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An optimal control problem for a linearized fluid—structure interaction model with a delay term in the
structural damping is analyzed. A distributed control acting on the fluid domain, structure domain or
both is considered. The necessary optimality conditions are derived both for rough and smooth initial
data. A parabolic regularization of the problem and its convergence are investigated. Finite element
discretization for the regularized problem and error estimates are provided. Piecewise linear elements
with bubble functions for the fluid and a discontinuous Galerkin scheme for the spatial and temporal
discretizations are utilized respectively. Numerical experiments illustrating the theoretical results are
given.
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1. Introduction

This paper is dedicated to the analysis and numerical approximation of optimal control problems for
linearized models describing the interaction of an incompressible fluid and a structure. For the physical
configuration we consider the setting where the structure is completely submerged in the fluid domain.
An example of this situation is microbubble suspension in a fluid in ultrasound imaging (Dayton et al.,
2002). In this study we assume that the interface between the fluid and the solid is static, a reasonable
assumption in the case of small yet rapid oscillations for the structure. Although this assumption is
somewhat restricted and limits applicability to more realistic problems, the current work is a contribution
toward nonlinear fluid-structure interaction (FSI) models.

FSI models have been studied in past years from both analytical and computational perspec-
tives. These works deal with the well-posedness for linear problems (Du er al., 2003; Avalos &
Trigianni, 2007, 2009b), nonlinear problems (Barbu et al., 2007; Kukavica et al., 2011; Kukavica
& Tuffaha, 2012; Ignatova et al., 2014, 2017), asymptotic stability (Lasiecka & Lu, 2011), interior
feedback stabilization (Avalos & Trigianni, 2013; Lu, 2013a,b), boundary feedback stabilization
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(Avalos & Trigianni, 2008, 2009a, 2013; Lasiecka & Lu, 2012), regularity (Avalos et al., 2008; Barbu
et al., 2008), numerical analysis and approximations (Causin et al., 2005; Burman & Fernandez, 2009;
Guidoboni et al., 2009; Astronio & Grandmont, 2010; Lukacova-Medvid’ova et al., 2013; Avalos &
Toundykov, 2016), Bolza control problems (Lasiecka & Tuffaha, 2009a,b) and optimal control (Failer
et al., 2016) to name a few. Specifically, the authors in Failer ef al. (2016) considered an optimal
control problem for an unsteady linear FSI problem and derived optimality conditions based on the
adjoint equations of a symmetric formulation of the state equations. This strategy is advantageous in the
implementation of gradient-based optimization algorithms.

We denote by £2;, £2;, I'; and I, the domain occupied by the fluid, the solid, the interface between
the two and the boundary of the wall for the fluid, respectively. Since the structure lies entirely in the
fluid, I; and I’ have no points in common. The entire domain of the interaction model will be denoted
by £2 = £2,U §£2, U I',. We suppose that £2 C R? is a polygonal domain and £2, is a sufficiently smooth
domain. The optimal control problem we are interested in is

. o
min J(u. w. ) = Gl w) + > lalg (1.1)

qe

subject to state equation

divu=0 in Qf,
u=20 on X, =1x1TIy,
u=w, onX =1xT,
w, — Aw+w+ uw,(- —r) =Bg inQ,=1x 8, (1.2)
ow—0,u+pv=>0 on X,

u(0) = u, in .Qf,

w(0) =wy, w,(0) =, in £2,,

w, =2q inQ, =(-r,0) x £2,,

where I = (0, T], By : 0 - Lz(Qf), B,:0— LZ(QS), weR r>0,a>0,and T > 0is a given time
horizon. Furthermore, Q denotes the Hilbert space of controls. Here v is the unit normal on I'; outward
to £2;, hence will be inward with respect to £2, and 9, denotes the normal derivative. For simplicity of
exposition, the fluid viscosity, fluid density and structure density are normalized to 1.

The state equation (1.2) will be understood in the weak sense, which will be specified concretely in
the succeeding section. In this equation, u : Oy — R, p: Oy — Randw: Q; — RR? represent the fluid
velocity field, the pressure in the fluid and the structural displacement, respectively. We have a no-slip
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142 G. PERALTA AND K. KUNISCH

boundary condition for the fluid on the wall I and the continuity of velocities and normal stresses for
the fluid and structure on the interface I'y. The retarded term pw, (- —r) in (1.2) represents a delay term in
the structural damping which, from a physical point of view, may occur due to material properties of the
structure. The constants p and r represent the strength and extent of the delay, respectively. The stability
of system (1.2) without delay and similar versions of it have been studied in Avalos & Trigianni (2013)
with internal mechanical dissipation and in Avalos & Trigianni (2008, 2009a) with interface mechanical
dissipation and zero internal static damping. For the stability of nonlinear FSI models without delay we
refer to Lasiecka & Lu (2011, 2012); Lu (2013a,b).

Well-posedness and stability of a linear FSI model with delay have been considered in Peralta (2016).
We reiterate here that due to the transport phenomenon induced by the delay term, oscillations occur that
may result in instability. This has already been observed in the case of wave equations; see for instance
Datko (1988); Datko et al. (1985); Nicaise & Pignotti (2006). In particular, the presence of delays may
lead to solutions that have either constant or increasing energy as time progresses. Optimal control then
serves as a useful tool to stabilize the system by minimizing its energy. In this work we shall consider the
finite horizon case. Infinite time horizon problems will be a topic for future work. For optimal control
of parabolic problems with delay the necessary optimality conditions were discussed in Lions (19609,
Section 18.1).

With regards to the function G appearing in the cost J we consider a functional keeping track of the
total or a part of the energy of the system, namely

1
G, w) = > /1 Vellu = uglsy, + v llw, = valle, + viollw = wall, + v3llVw = Vwgllg, dr, - (1.3)

for given desired velocity fields u; and v; and displacement w,, where Ve Vi > 0fori = 1,2,3.
Different treatments in the analysis for y; > 0 and y,; = 0 will be needed. This is reflected in the
regularity requirements on the source terms appearing in the fluid and structure equations. If one requires
that the energy on the time interval / be minimized then we just take the desired states to be zero. The
consideration for the cost functional (1.3) is motivated in the context where T is large, which relates to
stabilization.

We would like to point out that the above problem has been studied in Failer et al. (2016) without
the retarded term, with y,; = y,; = 0 and under smooth initial data satisfying appropriate compatibility
conditions. In this work we shall study the theoretical aspects of the optimal control problem with rough
initial data having finite energy. The authors in Failer ef al. (2016) reformulated the variational equations
for the FSI problem in a symmetric form, and as mentioned earlier, this approach is advantageous in the
numerical analysis and computation of the optimal control problem. Also, a formal Lagrangian approach
to the original weak formulation of the state equation leads to an adjoint equation with new coupling
conditions on the interface, while the symmetric formulation leads to an adjoint equation that is again
an FSI problem.

Nevertheless, our optimality conditions established from a more direct method are equivalent to the
one obtained from their symmetric formulation. The approach we follow in this paper will be more
transparent in identifying the strong form of the adjoint equations, from which we will see that it is also
a linear FSI problem but with nonlocal-in-time terms on the right-hand side of the structure equation.
Regularity results and a priori error estimates for the primal states can be then applied to the associated
adjoint states.
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The second aim of this paper is to study a parabolic regularization of the above optimal control
problem where the state equation (1.2) is replaced by

up — Auf + Vp© = Bg* in Oy,
divu® =0 in O,
u®* =0 on X,
u® =wf on X,
1 Wi — AW —eAw! +w° + uwi(-—r) =Byg®  inQ,, (1.4)
oW’ +ed wi —ou’ +pfv=0 on X,
u®(0) = uy in £2;,
wé(0) =wy,  wi(0) =, in £2,
wi =2 inQ,,

with a regularization parameter or strong damping coefficient & > 0. This regularization strategy is
widely used for hyperbolic problems; see Kroner et al. (2011); Lions (1971) for example. As a result,
better convergence rates for the discretization errors will be obtained. From a physical point of view
the stress for the structure is proportional not only to the strain but also to the strain rate (Caroll &
Showalter, 1976). This changes the nature of the FSI model from a coupled parabolic—hyperbolic system
to a coupled parabolic—parabolic system. System (1.4) without delay has been studied in Zhang (2017),
where it was shown that the associated semigroup generator is analytic and exponentially stable.

It will be shown that the optimal solution of the regularized problem converges to the optimal
solution of the original problem as the parameter ¢ tends to 0. Due to the strong damping on the wave
equation, this problem possesses solutions that have better regularity properties, and we shall utilize this
information to propose and analyze a numerical method approximating the optimal control. Moreover,
we prove a priori error estimates for the control, state and adjoint variables.

We shall use piecewise linear elements for the discretization of the structure and control and
mini finite elements for the fluid velocity and pressure (see Arnold er al., 1984). For the mini finite
element, extra degrees of freedom are used at the barycenters of each triangle in the spatial mesh. The
corresponding shape function is commonly called a bubble function. This is one of the simplest and
most economical finite element methods to implement for the Stokes equation that has the appropriate
approximation properties and fulfills the discrete inf-sup condition, a necessary criterion to derive
a priori estimates. Recall that for the linear Stokes equation, linear elements both for the fluid velocity
and the pressure are not sufficient since it may produce the so-called checkerboard-like instability
that leads to the failure of the inf—sup condition (Ern & Guermond, 2004, Section 4.2.3). The use of
bubble functions in the mini element can be viewed as a Galerkin/least squares approximation for the
P1-P1 element; see Quarteroni & Valli (2008, Section 9.4) for the details. Moreover, the proposed
numerical scheme preserves the continuity on the interface of the fluid and structure velocities at the
discrete level.

For the temporal discretization we shall employ a discontinuous Galerkin scheme. For this type
of scheme, it turns out that the history will be discretized through an averaging method, which is
reminiscent of the methods proposed in Banks & Burns(1978) for optimal control problems of delay
differential equations. The full space-time discretization will then be a linear discrete time-delay system.
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Depending on the value of y5 in (1.1), we obtain either a linear or a quadratic order of convergence
with respect to the spatial discretization and a linear order with respect to time. Galerkin discretizations
are favorable schemes both in theory and numerics because the two approaches, discretize-then-optimize
and optimize-then-discretize, are equivalent; see Meidner & Vexler (2008) in the case of parabolic
problems.

The numerical scheme presented in this paper is a strongly coupled algorithm. The unknowns of the
linear systems are the fluid velocity, fluid pressure, structure displacement and velocity. By a suitable
substitution and penalization the structure displacement and the fluid pressure will be eliminated in
the system; thus, the fluid and structure velocities remain as the degrees of freedom. In principle,
this is a monolithic approach for the FSI algorithm. For linear two-dimensional problems, this is an
affordable method and has advantages from the stability point of view. However, for nonlinear and
three-dimensional problems such an approach is computationally expensive and appropriate solvers and
preconditioners are important.

Alternative approaches based on partitioned schemes have been proposed in past years to circumvent
the disadvantages of monolithic approaches. For such an approach the fluid and structure variables are
computed separately in their respective domains and they are coupled through the interface boundary
conditions. Partitioned schemes gained significance due to their numerical and storage efficiency,
modularity and scalability. However, instabilities may occur due to the so-called mass-added effect,
which means that the mass of the structure increases due to the surrounding fluid as it vibrates.
This is typical in hemodynamics where the densities of the blood and the arterial wall tissue are
comparable. Nevertheless, appropriate operator splitting schemes have been developed to overcome
such instabilities. For more details on partitioned schemes and mass-added effects we refer the reader
to Baek & Karniadakis (2012); Banks ef al. (2017); Bukac et al. (2013, 2015); Causin et al. (2005);
Fernandez (2011); Guidoboni et al. (2009); Li et al. (2016); Lukacova-Medvid’ova et al. (2013) and
the references therein. It will be good future work to extend the current paper to partitioned schemes for
nonlinear two-dimensional and three-dimensional problems with either a static or a dynamic interface,
specifically, to investigate the form of adjoint equations and to analyze the corresponding discrete
optimal control problem.

Now, as a motivation, let us take into consideration the influence of delay on the optimal control
problem (1.1), (1.3) subject to the state equation (1.4). In the following we shall use the setup of the first
example in Section 8 with control acting in the structure domain. Using the numerical scheme described
above and discussed in detail in Section 6, we computed the optimal control by neglecting the delay
(r = 0) and then utilized it as a control to the dynamics with delay » = 1. While the residuals on
the fluid velocity and structure stress are comparable in size we can observe from Fig. 1 that there is a
clear difference between the structural displacement and velocity when the optimal control obtained by
neglecting delay is applied to the state equation with delay. Therefore, if there is a priori knowledge that
time delay is present in the state equation then one should utilize this information to improve the results
of the optimal control formulation.

This paper will be organized as follows. In Section 2 we will discuss the well-posedness and
regularity of solutions for the state equations (1.2) and (1.4). The necessary optimality conditions for
the associated optimal control problems will be tackled in Section 3. We present equivalent symmetric
formulations for the state and adjoint equations in Section 4. In Section 5 a semidiscretization for
the symmetric formulation as well as a priori error estimates will be established. Full space-time
discretization of these equations is the concern of Section 6. Section 7 will deal with the error analysis
for the optimal controls of the discretized and continuous problems. Finally, numerical experiments
illustrating the theoretical results will be provided in Section 8.
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FiG. 1. Time evolution for the norms of the residuals between the states and target states with the optimal control neglecting delay
(solid curve) and applying this control to the delayed dynamics (dashed curve).

2. Analysis of the state equations

In this section we present the weak formulation of the state equation (1.2) and its parabolic counterpart
(1.4). The plan is to study the case where there is no delay first and then use successive substitutions in
the presence of the delay term. Without delay the existence and uniqueness of weak solutions has been
established in the literature using different methods such as semigroup theory, the Galerkin method
and monotone operators. Nevertheless, we sketch the Galerkin method for clarity and completeness of
presentation. The product space approach, in which an auxiliary state is introduced to keep track of
the history, serves as a good theoretical framework both in the analysis and approximations for delay
differential equations. This is also an appropriate tool for partial differential equations with delay from a
theoretical point of view; however, this is not practical from the computational perspective since it blows
up the number of degrees of freedom. With this concern we will use successive substitution instead, and
we will see later that this approach is compatible with the discontinuous Galerkin scheme with respect
to time. The main drawback of the method of successive substitution is the additional storage of the
history components, which is unavoidable when dealing with a dynamics that depends on the history of
the state.

2.1 Well-posedness of the state equations

The Lebesgue and Sobolev spaces on a domain O in R? will be denoted by LP(0O) and wkr(0),
respectively, and we let H¥(0) = W*2(0). The corresponding norms will be denoted by

||u||0 = ||u||L2(0), ||”||k,p,0 = ||u||Wk,p(0), ”””kO = ||u||k,2’0.

Simplifying notation, the product of m copies of a Banach space X will be denoted again by X instead
of X™. We shall use the abbreviations L”(X) = LP(I,X), WS (X) = WS (1, X), H (X) = WSK(X) and
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Ck(X) = Ck(f,X) forp € [1,00], s € Rand k € N U {0}. A subscript r will be used if instead of
the interval I we have (—r,0), for example L} (X) = L((—r,0),X) and H}(X) = H*((—r,0),X). The
indicator function of a set O is denoted by y,. We use (:,-) to denote the pairing between a Banach
space and its dual.

With respect to the fluid the typical solenoidal function spaces for the Stokes equation will be used,
namely

Hy = {uel*(82):divu=0in 2, u-v=00nI}},

Ve ={ueH (2):divu=0in2;, u=0onT}},
with the corresponding norms
lully, = lullg,. — lully, = [ Vulg,.

On the other hand, for the structure displacement and velocity, we take the function spaces H, = L*(£2,)
and V, =H ! (£2,) equipped with their usual norms. Also, we introduce the spaces

V={¢ e Hy(%): divg = 0on 2},

Ve ={u e Hy(82) : divu=0in 2},
endowed with the respective norms

1§y = 1IVEll g lullg, = IVullg,-

For the pressure we use the space M = Lz(Qf). This choice of function space for the pressure stems
from the Neumann-type boundary condition on the interface. Notice here that the pressure does not
necessarily have average zero, in contrast to the Stokes equation with no-slip boundary condition where
one has to impose the zero average condition to obtain the uniqueness of the pressure term. Furthermore,
we shall use W = H(]) (£2) as the space for test functions for the variational formulation of the state
equations with regular data.

The duals of V and V; with respect to the pivot spaces L*(£2) and H; will be denoted by V' and VJZ,

respectively. Similarly, V and Vf/ are the duals of V and \7f with respect to the pivot spaces H and Hp,
respectively.

Let us begin with the definition of weak solutions for (1.2) without the retarded term. In the
following discussion we consider a nonhomogeneous boundary condition in relation to the normal
stresses on the interface I';; compare with Lasiecka & Tuffaha (2009a). This type of boundary condition
appears naturally in the formulation of the adjoint equations in the optimality system for the case
Vs3 > 0.
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DEFINITION 2.1 Let uy € Hy, vy € H, wy € V. f € LZ(v;), o € L*(H,) and B € L>(H~'2(I"))).
A pair (u,w) € [L®(H;) N L*(Vy) N Hl(Vj’.)] x [L®(V,)) N WI°(H ) N H>(H™'(£2,))] is called a
weak solution of ‘

u,—Au+Vp=f in Oy,
divu =0 in Qf,
u=20 on Ef,

u=w, on X, @1
w,—Aw+w=o0o in Q,,
ow—0d,u+pv=_8 on X,
u(0) = u, in £2;,

{w(0) =wy, w,(0) =v, in £2,,

if the initial conditions in (2.1) hold, u| n= w,| I in L2(H"/ 2(FS)) and for almost every ¢ € [ we have

(U 0) + (Vit, Vo) g, + (s 0) + 0, 0)y o = (f.0) + (Bo) + (0. 0) g, 2.2)

forevery ¢ € V.

Equation (2.2) should be understood in the sense of distributions, that is,
—/I(u(t),¢)¢’(t) dt+/I(Vu(t),V<p)gf¢(t) dt—/I(W,(t),fp)qﬁ’(t) dr
+/I(W(t),¢)1,gx¢(t)dt=/l{(f(t),qﬁ) +(B@®), ) +(0(t),<ﬂ)gs}¢(t)dt

for every ¢ € Cy°(I). Note that w,| r, is a well-defined element in H -l 2(I’S)). According to the

definition, we have u € C (\7}) andw e C'(H _I(QS)). Consequently, the pointwise values of u, w and
w, at t = 0 are well defined.

We would like to point out here that our definition of a weak solution is adapted from Lions (1969,
Section 1.9); see also Du et al. (2003) in the case of more regular data. A different notion of weak solution
is given in Barbu ef al. (2007) where the test functions are not necessarily coupled at the interface. The
crucial point in that formulation is the hidden regularity of the normal trace on the interface of solutions
for the wave equation, namely d,w € L2(H™Y 2(I“X)), obtained from a microlocal analysis argument.
Under additional regularity assumptions on the data the weak solution enjoys additional regularity as
well and coincides with the notion of strong solution; see Theorem 2.3 below. Moreover, the variational
form (2.2) is a natural setup for strongly coupled algorithms while the one given in Barbu et al. (2007) is
suitable for partitioned algorithms. Since our numerical scheme is written in terms of the global velocity
field we shall utilize definition (2.2).
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THEOREM 2.2 System (2.1) has a unique weak solution and there exists a constant C > 0 independent
of the solution and the data such that

”””Lw(Hf)mLZ(Vf)mHl(f/jz) F Wl oo (vynwioo @y naz a1 (20)
< C(”f”LZ(ij) + 1Bl 2@-12(ry) + ol 2y + lugll g, + lIvoll g, + ”W()”],Qx)' (2.3)

Moreover, the components of the weak solution satisfy
(u,w) € C(Hy) x [C(Vs) nc! (Hs)]. 24

Proof. For the proof of the existence and uniqueness of a weak solution (1, w) € [L*® (Hf) N L2(Vf)] X
[L>(V) N W1’°°(Hs)] by the Faedo—Galerkin method and the a priori estimate (2.3) without the norms
in Hl(\~/f) and HZ(H_I(.QS)) we refer the reader to Lions(1969, Section 1.9). By choosing ¢ € Vf and

extending it by zero outside £2, we can see from (2.2) thatu € H ! (\7f). Similarly, by taking ¢ € H(l) (£2,)

and extending it by zero outside £2,, we have w € H 2(H! (£2,)). In particular, the following estimates
hold:

||14;||L2(‘7jg) < C(HMHLZ(Vf) + ||f||L2(V;,)),
||W;[||L2(H—l(gs)) < C(”W”LZ(VS) + ”U”LZ(HS))'

Finally, the continuity of weak solutions with respect to time can be shown by following the methods in
Lions & Magenes (1972, Chapter 3). O

The existence and uniqueness of the pressure can be established under additional assumptions on
the data.

THEOREM 2.3 Suppose that u, € Vy, wy, v, € V; satisfy Auy € LZ(.Qf), Awgy € Hy, ug = vy on I'y and
d,wy = d,Uy — pov on I, for some p, € H' (2p).1ff € HI(VJZ), o € H'(H)) and B € H\(H~Y2(I",))
then the weak solution of (2.1) satisfies

ue WHH) NH' (Vy), we W) nW>®H,),
and there exists a unique p € L>(M) such that

(W, 9) g, + Vi, Vo) o — (p,divp) g, + Wy 9) g, + W, 9)1 o, = (f,0) + (B,9) + (0, 9) g,

for every ¢ € W and for a.e. t € I. Moreover, there exists C > 0 independent of the solution and the
data such that

”"‘”WLOO(Hf)mHl(Vf) + ||W||W1.00(Vs)mw2»oo(115) + ||P||L2(M)
< C(”f”[-[l(vf’) + ”:3||H1(H*1/2(1})) + ”U”HI(HS) + ||u0||1,_qf + ||Au0||9f)

+ C(”Vo”l,gs + ”AWO”_QS + ”WO”L_QS + ||P0||1,_Qf)~
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Proof. The proof of this result can be seen in Du et al. (2003) using an inf-sup condition (see
Theorem 2.14 below) with the additional assumptions that u, € HZ(.QS), Wy € HZ(QS), feH 1(Hf) and
B = 0. However, the arguments can be adjusted so that the results are still valid under the requirements
for ug, wy, f and B stated in the theorem. O

In the framework of the previous theorem, it can be shown that the boundary condition 9, w =
d,u —pv + B on I is satisfied in 2 (H_1/2(Fs)). We refer the reader to Barbu et al. (2008) for a proof
of this remark.

THEOREM 2.4 Assume that u, € V; N HZ(SZf), wy € H*(,) and v, € V, satisfy the compatibility
conditions u, = vy on I and d,w, = 9d,uy — pyv on I for some p, € Hl(.s?f). Letf € Hl(V]ﬁ) N
LZ(LZ(.Qf)), o € H'(Q,) and B € H'(H~Y2(I'))NL*(H'?(I,)). If L2, is a sufficiently smooth domain
then the weak solution of (2.1) satisfies

ue L>(H (), welLl*(H (), peLl*(H (), (2.5)
and there exists C > 0 independent of the solution and the data such that

Il 222y + W2 @220y + P2 (27

S C(||f||H1<V,’-)mL2(L2(nf)> 1Bl @12z + ”G”Hl(Qs))

+ C(””o”z,gf + ||Vo||1,gs + ||W0||2,9S + ||Po||1,9f)- (2.6)

Proof. A proof of this theorem in the case f = 0, c = 0 and 8 = 0 can be found in Barbu et al.
(2008), which can be adapted to the nonhomogeneous case with the above regularity assumptions. For
completeness we give the proof. First, let us prove regularity away from the interface. For this purpose
we define .ijs ={x € .Qj : dist(x, I'y) > &} for j = f or s, whenever § > 0 is sufficiently small. Let

Xf € Cgo(.Q}S/ 2y I;) be a cutoff function such that x, = 1 on Qf‘s U I'. Multiplying the fluid equation
by x; leads to

—Au+Vp=Ff in Oy,
divie = VXf - u in Qf,
u=20 on ¥, UX,

where u = Xl andf = Xf(f —u) — [A,Xf]u + [V,Xf]p. The commutators [A,Xf] and [V,xf] are
of orders 1 and 0, respectively, and hence from Theorem 2.3 we have f e 2 (L2 (.Qf)). For the above
Stokes problem we have the compatibility condition

/fo-udx: Xpu - vdx = 0.
2 Ul
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It follows from the regularity theory for the Stokes equation in Kellog & Osborn (1976); Temam (2001)
that u € L2(H2(.Qf)) and thus u € L2 (Hz(.Qf‘S )) for every sufficiently small § > 0 and

||u||L2(H2(Qj§)) < C(”u”Hl(Hf)mLZ(Vf) + ||P||L2(M) + ”f||L2(L2(Qf)))- 2.7

In a similar way we multiply the wave equation by a cutoff function y, € C3°(£2;) such that x; = 1 in
2% to obtain

—A\Z/-’—ﬁ/:&, in QS’
w=0 on X,
where w = x,wand 6 = x,(0 —w,, — uw,(- —r)) — [A, x,]Jw. With a similar argument to above, it

holds that & € L2(L? (£2,)). From the regularity of elliptic equations in Lions & Magenes (1972) we
have w € L2(H? (£2,)),andsow € LZ(HZ(.Q;S)) for every sufficiently small § > 0 and

||W||L2(H2(g]§)) < C(”W”HZ(H,«)HLZ(VS) + ”ZOHL%(HS) + ”O—”LZ(LZ(_QX)))- (2.8)

The right-hand sides of (2.7) and (2.8) are finite in the light of Theorem 2.3.
It remains to prove regularity on a neighborhood of the interface I'y. As an intermediate step, let us
consider the case where the FSI domain is £2* = [—1, 1]>. More precisely, let

.Q; =(-1L1)x (01, £25=(1.1)x(10), I,=(11)x{0}.

Suppose that u € H'(L*(2})), w € WH(L*(29) N WhHN(2!), p € L*LX2)), [ €
LZ(L2(Q;)), g€ LZ(HI(Q;)), o € L>(H'(2¥)) and B € L>(H'/?(I'}")) satisfy the following equations
in the sense of distributions:

u,—Au+Vp=f inIx.Q;,
divu =g inl x 2f,

u=>0 onl x (BQf*\Fs*),
u=w, onl x I,

(2.9)
w,—Aw+w=0¢ inl x 27,
ow — du+pe, = f onl x I';,
u(0) = u, ian*

[ w(0) =wy, w,(0) =v, in 27,

where e, = 0, DT.
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For n > 0, let p, be a standard mollifier with respect to the first spatial variable x and let u”? = ux*p,,
p" =p=p, and w" = w s p,, where x denotes convolution. Analogous definitions for ", ¢", B" and
o will be utilized. Extending the functions outside £2* by zero, mollifying the differential equations in
(2.9) and then applying 9., we obtain the following estimate by multiplying the fluid equation by 9, "
and the structure equation by axw?:

d
3 U Ol + 10,87 DI + 1007 O o7) + IV @ Ol

)

1 2
+3 [82u" (1) 2 (2.10)

N =

< (I W1, +] 0" @.8,8" )y

+ (@87 (@), 0,u" (1)) s

+ C‘ (070 (1), 0w (1)) o

Here n > 0 is small enough so that the supports of the involved functions do not exceed the square £2*.
According to the trace theorem and Poincaré inequality,

(0,8 (1), 8,u" (1)) s

<l Bxﬂ"(t) ||_1/2,1*S* ||3xu77 o1l /2.1y

SCAB" O . + el O o (2.11)

for each ¢ > 0. Also, for each ¢ > 0 it holds that

|00, 08" ) g | < 20" IG; + Collg" DI g (2.12)

Integrating (2.10) over the time interval /, applying Gronwall’s lemma and using (2.11) and (2.12), we
infer that

2 n2 2 2
”8xun||Loo(L2(Q;)) + ”8th ||L°°(L2(.QS*)) + ||3XW’7||L°°(H1(QS*)) + ||V8xu’7||L2(L2(Q;))
2 2 2 2 *
< Cg(”f”LZ(LZ(_Q;)) + ”g”LZ(H'(Q;)) + ”’BHLZ(HIH(FX*)) + ||0||L2(H1(Q;)) + C())

* 2 2 2 . . .
where ¢; = ””0”2,9; + ||v0||17_Q; + ||w0||2,_(2:. Here we used the fact that convolution is uniformly

bounded for sufficiently small > 0. From the equation V(3,p") = _f"7 + A(3,u") — d.u; we have
V(@p") e L2(H™! (£27)) and

||V(8xp'7)||Lz(H71(_Q;)) < C(”“[”Lz(LZ(_Q;)) + ”V(axun)”LZ(LZ(Qf*)) + ||f||L2(L2(Qf*)))' (2.14)
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It follows from Necas (1976, Chapter 3, Lemma 7.1) and (2.14) that

10 222y < CUBP 21027y + 1V @D l2-1121)

< C(”P||L2(L2(Q;)) + ||”||HI(L2(Q;)) + ”V(axun)”[,2([,2([zjj‘))

+||f||L2(L2(Q;)))- (2.15)

Combining (2.13) and (2.15), and then choosing ¢ small enough, we deduce after neglecting some
non-negative terms on the left-hand side that

”axun”LZ(Hl(Qf*)) + ||aan||L2(H1(.(2;)) + ||3xp"||L2(L2(Q;)) < C||f||L2(L2(Qf*)) (2.16)

+ C(||g||L2(H1(_Q;)) + ||/3||L2(H1/2(1*S*)) + ||”;||L2(L2(Q;)) + ||U||L2(H1(Qf*)) + Ca)

Thus, (3,u™),, (8,w"), and (3,p"), are bounded in L*(H! (27, L2(H'(2)) and L? (L2(9;)), respec-
tively, and hence up to a subsequence each converges weakly to some element in the corresponding
spaces as n — 0. However, we know that d,u” — 9d,u in I? (L2(SZJ2‘)), owl — 9, win L2 (Lz(.QS*)) and
0,p" — 0pin L*(H _1([2; )). From the uniqueness of weak limits, it follows that 0, .u € L*(H l(.Qf’" ),
dw e L2(H'(£27)) and d,p € LZ(LQ(.Q;)). Passing to the limit inferior in (2.16) and using the weak
lower semicontinuity of the norm we have

|Iaxu||L2(H1(_Qf’.‘)) + ||axW||L2(H1 (£25)) + ||3xp||L2(L2(g/’f)) < C”f”LZ(LZ(_Qf’.‘)) (2.17)

+ C(||g||L2(H1(_Q;)) + ”'BHLz(H'/Z(FS*)) + ”MZHLZ(LZ(.Q;)) + ”Ulle(Hl(Q;)) + CS)

The stated regularities of # and p with respect to space can now be obtained from the fluid equation.
Indeed, if u = (uy,u)" then we have 97uy = uy,—d7u; +9,p—f, € L*(L*(2})), 0juy = d,g—dpu; €
2 (L2(.Qf* )), therefore u € LZ(HZ(.Q]Z‘ )), and consequently p € L2(H! (.Q; )). Using the same argument
for w in the wave equation yields w € [? (Hz(.Q;‘)). Together with (2.17), these also imply that

||8yu||L2(H1(Q;)) + ||3yW||L2(1-11(Q;)) + ||ayp||L2(L2(gf*)) < C(||f||L2(L2(Q;)) + ||g||L2(H1(_Qf’f)))

+ C(”IB”LZ(HI/Z(FA*)) + ||ut||L2(L2(.Q;)) + ”Wtz”LZ(LZ(Q;)) + ||G||L2(H1(Q;)) + Ca) (218)

With respect to the original domain, one considers a partition of unity in a neighborhood of the

interface Iy and performs a transformation of variables from each patch to the square domain .Q];“

Then using the same technique as for the Stokes equation in C2-domains, see for instance Sohr (2001,
pp. 119-123), one can obtain H>-spatial regularity both for « and w on each patch. This in turn implies
H?-regularity of u and w in a neighborhood of I';, and upon combining this with the earlier interior
regularity we obtain the desired regularity result. Finally, estimate (2.6) can be established by taking
the sum of estimates (2.17) and (2.18) obtained on each of the patches and estimates (2.7) and (2.8)
obtained from interior regularity. d
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REMARK 2.5 In the proof of the above theorem we refer to Barbu er al. (2008) for a similar flattening of
the boundary. In that paper the authors used Melrose—Sjostrand coordinates (Melrose & Sjostrand, 1978)
for the transformation. This microlocal strategy requires that the domain §2, is sufficiently smooth.

We now consider the state equation (1.2) including the delay term.

DEFINITION 2.6 Let uy € Hp, vy € H, wy € V, 2y € L*(Q,), f € LZ(V]ﬁ), o € L*(H) and B €

LX(H™V2(I). A pair (u,w) € [L(Hp) N L2(Vy) N HY (V)] x [L2(Vy) "W (H) 0 HX(H™'(2)))]
is called a weak solution of

u,—Au+Vp=f ian,

divu=0 in Qf,

u=20 on Z‘f,

u=w, on X,
w,—Aw+w+uw,(-—1) =0 in Q,, (2.19)

dw—0d,u+pv=_4 on X,

u(0) = uy in 824,

w(0) =wy, w,(0) = in £2,,

Wy =2p in Qr’

if the initial conditions in (2.19) hold, u| n = w,| r in L2(H 1/ 2(I“s)) and for almost every t € [
we have

W @) + (Vit, Vo) g + W @) + 0, 0)y g + (0w, = 1. 9) g = (£:0) + (B.0) + (0. 0)g,

for every ¢ € V in the sense of distributions.
According to the definition we have w, € L*(—t, T; H,).

THEOREM 2.7 System (2.19) has a unique weak solution and there exists a constant C > 0 independent
of the solution and the data such that

”u”L°°(Hf)ﬂL2(Vf)ﬁH1(Vf/) + ”W”LOO(VS)QWI’OO(HS)OHZ(H’I(QS)) (220)
< C(”f”L?(Vf/) + ”'BHLZ(H*I/Z(FS)) + ”U”LZ(HS) + ||u0||g2f + ||V0||QS + ||W0||1,_QS + ||Z()||Q,)~

Furthermore, (2.4) is satisfied.

Proof. Apply Theorem 2.2 successively on the intervals [0, r], [, 2r] and so on. (]
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THEOREM 2.8 (i) Under the assumptions of Theorem 2.3, and if z, € H rl (H,) with z,(0) = v, then the
weak solution of (2.19) satisfies u € W1’°°(Hf) NH! (Vp),we W1’°°(Vs) N W2 (H,) and there exists

a unique p € L>(M) such that
(w, 9) g, + Vi, Vo) o, — (p,dive) g, + Wy @) o, + W, 9)1 o, + (uw, (- = 1), @) g,
= (f’(p> + (:3’ §0> + (O"QD)_QS,

for each ¢ € W and for a.e. r € I. Moreover, there exists C > 0 independent of the solution and the data
such that

||”||W"°°(I-If)ﬂH1(Vf) + ”W”WLOO(VS)MWIOO(HS) + ||P||L2(M)
< C(”f”Hl(vj&)mL2(L2(Qf)) FWBlar @120y + ol + ol o + ||AM0||_Qf)

+ C(||Vo||1,_(zs + 1 Awgllg, + lIwoll o, + ”ZOHH,‘.(HS) + ||Po||1,_(zf)~

(ii) In the framework of Theorem 2.4, and if z, € H 1 (Q,) and z,(0) = v, then the weak solution of
(2.19) satisfies (2.5) and there exists C > 0 such that

lull 2 g2 2y + MW L2 2020y + 1P 201 ()
< CIf i vprzazap + 1Bl @ wyae i)

+ C(||G||H1(QS) + lluglly, o + o1, + Iwoll2.2, + lIzoll10, + ||l70||1,9f)'

Proof. The regularity and compatibility assumptions on z; and v, imply that w,(- —r) € H '(H,) and
w(—r) e H 1(QS) in (i) and (ii), respectively. With this information, (i) and (ii) now follow from
Theorems 2.3 and 2.4, respectively, with o replaced by o — uw,(- — r). O

In considering the cost functional G with y; > 0 we shall need the concept of a very weak
solution to (2.19) with 8 = 0 to characterize the necessary optimality conditions, or more precisely
its corresponding dual version. Here we present the definition for the primal problem using the method
of transposition. The definition below is obtained by multiplying the strong equations by appropriate
test functions, integrating over the space-time domain and passing all time and space derivatives to the
test functions.

DEFINITION 2.9 Let uy € Hy, vy € Hy, wy € Vy, 29 € Li(H), f € L*(V}), 0y € L'(H,) and 0, €
WHL(V)). A pair (u,w) € L*(Hy) x H'(H,) is called a very weak solution of (2.19) with o = o} + 0,
and B = 0 if for every (g,x) € L2(Hf) x [2 (H,) it holds that w(0) = w,, and

/I(u,g)gf + W, K)o dt = /I(fd/?) — (01, ¥ g, + (03, ¥) dt + (0,(0), ¥ (0))

+ (g, 9(0)) o, + (vo, ¥, (0) o, — (W, ¥(0))1

0
+u [ (2p0), ¥, (6 + 1)) db, (2.21)
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where (¢, ¥) is the weak solution of

-, —Ap+Vm =g in Oy,
divp =0 in Qf,
=0 on Ef,
==y, onlX,
Uy — AV + ¥ —puy (- +r) =« inQ,, (2.22)

0, —0,0+mv=0 on X,
¢(T) =0 in £2;,
v(T) =0, ¥(T)=0 in £2,

Y, =0 in (T, T +r) x £

Note that after time reversal, (2.22) can be written in the form of (2.19), which justifies the notion
of a weak solution for (2.22).

THEOREM 2.10 System (2.19) with 0 = 0} + 0, and § = 0 admits a unique very weak solution and
there is a constant C > 0 independent of the solution and the data such that

||M||L2(Hf) + ||W||H1(HJ,) < C(”f”LZ(Vf’) + ||<71 ”LI(HS) + ”JZHWM(V;)

+ ||M()||_Qf + ”VO”QS + ”W()”],,QX + ”ZO”L}(Hs))' (2.23)

Proof. Reversing the time t - T—t1in (2.22), Theorem 2.2 implies that given (g, «) € L2 (Hf) xL? (H,),

system (2.22) has a unique weak solution (¢, V) € [C(Hf) N L2(Vf)] x [C(Vy)N c! (H,)] and for some
constant C > 0 it holds that

”‘/)”C(Hf)ﬁLz(Vf) + ”w”C(VJ)ﬂCI(HA,) < C(||8||L2(Hf) + ”K”LZ(HS))'

This implies that the mapping of (g, «) to the right-hand side of (2.21) defines a linear functional on
LZ(Hf) x [? (H,). Therefore, according to the Riesz representation theorem, there exists a unique pair

(u,v) € L? (Hf) x [? (H,) that satisfies (2.21) with w, replaced by v. Also, if we denote by C the constant
on the right-hand side of (2.23) then

leell 2 + VIl 2y < C- (2.24)

If we define w(r) = wy + fé v(s) ds then it follows that the pair (u, w) is a very weak solution of (2.19)
with 8 = 0. Thus, (2.23) follows from (2.24). Uniqueness can be shown in a standard manner. O
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2.2 Well-posedness of the regularized state equations

In this subsection we study the well-posedness of the parabolic regularization (1.4) of the state equations.
Due to the presence of strong damping on the wave equation, less stringent regularity assumptions are
needed on the source terms to obtain smooth solutions. We start with the definition of weak solutions.

DEFINITION 2.11  Suppose that uy € Hy, vy € H, wy € V, 2y € L2~(Qr),f € L2(V}$), o e L2(V)
and B e L*(H™Y2(I)). A pair (u,w®) € [L®(H) N L*(Vy) N H‘(V;)] x [L®(V,) N W (H ) N
H2(H_1(.Qs))] such that uEXQf +Wixo, € L2(V) N HY (V') is called a weak solution of

u, — Au® +Vp° =f in Oy,
divu® =0 in O,
w =0 on Xy,
u® = wf on X,
wh — Aw® —eAwS + W + uwl(-—r) =0 in Q,, (2.25)
W’ +ed wf —ou’ +pfv=_4 on X,
u®(0) = uy in £2,,

wé(0) =wy,  wi(0) =, in 2,

Wf =2 in Qr’
if the initial conditions in (2.25) are satisfied and for almost every ¢ € [ it holds that

(Mf, (P) + (Vuev V(p)_(zf + (Wft’ §0) + 8(wa’ V@)_QA + (Wev (p)I,QS

for every ¢ € V in the sense of distributions.

We point out that the criterion u® Xg; + wy Xo, € L2(V) implies w® € H 1 (V,), and in particular,
the continuity of the velocities u* = w¢ on the interface I', in the sense of L2(H'/?(I’,)). Moreover,
ut e C(VJZ) and w® € C'(H™! (£2,)), and hence the pointwise values of u®, w® and wi at t = 0 are well
defined. Well-posedness of (2.25) with f = 0, 0 = 0, 8 = 0 and without delay via semigroup theory is
discussed in Zhang (2017).

THEOREM 2.12 System (2.25) admits a unique weak solution. Moreover, u® € C(Hf), wf e C(Vy) N
CI(HS), and there exists C, > 0 with C, — oo as ¢ = 0 such that

||u€||L°°(Hf)ﬂL2(Vf) + ”Ws”Wl’oo(Hs)ﬂLm(Vx) + 8||VW§ ”LZ(HS) (227)

< Cg(”f”Lz(V;.) + ||Ig||L2(H—1/2(1“S)) + ||‘7||L2(V§) + ||140||_Qf + ”VO”QS + ”WO”LQS + ||Z()||Q,)-
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Proof. The theorem can be shown using a standard Faedo—Galerkin method (see Lions, 1969 and
Du et al., 2003 for instance) and for this reason we derive only a priori estimates. Also, by using a
similar strategy to the previous subsection, we discuss only the case where there is no delay. Multiplying
the differential equations for #® and w® by u® and w;, respectively, integrating over space, taking the sum
and then using the boundary conditions we have

d
3 (Ol + W Ol + W OIF o) + IVE* Ol + el VW 01, (2.28)

_ 1 &
< C(Ilf(t)llzf/ HIBW I,y + 2 Mo OIF,) + SIVE OIS, + S Iw 0l g,

Absorbing the terms involving Vu® and Vw; on the right-hand side of (2.28) to the left, and then
applying Gronwall’s lemma to the resulting estimate, we obtain (2.27) without the initial history z,. [

REMARK 2.13 Ifo e L2 (H,) then a modification of (2.28) yields that the constant on the right-hand
side of (2.27) can be taken to be independent of ¢.

We now prove the existence of a pressure term similar to Theorem 2.8. We point out that there is no
need for compatibility conditions on the initial data due to the regularizing effect of the strong damping
term in the wave equation.

THEOREM 2.14  Assume that uy € Vi, vi,wy € V, z5 € LX(Q)), f € L*(Qp), 0 € L*(Q,) and
BeH! (H_I/Z(FS)). Then the unique weak solution of (2.25) satisfies in addition u® € H' (Hf) ﬂLoo(Vf)
and w? € HZ(HS) N W1’°°(VS). There is a unique p® € L?(M) such that

W @) g, + (Vi V) g, — (pF.divp) g + (W) g + £(VWE, V) g

+ 0) o, + (Wi (= 1. @) g, = (fr0)g, + (B.0) + (0. 0)g, (2.29)

for each ¢ € W and for a.e. t € 1. Moreover, for some C, > 0 we have

||us||Hl(Hf)mL00(vf) + ||W8||H2(Hy)mwl,00(vs) + ||P£||L2(M) =< C5||f||L2(Qf)
+ Cg(”ﬂ”Hl(H*I/z(]})) + ”U”LZ(QS) + ||u0||1’9f + ||V0||1,QS + ”WO”LQS + ”ZO”Qr)‘

Proof. From the remarks in the proof of the preceding theorem, it is enough to consider the case u = 0.
Testing the fluid and structural equations with uf and w¥,, respectively, provides the energy identity

d
a(nws(r)n%zf + (0, W (D)1 g, + eIVW, (DIg,) + 114 DIIG, + IwWh 0, — W, DI ¢,

= (f),u; () g, + (B, u; (1)) + (0 (1), wi; (D) g, -
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Using the Cauchy—Schwarz inequality on the right-hand side of this estimate, multiplying the resulting
inequality by 7 and then taking the sum with (2.28) we have

d
E(W(nnéf + W OlIg, + I D f.q,) (2.30)
d
+ 12 (IVE Ol + 0 0, w] ) g, + el VW[ O3,

n 2 n 2 1 2 1 2
+ 21 Ol + 3 IO, + 31V O, + 56 =21V O,

<G,y (IF OIS, + o Dllg, + 16 O1%, + Iwf O115,) + (B0, uf ().

Integrating by parts with respect to ¢ and using the Poincaré inequality we obtain

t t
/O (Bt ) ds = (B0, (1) — (BO),ug) — /0 (B.(5), 4 (5)) d

A

< CyUluglli o, + 18151 12 1yy) + MV D,

t
+n/ IVus (9)I1g, ds. 2.31)
0

We integrate (2.30) over [0,?], use Young’s inequality, Gronwall’s lemma, invoke (2.31), take the
supremum over all # € I and neglect some non-negative terms on the left-hand side to obtain

n & n n
77||V”8||L00(Hf) + (1 — 5) ||VW8||LOO(HS) + E”VW?HL‘”(HS) + EHMfHLZ(Hf) + EHW;”LZ(HS)

< C]]’g(”f”Lz(Hf) + ”'BHHI(H*I/Z(I})) + ”‘THLZ(HS) + ||u0||1,gf + ||W()||1,QS + ||Vo||1,gs)

for n > 0 small enough. From this we infer that u; € L2(Hf), ut € L2¥(Vy), wy € L*(H,) and
wi e L®(V)).
For the existence of the pressure we use the following inf—sup condition as in Du ez al. (2004):

b(p,q)

inf _ >
(pEHé(.Q)\{O} ||(P|| 1,92 ||61||Qf

>0, (2.32)
qeM\{0}

where b : H}(£2) x M — R is the bilinear form defined by

b(p,q) = —/ g div g dx. (2.33)
2
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For each t € I, consider the linear functional £, : Hé (£2) — R defined by

(L p) = (f9)g, + (B 9) + (0.0)0 — (4, 9)g, — (Vu', Vo)g,

— WP, —e(Vw, Vo) o — W, 0) o — (uw; (= -1),9) g .

Define the linear operator B : H(l) (£2) - M’ by (By, q) = b(gp, q) whose kernel is V. Since (u®,w?) is a
weak solution of (2.25) satisfying u® e L2(Qf) and wt, € L*(Q,), ¢, lies in the polar set {¢ € H~!(£2) :
(,9) = 0V ¢ € V} of V. From Girault & Raviart (1986, Lemma 4.1) there exists a unique p®(t) € M
such that B'p® (t) = ¢,, where B’ is the dual of B, that is, b(g, p* (t)) = (£,, ¢) for every ¢ € H(l)(s?) and
t € I. Moreover,

clp® Ollg, < IBIIE N g-1(52)-

Since t = ¢, € L2(H™1(£2)) it follows that p* € L?>(M). The estimate for the pressure follows
immediately. U

One may also prove regularity of solutions for the state equation (2.25). The proof of the following
theorem is similar to the proof of Theorem 2.4 and therefore the details are omitted. This result will be
our basis in deriving error estimates for the numerical approximations in the succeeding sections.

THEOREM 2.15  Assume that uy € Vy, wy € HX(2), vy € V,, 79 € L*(Q,), f € L*(L*(2)), o €
L*(H,), B € H'(H~V2(I)) N L*(H'/?(T,)) and £2, is a C?>-domain. Then the weak solution of (2.25)
satisfies

ut e L*(H*(2))), w' e H'(H*(2,), p°el’H(2)), (2.34)

and for some constant C, > 0 we have the a priori estimate

I 22y + W lm arigy) + 1P 2 o))
S Collifli2aaepy + 1Blg @12 ayynza@ 2y + 1o l2a,)
+ Cg(”u()”L_Qf + ||V()||1,Qs + ”W()HZ,QA, + ||Z()||Q,)-
In addition, suppose further that u, € Hz(.Qf), vy € H*(R2,), 20 € H\(H,), f € H' (Lz(.Qf)), o €
H'(H,) and the compatibility conditions u, = v, on I',, d,w, + €3,v, = d,uy — pov on I, for some
Po € H'(£2y), and z)(0) = v, hold. Then u € W' (H,) N H'(V;), w* € W (V) N WA (H,) and
there exists a constant C, > 0 such that
||M8||wl,oo(H_/)mH1(v_,) + ||W£||W'v°°(Vy)ﬂW2*°°(Hs)
< Co(If ey + 1Bl @12z ez + 10 1 y)

+ Cg(””()”lﬂf + ||Vo||2,_(zs + ”WOHQ,QS + ”ZOHHf(HS))'

We end this section by showing the convergence of the regularized state equation to the original one
as the parameter ¢ tends to 0.
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160 G. PERALTA AND K. KUNISCH

THEOREM 2.16 Let uy € Hy, vy € Hy, wy € V, 75 € L*(Q),f € LZ(VJQ), B e L*(H~Y2(I,)) and
o e [? (H,). The solution of the regularized problem (2.25) tends to the solution of problem (2.19) as
& — 0 in the following sense:

llu® = ullca mpneza,vy) + W =wlciamyncavy = 0- (2.35)

Proof. We adapt the proof in Lions (1971, pp. 352-353) for hyperbolic equations. Let us assume for
the moment that the initial conditions and the source terms satisfy the conditions of Theorem 2.8(i).
Let £ = ufy 2 + wf Xa, and & =u Xg; + w,xg,- From the assumptions on the initial data we have

&€ € L2(1,V). Let N be the positive integer such that Nr < T < (N 4+ Dr, J, = [(n — 1)r,nr] for
0 <n < NandJy, =[Nr,T]. There exists C > 0 such that for each ¢ € I it holds that

t t
lu® DI, + W, DIl + 1w OIF g, + /0 A =alVu* g, ds+ ¢ /O IVES ()3, ds

t
<C /O 1O, + 1B -1,y + o)l ds
t
1
+ /O SIVEE @IS, + Clw] )11, ds + luglg, + vl + Iwol g, + 20113,

Applying Gronwall’s inequality, we see that u®, w*, w¢ and \/e£° are bounded in L™ (Hy) N LZ(Vf),
L*®(Vy), L*(H,) and L?(V), respectively. Thus, for a subsequence and some i € L™ (Hp) N L2(Vf) and
weL>®WV)nN WI’OO(HS) we have

Ut —u in LZ(Vf),
W — in L2(V,),

(2.36)
wé =,  inL*(H,),

g€ =~ 0 in L2(V).
Passmg to the limit ¢ — 0 in the weak form of the regularlzed problem leads to & — §t in L2(V),
Wheres = u)(_Q + wt)(g Therefore, we have ££(0) — é}(O) in V' and w®(0) — w(0) in H,. Thus,
u(0) = uy, w,(O) = vy and w(0) = w,. Passing to the limit in the weak formulation of (x®, w®) and

using (2.36), we see that (iz, w) is a weak solution to (2.19), and by uniqueness we have (i, w) = (u, w).
Now let us prove strong convergence, and for this purpose we define

N = Il @) = u@lg, + 1w @) = w DG, + 1w @& = wl g,

t
+ 2/0 |Vt (s) — Vu(s)||f?f + 2,u(wf(s — 1) —w,(s — 1), wi(s) — w,(s))_qs ds

t
+ 2¢ / VW ()11, ds. (2.37)
0
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Subtracting the weak forms of (2.19) and (2.25) and using £¢ — & as a test function, we infer that

t
Ng(t)=28/ (wa(s),th(s))Q ds
O s

t t
=2g/ (VES (), VE(S) o ds—28/ (Vi (5), Vu(s)) g, ds. (2.38)
0 0

For each ¢ € J; we have w? (t — r) = w,(t — r) since (2.1) and (2.19) have the same initial history. In
particular, the integral involving the delay term in (2.37) vanishes for every ¢ € J;. From (2.38) and the
first and fourth lines of (2.36) it follows that

IN, IILOO(I) —> 0ase —> 0. (2.39)

Using (2.37) for ¢t € J; and (2.39), we can see that (2.35) is satisfied with I replaced by J,. Now using
this information and estimating the delay term in (2.37) for t € J, by Young’s inequality, we obtain that
(2.35) holds on the interval J, as well. Continuing this process on the intervals J3, ..., Jy,, we obtain
(2.35), however, under the additional regularity assumptions on the data. For initial data and source
terms that merely satisfy those in the statement of the theorem, one can proceed by a standard density
argument and apply Remark 2.13. (]

3. Analysis of the optimal control problems

In this section we discuss the optimal control problems (1.1) and (1.2), its regularization (1.1)—(1.4)
and provide the necessary optimality conditions, which are also sufficient due to the linear—quadratic
structure of the problem. Consider the optimal control problem

minJ(u,w, q) = G(u,w) + g||q||2Q subject to (1.2), (3.1)
qeQ 2

where G is given by (1.3), v, y; > 0 fori = 1,2,3 and « > 0. Further, u, € LZ(Hf), v, € L*(H,) and
either w, € L*(V,) if y,; > 0 or w, € L?>(H,) if 3 = 0. For the rest of this paper Q will be a Hilbert
space of control, By:Q— LZ(Qf) and B, : Q — L2(QS) are bounded linear operators. The following
theorem can be shown using standard methods in linear—quadratic optimal control problems and thus

the details are omitted; see Lions (1971); Troltzsch (2010).

THEOREM 3.1 Suppose that uy € Hy, vy € Hy, wy € Viand z € L*(Q,). Then the optimal control
problem (3.1) has a unique solution.

In what follows we derive the necessary optimality conditions to (3.1). First, let us consider the case
where y,; = 0. Introduce the Hilbert space X, = L? (Hp) % L2(H,) x L*(H,) with the weighted norm
1 v WIIRy = Vel 7o gy + Vst V172 + V2 W11
VWX = Vel g2y T Vst IWVlp2 ) T Vo2 Wl 2

and define the control-to-state operator S, : O — X, by Syq = (u(q), w,(q), w(q)), where (u(q), w(q))
is the weak solution of (1.2) for a given control ¢ € Q. One can easily see that § is affine and continuous.
Define the reduced cost functional j, : Q = R by

: 1 2 90
Jo@) = 51150q = 24llx, + 7 ll4llig:
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162 G. PERALTA AND K. KUNISCH

where z; = (uy,v;, wy). The derivative of j, at g in the direction of g € Q is given by

Jo@38q = (Soq — 24-SodPx, + (g, 89) - (3.2)

If ¢* is the solution to (3.1) then we must have ji,(¢*)dq = 0 for every 8q € Q.

THEOREM 3.2 Suppose that y; = 0. The optimal solution g* to (3.1) is characterized by the following
necessary conditions.

(i) The optimal state (u*,w*) = (u(g*),w(g")) is the weak solution of (2.19) with f = Byq* and

*

o =Bg".
(i) The adjoint state (¢*, ¥*) = (p(q*), ¥ (g")) is the weak solution of (2.22) with g = yf(u* —uy)
and i =y, wF —v) + [1 oW —wy)(s)ds.

(iii) ¢* = —L(Bro* = BIyy).

Proof. The proof is based on a density argument. The idea is to approximate the data and control
so that the corresponding global velocity field is an admissible test function. Take a sequence (z;),, in
L*(L*(£2)) such that f,, = z3lg. € H'(V}), 0, = zilo € H'(H) and 2, — Byq*xq, + Bq" Xg,
in L2(L2(.Q)). Likewise, take a sequence (uy,, W, Vo,»Z0,), Of data satisfying the conditions in
Theorem 2.8(i) so that (u,, Wo,» Vops Z0n) = (Ug, W, Vs Zp) in Hp X Vi x H % L*(Q,). Let (u,,w,)
be the weak solution of (2.19) with f = f,, 0 = o, and initial data (u,, Wy, Vo, Z0,)- From Theorem
2.8(1), u, € Wl’OO(Hf), w,, € W(I, H,) and the continuity of the solution operator implies that

(s W) = (u*,w)) in L2 (Hy) x L*(H,). (3.3)

On the other hand, take sequences (uy,), C Hl(Hf) and (vg,), C H'(H,) so that uy,, — u,
in Lz(Hf) and v, — v, in L2(HA,). If (¢,,¥,) is the weak solution of (2.22) with right-hand sides
8 = vp(u, —ug,) and k =y (W, —vg,) + ftT Voo (W* —w,;)(s) ds then from Theorem 2.8(i) once more
we also have ¢, € Wl’oo(Hf), Y, € W°(H,), and we obtain from (3.3) that

(@ Vo) = (9%, 9) in L*(Hp) x L*(H,). (34)

Given g € Q, let (1, w) be the solution of (1.2). We also consider a sequence (z,,),, in L2(L*(£2)) such
that z,| o € H'(V}), 2|, € H'(Hy) and z, — Byqxg, +B,qxg, in L*(L*(£2)). Denote by (u", w") the
solution of (2.19) with source terms f = z,,| 20 8= 2, 2 and with the same initial data as with (u,,, w,).
Set du,, = u, —u" and Sw, = w, —w". Using du, x o, + 8w, xg, € L*(V) as a test function in the weak
formulation of the approximated adjoint state (¢, ¥,,) in (2.22), we obtain

T
/yf(un — Ugn» sun)ﬂf + Y1 (Wnt ~ Van> awm‘)ﬂs dr + // ys2(w* —Wa Swnt)QS dsdr
1 1Jt
- /1_(<pm,5un)9f + (V. Vou,) g, dr

+/I(wntt’ BWnt)QS + (wn’awnt)l,ﬂs - (/’“ﬂm(' +7), (Swnt)QS dr. (35)
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Integrating by parts with respect to time and using v, (T) = w,(0) = 0, we have

/I(wn, Wy o, df = — /I (Y SW) 1 o, dI. (3.6)

In a similar fashion we obtain

T
/1/: (w* —wy, BWM)QS dsdr = /](w* — wg. dw,) @, dr. (3.7

On the other hand, since v,,,(8) = 0for8 € (T,T + r) and éw,,(6) = 0 for §  (—r,0),

/1 (wm(.+r),8wm)gs dt = /] (Vs SW,e (- — 1)) o, dr. (3.8)

Substituting (3.6)—(3.8) in (3.5), integrating by parts with respect to time and using the fact that
(¢,, ¥,,) and (8u,,, w,) vanish at t = T and t = 0, respectively, yields

‘/ny(un — Ugp> (Sun)f)f + ysl(wnt ~ Vdn> awnt)ﬂs + VSZ(W* - Wy, 8Wn).QS dr
= /I(wn’ Sunt).Qf + (V(pn’ V(Sun)gf - (wnt’ swntt)ﬂs dr
= [ 8010, = Wb = 1)
1

= /(‘pn’ Z;: - Zn).Qf - (wnt’ Z;'kl - Zﬂ)Qsdt'
1

Passing to the limit #» — oo and using (3.3) and (3.4), we have

/yf(u* —uyut — ”)Qf + YW — vy wi — W), + VoW —wgw* — w)g dt
1
= /1 (¢".Brq" = @) g, — (V7 B(g" = q)) g dt.

However, the left-hand side is equal to (Sg* —z4, S(¢* —¢))x, and thus (B}"(p* -Biytaq".q"—q) g =0
for every g € Q, which implies (iii). (]

Next we consider the case where y; > 0. In this case we define the space X = I? (Hy) x I? (H,) x
LZ(VS) endowed with the weighted norm

G v = ylluly, + v VI, + v Wiy, + sl VWi,
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and the control-to-state operator S : Q@ — X by Sg¢ = (u,w,, w), where (u,w) is the weak solution of
(1.2) and z; = (u4,v,4, wy). Introduce the reduced cost functional j : 0 — R by
: 1 2 90
(@) = 315 = 21 + 5 lallp.
The directional derivative of the reduced cost is given by
J(@8q = (Sq — 24, 58q)x + 2(q.89)g.  8q € Q. (3.9)

Define the bounded linear operator A : V, — V! as

(Ap.¥) = =(Vo, Vi) VoY eV,

THEOREM 3.3 Let y3 > 0 and ¢* be the unique minimizer of the problem (3.1). Then g* is
characterized by the following necessary conditions.

(i) The optimal state (u*,w*) = (u(g*), w(g")) is the weak solution of (2.19) with f = B.¢* and
f

*

o =Byg".

(i) The adjoint state (¢*, ¥*) = (¢(g*), ¥ (g*)) is the very weak solution of (2.22) with g = Y
(u* — uy) and

T T
k=yaW —vy —I—/t Vo (W*(s) — wy(s)) ds — /t Y3 A(W*(s) — wy(s)) ds.

(i) ¢* = —g(B;w* — B y)).
Proof. Observethatg e L2 (Hf) and we can decompose kK = k|4, where k| = y (W —v,) € L2 (H,)

and ik, = [y, W (s) —wy()) ds— [T ya Aw* () —wy(s)) ds € H' (V). Let (¢*,4*) be as described
in the statement of the theorem. Due to the homogeneous terminal data, dual history of the adjoint
equations and the facts that x,(T) = 0 and kp, = — y, (W} —w,) + yS3A~ (w* —w,), we have for every
(fs0) € L*(H;) x L*(H,),

[ @ Do, = Wiorg, i = [y =g dr+ [y v,
+Y (W —wy, W), + Y3 (VW™ — Vw,, Vw) g dt,

where (u, w) is the solution of (2.19) with 8 = 0 and homogeneous initial data and history. Given g € Q
we choose f = B;(¢* — g) and 0 = B(¢" — q) to obtain

/I(w*,Bf(q* — Do, — W/ B(q" — @) dt =/1 (Sq* — z4.5(q" — @) dt.

Comparing this with (3.9) and using the condition ;' (¢*)(¢* — ¢q) = 0 for every g € Q, we see that

Bfo® — B{y + ag” = 0 and hence (iii). O
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With additional regularity on the data and on the desired states, one may use the weak formulation
of the adjoint equation instead of the very weak one.

THEOREM 3.4 Suppose that (1, vy, W, Zo) satisfies the conditions of Theorem 2.8(ii), u, € H' (V]i) N
L2(Hf), v € HI(HS) andw, € L2(H2(.QS)). If the unique minimizer ¢* of (3.1) satisfies qu* € Hl(Vjﬁ)
and B,g* € H! (Q,) then g* = —é(Bj}"go* — Biy;), where (¢*, ¢¥*) is the weak solution of (2.22) with
g =y —uy),

T
K=Y (W;k - Vd) +/ VXQ(W*(S) - Wd(S)) - VS3A(W*(S) - wd(s)) ds,
t

and the boundary conditions

T
0L, v —0,0+mv = / ys38v(w*(s) —w,y(s)) ds, (3.10)
t

where (u*,w*) is the corresponding optimal state.

Proof. Let B denote the right-hand side of (3.10). The above assumptions imply that u* € H' (V¢) and
w* € L2(H2(.QS)) N HZ(HS). As a consequence we have g € Hl(V]i) N L2(L2(Qf)), K € HI(HS) and

B e HI(HI/Z(ITY)). Let (¢*, ¥*) be described as above. The equation ¢* = _é(B; * — Biv,") can be
derived using a similar argument to the proof of Theorem 3.2 and using the equation

(/fx,éw)9j+%ﬂ,SWJn<h - J/yﬂ(wf—-wﬁSWJgrdt
I 1 ’
-|—/)/S2 (w* — wd,(SW)S2 + Vg (VW* - Vwy, V(Sw)_q dz.
I s s

We would like to point out that since the states are smooth one may proceed directly without the use of
an approximation argument. (]

Now we consider the regularized optimal control problem

min J(u®,w%, ¢°) = G, w°) + 2 llg® ||2Q subject to (1.4), (3.11)
q°€Q 2

where G is given by (1.3) and Ve Vi = Ofori=1,2,3anda > 0. Let S, : @ — X be the control-

to-state operator S,(¢°) = (u°(¢°), wi(q®),w®(¢°)) where (u®,w®) is the solution of (1.4). Define the
reduced cost functional j, : Q — R by

. 1 o
Je(@) = 518:0° = 2lix + 14" 1,

where z; = (uy, v,;, w,). Again, existence follows from standard techniques for linear—quadratic optimal
control problems.
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THEOREM 3.5 Assume that uy € Hy, wy € V,, vy € H, 2y € L*(Q,), uy € L*(Hy), v, € L*(H,), and
either w; LZ(HS) ifys =00rw, e L2(Vs) if y3 > 0. Then (3.11) has a unique minimizer.

We now prove the convergence of the optimal controls and optimal states for (3.1) and (3.11).

THEOREM 3.6 If g* and g} are the solutions to (3.1) and (3.11), respectively, then
lgi —gq*llp — Oase — 0, (3.12)
Je(qp) = j(g*) ase — 0. (3.13)
Furthermore, if (u*, w*) and (u}, w}) are the corresponding optimal states then
lug = w*ll 2 vy + IWE =Wl 2 vnmt @, — Oase — 0. (3.14)

Proof. We adapt the proof in Lions (1971, pp. 354-355). First, by optimality of ¢}, we have j,_(q;) <
Jo(g"). Taking the limit superior and using Theorem 2.16 we have

limsupj,(¢g;) < limsupj.(¢*) =j(g").

e—0 e—0

Since ||q;‘||2Q < % J.(g*) the sequence (g}), is bounded in Q, so that for a subsequence we have
q:; — g in Q for some ¢ € Q. Applying a similar proof to that of Theorem 2.16 yields the weak
convergence

(g, wh) — (@, W) = (@), w(@) in L*(V,) x [L*(V,) N H' (H))]. (3.15)

By weak lower semicontinuity of the norm we have
ig") <j(@ < liminfj,(qg;).
e—0

Thus, we have j,_(g}) — j(¢*), and as a consequence it holds that g* = g by uniqueness of the solution
to (3.1). This proves (3.13).

To prove (3.12), let (u®,w®) and (u, w) be the weak solutions to (1.2) and (1.4) with g°® = 0 and
q = 0, respectively. Define z* = (u*, wy,w*), zp = (uj, wi, wi), z, = (@°,wi,w®) and Z = (i, w,, w).
Then z, — zin X as ¢ = 0 from Theorem 2.16. Passing to the limit ¢ — 0 and using (3.13) and (3.15)
we obtain

1 * = o * . * * = .
?m—m&+?m@=k%»4@—%@—@&+um

.ok * = . l * = o *
= (@) = @ =22 = 2)x +iO) = Sl = 2 + 71
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The latter is a norm equivalent to the norm in Q since the solution operators S, and S are affine
and continuous, and z}, z,, z* and z have the same initial data and history. Together with the weak
convergence of g; to g* in Q, this proves (3.12). Finally, (3.14) is a consequence of (3.12) and of
arguments similar to those in the proof of Theorem 2.16. (I

The necessary optimality conditions corresponding to (3.11) can be established as in the previous
discussions. For completeness we present them below.
THEOREM 3.7 Suppose that uy € V;, wy € V,, vy € Vi, 29 € L*(Q,), uy € L*(Hp), v, € L*(H,), and
either w; € L2(HS) ify3 =0o0rw,; € L2(Vs) if y3 > 0. Then the unique minimizer g} of (3.11) is
characterized by the following optimality conditions.

(i) The optimal state (i}, w}) = (u°(q}), w®(q})) is the weak solution of (2.25).

(ii) The adjoint state (¢}, ¥}) = (¢®(q}), ¥*(g})) is the weak solution of

—¢; — Ap® + Vit =g, in 0y,
dive® =0 in Oy,
*=0 on X,

of = -y’ on X,

Vg — AV +eAYy +9° —pf (- +1) =k, inQ,, (3.16)
A, —ed, i —3,0° +7nfv =0 on X,
e (T) =0 in £,
YT =0, ¥/(T)=0 in 2,
¥ =0 in(T,T+r) x £2,,

% * T % A (1%
where g, = yf(us —uy) and k, = Vs (W, —vy) + ft Voo W (s) —wy(s)) — vz A(wg —w,)(s) ds.
(i) g7 = —3(Bror —Biv).

We close this section by proving regularity of the optimal controls to (3.11) under the choice of the
control space Q = L*(I x §2). For regularity results pertaining to problem (3.1) without delay, with
Q = L*(I) or Q = L*(2), ¥,; = ¥,3 = 0 and under particular control operators B, and B we refer to
Failer et al. (2016). '

CorOLLARY 3.8 Suppose that the initial data and desired states satisfy the condition of
Theorem 3.7, and in addition, it holds that w, € H?*(2,) and w, € L*(H*(R2,)). Let Q =
L2(L2(£2)), Byg = qX e and B,g = gxq, for each ¢ € Q. Then the optimal solution

g; to (3.11) satisfies ¢f € L*(V) N H'(L*(2), ¢ilixg, € L*H*(2p) and q¢flico €
L*(H*(2))).
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168 G. PERALTA AND K. KUNISCH

Proof. Let g, be the function given in Theorem 3.7. According to the choice of the control space and
control operators, fgo and B} are the extensions of ¢ € L2(Qf) and ¢ € L2(Q ) by zero outside .Qf
and £2,, respectively. Using Green’s identity on the variational form of the fifth equation of (3.16) the
structural component for the adjoint problem can be rewritten as

[wf, — AV  +eAY] + Y —uy (- +1r) =k, inQ,,
(3.17)

9, —ed, ¥ —9,0° +nv=6, onX,

where
T
b= [ st ) = wy(o)
t
T
’ZS = Vsl(wst - Va’) +/ ys2(WZ (8) — Wd(s)) - VS3A(WZ — wd)(s) ds.
'

Note that g, € L*(L*(£2))), k, € L*(H,) and from Theorem 2.15 we have B, € H'(H'/*(I)).

As a consequence, ¢} € H! (Lz(.Qf)) N L2(H2(52f)) and ¥ € H'(H*(R2,)), by the dual version
: : * 1 %

of the first part of Theorem 2.15. The result now follows from the identity gz = —;(¢:xo, —

I/I:tXQS)' O

The above corollary can be adjusted to the case where the control is acting only on a subset of the
fluid domain (B,q = Xy where w; C §2; and B; = 0) or on a subset of the structure domain (B; = 0
and Byg = x,, q where g C £2).

4. Symmetric formulations of the state and adjoint equations

Inspired by the work in Failer er al. (2016) we shall rewrite the variational equations for (1.4)
and the associated adjoint system in symmetric form. The advantage of this formulation is that the
nonlocal-in-time terms appearing on the right-hand side of the adjoint equation will be eliminated,
leading to a straightforward application of time-advancing schemes. In the present and succeeding
sections we will use the control space Q = L*(I x £2) and the control operators Bg = ¢q Xgy and
Brg = qxg, for ¢ € Q. From now on we drop the superscripts ¢ > 0 in the notation. For the
rest of the paper we assume that the initial data and the desired states satisfy the following regularity
conditions.

(A) It holds that uy € V; ﬁHz(.Qf), Wos vy € H2(R2,), 2o € HN(V,) N L2(H*(2,)), u, € Hl(Hf) N
L*(H*($27)), vy, wy € H' (H) N L*(H*(82,)) and w,, € H'(H,) N L*(H*(£2,)). Furthermore, the
compatibility conditions uy = vy on I, 9,wy + €9,vy = d,uy — pyv for some p, € H 1(.Qf),
79(0) = vy and fﬂ 7p(0) - vdx = 0 for every 0 € I, are satisfied.

Hypothesis (A) implies that Corollary 3.8 is applicable, and in particular, the wave component of
the adjoint equation is equivalent to (3.17). In order to have a unified treatment both for the state and
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adjoint equations we consider the following system:

u,— Au+ Vp =f ian,
divu=0 in Oy,
u=20 on Ef,
u=w, on X,
t
= A= edwtw =0 =+ [ 6= ag)ds g, @
t
o,w+¢ed,w, — 0 ,u+pv =/O 0,8, ds on X,
M(O) = uo in Qf’
w(0) =wy, w,(0) =, in £2,,
w, =2, in Q,.

Indeed, by taking f| = gxq..fo = qXgo, and g; = g, = 0 we recover the state equation (1.2). On the

other hand, replacing (u, w, p) by (¢, ¥, ), choosing f| = yf(u(T— V—uy;(T—)), fr =yyw,(T—")—
vi(T—2)),8 =Yoo W(T =) —=wy(T—")) and gy = y3(W(T — ) —w,(T — -)) and then reversing time
viat +— T —t we obtain the adjoint equations (3.16) and (3.17). With regard to the general system (4.1)
we suppose at the very least the following regularity conditions on the source terms.

(B) Itholds that f; € L*(L*(82))), f» € L*(H,), g, € L*(H,) and g, € L*(H*(£2,)).

Observe that under the above choices of the source terms for the state and adjoint equations, hypothesis
(B) is satisfied according to Theorem 2.15, Corollary 3.8 and assumption (A).
The variational form of (4.1) is given by

(ul,w)gf + (Vu, V(p)gf — (p,div <p)9f
+ Wy @), +e(Vw,, V¢)95t+ W, 9)1 o, + (w, (- —1),9) o
= (fl,ﬁo)gf + (. 9 g, +/0 81,9, + (Vg Vo) dit Ve eW, (4.2)
(p,divu) =0 VpeM,
| u(0) = uy, w(0) = wy, w(0) = vy, w, =2z(in Q,.

Define v to be the weak solution of the following elliptic boundary value problem with parameter ¢ € I:
—Av(t) +v(t) = g,(1) — g, () in Q,, 0,vy=0 on X.

By elliptic regularity theory we have v € LZ(HZ(QS)). It can be easily verified that the triple (u, w,p)
satisfies (4.2) if and only if the quadruple (u, w, ¢, p), where

t
g =w() +/0 (v(s) = &2(5)) ds, (4.3)
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170 G. PERALTA AND K. KUNISCH

satisfies the following system:

(W, 9o, + Vi, Vo) o — (p,dive) g + Wy @) o +e(Vw, Vo) o
+ &P+ uw (- =1),0)g = (f1.0) g + (o, 9o, Ve eW,

(& W)l,gx - (w,, 1/’)1,_(% = —(g, W)QY —(Vg,, Vlﬁ)_@x VeV, 4.4)
(p,divu) =0 VpeM,
u(0) = ug, w(0) =wgy, w,(0) =vq, £(0) =wy, w, =z5in Q,.

We would like to point out that in relation to the state equation (1.2) we have { = w.
Introducing the global velocity vector field & := uy 2, T WiXa, and its corresponding initial data
& == ugXg . +Voxa, € W, (4.4) can be rewritten as

&) +a,(5,9) +b(e,p) +a,(C,0) + (REC—1), @)
= (fl’ §0)_Qf + (fZ’ (P)_(L V(ﬂ ew,

ay(&, ) —a . 9) == (8. V), — (Vg Vi) o VY eV, 4.5)
bé&,p)=0 VpeM,

£(0) =&y, ¢(0) =wy, E =25in Q,,
wherea, : W x W = Rand g, : V; x V, = R are the bilinear forms

a,(§,0) = (VE, Vo) o +e(VE, Vo)g,  a;w,0) = (W, 9); o,

and b is the bilinear form defined in (2.33). Equation (4.5) is in fact analogous to the symmetric form
given in Failer et al. (2016) with u = 0, g, = 0 and under certain particular choices of control space
and control operators. From (4.3), £ and ¢ are related according to

G=§&+v—2g. (4.6)

In particular, if g; = g, then {, =& — g, since v = 0.
It follows from assumptions (A) and (B), Theorem 2.15 and (4.3) that§ € H'(L*(£2))NL*(H}(£2)N
H*(2;) N H*(£2,)) and ¢ € H'(H?(£2,)). Furthermore, we have the a priori estimate

&1 a2 @pnr2a@nmz@pnmz @y T 18 1a @@y
< C(”f] ”LZ(LZ(Qf)) + ||f2||L2(1-1S) + ||g1 ”LZ(H,Y))
+C(||g2”L2(H2(,Qx)) + ”%_()”2,{2_/ + ”SOHZ,,QX + ||W()||2,_QS + ”ZOHHI(Qr))' 4.7
In the succeeding sections we provide a space-time discretization of (4.5). In order to have an error

estimate independent of the mesh for space and time we apply the method of lines, that is, we first
discretize the problem in space in Section 5 and then further discretize in time in Section 6.
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5. Semidiscretization for the symmetric formulation

In this section we discuss a semidiscretization of equation (4.5) for a fixed ¢ > 0.

5.1 Finite element spaces

Let {K},},- be a family of triangulations of £2. We suppose that §2 is a convex polygonal domain and
£2, is sufficiently smooth and convex. For each triangle K € K, let g denote the diameter of K and
U be the diameter of the largest ball contained in K. The mesh size of the triangulation is given by the
parameter & = maxgcx, Og- Assume that the family of triangulations is quasi-uniform, that is, there
exist CQ, Cy > 0 such that

h
9k U

Since £2 is polygonal we have 2 = U ke, K- Let Esh denote the union of all triangles in KCj, that

lie entirely in £2;, and let §2, and Iy, be its interior and boundary, respectively. Set §2;, = £2'\ 2.
We assume that the barycentric coordinates of each triangle in §2;;, with an edge in I'y;, lie in £2;. This is
satisfied if 4 is small enough. Suppose that there exists A, > 0 such that for each 0 < 7 < h the nodes
in §2;, are also nodes in $2;, .

By convexity of 2, we have £2, C £2;, £2; C $2, and w), := $2; \Esh = 2 \§f. Furthermore,
we suppose that the vertices of K, on Iy, = I and I'y, are also points on the fluid boundaries I and
I, respectively, and there exists C; > 0 such that

sup inf |x —y| < C,h?, 5.1

xely, YEls
which is satisfied as soon as £2; is a C?-domain. From (5.1), it follows that there exists C > 0 such that

16lkw, < ChlEl 10, VE € HY(2), k=0,1. (5.2)

We refer to Raviart & Thomas (1983, pp. 118-119) for the proofs of (5.1) and (5.2). Inequality (5.2)
plays a crucial role in the proof of the stability and error estimates, specifically the errors due to the
variational crimes induced by the discretization of the curved interface I7.

In the following, we shall discretize in space using a cG(1) approximation scheme, that is, a
continuous Galerkin method using piecewise linear functions with bubble functions for the fluid
velocity. More precisely, we consider a P1-bubble/P1 (mini element) approximation for the fluid velocity
and pressure (see Arnold er al., 1984) and P1 approximation for the states corresponding to the solid.
Let IP; denote the set of polynomials in two variables of degree at most 1. For each triangle K € 7, let
Ak 1> hg 2 and Ag 5 be the corresponding shape functions and By the linear span of the bubble function
27k 1 g 2Ak 3- Define

W, = {gh € C(2) 1 &Ik € B @B if K C 2.8, € FHEK C 2,811, :o}.
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172 G. PERALTA AND K. KUNISCH

Observe that we have a conforming scheme with respect to the global velocity field & since W, C W.
We also define the restrictions of the functions in the discretized fluid and structure domains as

W = {élﬁfh L& e W}, Won = {Elﬁxh HE e Wy}
For the discretization of the pressure we consider the space

With this the restrictions of functions in M), to £2; lies in M.
We also define the space of discretely divergence-free elements of W), in §2g,,

Xh = {éh (S Wh . bh(éh’ph) = OVph S Mh}’

where b, : W), x M), — R s the discrete version of the bilinear form (2.33) given by

by(Eppy) = — / py div, dx
L

Note that according to the above assumptions on the nodes in £2;, and £2;, , each piecewise linear
function in Wy, is also an element of Wy,. By using the arguments of the proof in Du et al.(2003,
Theorem 3.5), it follows that the pair (W, M},) satisfies the inf-sup condition

bh(ﬁl’h, qp)

inf S —_— > 0. 5.3)
qhth\{O} oneWp\{0} ll@nlly _Q”qh”()fh

It is well known that the finite element spaces Wy, and W, and M), satisty the following approxima-
tion properties:

inf |l — §0h||] Q4 < CH? _j”(p”lf);h Vo e Hz(‘Qsh)’ jel0,2],
</’h€th K
e = = o Vo € H($23), j € [0,2],
<ph1£Wﬂ, e (ﬂh”](zﬂ, = ||<P||2Q ¢ e H( ﬂ,) j€[0,2]
inf |lp = pyllj.g, < Ch'~ Vp e H' (2;), j €0, 1].
phlth I ph”],Q_/;, = ||p||1,_(2ﬂ, p € ( ﬂ’l) je[0,1]

From the quasi-uniformity of the triangulations the following inverse estimate holds:

lenllie < Chllgle Yo, € Wy, (5.4)
Observe that the discretized fluid domain is slightly larger than the continuous one, that is, £2, C

24, In our analysis we artificially extend functions in §2; to all of §2. Define an extension operator
E: Hk(.Qf) — HK(£2) for k = 1,2 such that for some constant C > 0,

IEle < Clelig, Yo € H (). (5.5)
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For example, given ¢ € Hk(.Qf) with k = 1 or k = 2, let ¢ be the harmonic extension of ¢|, to §2; and
set Egp = o xg T ¢ X5, Estimate (5.5) then follows from elliptic theory.

The approximation properties of Wy, and W, carry over to W), which we prove below (see also
Du et al., 2004).

THEOREM 5.1 There exists a constant C > 0 such that for every & € W satisfying &| o € H? (£2¢) and
£|q, € H*(£2,) we have

inf 16 — &l 0 < I Elg, + 1Elng). J=0.1.
EneWp )

Similarly, there exists C > 0 such that for every p € H 1 (.Qf) it holds that

inf ||[Ep — < Ch .
oreM, IEp Ph”(zﬂ, = ||P||1,Qj

Proof. Letiy, : C(2) = W, iy : C(24) = Wy, and iy, : C(2;,) — Wy, be the nodal Lagrange
interpolation operators. According to the assumption on the nodes of the barycenters of the triangles in
§2p, that intersect the discretized interface I'y, we have (i;§)| g, = ipE§ and (i,§)|g, = iy§. From the
triangle inequality,

1€ — iyl < IEE — igEEl g, + 16 — iyl g, + IE — EEl;,,.  j=0.1.

Using interpolation error estimates, (5.2) and (5.5) we see that ||§ —i,& ||j,9 < Ch*(|& ”2an +IEN,.0,)-
Since i,§ € W), the first part of the theorem follows. The second statement can be shown in an analogous
way. (I

In the following we construct an extension of functions defined in £2, to £2,.

LEMMA 5.2 There exists an extension operator £, : W, — V such that E,v/;, = v, on £2;, and for
some C > 0 there holds [|E, ¥,y o < CliYyll o, forevery h > 0and ¢, € W,

Proof. Let K denote a reference element of each triangulation C;. Given an element K € K, such
that K C §2;, and with an edge ex on the discretized interface I'y,, denote by wy the region bounded
by this edge and I. Then there exists a unique K e IC;, such that wg C K.Let F x and F be affine
transformations mapping K onto K and K, respectively. Choose Fy and F in such a way that exactly

one edge of Kis mapped onto the common edge ey of K and K, and moreover preserves orientation. On
2, we define £, = v, and on each wy we define

Eyyy = lﬂhoFongl-
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By construction, Ej,yr;, € V,. Moreover, if Ag and Ay are the matrices of transformations corresponding
to Fy and Fy, respectively, then standard results in finite element analysis imply the existence of a
constant C > 0 independent of / such that

1 1
[Exvnl 1o = 1Bl & = ClAZ [ |Ak detag | |detag |~ v,

C___ < ( s
5o 0o 0 IIWIILK = ||Wh||1,1(

where the last inequality is due to the quasi-uniformity of K. Doing this on each of the residual regions
in w), we obtain [|E, ¥, ll, o < (C+ DIyl o, forevery h > 0and ¢, € Wy, O

The above lemma implies that the H'-norms of E, 1, and v, are equivalent independent of A. If
a function defined on £2, is integrated over the slightly larger domain £2; or a subset of it, we mean
precisely its extension through E;,.

5.2 Semidiscretization in space for the symmetric formulation

Let Q,, = I, x £2;,. For the semidiscretization of (4.5) we consider the following: given &y, € W,,
won € W 205 € Ly (W), fy € LX(L*(827)), f. 81 € L*(H,) and g, € L*(V,) find a triplet (§,, ¢;,.p;,) €
H'(W),) x H'(W,;) x L*(M,,) such that

(Sht’ @h)g + agh(éh, (Ph) + bh(ﬂl?h,Ph) + ash@h’ ‘Ph) + (th( - ), (Ph)_(zsh
= (o, + ), Von € Wi
ash@hp Iﬁh) - ash(é"h, Wh) = - (81’ Wh)gsh - (ng’ Vl/fh)_(zsh Vl/fh € Wsh’ (5.6)
b(&y ) =0 Vp, €M,
§4(0) = &op £,(0) = Wy, & = 2gp, In Oy,

forae.tel. Herea,, : W, x W, = Rand ay, : W x W, — R are the discrete versions of a, and a;
given by

ag, (&, 0) = (V& V‘Ph)_oﬂ, +e(VE, Voo, am(Cp V) = G ¥ o,

Let P, : L*(2) = X, Py, : L*(2) = L*(2y) and Py, : L*(2)) — L*(£2,) be the projection
operators defined as follows: given & € L2(2),u € L*(£2) and w € LZ(.QS) let P&, Pyu and P, ¢ be
the solutions of

Pt oo =E 00 Vo,eX,,
(Pﬂlu, ”h)ﬂﬂ. = (u, “h)ﬂﬂl Yu, € LZ(Qﬂ,),

(P>t gy = (0 a, Vi € LA(R2y,).
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Also, we define the Ritz—Galerkin projection operators R, : V, — W,j, and R, : V, — W,), as follows:
given ¢ € V,, let R;,¢ and R;,¢ be the finite element solutions of

ag(Ry,¢,8) = ag(8,8,) Vi, € Wy,
J/Sz(ieshf’ Q)Q_vh + ){Y3(Vksh§, VCh)Q_V;, = ¥n(, Ch)!z_vh +v3(Ve, Vgh)ﬂsh V¢, € W,

From the theory of finite elements we have the error estimate

IRt = ¢lliq, < ChlClhg, V¢ € H*(R2). (5.7)

REMARK 5.3 Let v, be the finite element solution of the elliptic problem with parameter ¢ € I,

ag (v (), ¥, (1) = (82(1) — 81(D, ¥V, (D) g, VYV, € W, (5.8)

From the second equation in (5.6) we infer that

Ty = &+ vy — Ry8pe in L2A(Wyy), (5.9)

and this can be realized as a semidiscretization of (4.6). If g, = g, then v, = 0 and thus

Spe = & — Ry8o- (5.10)

In order to prove an approximation error induced by the projection P, we introduce the following
Ritz—Galerkin-type approximation associated with the Stokes—Neumann operator.

LEMMA 5.4 Letp € H'(2) and & € W with £ o € H*(2;) and &g € H*(£2,). Then there exists a
unique pair (§,,p;,) € W, x M;, such that

(5.11)

ag, & @) + by(@pspp) = ag,(§,0p) + byep, Ep) Vo, € W,
by(&, o) =0 Vp, €M,

and there is a constant C > 0 such that

15 = &4llo +RllE = &l o +RlIEP —pyllg, < CP(I5 o0, + 1Elbg, + IPllg).  (5.12)

Proof. Consider the auxiliary mixed variational problem

[ash@h,goh)g + b0 By) = a6 01 + by(0 ED) Vo € W 513

by Eps 0p) = by (E.py) Y py € M,

Thanks to the discrete inf—sup condition (5.3) the finite-dimensional mixed problems (5.11) and (5.13)
possess unique solutions; see Girault & Raviart (1986, Theorem II.1.1). Define the error terms e, =
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§ — &, and T, = Ep — p;,. We split these according to ¢, = ¢, + ¢, and 7w, = 7, + 7, where

e T < C inf — C inf |Ep — .
124/l + Wlg, < C inf IE = @llig+C inf IEp—plg,
On the other hand, by stability of solutions, (5.2) and divé = 0 on .Qf we have

lenll e + I74llg, < ClldivEll, < ChllEl; o,

Consequently, by the triangle inequality, we obtain
leallie + Il < ClAIENL g + inf I =04l g+ inf IEp—pyllg,} (5.14)
; T oneWn PrEM), i
Therefore, from the approximation properties in Theorem 5.1, we infer that
||eh||1,_Q + ||7Th||gﬂ1 < Ch(”f”z,gf + ||$||2_QY + ||P||1,Qf)~ (5.15)

To prove estimate (5.12) for the L2-norm we use a standard Aubin—Nitsche trick. For each g € L2(£2)
let (2g:mg) €W XM be the solution of the dual mixed problem

Ias(go,zg) +b(<p,ﬂg) =(@gpo YVeeW, (5.16)

b(ze,p) =0  VpeM.

‘We have a unique solution for this problem thanks to (2.32). Using the same argument as in the unsteady
case i.t cap be shown that ZgI_Qf € H2(.Qf), ZgIQS € Hz(.QS) and T, € Hl(Qf). Moreover, we have the a
priori estimate

Zgll2, 2, + 1Zgll2,2, + 7,11 2, < Cliglle- (5.17)

We rewrite the first equation in (5.16) as
aah((p,zg) + bh((p,EJTg) =g 9o — (Eng,div ga)wh + (1 —-¢)(Ve, Vzg)wh. (5.18)

Observe that by, (z,, 71,) = —(,divZzy),, . by(ey, pp) = —(py, divE),, forevery p, € M, and
a(ey,, o) = —by (¢, m,) for all g, € W,. Taking ¢ = ¢;, in (5.18) we obtain

(g, ep)o = ash(eh,zg)g + bh(eh,Eng) + (Eﬂg,diV €y, — (1 —&)(Vey, Vzg)wh
= ag(ep. 2, — Pp) o + by(2g — @4, 1) + by(ep, Ety — py) + €(pp), (5.19)

where £(p),) = (7, div zg)wh + (Eng, div eh)wh —(py, div E)wh —(1—=¢)(Vey, Vzg)wh. Choosing p, € M,
to be the linear interpolant of Exr, we have, using (5.17),

|Ex, = pyll gy, < Chllmylly o, < Chllgllg- (5.20)
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On the other hand, invoking (5.2), (5.15) and (5.17), we have
[€(op)] < Chz(lléllz,gf + 1€l e, + IIPlll,gf)IIgIIQ- (5.21)

Taking the infimum over all ¢, € W), and then the supremum over all g € L2(£2) \ {0} in (5.19),

1€Cop)l

lepllg < C
sez@n\o 18l

+ C(”@h”],_q + ||7Th||g_,h)

1
sup —[ inf |z, — @l o + IET, — oyl ] (5.22)
serz@no) I18lle benews ¢ e & Thlan

Using (5.20), (5.21) and Theorem 5.1 in (5.22), we deduce (5.12) involving the [*-norm. Ul

THEOREM 5.5 Suppose that £ € W satisfies $|_Q/ € H2(.Qf) and §| € HZ(.QX). Then there exists a
constant C > 0 such that '

I1PrE —&lj2 < Chz_j(lléllz,gf +15ll2e,), j=0.1. (5.23)

corresponding to the pair (§,p). Notice that §, € X,. The approximation property of a projection
operator gives us ||P,§ — &l < 1§, — &l . and hence from Lemma 5.4 we have (5.23) for j = 0.
According to inverse estimate (5.4) we obtain

Proof. Take p € HI(SZf) with ||p||1,_Qf < ”5”2,9f and let (§,,p;) be the solution of (5.11)

1Py — &l o < ChT'IPE — &l + 115, — €l o
Ch ' (I1PE —Ellg + 1€ = &llo) + &, — &Il o

IA

Thus, from Lemma 5.4 and (5.23) with j = 0 we have (5.23) withj = 1. O

With regard to the approximation of the initial data we consider
é()h = Phé()’ WOh = RshWO’ ZOh(Q) = Ph(ﬁo(e)ng + ZO(Q)XQS)l_QShv (524)
where, for each 6 € I, (i15(0),py(0)) € Vi x (M/R) is the solution of the Stokes equation

—Afly(0) + Vpo(®) = —Aug+ Vp, in £2;,

diviig(6) =0 in £2;,
y(0) =0 in I,
iy(6) = 79(0) in T,

From hypothesis (A) we have ity € H}(V;) N LI(H*(2))) and iiy(0) = uy. The choice of the
approximation for the initial history implies that the compatibility condition z,(0) = vy, = &l on
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the continuous level is carried out to the discrete level, that is, zq,(0) = P,&| 25 = Sonlg,,- From
hypothesis (A), (5.7) and the approximation properties for W, and W, we have the stability estimate

||§()h||1,g + ”W()h”l,f?xh + ”ZOhHH,'(Hl(Qsh)) < C(”Eo”]g + ”WOHLQS + ”ZO”H}(VS)) (5.25)

and the error estimate

150 = onlle + All&o — Sonlli.2 + Rllwo — wonll 2, + 20 = 2onll 2220

< Chz(”é()”z,(zf + ||‘§()||2,_QS + ||W0||2,_Qs + ||Z()||Lg(1-12((zj)))- (526)

An alternative and more practical choice of approximations for the initial data and history based on
interpolation will be provided in the next section.

We now prove the existence and stability of the semidiscrete problem (5.6) in the following theorem.
THEOREM 5.6 Let f; € LA(L*(2y)), f, € L*(L*(2y)), &, € L*(L*(2)), 81 € L*(H'(2y)), &y, €
X, wy, € Wy, and zg, € L%(Wsh). Then there exists a triplet (&, £, p;,) € H! (X;,) x H! (Wy,) x Lz(Mh)
satisfying (5.6). Moreover, there exists a constant C > 0 independent of 4, the source terms and initial
data such that

18nll @2 @prer @@y + 1 Pull2an) + 18 g

< C(IAll2@2iu + 12l @@ 1812w @) + 1820w @)
+ C(||50h||1,_r3 + lwonlly @, + ”ZOh”th)' (5.27)

Proof . First, we consider the auxiliary problem: find (§,,¢,) € H 1 X,) xH 1 (W) such that

Enes ) 2 + apEps o) + agy (& ) + (E,C = 1) 01 g,

= (fl,wh)gjh + (f g, Yo, €X,
ag, (W) — ag, (&, ¥y) = — (g4, ‘!’h).(zsh = (Vgy, th)ﬂsh VY e Wy,
£,0) =&, ,(0) = wyy,, &), = zq, in Oy,

(5.28)

Expanding &, and ¢, in terms of the finite element bases for X, and W, respectively, (5.28) admits a
unique solution (£&,,,¢,) € H'(X,) x H'(W,,) according to the theory of delay differential equations.
The existence of the semidiscrete pressure p,, satisfying the first equation in (5.6) now follows from
the discrete inf—sup condition (5.3), along with the same argument as in the proof of Theorem 2.14.
The a priori estimate (5.27) can be proved as in the continuous case using (¢, ¥;,) = (§,,¢,) and
(op> ¥) = (&5 &) as test functions. O

THEOREM 5.7 Letf, € H' (LZ(th)), e H'(L2(22,,)), g, € L*(L*(22,,)), g, € L*(H'(22,)) and &y,
Wy, and z, be given as in (5.24). Then &, € H*(X,,) and there exists a constant C > 0 independent of /1
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such that

18nllm @y @)y < CULATm @2c2p) T IL0m a2 1811220 + 1820 2w 24)
+ C(”So”z,gf + 18l + ||P()||1,g/ + lIwgllp 0, + ”Z()”Hrl (Hy))- (5.29)

Proof. Let us denote by C the term on the right-hand side of (5.29). The fact that &, € H*(X ) is a
consequence of the compatibility condition z,,(0) = §y,|,,, since this implies that §,(-—r) € H Twy,).
Differentiating the first equation in (5.28) with respect to ¢, taking the test functions ¢, = 9,§, and
Y, = 0,4, integrating over I and using (5.25) and (5.27) we have

194112329y < €+ ClI3 &L O - (5.30)

Hence, it remains to bound the term [|9,&,(0)|| .
Evaluating the first equation in (5.28) at t = 0 and by taking ¢;, = 9,,,(0) we have

19,6, OIS + gy ons 3,8, (0)) + gy Wy, 9,,(0)) + (12gy, (=), 3,6, (0)) 5,
= (/1(0),8,6,(0)) g, + (/2(0),8,6,(0)) - (5.31)

Using Young’s inequality and the boundedness of the projection P, we infer that

1(£10),8,8,00) g, | + 1(£>(0), 38, g, | + (204 (1), 35,0, | < CC, + 0l10,8,O) %

for every o > 0. To estimate the remaining terms in (5.31) we rewrite

agp,(Sop> 9,61,(0)) + ag, (woy, 9,5,(0))
= g, (&0 — Eop> 9,6, (0)) + ag, (W, — wy, 8,5,(0)) + a, (&, 9,6,(0))
+ a(§p, 9,6,(0)) — (1 — &)(VE), V3,£,(0)),, — Wy, 8,5,(0)) 1 4, (5.32)
Using Green'’s identity and the condition 8w, + £3,v, = 9,1y — p,v in hypothesis (A) we obtain
a. (§y, 9,6,(0)) + ay (&, 9,6,(0))
= —(4§,9,£,(0) o, — (A& + Awg — Wy, 9,6,(0)) o, + b(8,8,,(0), py). (5.33)

Now, according to (5.2), the inverse estimates (5.4), (5.26) and (5.33) it can be shown from (5.32) that
for every ¢ > 0 there exists C, > 0 such that

|a5h(§0h, atfh(o)) + ash(W()h, B;Sh(o)”
2
< CQ(”%-OHZQf + ||§0||2,QS + ||Po||1,_(zf + ”WOHQ,QS) + Q”at%—h(o)”%}-

Combining the above estimates and taking ¢ > 0 small enough we see that ||3,§,(0)] , is bounded by
C. Plugging this information into (5.30) we deduce (5.29). O
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THEOREM 5.8 Suppose that f; € H' (L2(th)), f, € H'(L*(R,)), g, € L*(V,) and g, € L*(H*(£2,)).
Let (£, ¢) and (&, ¢,) be the solutions of (4.5) and (5.6), respectively. Then there exists a constant C > 0
independent of 4 such that

1€ = &ll i a2c@mrzant o + 1€ = Gulli gty < Ch (5.34)
Proof. Let us introduce the discretization errors

ep=§—=8&, m=¢—¢8, r,=Ep—p,
We split these according to e, = ¢, + ¢, and n, = 7, + 7, where &, = § — P,§, ¢, = P,§ —§,,

i, = ¢ —Ry,¢ and 7, = R, ¢ — &;,. The approximation properties of P, and R,;, along with the estimate
for £ and ¢ given in (4.7) imply that

”éh“Lz(H(l)(.Q)) + ”ﬁ/’l”Hl(Hl(.Qsh)) < Ch. (535)

Taking the difference of the weak formulations between the continuous and semidiscrete problems
(4.5) and (5.6), one obtains

(enpPp) 2 + agpep @) + by @y, 1) + ag, (g, @)

+ (ney(- =1, op) g, =4i(g) Vo, €W,
ag, (M ¥3) = g (e W) = LU Vi, € Wy, (5.36)
b(ey, p;,) =0 YV, €M,

e (0) = & — &op» 1, (0) = wy — wop, €, = 29 — 2o I Qs
for a.e. t € I, where £, and ¢, are the errors due to the variational crimes, namely

£i(pp) = (1 —e)(VE, V‘/’h)wh — (Ep,div (ph)wh = (w, §0h)1,wh
(wep(- = 1))y, + 15Oy, — (F25 O oy (5.37)
W) = =G ¥iiw, + EV¥i)iw, — €1 Ve, — (V&2 VU, -

Choosing ¢;, = &, and Y, = 1, in (5.36) we have

5 lenle + Im4llT g,,) + acnlen€) = (e 8 + aplen &) = by 1)

- ash(nh,éh) - (Meh(' —r), 2h)9sh + ash(ﬂh;, ﬁh) + a‘yh(e]p ﬁh) + 31(2}[) + Ez(ﬁh)-

d
dr

Since ¢;, takes values in Xj, it follows that (e, e,) o = (e}, — €. €1) 0 = %
1 ~ .
= 2_1”77h”%,93;,' Using the

2,11, and b, @, 1)) =
b,(e,,Ep — p;,) for every p, € M,. Likewise, we note that ag,(n,. 1;,) d
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equations e, = e, — &, 1, = 1, — 1, (5.2) and Young’s inequality we have the following estimates:

Iy, @y i) < Co (1Ep = oy, + 1241%,) + olleslIf g,
l(ep( = 1.2 g, 1 <Cllen - = NG, + 124115, + lexls,,):
lag, (- )| + lagy(ep A1 < Co (118417 0, + IRl + IallTg,) +ellenliq,-

A similar strategy applied to the terms involving £, and £, and the fact that ¢ € H l(HZ(.QS)) and
£ e L*(H*(£2,)) gives

1€1@]+ 1A < (7 + 117,115 o, + 124170 + 1,115 0,,) + elleyllf -

Combining these estimates, applying the approximation property of M, and then choosing ¢ small
enough we deduce the estimate

d d -
3 (leal + IngliTg,) + 1Verlg < Co (I8l + iyl o,)

+ C(K + lley (- = Mgy, + legls + 18,15 + 115 oy, + 1iul2,,)-

sh

Utilizing (5.26), (5.35) and Gronwall’s lemma on this inequality we conclude that

llenll o a2@nniz @iy + 1Mnlle @ @y = Ch- (5.38)
Taking v, = 1, in the second equation in (5.36) and rearranging terms yields

gy (Mpes M) = — gy Tpes Me) + gy (€ Tgg) + Lo ()

Applying Young’s inequality to this equation and using (5.35) and (5.38) we deduce that
IIﬁhIIH1(H|(Qsh)) < Ch. This estimate together with (5.35) and (5.38) implies (5.34). O

Using a standard duality argument we shall establish a second order of convergence with respect to
h under the L?>-norm, which is optimal using linear elements.

THEOREM 5.9 With the assumptions of Theorem 5.8 there exists a constant C > 0 independent of &
such that

& — Eh”LZ(LZ(Q)) +1¢ - §h||L2(L2(QSh)) < Chz- (5.39)
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Proof. We shall use the same notation as in the proof of the previous theorem. Let (f, g) € L>(L*(£2)) x
2 (L2(.Qsh)) and (y, ¢, ) be the weak solution of

—0pPo a0, 9) +blp, ) +a,(D,¢) + (uy(- +1),9)o = (f,9)e  VeeWw,
_ag(ﬁ[’ W) - as(y’ 1//) = _(89 I/I)Q:h VW € Vy

(5.40)
b(y,p) =0 VpeM,
yI)=0,0T)=0,y=0in(T,T+r) x £2,.
The dual version of (4.7) can be adapted to the solution of (5.40) so that
IVl @2 @pnr2a@nmepnmzey T 10 lm gy + 17 lze @)
< CUlf 222y + 182224 (5.41)

Denote by (y,,, ;) the solution of the problem in Lemma 5.4 corresponding to the pair (y, ) and
let ¥, = Ry;¥. Then we obtain from (5.7), (5.12) and (5.41) the inequality

1y = yull2@2 2y + hlly — yh||L2(Hé(Q)) + h||Em — Tl + |9 — Dl (2,

< C2(1f 2z ) + I8l2az@um)- (5.42)
Taking ¢ = ¢, and ¥ = n,,, or more precisely ¥ = E,n,,, in (5.40) and integrating by parts we obtain
/(%f)g + (- ) 2, A1 = (€,,(0), y(0))  + /(eh,,y)g +a. (e, y) + bley, ) dr
1 1
+/as(eh,l?) + (uy(- + 1), e,) o dt — a(9(0),1,(0)) — /as(ﬁ,nh,) —a,(y,my)de. (5.43)
I 1

If we take ¢, = y;, in (5.36) then we have for every p, € M,,,

/(em’y)rz dr = /(eht’y — Yo+ (e yp) d
I I
= /1(611;,)’ — Yo dr— /Iagh(eh’yh) + b, . Ep — o) + ag,(ny,, ;) dt
- /I(yh,,ueh(- — Mg, — €Oy dt. (5.44)

Similarly, if we take v, = ¥, in (5.36) then we obtain

/ash(ﬁ’ Npe) df = /ash(ﬂ = Uy ) + aggy (O 1) A2
I 1

= /1 ag, (& — O, 1m;,) dt + /1 ag (9, ep) + € (9) dr, (5.45)
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where £, and ¢, are given by (5.37). Substituting (5.44) and (5.45) in (5.43) and applying the Galerkin

orthogonality property ag,(n,(0),9(0)) = ay,(n,(0),9(0) — #,(0)) will then result in the following
equation:

/I(eh,f)g + (s 8) 2, A1 = (€,(0),y(0))  + /I(ehpy — Ve

+ag,(ey,y — yp) + by(ey, Ex — mp,) dt

+/bh(yh’Ep — pp) tage,, 0 —0y) —ag, (=0, m,) dr
I

+/IM(Y(' +r) =y +1r).e)g, df +/1 ey yp (- + 1) g, di

r

+/1€1(yh) - Ez(ﬁh) + Z3(77;1) + 34(6},) dr — ash(’?h(o), 1(0) — ﬁh(O))

— (0(0),1,(0)) 1 4, (5.46)

where £5(n;,) and £4(e;,) are the residuals due to the variational crimes given by

53 (77;,) =—(7, 77},;)1@,1,
Ly(ey) = (divey, Emr),, + by(ep ) — (1 —€)(Vey, Vy),, + (4. 0)1,,
and I, = (—r,0). From the definitions of y,, 7, and %, we have the Galerkin orthogonality a,,(e;,,y —
) + by(ep, En — my) = 0 and ag, (9 — 9y, 1;,) = 0.
We are now going to estimate the remaining terms on the right-hand side of (5.46). In what follows,

we shall frequently use (5.41) and (5.42). From (5.2), (5.34) and the boundedness of ¢;, in L2(L2(2)),
which is guaranteed according to (4.7) and (5.27), we have

(e (0),y(0) g + /I(ehpy —Ygodi+ /IM()’(‘ +r) =y +1)e)e, df

+ ag,(,(0),9(0) — 9,(0)) < Ch2(|lf||L2(L2(Q)) + gl 2224 (5.47)

Using the approximation property of M, and (5.2) we obtain

/Ibh(yh,Ep — pp)dt = /Ibh(y — Y Ep = pp) + (divy, Ep — p),, d
< Ch2(|lf||L2(L2(Q)) + g2 224 (5.48)

The error estimate for the initial history in (5.26) implies that

/I plep yp(- +1)g, dt < Ch2(|UC||L2(L2(Q)) +lIgllz2z2(24))- (5.49)

r
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By writing £,(y;,) = £;(y, —y) + £,(y) and £,(F},) = £,(F;, — ) + £,(P) it can be verified using
analogous methods to the proof of the previous theorem that

/151 ) = Lo + Ly(ey) dt < CR (I fll 220y + 18N 2 2052,))- (5.50)

Finally, from (5.2), (5.34) and Lemma 5.2 we have

(¥(0), nh(O))l,wh + /133(77}1) dr < Ch2(||f||L2(L2(Q)) + ”g”LZ(LZ(_QSh)))' (5.51)

Consequently, using estimates (5.47)—(5.51) in (5.46), we obtain
/(eh,f)g + (1 gy, 4 < CHE (1 fll 2202y + 181202200250
I
from which the L*-estimate (5.39) follows by duality. g

6. Full discretization of the symmetric formulation

In this section we discuss the full space-time discretization of the variational problem (4.5). This is done
by discretizing the semidiscrete problem (5.6) with respect to time. We use a discontinuous Galerkin
approach for the time discretization, which can be viewed as an implicit Euler scheme.

First, let us set some notation and assumptions. Let 7, = n—’r for a given positive integer n, and
lj=[-r+{—Dr,,—r+{zr)forl <€ <n,—1landl, =[-7,,0]. Withregard to the discretization
of the history we consider the space

ny
2 .
Zop =z € LWy 1 2g = Z% ZnXip Zin € Wil
]:

We also consider a possibly finer time-step size compared to the history interval, namely 7 = ;—; for
some integer n,. For simplicity of presentation we suppose that T = N,r for some integer N,. Note
that if 7 is not a multiple of r then the length of the last subinterval in the temporal mesh will be
less than 7. Nonetheless, the succeeding analysis can be applied to this case. Thus, we have T = N, 1
with N, = N.n.n,.. Let J, = {0} and J, = ((£ — 1)k, £k] for 1 < £ < N,. For the spatio-temporal
discretization of the state equations we use the spaces

Nt
Wi = {6 € Lz(Wh) e =2 fj,hXJj, fj,h e W},
j=0
2 ¥
M = {pin € L*(My) : pyy = _Z(:)pj,hXJj’ Pjn € M}
]:

We also define Wy, = {6l © §kn € Wit
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Let X be a given Hilbert space. For each ¢ € [*(X) and 7 € L%(X) we define IT ¢ € L*(X) and
1,7 € L2(X) according to

N.
i 1
Me =2 ex; ¢= ;/J @(s) ds,
=1 i
n
a 1
Me=2 ux, w=_[«6)d.
=1 rJly

Recall that there exists a constant C > 0 independent of T and 7, such that for each ¢ € H L(x),
ze H'(X),1 <j<N,and 1 < ¢ <n, wehave

11T — ¢||L2(Ji’x) < CT”ﬁD”Hl(Jj,x), (6.1)
”HrZ - Z”Lz(I(,X) < Crr“Z”Hl([[,X)‘ (62)

The full discretization of the history z, will be 1.z, € Z,,.
For the space-time discretization of (4.5) we consider the approximations

N; Nz N:
Epn = zgk,hXJk €W Gun = Z SenXs, € W Pin = Zpk,hXJk € My,
k=0 k=0 k=0

where fork=1,...,N_,

T

1
;(ék,h = &1 ) T acnEpp o) + by (@ P ) + ag, (S s 1)
1
+ (WS 1—npne o P 2y, = ;/J (fr- )2y + (f2: 01) g, At Vo, € Wy,
k

1
;ash@k,h = St V) — Ay Gp> Y1)

(6.3)
1
== ;/ &1 Vo, + (Ve Vg, dt Vi, e Wy,
Ji
bh(gk,}pph) =0 Vp,eM,
€00 = Eon> Son = Wonr §—jny+xnl 2y = MZonly,,_j,, forl <j<n, 0<k<n -1
The existence and uniqueness of (& ;, Wy, Prp) € Xj x Wy, x M), for each k = 1,..., N, satisfying

(6.3) follows from the discrete inf—sup condition (5.3) and an induction argument.

REMARK 6.1 From the second equation in (6.3) one can see that

1 1
— g = Spp—1) = Exn + —/ (v, — Rg8,) dt,
T T Ji
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186 G. PERALTA AND K. KUNISCH

where v, is given by (5.8), and in particular, if g; = g, we have

1 1
;(Ch,k = Chg—1) =k — ;/ Rg,g, dr.

Ji
These are in fact the backward Euler discretizations of ordinary differential equations (5.9) and (5.10),
respectively.

Let us prove the stability of the scheme (6.3). We shall use the abbreviations [£]y, = &, — §—1,

and (¢, = & — iy for the jumps. Also, let J, = g b1 Y Uy gy = W, (€ + Dr] for
0<{€<N,—1and

Ny = hllzaz@u + 1hlzaz @) + 18ilae @)

+ IVl uy T+ onlle + Wonll o, + lzonllg,,-

sh

THEOREM 6.2 If (Sk,h’ Sk pk’h) is the solution of (6.3) then there exists a constant C > 0 independent
of h and t such that

Ne

D EN G + NE sl gy, + T G &) + | max (605 + 1517 2,) < CNG. - (64)
k=1 XAMIIVT

In particular, we have “skh”LOO(LZ(.Q))QLZ(H(])(.Q)) + ”gkh”Lm(Hl(.Qxh)) < CNh

Proof. Choosing ¢, = &, and ¥, = {;, as test functions in (6.3), using by, (§; , Py ,) = 0 and then
taking the sum we obtain the identity

1 2 2 2 2 2 2
7 U nllo — I8k—1nlle + 15 Lnlle + 18knlll 2y — 1Sk—1 40T .2, + IS LnlT o]

+ g, G Si) + €1y o Si) 2 = Rio (6.5)

where Rk = %Lk(f],ék’h)gﬂl + (f2’$k,h)95h - (gl’é‘k,h)gsh - (ng, ngsh)gsh d¢. This term can be
estimated using Young’s inequality:

1
IR < o= (Il + 1840l g,,)

+ CULA N x gy + 1505 x 2y + 181152, + V&7 x02,)- (6.6)

For the term associated with delay we use t = ;—’ to obtain

1 2 T 2
(&1 npn, > Sk) 24| < gllék,hllgsh + n—rllék_,,,.n,_mllgxh- (6.7)
T
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OPTIMAL CONTROL OF A LINEAR FSI MODEL WITH DELAY 187

Considering indices 1 < k < n,.n, observe that

nrht

2 2 2
D N —1allBy, = ne1T,20413,, < Cnglizopl,, (6.8)
k=1

and therefore by taking the sum over all such indices we obtain from (6.5)—(6.8),

nyne

2 UE G + e gy, + 7@ Epp 8 + | max (Mg lG + 14l g,,)
k=1

KNt

< CUAIZ

Jo %

+ CllEule + worllt o, + Izonllg,,)- (6.9)

2 2 2
ap TIN5 o H 81l 0, F IV o)

Suppose that £ > 0. Taking the sum of (6.5) for n.n £ + 1 < k < n.n (£ + 1), invoking (6.6) and
(6.7) and then reindexing yields

nyng (€+1)

> ELlS + NEalT oy, + T G En))

k=n;nyl+1

2 2
max & nlle + 18l )
nyne 1<k <nyny (€4+1) Skalle +1¢elt0,

2 2 2 2
<c(Is 12 iy + 112 g, 8112 L + Vel o )

neng€—1
2 2 T 2
+ C(nsn,,,,@ng F Wpnellig, + D n—’usk,hng_rh). (6.10)
k=nn;(—=1) T

The summation on the right-hand side of (6.10) can be estimated by

nyn€—1

T, 2 2
E - <r max . 6.11
n, ”Ek’h”QSh S e (=) <k<nyn -1 Hsk’h”!zm ( )
k=n;n;(£—1)

Using (6.9)—(6.11) along with an induction argument proves (6.4). O

Next we establish an error estimate for the semidiscrete and fully discrete problems (5.6) and (6.3).
For the proof we introduce a projection operator r; : H lxy - L3(X) for a given Hilbert space X
as follows: given ¢ € H 1(X) define e = Z;V;o et X I Note that for some C > 0 independent of
¢ € H'(X) and k we have

N
»
N
=

||rk(ﬂ - (p”LZ(]k,X) < CT”@”HI(],\,,X), 1 (6.12)
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188 G. PERALTA AND K. KUNISCH

THEOREM 6.3 Let (§,;, &) and (§,,¢;,) be the solutions of (6.3) and (5.28), respectively. For each
7o > O there is a constant C = C(1) > 0 independent of &, 7, and 7 € (0, 7y) such that

16k — Snll 2t 2y) + 1Sk — Sull 2t (24 < C(T + 7). (6.13)
Proof. Let ey, = &, — &, and ny, = &, — wy, be the discretization errors. Separate these into e;;, =
e + ey and myy, = T, + Ay, Where ey = &, — &y, &y = 1 = &g T = &y — 718y, and
Nin = Tilp — Ly Observe that &, and 7, are constant on each interval J,, with values in X, and W,
respectively. We extend the function ey, to I, according to ey, |; = 2o, — I1,20-

Integrating the semidiscrete problem (5.28) over J, subtracting it from (6.3) and taking ¢, = €,
and ¥, = 7|, we have

@l = exnls_yoeanls) +/ {acn (e exn) + ag, (- )} di (6.14)
Ji
+/J (e, (- = 1), ey g, At + ag, (gl 5, = Ml gy Tanl ) —/J agp(€gpy Mgy) dt = 0.
k k

Let us estimate each of the integrals in this equation. Using (6.12) we obtain

/Jaeh(ekh’ékh)dtz/J agh(ékh’ékh)df"‘/] Agp(Cgps €g) dt
k k

k

> (1-p) /J k ey @Cyps &) At = C, 2 1E4 130 1 2 (6.15)
Also, since ag, (ny» €y) = agy(€xr M) = gy (o €)= Ay (Eggr My) We have

/J gy Migs €x) — Ay (€pys Ty) At = — '0/, {ag, s M) + Ay (g ) } At
k k

2 2 2
- Cpf (HSI/’”HI(JksHI(Qsh)) + ”Ch“H] (JiH! (Qsh))) (616)

With regard to the delay term we estimate it as
~ Y ~
/ (e (- = 1)) g, dt = == / 1843115, df = C, 7 / leg, (- = Pllg, d. — (6.17)
Ji ’ T Ji Jk

SetJ_; = I,. Taking the sum of (6.14) overall n.n € 4+ 1 < k < nn (£ 4 1) for0 < £ <N, — 1,
using estimates (6.15)—(6.17) and Theorem 5.7, we deduce that

sup{(1 = p)[Ie Iy + (1 = pD1AylI7 o, ) + (1 = 2p) / 184,117 dt
Je

tej({

< C,t% + Clle (N5 + A (E9llg,) + C,7 /J leg, 15, dr. (6.18)

-1
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OPTIMAL CONTROL OF A LINEAR FSI MODEL WITH DELAY 189

Consider the case £ = 0. Note that ;,(0) = 0, 7,,(0) = 0 and from (6.2),

0
/ lews,, dt = / lzon = 2001y, 4 < Cr, 77 243 22,0 (6.19)
J_q —-r r s

Choosing p < r—lo in (6.18), using (6.19) and n,t, = r leads to the estimate

sup([legy 1% + 7a 17 .2,,) + / 184l df < C(x* + 7)), (6.20)
Jo

tej()

for some constant C > 0 depending on 7 but independent of 7 € (0, 7).
On the other hand, ¢, and 7, can be estimated according to (6.12) as

”ékh”LZ(]e,Hl(_Q)) + ”ﬁkhlle(](ZsHl(-Qxh)) < CT(”‘s;:h”Hl(]Z’HI(Q)) + “g-h”Hl(jz,ngsh)) (621)

for each 0 < £ < N, — 1. Therefore, from (6.20), (6.21) and Theorem 5.7,

||ekh||L2(.7(),H1(Q)) + ”nkh”LZ(jO’Hl(Qsh)) < C(r + 7).

Continuing this process, and using an induction argument, one can infer that
”ekh”Lz(](’Hl(Q)) + ”nkh”LZ(je,Hl(Qsh)) < C(T + Tr) (622)

for each 0 < £ < N, — 1. Taking the sum of (6.22) over all such indices £ and noting that N, = % we
obtain the error estimate (6.13). O

Combining Theorems 5.9 and 6.2 we obtain the following error estimate between the solutions of
the continuous and the fully discrete problems. In the succeeding discussions we assume that T e (0, 7))
for a given fixed 7, > 0.

COROLLARY 6.4 Suppose that the conditions of Theorem 5.9 hold. Let (§,¢) and (&, &) be the
solutions of (4.5) and (6.3), respectively. Then there exists C > 0 independent of 4, 7, and t such that

1€ = Swnllz2c2y + 18 = Sallizazayy) + PIS — Sl (g < €T+ 1, + ).

REMARK 6.5 Instead of (5.24) we can use &y, = i,&), wy, = Rywo and z(,(0) = I1,i,z,(0) as the
approximation of the initial data and history. The order O(t + rr—l—hz) given in Corollary 6.4 is preserved
by applying the stability estimate in Theorem 6.2, along with interpolation error estimates.
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190 G. PERALTA AND K. KUNISCH

To end this section we shall write the full space-time discretization of the state and adjoint
equations for future reference. Recall from Section 4 that the weak formulation of the state equation
is equivalent to

9o ta.(6,9) +b(p.p) +a,E.0)+ WsEC =10 =(q.9)g YeeW,
as(wt? I//) _as(é’ K[f) =O v‘/f € Vs’

b&,p)=0 VpeM, (6.23)
£(0) =&y, w(0) = wy,
&= 20 in Qr,

and for the adjoint equation its weak formulation is equivalent to

[ (V0o +a.(3,9) + bl 1) + a,(9,0) + (uy(- +1),9) g,
=Y —up 9o +vaE vy 9o, Ve eW,
—a,(0,¥) —a, (0, ¥) = —voW—wg ¥) o —Va(Vw—=Vw,, Vy)o Yy eV,
b(y,p) =0 VpeM,
y(T) =0, 9(T) =0,
| 9(60) =0, 6 € (T.T +r),

(6.24)

where we recall that § = uy, ’ +w, X, Therefore, the dG(0)—cG(1) space-time discretizations of (6.23)
and (6.24) are given by

1
?(sk,h =& 1w+ ag G 0n) + 0y (@4, D) + ag, (Wi, 0p)
1
+ (W& 1—pon, o PR 2y, = ;/J (G ) dt Vo, e W,
k

1
;ash(Wk,h = Wit Vi) — a4 Grp ) =0 Vb, € Wy, (6.25)

bh(ék,h,/oh) =0 Vp,eM,
0.0 = Son Won = Wons
Ejnerenlay = hzonly, ., forl<j<n,0<€<n —1

fork=1,...,N,, and

1

—;(yk,h = Vi1 P2 F Aen V15> 0n) + by @y, Ty ) + Ay (Dp_y > )
1
+ L Ok, b0 1) 2y, = ;/ V& =g o) gy + VG —va@p)g, At Vo, €W,
Ji :

1

— =g, (O — V1 o i) — A (Vi1 Vi)
1
= —;/J YoW—=wa¥p)a, + Va(Vw—Vw,, Vi )o di, Y, € Wy,
k

by (Y1 po ) =0, VY, €M,
INen =05 Oy =0,
Yenla,, = 0for Ny +1 < €< N, +nyn

(6.26)

r'rTe

fork =N_,...,1, respectively.
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7. Error analysis for the optimal control problem

Given a control ¢ € Q we denote by (§(g), w(q)) and (v(g), U (q)) the solutions of the state and adjoint
equations of (6.23) and (6.24), respectively. Likewise, we let (§;;(q), wy;,(¢)) be the solution of (6.25)
and (y,(q), ¥;,(q)) the solution of (6.26), where instead of & and w we have &;,(¢) and wy;,(g). We
would like to recall for the reader our hypotheses on the initial and desired data in (A).

LEMMA 7.1 Given g € H'(L2(£2)) thereis C > 0 independent of g, A, T, and t such that

1§(q) — Ekh(q)”LQ(LQ(Q)) + llw(g) — th(CI)”LZ(LZ(QSh))
+ hlw(@) = Wi (DI 21 (2, < CT+ 17, + %), (7.1)

ly(q) — ykh(q)”LZ(Lz(_Q)) + 19(q) — ﬁkh(q)”Lz(Lz(_Qsh))

+ hl19 (@) = @Dl 2 (2, < CT + T, + BT, (7.2)
where
I ifys >0,
K = 7.3
(ys3) 9 if )/S3 —0. ( )

Proof. Estimate (7.1) immediately follows by applying Corollary 6.4 to (6.23) and (6.25). To prove
the second estimate let us introduce the pair (yy,, ékh) solving system (6.26), where £ = £(g) and
w = w(g). Since § —u,; € H'(Hy), § —v, € H'(H) and w — w, € L*(H*(£2)) we can apply
Corollary 6.4 to conclude that

lly(q) — )N’kh”LZ(LZ(_Q)) + Ig(q) — 5kh||L2(L2(QSh))
+h12(@) = Pl 2 ) < CT + 1, + 1. (7.4)

On the other hand, the stability estimate in Theorem 6.2 implies

1Vin — ykh(q)”Lz(Lz(Q)) + ||Ekh - Ekh(‘])”y(yl(gsh))
< ClEW@D = §i DN 22(2y) T CYlW(@) = Wi (DIl 212 (2,
+ CrgllVw(@) = Vw @l 22(a,) < CT + 1, 4+ HT), (7.5)

Therefore, (7.2) follows from (7.1), (7.4) and (7.5). [l

7.1  Semidiscrete optimal control problem

For the discretization of the desired states we choose

Hkkvhwd if y3 >0,
Ugeh = TPy, Vo = ILiPgvg,  Way, = ‘ . (7.6)
T ’ IhiPgwy ifys =0.
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192 G. PERALTA AND K. KUNISCH

Let Gy, be the discrete analog of G given by
Y, V.
GG W) = 3f/l||§kh - "‘dkh”%th dr + %1/1”51{;; — vy, dr

Y, 4
+ TQ / Wi, — deh“%th df + %3 / V%~ Vdeh“??Xh &
It I

Consider the semidiscrete optimal control problem
. o .
glelgjkh(gkh,wkh,q) = G, EppoWig) + Equlé subject to (6.25). (7.7)

Take note here that the control has not been discretized yet. The complete discretization of the optimal
control problem will be discussed below. Nevertheless, the above problem admits a unique optimal
control that we denote by g;;, € Q. Define the reduced cost functional ji;, : O — R by

Jin@D = I3, (@) Wi (@), ).

The derivative of j, is given by
Jn@ = @ +aq,89)g Vg8 € O, (7.8)

where y;,(q) = ZkN;l Yk—14Xy, and (yk_l’h)kN;1 is the solution of (6.26) with &, w, u,, v; and w,
replaced by their discrete counterparts &,;,, Wy, Ugips Vi, and wy,, respectively. The proof of (7.8) is
analogous to the one given below for the fully discrete optimal control problem. Hence, the details are
omitted to avoid repetition.

7.2 Discrete optimal control problem

We now consider the optimal control problem where the control space is also discretized. For the
discretization of the control space we take Qy;, = Wj,, and consider the fully discrete optimal control
problem

. o . .
qnélg in Erns Wi @) = G Egs wi) + E”qkh”ékh subject to (6.25) with g = gy, (7.9)
h € Qkh

Denote by g;, the optimal solution to this problem. We prove in the following subsection that the
derivative of the reduced cost

T @) = Jien Een @) Wia (i) > dir)
is given by
T @8 = V(@) + 2 8o Y G 8k € Qpars (7.10)

where y,; (¢,;,) is the solution of (6.26) with &, w, u,, v, and w, replaced by &,;,, wy,, Uyus,> Varn and w g,
respectively, and (&;;,, wy;,) is the solution of (6.25) with g = gy,
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REMARK 7.2 From the choice of the discretization of the control space it follows that the optimal
controls of (7.7) and (7.9) are related according to g}, = IT;P,qy,-

In the following we have the Lipschitz estimates for the derivatives of j and j,;,. The proofs are
similar to the one given in Meidner & Vexler (2008) and thus omitted.

LeEMMA 7.3 There exists a constant C > 0 such that for every ¢, g, g € Q we have

1/ (@8q = i @34l < 1¥(@) =y (@l pllSqll o,
iin (@39 = jin@3q] < Clig — Glipllsqll-

Now, we state and prove the main result of this section.

THEOREM 7.4 Let g* and g, be the respective solutions of the continuous and discrete optimal control
problems (3.11) and (7.9). Then there exists a constant C > 0 independent of £, 7, and 7 such that

lg* — gipllp < C(r + 1, + KO, (7.11)

where k (y,3) is given by (7.3). Moreover, if (§*,w*) and (§;,,wy,,) are the corresponding states and
(y*,9*) and (yy,, ¥y;,) are the adjoint states then

16* = &l 22y + W = Wl + 1V = Wil e @) < C@ + 1, + K<), (1.12)

“y* —yZhHLz(Lz(_Q)) + ||'l9* - ﬁ]:h”Lz(Lz(th)) + h||l9* — ﬁ]:h”Lz(Hl(.Qsh)) < C(T + T, + hK(yS3)). (713)

Proof. Let gy, = I, P,q*. Recall that g;,, gy, and g* are the solutions of fully discrete (7.9),
semidiscrete (7.7) and continuous (3.11) optimal control problems, respectively. By optimality we have

T @) @, — ain) :j;ch(qzh)(zlzh — qn) :j/(q*)(zllth = qp) = 0. (7.14)
According to the linear—quadratic nature of the optimal control problems we have

th(Q)(sq’ dp) = yf(skh(SCI)s skh(sp))Lz(Lz(Qﬂl)) + ){Yl(fkh(‘SQ),Ekh((SP))LZ(LZ(_Qxh))
+ Yo Wi (80), Wi, 8P)) 1212 (24)) F V3 (VWi (8@, VWi, BP)) 12122,

for every ¢,8q,8p € Q, and in particular ji, (¢) is independent of ¢. Thus, from (7.14),
alld, = aenlle < Jin G @in — din Gin — din)

= Jin @) @i, — i) — Jin @) @i, — i)
= Jan @) @in — Tin) — T @)@ — a5) + @) @i — ain) — 7 @) @5, — qrp)
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194 G. PERALTA AND K. KUNISCH

and therefore, from Lemma 7.3, we have the estimate
133 — dinllo < Call@fy — a*llg + 1Y@ = ¥ (@l g)-
Consequently, from the triangle inequality, we obtain
lg* = ainllp < Clllag, — " g + 1@ = i@l o)- (7.15)

Applying interpolation error estimates the regularity of the optimal control ¢* € H'(L*(£2)) N
2 (Hé ($2)NH? (.Qf) NH2 (£2,)) of the continuous problem (see Corollary 3.8), the uniform boundedness
of IT;, and (6.1) we have

1din — "o < MT NP — g llg + 1Tg" — g*llg < COH + 7). (7.16)

From (7.15), (7.16) and Lemma 7.1 we deduce the error estimate (7.11). The error estimate (7.12)
can be derived by writing §* — &5 = (6(¢") — &5,(¢") + (E(q") — &lgyy)) and w* — wyy, =
W(q") — wi(g™)) + (Wi, (g*) — wyy,(g5,))» applying Lemma 7.1, the stability estimate in Theorem 6.2
and (7.11). Analogous decomposition can be done for the adjoint state to obtain (7.13). Il

REMARK 7.5 Instead of (7.6) one may choose interpolation for the approximation of the desired states,
that is,

Ugen = Thiigug, Vg = IiigVe,  Wa = Iiigwg. (7.17)

The order O(t + 7, + K* (73)) is preserved using interpolation error estimates and Theorem 6.2.

7.3  Numerical solution

We prove (7.10) by rewriting (7.9) in algebraic form. This will be also useful in setting up the
linear system for the implementation of the numerical scheme. Consider a triangulation 7, in {7}},.¢
discussed in Section 5. Let {xh,l};“:"’l, {xh,l}ﬁ’;lsh i {xh’l};zl g1 and {xh,l};n:ﬂ;th 1 be the interior nodes of
Ty, in §2, the nodes on the discretized interface Iy, the interior nodes in §2;, together with the nodes
on the boundary I and the barycenters of the triangles in £2,, respectively. Let ¢, ; for 1 < 1 < ng, be
the piecewise linear function in §2 and oy for ng, + 1<IL mg, be the bubble function in 2 such that

O, ) = 8 for 1. < j, 1 < my,.
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The nodal bases for the finite element spaces W,,, W, and M, are given by the scalar-valued basis

functions {<ph’l}7l=ﬂ'1, {‘ph,l};ﬁ/r’;sh 41 and {g;, l}?ﬁ' _— with the underlying fields R2, R? and R, respectively.
The approximate solutions of (6.25) and the control ¢ = g, can be expressed as

Nz M N¢ mg,

En= Z Z Exni X5 Pns Wi = z Z Wi i X7, Ph,i>
k=0 I=1 k=0 I=1
Ny mm N fn

Gk :Z Z Dh i X3Pt P = Z Z Pin X1, Phis
k=1 I=1 k=1 l=mg,+1

for some & j, j, W 1> Qs € R? and Ping € R Let &, = (Sk’h’l);":ﬂ'l € R, where we arrange the
vectors in such a way that the first components of &, ; for I < I < my, are located on the first half of
&, and the second components on the second half. We shall use the same notation &, for the vector

(gk,h)g; | € R2Nemm - Similar notation will be utilized for the other variables Wy, € R2Nemsh D €
R2N: (yp—msn) Qun € R2Nemm and the discretized desired states Uy, € R2N: Gy —mg) Vakn € R2Nemsh and
Wan € R2Nemsi We set the functions Uz, and vz, on the nodes outside §2;, and .Qﬂ,, respectively, to

zero so that uy,, v, € R*Nemn,
Consider the following mass and stiffness matrices for the fluid and structure:

M) i; = (Ppison oy Asdij = Voni Von oy,
(Mfsh)ij = (@h,i,(l’h,j)g’ (Agh)lj = (Vfﬂh’i, V‘ph,j).oﬂ, + S(Vﬁl’h,i, Vﬁoh,j)gsh,
(Mﬂ,)lj = ((Ph,,-,ﬁoh,j)gﬂ,, Byix = —(8X(Ph,,',‘/7h,k)g,h, (Byh)ik = —(aySDh,i,‘Ph,k)g/h,

forlgi,jgmﬂlandmsh+lgkgnfh.Let

B, =By, B,1", Ch = WMy + vaAg)ili<ij< mg

Dy =M + A ighi<ij<mgr Pt = Mgy +Ag) il i mpa <j<mgy

Furthermore, we define the matrices

Ay =Ag®1, Ay =A,010,
My, =My ®1,, My, =My, ®1,, My, =My, ® 1,
C,=C,®L, D,=D,®L, Dy =D, ®D,

where ® is the Kronecker tensor product and I, is the 2 x 2 identity matrix. Observe that these matrices
are symmetric except for Dy,;.
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The discrete optimal control problem (7.9) can now be rewritten equivalently as

N
. T T
min (5 s Wi Qi) =5 Z{Vf@k,h — Ugep)” Mg,y — Uge )
qrneRNT"n 25

T T

+ Y51 Gn = Vaen) MsnGin — Var) + Wi = Waen) Chwin — waen)}
oT Ne

+ 5 2 dnMpdin (7.18)
k=1

subject to the following linear discrete time delay system:

1
Mg +Agp) Dy By | [E,
1
DZ;I =Dy O | |Win
T
Bh (0] o pk,h . (7 19)
M g1 —nnoh t TMpnEi—10 T Mpndi
== 1 =
_?thk—l,h , k=1,...,N,,
0
with initial data &, wy , and initial history §;, forj = —n,n., ..., —1. The derivative of the reduced
N:
o _ T T
Jin@u)daq, =7 Z{fos-fk,thh(‘ka,h — gy p) + V1 88 1My (851 — Var 1)
k=1
+ 8w, Cp Wiy, — warp) + @84 ,Mpdy ), (7.20)

where (8§, 6wy, 8p;;,) is the solution of (7.19) with g, replaced by 8¢,;;,. We will show that this is
equivalent to

Ny
Jen )8y, = T Z{SqIZ:thrhyk—l,h(Qkh) + adqi Mgy pbs (7.21)
k=1
where yi_y , = Yi—1.4(qyp) fork =N, ..., 1is the solution of

1
(tMgn +Ach) Dt By | [y

i
Dy, =Dy O | D1
B! 0 0| k-1
i
—M g Yiinnon t T MppYin + VMg G — ugen) + Va Mg Gy — Vain)
= — D30+ Wi — W) . (1.22)
0

with homogeneous terminal data and dual history

On.p =0, Yip=0 forj=N.,....N. +n.n. (7.23)
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We then prove that (7.21) is equivalent to (7.10). For this purpose we will abbreviate the matrix on
the left-hand side of (7.22) by A,,. Let 8q;;, € RN and (8&,,,, 8wy, 8py,) be the solution of (7.19)
with control 8¢y, Without loss of generality, assume that w, , = 0 and 8§;;, = 0 forj = —n,n.,...,0.
Using this and reindexing we have

Ne

T
Z TVk—1,0> Ok—t> Thm1 p 1A 8k 1> SWi s 8Py ]
k=1

N
: 1
T T
= Z T[ — WY1 M 88k 1 _pynon T ;yk—l,thshagk—l,h
k=1

1
T T
+ Ve—1.:Mpnday p, — ;ﬁk—l,hDhgwk—l,h}

=

! 1
T T
= T[ = IWYinnehM S8 p + ;yk,thsh‘ka,h
1

k.
Il

1
+ Vi1 My — ;ﬁkT,hthSWk,h ] (7.24)

Applying the symmetry of A, and using (7.22), this is equal to

N-

T
Z T[8& js SWi > Pk p 1AL k1 s Dt s Th—1 1]
k=1

N
i 1
T T T
= Z T[ — W& WM Vi nonon - SEnMnYin + V& yMpy ppy — gy )
=1

1
+ Vvnglz:thh Ern = Varn) — z 5W1{,hDh19k,h + (SWI{,hCh Wi h = Warp) ] (7.25)

Comparing (7.24) and (7.25), using (7.20) and the symmetry of M, Mﬁh and D), we deduce (7.21), and
therefore (7.10).

System (7.22) and (7.23) is the dG(0)—cG(1) discretization of the adjoint equation for the continuous
problem. Hence, for the proposed numerical scheme the two strategies discretize-then-optimize
and optimize-then-discretize coincide. In other words, the discretization schemes obtained from the
optimality system of the discretized problem and the one from the discretization of the optimality system
for the continuous problem are the same.

The discretized state and adjoint equations will be solved by adding an artificial compressibility, that
is, the matrix on the left-hand side in (7.19) and (7.22) will be replaced by

(Mg +Ag) Dy B,
T 1

Dl -ip, o

—BY o i

np—mg
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198 G. PERALTA AND K. KUNISCH

for small enough n > 0. Alternatively, one can replace the identity matrix In —my, DY the mass matrix
associated with the finite element space M;. The error between the or1g1nal solution and the one
obtained by this penalization is of order O(n). We refer to Girault & Raviart (1986, Section 1.4.3)
and Ern & Guermond (2004, Section 4.4.4) for more details. The linear system will be reduced by
eliminating the discrete pressure. To do this, we introduce Dy, = M, + A, and &, = Een)ry - Then
by straightforward algebra the discretized state equation can be reduced to the following system for
k=1,...,N

(A, + Auy +7Dy2) + 1BBT ) &
1
= —uMgi_1—nn, p t tMpnEi—1n + MGy — DpWi— i po (7.26)
Wi = Wi+ €

Therefore, at the kth time step, we can solve for & , first and then for wy ;. Note that the matrix in
the linear system associated to & , is symmetric and positive definite. Thus, Cholesky factorization or
conjugate gradient methods are applicable to solve the first system in (7.26).

Similarly, the discretized adjoint equation can be reduced to the system fork =N_,..., 1,

1 1 1
[(?Mf:vh +A,,+ thz) + ;BBT] Yeeth = —HMg Vi + tMppYion
+ VMg, G — i) + VMg Gin = Vaen) — Dpin + TC Wi — Wage ) (7.27)
2
Peeih = Pk + W1 — ™04 ChlWes — Warn)s

where y;, _,, = ()’k—l,h,l);ihr If y, = v, then C), = y,,D;, and the second equation in (7.27) simplifies
0 Oy = Vpp + Vi1 — TV53(Wi — Wap ) Which is analogous to the second equation in (7.26). In
the case where y,, # y,3 the second equation in (7.27) can be solved by writing it as the system

D1 = CrWip — Wape )
_ /
Uit = Ok + W1 — T

8. Numerical examples

In this section we present numerical examples illustrating the theoretical results of the paper.

8.1 Example 1

For the FSI domain we consider the unit square 2 = (0, 1)2, and for the structural domain 2, we take
the ball centered at (0.3, 0.6) with radius 0.2025. The parameters are T = 2, u = 2, ¢ = 0.1, r = 1,
VP =Yg =Vo=1v3=00landa = 107°. We consider a quasi-uniform mesh refined at the
interface having a mesh size 4 = 0.0671 with 1871 nodes, 2800 triangles in the fluid domain and 820
triangles in the structure domain. The step sizes for the time and history grids are T = 7, = 0.0025. The
total number of unknowns (primal, dual and control variables excluding the pressure) for the control
problems acting in the whole FSI domain, in the fluid domain and in the structure domain are of orders
2.38 - 107, 2.32 - 107 and 1.7 - 10, respectively. Mass and stiffness matrices for the fluid velocity
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FiG. 2. Time evolution for the norms of the residuals between the states and target states with control acting in £2 (solid curve),
£2f (dashed curve) and £2; (dash-dotted curve).

and pressure are assembled with the help of the formulas given in Koko (2012) and they are stored in
compressed sparse column format.
We choose the following target states:

uy(t,%,y) = cos(mwt) (¢ (x,¥), o (x, )T,
va(t,x,) = cos(1) () (x, ) p(x,¥), 5 (x, M) p(x, 1)),
Wd(ts-x’y) = 7[_1(1 + Sin(ﬂt))(¢1 (-x’ y)P(x,)’), ¢2(xs)’),0(x,)’))Ts

where

¢, (x,y) = (1 — cos(2mx)) sin(2my),
¢, (x,y) = sin(2wx)(cos(2my) — 1),
p(x,y) = 0.202572((x — 0.3)> + (y — 0.6)%),

and for the initial data and history we take uy(x) = u,(0,x), vy(x) = v;(0,x), wy(x) = w,(0,x) and
79(0,x) = v,(0,x). The initial data are discretized through nodal interpolation, and the time average
integral for the initial history is approximated using the trapezoidal rule.
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For numerical optimization we use the Barzilai—-Borwein version of the gradient method in Barzilai
& Borwein (1988) with an alternating steplength selection method and terminate the routine once

ANV
il
Y Wm

SR
7

N
i

. il
i ‘ i
Y
o

3
(i VAR - / AN
ay P ! : W

0.0 0.0 0.0 0.0

HEEINN
HANAOONNNIRY,
WAV RIS
i S
i\l lu K
WA ““ N i O
AR | ORI
o .
A i\\b e

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

FiG. 3. Components ¢ (left) and g, (right) of the optimal controls g = (¢, g7 acting in the domain £2 (first row), £2¢ (second
row) and §2; (third row) at time ¢t = 2.
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TABLE 1 Value of cost functionals, number of Barzilai—-Borwein iterations and optimality residuals
for different control specifications. The optimality residual is defined by ||y, + aqy,|l;

Control in £2 Control in £2; Control in £2
# BB iterations 218 72 231
Cost value 3.40559 - 1073 4.35328 - 1072 6.75255 - 1072
Optimality residual 2.44245 . 107° 5.21040 - 1076 2.83850 - 107>

the relative error of two successive cost function values is less than the tolerance 107, The second
iterate of the gradient method is computed using an inexact line search with Armijo’s rule as a step-
length selection criterion. The algorithm is implemented in Python 3.6.4 (Python Software Foundation,
https://www.python.org/) on a 2.5 GHz Intel Core i5 with 4 GB RAM. Solutions of the linear systems
for each time step of every primal and dual solve is computed using the function splu with the SuperLLU
option (Li et al., 1999) in the package SciPy. An LU factorization was computed beforehand and a
column permutation for sparsity preservation via minimum degree ordering was utilized. The bulk of
the computational time for the gradient algorithm lies in the forward and backward solve for the discrete
primal and adjoint equations.

Figure 2 illustrates the time evolution of the norms for the residuals of the states to the desired states
using controls acting in the entire FSI domain, in the fluid domain only or in the structure domain only.
The components of the computed optimal controls at the terminal time + = 2 are given in Fig. 3. For
controls acting either in the fluid or structure only we observe huge effort near the interface. This means
that we need large amplitudes near the interface to control the fluid velocity if the control is acting only
in the structure domain and similarly to control the structure displacement, stress and velocity if the
control is acting only in the fluid domain.

As expected, the value of the optimal cost is smallest if the control acts on all of the domain, rather
than on £2; and £2, only; see Table 1. Also, the spatial amplitudes of the control are quite large, which
is consistent with the choice of a small value for o, which means the controls are cheap. Finally, we
observe that the oscillatory (in space) and periodic (in time) nature of the desired states (u,, v,, w,) are
reflected in the nature of the optimal controls.

8.2 Example 2

We investigate the effect of the delay parameter » on the optimal controls. We use the setup of the
previous example and denote by ¢, and ¢, the computed optimal controls corresponding to r = 0.2
and r = 1, respectively. For @ = 1073 we can observe in Fig. 4 that the difference occurs mainly in
the structural domain, which is reasonable because delay appears only in this part of the domain. The
situation is also quite similar with smaller regularization & = 10~°, where the majority of the difference
occurs in the solid domain.

8.3 Example 3

In this example we study the convergence rates of the optimal control and the corresponding primal and
adjoint states. For the setup we take 7' = 0.4, r = p = ¢ = 0.1, yy = y; = ¥p = 1, ;3 = 0.001 and
a = 0.1. We consider the same physical configuration as in Example 1 with control acting in the entire
FSI domain.
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a=1073
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FI1G. 4. Difference of the optimal controls for the system with delay » = 0.2 and r = 1 and regularization o = 1073 (top) and
a=10"° (bottom).
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FIG. 5. Spatial discretization errors with Ny = 2000 time steps (t = 7, = 0.0002) on triangulations with mesh size h = 0.3426/ 21
fori =0,1,2,3,4. Dashed lines represent a quadratic order of convergence.

In the absence of an explicit solution we proceed as follows: we define

u(t, x,y) = cos(mt) (¢, (x,y), d»(x, )7,

w(t,x,y) =7~ (1 4 sin(Tn) (@) (x, 1)p (x, ), ¢ (x, ) p (6, ),
p(t,x,y) = 2m sin(wt)(cos(2my) — cos(2mwx)),
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FiG. 6. Temporal discretization errors on the finest triangulation with time and history step sizes 1 = 1, = 0.1/2¢ for

i=0,1,2,3,4,5. Dashed lines represent a linear order of convergence.

where ¢, ¢, and p are the functions defined in Example 1.

We would like (u, w, p) to be the solution of (1.4). For this purpose we add appropriate source terms
on the right-hand side of (1.4). With state variables («, w, p) and desired states (u;, v, w;) = —(u, w,, w)
we compute numerically the adjoint state (y,?) using the scheme (6.26) and then use the equation
q= —éy to be the optimal control.

We use bisection for the mesh refinement, that is, midpoints of the edges are used as new nodes in the
refined mesh. Moreover, to have a better approximation of the curved interface, each midpoint of an edge
that is located on the discretized interface is projected onto I'y. Up to four successive grid refinement this
ensures a quadratic order reduction rate for the distance between I', and its discretization Iy,; see (5.1).
In Figs 5 and 6 we observe an approximate order Oh?) and O(7) (where T = 7,) with respect to spatial
and temporal discretization errors, respectively, which agrees with the theoretical results presented in
the previous section.
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