy*()) and f €
L7721 W=L2(Q)). O

Consider a set of initial data for which
b0 € Zy (D +23,,(Q). 00€Z,(Q+Zy,,(R), upeV, (Q
+V3,0(Q) (631
and let the source functions satisfy
o e L' (I; W=h4(Q)) + L"2(I; W=12(Q)),
heL (I; W15(Q) + L72(1; w™12(Q)),

fel (; Wtr(Q) + L"2(1; w=12(Q)),
he L7 (I; Wy () + L7215 Wy ().

(6.32)

Under these conditions, the analogue of Theorem 6.3 in the context of weak solutions
is given in the following theorem.

Theorem 6.4. Let% <q,5,p<2,q<s58=<r <o (631)and (6.32) be satisfied.
Then, the nonlinear system (1.1) has a unique weak solution

(¢,0,u,p) e [ZS»,(Q) +Z§,r/2(Q)] % [Zsl,r(Q) +Zzl,r/z(Q)]
X [V}, (0)+ Vi, p(@1 x L (1 Wy (@) + L5 Wy (@)
with an associated pressure p € W17 (1; L2 () + W=17/2(1; (@),

Proof. Adapt the proof in Theorem 4.12, apply the continuous embeddings Z(:;’,r( Q)

< 22.(0). 2] ,(0) = 20 .(0). V) .(0) = V§,(Q) and L' (I; Wy (2) —
L"(I; L*(2)) for the frozen coefficients, and then utilize Theorem 6.3. U

Remark 6.5. We would like to point out that the proof for the embedding
V3 4(Q) = W (I X1H(Q), X, 12(Q) — T LY9Q)

provided in [18, Theorem 2.9] was not entirely correct. The mistake was due to the use
of the invalid embedding W‘1’2(§2) — W‘1’4(Q). Nevertheless, we have resolved
this issue thanks to (6.16).
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7. Appendix
7.1. A space—time version of de Rham’s theorem

We prove a space—time version of the classical de Rham’s theorem. The following
proposition is an extension of the one stated in [27, Lemma 72.8], in particular, the
case where p =r =2 and k = 1.

Proposition 7.1. Let p,r € (1,00) and k be a positive integer. Then £ € W=7
(I; W5P(Q)) satisfies

(L. ) 0 Veew) :whP(@n LY (@)

WL (L Wk (@) W (W @) T
if and only if there exists a unique p € W17 (I; Wl’k’p(Q)) such that £ = Vyp in

the distributional sense, that is,
k,p’

(SJ”W4MAW*WQ»M®WRW0<W)

=~ P dVO) ok W T (@)

/ /
for every p € Wol’r (I Wg"" (). In this case, there exists a constant ¢ > 0 such
that

||p||W*1,r(1;f)[71*k~P(Q)) = C”£”Wfl.r([;w—kvli(g))-
Proof. We proceed by a duality argument. First, let us note that the linear operator
. ’ k,p' ’ ~k—1,p
div : L™ (I; WP () — L™ (I; Wy 7 ()

is bounded and surjective, see for instance Lemma I1.2.1.1 and Lemma I1.2.3.1 in [62]
for the time-independent case. We claim that the restriction

div = div : W (1 WEP (@) - Wl W @) (7.1)

is also bounded and surjective. It is clear that (7.1) is well-defined, linear and bounded.

Let g € W) (1; Wi @) — o WM (@) o LY WEN @),
Then thereisav € L’,(I ; Wlé’p /(Q)) such that div v = d;g almost everywhere in Q.
For each t € [0, T], let us define

T—1t (T r
w(t) = T/o v(s)ds —/ v(s)ds.
t
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It is easy to see that w € Wol’r,(l; Wé’p/(Q)), and for all € [0, T'] we have
div w ()
T—¢ T T
=T [ dgtsyds — / 9,8(s) ds = g(1)
T Jo t

since g(0) = g(T) = 0in Wg —Lp /(Q). We point out that the insertion of the diver-
gence operator inside the integral is valid since div is linear and continuous, see for
instance [48, Chap. III, Theorem 3.7.12]. This shows that the map (7.1) is surjective.

It follows from the closed range theorem [67, page 205] that the dual operator —V =
div' : welr(r; wi=ke(Q)) — wWr(1; W5P(Q)) has a trivial kernel and a range
Ran(—V) that is closed with respect to the topology of W1 (I; W57 (Q)). As a
consequence, the inverse (— V)~ ! is a well-defined, linear and bounded operator from
Ran(—V) onto W Lrr; W1 —k.P(Q)). Thus, if £ € W1 (I; WkP(Q)) vanishes
on WO (I WO (@) N LY (Q)) = Ker(div), then £ € Ker(div): = Ran(—V).

Therefore, we may take p = —(—=V)~1¢ = Vv-1g e W=l (U; Wik P (2)) with
norm

R -1 ~
Plw -1z w1-,r (@) = NV e Ran-w). w-tr -, @yp 11wt g w—+r @))-
The converse of the first statement in the proposition is trivial. g

7.2. Analyticity of the semigroup for the linearized system

In the following, we prove that the linear operator —.A generates a strongly con-
tinuous analytic semigroup on H,,, where A is defined by (3.30). The sesqui-linear
form associated with A is given by

(A(p,y,u), W, n,v)n, =al(@,y,u), (Y, n,v))

where a = a; + a, and

ai((¢,y,u), (¥, n,v)) :=/{wm2r6VA¢~VAE+KVy~Vﬁ+ vVu : Vo}dx
Q
ar((¢, y,u), (Y, n,v)) = —/me[(ﬁl — Ll Ap — I Ayl(mT Ay — ) dx

- /Q{(thA@ﬁ-f' (ag -+ [(a1 + a2ln)¢ +o2y]g - v} dx.

Given 8 € (0, ), we denote the sector Xg := {¢ € C\ {0} : |arg¢| < @ — B}.
First, we prove the following elementary inequality.

Lemma 7.2. For each B € (0, i), there exists tg > 0 such that for every a,b > 0
and ¢ € Zg there holds |al + b| > tg(alt| + b).
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Proof. Supposea, b > 0.Setting z = a{ /b, itsuffices to show that [z+1| > 75(|z|+1)
for every z € Xg. Write 7 in its polar form z = re'” where || <7 — B andr > 0.
Let g := cos(r — B) > —1. Then

G+ ¢+D2  — G+ " 2

Iz 4+ 1 r2+2rcos19+l> 2=y 18

for every r > 0, where cg > 0. We may then take 74 = min{l, cé/ 2}, and this clearly
covers the case whena = Qorb = 0. O

Proposition 7.3. Forsmall enoughw > 0, the linear operator — A : D(A) C H,, —
H,, generates an analytic Cy-semigroup on H,.

Proof. Ttis clear that A is a closed and densely defined linear operator. Let § > 0 be
a constant to be chosen later. Applying integration by parts and Young’s inequality, it
is not hard to see that for each (¢, y, u) € X32(Q) x WOI’Z(Q) X X(];2(SZ), we have

2 2 2
a sv,u), (@, y,u)) > clo + . + [l
1(¢, vy, u), (¢, v, u) { 1xs20) ”V”WOI,Z(Q) Il IIX},z(Q)}

a2((@, v, ), @, v, w)] < coll@, v, W3y, + 0l8ldl1532g, + s ||y||§vol,2m }

)

where ¢ = min{mzte, k,v} > 0 and ¢y, cs > 0 are independent of (¢, v, u). Let
B € (0,m) be fixed. If w > 0 and ¢ € Xg, then by invoking the estimate in the
previous lemma, we obtain

€+ @)@, v, W5, + (@, v, ), ($, 7, w)]
> €+ @)@, v, w3y, +a1(@, v, u), (B, v, w)|
—lax((@. v, w). (¢, v, w))|
> (121 + @)@, v, wll3g, + a1(($, v, w), ($, v, )}
—lax((p, v, w), (¢, v, w)|

> {15(1¢] + @) — ol 1@, . W3y, + Cospll@. v, W

X32Q)x Wy () x X5 ()
where ¢, 5,5 = min{w(ctg — §), cTg — wcs}. Taking 0 < § < 15,0 < w < c18/c5,
and @ > ¢, /18 > 0, we have ¢, 5,5 > 0 and

(& + @)@, v, u)Ilguw +al(@,y,u), (¢, 7. uw)l

2 2
> 1211, 7, W3y, + sl @,V WI5ss 0 iz exizgy T2
Thus, the sesqui-linear form (¢ +@) (-, -)3¢, +a is bounded and coercive on X 32(Q)x
Wy (Q) x X12(9).
For each (o, h, f) € X>2(Q2) x L*() x L?, (2) the following variational equation
for all (¥, 7, v) € X32(Q) x Wy 2(Q) x X12(Q)

C+ @)Dy u), (Y, 0, 0)n, +al(@,y.u), (V. n,v))
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= (o, h, ), ., 0, V))n, (7.3)
admits a unique solution (¢, y, u) € X32(Q) x W(}’Z(SZ) X X};Z(Q) in virtue of the

Lax—Milgram lemma. Moreover, it follows from the definition of A that (¢, y, u) is
a weak solution to the following system of boundary value problems:

& +@)(p—mrAp) + meA2¢ +m(B1 —lch)Ap —mlc Ay =0 —mtAo in 2,

4+ o)y —kAy —klhAp —ag-u+Vp=h in Q,
(¢ +@)u—vAu — (@) + a2l +a2y)g = f in €,
divue =0 in 2,
¢p=Ap=0, y=0, u=0 onl.

By classical elliptic regularity theory for the Poisson and stationary Stokes equations,
we have y € X?2(Q) and u € Xg’z(Q). Thus, we also have ¢ € X*2(Q) for the
solution of the above bi-Laplace equation since 0 — mtAc + ml.Ay € L*(RQ).
Consequently, it holds that (¢, y, u) € D(A).

The variational equation (7.3) is equivalent to [¢I + (w I + A)l(p,y,u) =
(o, h, f), and moreover, from (7.2) and the Cauchy—Schwarz inequality, one has

lell(@, v. wlln, < (o, h, ), (7.4)

Hence, the sector X lies in the resolvent set of —(w I +.A), and for every ¢ € Xg the
resolvent estimate ||[¢ ] + (o I + .A)]~! e, < t};l/|§| holds due to (7.4). These
show that — (@ I + .A) is sectorial, and hence, it generates an analytic Cy-semigroup
on H, by [26, Theorem 4.6]. Thanks to the bounded perturbation theorem in [54,
Chapter 3, Corollary 2.2], we conclude that —A = —(wI + A) + @1 is also a
generator of an analytic Cp-semigroup on H,,. The proposition is now established.
O
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