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Abstract. We consider a coupled fluid-thermoelastic plate interaction model.
The fluid velocity is modeled by the linearized 3D Navier-Stokes equation while

the plate dynamics is described by a thermoelastic Kirchoff system. By elimi-

nating the pressure term, the system is reformulated as an abstract evolution
problem and its well-posedness is proved by semigroup methods. The dissipa-

tion in the system is due to the diffusion of the fluid and heat components.

Uniform stability of the coupled system is established through multipliers and
the energy method. The multipliers used for thermoelastic plate models in the

literature are modified in accordance to the applicability of a certain Stokes

map.

1. Introduction. Consider an incompressible fluid occupying a bounded domain
Ω ⊂ R3 with sufficiently smooth boundary Γ. Suppose that part of the boundary
is enclosed by a solid wall while the remaining part is enclosed by a thin elastic
plate. Let Γ1 and Γ0 be the regions where the solid wall and the plate are located,
respectively. Here, Γ0 and Γ1 are nonempty, Γ1 ∪ Γ0 = Γ and Γ1 ∩ Γ0 = ∅. In this
paper, we assume that the boundary Σ0 of Γ0 is nonempty and smooth enough.
The fluid is modeled by the linearized 3D Navier-Stokes equation

ut − µ∆Ωu+∇p = 0 in (0,∞)× Ω,

div u = 0 in (0,∞)× Ω,

u = 0 on (0,∞)× Γ1,

u = ϕtν on (0,∞)× Γ0.

(1.1)

In (1.1), u is the velocity vector field of the fluid, µ > 0 is the viscosity of the
fluid, ϕ is the transversal displacement of the plate and ∆Ω is the Laplace operator
in Ω. The coupling between the fluid and the plate is attained by matching the
corresponding velocities on Γ0. For the problem (1.1) to be well-posed one must
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impose the compatibility condition∫
Γ0

ϕt dΓ0 =

∫
Γ0

u · ν dΓ0 = 0, for t ∈ (0,∞). (1.2)

Thus, the average plate velocity should be zero for all times.
Suppose that the transversal displacement ϕ of the plate is described by Kir-

choff’s equation and is subjected to thermal effects given by the heat equation ϕtt − γ∆Γ0ϕtt + ∆2
Γ0
ϕ+ α∆Γ0θ = p− µν · ∂u

∂ν
in (0, T )× Γ0,

βθt − η∆Γ0
θ + σθ − α∆Γ0

ϕt = 0 in (0, T )× Γ0,
(1.3)

where α, β, η > 0, γ, σ ≥ 0 and ∆Γ0 is the Laplace-Beltrami operator on Γ0 con-
sidered as a Riemannian manifold with boundary. The constant γ is proportional
to the thickness of the plate. The case γ = 0, that is, plate’s thickness is negligi-
ble, corresponds to the Euler-Bernoulli beam while γ > 0 is the Kirchoff’s model.
Without fluid interaction, it is well-known that the case γ > 0 is of parabolic-type
at least for certain boundary conditions [17, 22]. More precisely, the corresponding
system generates an analytic semigroup and hence a fortiori the uniform stabil-
ity of the solutions. On the other hand, if γ = 0 then the system is of mixed
hyperbolic-parabolic type.

We consider the case where the edge of the plate is clamped

ϕ =
∂ϕ

∂ν
= 0 on (0,∞)× Σ0, (1.4)

and the temperature at the boundary satisfies

ηλ1
∂θ

∂ν
+ λ2θ = 0 on (0,∞)× Σ0, (1.5)

where λ1, λ2 ≥ 0 and λ1 + λ2 > 0. The case λ1, λ2 > 0 is Newton’s law of cooling
and the cases λ1 = 0 and λ2 = 0 mean that the temperature and the temperature
flux at the boundary are zero, respectively. Finally, we supply the following initial
data

u(0) = u0 in Ω, (1.6)

ϕ(0) = ϕ0, ϕt(0) = ϕ1, θ(0) = θ0 in Γ0. (1.7)

All throughout this paper we will assume that γ > 0 and σ+λ2 > 0, and for the
sake of simplicity we set without loss of generality that α = β = η = µ = 1. We
will use the same notation for the Laplace operators in Ω and Γ0, that is, ∆Ω and
∆Γ0 will be both denoted by ∆.

The energy at time t ≥ 0 of the system (1.1)–(1.7) is defined by

E(t) =
1

2

(∫
Ω

|u(t)|2 dΩ +

∫
Γ0

|∆ϕ(t)|2 + |ϕt(t)|2 + γ|∇ϕt(t)|2 + |θ(t)|2 dΓ0

)
.

Formally differentiating the energy E and using the differential equations and
boundary conditions in (1.1)–(1.5) we obtain

E′(t) = −
∫

Ω

|∇u|2 dΩ−
∫

Γ0

(σ|θ|2 + |∇θ|2) dΓ0 − κ
∫

Σ0

|θ|2 dΣ0

where

κ =

{
0 if λ1 = 0,

λ2/λ1 if λ1 > 0.
(1.8)
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This means that the dissipation of the system is due to the diffusion in the fluid
and heat components.

Without thermal effects and with hinged boundary conditions ϕ|Σ0
= ∆ϕ|Σ0

= 0
for the plate, the approximate controllability of the associated system was estab-
lished by Lions and Zuazua [21] using duality and variational techniques. The sys-
tem is somewhat similar to those presented in [11, 18]. In the absence of rotational
forces (γ = 0) and thermal effects, the well-posedness and exponential stability of
the system has been established in [1, 3, 10] and in [9] accounting only for longitu-
dinal displacement of the plate. To show the stability property, the authors in [1]
used the frequency domain approach which is done by showing the uniform bound-
edness of the resolvents on the imaginary axis. On the other hand, the authors of
[10] make use of an appropriate Lyapunov functional. It has been shown by Avalos
and Bucci [2] that the system is stable even for γ > 0, but now the decay rate is
rational. Recent related works for fluid-structure interaction models incorporating
viscoelasticity can be found in [28] and [30].

In this work, we will exhibit the exponential decay of the energy for the solutions
of the system (1.1)–(1.7) using appropriate multipliers in the time-domain space.
One hindrance in using the multiplier method is on how to eliminate the terms
arising from p − ν · ∂u∂ν in the plate equation. We can view the latter term as an
(unbounded) feedback interconnection of the fluid and plate components. In fact,
using the Agmon-Douglis-Nirenberg Theorem and a standard trace estimate one
can majorize the L2-norm of p− ν · ∂u∂ν in terms of the H

3
2 -norm of ϕt, an estimate

incompatible to the natural state space associated with ϕt. Alternatively, we shall
eliminate this term using the properties of the Stokes map introduced by Chuesov
and Ryzhkova [10], which is an improvement of the classical results for the Stokes
equation, see [27] for example. However, a problem arises in applying this map, it
only applies to functions in Γ0 that have zero average. To circumvent this problem,
we shall enforce the multipliers to have zero average through mollifiers.

Although both the fluid and plate domains are assumed to be smooth, our results
can be eventually extended to certain non-smooth geometries, for example those
that satisfy the criteria in [2]. Such configurations include canonical polyhedra and
cylinders that are utilized in numerical analysis and simulations, for instance, in
finite element methods.

This paper will be organized as follows. In Section 2, we present the suitable
function spaces for which system (1.1)–(1.7) will be studied. The semigroup well-
posedness of the model will be established in Section 3. In Section 4, we introduce
the notion of modified multipliers. Finally, using appropriate multipliers along with
their modified versions, we prove the uniform exponential stability of the system in
Section 5.

2. Spaces and operators for the abstract formulation. In this section we
introduce the relevant spaces and operators necessary in the abstract formulation
and analysis of the system (1.1)–(1.7). For the fluid component, the state space is
given by

H = {u ∈ [L2(Ω)]3 : div u = 0 in Ω and u · ν = 0 on Γ1}
and it is endowed with the L2-norm. Recall that an element u ∈ [L2(Ω)]3 with

L2-distributional divergence admits a generalized trace u · ν ∈ H− 1
2 (Γ). In fact, if

L2
div(Ω) = {u ∈ [L2(Ω)]3 : div u ∈ L2(Ω)}
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is equipped with the graph norm then u 7→ u · ν ∈ L(L2
div(Ω), H−

1
2 (Γ)). One can

also localize the generalized trace u · ν on Γ0 and Γ1. Consider the space

V = {u ∈ [H1(Ω)]3 : div u = 0 in Ω and u = 0 on Γ1}
with the norm ‖∇ · ‖[L2(Ω)]3×3 , which is equivalent to the full norm in [H1(Ω)]3

according to the Poincaré inequality. If C∞σ,Γ0
(Ω) is the space of all infinitely dif-

ferentiable vector-valued functions on Ω that are divergence-free and vanish on a
neighborhood of Γ1, then H and V are the completions of C∞σ,Γ0

(Ω) with respect to

the L2-norm and H1-norm, respectively.
Next, we define the bi-Laplace and Laplace operators on various domains. Define

the bi-Laplacian operator A : D(A) ⊂ L2(Γ0)→ L2(Γ0), where

D(A) = H4(Γ0) ∩H2
0 (Γ0),

by

Aϕ = ∆2ϕ.

It is known that A is a positive self-adjoint operator on L2(Γ0) and hence the
fractional powers Aα of A are well-defined on suitable domains for α ∈ R. In
particular, D(A

1
2 ) = H2

0 (Γ0) and

‖ϕ‖
D(A

1
2 )

= ‖∆ϕ‖L2(Γ0), ∀ϕ ∈ H2
0 (Γ0).

Moreover, A can be extended to a bounded linear operator

A ∈ L(D(A
1
2 ), D(A

1
2 )′)

where D(A
1
2 )′ is the dual of D(A

1
2 ) with respect to the pivot space L2(Γ0), and it

holds that

〈Aϕ, ϕ̃〉
D(A

1
2 )′×D(A

1
2 )

= (∆ϕ,∆ϕ̃)L2(Γ0), ∀ϕ, ϕ̃ ∈ H2
0 (Γ0). (2.1)

Denote by AD : D(AD) ⊂ L2(Γ0)→ L2(Γ0) the Dirichlet Laplacian

ADϕ = −∆ϕ

with domain D(AD) = H2(Γ0)∩H1
0 (Γ0). By the Poincaré inequality and standard

elliptic results it can be seen that the norm ‖ · ‖D(AD) := ‖AD · ‖L2(Γ0) on D(AD) is

equivalent to the induced norm of D(AD) as a subspace of H2(Γ0). The operator
AD is a positive selfadjoint operator on L2(Γ0) and

A−1
D ∈ L(L2(Γ0), H2(Γ0) ∩H1

0 (Γ0)). (2.2)

Therefore, the pseudo-differential operator A−1
D is regularizing.

Given γ > 0, the operator Pγ : D(AD) ⊂ L2(Γ0)→ L2(Γ0) defined by

Pγ = I + γAD

is also positive self-adjoint operator with square root P
1
2
γ : D(A

1
2

D) = H1
0 (Γ0) ⊂

L2(Γ0)→ L2(Γ0) and there holds

(P
1
2
γ ϕ, P

1
2
γ ϕ̃)L2(Γ0) = (ϕ, ϕ̃)L2(Γ0) + γ(∇ϕ,∇ϕ̃)L2(Γ0), ∀ϕ, ϕ̃ ∈ H1

0 (Γ0).

A typical extension procedure shows that Pγ admits an extension

Pγ ∈ L(H1
0 (Γ0), H−1(Γ0))

which has a bounded inverse. In fact, if we equipped the space H1
0 (Γ0) with the

norm ‖P
1
2
γ · ‖L2(Γ0) and H−1(Γ0) is regarded as the dual of H1

0 (Γ0) with respect
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to the pivot space L2(Γ0), then Pγ becomes a unitary operator, see [29, Corollary
3.4.6].

Finally, we define AR : D(AR) ⊂ L2(Γ0)→ L2(Γ0) by

ARθ = −∆θ + σθ

where D(AR) = {u ∈ H2(Γ0) : λ1
∂θ
∂ν + λ2θ = 0}. Note that if σ = λ1 = 0 and

λ2 > 0 then AR = AD. Let VR be the space H1(Γ0) endowed with the inner product

(θ, θ̃)VR = σ(θ, θ̃)L2(Γ0) + (∇θ,∇θ̃)L2(Γ0) + κ(θ, θ̃)L2(Σ0)

where κ is the constant defined in (1.8). Because σ + λ2 > 0, it follows that the
norm induced by this inner product is equivalent to norm of H1(Γ0).

It will be needed to rewrite the heat equation in terms of the Dirichlet Laplacian
so as to apply the operator A−1

D . For this reason we define the Dirichlet map D

h = Dg ⇐⇒

{
∆h = 0 in Γ0,

h = g on Σ0.

The notations γ0 and γ1 for the zero and first order traces will be utilized. The
Robin map AR can now be expressed in terms of the operators AD, D and γ0 as
follows

AR = AD(I −Dγ0) + σI. (2.3)

In stuyding the system (1.1)–(1.7), the pressure term p will be eliminated as in
[3, 4, 7]. This is done by observing that the pressure satisfies an elliptic boundary
value problem with mixed Neumann and Robin type-boundary conditions. The
suitable mixed Neumann-Robin maps R0 and R1 are as follows, compare with [2, 3],

p = R0q ⇐⇒


∆p = 0 in Ω,

∂p

∂ν
= 0 on Γ1,

∂p

∂ν
+ P−1

γ p = q on Γ0,

p = R1q ⇐⇒


∆p = 0 in Ω,

∂p

∂ν
= q on Γ1,

∂p

∂ν
+ P−1

γ p = 0 on Γ0.

The classic elliptic regularity results in [20, p. 152] give us

D ∈ L(Hs(Σ0), Hs+ 1
2 (Γ0)) and Ri ∈ L(Hs(Γi), H

s+ 3
2 (Ω)) (2.4)

for s ∈ R and i = 0, 1.
According to the compatibility condition (1.2), one also need to introduce func-

tions on Γ0 that have average zero. Let

L̂2(Γ0) = {ϕ ∈ L2(Γ0) :

∫
Γ0

ϕdΓ0 = 0}

viewed as a subspace of L2(Γ0). For every s ≥ 0 we define

Ĥs
0(Γ0) = Hs

0(Γ0) ∩ L̂2(Γ0).

Clearly, Ĥs
0(Γ0) is a closed subspace of Hs

0(Γ0).
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In dealing with the energy estimates, we will frequently use the following result
in [10, Proposition 2.2]. This has been shown under the hypothesis that Γ0 is flat.
However, the proof can be adapted to a curved Γ0. In fact, the flatness of Γ0 was
not explicitly used in the proof.

Theorem 2.1. Let S be the Stokes map defined in the following way

u = Sϕ ⇐⇒


−∆u+∇p = 0 in Ω,

div u = 0 in Ω,

u = 0 on Γ1,

u = ϕν on Γ0.

(2.5)

Then it holds that S ∈ L(L̂2(Γ0), [H
1
2 (Ω)]3 ∩H) ∩ L(Ĥ1

0 (Γ0), [H
3
2 (Ω)]3 ∩H).

We can think of the Stokes map S as a lifting operator for functions in Γ0 to
functions in Ω. This information will allow us to eliminate the terms involving
p − ν · ∂u∂ν in the thermoelastic system (1.3) when using the multiplier method.
However, the drawback in applying the Stokes map is that the multiplier should
have zero average. This means that we need to modify the multipliers introduced
in the literature in order for them to be applicable in the present case. To do this,
we subtract the original multiplier by a suitable regularized version with respect to
space.

3. Abstract formulation and main results. As noted in the earlier works [7,
8], one cannot apply the usual Leray projection method to deal with the Stokes
equation (1.1) due to the Neumann-type boundary condition on Γ0. An alternative
and novel approach presented in these papers to solve this problem is to eliminate
the pressure by writing it in terms of the fluid velocity and the state variables
associated with the structure. The same idea has been used to compute numerical
approximations for the Stokes equation using pressure-matrix methods, see [26,
Section 9.6.1] and the references therein. The procedure will also enable us to
recover the pressure for the strong solutions of the system. In our case, we need
to express p as a function of the fluid velocity u, the plate displacement ϕ and
temperature θ. With this representation it is possible to express the system (1.1)–
(1.7) in an abstract form and semigroup methods are amenable to establish its
well-posedness.

3.1. Resolution of the pressure. For smooth solutions it can be checked that for
each time t the pressure is a harmonic function in Ω with mixed Neumann-Robin
boundary conditions

∆p(t) = 0 in Ω,

∂p(t)

∂ν
= ∆u(t) · ν on Γ1,

∂p(t)

∂ν
+ P−1

γ p(t) = P−1
γ

(
∆2ϕ(t) + ∆θ(t) + ν · ∂u(t)

∂ν

)
+ ∆u(t) · ν on Γ0.

See [3] or the proof of Theorem 3.1 below for the verification of this claim. Intro-
ducing the following maps

G1u = R1(∆u · ν|Γ1
),
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G2u = R0(∆u · ν|Γ0 + P−1
γ (ν · γ1u)),

G3ϕ = R0(P−1
γ ∆2ϕ),

G4θ = R0(P−1
γ ∆θ),

the pressure term can be written in terms of (u, ϕ, θ) as

p = G(u, ϕ, θ) := G1u+G2u+G3ϕ+G4θ. (3.1)

If u ∈ [H2(Ω)]3 ∩ H then ∆u ∈ [L2(Ω)]3 and div ∆u = ∆ div u = 0 in Ω so that

∆u · ν|Γi is well-defined in H−
1
2 (Γi) for i = 0, 1. From (2.4) it follows that if

(u, ϕ, θ) ∈ ([H2(Ω)]3 ∩H)×H3(Γ0)×H2(Γ0)

then the maps Gi are well-defined and p given by (3.1) lies in H1(Ω).

3.2. Abstract formulation. As noted in the literature, we shall also need to factor
the constant functions associated with the state space for displacement of the plate.
Indeed, by integrating the compatibility condition (1.2) from 0 to t one obtains∫

Γ0

ϕ(t) dΓ0 =

∫
Γ0

ϕ(0) dΓ0.

With this consideration, we shall take the state space

H = {(u, ϕ1, ϕ2, θ) ∈ H ×D(A
1
2 )×D(P

1
2
γ )× L2(Γ0)

: ϕ1, ϕ2 ∈ L̂2(Γ0), u · ν|Γ0
= ϕ2}

which is a Hilbert space under the inner product

((u, ϕ1, ϕ2, θ), (ũ, ϕ̃1, ϕ̃2, θ̃))H

= (u, ũ)[L2(Ω)]3 + (A
1
2ϕ1, A

1
2 ϕ̃1)L2(Γ0) + (P

1
2
γ ϕ1, P

1
2
γ ϕ̃2)L2(Γ0) + (θ, θ̃)L2(Γ0).

Define the operator A : D(A) ⊂ H → H by

A =


∆−∇G1 −∇G2 −∇G3 0 −∇G4

0 0 I 0
P−1
γ (G1 +G2 − ν · γ1) P−1

γ (−A+G3) 0 P−1
γ (AR − σI +G4)

0 0 −AD −AR


with domain D(A) consisting of all elements (u, ϕ1, ϕ2, θ) ∈ H satisfying all of the
following conditions:

(i) (u, ϕ1, ϕ2, θ) ∈ ([H2(Ω)]3 ∩ V )×H3(Γ0)×D(A
1
2 )×D(AR),

(ii) −∆u+∇p ∈ H where p = G(u, ϕ1, θ),
(iii) u = ϕ2ν on Γ0,

(iv) P−1
γ (Aϕ1 − (AR − σ)θ + ν · γ1u− p) ∈ Ĥ1

0 (Γ0).

The system can now be written as an abstract Cauchy problem on H{
U̇(t) = AU(t), t > 0,

U(0) = U0,
(3.2)

with the state variable U = (u, ϕ1, ϕ2, θ) and initial data U0 = (u0, ϕ0, ϕ1, θ0).
In the succeeding theorem, we show that A is the generator of a strongly contin-

uous semigroup of contractions on H by invoking the well-known Lumer-Philipps
Theorem in reflexive Banach spaces. This requires to prove the dissipativity of A
and the range condition R(λI−A) = H for some λ > 0. Without thermal effects and
flat Γ0 this range condition was demonstrated in [3] using a nonstandard variational
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mixed method, specifically, the Babus̆ka-Brezzi Theorem. This mixed formulation
can be utilized in the numerical analysis for the approximations of steady-state so-
lutions. However, in our case it is enough to prove the range condition by showing
that 0 ∈ ρ(A). Indeed, if this is the case then from the fact that the resolvent set
ρ(A) is open, there exists λ > 0 such that λ ∈ ρ(A) and thus R(λI −A) = H. The
latter method has its advantage. The system of equations that are needed to solve
are now weakly coupled and one may solve them successively.

Theorem 3.1. The operator A generates a strongly continuous semigroup of con-
tractions on H. In particular, for every initial data U0 ∈ H the Cauchy problem
admits a unique mild solution U ∈ C([0,∞),H). Moreover, the components u and
θ of the solution satisfy

(u, θ) ∈ L2(0,∞;V × VR). (3.3)

Proof. First we show the dissipativity of A. Let U = (u, ϕ1, ϕ2, θ) ∈ D(A). Apply-
ing Green’s formula gives us∫

Ω

(∆u−∇p) · udΩ =

∫
Γ0

(
ν · ∂u

∂ν
− p
)
ϕ2 dΓ0 −

∫
Ω

|∇u|2 dΩ (3.4)

after using div u = 0 on Ω and the boundary conditions u = ϕ2ν on Γ0 and u = 0
on Γ1. On the other hand, from the duality pairing (2.1) we have∫

Γ0

P
− 1

2
γ

(
−Aϕ1 + (AR − σI)θ − ν · ∂u

∂ν
+ p
)
P

1
2
γ ϕ2 dΓ0

= − 〈Aϕ1, ϕ2〉
D(A

1
2 )′×D(A

1
2 )
−
∫

Γ0

(∆θ)ϕ2 dΓ0 −
∫

Γ0

(
ν · ∂u

∂ν
− p
)
ϕ2 dΓ0

= −
∫

Γ0

∆ϕ1∆ϕ2 dΓ0 +

∫
Γ0

∇θ · ∇ϕ2 dΓ0 −
∫

Γ0

(
ν · ∂u

∂ν
− p
)
ϕ2 dΓ0 (3.5)

since ϕ2 = 0 on Σ0. For the heat component it holds that∫
Γ0

(∆θ − σθ + ∆ϕ2)θ dΓ0 = − σ

∫
Γ0

|θ|2 dΓ0 −
∫

Γ0

|∇θ|2 dΓ0 − κ
∫

Σ0

|θ|2 dΣ0

−
∫

Γ0

∇ϕ2 · ∇θ dΓ0. (3.6)

Taking the sum of (3.4)–(3.6) and getting the real part yields

Re(AU,U)H = −
∫

Ω

|∇u|2 dΩ−
∫

Γ0

(σ|θ|2 + |∇θ|2) dΓ0 − κ
∫

Σ0

|θ|2 dΣ0

and this shows that A is dissipative.
Next, we prove that 0 lies in the resolvent set of A. Given (u∗, ϕ∗1, ϕ

∗
2, θ
∗) ∈

H we need to find a unique (u, ϕ1, ϕ2, θ) ∈ D(A) such that A(u, ϕ1, ϕ2, θ) =
(u∗, ϕ∗1, ϕ

∗
2, θ
∗) and

‖(u, ϕ1, ϕ2, θ)‖H ≤ C‖(u∗, ϕ∗1, ϕ∗2, θ∗)‖H (3.7)

for some constant C > 0 independent on (u, ϕ1, ϕ2, θ) and (u∗, ϕ∗1, ϕ
∗
2, θ
∗). The

equation to be solved is equivalent in solving the Stokes equation
−∆u+∇p = −u∗ ∈ H in Ω,

div u = 0 in Ω,

u = 0 on Γ1,

u = ϕ∗1ν ∈ Ĥ2
0 (Γ0) on Γ0,

(3.8)
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the biharmonic equation
∆2ϕ1 = −∆θ + p− ν · ∂u

∂ν
− (I − γ∆)ϕ∗2 ∈ H−1(Γ0) in Γ0,

ϕ1 =
∂ϕ1

∂ν
= 0 on Σ0,

(3.9)

and the elliptic equation−∆θ + σθ = ∆ϕ∗1 − θ∗ ∈ L2(Γ0) in Γ0,

λ1θ + λ2
∂θ

∂ν
= 0 on Σ0,

(3.10)

where we used ϕ2 = ϕ∗1. Notice that we can solve first the Stokes and elliptic
equations and then use the solution to solve the biharmonic equation.

From [27, Theorem 2.4], the Stokes equation (3.8) admits a unique solution
(u, p̃) ∈ ([H2(Ω)]3∩V )×(H1(Ω)/R) and according to the Agmon-Douglis-Nirenberg
Theorem and Poincaré inequality we deduce

‖u‖[H2(Ω)]3 + ‖p̃‖H1(Ω)/R ≤ C(‖∆ϕ∗1‖L2(Γ0) + ‖u∗1‖H). (3.11)

Therefore by trace theory we obtain from (3.11)

‖p̃‖L2(Γ0) +

∥∥∥∥∂u∂ν
∥∥∥∥
L2(Γ0)

≤ C(‖∆ϕ∗1‖L2(Γ0) + ‖u∗1‖H). (3.12)

Notice that p = p̃+p∗, where p∗ is a constant, is still an admissible pressure for the
Stokes problem and satisfies the stability estimate

‖u‖[H2(Ω)]3 + ‖p‖H1(Ω) ≤ C(‖∆ϕ∗1‖L2(Γ0) + ‖u∗1‖H), (3.13)

and hence (3.12) where p̃ is replaced by p.
In virtue of the Lax-Milgram lemma, the elliptic equation (3.10) has a unique

solution θ ∈ D(AR) and it satisfies

‖θ‖VR ≤ C(‖∆ϕ∗1‖L2(Γ0) + ‖θ∗‖L2(Γ0)). (3.14)

By standard elliptic theory, the biharmonic problem (3.9) admits a unique solution
ϕ1 ∈ H3(Γ0) ∩ H2

0 (Γ0), see [20, p. 152] for example. However, there is no reason
that ϕ1 necessarily has average zero. This will be done, following the method in [8],
by choosing the appropriate constant p∗.

Let ζ ∈ H4(Γ0) ∩H2
0 (Γ0) be the solution of the biharmonic problem ∆2ζ = 1 in Γ0,

ζ =
∂ζ

∂ν
= 0 on Σ0.

(3.15)

We test equation (3.9) with ζ to obtain

〈Aϕ1, ζ〉
D(A

1
2 )′×D(A

1
2 )

(3.16)

= (−∆θ + p̃+ p∗ − ν · ∂u
∂ν
, ζ)L2(Γ0) − 〈Pγϕ∗2, ζ〉H−1(Γ0)×H1

0 (Γ0).

Acording to the following equations

〈Aϕ1, ζ〉
D(A

1
2 )′×D(A

1
2 )

=

∫
Γ0

ϕ1 dΓ0
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〈Pγϕ∗2, ζ〉
D(P

1
2
γ )′×D(P

1
2
γ )

=

∫
Γ0

ϕ∗2Pγζ dΓ0

(p∗, ζ)L2(Γ0) =

∫
Γ0

p∗|∆ζ|2 dΓ0

we obtain from (3.16) that ϕ1 ∈ L̂2(Γ0) if and only if

p∗ =

(∫
Γ0

|∆ζ|2 dΓ0

)−2 ∫
Γ0

[(
∆θ − p̃+ ν · ∂u

∂ν

)
ζ + ϕ∗2Pγζ

]
dΓ0. (3.17)

Therefore we choose p∗ according to (3.17).
Replacing ζ by ϕ1 in the above calculations, we have instead

‖∆ϕ1‖2L2(Γ0) = −(θ,∆ϕ1)L2(Γ0) + (p− ν · γ1u, ϕ1)L2(Γ0) − (ϕ∗2, Pγϕ1)L2(Γ0).

Using the Cauchy-Schwarz and Poincaré inequalities together with (3.12) and (3.14)
in the latter equality we obtain

‖∆ϕ1‖L2(Γ0) ≤ C(‖θ‖L2(Γ0) + ‖p‖L2(Γ0) + ‖γ1u‖L2(Γ0) + ‖ϕ∗2‖L2(Γ0))

≤ C(‖θ∗‖L2(Γ0) + ‖∆ϕ∗1‖L2(Γ0) + ‖u∗1‖H + ‖ϕ∗2‖L2(Γ0)) (3.18)

for some constant C > 0. Furthermore, since ϕ2 = ϕ∗1 it holds that

‖ϕ2‖L2(Γ0) + ‖∇ϕ2‖L2(Γ0) ≤ C‖∆ϕ∗1‖L2(Γ0). (3.19)

Combining the estimates (3.13), (3.14), (3.18) and (3.19) proves (3.7).
Finally, it remains to check that p satisfies (3.1). Since both u and u∗ are in H

∆p = div(∇p) = div(∆u− u∗) = 0.

Applying P−1
γ to both sides of (3.9) produces

P−1
γ (∆2ϕ1 + ∆θ + ν · γ1u) = P−1

γ p− ϕ∗2 in H1
0 (Γ0).

Taking into account the definition of the state space H we have ϕ∗2 = u∗ · ν =
∆u · ν −∇p · ν on Γ0 and hence

∂p

∂ν
+ P−1

γ p = P−1
γ (∆2ϕ1 + ∆θ + ν · γ1u) + ∆u · ν in H−

1
2 (Γ0).

On the other hand, ∆u · ν −∇p · ν = u∗ · ν = 0 on Γ1 and hence

∂p

∂ν
= ∆u · ν in H−

1
2 (Γ1).

Thus p = G(u, ϕ1, θ) and we obtain from the above discussions that 0 ∈ ρ(A).
Therefore A generates a strongly continuous semigroup of contractions on X

by the Lumer-Philipps Theorem. The additional regularity (3.3) for u and θ is a
consequence of the identity∫ T

0

‖∇u‖2[L2(Ω)]3×3 + ‖θ‖2VR dt = ‖U0‖2X − ‖eTAU0‖2X , ∀U0 ∈ D(A), T > 0,

(3.20)
and the density of D(A) in X . This completes the proof of the theorem.

Remark 1. If U0 ∈ D(A) then standard semigroup theory gives us the additional
regularity of the strong solutions of (3.2)

(u, ϕ, ϕt, θ) ∈ C([0,∞), D(A)) ∩ C1([0,∞),H).

The analysis in the proof of Theorem 3.1 shows that

p ∈ C([0,∞), H1(Ω)), u ∈ C([0,∞), [H2(Ω)]3 ∩ V ). (3.21)



STABILITY OF A FLUID-PLATE INTERACTION MODEL 49

Indeed, for every t ∈ [0,∞) we have
−∆u(t) +∇p(t) = − ut(t) in Ω,

div u(t) = 0 in Ω,

u(t) = 0 on Γ1,

u(t) = ϕt(t)ν on Γ0,

(3.22)

where the first equation holds in [L2(Ω)]3. Hence one has the estimate

‖u(t)‖[H2(Ω)]3 + ‖p(t)‖H1(Ω) ≤ C
(
‖ut(t)‖L2[(Ω)]3 + ‖ϕt(t)‖H2

0 (Γ0)

)
, t ≥ 0.

The continuity of p and u as mentioned in (3.21) follows from this estimate and the
fact that ut ∈ C([0,∞), [L2(Ω)]3) and ϕt ∈ C([0,∞), H2

0 (Ω)).
If the initial data U0 lies in D(A) then we have the following equations

ϕtt(t)− γ∆ϕtt(t) = −∆2ϕ(t)−∆θ(t)− ν · ∂u(t)

∂ν
+ p(t) in H−1(Γ0), (3.23)

θt(t) = ∆θ(t)− σθ + ∆ϕt(t) in L2(Γ0), (3.24)

hold pointwise-in-time. If in addition, U0 ∈ D(A2) then (3.23) holds in L2(Γ0) and

(ϕ,ϕt, θ) ∈ C([0,∞), H4(Γ0)×H3(Γ0)×H2(Γ0)).

The above regularity properties will justify the calculations that is provided in the
succeeding section.

Remark 2. By trace theory and Poincaré inequality we obtain from the boundary
condition on Γ0 in (3.22) that∫ T

0

∫
Γ0

|ϕt|2 dΓ0 dt ≤ C
∫ T

0

∫
Ω

|∇u|2 dΩ dt (3.25)

for some constant C > 0 independent of T , ϕt and u. The estimate (3.25) implies
that the diffusion of the fluid implies the dissipation of the velocity ϕt of the plate.
This observation plays a crucial role in the derivation of energy estimates that are
required in the proof of Theorem 3.2 below.

3.3. Main result. We now state the main theorem of this paper.

Theorem 3.2. For every initial data in H, the energy of the solution of the Cauchy
problem (3.2) decay exponentially. In other words, there exist constants M ≥ 1 and
a > 0 such that

E(t) ≤ME(0)e−at, ∀t ≥ 0. (3.26)

We shall prove this theorem using suitable multipliers. To establish (3.26), it
is enough to estimate the total energy on sufficiently large time intervals [0, T ] in
terms of the final energy, the initial energy and the total dissipation on [0, T ]. In
other words, we want to derive the energy estimate∫ T

0

E(t) dt ≤ C

(
E(T ) + E(0) +

∫ T

0

D(t) dt

)
, ∀T > T ∗, (3.27)

for some constants C > 0 (independent of T ) and T ∗ ≥ 0, where D is the dissipation
term given by

D(t) =
1

2
(‖∇u(t)‖2[L2(Ω)]3×3 + ‖θ(t)‖2VR). (3.28)
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Indeed, from (3.20) and the fact that the energy is decreasing, (3.27) implies

TE(T ) ≤ 2C(E(T ) + E(0)).

Thus, if T > max(T ∗, 4C) then

E(T ) ≤ δTE(0)

where δT = 2C/(T − 2C) ∈ (0, 1). The exponential decay property (3.26) now
follows from the latter inequality together with induction and the evolution property.

We note that as in Avalos and Lasiecka [6], the decay rate in Theorem 3.2 is not
uniform in γ > 0. However, in the case of γ = 0 one may proceed using the same
techniques presented here.

4. Modification of multipliers. As stated in the introduction, we will utilize
suitable multipliers to derive the energy estimates required to obtain exponential
stability of the system (1.1)–(1.7). First, we discuss a simple but efficient way of
modifying the multipliers suitable to the Stokes map S in Theorem 2.1. Fix a
smooth cut-off function ρ ∈ C∞0 (Γ0) such that ρ ≥ 0 in Γ0 and

∫
Γ0
ρdΓ0 = 1. For

a function f defined on (0, T )× Γ0 we set

(Iρf)(t, x) := ρ(x)

∫
Γ0

f(t, y) dΓ0y, (t, x) ∈ (0, T )× Γ0,

whenever the integral makes sense. Note that supp Iρf(t, ·) ⊂ supp ρ and hence
Iρf(t, ·) is also compactly supported in Γ0. The operator Iρ is regularizing with
respect to space in the sense that

Iρ ∈ L(Lp(0, T ;L2(Γ0)), Lp(0, T ;Hs
0(Γ0))) (4.1)

for every s ≥ 0 and 1 ≤ p ≤ ∞, with operator norm independent of T and depending
only on (p, s, ρ,Γ0).

Let us define the map

f 7→Mρf := f − Iρf.
In the subsequent discussions, if f is a specific multiplier then Mρf is called the
modified multiplier. According to the definition of Mρf we have∫

Γ0

(Mρf)(t) dΓ0 = 0, t ∈ (0, T ),

for suitable f . Therefore Mρf is a suitable argument for the Stokes map S whenever
f is sufficiently regular. This choice of multiplier Mρf is somewhat similar to the
one given by Haraux [12] for damped wave equations, see also [15].

If f ∈ L2(0, T ; L̂2(Γ0)) then (Mρf)(t) = f(t) in L̂2(Γ0) for a.e. t ∈ (0, T ), that

is, Mρ is invariant under functions that take values in L̂2(Γ0). For each nonnegative

integers k and j, if f ∈ Hj(0, T ;Hk(Γ0)) then Mρf ∈ Hj(0, T ; Ĥk(Γ0)) and

j∑
i=1

∫ T

0

‖∂itMρf(t)‖2Hk(Γ0) dt ≤ C
j∑
i=1

∫ T

0

‖∂itf(t)‖2
Ĥk(Γ0)

dt,

for some constant C > 0 independent of f . Therefore

Mρ ∈ L(Hj(0, T ;Hk(Γ0)), Hj(0, T ; Ĥk(Γ0))). (4.2)
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Lemma 4.1. Let T > 0, ε > 0 and f ∈ L2(0, T ;H1
0 (Γ0))∩H1(0, T ;L2(Γ0)). Then

for every initial data in D(A), the component u of the solution and the pressure p
satisfy the estimate∣∣∣∣ ∫ T

0

∫
Γ0

(
ν · ∂u

∂ν
− p
)
Mρf dΓ0 dt

∣∣∣∣
≤ Cρ

∫
Ω

|u(T )|2 + |u(0)|2 dΩ + Cρ

∫
Γ0

|f(T )|2 + |f(0)|2 dΓ0

+ Cε,ρ

∫ T

0

∫
Ω

|∇u|2 dΩ dt+ ε

∫ T

0

∫
Γ0

|f |2 + |∇f |2 + |ft|2 dΓ0 dt, (4.3)

for some constants Cρ > 0 and Cε,ρ > 0 independent of T , u and f .

Proof. We multiply the linearized Navier-Stokes equation (1.1) by SMρf , which is

admissible since Mρf ∈ L2(0, T ; Ĥ1
0 (Γ0))∩H1(0, T ; L̂2(Γ0)) from (4.2), and use the

divergence theorem and Green’s identity to obtain

0 =

∫ T

0

∫
Ω

(ut −∆u+∇p) · SMρf dΩ dt

=

[ ∫
Ω

u · SMρf dΩ

]T
0

−
∫ T

0

∫
Ω

u · SMρft +∇u · ∇SMρf dΩ dt

−
∫ T

0

∫
Γ0

(
ν · ∂u

∂ν
− p
)
Mρf dΓ0 dt (4.4)

after using divSMρf = 0 in Ω and the boundary conditions u = 0 on Γ1 and
SMρf = (Mρf)ν on Γ0.

By Theorem 2.1, the properties of the map Mρ and the embedding [H
1
2 (Ω)]3 ⊂

[L2(Ω)]3 we have∫
Ω

|SMρf(t)|2 dΩ ≤ C
∫

Γ0

|Mρf(t)|2 dΓ0 ≤ Cρ
∫

Γ0

|f(t)|2 dΓ0 (4.5)

for every t ∈ [0, T ] and∫ T

0

∫
Ω

|SMρft|2 dΩ dt ≤ Cρ
∫ T

0

∫
Γ0

|ft|2 dΓ0 dt. (4.6)

Similarly, the embedding [H
3
2 (Ω)]3 ⊂ [H1(Ω)]3 and Theorem 2.1 imply∫ T

0

∫
Ω

|∇SMρf |2 dΩ dt ≤ C
∫ T

0

∫
Γ0

|Mρf |2 + |∇(Mρf)|2 dΓ0 dt

≤ Cρ
∫ T

0

∫
Γ0

|f |2 + |∇f |2 dΓ0 dt. (4.7)

The desired estimate (4.3) follows from (4.4)–(4.7) together with Young’s and
Poincaré inequalities.

We will utilize this lemma with f being h · ∇ϕ, A−1
D θ or ϕ, where h is a smooth

extension of ν to Γ0 (see Remark 3 below for a short historical account regarding
these multipliers). The additional terms obtained by enforcing the compatibility
condition will be estimated with the help of the following lemma.
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Lemma 4.2. Let T > 0, ε > 0 and f ∈ H1(0, T ;L2(Γ0)). For every data in D(A2)
the components u and θ of the solution satisfy the estimate∣∣∣∣ ∫ T

0

∫
Γ0

(ϕtt − γ∆ϕtt + ∆2ϕ+ ∆θ)Iρf dΓ0 dt

∣∣∣∣
≤ C

∫
Γ0

|ϕt(T )|2 + |∇ϕt(T )|+ |ϕt(0)|2 + |∇ϕt(0)|2 dΓ0

+ C

∫
Γ0

|f(T )|2 + |f(0)|2 dΓ0 + Cε

∫ T

0

∫
Γ0

|f |2 + |ft|2 dΓ0 dt

+ C

∫ T

0

∫
Γ0

|ϕt|2 + |∇θ|2 dΓ0 dt+ ε

∫ T

0

∫
Γ0

|∆ϕ|2 + |∇ϕt|2 dΓ0 dt

for some constants C = Cρ,γ,Γ0
> 0 and Cε = Cε,ρ,γ,Γ0

> 0.

Proof. Integrating by parts in time, using Green’s identities, the boundary condi-
tions and the fact that Iρf vanishes on Σ0 yield∫ T

0

∫
Γ0

(ϕtt − γ∆ϕtt + ∆2ϕ+ ∆θ)Iρf dΓ0 dt

=

[ ∫
Γ0

ϕtIρf dΓ0

]T
0

−
∫ T

0

∫
Γ0

ϕtIρft dΓ0 dt+

[
γ

∫
Γ0

∇ϕt · ∇(Iρf) dΓ0

]T
0

− γ

∫ T

0

∫
Γ0

∇ϕt · ∇(Iρft) dΓ0 dt+

∫ T

0

∫
Γ0

∆ϕ∆(Iρf) dΓ0 dt

−
∫ T

0

∫
Γ0

∇θ · ∇(Iρf) dΓ0 dt. (4.8)

According to the regularizing property of Iρ, see (4.1), we have the following esti-
mates ∫

Γ0

|Iρf(t)|2 + |∇(Iρf)(t)|2 dΓ0 ≤ C
∫

Γ0

|f(t)|2 dΓ0, t ∈ [0, T ], (4.9)∫ T

0

∫
Γ0

|Iρft|2 + |∇(Iρft)|2 dΓ0 dt ≤ C
∫ T

0

∫
Γ0

|ft|2 dΓ0 dt, (4.10)∫ T

0

∫
Γ0

|∇(Iρf)|2 + |∆(Iρf)|2 dΓ0 dt ≤ C
∫ T

0

∫
Γ0

|f |2 dΓ0 dt, (4.11)

for some constant C = Cρ,Γ0
> 0. Using Young’s inequality in (4.8) and then

applying the estimates (4.9)–(4.11) we obtain the estimate of the lemma.

5. Proof of uniform stability. First, we give a hidden trace regularity for the
plate component that is similar to [6, 14, 19].

Theorem 5.1. For every initial data U0 ∈ H the component ϕ of the solution of
(3.2) satisfies ∆ϕ ∈ L2(0, T ;L2(Σ0)) and∫ T

0

∫
Σ0

|∆ϕ|2 dΣ0 dt ≤ C

(
E(T ) + E(0) +

∫ T

0

(E(t) +D(t)) dt

)
(5.1)

where C = Cρ,γ,Γ0 > 0 is independent of U0 and D is the function defined in (3.28).
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Proof. By a density argument, we may suppose that the initial data lies in D(A2).
Let h ∈ [C2(Γ0)]2 be a vector field such that h = ν on Σ0. We multiply the plate
equation in (1.3) by the multiplier Mρ(h · ∇ϕ) and integrate over time and space
to obtain ∫ T

0

∫
Γ0

(ϕtt − γ∆ϕtt + ∆2ϕ+ ∆θ)Mρ(h · ∇ϕ) dΓ0 dt

=

∫ T

0

∫
Γ0

(
p− ν · ∂u

∂ν

)
Mρ(h · ∇ϕ) dΓ0 dt. (5.2)

According to Remark 1, h · ∇ϕ ∈ C1([0, T ], H1
0 (Γ0)) for each T > 0. Thus, we

can apply Lemma 4.1 and Lemma 4.2. Using Lemma 4.1 with f = h ·∇ϕ and ε = 1
we have ∣∣∣∣ ∫ T

0

∫
Γ0

(
ν · ∂u

∂ν
− p
)
Mρ(h · ∇ϕ) dΓ0 dt

∣∣∣∣
≤ C

∫
Ω

|u(T )|2 + |u(0)|2 dΩ + C

∫
Γ0

|∇ϕ(T )|2 + |∇ϕ(0)|2 dΓ0

+ C

∫ T

0

∫
Ω

|∇u|2 dΩ dt+ Cγ

∫ T

0

∫
Γ0

|∆ϕ|2 + γ|∇ϕt|2 dΓ0 dt. (5.3)

On the other hand, Lemma 4.2 with f = h · ∇ϕ and ε = 1 produces the estimate∣∣∣∣ ∫ T

0

∫
Γ0

(ϕtt − γ∆ϕtt + ∆2ϕ+ ∆θ)Iρ(h · ∇ϕ) dΓ0 dt

∣∣∣∣
≤ C

∫
Γ0

|ϕt(T )|2 + |∇ϕt(T )|+ |ϕt(0)|2 + |∇ϕt(0)|2 dΓ0

+ Cγ

∫ T

0

∫
Γ0

|∆ϕ|2 + |ϕt|2 + γ|∇ϕt|2 + |∇θ|2 dΓ0 dt. (5.4)

To estimate the remaining terms in (5.2) we shall proceed as in [6, pp. 168–169].

Indeed, integrating by parts and using the fact that ϕ = ϕt = ∂ϕ
∂ν = ∂ϕt

∂ν = 0 and
h = ν on Σ0 we have∫ T

0

∫
Γ0

(ϕtt − γ∆ϕtt + ∆2ϕ+ ∆θ)h · ∇ϕdΓ0 dt

=

[ ∫
Γ0

ϕth · ∇ϕdΓ0

]T
0

−
∫ T

0

∫
Γ0

ϕth · ∇ϕt dΓ0 dt

+

[
γ

∫
Γ0

∇ϕt · ∇(h · ∇ϕ) dΓ0

]T
0

− γ
∫ T

0

∫
Γ0

∇ϕt · ∇(h · ∇ϕt) dΓ0 dt

−
∫ T

0

∫
Γ0

∇(∆ϕ) · ∇(h · ∇ϕ) dΓ0 dt−
∫ T

0

∫
Γ0

∇θ · ∇(h · ∇ϕ) dΓ0 dt. (5.5)

We shall estimate each terms on the right hand side of (5.5).
The first three terms can be simply estimated using the Cauchy-Schwarz and

Poincaré inequalities. For the fourth term, we use the divergence theorem to get∫ T

0

∫
Γ0

∇ϕt · ∇(h · ∇ϕt) dΓ0 dt =
1

2

∫ T

0

∫
Γ0

div(|∇ϕt|2h) dΓ0 dt+R1(T ) (5.6)
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where the remainder term R1(T ) can be estimated by

|R1(T )| ≤ C
∫ T

0

∫
Γ0

|∇ϕt|2 dΓ0 dt. (5.7)

Applying the divergence theorem once again together with |∇ϕt|2 = 0 and h · ν = 1
on Σ0 we obtain ∫

Γ0

div(|∇ϕt|2h) dΓ0 =

∫
Σ0

|∇ϕt|2 dΣ0 = 0. (5.8)

Consequently, from (5.6)–(5.8) one acquires the estimate∣∣∣∣ ∫ T

0

∫
Γ0

∇ϕt · ∇(h · ∇ϕt) dΓ0 dt

∣∣∣∣ ≤ C ∫ T

0

∫
Γ0

|∇ϕt|2 dΓ0 dt. (5.9)

Let us estimate the fifth term on the right hand side of (5.5). Before we proceed,
we note the following standard identities

2∇(∆ϕ) · ((∆ϕ)h) = h · ∇(|∆ϕ|2) (5.10)

∇(h · ∇ϕ) = H∇ϕ+ (∇2ϕ)h (5.11)

(∆ϕ)h = (∇2ϕ)h+ P (ϕ, h) (5.12)

where H is the Jacobian of h, ∇2ϕ is the Hessian of ϕ and

P (ϕ, h) =

(
h1ϕyy − h2ϕxy
h2ϕxx − h1ϕxy

)
.

Thus from (5.10)–(5.12) we have

−
∫ T

0

∫
Γ0

∇(∆ϕ) · ∇(h · ∇ϕ) dΓ0 dt = −
∫ T

0

∫
Γ0

∇(∆ϕ) ·H∇ϕdΓ0 dt

− 1

2

∫ T

0

∫
Γ0

h · ∇(|∆ϕ|2) dΓ0 dt+

∫ T

0

∫
Γ0

∇(∆ϕ) · P (ϕ, h) dΓ0 dt. (5.13)

Using the fact that ∂2u
∂τ2 = ((∇2ϕ)τ) · τ = 0 on Γ0, where τ = (−ν2, ν1), one can

show through integration by parts that (see [6])∣∣∣∣ ∫ T

0

∫
Γ0

∇(∆ϕ) · P (ϕ, h) dΓ0 dt

∣∣∣∣ ≤ C ∫ T

0

∫
Γ0

|∆ϕ|2 dΓ0 dt. (5.14)

On the other hand, according to the divergence theorem and |∇ϕ| = 0 on Γ0∣∣∣∣ ∫ T

0

∫
Γ0

∇(∆ϕ) ·H∇ϕdΓ0 dt

∣∣∣∣ ≤ C ∫ T

0

∫
Γ0

|∆ϕ|2 dΓ0 dt. (5.15)

The second term on the right hand side of (5.13) can be expressed using the
divergence theorem as∫ T

0

∫
Γ0

h · ∇(|∆ϕ|2) dΓ0 dt

=

∫ T

0

∫
Γ0

div(h|∆ϕ|2)− (div h)|∆ϕ|2 dΓ0 dt

=

∫ T

0

∫
Σ0

|∆ϕ|2 dΣ0 dt−
∫ T

0

∫
Γ0

(div h)|∆ϕ|2 dΓ0 dt. (5.16)
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Therefore from (5.13)–(5.16) we have

1

2

∫ T

0

∫
Σ0

|∆ϕ|2 dΣ0 dt

≤
∫ T

0

∫
Γ0

∇(∆ϕ) · ∇(h · ∇ϕ) dΓ0 dt+ C

∫ T

0

∫
Γ0

|∆ϕ|2 dΓ0 dt. (5.17)

The last term on the right hand side of (5.5) can be estimated as∣∣∣∣ ∫ T

0

∫
Γ0

∇θ · ∇(h · ∇ϕ) dΓ0 dt

∣∣∣∣
≤ 1

2

∫ T

0

∫
Γ0

|∇θ|2 dΓ0 dt+ C

∫ T

0

∫
Γ0

|∆ϕ|2 dΓ0 dt. (5.18)

Combining (5.2)–(5.5), (5.9), (5.17) and (5.18) proves the inequality (5.1).

The next step is to estimate the total kinetic energy of the plate component.
Due to (3.25) it is enough to consider the total energy of ∇ϕt. This is achieved by
the modified multiplier Mρ(A

−1
D θ). We recall that the pseudodifferential operator

A−1
D is smoothing in the sense that

‖A−1
D θ‖H2(Γ0) ≤ C‖θ‖L2(Γ0), (5.19)

see (2.2). Note that the heat equation in (1.3) can be rewritten in terms of the
pseudodifferential operator A−1

D as

A−1
D θt + (I −Dγ0)θ + σA−1

D θ + ϕt = 0. (5.20)

This follows from the representation (2.3). Therefore from (5.19), (5.20) and Dγ0 ∈
L(H1(Γ0))

‖A−1
D θt‖H1(Γ0) ≤ ‖(I −Dγ0)θ‖H1(Γ0) + σ‖A−1

D θ‖H1(Γ0) + ‖ϕt‖H1(Γ0)

≤ C(‖θ‖H1(Γ0) + ‖ϕt‖L2(Γ0) + ‖∇ϕt‖L2(Γ0)). (5.21)

Similarly, from (5.19) it holds that

‖A−1
D θt‖L2(Γ0) ≤ C(‖θ‖H1(Γ0) + ‖ϕt‖L2(Γ0)). (5.22)

Lemma 5.2. Let T > 0. For every data in D(A2) the component ϕ of the solution
of (3.2) satisfies the estimate

γ

2

∫ T

0

∫
Γ0

|∇ϕt|2 dΓ0 dt

≤ ε
∫ T

0

∫
Γ0

|∆ϕ|2 dΓ0 dt+ Cε

(
E(T ) + E(0) +

∫ T

0

D(t) dt

)
for every 0 < ε < γ

2 .

Proof. The proof is similar as in the proof of the previous theorem, but now using
the modified multiplier Mρ(A

−1
D θ). Because θ ∈ C1([0, T ], L2(Γ0)) for each T > 0 we

have A−1
D θ ∈ C1([0, T ], H2(Γ0)), and thus Lemma 4.1 and Lemma 4.2 are applicable.
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The estimate will be derived from the following identity∫ T

0

∫
Γ0

(ϕtt − γ∆ϕtt + ∆2ϕ+ ∆θ)Mρ(A
−1
D θ) dΓ0 dt

=

∫ T

0

∫
Γ0

(
p− ν · ∂u

∂ν

)
Mρ(A

−1
D θ) dΓ0 dt (5.23)

obtained by multiplying the plate equation in (1.3) by Mρ(A
−1
D θ) and integrating

over time and space.
According to Lemma 4.1 with f = A−1

D θ, (5.19) and (3.25) we can estimate the
right hand side of (5.23) as follows∣∣∣∣ ∫ T

0

∫
Γ0

(
ν · ∂u

∂ν
− p
)
Mρ(A

−1
D θ) dΓ0 dt

∣∣∣∣ ≤ C(E(T ) + E(0))

+ Cε

∫ T

0

∫
Ω

|∇u|2 dΩ dt+
ε

3

∫ T

0

∫
Γ0

|θ|2 + |∇θ|2 + |∇ϕt|2 dΓ0 dt. (5.24)

On the other hand, using Lemma 4.2 with f = A−1
D θ, (5.19), (5.21) and (5.22) we

obtain ∣∣∣∣ ∫ T

0

∫
Γ0

(ϕtt − γ∆ϕtt + ∆2ϕ+ ∆θ)Iρ(A
−1
D θ) dΓ0 dt

∣∣∣∣
≤ C(E(T ) + E(0)) + Cε

∫ T

0

∫
Ω

|∇u|2 dΩ dt+ Cε

∫ T

0

∫
Γ0

|θ|2 + |∇θ|2 dΓ0 dt

+
ε

3

∫ T

0

∫
Γ0

|∆ϕ|2 + |∇ϕt|2 dΓ0 dt (5.25)

after majorizing every term involving ϕt via (3.25).
Now we estimate the remaining terms in (5.23) separately. First let us note that

from (5.20) we have∫ T

0

∫
Γ0

(ϕtt − γ∆ϕtt)A
−1
D θ dΓ0 dt

=

[ ∫
Γ0

ϕtA
−1
D θ + γ∇ϕt · ∇(A−1

D θ) dΓ0

]T
0

+

∫ T

0

∫
Γ0

ϕt(I −Dγ0)θ + σϕtA
−1
D θ dΓ0 dt

+

∫ T

0

∫
Γ0

γ∇ϕt · ∇(I −Dγ0)θ + γσ∇ϕt · ∇(A−1
D θ) dΓ0 dt

+

∫ T

0

∫
Γ0

|ϕt|2 + γ|∇ϕt|2 dΓ0 dt. (5.26)

By trace theory and (2.4) there holds∫ T

0

∫
Γ0

|(I −Dγ0)θ|2 + |∇(I −Dγ0)θ|2 dΓ0 dt

≤ C
∫ T

0

∫
Γ0

|θ|2 + |∇θ|2 dΓ0 dt. (5.27)
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If J1 is the second term on the right hand side of the equation (5.26) then

|J1| ≤
ε

3

∫ T

0

∫
Γ0

|∇ϕt|2 dΓ0 dt+ Cγ,ε

∫ T

0

D(t) dt (5.28)

using Young’s inequality, (3.25), (5.19), and (5.27). Since A−1
D θ = 0 on Σ0 we obtain

from Green’s identity∫ T

0

∫
Γ0

(∆2ϕ+ ∆θ)A−1
D θ dΓ0 dt (5.29)

= −
∫ T

0

∫
Σ0

∆ϕ
∂

∂ν
(A−1

D θ) dΣ0 dt+

∫ T

0

∫
Γ0

(∆ϕ)θ −∇θ · ∇(A−1
D θ) dΓ0 dt.

Let J2 be the right hand side of the latter equation.
Trace theory and (5.19) imply∫ T

0

∫
Σ0

∣∣∣ ∂
∂ν

(A−1
D θ)

∣∣∣2dΣ0 dt ≤ C
∫ T

0

∫
Γ0

|θ|2 dΓ0 dt. (5.30)

Therefore from Theorem 5.1, (3.25), (5.30) and Young’s inequality we deduce

|J2| ≤
ε

3C

∫ T

0

∫
Σ0

|∆ϕ|2 dΣ0 dt+
ε

3

∫ T

0

∫
Γ0

|∆ϕ|2 dΓ0 dt+ Cε

∫ T

0

D(t) dt

≤ ε

3

∫ T

0

∫
Γ0

|∇ϕt|2 dΓ0 dt+
2ε

3

∫ T

0

∫
Γ0

|∆ϕ|2 dΓ0 dt

+ Cε

(
E(T ) + E(0) +

∫ T

0

D(t) dt

)
, (5.31)

where C is the constant appearing in Theorem 5.1. Combining (5.23)–(5.26) and
(5.28)–(5.31), using the equivalence of the norms in H1(Γ0) and VR, and choosing
ε > 0 as stated in the lemma prove the desired estimate.

Lemma 5.3. Let T > 0. Then for every data in D(A2) we have the estimate∫ T

0

∫
Γ0

|∆ϕ|2 dΓ0 dt ≤ 2γ

∫ T

0

∫
Γ0

|∇ϕt|2 dΓ0 dt+ C

(
E(T ) + E(0) +

∫ T

0

D(t) dt

)
.

Proof. For the proof we will utilize the multiplier Mρϕ which coincides with ϕ.
Integrating by parts and using the boundary conditions

0 =

∫ T

0

∫
Γ0

(
ϕtt − γ∆ϕtt + ∆2ϕ+ ∆θ + ν · ∂u

∂ν
− p
)
ϕdΓ0 dt

=

[ ∫
Γ0

ϕtϕ+ γ∇ϕt · ∇ϕdΓ0

]T
0

−
∫ T

0

∫
Γ0

|ϕt|2 + γ|∇ϕt|2 dΓ0 dt

+

∫ T

0

∫
Γ0

|∆ϕ|2 dΓ0 dt−
∫ T

0

∫
Γ0

∇θ · ∇ϕdΓ0 dt

−
∫ T

0

∫
Γ0

(
p− ν · ∂u

∂ν

)
ϕdΓ0 dt. (5.32)
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Because ϕ ∈ C1([0, T ], Ĥ2
0 (Γ0)), Lemma 4.1 is applicable. According to Lemma

4.1, the Poincaré inequality and (3.25)∣∣∣∣ ∫ T

0

∫
Γ0

(
p− ν · ∂u

∂ν

)
ϕdΓ0 dt

∣∣∣∣
≤ 1

4

∫ T

0

∫
Γ0

|∆ϕ|2 dΓ0 dt+ C

(
E(T ) + E(0) +

∫ T

0

D(t) dt

)
. (5.33)

Using Young’s and Poincaré inequalities one obtains∣∣∣∣∫ T

0

∫
Γ0

∇θ · ∇ϕdΓ0 dt

∣∣∣∣ ≤ 1

4

∫ T

0

∫
Γ0

|∆ϕ|2 dΓ0 dt+ C

∫ T

0

∫
Γ0

|∇θ|2 dΓ0 dt. (5.34)

Solving for the integral term involving ∆ϕ in (5.32) and then invoking (5.33) and
(5.34) proves the lemma.

Remark 3. We would like to point out that the multipliers ϕ and h · ∇ϕ are
now standard and they were used in various plate equations and even for wave
equations, e.g. [13, 16] and the references therein. The multiplier A−1

D θ was first
introduced by Avalos and Lasiecka [5, 6] for certain thermoelastic plate systems. It
was used later for certain thermoelastic von Karman plate models by Perla Menzala
and Zuazua [23, 24, 25]. The idea of using the Stokes map S originated from the
work of Chuesov and Ryzhkova [10]. It was used in deriving suitable estimates for
a Lyapunov functional associated with a fluid-plate interaction model.

Now, let us finish the proof of Theorem 3.2. From Lemma 5.2 and Lemma 5.3

γ

2

∫ T

0

∫
Γ0

|∇ϕt|2 dΓ0 dt ≤ 2γε

∫ T

0

∫
Γ0

|∇ϕt|2 dΓ0 dt

+ Cε

(
E(T ) + E(0) +

∫ T

0

D(t) dt

)

for every 0 < ε < γ
2 . Choosing ε > 0 in such a way that 2ε < min( 1

4 , γ) we obtain
from the above inequality the estimate

γ

4

∫ T

0

∫
Γ0

|∇ϕt|2 dΓ0 dt ≤ Cγ

(
E(T ) + E(0) +

∫ T

0

D(t) dt

)
(5.35)

and consequently from Lemma 5.3∫ T

0

∫
Γ0

|∆ϕ|2 dΓ0 dt ≤ Cγ

(
E(T ) + E(0) +

∫ T

0

D(t) dt

)
. (5.36)

According to (3.25) and Poincaré inequality we have∫ T

0

∫
Ω

|u|2 dΩ dt+

∫ T

0

∫
Γ0

|ϕt|2 + |θ|2 dΓ0 dt ≤ C
∫ T

0

D(t) dt (5.37)

for some constant C > 0 independent of T . Combining (5.35)–(5.37) yields (3.27)
with T ∗ = 0 and in return (3.26). The proof of Theorem 3.2 is now completed.
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