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Abstract. We consider a hyperbolic system of partial differential equations

on a bounded interval coupled with ordinary differential equations on both
ends. The evolution is governed by linear balance laws, which we treat with

semigroup and time-space methods. Our goal is to establish the exponential

stability in the natural state space by utilizing the stability with respect to
the first-order energy of the system. Derivation of a priori estimates plays a

crucial role in obtaining energy and dissipation functionals. The theory is then

applied to specific physical models.

1. Introduction. When a rigid body on the peripheries of a medium interact
with waves in the interior, the dynamics can be described by coupling hyperbolic
partial differential equations (PDEs) with ordinary differential equations (ODEs) on
the boundaries. In applications, these hybrid systems model physical phenomena
such as blood flow [6, 8, 11, 23, 24], valveless pumping [4, 18, 22], fluid-particle
interaction, and traffic flow [3], to name a few.

Consider a distributed parameter system that is described by the following one-
dimensional hyperbolic system of n linear balance laws with dynamic boundary
conditions: 

ut(t, x) + Λux(t, x) + Lu(t, x) = 0, t > 0, 0 < x < `,[
u+(t, 0)

u−(t, `)

]
= K

[
u+(t, `)

u−(t, 0)

]
+Qh(t), t > 0,

h′(t) +Hh(t) +G

[
u+(t, `)

u−(t, 0)

]
= 0, t > 0,

u(0, x) = u0(x), 0 < x < `,

h(0) = h0,

(1.1)
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where the independent variables t and x denote time and space, respectively. The
unknown state variables are u : (0,∞) × (0, `) → Rn and h : (0,∞) → Rm with
corresponding initial data u0 and h0. The constant matrix Λ ∈ Rn×n is diagonal
with entries

λn ≤ · · · ≤ λp+1 < 0 < λ1 ≤ · · · ≤ λp

for some 1 ≤ p ≤ n. Consequently, we can decompose u = (u+, u−)T with the
components u−(t, x) ∈ Rp and u+(t, x) ∈ Rn−p that propagate in the negative and
positive directions, respectively. Here, the superscript T denotes the transposition
of a vector or a matrix. The constant matrices L ∈ Rn×n and H ∈ Rm×m act
as damping mechanisms for (1.1) provided that they are positive semi-definite.
Without the source term L and damping on the boundaries, the state variables in
(1.1) are conserved.

On the other hand, the constant matrices Q ∈ Rn×m and G ∈ Rm×n can be
viewed as feedback interconnections between u and h at the boundaries, see [21] for
instance. In the absence of the PDE-ODE coupling on the boundary, that is, when
Q and G are both zero, the second equation in (1.1) reduces to the static boundary
condition [

u+(t, 0)
u−(t, `)

]
= K

[
u+(t, `)
u−(t, 0)

]
, t > 0,

where K ∈ Rn×n is constant. In this setting, the incoming characteristics are
determined by the outgoing characteristics, regarded as reflections of waves on the
boundaries [25].

Existence and uniqueness of the solutions of systems with static boundary con-
ditions are presented in [7, 9, 12]. Well-posedness in Hilbert spaces is proved in [25,
Theorem 3.1], as well as in [1] by semigroup methods.

In this study, the well-posedness of (1.1) will be established using the classical
Lumer-Phillips Theorem. As usual, the first step is to reformulate the system as an
initial value problem on a suitable state space. The infinitesimal generator of the
semigroup associated with the resulting system is then shown to satisfy properties
required by the classical theorem. In [1, Appendix A], this is done by applying the
theorem to a closed operator and its adjoint. In contrast to their work, we shall
consider a more straightforward approach where the existence of a weak solution for
a two-point boundary value problem is directly established thanks to the diagonal
form of the system.

We transform (1.1) so that u is in one direction of the input, and in this case,
to the right. To this end, we introduce v defined by v(t, x) := u−(t, `− x). Setting
ũ := (u+, v)T , system (1.1) is equivalent to

ũt(t, x) + Λ̃ũx(t, x) + Lũ(t, x) = 0, t > 0, 0 < x < `,

h′(t) +Hh(t) +Gũ(t, `) = 0, t > 0,

ũ(t, 0) = Kũ(t, `) +Qh(t), t > 0,

ũ(0, x) = ũ0(x), 0 < x < `,

h(0) = h0,

(1.2)

where ũ0(x) = (u+0 (x), u−0 (` − x))T and Λ̃(x) = diag(λ1, . . . , λp,−λp+1, . . . ,−λn).

Observe that Λ̃ has positive diagonal entries. For simplicity, we remove the tildes
in the following discussions.
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Under suitable conditions, we shall construct a stability theory for systems of
the form (1.2), and apply it to specific physical models. In certain instances, the
exponential stability with respect to the state space energy can be directly derived
using Lyapunov, energy, and spectral methods. The energy method is a popular
strategy in showing the stability of systems defined in the entire space. However,
employing the energy method to some physical systems on bounded domains ne-
cessitates the inclusion of first-order derivatives of the solution, and this requires
additional regularity and compatibility conditions on the data. With this obser-
vation, we shall first establish stability with respect to the first-order energy by
developing appropriate energy and dissipation functionals of the system. Then,
with additional assumptions on the semigroup, the stability will be lifted back to
the state space energy. Systems of the form (1.2) may have nontrivial equilibrium
states, and in such situations, we shall decompose the state space in terms of the
equilibrium states.

We organize this paper as follows. In the next section, we establish the well-
posedness of the system (1.2). The main results are presented in Section 3. Finally,
we apply the results to specific physical examples in Section 4: (1) a low loss
electrical line, (2) linearized two-tank model and (3) wave equation with oscillatory
boundary conditions.

Notations. Given ` > 0 and a Banach space Z, the set of all Lebesgue square-
integrable functions from (0, `) to Z is denoted by L2(0, `;Z). The set of all k-times
continuously differentiable functions from [0, `] to Z will be written as Ck([0, `];Z).
Throughout the paper, we set X := L2(0, `;Rn) × Rm, and its subspace Y :=
H1(0, `;Rn) × Rm. We use the notation |M | for the operator norm of a constant
matrix M .

2. Well-posedness of the Hyperbolic PDE-ODE System. We establish the
well-posedness of (1.2) using semigroups of bounded linear operators. The first step
is to recast the system as a differential equation in an infinite-dimensional state
space. Given µ ∈ R, we denote by L2

µ(0, `) the space of L2-functions u : (0, `)→ Rn
equipped with the weighted norm

‖u‖L2
µ

:=

(∫ `

0

eµ(x−`)u(x)2 dx

)1/2

.

Note that L2
µ(0, `) coincides topologically with the usual Lebesgue space L2(0, `).

Let X be endowed with the inner product

〈(u, h), (ϕ,ψ)〉X := 〈u, ϕ〉L2
µ

+ νhTψ,

where ν > 0. Consider the linear operator A : D(A) ⊂ X → X defined by

A
[
u
h

]
:=

[
−Λux − Lu
−Hh−Gu(`)

]
, (2.1)

with domain D(A) := {(u, h) ∈ Y : u(0) = Ku(`) + Qh}. Defining z := (u, h), we
write system (1.2) in an abstract form on X:

dz

dt
(t) = Az(t), t > 0,

z(0) = z0,
(2.2)
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where z0 = (u0, h0). The first-order energy of a solution z at time t of (2.2) is
defined by

‖z(t)‖D(A) := (‖z(t)‖2X + ‖Az(t)‖2X)
1
2 .

We now state our well-posedness result.

Theorem 2.1. The linear operator A in (2.1) generates a strongly continuous
semigroup, also called C0-semigroup, of bounded linear operators in X. In par-
ticular, for every z0 ∈ D(A), system (2.2) has a unique classical solution z ∈
C([0, T ];D(A)) ∩ C1([0, T ];X).

Proof. According to the bounded perturbation theorem for operator semigroups [10,
p. 158], it is enough to prove the theorem when L and H are both zero matrices.
We proceed in two steps.
Step 1. Quasi-Dissipativity. Let µ > 0 and ν > 0 be constants that will be chosen
below. Denote by λs and λg the smallest and largest positive diagonal entries of Λ,
respectively, so that λs ≤ |Λ| ≤ λg. For z := (u, h) ∈ D(A), we have

〈Az, z〉X = −〈Λux, u〉L2
µ
− νhTGu(`).

Applying integration by parts yields

−〈Λux, u〉L2
µ

=
1

2
e−µ`u(0)TΛu(0)− 1

2
u(`)TΛu(`) +

µ

2
〈u,Λu〉L2

µ
.

With the boundary condition u(0) = Ku(`) +Qh, we can estimate this from above:

−〈Λux, u〉L2
µ
≤ 1

2
µλg‖u‖2L2

µ
+

1

2
(e−µ`(P1 + 2P2)− P3),

where P1 = hTQTΛQh, P2 = hTQTΛKu(`), and P3 = u(`)T
(
Λ− e−µ`KTΛK

)
u(`).

The Cauchy-Schwarz inequality allows us to estimate further: P1 ≤ λg|Q|2|h|2,
2P2 ≤ λg

(
|Q|2|h|2 + |K|2|u(`)|2

)
, and P3 ≥

(
λs − λg|K|2e−µ`

)
|u(`)|2. Gathering

these computations, we obtain

−〈Λux, u〉L2
µ
≤ 1

2
µλg‖u‖2L2

µ
+ λg|Q|2|h|2e−µ` −

1

2

(
λs − 2λg|K|2e−µ`

)
|u(`)|2.

(2.3)

Using Cauchy-Schwarz inequality once more,

|νhTGu(`)| ≤ ν

2

(
|h|2 + |G|2|u(`)|2

)
. (2.4)

Now, inequalities (2.3) and (2.4) imply

〈Az, z〉X ≤ c1‖u‖2L2
µ

+ c2|h|2 − c3|u(`)|2,

where c1 = 1
2µλg, c2 = λg|Q|2e−µ` + ν

2 and c3 = 1
2 (λs − 2λg|K|2e−µ` − ν|G|2). We

can then choose µ > 0 to be large enough, and ν > 0 to be small enough such that
c3 > 0. Consequently,

〈Az, z〉X ≤ c‖z‖X , with c := max{c1, c2} > 0, (2.5)

allowing us to conclude that A is quasi-dissipative.
Step 2. Range Condition. We prove that R(λI − A) = X for a constant λ > c,
where c is defined in (2.5). This is equivalent to solving the two-point boundary
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value problem: Given (f, g) ∈ X, find (u, h) ∈ Y such that
Λ

du

dx
+ λu = f, 0 < x < `,

Gu(`) + λh = g,

u(0) = Ku(`) +Qh.

(2.6)

From the variation of parameters formula, the solution of the first equation in
(2.6) is given by

u(x) = e−λxΛ
−1

u(0) +

∫ x

0

e−λ(y−x)Λ
−1

Λ−1f(y) dy. (2.7)

Using (2.7) and the second equation in (2.6), we obtain

h =
1

λ

(
g −Ge−λ`Λ

−1

u(0)−
∫ `

0

Ge−λ(y−`)Λ
−1

Λ−1f(y) dy

)
. (2.8)

By the continuity of the operator norm, there exists λ > c such that |(K −
λ−1QG)e−λ`Λ

−1 | < 1. This implies that the matrix Sλ := I− (K−λ−1QG)e−λ`Λ
−1

is invertible. Taking x = ` in (2.6), and using the third equation in (2.6) as well as
(2.8), it holds that

u(0) = S−1λ

(
1

λ
Qg +

∫ `

0

(K − λ−1QG)e−λ(y−`)Λ
−1

Λ−1f(y) dy

)
. (2.9)

Substituting (2.9) in (2.7) and (2.8) then yields a pair (u, h) ∈ Y that is a solution
of (2.6).

Steps 1 and 2 allow us to conclude from the Lumer-Phillips Theorem that A
generates a C0-semigroup on X, which we denote by (etA)t≥0. The well-posedness
of (2.2) immediately follows.

3. Stability for a One-Dimensional Hyperbolic PDE-ODE System. We
equip the domain D(A) with the graph norm

‖(u, h)‖2D(A) := ‖A(u, h)‖2X + ‖(u, h)‖2X . (3.1)

Note that D(A) ⊂ X is a Hilbert space with respect to the inner product induced
by (3.1). We also consider a weighted graph norm on D(A) defined by

‖(u, h)‖2D(A),ε,δ := ε‖Λux + Lu‖2L2(0,`;Rn) + εδ|Hh+Gu(`)|2

+ ‖u‖2L2(0,`;Rn) + |h|2, (3.2)

where ε, δ > 0. If ε = δ = 1, then (3.2) coincides with the graph norm (3.1), and
for sufficiently small ε, δ > 0, they are equivalent. In the following proposition, we
prove that the weighted norm (3.2) is equivalent to the norm on Y .

Proposition 1. There exist constants ε > 0 and δ > 0 such that the weighted graph
norm (3.2) is equivalent to the usual norm on Y , that is, for some c2 ≥ c1 > 0,

c1‖(u, h)‖2Y ≤ ‖(u, h)‖2D(A),ε,δ ≤ c2‖(u, h)‖2Y , ∀(u, h) ∈ D(A).

Proof. The estimate ‖(u, h)‖2D(A),ε,δ ≤ c2‖(u, h)‖2Y follows immediately from the

Cauchy-Schwarz inequality and the trace theorem: there exists a constant c > 0
such that

|u(0)|+ |u(`)| ≤ c‖u‖Y , ∀u ∈ Y,
see for instance [5, Theorem 8.2].
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For the reverse inequality, we use a consequence of Young’s inequality: there
exist constants γ, cγ > 0 such that for every a, b ∈ Rn, it holds that

|a+ b|2 ≥ (1− γ)|a|2 − (cγ − 1)|b|2.
This allows for the computation

‖Λux + Lu‖2L2 ≥ λ2s(1− γ)‖ux‖2L2 − |L|2(cγ − 1)‖u‖2L2 .

Again by the trace theorem, there exists a constant c > 0 such that

−|u(`)|2 ≥ −c(‖ux‖2L2 + ‖u‖2L2).

Setting C1 := ε((1 − γ)λ2s − 2cδ|G|2), C2 := 1 − ε(|L|2(cγ − 1) + 2cδ|G|2), and
C3 := 1− 2εδ|H|2, we estimate from below:

‖(u, h)‖2D(A),ε,δ ≥ C1‖ux‖2L2 + C2‖u‖2L2 + C3|h|2.

We choose δ, γ, ε > 0 in succession as follows:

δ <
λ2s

2c|G|2
, γ < 1− 2cδ

λ2s
|G|2, ε < min

{
1

2δ|H|2
,

1

|L|2(cγ − 1) + 2cδ|G|2

}
,

so that C1, C2, C3 > 0. Finally, by taking c1 := min{C1, C2, C3}, we arrive at the
desired estimate.

In the following, we denote X0 := kerA and its orthogonal complement by
X⊥0 := (kerA)⊥. The part of A in X⊥0 is defined as A0 : D(A0) → X⊥0 , together
with its domain D(A0) := D(A) ∩ X⊥0 . According to [26, Proposition 2.4.4], if
the closed subspace X⊥0 of X is invariant under (etA)t≥0, then A0 generates a C0-
semigroup (etA0)t≥0 on X⊥0 . Furthermore, the restriction of the semigroup (etA)t≥0
on X⊥0 is (etA0)t≥0, that is,

(etA)|X⊥0 = (etA0), ∀t ≥ 0. (3.3)

The next lemma gives a necessary condition for the semigroup invariance of X⊥0
under (etA)t≥0. It involves the adjoint operator of A, which we denote by A∗.

Lemma 3.1. The subspace X⊥0 is invariant under (etA)t≥0 whenever X0 ⊂ kerA∗.

Proof. The adjoint semigroup (etA
∗
)t≥0 = (etA)∗

∣∣
t≥0 of (etA)t≥0 satisfies

〈etAv, w〉X = 〈v, etA
∗
w〉X , ∀v ∈ X⊥0 , ∀w ∈ X0, (3.4)

see for instance [19, p. 41, Corollary 10.6]. We know from the assumption that
w ∈ kerA∗. As a result, 〈v, etA∗w〉X = 〈v, w〉X = 0 for every v ∈ X⊥0 . Equation
(3.4) now reads as 〈etAv, w〉X = 0. More precisely, etAv ∈ X⊥0 for every v ∈ X⊥0
and t ≥ 0, which proves semigroup invariance.

The next step is to compute for the adjoint A∗. Integrating by parts, we have

〈A(u, h), (v, g)〉X = 〈(u, h), Ã(v, g)〉X , ∀(u, h) ∈ D(A),∀(v, g) ∈ D(Ã), (3.5)

where Ã : D(Ã) ⊂ X → X is defined by

Ã
[
v
g

]
=

[
Λvx − LT v

−HT g +QTΛv(0)

]
, (3.6)

with domain D(Ã) := {(v, g) ∈ Y : v(`) = KT v(0) − Λ−1GT g}. We deduce from

identity (3.5) that (v, g) ∈ D(A∗), and that A∗ is an extension of Ã. As in the

proof of Theorem 2.1, we can show that Ã generates a C0-semigroup on X. Thus,
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there exists ω̃0 ∈ R such that (ω̃0,∞) ⊂ ρ(Ã). Similarly, A∗ generates a C0-
semigroup on X, and there exists ω0 ∈ R such that (ω0,∞) ⊂ ρ(A∗). It follows

that (ω,∞) ⊂ ρ(Ã)∩ ρ(A∗), where ω = max{ω̃0, ω0}. Invoking [15, Lemma 1.6.14],

these operators and their domains coincide, i.e. A∗ = Ã and D(A∗) = D(Ã).
We next determine X0 and kerA∗. If A is symmetric or skew symmetric, that is,

A = A∗ or A = −A∗, respectively, then X0 = kerA∗. In general, the equilibrium
states of (1.2) satisfy the two-point boundary value problem:

Λu∗x + Lu∗ = 0, in (0, `),

Hh∗ +Gu∗(`) = 0,

u∗(0) = Ku∗(`) +Qh∗.

(3.7)

When L = 0, the state u is conserved on [0, `]. A simple computation yields

X0 = ker

[
G H

I −K −Q

]
. (3.8)

Similarly, we have

kerA∗ = ker

[
−QTΛ HT

I −KT Λ−1GT

]
. (3.9)

Hence, for conservation laws, the semigroup invariance of X⊥0 holds provided (3.8)
is contained in (3.9). On the other hand, for L 6= 0, we need to verify that the
solutions of (3.7) are also solutions of the adjoint problem:

Λvx − LT v = 0, in (0, `),

HT g −QTΛv(0) = 0,

v(`) = KT v(0)− Λ−1GT g.

After discussing a necessary condition for the semigroup invariance of X⊥0 , let
us examine the spectral properties of A0. Because A has compact resolvents, its
spectrum and point spectrum coincide [10, 27]. Likewise, A0 has compact resolvents.
It follows that C = ρ(A0) ∪ σp(A0), where σp(·) denotes the point spectrum of an
operator. Observe that taking the part of a semigroup generator on the orthogonal
complement of its kernel eliminates the zero eigenvalue. In particular, ρ(A0) =
ρ(A) ∪ {0} and σp(A0) = σp(A) \ {0}. An immediate consequence is the following
lemma.

Lemma 3.2. The linear operator A0 : D(A0) → X⊥0 is invertible, and its inverse
A−10 is bounded.

We are now ready to state and prove the main result of this section.

Theorem 3.3. Suppose that X0 ⊂ kerA∗, and that there exist C, r > 0 such that

‖u(t)‖2H1 + |h(t)|2 ≤ Ce−rt(‖u0‖2H1 + |h0|2), (3.10)

for all t ≥ 0, and (u0, h0) ∈ X⊥0 ∩ D(A). Then, there exists C̃ > 0 such that for
every (u0, h0) ∈ X⊥0 ,

‖u(t)‖2L2 + |h(t)|2 ≤ C̃e−rt(‖u0‖2L2 + |h0|2).
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Proof. Let (u0, h0) ∈ X⊥0 , and define (v0, g0) ∈ D(A0) by (v0, g0) := A−10 (u0, h0).
Applying (3.10) and Proposition 1 to (v(t), g(t)) := etA0(v0, g0) ∈ C([0, T ];D(A0)),
there exists a constant C1 > 0 such that for every t ≥ 0,

‖(v(t), g(t))‖2D(A),ε,δ ≤ C1e
−rt‖(v0, g0)‖2D(A),ε,δ. (3.11)

Since (v0, g0) ∈ D(A0), we may replace A by A0. This allows us to estimate from
above:

‖(v0, g0)‖2D(A),ε,δ ≤ Cε,δ
(
‖A−10 (u0, h0)‖2X + ‖(u0, h0)‖2X

)
,

where Cε,δ := max{ε, εδ}. Because A−10 is bounded (see Lemma 3.2), it follows
that

‖(v0, g0)‖2D(A),ε,δ ≤ C2‖(u0, h0)‖2X , (3.12)

where C2 := Cε,δ(‖A−10 ‖2 + 1).
Similarly, we estimate (3.11) from below:

‖(v(t), g(t))‖2D(A),ε,δ ≥ C3‖A0(v(t), g(t))‖2X = C3‖A0e
tA0(v0, g0)‖2X ,

where C3 = min{ε, εδ}. According to [19, Chapter 4, Theorem 1.3] and [10, Propo-
sition 6.6], it holds that A0e

tA0(v0, g0) = etA0A0(v0, g0). Therefore,

‖(v(t), g(t))‖2D(A),ε,δ ≥ C3‖etA0A0(v0, g0)‖2X = C3‖etA0(u0, h0)‖2X .

Moreover, etA0(u0, h0) = etA(u0, h0) = (u(t), h(t)) since (u0, h0) ∈ X⊥0 . The esti-
mate above now reads

‖(v(t), g(t))‖2D(A),ε,δ ≥ C3‖(u(t), h(t))‖2X . (3.13)

From estimates (3.11)-(3.13), we deduce ‖(u(t), h(t))‖2X ≤ C̃e−rt‖(u0, h0)‖2X , where

C̃ := C1C2(C3)−1. Conclusion follows.

Finally, we extend the previous result from an initial data in X⊥0 to an initial data
in X. We begin by writing X as a direct sum of its closed subspaces: X = X0⊕X⊥0 .
If Π0 : X → X0 is the orthogonal projection of X onto X0, then every element
(u0, h0) ∈ X admits the unique decomposition

(u0, h0) = (u⊥0 , h
⊥
0 ) + (I −Π0)(u0, h0),

where (u⊥0 , h
⊥
0 ) = Π0(u0, h0) ∈ X0, and (I − Π0)(u0, h0) ∈ X⊥0 . Applying the

semigroup (etA)t≥0 yields

(u(t), h(t)) := etA(u0, h0) = etA(u⊥0 , h
⊥
0 ) + etA(I −Π0)(u0, h0).

Because (u⊥0 , h
⊥
0 ) ∈ X0, it holds that etA(u⊥0 , h

⊥
0 ) = (u⊥0 , h

⊥
0 ) for all t ≥ 0. As a

result, we have

(u(t)− u⊥0 , h(t)− h⊥0 ) = etA(I −Π0)(u0, h0).

The stability of the steady states can therefore be derived from the stability at the
origin of a projected initial data. Theorem 3.3 and the boundedness of projection
operators yield the following result.

Theorem 3.4. Let Π0 : X → X0 be the orthogonal projection of X onto X0, and
define (u⊥0 , h

⊥
0 ) := Π0(u0, h0). Under the assumptions of Theorem 3.3, there exists

Ĉ > 0 such that for all t ≥ 0 and (u0, h0) ∈ X, it holds that

‖u(t)− u⊥0 ‖2L2 + |h(t)− h⊥0 |2 ≤ Ĉe−rt(‖u0‖2L2 + |h0|2).
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4. Examples. In this section, we show that the energy E(t) of each physical model
decays exponentially. More precisely, we would like the energy to satisfy

1

2

d

dt
E(t) + rE(t) ≤ 0, t > 0,

so that E(t) ≤ E(0)e−rt, with decay rate r > 0. However, we cannot directly derive
this energy-dissipation inequality from the equations. Instead, we will derive energy
and dissipation functionals, denoted by E(t) and D(t), respectively, such that

1

2

d

dt
E(t) +D(t) ≤ 0, t > 0, (4.1)

and show that E(t) and D(t) are both equivalent to E(t). The task requires deriva-
tions of several a priori estimates. In what follows, the constants, even with the
same notations, may vary from one example to another.

4.1. A low loss electrical line connecting an inductive power supply to a
capacitive load. The telegrapher equations, also known as transmission line equa-
tions, is a hyperbolic system of balance laws modeling the propagation of current
and voltage along transmission lines. Developed in the 1800s by Oliver Heaviside
[13], these equations are in the following form:

It(t, x) +
1

L
Vx(t, x) +

R

L
I(t, x) = 0, t > 0, 0 < x < `,

Vt(t, x) +
1

C
Ix(t, x) +

G

C
V (t, x) = 0, t > 0, 0 < x < `,

(4.2)

where I(t, x) and V (t, x) are the current and voltage, respectively, at distance x
along a transmission line of length `. The constants L and C represent the line
self-inductance and capacitance, respectively, per unit length. The distributed re-
sistance of conductors per unit length is denoted by R, while G is the admittance
per unit length of the dielectric material separating the conductors.

When the transmission line connects an inductive power supply to a capacitive
load, system (4.2) can be subjected to the following dynamic boundary conditions,
see for instance [1, Section 3.4.3]:

L0
dI(t, 0)

dt
+R0I(t, 0) + V (t, 0) = U∗, t > 0,

C`
dV (t, `)

dt
+
V (t, `)

R`
= I(t, `), t > 0,

with a given constant input voltage U∗.
Now, we write system (4.2) around a steady state I∗(x), V ∗(x). Due to the

linearity of (4.2), we obtain a linear system with uniform coefficients even though
the steady state may be nonuniform [1, Section 1.2]. For this linear model, we
mention two results. First, the stability with respect to the L∞-norm of a lossless
line (i.e. G = R = 0) is established in [1, Section 2.1.5]. Second, for distortionless
lines (lines satisfying the Heaviside condition R/L = G/C), the L2-exponential
stability easily follows.

In contrast to the considerations above, we shall consider a low loss electrical
line, in particular, when R = 0 and G > 0. The steady state is then given by

I∗ =
U∗

R0 +R`
, V ∗ =

R`U
∗

R0 +R`
.
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Introducing the variables ϕ := 2(V −V ∗) and ψ := 2(I − I∗)/
√
L/C, we transform

the linear system to

ϕt(t, x) + λψx(t, x) + 2ζϕ(t, x) = 0, t > 0, 0 < x < `,

ψt(t, x) + λϕx(t, x) = 0, t > 0, 0 < x < `,

v′(t) + γ1v(t) + δ1ϕ(t, 0) = 0, t > 0,

w′(t) + γ2w(t)− δ2ψ(t, `) = 0, t > 0,

ψ(t, 0) = v(t), t > 0,

ϕ(t, `) = w(t), t > 0,

ϕ(0, x) = ϕ0(x), ψ(0, x) = ψ0(x), 0 < x < `,

v(0) = v0, w(0) = w0,

(4.3)

with positive constant coefficients given by

λ =
1√
LC

, ζ =
G

2C
, δ1 =

1

L0

√
C

L
, δ2 =

1

C`

√
L

C
, γ1 =

R0

L0
, γ2 =

1

R`C`
.

The normalized first-order energy of (4.3) is the sum of the kinetic and potential
energy acting on the transmission line:

E(t) :=

∫ `

0

(ϕ2 + ψ2 + ϕ2
x + ψ2

x) dx+ (v′)2 + (w′)2 + v2 + w2.

Let us equip the Hilbert space X := L2(0, `;R2)× R2 with the inner product

〈(ϕ1, ψ1, v1, w1), (ϕ2, ψ2, v2, w2)〉X :=
1

λ
(〈ϕ1, ϕ2〉L2 + 〈ψ1, ψ2〉L2)

+
1

δ1
v1v2 +

1

δ2
w1w2.

Define the operator A : D(A) ⊂ X → X by

A


ϕ
ψ
v
w

 =


−λψx − 2ζϕ
−λϕx

−γ1v − δ1ϕ(0)
−γ2w + δ2ψ(`)

 ,
with D(A) = {(ϕ,ψ, v, w) ∈ X : ϕ,ψ ∈ H1(0, `), ψ(0) = v, ϕ(`) = w}. For each
(ϕ,ψ, v, w), (φ, ξ, y, z) ∈ D(A), we have

〈A(ϕ,ψ, v, w), (φ, ξ, y, z)〉X = 〈(ϕ,ψ, v, w),A∗(φ, ξ, y, z)〉X ,

where

A∗


φ
ξ
y
z

 =


λξx − 2ζφ

λφx
−γ1y + δ1φ(0)
−γ2z − δ2ξ(`)

 .
The operators A and A∗ both have trivial kernels, and consequently, (kerA)⊥ = X .
We present our stability result.

Theorem 4.1. There exist constants C, r > 0 such that for all (ϕ0, ψ0, v0, w0) ∈
D(A), the solution of system (4.3) satisfies for every t ≥ 0 the estimate

‖ϕ(t)‖H1 + ‖ψ(t)‖H1 + |v(t)|+ |w(t)| ≤ Ce−rt(‖ϕ0‖H1 + ‖ψ0‖H1 + |v0|+ |w0|).
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Proof. We prove the theorem in two steps. First, we derive the functionals E(t) and
D(t) from the equations. Second, we prove that these functionals are equivalent to
the energy E(t) of system (4.3).
Step 1: Derivation of E(t) and D(t). From system (4.3), we take the sum of the first
equation multiplied by ϕ/λ and the second equation multiplied by ψ/λ. Integrating
by parts, we compute that

1

2

d

dt

∫ `

0

1

λ
(ϕ2 + ψ2) dx+ ϕ(`)ψ(`)− ϕ(0)ψ(0) +

2ζ

λ

∫ `

0

ϕ2 dx = 0.

Using the ODEs and boundary conditions, we have

1

2

d

dt

{∫ `

0

1

λ
(ϕ2 + ψ2) dx+

1

δ1
v2 +

1

δ2
w2

}
+

2ζ

λ

∫ `

0

ϕ2 dx+
γ1
δ1
v2 +

γ2
δ2
w2 = 0.

(4.4)

Similarly, we take the time derivatives of the first two equations in (4.3) multiplied
by ϕt/λ and ψt/λ, respectively. Again, we integrate their sum, and use the ODE
and boundary conditions:

1

2

d

dt

{∫ `

0

1

λ
(ϕ2
t + ψ2

t ) dx+
1

δ1
(v′)2 +

1

δ2
(w′)2

}
+

2ζ

λ

∫ `

0

ϕ2
t dx+

γ1
δ1

(v′)2 +
γ2
δ2

(w′)2 = 0.

From the first equation in (4.3), we estimate ϕ2
t ≥ λ2ψ2

x− cϕ2 for some c > 0. This
implies

1

2

d

dt

{∫ `

0

1

λ
(ϕ2
t + ψ2

t ) dx+
1

δ1
(v′)2 +

1

δ2
(w′)2

}
+

2ζ

λ

∫ `

0

(λ2ψ2
x − cϕ2) dx

+
γ1
δ1

(v′)2 +
γ2
δ2

(w′)2 ≤ 0. (4.5)

Adapting the derivation of (4.5), we replace time by space derivatives and get

1

2

d

dt

{∫ `

0

1

λ
(ϕ2
x + ψ2

x) dx+
1

λ2

(
1

δ1
(v′)2 +

1

δ2
(w′)2 + 2ζ

(
γ1
δ1
v2 +

γ2
δ2
w2

))}
+

2ζ

λ

∫ `

0

ϕ2
x dx+

1

λ2

(
1

δ1
(γ1 + 2ζ)(v′)2 +

γ2
δ2

(w′)2 +
2ζ

δ2
w′′w

)
= 0.

Because w′′w = (w′ · w)′ − (w′)2, we further compute that

1

2

d

dt

{∫ `

0

1

λ
(ϕ2
x + ψ2

x) dx+
1

λ2

(
2ζ

(
γ1
δ1
v2 +

γ2
δ2
w2 +

2

δ2
w′w

)
+

1

δ1
(v′)2

+
1

δ2
(w′)2

)}
+

1

λ2

(
1

δ1
(γ1 + 2ζ)(v′)2 +

1

δ2
(γ2 − 2ζ)(w′)2

)
+

2ζ

λ

∫ `

0

ϕ2
x dx = 0. (4.6)

Finally, we multiply the first equation in (4.3) by (` − x)ψ/λ and integrate by
parts. The boundary condition ψ(0) = v yields

1

2

d

dt

∫ `

0

2(`− x)

λ
ϕψ dx+

∫ `

0

(
1

2
ψ2 + (`− x)ϕϕx +

2ζ(`− x)

λ
ϕψ

)
dx− `

2
v2 = 0.

(4.7)
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Now, let ε, η > 0 (constants to be chosen later) and compute the following
sum: (4.4) + ε(4.6) + η((4.5) + (4.7)). This yields the energy-dissipation inequality
1
2

d
dtE(t) +D(t) ≤ 0, where

E(t) :=
1

λ

∫ `

0

(
ϕ2 + ψ2 + η(ϕ2

t + ψ2
t ) + ε(ϕ2

x + ψ2
x) + 2η(`− x)ϕψ

)
dx

+
1

δ2

((
1 +

2ζγ2ε

λ2

)
w2 +

(
η +

ε

λ2

)
(w′)2 +

4ζε

λ2
w′w

)
+

1

δ1

((
1 +

2ζγ1ε

λ2

)
v2 +

(
η +

ε

λ2

)
(v′)2

)
,

and

D(t) :=

∫ `

0

(
2ζ

λ

(
(1− ηc)ϕ2 + ηλ2ψ2

x + εϕ2
x + η(`− x)ϕψ

)
dx+

(
γ1
δ1
− η`

2

)
v2

+
γ2
δ2
w2 +

∫ `

0

η

2

(
ψ2 + 2(`− x)ϕϕx

)
dx+

1

δ1

(
ηγ1 +

(γ1 + 2ζ)ε

λ2

)
(v′)2

+
1

δ2

(
ηγ2 +

(γ2 − 2ζ)ε

λ2

)
(w′)2.

Step 2: Equivalence of E(t) and D(t) to E(t). The first two equations of (4.3) and
the Cauchy-Schwarz inequality imply that for 0 < ε < 1,

E(t) ≤ 1

λ

∫ `

0

((
1 + 8ηζ2 + η`

)
ϕ2 + (1 + η`)ψ2 + (ηλ2 + 1)ϕ2

x + (2ηλ2 + 1)ψ2
x

)
dx

+
1

δ1

((
1 +

2ζγ1
λ2

)
v2 +

(
η +

1

λ2

)
(v′)2

)
+

1

δ2

((
1 +

2ζ

λ2
(γ2 + 1)

)
w2

+

(
η +

1 + 2ζ

λ2

)
(w′)2

)
.

This estimate implies E(t) ≤ c2E(t), where c2 > 0 is the maximum value among
the coefficients on the right-hand side.

For the reverse inequality, recall from (4.5) that ϕ2
t ≥ λ2ψ2

x− cϕ2 for some c > 0.
Again, we use Cauchy-Schwarz inequality and obtain −4ζw′w ≥ −ζ(γ2w

2 + ĉ(w′)2)
for some ĉ > 0. It follows that

E(t) ≥ 1

λ

∫ `

0

(
(1− η(c+ `))ϕ2 + (1− η`)ψ2 + (ηλ2 + ε)(ϕ2

x + ψ2
x)

)
dx

+
1

δ1

((
1 +

2ζγ1ε

λ2

)
v2 +

(
η +

ε

λ2

)
(v′)2

)
+

1

δ2

((
1 +

ζγ2ε

λ2

)
w2

+

(
η −

(
ζĉ+

1

λ2

)
ε

)
(w′)2

)
. (4.8)

Now, we choose η > 0 such that

η < min

{
1

c+ `
, ζĉ+

1

λ2

}
. (4.9)

We also take ε = ηε0, where 0 < ε0 < ζĉ + λ−2. We can now conclude that
E(t) ≥ c1E(t), where c1 > 0 is the minimum value among the coefficients on the
right-hand side of (4.8).
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Similarly, we estimate D(t) using Cauchy-Schwarz inequality:

D(t) ≤
∫ l

0

((
2ζ

λ
(1− ηc) + η`

(
ζ

λ
+

1

2

))
ϕ2 + η

(
ζ`

λ
+

1

2

)
ψ2

+

(
2ζ

λ
+
η`

2

)
ϕ2
x + 2ηζλψ2

x

)
dx+

γ1
δ1
v2 +

γ2
δ2
w2

+
1

δ1

(
ηγ1 +

γ1 + 2ζ

λ2

)
(v′)2 +

γ2
δ2

(
η +

1

λ2

)
(w′)2. (4.10)

Note that (1− ηc) > 0 by our choice of η > 0 in (4.9). On the other hand, Young’s
inequality implies ϕψ ≤ cε̂ϕ

2 + ε̂ψ2, where cε̂ > 0 and ε̂ > 0 (to be chosen later).
We arrive at the following estimate:

D(t) ≥
∫ l

0

((
2ζ

λ
− η

(
2ζ

λ
(c+ `cε̂) +

`

2

))
ϕ2 +

η

2λ
(λ− 4ζ`ε̂)ψ2 + 2ηζλψ2

x

+
1

2λ
(4ζ − ηλ`)ϕ2

x

)
dx+

1

δ1

(
ηγ1 +

(γ1 + 2ζ)ε

λ2

)
(v′)2

+
1

δ2

(
ηγ2 −

(γ2 + 2ζ)ε

λ2

)
(w′)2 +

(
γ1
δ1
− η`

2

)
v2 +

γ2
δ2
w2.

(4.11)

Therefore, we choose ε̂, η > 0 which satisfy

ε̂ <
λ

4ζ`
, η < min

{
4ζ

4ζ(c+ `cε) + λ`
,

4ζ

λ`
,

2γ1
δ1`

}
,

and take ε = ηε0 with 0 < ε0 < γ2λ
2/(γ2+2ζ). These constants yield the inequality

c̃1E(t) ≤ D(t) ≤ c̃2E(t), where c̃1, c̃2 > 0 are the minimum and maximum values
among the coefficients on the right-hand sides of (4.10) and (4.11), respectively.
This completes the proof.

We conclude this section with an immediate result from Theorems 3.4 and 4.1.

Theorem 4.2. There exists r, Ĉ > 0 such that for all (ϕ0, ψ0, v0, w0) ∈ X and
t ≥ 0, we have

‖ϕ(t)‖L2 + ‖ψ(t)‖L2 + |v(t)|+ |w(t)| ≤ Ĉe−rt(‖ϕ0‖L2 + ‖ψ0‖L2 + |v0|+ |w0|).

4.2. Linearized fluid flow in an elastic tube connecting two tanks. We
consider a model of fluid flow [4, 18, 20, 22] in an elastic tube connecting two tanks
[20]:

u -
A ?

6

h0
h

Figure 1. An elastic tube connected to two rigid tanks.
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Euler’s continuity equation and the law of balance of momentum determine the
dynamics of the fluid velocity u(t, x) and the vertical cross section A(t, x) of the
tube [18]. We couple these to the level heights h0 and h in the tanks, both with
horizontal cross section AT , and starting at initial heights h00 and h0, respectively.
We obtain the linear system:

At(t, x) +Aeux(t, x) = 0, t > 0, 0 < x < `,

ut(t, x) + αAx(t, x) + βu(t, x) = 0, t > 0, 0 < x < `,

h′0(t) +
Ae
AT

u(t, 0) = 0, t > 0,

h′(t)− Ae
AT

u(t, `) = 0, t > 0,

A(t, 0) = γh0(t), A(t, `) = γh(t), t > 0,

A(0, x) = A0(x), u(0, x) = u0(x), 0 < x < `,

h0(0) = h00, h(0) = h0,

(4.12)

where α > 0, β ≥ 0, and γ > 0 and Ae > 0 is the equilibrium cross section. We
refer to [20] for the derivation of this linear model and the meaning of the involved
parameters. In applications such as blood flow modeling, the elastic tube may be
viewed as a blood vessel connecting two terminal compartments inside the human
cardiovascular system.

We equip the Hilbert space X := L2(0, `;R2)× R2 with the inner product

〈(ϕ1, ψ1, a1, b1), (ϕ2, ψ2, a2, b2)〉X :=
1

Ae
〈ϕ1, ψ1〉L2 +

1

α
〈ϕ2, ψ2〉L2

+
γAT
Ae

(a1a2 + b1b2),

and define the operator A : D(A) ⊂ X → X by

A


A
u
h0
h

 =


−Aeux

−αAx − βu
− Ae
AT
u(0)

Ae
AT
u(`)


with domain D(A) = {(A, u, h0, h) ∈ X : A, u ∈ H1(0, `), A(0) = γh0, A(`) = γh}.
For each (A, u, h0, h), (B, v, g0, g) ∈ D(A), we have

〈A(A, u, h0, h), (B, v, g0, g)〉 = 〈(A, u, h0, h),A∗(B, v, g0, g)〉,

where

A∗


B
v
g0
g

 =


Aevx

αBx − βv
Ae
AT
v(0)

− Ae
AT
v(`)

 .
In [20], the spectra of A and A∗ were characterized completely. The uniform ex-
ponential stability of the model was also discussed, and optimal decay rates were
provided using non-harmonic Fourier analysis. Here, we shall present an alternative
proof of its exponential stability using Theorem 3.4.
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The steady states of (4.12) are elements of kerA = kerA∗ = {c(γ, 0, 1, 1) : c ∈
R}. Its orthogonal complement corresponds to

(kerA)⊥ =

{
(A, u, h0, h) ∈ X :

∫ `

0

A(x) dx+
AT
γ
A(0) +

AT
γ
A(`) = 0

}
. (4.13)

Finally, we define the first-order energy E(t) of (4.12) as the sum of the kinetic
and potential energy of the fluid:

E(t) :=

∫ `

0

(A2 +A2
x + u2 + u2x) dx+ (h′0)2 + (h′)2 + h20 + h2. (4.14)

We are now ready to state our result.

Theorem 4.3. There exist constants C, r > 0 such that for every initial data
(A0, u0, h00, h

0) ∈ (kerA)⊥ ∩ D(A), the solution of (4.12) satisfies for t ≥ 0 the
inequality

‖A(t)‖H1 + ‖u(t)‖H1 + |h0(t)|+ |h(t)| ≤ Ce−rt(‖A0‖H1 + ‖u0‖H1 + |h00|+ |h0|).

Proof. We divide the proof into two steps. We derive E(t) and D(t), and then show
that both are equivalent to E(t).
Step 1: Derivation of E(t) and D(t). We multiply A−1e A and α−1u to the first and
second equations in (4.12), respectively. Taking their sum and integrating by parts
yield

1

2

d

dt

∫ `

0

(
1

Ae
A2 +

1

α
u2
)

dx+A(`)u(`)−A(0)u(0) +
β

α

∫ `

0

u2 dx = 0.

Writing the boundary term A(`)u(`)−A(0)u(0) in terms of h0 and h, the equation
above becomes

1

2

d

dt

{∫ `

0

(
1

Ae
A2 +

1

α
u2
)

dx+
γAT
Ae

(h20 + h2)

}
+
β

α

∫ `

0

u2 dx = 0. (4.15)

Next, we take the space derivatives of the first two equations in (4.12), utilize the
multipliers A−1e Ax and α−1ux, and follow the steps from above. We have

1

2

d

dt

{∫ `

0

(
1

Ae
A2
x +

1

α
u2x

)
dx+

γAT
αA2

e

((h′0)2 + (h′)2)

}
+
β

α

∫ `

0

u2x dx

+
βγAT
αA2

e

((h′0)2 + (h′)2) = 0. (4.16)

Now, with the identity utAx − Atux = (uAx)t − (uAt)x, and the ODEs and
boundary conditions, it holds that

−u(`)At(`) + u(0)At(0) = −γAT
Ae

((h′0)2 + (h′)2).

We apply this equation to the difference between the continuity equation multiplied
by ux and the equation of balance of momentum multiplied by Ax. Proceeding as
before, we compute

1

2

d

dt

{∫ `

0

2uAx dx

}
+

∫ `

0

(αA2
x + βuAx −Aeu2x) dx− γAT

Ae
((h′0)2 + (h′)2) = 0.

(4.17)
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Observe that we only lack dissipation terms for A, h0, and h. Let us first derive
one for A. We multiply the second equation in (4.12) by (`−x)A, and integrate by
parts:

1

2

d

dt

∫ `

0

2(`− x)Audx+

∫ `

0

(α
2
A2 +Ae(`− x)uux + β(`− x)Au

)
dx

− α`

2
A(0)2 = 0. (4.18)

Now, let us write A(0) as follows:

A(0) =

(
2AT
`γ

+ 1

)−1{(
1

`

∫ `

0

A(x) dx+
2AT
`γ

A(0)

)
+

(
A− 1

`

∫ `

0

A(x) dx

)
− (A−A(0))

}
.

Recalling (4.13), it holds that
∫ `
0
A(x) dx = −ATγ

(
A(0) +

∫ `
0
Ax dx

)
. Dividing by

` and the applying Cauchy-Schwarz inequality yield∥∥∥∥∥1

`

∫ `

0

A(x) dx+
2AT
`γ

A(0)

∥∥∥∥∥
2

L2(0,`)

≤ C1

∫ `

0

A2
x dx,

where C1 = cA2
T /(`γ)2 > 0 for a constant c > 0. This estimate, together with the

Poincaré and Poincaré-Wirtinger inequalities, implies that there exists a C2 > 0
such that

|A(0)|2 ≤ C2

∫ `

0

A2
x dx. (4.19)

Similarly, there exists C3 > 0 such that |A(`)|2 ≤ C3

∫ `
0
A2
x dx.

Because h0 = A(0)/γ and h = A(`)/γ, the last two estimates allow us to derive
dissipation terms for h0 and h:

|h0|2 + |h|2 − C4

∫ `

0

A2
x dx ≤ 0, (4.20)

where C4 = (C2 + C3)/γ2 > 0.
We are now ready to define E(t) and D(t). Let ε, δ > 0. Then the sum (4.15) +

(4.16)+ε(4.17)+εδ(4.18)+ εδα`
2 ((4.19)+(4.20)) reads as 1

2
d
dtE(t)+D(t) ≤ 0, where

E(t) :=

∫ `

0

(
1

Ae
(A2 +A2

x) +
1

α
(u2 + u2x) + 2εuAx + 2εδ(`− x)Au

)
dx

+
γAT
Ae

((
1

αAe

)
((h′0)2 + (h′)2) + (h20 + h2)

)
,

and

D(t) :=

∫ `

0

(
εδα

2
A2 + εα

(
1− δ`

2
(C2 + C4)

)
A2
x +

β

α
u2 +

(
β

α
− εAe

)
u2x

+ εβuAx + εδβ(`− x)Au+ εδAe(`− x)uux

)
dx

+
γAT
Ae

(
β

αAe
− ε
)

((h′0)2 + (h′)2) +
εδα`

2
(h20 + h2).
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Step 2: Equivalence of E(t) and D(t) to E(t). We show that both E(t) and D(t)
are equivalent to the energy (4.14). Using Cauchy-Schwarz inequality, we have

E(t) ≤
∫ `

0

((
1

Ae
+ εδ`

)
A2 +

(
1

Ae
+ ε

)
A2
x +

(
1

α
+ ε(1 + δ`)

)
u2

+
1

α
u2x

)
dx+

γAT
Ae

((
1

αAe

)
((h′0)2 + (h′)2) + (h20 + h2)

)
, (4.21)

and

E(t) ≥
∫ `

0

((
1

Ae
− εδ`

)
A2 +

(
1

Ae
− ε
)
A2
x +

(
1

α
− ε(1 + δ`)

)
u2

+
1

α
u2x

)
dx+

γAT
Ae

((
1

αAe

)
((h′0)2 + (h′)2) + (h20 + h2)

)
. (4.22)

Choosing ε, δ > 0 such that

ε < min

{
1

Ae
,

1

α

}
and δ < min

{
1

ε`Ae
,

1− εα
εα`

}
yields the inequality c1E(t) ≤ E(t) ≤ c2E(t), where the constants c1, c2 > 0 are the
minimum and maximum values among the coefficients on the right-hand sides of
(4.22) and (4.21), respectively.

On the other hand, Cauchy-Schwarz and Young’s inequalities invoke the follow-
ing:

D(t) ≤
∫ `

0

(
εδ

2
(α+ β`)A2 + ε

(
α+

β

2

)
A2
x +

(
β

α
+
ε

2
(β + δ` (β +Ae))

)
u2

+

(
β

α
+
εδAe`

2

)
u2x

)
dx+

γβAT
αA2

e

((h′0)2 + (h′)2) +
εδα`

2
(h20 + h2),

(4.23)

and

D(t) ≥
∫ `

0

((
β

α
− ε

(
βcε1 + δ`

(
βcε2 +

Ae
2

)))
u2 +

(
β

α
− εAe

(
1 +

δ`

2

))
u2x

+
εδ

2
(α− 2ε2β`)A

2 + ε

(
α

(
1− δ`

2
(C2 + C4)

)
− ε1β

)
A2
x

)
dx

+
γAT
Ae

(
β

αAe
− ε
)

((h′0)2 + (h′)2) +
εδα`

2
(h20 + h2).

(4.24)

Now we choose ε1, ε2, δ, ε > 0 such that

ε1 <
α

β
, ε2 <

α

2β`
, δ <

2

C2 + C4

(
α− ε1β
α`

)
,

ε <
β

α
min

{
(Ae)

−1, (βcε1 + δ` (βcε2 +Ae/2))−1, (Ae (1 + (δ`)/2))
−1
}

These constants give the inequality c̃1E(t) ≤ D(t) ≤ c̃2E(t), where c̃1, c̃2 > 0 are
the minimum and maximum values among the coefficients on the left and right-hand
sides of (4.24) and (4.23), respectively. Steps 1 and 2 yield the desired result.

The next theorem follows immediately from Theorems 3.4 and 4.3.
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Theorem 4.4. There exists Ĉ, r > 0 such that for all (A0, u0, h00, h
0) ∈ X , we have

‖A(t)−A⊥0 ‖L2 + ‖u(t)− u⊥0 ‖L2 + |h0(t)− h0⊥0 |+ |h(t)− h0⊥|

≤ Ĉe−rt(‖A0‖L2(0,`) + ‖u0‖L2(0,`) + |h00|+ |h0|),

for all t ≥ 0, where (A⊥0 , u
⊥
0 , h

0⊥
0 , h0⊥) = Π0(A0, u0, h

0
0, h

0) with the orthogonal
projection Π0 : X → ker(A) of X onto ker(A).

4.3. Damped wave equation with oscillator boundary conditions. We con-
sider a waveguide of length ` terminated by linear oscillators on both ends. The
propagation of sound in the waveguide can be described by a damped wave equa-
tion coupled with the displacement dynamics of the oscillators at each end [2, 14].
In particular, we subject the velocity potential ψ of the wave to ODE boundary
conditions describing the displacements δ0 and δ` of the oscillators at x = 0 and
x = `, respectively. With damping coefficient equal to 1, this system reads



ψtt(t, x) = ψxx(t, x)− ψt(t, x), t > 0, 0 < x < `,

ψx(t, 0) = −δ′0(t), t > 0,

ψx(t, `) = δ′`(t), t > 0,

m0δ
′′
0 (t) + d0δ

′
0(t) + k0δ0(t) = −ρψt(t, 0), t > 0,

m`δ
′′
` (t) + d`δ

′
`(t) + k`δ`(t) = −ρψt(t, `), t > 0,

ψ(0, x) = ψ0(x), 0 < x < `,

ψt(0, x) = ψ`(x), 0 < x < `,

δi(0) = δ0i , i = 0, `,

δ′i(0) = v0i , i = 0, `,

(4.25)

where ρ denotes fluid density. The properties of each oscillator i are encoded in the
following constants: mi denotes mass per unit area, di the resistivity, and ki the
spring constant. We assume that the surfaces of the oscillators are impenetrable by
the fluid. For the physical interpretation of such phenomena, we refer to [16, page
263].
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Figure 2. A waveguide terminated by oscillators

To facilitate the analysis, we decompose the waves into φ− and φ+, which de-
note the components propagating on the negative direction, and on the positive
direction, respectively [14]. A first order hyperbolic PDE-ODE system is derived
by introducing the variables φ− := 1

2 (∂tψ+∂xψ), φ+ := 1
2 (∂tψ−∂xψ), and vi := δ′i,
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for i = 0, `. In particular, we have

φ−t (t, x)− φ−x (t, x) + 1
2 (φ+(t, x) + φ−(t, x)) = 0, t > 0, 0 < x < `,

φ+t (t, x) + φ+x (t, x) + 1
2 (φ+(t, x) + φ−(t, x)) = 0, t > 0, 0 < x < `,

φ+(t, 0)− φ−(t, 0) = v0(t), t > 0,

φ+(t, `)− φ−(t, `) = −v`(t), t > 0,

δ′0(t) = v0(t), δ′`(t) = v`(t), t > 0,

v′0(t) + d0
m0
v0(t) + k0

m0
δ0(t) + ρ

m0
(φ−(t, 0) + φ+(t, 0)) = 0, t > 0,

v′`(t) + d`
m`
v`(t) + k`

m`
δ`(t) + ρ

m`
(φ−(t, `) + φ+(t, `)) = 0, t > 0,

φ+(0, x) = φ+0 (x), 0 < x < `,

φ−(0, x) = φ−0 (x), 0 < x < `,

δi(0) = δ0i , i = 0, `,

vi(0) = v0i , i = 0, `.

(4.26)
The total energy of (4.25), and hence of (4.26), is the sum of the kinetic and
potential energy of the wave motion, and of the kinetic and potential energy of the
oscillators. It is defined as

E (t) :=

∫ `

0

((φ+ − φ−)2 + (φ+ + φ−)2) dx+
1

ρ
(m`v

2
` + k`δ

2
` +m0v

2
0 + k0δ

2
0).

A detailed discussion of the usage of the term can be found in [16, Section 1.3].
Now, let us equip the Hilbert space X := L2(0, `;R2)×R4 with the inner product

〈ϕ1, ϕ2〉X := 〈φ−1 , φ
−
2 〉L2 + 〈φ+1 , φ

+
2 〉L2 +

1

2ρ

∑
j=0,`

(kjδj1δj2 +mjvj1vj2),

where ϕi = (φ−i , φ
+
i , δ0i, δ`i, v0i, v`i), for i = 1, 2. We define A : D(A) ⊂ X → X as

A


φ−

φ+

δ0
δ`
v0
v`

 =



φ−x − 1
2 (φ+ + φ−)

−φ+x − 1
2 (φ+ + φ−)
v0
v`

− d0
m0
v0 − k0

m0
δ0 − ρ

m0
(φ−(0) + φ+(0))

− d`
m`
v` − k`

m`
δ` − ρ

m`
(φ−(`) + φ+(`))


,

with domain D(A) = {(φ−, φ+, δ0, δ`, v0, v`) ∈ X : φ−, φ+ ∈ H1(0, `), v0 =
−φ−(0) + φ+(0), v` = φ−(`) − φ+(`)}. Its adjoint A∗ : D(A) ⊂ X → X is
given by

A∗


ϕ−

ϕ+

γ0
γ`
w0

w`

 =



−ϕ−x − 1
2 (ϕ+ + ϕ−)

ϕ+
x − 1

2 (ϕ+ + ϕ−)
−w0

−w`
− d0
m0
w0 + k0

m0
γ0 + ρ

m0
(ϕ−(0) + ϕ+(0))

− d`
m`
w` + k`

m`
γ` + ρ

m`
(ϕ−(`) + ϕ+(`))


.

The equilibrium states of (4.26) lie in the set

kerA = kerA∗ = {c (k0k`, k0k`,−2ρk`,−2ρk0, 0, 0) : c ∈ R} .



20 GERVY MARIE ANGELES AND GILBERT PERALTA

Now, in theoretical acoustics, states corresponding to hydrostatic pressure occur
when the acoustic pressure is equal to the sum of the displacement of the oscillators
on the two ends. Removing these states, we find that

(kerA)⊥ =

{
(φ−, φ+, δ0, δ`, v0, v`) ∈ X :

∫ `

0

(φ− + φ+)(x) dx− δ0 − δ` = 0

}
,

see for instance [17, Section 6]. We now present our stability result.

Theorem 4.5. There exist C, r > 0 such that for every initial data

(φ−0 , φ
+
0 , δ

0
0 , δ

0
` , v

0
0 , v

0
` ) ∈ (kerA)⊥ ∩D(A),

the solution of system (4.26) satisfies for every t ≥ 0 the estimate

‖φ−(t)‖H1 + ‖φ+(t)‖H1 + |δ0(t)|+ |δ`(t)|+ |v0(t)|+ |v`(t)|
≤ Ce−rt(‖φ−0 ‖H1 + ‖φ+0 ‖H1 + |δ00 |+ |δ0` |+ |v00 |+ |v0` |).

Proof. To simplify the computations, we set ψ+ := φ+ + φ− and ψ− := φ+ − φ−.
Observe that stability in terms of φ± is equivalent to stability in terms of ψ±, thanks
to the identity ‖ψ−(t)‖2H1 + ‖ψ+(t)‖2H1 = 2(‖φ−(t)‖2H1 + ‖φ+(t)‖2H1). We proceed
as in the previous models, and for this purpose we define a normalized first-order
energy of the system:

Eκ(t) =

∫ `

0

((ψ+)2 + (ψ−)2 + (ψ+
x )2 + (ψ−x )2) dx+ κ((v′0)2 + (v′`)

2)

+ v20 + v2` + δ2` + δ20 . (4.27)

Using the equation for v′0 and v′` in (4.26), applying the trace theorem, and taking
κ > 0 to be small enough, it is not hard to see that Eκ(t) is equivalent to

E(t) =

∫ `

0

((ψ+)2 + (ψ−)2 + (ψ+
x )2 + (ψ−x )2) dx+ v20 + v2` + δ2` + δ20 .

Step 1: Derivation of E(t) and D(t). First, let us take the sum and difference of the
first two equations in (4.26):

ψ+
t + ψ−x + ψ+ = 0, (4.28)

ψ−t + ψ+
x = 0. (4.29)

We multiply ψ+ to (4.28), and ψ− to (4.29). Applying integration by parts to the
sum of the resulting expressions, we compute that

1

2

d

dt

∫ `

0

((ψ−)2 + (ψ+)2) dx+

∫ `

0

(ψ+)2 dx+ ψ−(`)ψ+(`)− ψ−(0)ψ+(0) = 0.

From the ODEs and boundary conditions in (4.26), this identity now reads

1

2

d

dt

{∫ `

0

((ψ−)2 + (ψ+)2) dx+
1

ρ
(m`v

2
` +m0v

2
0 + k`δ

2
` + k0δ

2
0)

}
+

∫ `

0

(ψ+)2 dx+
1

ρ
(d`v

2
` + d0v

2
0) = 0. (4.30)
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We multiply the space derivative of (4.28) by ψ+
x , and the space derivative of

(4.29) by ψ−x . Following the steps above, we obtain the identity:

1

2

d

dt

{∫ `

0

((ψ−x )2 + (ψ+
x )2) dx+

1

ρ
(m`(v

′
`)

2 +m0(v′0)2 + (d` + k`)v
2
`

+ (d0 + k0)v20 + 2k`δ`v` + 2k0δ0v0)

}
+

1

ρ
((d` +m`)(v

′
`)

2

+ (d0 +m0)(v′0)2 − k`v2` − k0v20) +

∫ `

0

(ψ+
x )2 dx = 0. (4.31)

Now, let us take the difference between the terms (4.28)×ψ−x and (4.29)×ψ+
x .

We integrate by parts and use the identity ψ+
t ψ
−
x − ψ−t ψ+

x = (ψ+ψ−x )t − (ψ+ψ−t )x.
We compute

1

2

d

dt

{∫ `

0

2ψ+ψ−x dx

}
− ψ+(`)ψ−t (`) + ψ+(0)ψ−t (0)

+

∫ `

0

(ψ+ψ−x + (ψ−x )2 − (ψ+
x )2) dx = 0.

Again for the boundary terms, we follow previous calculations, and get

1

2

d

dt

{∫ `

0

2ψ+ψ−x dx− 1

ρ
(d`v

2
` + d0v

2
0 + 2k`δ`v` + 2k0δ0v0)

}
+

∫ `

0

(ψ+ψ−x

+ (ψ−x )2 − (ψ+
x )2) dx+

1

ρ
(k`v

2
` + k0v

2
0 −m`(v

′
`)

2 −m0(v′0)2) = 0. (4.32)

Let γ1 > 0 (constant to be chosen later). The sum of γ1(4.31) + γ1
2 (4.32) yields the

inequality:

1

2

d

dt

{
γ1

∫ `

0

((ψ−x )2 + (ψ+
x )2 + ψ+ψ−x ) dx+

1

ρ

∑
i=0,`

(
γ1mi(v

′
i)

2 + γ1kiδivi

+
(
γ1ki +

γ1
2
di

)
v2i

)}
+
γ1
2

∫ `

0

((ψ+
x )2 + (ψ−x )2 + ψ+ψ−x ) dx

+
1

ρ

∑
i=0,`

((
γ1di +

γ1
2
mi

)
(v′i)

2 − γ1
2
kiv

2
i

)
≤ 0. (4.33)

Next, we wish to obtain a dissipation term for ψ−. Let us multiply (`− x)ψ− to
(4.28), and integrate by parts:

1

2

d

dt

∫ `

0

2(`− x)ψ−ψ+ dx+
1

2

∫ `

0

(
(ψ−)2 + (ψ+)2 + 2(`− x)ψ−ψ+

)
dx

− `

2
((ψ−)2(0) + (ψ+)2(0)) = 0.

The trace theorem is employed to estimate the boundary term: there exists c > 0

such that −(ψ+)2(0) ≥ −c
∫ `
0

((ψ+)2 + (ψ+
x )2) dx. It follows that

1

2

d

dt

∫ `

0

2(`− x)ψ−ψ+ dx+
1

2

∫ `

0

(
(ψ−)2 + (1− c`)(ψ+)2 − c`(ψ+

x )2

+ 2(`− x)ψ−ψ+
)

dx− `

2
v20 ≤ 0, (4.34)

where we used (ψ−)2(0) = v20 .
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Finally, we multiply the corresponding δi (for i = 0, `) to the PDE-ODE coupling
in (4.26):

1

2

∑
i=0,`

(
d

dt

{
di
mi

δ2i + 2δivi

}
− v2i +

ki
mi

δ2i +
ρ

mi
(ψ+)(i)δi

)
= 0.

Applying Young’s inequality to each ψ+(i)δi for i = 0, `, we derive the estimate

∑
i=0,`

(
1

2

d

dt

{
di
mi

δ2i + 2δivi

}
− v2i +

1

mi
(ki − ρεi) δ2i −

ρcεi
mi

(ψ+)2(i)

)
≤ 0, (4.35)

with positive constants εi and cεi for i = 0, `. We choose εi > 0 to satisfy

εi <
ki
ρ
, for i = 0, `, (4.36)

and c̃ > 0 such that c̃ = c̄ρmax {cε`/m`, cε0/m0} for some c̄ > 0. Once again, the
trace theorem implies

−ρcε`
m`

(ψ+)2(`)− ρcε0
m0

(ψ+)2(0) ≥ −c̃
∫ `

0

(
(ψ+)2 + (ψ+

x )2
)

dx. (4.37)

From inequalities (4.35) and (4.37), it holds that

∑
i=0,`

(
1

2

d

dt

{
di
mi

δ2i + 2δivi

}
− v2i +

1

mi
(ki − ρεi) δ2i

)

−c̃
∫ `

0

(
(ψ+)2 + (ψ+

x )2
)

dx ≤ 0. (4.38)

We are ready to define the energy and dissipation functionals. Let γ2, γ3 > 0 (to
be chosen later). The sum (4.30) + (4.33) + γ2(4.34) + γ3(4.38) yields the estimate
1
2

d
dtE(t) +D(t) ≤ 0, where

E(t) =

∫ `

0

(
(ψ+)2 + (ψ−)2 + γ1(ψ+

x )2 + γ1(ψ−x )2γ1ψ
+ψ−x + 2γ2(`− x)ψ−ψ+

)
dx

+
1

ρ

∑
i=0,`

(
γ1mi(v

′
i)

2 +
(
mi +

γ1
2
di + γ1ki

)
v2i +

(
ki + γ3

ρdi
mi

)
δ2i

+ (γ1ki + 2γ3ρ) δivi

)
,

D(t) =

∫ `

0

((
1 +

γ2
2

(1− c`)− γ3c̃
)

(ψ+)2 +
γ2
2

(ψ−)2 +
(γ1

2
− γ2

2
c`− γ3c̃

)
(ψ+
x )2

+
γ1
2

(ψ−x )2 +
γ1
2
ψ+ψ−x + γ2(`− x)ψ+ψ−

)
dx+

1

ρ

∑
i=0,`

((
γ1di +

γ1
2
mi

)
(v′i)

2

+
(
di −

γ1
2
ki − γ3ρ

)
v2i +

γ3ρ

mi
(ki − ρεi)δ2i

)
− γ2`

2
v20 .
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Step 2: Equivalence of E(t) and D(t) to Eκ(t). We prove that E(t) and D(t) are
both equivalent to Eκ(t) in (4.27). The Cauchy-Schwarz inequality implies

E(t) ≤
∫ `

0

((
1 +

γ1
2

+ γ2`
)

(ψ+)2 + (1 + γ2`)(ψ
−)2 + γ1(ψ+

x )2 +
3γ1
2

(ψ−x )2
)

dx

+
1

ρ

∑
i=0,l

(
γ1mi(v

′
i)

2 +

(
mi +

γ1
2
di +

3γ1
2
ki + γ3ρ

)
v2i

+

((
1 +

γ1
2

)
ki + γ3ρ

(
di
mi

+ 1

))
δ2i

)
.

Setting c2 > 0 as the maximum value among the coefficients on the right-hand side
above, it holds that E(t) ≤ c2Eκ(t). We invoke by the Cauchy-Schwarz inequality
that −2ρδivi ≥ −ρ( di

2mi
δ2i + ĉv2i ) for some constant ĉ > 0, for i = 0, `. The reverse

inequality reads as

E(t) ≥
∫ `

0

((
1− γ1

2
− γ2`

)
(ψ+)2 + (1− γ2`)(ψ−)2 + γ1(ψ+

x )2 +
γ1
2

(ψ−x )2
)

dx

+
1

ρ

∑
i=0,`

(
γ1mi(v

′
i)

2 +
(
mi +

γ1
2

(di + ki)− γ3ĉρ
)
v2i

+

((
1− γ1

2

)
ki + γ3

(
di

2mi

)
ρ

)
δ2i

)
.

We further choose γ1, γ2, γ3 > 0 successively such that

γ1 < 2, γ2 < min

{
2− γ1

2`
,

1

`

}
,

γ3 <
1

ρ
min

{
1

ĉ

(
mi +

γ1
2

(di + ki)
)
,

2miki
di

(
1− γ1

2

)}
,

for i = 0, `. With these constants, we take c1 > 0 be the minimum value among the
coefficients on the right-hand side of the estimate from below for E(t). We obtain
E(t) ≥ c1Eκ(t).

Similarly, we compute

D(t) ≤
∫ `

0

((
1 +

γ1
4

+
γ2
2

(1− c`+ `)− γ3c̃
)

(ψ+)2 +
γ2
2

(1 + `)(ψ−)2

+
3γ2
4

(ψ−x )2 +

(
γ1 − γ2c`

2
− γ3c̃

)
(ψ+
x )2
)

dx

+
1

ρ

((
d` −

γ1
2
k` − γ3ρ

)
v2` +

(
d0 −

γ1
2
k0 −

γ2ρ`

2
− γ3ρ

)
v20

)
+

1

ρ

∑
i=0,`

((
γ1di +

γ1
2
mi

)
(v′i)

2 +
γ3ρ

mi
(ki − ρεi)δ2i

)
. (4.39)
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Now, let us choose ε`, ε0, γ1, γ2, γ3 > 0 successively such that

ε` <
kl
ρ , ε0 <

k0
ρ , as in (4.36),

γ1 < 2 min

{
d`
k`
, d0k0

}
, γ2 < min

{
γ1
c` ,

2
ρ`

(
d0 − γ1

2 k0
)}

,

γ3 < γ := min

{
1
ρ

(
d` − γ1

2 k`
)
, 1ρ (d0 − γ1

2 k0 −
γ2ρ`
2 ), 1

2c̃ (γ1 − γ2c`),

1
c̃

(
1 + γ1

4 + γ2
2 (1− c`+ `)

)}
,

(4.40)

where we reduce γ1, γ2, γ3 > 0 as needed. It follows that D(t) ≤ c̃2Eκ(t), where
c̃2 > 0 is the maximum value among the coefficients on the right-hand side of (4.39).
On the other hand, the Cauchy-Schwarz and Young inequalities imply

D(t) ≥
∫ `

0

((
1− γ1

4
+ γ2

(
1− c`

2
− `c̃ε

)
− γ3c̃

)
(ψ+)2 +

γ1
4

(ψ−x )2

+
(γ1

2
− γ2

2
c`− γ3c̃

)
(ψ+
x )2 + γ2

(
1

2
− `ε̃

)
(ψ−)2

)
dx

+
1

ρ

((
d` −

γ1
2
k` − γ3ρ

)
v2` +

(
d0 −

γ1
2
k0 −

γ2ρl

2
− γ3ρ

)
v20

)
+

1

ρ

∑
i=0,`

((
γ1di +

γ1
2
mi

)
(v′i)

2 +
γ3ρ

mi
(ki − ρεi)δ2i

)
, (4.41)

where ε̃, c̃ε > 0. We choose ε, ε`, ε0, γ1, γ2, γ3 > 0 such that{
ε̃ < 1

2` , ε0, ε`, γ1 > 0 as in (4.40),

γ2 > 0 small enough, γ3 < min
{
γ, 1c̃ (1− γ1

4 + γ2( 1−c`
2 − `c̃ε))

}
,

where γ > 0 is the constant from (4.40), and γ2 > 0 is reduced (if needed) such
that (1− γ1/4) > γ2 (`c̃ε − (1− c`)/2). With these constants, we take c̃1 > 0 to be
the minimum value among the coefficients on the right-hand side of (4.41). Finally,
D(t) ≥ c̃1Eκ(t), and the proof is complete.

An immediate consequence of Theorems 3.3 and 4.5 is stated below.

Theorem 4.6. There exist constants Ĉ, r > 0 such that for every initial data
(φ−0 , φ

+
0 , δ

0
0 , δ

0
` , v

0
0 , v

0
` ) ∈ X , it holds that

‖φ−(t)− φ−⊥0 ‖L2 + ‖φ+(t)− φ+⊥0 ‖L2 +
∑
i=0,`

(|δi(t)− δ0⊥i |+ |vi(t)− v0⊥i |)

≤ Ĉe−rt(‖φ−0 ‖L2 + ‖φ+0 ‖L2 + |δ00 |+ |δ0` |+ |v00 |+ |v0` |),

for all t ≥ 0, where (φ−⊥0 , φ+⊥0 , δ0⊥0 , δ0⊥` , v0⊥0 , v0⊥` ) = Π0(φ−0 , φ
+
0 , δ

0
0 , δ

0
` , v

0
0 , v

0
` ) and

Π0 : X → ker(A) is the orthogonal projection of X onto ker(A).

Acknowledgments. The first author has been supported by the University of
the Philippines OIL COOPERATE program and the Philippines CHED Faculty
Development Program II. The authors would like to thank the anonymous referee
for helpful comments.



EXPONENTIAL STABILITY OF COUPLED 1-D HYPERBOLIC PDE-ODE SYSTEMS 25

REFERENCES

[1] G. Bastin and J.-M. Coron, Stability and Boundary Stabilization of 1-D Hyperbolic Systems,

volume 88 of Progress in Nonlinear Differential Equations and Their Applications. Birkhäuser
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