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Abstract. A coupled parabolic-hyperbolic system of partial differential equa-

tions modeling the interaction of a structure submerged in a fluid is studied.
The system being considered incorporates delays in the interaction on the in-

terface between the fluid and the solid. We study the stability properties of the

interaction model under suitable assumptions between the competing strengths
of the delays and the feedback controls.

1. Introduction. This paper is devoted to the study of stability properties of a
coupled linear parabolic-hyperbolic PDE system with delay in the interaction. It
addresses asymptotic, rational and exponential stability. The system being con-
sidered is a simplified model describing the interaction of an elastic body that is
completely submerged in a fluid. Delay between the interaction on the interface is
being considered.

First, let us set-up the notation and the geometrical configuration of the problem.
Let Ωs be a bounded smooth domain in Rd occupied by the structure. The relevant
physical scenarios are d = 2 or d = 3, however, we shall consider the general case
where d ≥ 2 in the analysis. Denote the boundary of Ωs by Γs. Let Ωf ⊂ Rd be the
region occupied by the heat component. We also assume that that Ωf is sufficiently

smooth, and that its boundary consists of two parts ∂Ωf = Γs ∪Γf where Γf = Γf
and Γs = Γs have no common points. This means that the interface Γs between
the solid and the fluid does not touch the part Γf of the boundary of Ωf .

Let u(t, x) = (u1(t, x), . . . , ud(t, x)) and w(t, x) = (w1(t, x), . . . , wd(t, x)) be the
velocity and displacement of the heat and structure at time t and position x, respec-
tively. Then a linear model describing the dynamics of the above system is given
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by the coupled heat-wave system

ut(t, x)−∆u(t, x) = 0, in (0,∞)× Ωf ,

u(t, x) = 0, on (0,∞)× Γf ,

u(t, x) = αwt(t− τs, x) + F (t, x), on (0,∞)× Γs,

wtt(t, x)−∆w(t, x) + w(t, x) = 0, in (0,∞)× Ωs,
∂w

∂ν
(t, x) = β

∂u

∂ν
(t− τf , x) +G(t, x), in (0,∞)× Γs,

u(0, x) = u0(x), in Ωf ,

w(0, x) = w0(x), wt(0, x) = w1(x), in Ωs.

(1)

We shall make the convention that the unit normal vector ν is outward to Ωs on
Γs and is outward to Ωf on Γf . In particular, ν on Γs will be inward with respect
to fluid domain Ωf . The terms F and G represent feedback controls that will be
specified below.

In the case of small but rapid oscillations, the assumption that the interface Γs
is stationary is reasonable. The system (1) is based on the one studied in [5], in
the cases where there is no delay (τf = τs = 0) and no feedbacks (F = G = 0).
The boundary conditions in (1) on Γs are obtained by matching the velocities and
stresses of the fluid and solid components. However, in the current problem, these
are not equal. The velocity of the structure serves as a source term at the boundary
for the heat equation, and its effect is not instantaneous but a delay takes place. In
this case, the constant τs > 0 represents the extent of the delay while the constant
α > 0 signifies the strength of the delayed-velocity term. On the other hand, the
normal stress of the fluid on the interface enters as a source term for the wave
equation and delay is also being considered, with τf > 0 measuring the extent of
delay while β > 0 denotes the strength of the delayed-stress term. Such delay may
occur if for instance there is a small boundary layer on the interface that impedes
the instantaneous interaction between the fluid and the solid.

The fluid-structure model (1) without delay and several variants both in the
linear and nonlinear settings have been studied extensively for the past years. This
includes the case where instead of the heat equation for the fluid component, the
Navier-Stokes equation takes place, and the Lamé equation is used instead of the
wave equation for the solid component. We refer the reader to [2, 3, 4, 5, 6, 7, 9, 10,
15, 19, 20, 29, 30] and the references therein for the analysis of such variations. These
investigations include the well-posedness, regularity and stability of the interaction
models. With regards to a fluid-structure model with delay only on the interior
feedback for the structure, see [34].

Without the feedback controls and in the case where α = β and F = G = 0 one
can easily check that the system is dissipative, that is, the energy is decreasing. The
source of dissipation is from the diffusion of the fluid. In this work, we consider the
following feedback controlsF (t, x) = γ

∂u

∂ν
(t, x), on (0,∞)× Γs,

G(t, x) = −δwt(t, x), on (0,∞)× Γs,

(2)

where γ and δ are positive constants. To achieve a well-posed system, the initial
histories for the stress and velocity of the fluid and the solid on the interface,
respectively, shall be specified
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∂u

∂ν
(θ, x) = y0(θ, x), in (−τf , 0)× Γs,

wt(θ, x) = z0(θ, x), in (−τs, 0)× Γs.
(3)

In Section 2, the well-posedness of (1)–(3) based on semigroup methods will be
discussed.

We would like to point out that Neumann-type boundary feedbacks in terms of
the solid component have been considered in [20], whereas in the present paper
we consider a Neumann-type boundary feedback in terms of the fluid component.
Technically this will serve as a regularization in terms of the Neumann trace for
the fluid component. In effect, this has an advantage when one needs to define the
appropriate function spaces for the delay variables. These particular feedbacks turns
the system (1) into a coupled parabolic-hyperbolic system with Robin-Neumann
boundary conditions on the interface.

It is well-known that delays have a destabilizing effect [12, 13]. This is due to
the fact that delay induces a transport phenomenon in the system that creates
oscillations which can lead to instability. The goal is then to determine the rela-
tionship among the parameters α, β, γ and δ for which the energy associated with
the above model decays to zero asymptotically, or better, to have uniform expo-
nential decay rates. Under the assumption αβ ≤ γδ, we show in Section 3 that
the system is asymptotically stable using spectral methods and a generalized Lax-
Milgram Lemma. If αβ < γδ then we prove in Section 4 that the energy decays
exponentially to zero through the energy method, following the approach given in
[6, 21, 22, 23, 24].

Our result will be valid for positive delay parameters. A direct application of the
Cauchy-Schwarz inequality will give us a sufficient condition for stability, however
this is not optimal. The results will be based on the positivity of a quadratic form
induced by the boundary terms and the corresponding result obtained by merely
applying the Cauchy-Schwarz inequality is just a specific case. The said quadratic
form is a special case of the one considered in [37] for coupled wave equations in
the entire space with delay. It is worth noting that the condition αβ ≤ γδ for the
stability of our problem coincides with the one given in [28] in the case of a coupled
ordinary differential equations with delay.

Under the critical case, the dissipation terms induced by the feedbacks are can-
celled, however the system still posseses dissipation due to the diffusion of the fluid.
Without delays and feedbacks and with α = β = 1, the rational stability of the
system (1) has been proved in [5] using a resolvent-based approach. This particular
method relies on establishing a polynomial or algebraic growth of the resolvents on
the imaginary axis. The corresponding decay estimate follows from a theorem in
[11]. The same strategy has been also applied to a fluid-structure interaction model
in [2]. Other relevant references for the rational decay rates of coupled heat-wave
systems without delay are provided in [5]. We would like to point out that the de-

cay rate O(t−
1
3 ) obtained in the present case when delay is incorporated is weaker

than the one obtained based on the original model without delay. This is due to
the additional terms in the interface, which are only square integrable. In the ab-
sence of delay, a decay rate O(t−

1
2 ) was established in [5] and recently improved to

O(t−1) using a microlocal analysis argument in [8]. Nevertheless, we will show that
the system is asymptotically stable under the critical case and with an additional
geometric condition, the decay rate O(t−

1
3 ) will be established in Section 5. Further

related problems will be mentioned in Section 6.
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2. The evolution system. In this section, we recast (1)–(3) as a first order evo-
lution system on a certain Hilbert space and prove its well-posedness through semi-
group theory. The regularity of solutions for smooth and compatible data will be
provided using elliptic regularity. Before we proceed with the formulation, we first
recall in the following subsection the traces for a graph space. We follow the usual
notations Hk(Ω) and Lp(Ω) for the Sobolev and Lebesgue spaces, respectively. For
simplicity, the product of m copies of a Banach space X will be denoted by the
same notation X instead of Xm.

2.1. Traces for a graph space. It is known that if a certain function satisfies an
elliptic problem, then a generalize boundary trace for that function can be defined,
see [26, Chapter 2]. In the following discussion, we take the formulation in [38, pp.
432-433]. Let W(Ωf ) = {u ∈ H1(Ωf ) : ∆u ∈ L2(Ωf )} be equipped with the graph
norm

‖u‖W(Ωf ) = (‖u‖2H1(Ωf ) + ‖∆u‖2L2(Ωf ))
1
2 .

Endowed with the inner product associated with this norm, W(Ωf ) is a Hilbert

space. For a given φ ∈ H 1
2 (Γs), we extend it by zero to ∂Ωf and obtain an element

in H
1
2 (∂Ωf ) and denote this extension by the same notation.

Recall that the trace map γ0 : H1(Ωf ) → H
1
2 (∂Ωf ) is onto, and thus γ0γ

∗
0

is invertible, where γ∗0 : H
1
2 (∂Ωf ) → H1(Ωf ) is the adjoint of γ0. Consider the

bounded linear operator ` : H
1
2 (∂Ωf )→ H1(Ωf ) given by

` = γ∗0 (γ0γ
∗
0 )−1

so that γ0`φ = φ for every φ ∈ H 1
2 (∂Ωf ). Define ∂u

∂ν |Γs by〈
∂u

∂ν

∣∣∣∣
Γs

, φ

〉
=

∫
Ωf

(∆u)`φ dx+

∫
Ωf

∇u · ∇(`φ) dx

for every φ ∈ H 1
2 (Γs). By the Cauchy-Schwarz inequality we have∣∣∣∣〈∂u∂ν

∣∣∣∣
Γs

, φ

〉∣∣∣∣ ≤ ‖∆u‖L2(Ωf )‖`φ‖L2(Ωf ) + ‖∇u‖L2(Ωf )‖∇(`φ)‖L2(Ωf )

≤
√

2‖`‖
L(H

1
2 (∂Ωf ),H1(Ωf ))

‖u‖W(Ωf )‖φ‖H 1
2 (Γs)

.

Consequently, ∂u
∂ν |Γs ∈ H

− 1
2 (Γs) and the operator u 7→ ∂u

∂ν |Γs is a bounded linear

operator from the graph space W(Ωf ) into H−
1
2 (Γs). If u ∈ H2(Ωf ) then this

definition coincides with the usual first order trace of u on Γs. Indeed, this can be
seen immediately from Green’s identity. According to the definition it follows easily
that ∫

Ω

(∆u)ϕdx =

〈
∂u

∂ν

∣∣∣∣
Γs

, ϕ

〉
−
∫

Ωf

∇u · ∇ϕdx

for every u ∈ W(Ωf ) and ϕ ∈ H1(Ωf ) with ϕ = 0 on Γf . In the succeeding sections,
the expression Γs will be removed in the notation for the trace for convenience.

2.2. Semigroup formulation. Keeping track of the memory terms, we introduce
the following auxiliary state variables

y(t, θ, x) =
∂u

∂ν
(t− θτf , x), z(t, θ, x) = wt(t− θτs, x)

for (t, θ, x) ∈ (0,∞) × (0, 1) × Γs corresponding to the delay terms in the stress of
the fluid and velocity of the structure on the interface. Notice that y satisfies the
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following uncoupled transport system on the bounded interval (0, 1) with parameter
x ∈ Γs 

τfyt(t, θ, x) + yθ(t, θ, x) = 0, in (0,∞)× (0, 1)× Γs,

y(t, 0, x) =
∂u

∂ν
(t, x), on (0,∞)× Γs,

y(0, θ, x) = ỹ0(θ, x), on (0, 1)× Γs,

(4)

where ỹ0(θ, x) = y0(−θτf , x). On the other hand, z satisfies a similar transport
system with parameter

τszt(t, θ, x) + zθ(t, θ, x) = 0, in (0,∞)× (0, 1)× Γs,

z(t, 0, x) = wt(t, x), on (0,∞)× Γs,

z(0, θ, x) = z̃0(θ, x) on (0, 1)× Γs,

(5)

where z̃0(θ, x) = z0(−θτs, x).
We recast (1)–(3) as a first order system in the state variables (u,w, v, y, z),

where v = wt. Here, the wave equation is formulated as a first order system in
terms of the displacement and velocity. Consider the following Hilbert space as our
state space

X = L2(Ωf )×H1(Ωs)× L2(Ωs)× L2
θ(L

2(Γs))× L2
θ(L

2(Γs)).

where L2
θ(L

2(Γs)) = L2(0, 1;L2(Γs)). Due to different factors in the delay and
feedback terms, this space will be equipped with a weighted inner product. For
(u1, w1, v1, y1, z1), (u2, w2, v2, y2, z2) ∈ X define

〈(u1, w1, v1, y1, z1), (u2, w2, v2, y2, z2)〉X,a

= a1

∫
Ωf

u1 · u2 dx+ a2

∫
Ωs

(w1 · w2 +∇w1 · ∇w2 + v1 · v2) dx

+ a3τf

∫ 1

0

∫
Γs

y1 · y2 dxdθ + a4τs

∫ 1

0

∫
Γs

z1 · z2 dx dθ

where a = (a1, a2, a3, a4) is a quadruple consisting of positive constants that will
be specified below. Here, the dot represents either the inner product in Cd or Cd×d
where it is applicable. The norm associated with this inner product will be denoted
by ‖ · ‖X,a.

Let H1
Γf

(Ωf ) = {u ∈ H1(Ωf ) : u = 0 on Γf}. Define the linear operator A :

D(A) ⊂ X → X with domain

D(A) = {(u,w, v, y, z) ∈ X : u ∈ W(Ωf ) ∩H1
Γf

(Ωf ), w ∈ W(Ωs),

v ∈ H1(Ωs), y, z ∈ H1(0, 1;L2(Γs)), u− γ
∂u

∂ν
= αz(1) on Γs,

∂w

∂ν
+ δv = βy(1) on Γs, y(0) =

∂u

∂ν
, z(0) = v on Γs},

as follows
A(u,w, v, y, z) = (∆u, v,∆w − w,−τ−1

f ∂θy,−τ−1
s ∂θz).

Recall that H1(0, 1;L2(Γs)) ⊂ C([0, 1], L2(Γs)), see for instance [17, p. 286]. From
the above discussion, we already know that the traces ∂u

∂ν and ∂w
∂ν both exist as

elements in H−
1
2 (Γs). According to the definition of D(A), we have ∂u

∂ν = 1
γ (u −

αz(1)) ∈ L2(Γs) since γ > 0. This means that the condition y(0) = ∂u
∂ν is meaningful

under the assumption that y ∈ H1(0, 1;L2(Γs)). Likewise, we also have ∂w
∂ν =

βy(1)− δv ∈ L2(Γs).
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System (1)–(3) can now be rewritten as a first order evolution equation on X as{
Ẏ (t) = AY (t), t > 0,

Y (0) = Y0,
(6)

with state Y = (u,w, v, y, z) and initial data Y0 = (u0, w0, w1, ỹ0, z̃0) ∈ X.

Theorem 2.1. Let α, β, γ, δ > 0. Suppose that there exists a = (a1, a2, a3, a4) ∈ R4
+

such that the quadratic form Qa defined by

Qa(u, v, y, z) = (2a1γ−a3)u2 +(2a2δ−a4)v2 +a3y
2 +a4z

2 +2a1αuz+2a2βvy (7)

is nonnegative definite. Then the operator A generates a strongly continuous semi-
group of contractions on X. In particular, for every Y0 ∈ X the Cauchy problem
(6) admits a unique mild solution Y ∈ C([0,∞), X) such that ‖Y (t)‖X,a ≤ ‖Y0‖X,a
for every t ≥ 0. Moreover, we have

u ∈ L2(0,∞;H1
Γf

(Ωf )). (8)

If γδ > αβ then for every T > 0 it holds that

y, z ∈ L∞(0, 1;L2((0, T )× Γs)). (9)

A sufficient condition for the nonnegativity of the quadratic form Qa is αβ ≤ γδ.
The proof of this remark is provided in the Appendix.

Proof of Theorem 2.1. We shall apply the Lumer-Phillips theorem in reflexive Ba-
nach spaces, see [16, Corollary III.3.20]. The first step is to check the dissipativity
of A. For this, take an arbitrary element Y = (u,w, v, y, z) ∈ D(A). Employing
Green’s identity with respect to the fluid domain and using the boundary conditions
u = 0 on Γf and u = γ ∂u∂ν + αz(1) on Γs we have

Re

∫
Ωf

∆u · udx = −
∫

Ωf

|∇u|2 dx− γ
∫

Γs

∣∣∣∂u
∂ν

∣∣∣2dx− αRe

∫
Γs

∂u

∂ν
· z(1) dx. (10)

The negative sign on the boundary terms is due to the convention that ν on Γs is
inward to the fluid domain Ωf . Likewise, using Green’s identity with respect to the

structural domain and the boundary condition ∂w
∂ν = βy(1)− δv give us

Re

∫
Ωs

v ·w+∇v ·∇w+(∆w−w) ·v dx = −δ
∫

Γs

|v|2 dx+βRe

∫
Γs

y(1) ·v dx. (11)

For the delay variable y we integrate by parts, take the real part and apply the
condition y(0) = ∂u

∂ν to obtain

Re

∫ 1

0

∫
Γs

(
− 1

τf
∂θy
)
· y dx dθ =

1

2τf

∫
Γs

∣∣∣∂u
∂ν

∣∣∣2dx− 1

2τf

∫
Γs

|y(1)|2 dx. (12)

In a similar way, for the delay variable z we have using z(0) = v

Re

∫ 1

0

∫
Γs

(
− 1

τs
∂θz
)
· z dxdθ =

1

2τs

∫
Γs

|v|2 dx− 1

2τs

∫
Γs

|z(1)|2 dx. (13)

Multiplying (10)–(12) by constants a1, a2, a3, a4, respectively, and then using the
Cauchy-Schwarz inequality to the last terms on the right hand sides of (10) and
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(11), it is not difficult to see that we have

Re〈AY, Y 〉X,a ≤ −a1

∫
Ωf

|∇u|2 dx

− 1

2
Qa

(∥∥∥∂u
∂ν

∥∥∥
L2(Γs)

, ‖v‖L2(Γs),−‖y(1)‖L2(Γs),−‖z(1)‖L2(Γs)

)
, (14)

where Qa is the quadratic form defined by (7). Consequently, it follows from (14)
and the nonnegativity of Qa that A is dissipative.

The next step is to prove that 0 lies in the resolvent set ρ(A) of A. This implies
that A has a nonempty resolvent, and thus A is closed according to [38, Remark
2.2.4]. The fact that the resolvent set is open implies that λ ∈ ρ(A) for some λ > 0,
which proves the range condition R(λI − A) = X in the Lumer-Phillips Theorem.
Let Y ∗ = (u∗, w∗, v∗, y∗, z∗) ∈ X be given. Note that the equation AY = Y ∗ for
some Y = (u,w, v, y, z) ∈ D(A) is equivalent to the following system where v = w∗,

y(θ) =
∂u

∂ν
− τf

∫ θ

0

y∗(ϑ) dϑ, (15)

z(θ) = w∗ − τs
∫ θ

0

z∗(ϑ) dϑ, (16)

u satisfies an elliptic problem on Ωf with mixed Dirichlet-Robin boundary condi-
tions 

∆u = u∗, in Ωf ,

u = 0, on Γf ,

u− γ ∂u
∂ν

= αz(1), on Γs,

(17)

and w satisfies an elliptic problem on Ωs with Neumann boundary condition on Γs∆w − w = v∗, in Ωs,
∂w

∂ν
= βy(1)− δw∗, on Γs.

(18)

The boundary conditions on Γs for (17) and (18) can be written, according to (16)
and (15), respectively as follows

∂u

∂ν
=

1

γ

(
u− αw∗ + ατs

∫ 1

0

z∗(θ) dθ

)
, (19)

∂w

∂ν
= β

∂u

∂ν
− βτf

∫ 1

0

y∗(θ) dθ − δw∗. (20)

By elliptic theory, the boundary value problem (17) admits a solution u ∈
H1

Γf
(Ωf ) and since u∗ ∈ L2(Ωf ) we deduce that u ∈ W(Ωf ). Moreover, the bound-

ary condition (19) implies that ∂u
∂ν ∈ L

2(Γs) and thus y ∈ H1(0, 1;L2(Γs)) where y

is defined by (15). We can see immediately from (16) that z ∈ H1(0, 1;L2(Γs)). On
the other hand, the boundary value problem (18) has a unique solution w ∈ H1(Ωs)
and since v∗ + w ∈ L2(Ωs) we have w ∈ W(Ωs). Therefore there exists Y ∈ D(A)
such that AY = Y ∗.

We show that there is a constant C > 0 independent of Y and Y ∗ such that

‖Y ‖X,a ≤ C‖Y ∗‖X,a (21)
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and this will prove that 0 ∈ ρ(A). Using a standard elliptic estimate, the trace
theorem, Hölder’s inequality and Fubini’s theorem to the term involving z∗, we
obtain from (17) and (19) that

‖u‖H1(Ωf ) ≤ C(‖u∗‖L2(Ωf ) + ‖w∗‖H1(Ωs) + ‖z∗‖L2
θ(L2(Γs))). (22)

By (19), the trace theorem once more and (22) we get∥∥∥∂u
∂ν

∥∥∥
L2(Γs)

≤ C(‖u∗‖L2(Ωf ) + ‖w∗‖H1(Ωs) + ‖z∗‖L2
θ(L2(Γs))). (23)

Using (23) we can estimate the norm of y as follows

‖y‖L2
θ(L2(Γs)) ≤ C(‖u∗‖L2(Ωf )+‖w∗‖H1(Ωs)+‖z∗‖L2

θ(L2(Γs))+‖y∗‖L2
θ(L2(Γs))). (24)

On the other hand, it is not difficult to see from (16) that

‖z‖L2
θ(L2(Γs)) ≤ C(‖w∗‖H1(Ωs) + ‖z∗‖L2

θ(L2(Γs))). (25)

Finally, from the equation v = w∗, a basic elliptic estimate applied to the boundary
value problem (18) and (20) we have the following estimates

‖v‖L2(Ωs) ≤ ‖w
∗‖H1(Ωs), (26)

‖w‖H1(Ωs) ≤ C
(
‖v∗‖L2(Ωs) + ‖w∗‖H1(Ωs) + ‖y∗‖L2

θ(L2(Γs)) +
∥∥∥∂u
∂ν

∥∥∥
L2(Γs)

)
. (27)

Combining (22)–(27) proves (21). This completes the proof that A is the generator
of a strongly continuous semigroup of contractions on X.

For data Y0 ∈ D(A) we have Y (t) ∈ D(A) for all t > 0 and the component u of
the corresponding semigroup solution Y (t) = etAY0 satisfies u = 0 on (0,∞) × Γf
and according to (14) we have∫ T

0

∫
Ωf

|∇u(t)|2 dx dt ≤ − 1

a1

∫ T

0

Re〈Ẏ (t), Y (t)〉X,a dt ≤ 1

a1
‖Y0‖2X,a

for every T > 0. This estimate implies that u ∈ L2(0,∞;H1
Γf

(Ωf )), hence (8). The

corresponding result for data in X follows immediately from the density of D(A) in
X. Finally, (9) is a consequence of the assumption that αβ < γδ, which implies that
Qa is positive definite (see Theorem 7.1 below) and the fact that they satisfy the one-
dimensional transport equations (4) and (5) with parameter x ∈ Γs, respectively.
Such regularity can be proved by following the arguments as in [36].

Next we prove the regularity of solutions with initial data in D(A2). The fol-
lowing theorem will be utilized in establishing the stability of (1)–(3) in Section
4.

Theorem 2.2. Let Y0 ∈ D(A2) and (u,w, v, y, z) = etAY0 be the semigroup solution
of (6). For every T > τs it holds that

u ∈ C1([0, T ], L2(Ωf )) ∩ L2(τs, T ;H2(Ωf ))

and for every T > τf + τs we have

w ∈ C2([0, T ], H1(Ωs)) ∩ L2(τf + τs, T ;H2(Ωs)).

Proof. For Y0 ∈ D(A) it follows that u ∈ C1([0, T ], L2(Ωf )) ∩ C([0, T ], H1
Γf

(Ωf )).

This is a consequence of the fact that etAY0 ∈ C1([0, T ], X)∩C([0, T ], D(A)), where
D(A) is equipped with the graph norm.
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For data Y0 ∈ D(A2) we have etAY0 ∈ C1([0, T ], D(A)) and as a result vt =
∆w−w ∈ C([0, T ], H1(Ωs)). The fact that w ∈ C2([0, T ], H1(Ωs)) follows from the
equation wt = v and w(0) ∈ H1(Ωs). Therefore, by trace theory we have

∂u

∂ν
=

1

γ
(u− αwt(· − τs)) ∈ L2(τs, T ;H

1
2 (Γs))

for every T > τs, and hence it follows that u ∈ L2(τs, T ;H2(Ωf )) by elliptic regu-
larity. On the other hand, we have ∆w = vt + w ∈ C([0, T ], H1(Ωs)) and

∂w

∂ν
= β

∂u

∂ν
(· − τf )− δwt ∈ L2(τf + τs, T ;H

1
2 (Γs))

for every T > τf + τs, and therefore w ∈ L2(τf + τs, T ;H2(Ωs)) by applying elliptic
regularity once more.

3. Spectral properties and asymptotic stability. In the absence of delays and
feedback controls in the coupled system (1), the corresponding semigroup generator
lacks the compactness of its resolvents. However, the projections of the resolvents
onto the product of the state spaces corresponding to the fluid and structure ve-
locities are compact, see [3] for the details. The goal of this section is to show
that the spectrum of the generator A corresponding to the problem (1)–(3) consists
of eigenvalues only. Our strategy is to rewrite the resolvent equation for a given
fixed element of X in variational form and then apply a generalized Lax-Milgram
argument.

The method we employ has been utilized for wave equations with viscoelastic
surface [14] and for a fluid-structure interaction model with delay in the interior
feedback control for the structural component [34]. The corresponding results in
these works do not consider the whole spectrum and the analysis tackles only the
part of spectrum neglecting the negative real axis. This is due to the fact that the
boundary condition on the interface for the equation corresponding to the fluid is
of Dirichlet type. This essential boundary condition entails to incorporate the com-
patibility condition in the definition of the space for the variational formulation. In
this direction, one needs to formulate the variational form in terms of the velocities
of the fluid and the structure. For our problem, due to the Neumann-type feedback
on Γs we basically have boundary value problems that have either Neumann or
Robin boundary conditions on the interface. As a result of these natural boundary
conditions, we can formulate the variational equation in terms of the velocity of the
fluid and the displacement of the structure, and from this we can cover the whole
spectrum of the generator in the analysis. The first step is to rewrite the resolvent
equation in variational form.

Lemma 3.1. Let λ ∈ C and Y ∗ = (u∗, w∗, v∗, y∗, z∗) ∈ X be fixed. There exists
Y = (u,w, v, y, z) ∈ D(A) satisfying the equation

(λI −A)Y = Y ∗ (28)

if and only if there exists a pair (u,w) ∈ H1
Γf

(Ωf ) × H1(Ωs) that satisfies the

variational equation

aλ((u,w), (ϕ,ψ)) = Fλ,Y ∗(ϕ,ψ) (29)

for every (ϕ,ψ) ∈ H1
Γf

(Ωf )×H1(Ωs), where aλ : [H1
Γf

(Ωf )×H1(Ωs)]
2 → C is the

continuous sesquilinear form defined by
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aλ((u,w), (ϕ,ψ)) = λ

∫
Ωf

u · ϕdx+

∫
Ωf

∇u · ∇ϕdx+ (λ2 + 1)

∫
Ωs

w · ψ dx

+

∫
Ωs

∇w · ∇ψ dx+
1

γ

∫
Γs

u · (ϕ− βe−λτfψ) dx

+ λ

∫
Γs

w ·
[(αβ

γ
e−λ(τf+τs) + δ

)
ψ − α

γ
e−λτsϕ

]
dx (30)

and Fλ,Y ∗ : H1
Γf

(Ωf )×H1(Ωs)→ C is the continuous anti-linear form defined by

Fλ,Y ∗(ϕ,ψ) =

∫
Ωf

u∗ · ϕdx+

∫
Ωs

v∗ · ψ dx

+

∫
Γs

w∗ ·
[(αβ

γ
e−λ(τf+τs) + δ

)
ψ − α

γ
e−λτsϕ

]
dx

+λ

∫
Ωs

w∗ · ψ dx+ βτfe
−λτf

∫ 1

0

∫
Γs

eλτfθy∗(θ) · ψ dxdθ

+
ατs
γ
e−λτs

∫ 1

0

∫
Γs

eλτsθz∗(θ) · (ϕ− βe−λτfψ) dx dθ. (31)

Proof. First, let us suppose that the equation (28) holds. Notice that (28) is equiv-
alent to a system where u is the solution of the boundary value problem

λu−∆u = u∗, in Ωf ,

u = 0, on Γf ,
∂u

∂ν
=

1

γ
u− α

γ
z(1), on Γs,

(32)

v and w satisfies the system
λw − v = w∗, in Ωs,

λv −∆w + w = v∗, in Ωs,
∂w

∂ν
= βy(1)− δv, on Γs,

(33)

while the delay variables y and z satisfy respectively the following ordinary differ-
ential equations with parameterλτfy(θ) + yθ(θ) = τfy

∗(θ), on (0, 1)× Γs,

y(0) =
∂u

∂ν
, on Γs,

(34)

{
λτsz(θ) + zθ(θ) = τsz

∗(θ), on (0, 1)× Γs,

z(0) = v, on Γs.
(35)

Applying the variation of parameters formula to (34) and (35) and using the
equation v = λw − w∗ we obtain

y(θ) = e−λτfθ
∂u

∂ν
+ τfe

−λτfθ
∫ θ

0

eλτfϑy∗(ϑ) dϑ, (36)

z(θ) = e−λτsθ(λw − w∗) + τse
−λτsθ

∫ θ

0

eλτsϑz∗(ϑ) dϑ. (37)



A PARABOLIC-HYPERBOLIC PDE WITH DELAY 3065

From (37), the boundary condition for u on Γs in (32) becomes

∂u

∂ν
=

1

γ
u− α

γ
e−λτs(λw − w∗)− ατs

γ
e−λτs

∫ 1

0

eλτsθz∗(θ) dθ. (38)

Consequently, from (36) and (38) the boundary condition for w can be written as

∂w

∂ν
=

β

γ
e−λτfu−

(αβ
γ
e−λ(τs+τf ) + δ

)
(λw − w∗) (39)

−αβτs
γ

e−λ(τs+τf )

∫ 1

0

eλτsθz∗(θ) dθ + βτfe
−λτf

∫ 1

0

eλτfθy∗(θ) dθ.

Let ϕ ∈ H1
Γf

(Ωf ). Taking the inner product in L2(Ωf ) of the first equation in (32)

with ϕ and then applying Green’s identity we have∫
Ωf

u∗ · ϕdx = λ

∫
Ωf

u · ϕdx+

∫
Ωf

∇u · ∇ϕdx+

∫
Γs

∂u

∂ν
· ϕdx. (40)

Using (38), the boundary integral in (40) can be written as∫
Γs

∂u

∂ν
· ϕdx =

1

γ

∫
Γs

u · ϕdx− αλ

γ
e−λτs

∫
Γs

w · ϕdx+
α

γ
e−λτs

∫
Γs

w∗ · ϕdx

−ατs
γ
e−λτs

∫ 1

0

∫
Γs

eλτsθz∗(θ) · ϕdxdθ. (41)

With regards to the elliptic equation for w in (33), we take the inner product in
L2(Ωs) with ψ ∈ H1(Ωs), use v = λw − w∗ and apply Green’s identity to obtain∫

Ωs

v∗ · ψ dx = (λ2 + 1)

∫
Ωs

w · ψ dx+

∫
Ωs

∇w · ∇ψ dx

−
∫

Γs

∂w

∂ν
· ψ dx− λ

∫
Ωs

w∗ · ψ dx. (42)

From (39) the boundary term in the above equation can be expressed as

−
∫

Γs

∂w

∂ν
· ψ dx = −β

γ
e−λτf

∫
Γs

u · ψ dx+ λ
(αβ
γ
e−λ(τs+τf ) + δ

)∫
Γs

w · ψ dx

−
(αβ
γ
e−λ(τs+τf ) + δ

)∫
Γs

w∗ · ψ dx

+
αβτs
γ

e−λ(τs+τf )

∫ 1

0

∫
Γs

eλτsθz∗(θ) · ψ dx dθ (43)

−βτfe−λτf
∫ 1

0

∫
Γs

eλτfθy∗(θ) · ψ dx dθ.

Taking the sum of (40) and (42), substituting the boundary terms according to (41)
and (43), and then rearranging the terms yield the variational equation (29).

Conversely, suppose that there exists (u,w) ∈ H1
Γf

(Ωf )×H1(Ωs) such that (29)

holds for every (ϕ,ψ) ∈ H1
Γf

(Ωf ) × H1(Ωs). We define v = λw − w∗ and z by

(37). By definition we have v ∈ H1(Ωs), z ∈ H1(0, 1;L2(Γs)) and z satisfies the
differential equation (34). By taking ψ = 0 in (29) and using the definition of z, we
can see that u is the weak solution of the boundary value problem (32). Thus, in
particular we have ∂u

∂ν ∈ L
2(Γs).

Now define y according to (36), which satisfies (34) and y ∈ H1(0, 1;L2(Γs)).
Taking ϕ = 0 in (29) and then using (38) and the definition of z, we can see that
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w satisfies the boundary value problem in (33). These observations imply that
Y = (u,w, v, y, z) ∈ D(A) and it satisfies equation (28).

To characterize the spectrum of A, we need the following combination of the Lax-
Milgram Lemma and the Fredholm alternative. For the proof we refer the reader
to [14] or [35].

Lemma 3.2 (Lax-Milgram-Fredholm). Let H1 and H0 be Hilbert spaces such that
the embedding H1 ⊂ H0 is compact and dense. Suppose that a1 : H1×H1 → C and
a2 : H0 ×H0 → C are two bounded sesquilinear forms such that a1 is H1-coercive
and F : H1 → C is a continuous conjugate linear form. The variational equation

a1(u, v) + a2(u, v) = F (v), for every v ∈ H1,

has either a unique solution u ∈ H1 for all F ∈ H ′1 or has a nontrivial solution for
F = 0.

In the following theorem, we will use the weighted trace inequality: for every
ε > 0 there exists a constant Cε > 0 such that

‖f‖L2(∂Ω) ≤ ε‖∇f‖L2(Ω) + Cε‖f‖L2(Ω), for all f ∈ H1(Ω), (44)

where Ω is a sufficiently smooth bounded domain in Rd. This inequality follows
from the moment trace inequality

‖f‖L2(∂Ω) ≤ C‖f‖
1
2

L2(Ω)‖f‖
1
2

H1(Ω)

for some constant C > 0 and Young’s inequality |ab| ≤ εa2 +Cεb
2 for some Cε > 0

and for every ε > 0 and a, b ∈ R. We denote by σp(A) the point spectrum of a
closed linear operator A.

Theorem 3.3. Suppose that γδ ≥ αβ. Then σ(A) = σp(A), that is, the spectrum
of A consists of only eigenvalues.

Proof. Let λ ∈ C and denote by ãλ the sesquilinear form corresponding to the
boundary terms in aλ, that is, ãλ : [H1

Γf
(Ωf )×H1(Ωs)]

2 → C is given by

ãλ((u,w), (ϕ,ψ)) =
1

γ

∫
Γs

u · ϕdx− αλ

γ
e−λτs

∫
Γs

w · ϕdx (45)

− β

γ
e−λτf

∫
Γs

u · ψ dx+ λ
(αβ
γ
e−λ(τf+τs) + δ

)∫
Γs

w · ψ dx.

Taking ϕ = u and ψ = w and then applying the Cauchy-Schwarz inequality we
obtain

|ãλ((u,w), (u,w))| ≤ k1(λ)

∫
Γs

|u|2 dx+ k2(λ)

∫
Γs

|w|2 dx (46)

where the positive constants k1(λ) and k2(λ) are given by

k1(λ) =
α|λ|
2γ

e−Reλτs +
β

2γ
e−Reλτf +

1

γ

k2(λ) =
α|λ|
2γ

e−Reλτs +
β

2γ
e−Reλτf + |λ|

(αβ
γ
e−Reλ(τf+τs) + δ

)
.

Choose the constant ε(λ) > 0 small enough so that 1−ki(λ)ε(λ) > 0 for i = 1, 2.
Let us split the sesquilinear form aλ into aλ = aλ,1 + aλ,2 where aλ,1 : [H1

Γf
(Ωf )×
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H1(Ωs)]
2 → C is the sesquilinear form defined by

aλ,1((u,w), (ϕ,ψ)) =

∫
Ωf

∇u · ∇ϕdx+

∫
Ωs

∇w · ∇ψ dx

+Cε(λ)k1(λ)

∫
Ωf

u · ϕdx+ (1 + Cε(λ)k2(λ))

∫
Ωs

w · ψ dx+ ãλ((u,w), (ϕ,ψ))

while aλ,2 : [L2(Ωf )× L2(Ωs)]
2 → C is the sesquilinear form given by

aλ,2((u,w), (ϕ,ψ)) = (λ− Cε(λ)k1(λ))

∫
Ωf

u · ϕdx+ (λ2 − Cε(λ)k2(λ))

∫
Ωs

w · ψ dx.

Here Cε(λ) > 0 is the constant in (44) corresponding to ε(λ) > 0.
One can immediately see that aλ,1 and aλ,2 are bounded. Now, we show that

aλ,1 is coercive. Utilizing (44), (46) and recalling the choice of ε(λ), we can see that

|aλ,1((u,w), (u,w))| ≥ (1− k1(λ)ε(λ))

∫
Ωf

|∇u|2 dx+

∫
Ωs

|w|2 dx

+ (1− k2(λ)ε(λ))

∫
Ωs

|∇w|2 dx

≥ C(λ)(‖u‖2H1
Γf

(Ωf ) + ‖w‖2H1(Ωs)
)

where C(λ) = min{1− k1(λ)ε(λ), 1− k2(λ)ε(λ)} > 0. From the compactness of the
embedding [L2(Ωf ) × L2(Ωs)]

2 ⊂ [H1
Γf

(Ωf ) × H1(Ωs)]
2 and Lemma 3.2 we either

have λ in the resolvent set of A or in its point spectrum. This is equivalent to the
conclusion of the lemma.

Now we prove that A does not have purely imaginary eigenvalues.

Theorem 3.4. If γδ ≥ αβ then σ(A) ∩ iR = ∅.

Proof. We already know that 0 ∈ ρ(A). Let r be a nonzero real number and
Y := (u,w, v, y, z) ∈ D(A) be such that AY = irY . This is equivalent to the
system (32)–(35) with Y ∗ = 0 and λ = ir. From the dissipativity inequality (14)
and the fact that Qa is nonnegative definite we have

a1

∫
Ωf

|∇u|2 dx ≤ −Re〈AY, Y 〉X,a = 0.

Thus u is constant and from the boundary condition on Γf it follows that u must
be zero in Ωf . From (36) we obtain y = 0 in (0, 1)×Γs. The equation for w in (33)
turns into −∆w + (1− r2)w = 0, in Ωs,

∂w

∂ν
+ iδrw = 0, on Γs,

(47)

since v = irw. Multiplying (47) by w, integrating over Ωs and then using Green’s
identity we have∫

Ωs

|∇w|2 dx+ (1− r2)

∫
Ωs

|w|2 dx+ iδr

∫
Γs

|w|2 dx = 0.

From the imaginary part in the above equation, we can see that w = 0 on Γs
and consequently ∂w

∂ν = 0 according to the boundary condition in (47). By elliptic

regularity we have w ∈ H2(Ωs)∩H1
0 (Ωs) and therefore w = 0 in Ωs from the unique

continuation theorem for elliptic operators, see [38, Corollary 15.2.2] for example.
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Thus v = irw = 0 in Ωs and from (37) we have z = 0 in (0, 1) × Γs. Therefore
Y = 0 so that ir is not an eigenvalue of A and from Lemma 3.3 it follows that ir
lies in the resolvent set of A. Thus, the imaginary axis lies in the resolvent set of
A.

Applying the Tauberian-type theorems in [1, 31, 16], from Theorem 3.3 and
Theorem 3.4 the following asymptotic stability immediately follows.

Theorem 3.5. Under the condition γδ ≥ αβ, we have ‖etAY0‖X,a → 0 in X as
t→∞ for every Y0 ∈ X.

In the succeeding sections we improve this theorem by providing explicit decay
rates under additional conditions on the parameters α, β, γ and δ.

4. Uniform exponential stability for the case αβ < γδ. The goal of this sec-
tion is to prove the exponential decay of the energy for the solutions of the system
(1)–(3) for the case αβ < γδ. From inequality (14), it can be seen that the dissipa-
tion is due to the diffusion of the fluid, the normal stress of the fluid component and
velocity of the solid on the interface. The latter boundary dissipation for the wave
equation is enough to obtain exponential decay, and this can be achieved through
multipliers. We follow the methodology presented in [6] for the current problem.

First, we recall the following energy identities for the wave operator � = ∂tt−∆.
These are obtained by using the multipliers ϕdiv η and η · ∇ϕ, respectively. We
refer to [21, 22, 23, 24] for their proofs in the scalar version and to [6] in the vector
version.

Proposition 1. Suppose that T > s and η ∈ [C2(Ω)]d is a vector field. Then for
every ϕ ∈ H2(s, T ;L2(Ω)) ∩H1(s, T ;H1(Ω)) ∩ L2(s, T ;H2(Ω)) we have∫ T

s

∫
Ω

(|ϕt|2 − |∇ϕ|2) div η dxdt

= −
∫ T

s

∫
Ω

(�ϕ) · (ϕdiv η)− ϕ · (∇(div η) · ∇ϕ) dx dt (48)

−
∫ T

s

∫
∂Ω

∂ϕ

∂ν
· (ϕdiv η) dxdt+

∫
Ω

ϕt(T ) · (ϕ(T ) div η)− ϕt(s) · (ϕ(s) div η) dx.

Also, if Jη denotes the Jacobian of η then∫ T

s

∫
Ω

(Jη)∇ϕ · ∇ϕdxdt

=

∫ T

s

∫
Ω

(�ϕ) · (η · ∇ϕ)− 1

2
(|ϕt|2 − |∇ϕ|2) div η dx dt

+

∫ T

s

∫
∂Ω

∂ϕ

∂ν
· (η · ∇ϕ) +

1

2
(|ϕt|2 − |∇ϕ|2)η · ν dxdt

−
∫

Ω

ϕt(T ) · (η · ∇ϕ(T ))− ϕt(s) · (η · ∇ϕ(s)) dx. (49)

In the above proposition, the terms η ·∇ϕ, ∇(div η) ·∇ϕ and (Jη)∇ϕ are vectors
with components η · ∇ϕi, ∇(div η) · ∇ϕi and (Jη)∇ϕi for i = 1, . . . , d, respectively.
To estimate the term ∇ϕ on Γs, we separate its normal and tangential components
and utilize the following trace regularity for solutions of wave equations in [22,
Proposition 6.3].
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Theorem 4.1. Let f ∈ L2(0, T ;L2(Ω)) and w ∈ L2(0, T ;H1(Ω))∩H1(0, T ;L2(Ω))
be a solution of the wave equation �w = f . If wt,

∂w
∂ν ∈ L2(0, T ;L2(∂Ω)), then

for every σ ∈ (0, T ) we have ∂w
∂τ ∈ L

2(σ, T − σ;L2(∂Ω)). Furthermore, for every

ε ∈ (0, 1
2 ] there exists a constant Cσ,ε,T > 0 such that∫ T−σ

σ

∫
∂Ω

∣∣∣∣∂w∂τ
∣∣∣∣2 dx dt ≤ Cσ,ε,T

(
‖w‖2

H
1
2

+ε((0,T )×Ω)
+

∫ T

0

∫
∂Ω

∣∣∣∣∂w∂ν
∣∣∣∣2 dxdt

+

∫ T−σ

σ

∫
Ω

|f |2 dxdt

)
.

The estimate provided in [22] involves the L2(0, T ;H
1
2 +ε(Ω))-norm instead of the

H
1
2 +ε((0, T )×Ω)-norm. This is admitted since Hs((0, T )×Ω) = L2(0, T ;Hs(Ω))∩

Hs(0, T ;L2(Ω)) ⊂ L2(0, T ;Hs(Ω)) for s ≥ 0 according to [27, Remark 2.2] and the
classical extension theorems for Sobolev spaces.

For t ≥ 0, we define the energy of the solution to (1)–(3) associated with data in
D(A) by

E(t) =
1

2
‖(u(t), w(t), v(t), y(t), z(t))‖2X,a

and the corresponding dissipation term by

D(t) =

∫
Ωf

|∇u(t)|2 dx+

∫
Γs

∣∣∣∂u
∂ν

(t, x)
∣∣∣2+ |wt(t, x)|2 dx

+

∫
Γs

∣∣∣∂u
∂ν

(t− τf , x)
∣∣∣2+ |wt(t− τs, x)|2 dx.

Lemma 4.2. Suppose that γδ > αβ. Then there exist constants c > 0 and C > 0
such that the energy of the solutions of the system (1)–(3) with initial data in D(A)
satisfies −cD(t) ≤ E′(t) ≤ −CD(t) for every t ≥ 0.

Proof. The given assumption implies that the quadratic form Qa is positive definite.
Hence, it follows from (14) and Theorem 7.1 that

E′(t) = Re〈AY (t), Y (t)〉X,a ≤ −CD(t)

for some C > 0, where Y (t) = etAX0 and X0 ∈ D(A). On the other hand, using
the Cauchy-Schwarz inequality and similar calculations as in the proof of (14), we
have the estimate from below

E′(t) ≥ − a1

∫
Ωf

|∇u(t)|2 dx

− 1

2
Qa

(∥∥∥∂u
∂ν

(t)
∥∥∥
L2(Γs)

, ‖wt(t)‖L2(Γs),
∥∥∥∂u
∂ν

(t− τf )
∥∥∥
L2(Γs)

, ‖wt(t− τs)‖L2(Γs)

)
.

From this inequality and (118), it can be seen that there is a constant c > 0 such
that E′(t) ≥ −cD(t). This completes the proof of the lemma.

We are now in position to prove the exponential stability of the semigroup etA.

Theorem 4.3. If γδ > αβ then the semigroup generated by A is uniformly ex-
ponentially stable, that is, there exist M ≥ 1 and σ > 0 such that ‖etAY0‖X,a ≤
Me−σt‖Y0‖X,a for every t ≥ 0 and Y0 ∈ X.
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Proof. By the density of D(A2) in X and strong continuity of the semigroup etA,
we may suppose that the initial data Y0 = (u0, w0, v0, y0, z0) lies in D(A2). Let
Y = (u,w, v, y, z) be the associated solution. The regularity of the corresponding
components are provided in Theorem 2.2. From Lemma 4.2, for every T ≥ s ≥ 0 it
follows that

E(s) ≤ E(T ) + c

∫ T

s

D(t) dt. (50)

The goal is to prove that there exist T > 0 and a constant %T ∈ (0, 1) such that
E(T ) ≤ %TE(0). Then according to standard results for semigroup theory, see for
instance [33], we have exponential stability. By the linearity of the problem and the
fact that the coefficients are real, we may suppose without loss of generality that
the states are real-valued. The corresponding result can be obtained by separating
the real and imaginary parts. We divide the arguments in several steps.

Step 1. Energy estimates for y and z. Multiplying the transport equation τszt +
zθ = 0 by 2e−aθz where a > 0 and then integrating over (s, T )× (0, 1)× Γs yields

τs

∫ 1

0

∫
Γs

e−aθ|z(T, θ, x)|2 dx dθ dt

+ a

∫ T

s

∫ 1

0

∫
Γs

e−aθ|z(t, θ, x)|2 dxdθ dt+

∫ T

s

∫
Γs

e−a|z(t, 1, x)|2 dxdt

= τs

∫ 1

0

∫
Γs

e−aθ|z0(θ, x)|2 dxdθ dt+

∫ T

s

∫
Γs

|wt(t, x)|2 dx dt,

since z(t, 0, x) = wt(t, x). Consequently, there exists a constant Cτs,a > 0 such that∫ T

s

∫ 1

0

∫
Γs

|z(t, θ, x)|2 dx dθ dt

≤ Cτs,a

(∫ 1

0

∫
Γs

|z0(θ, x)|2 dxdθ dt+

∫ T

s

∫
Γs

|wt(t, x)|2 dxdt

)
. (51)

A similar procedure applied to the delay variable y provides us the following estimate
for some constant Cτf ,a > 0∫ T

s

∫ 1

0

∫
Γs

|y(t, θ, x)|2 dx dθ dt

≤ Cτf ,a

(∫ 1

0

∫
Γs

|y0(θ, x)|2 dxdθ dt+

∫ T

s

∫
Γs

∣∣∣∂u
∂ν

(t, x)
∣∣∣2dxdt

)
. (52)

Step 2. Energy estimate for u. By the Poincaré inequality we have∫ T

s

∫
Ωf

|u(t, x)|2 dxdt ≤ C
∫ T

s

∫
Ωf

|∇u(t, x)|2 dxdt. (53)

Next, we shall estimate the terms in the energy corresponding to the wave com-
ponent. Let T > 2(τf + τs) and τf + τs < σ < T − (τf + τs). In the following,
we establish that there exist a constant Cη > 0 independent of T and a constant
Cρ,σ,r,η,T > 0 such that for every r ∈ ( 1

2 , 1] we have∫ T−σ

σ

∫
Ωs

|wt(t, x)|2 + |∇w(t, x)|2 + |w(t, x)|2 dx (54)
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≤ Cη(E(T − σ) + E(σ)) + Cρ,σ,r,η,T

(
‖w‖2Hr((0,T )×Ωs)

+

∫ T

0

D(t) dt

)
.

Step 3. Energy estimates for w. We use the energy identities provided in Proposi-
tion 1, which is possible since w satisfies the necessary regularity condition accord-
ing to Theorem 2.2. We choose a vector field η having a uniformly positive definite
Jacobian, that is, for some some ρ > 0 we have

(Jη)z · z ≥ ρ|z|2, for every z ∈ Rd. (55)

Let us estimate each term on the right hand side of (49) where T and s are replaced
by T − σ and σ, respectively. Since �w = −w we have∫ T−σ

σ

∫
Ωs

(�w) · (η · ∇w) dx dt

≤ ρ

4

∫ T−σ

σ

∫
Ωs

|∇w|2 dxdt+ Cρ,η

∫ T−σ

σ

∫
Ωs

|w|2 dx dt. (56)

Applying the Cauchy-Schwarz inequality to the boundary terms in (49) one obtains∫ T−σ

σ

∫
Γs

∂w

∂ν
· (η · ∇w) +

1

2
(|wt|2 − |∇w|2)η · ν dx dt

≤ Cη
∫ T−σ

σ

∫
Γs

(∣∣∣∂w
∂ν

∣∣∣2+ |wt|2 + |∇w|2
)

dxdt. (57)

The last integral term in (49) are estimated as follows

−
∫

Ωs

wt(T − σ) · (η · ∇w(T − σ))− wt(σ) · (η · ∇w(σ)) dx (58)

≤ Cη
∫

Ωs

|wt(T − σ)|2 + |∇w(T − σ)|2 + |wt(σ)|2 + |∇w(σ)|2 dx.

The remaining term in (49) is estimated by using (48) and Young’s inequality to
obtain ∣∣∣∣∣

∫ T−σ

σ

∫
Ωs

(|wt|2 − |∇w|2) div η dx dt

∣∣∣∣∣ ≤ ρ

4

∫ T−σ

σ

∫
Ωs

|∇w|2 dx dt

+ Cρ,η

∫ T−σ

σ

∫
Ωs

|w|2 dxdt+ Cρ,η

∫ T−σ

σ

∫
Γs

∣∣∣∂w
∂ν

∣∣∣2dxdt

+ Cη

∫
Ωs

|wt(T − σ)|2 + |w(T − σ)|2 + |wt(σ)|2 + |w(σ)|2 dx. (59)

Using the estimates (56)–(59) in (49) with ϕ = w we have, after rearranging terms
and using (55),

ρ

4

∫ T−σ

σ

∫
Ωs

|∇w|2 + |w|2 dxdt ≤ Cη(E(T − σ) + E(σ)) (60)

+ Cρ,η

∫ T−σ

σ

∫
Γs

(∣∣∣∂w
∂ν

∣∣∣2+ |wt|2 + |∇w|2
)

dxdt+ Cρ,η

∫ T−σ

σ

∫
Ωs

|w|2 dx dt.

It remains to estimate the velocity term wt, and this is the place where we use
the energy equation (48). Let us choose the vector field η so that div η = 1, e.g. the
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radial vector field η(x) = x/d. We estimate the right hand side of (48) by applying
the Cauchy-Schwarz inequality and then using estimate (60) with ϕ = w to get∫ T−σ

σ

∫
Ωs

|wt|2 dxdt ≤ Cη(E(T − σ) + E(σ)) (61)

+ Cρ,η

∫ T−σ

σ

∫
Γs

(∣∣∣∂w
∂ν

∣∣∣2+ |wt|2 + |∇w|2
)

dxdt+ Cρ,η

∫ T−σ

σ

∫
Ωs

|w|2 dx dt.

Taking the sum of (60) and (61), using the decomposition |∇w|2 = |∂w∂ν |
2 + |∂w∂τ |

2

on Γs, the tangential trace estimate in Theorem 4.1, and the boundary condition
∂w
∂ν (t) = β ∂u∂ν (t − τf ) − δwt(t) on Γs we obtain the desired estimate (55) where

r = 1
2 + ε.

Step 4. From (51)–(55) and the fact that the energy is decreasing we have

(T − 2σ)E(T − σ) ≤
∫ T−σ

σ

E(t) dt (62)

≤ Cη(E(T − σ) + E(0)) + CT

(
‖w‖2Hr((0,T )×Ωs)

+

∫ T

0

D(t) dt

)
.

Replacing T and s by T − σ and 0 in (50), respectively, we can estimate E(0) from
above in terms of E(T−σ) and the dissipation term D. Using this in (62) we obtain

(T − 2σ − 2Cη)E(T − σ) ≤ CT
(
‖w‖2Hr((0,T )×Ωs)

+

∫ T

0

D(t) dt

)
(63)

for some constant Cη independent of T . If we take σ > τf + τs and T > 2σ + Cη
and then use the fact that E(T ) ≤ E(T − σ) in (63) we obtain the energy estimate

E(T ) ≤ CT
(
‖w‖2Hr((0,T )×Ωs)

+

∫ T

0

D(t) dt

)
(64)

where r ∈ ( 1
2 , 1].

Step 5. Absorption of lower order term. In this step, we prove that the lower order
term on the right hand side of (64) can be absorbed by the dissipation term. More
precisely, we show that there exists CT > 0 such that

‖w‖2Hr((0,T )×Ωs)
≤ CT

∫ T

0

D(t) dt. (65)

This is done via a compactness-uniquess argument as in [6]. Suppose on the contrary
that for each integer n > 0 there is a data Y0n = (u0n, w0n, v0n, y0n, z0n) ∈ D(A)
with

‖wn‖2Hr((0,T )×Ωs)
> n

∫ T

0

Dn(t) dt, (66)

where Dn is the dissipation term associated with the solution Yn = (un, wn, vn, yn,
zn) with initial data Y0n = (u0n, w0n, v0n, y0n, z0n). By rescaling the initial data,
we may suppose without loss of generality that for each n we have

‖wn‖Hr((0,T )×Ωs) = 1. (67)
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From (66) and (67) it follows that
un → 0, strongly in L2(0, T ;H1

Γf
(Ωf )),

wnt → 0 and wnt(· − τs)→ 0, strongly in L2(0, T ;L2(Γs)),
∂un
∂ν
→ 0 and

∂un
∂ν

(· − τf )→ 0, strongly in L2(0, T ;L2(Γs)).

(68)

In particular, the Neumann boundary condition for wn yields

∂wn
∂ν
→ 0, strongly in L2(0, T ;L2(Γs)). (69)

According to (64), (66) and (67), Yn(T ) is uniformly bounded in X, and conse-
quently Yn(0) = Y0n is uniformly bounded in X according to (50) with s = 0.
Thus, up to a subsequence, we have Yn0 → Y0 weakly in X for some Y0 =
(u0, w0, v0, y0, z0) ∈ X. By the uniform boundedness of the adjoint semigroup
on compact intervals, it follows that

un → u, weakly-star in L∞(0, T ;L2(Ωf )),

wn → w, weakly-star in L∞(0, T ;H1(Ωs)),

wnt → wt, weakly-star in L∞(0, T ;L2(Ωs)),

(70)

where Y (t) = (u(t), w(t), v(t), y(t), z(t)) = etAY0. In particular, from the last two
parts in (70) we can see that wn is uniformly bounded in H1((0, T ) × Ωs). By
compactness, there is a subsequence which we denote by the same indices such that
wn → w strongly in Hr((0, T ) × Ωs) for r ∈ ( 1

2 , 1), and by passing to the limit in
(67) the limit satisfies

‖w‖Hr((0,T )×Ωs) = 1. (71)

From (68) and (70) it follows that u = 0.
We show that v = wt is the very weak solution of the following wave equation

with overdetermined boundary conditions
vtt −∆v + v = 0, in (0, T )× Ωs,
∂v

∂ν
= 0, v = 0, on (0, T )× Γs,

v(0) = w1 ∈ L2(Ωs), vt(0) = Rsw0 ∈ H1(Ωs)
′,

(72)

where Rs is defined by 〈Rsw0, ϕ〉H1(Ωs)′×H1(Ωs) = (w0, ϕ)H1(Ωs) for w0, ϕ ∈ H1(Ωs).

Given f ∈ L2((0, T )×Ωs), let ϕ ∈ C1([0, T ], L2(Ωs))∩C([0, T ], H1(Ωs)) be the weak
solution of 

ϕtt −∆ϕ+ ϕ = f, in (0, T )× Ωs,
∂ϕ

∂ν
= 0, on (0, T )× Γs,

ϕ(T ) = ϕt(T ) = 0, in Ωs.

Integrating by parts in time and space we infer that

0 =

∫ T

0

∫
Ωs

(wntt −∆wn + wn) · ϕt dxdt

= −
∫

Ωs

v0n · ϕt(0) dx−
∫ T

0

∫
Γs

∂wn
∂ν
· ϕt dxdt−

∫
Ωs

w0n · ϕ(0) dx
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−
∫ T

0

∫
Ωs

wnt · ϕtt −∇wn · ∇ϕt + wnt · ϕdxdt

= −
∫

Ωs

v0n · ϕt(0) dx− 〈Rsw0n, ϕ(0)〉H1(Ωs)′×H1(Ωs) −
∫ T

0

∫
Γs

∂wn
∂ν
· ϕt dx dt

−
∫ T

0

∫
Ωs

wnt · f dxdt.

Passing to the limit n→∞ and using (68)–(70), w0n → w0 weakly in H1(Ωs) and
v0n → v0 weakly in L2(Ωs) we have, for every f ∈ L2((0, T )× Ωs),∫ T

0

∫
Ωs

v · f dx dt = −
∫

Ωs

v0 · ϕt(0) dx− 〈Rsw0, ϕ(0)〉H1(Ωs)′×H1(Ωs). (73)

In a similar fashion it can be shown that for every f ∈ L2((0, T )× Ωs) we have∫ T

0

∫
Ωs

v · f dx dt = −
∫

Ωs

v0 · ψt(0) dx− 〈Rsw0, ψ(0)〉H1(Ωs)′×H1(Ωs), (74)

where ψ ∈ C1([0, T ], L2(Ωs)) ∩ C([0, T ], H1
0 (Ωs)) is the weak solution of

ψtt −∆ψ + ψ = f, in (0, T )× Ωs,

ψ = 0, on (0, T )× Γs,

ψ(T ) = ψt(T ) = 0, in Ωs.

From (73) and (74) it follows that v is indeed the very weak solution of (72).
For sufficiently large T > 0, the solution of (72) is identically zero according to

the Holmgren-uniqueness principle, see [25, Chapter I, Theorem 8.2]. Therefore w
is constant with respect to t and it is a weak solution of the over-determined elliptic
problem −∆w + w = 0, in Ωs,

∂w

∂ν
= 0, w = 0, on Γs.

(75)

Applying the unique-continuation condition for elliptic operators we infer that w =
0, contradicting (71). This completes the proof of (65).

Step 6. Let us finish the proof of the theorem. First, we obtain immediately from
(64) and (65) that

E(T ) ≤ CT
∫ T

0

D(t) dt.

Moreover, according to Lemma 4.2 we have∫ T

0

D(t) dt ≤ 1

C
(E(0)− E(T )).

Combining the last two estimates leads us to E(T ) ≤ %TE(0) where %T = CTC
−1/(1

+ CTC
−1) ∈ (0, 1). This proves the desired inequality, which in turn implies the

exponential stability of the semigroup generated by A.
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5. Rational stability under the critical case γδ = αβ. In the critical case
γδ = αβ, the dissipation induced by the feedback controls is cancelled due to the
delay in the interaction. However, we can see that the energy still dissipates through
the diffusion of the fluid component. In this section, we show that this dissipative
property leads to a rational decay rate for the interaction model, however, we are
only able to prove this under an additional geometric condition. This geometrical
condition has been utilized in several works and we refer to [20] in the context of
fluid-structure interaction models.

Our method relies on a resolvent-based approach, which has been used in fluid-
structure models without delay in [2, 5]. The method we shall employ here uses
the ideas and techniques given in [5], where instead of the Dirichlet map we use the
Robin map. The success of these methods is based on the following abstract result
by Borichev and Tomilov [11].

Theorem 5.1. Let A be a generator of a bounded semigroup on a Hilbert space X
such that iR ⊂ ρ(A) and let α > 0. Then there exist r0 > 0 and C(r0) > 0 such
that

‖(irI −A)−1‖X ≤ Cr0 |r|σ for every r ∈ R with |r| ≥ r0,

where σ ∈ (0,∞), if and only if there exist t0 > 0 and Ct0 > 0 such that

‖etAX0‖X ≤ Ct0t−
1
σ ‖X0‖D(A) for every X0 ∈ D(A) and t > t0.

To prove rational stability, we need the static version of the energy identity
(49) in Proposition 1, compare [5]. For convenience, we state it in the following
proposition.

Proposition 2. Let Ω be a smooth bounded domain and suppose that ψ ∈ H2(Ω)
is a vector-valued function satisfying the elliptic equation

−∆ψ + sψ = f

where f ∈ L2(Ω) and s ∈ R. If η ∈ [C2(Ω)]d is a vector field then we have∫
Ω

(Jη)∇ψ · ∇ψ dx+
1

2

∫
∂Ω

|∇ψ|2η · ν dx

=

∫
∂Ω

∂ψ

∂ν
· (η · ∇ψ) dx− s

2

∫
∂Ω

|ψ|2η · ν dx+
1

2

∫
∂Ω

∂ψ

∂ν
· (ψ div η) dx

− 1

2

∫
Ω

∇ψ · (ψ · ∇(div η)) dx+

∫
Ω

f · (η · ∇ψ) dx. (76)

We are now ready to state and prove the main result of this section.

Theorem 5.2. Suppose that αβ = γδ. Assume that there exists a vector field
η ∈ [C2(Ωs)]

d and η0 > 0 such that η ·ν ≥ η0 on Γs and Jη(x) is uniformly positive
definite, that is, there exists ρ > 0 such that [Jη(x)]z · z ≥ ρ|z|2 for every z ∈ Rd
and x ∈ Ωs. Then there exist t0 > 0 and C = C(t0) > 0 such that

‖etAY0‖X ≤ Ct−
1
3 ‖Y0‖D(A), t > t0,

for every Y0 ∈ D(A).

Proof. We will establish the following inequality

‖Y ‖X,a ≤ C|r|3‖Y ∗‖X,a (77)

for every real number r with |r| ≥ r0 for some r0 > 1 and C = C(r0) > 0, where
Y = (u, v, w, y, z) ∈ D(A) and (irI − A)Y = Y ∗ = (u∗, w∗, v∗, y∗, z∗). The latter
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equation is equivalent to system (32)–(35) where λ = ir. We note that to prove
(77), it is enough to prove that

‖Y ‖2X,a ≤ C|r|3(‖∇u‖2L2(Ωf ) + ‖Y ∗‖2X,a) (78)

for |r| ≥ r0. Indeed, since |〈Y ∗, Y 〉X,a| ≥ −Re〈irY −AY, Y 〉X,a ≥ C‖∇u‖2L2(Ωf ) for

some constant C > 0, (78) implies that

‖Y ‖2X,a ≤ C|r|3(|〈Y ∗, Y 〉X,a|+ ‖Y ∗‖2X,a).

Applying Young’s inequality, we have

C|r|3|〈Y ∗, Y 〉X,a| ≤
1

2
‖Y ‖2X,a + C|r|6‖Y ∗‖2X,a.

The last two inequalities, together with the assumption that r0 > 1, imply (77)
after taking square roots. Therefore, in the following we will show (78). This will
be done in several steps.

Step 1. An auxiliary variable. Define the Robin map Rg = ϕ as follows∆ϕ = 0, in Ωs,
∂ϕ

∂ν
+ ϕ = g, on Γs.

We infer from the regularity theory for elliptic operators in [26, Chapter 2] that the

linear operator R satisfies R ∈ L(Hσ(Γs), H
σ+ 3

2 (Ωs)) for every σ ∈ R, assuming
that Ωs is sufficiently smooth. Let ϕ = R(∂w∂ν +w). The function ψ = w−ϕ satisfies
the boundary value problem−∆ψ + (1− r2)ψ = (r2 − 1)ϕ+ irw∗ + v∗, in Ωs,

∂ψ

∂ν
+ ψ = 0, on Γs.

(79)

Notice that ψ ∈ H2(Ωs). The right hand side of the first equation in (79) will be
denoted by ψ∗.

Step 2. We prove that there is a constant C > 0 such that for every |r| ≥
√

6,

r2‖ψ‖2L2(Ωs)
≤ C(‖∇ψ‖2L2(Ωs)

+ ‖ψ‖2L2(Γs)
+ r2‖ϕ‖2L2(Ωs)

+ ‖w∗‖2L2(Ωs)
+ ‖v∗‖2L2(Ωs)

). (80)

Multiplying the first equation in (79) by ψ, integrating over Ωf and then using
the generalized Green’s identity we obtain

(r2 − 1)

∫
Ωs

|ψ|2 dx =

∫
Γs

|ψ|2 dx+

∫
Ωs

|∇ψ|2 dx−
∫

Ωs

ψ∗ · ψ dx. (81)

For |r| ≥ 1/
√

2 we have |r2 − 1| ≤ r2, and upon using this together with the
elementary inequality |ab| ≤ a2 + 1

4b
2 we obtain from (79) that∣∣∣∣∫

Ωs

ψ∗ · ψ dx

∣∣∣∣ ≤ ∫
Ωs

|r2 − 1|
|r|

|ϕ||r||ψ|dx+

∫
Ωs

|w∗||r||ψ|dx+

∫
Ωs

|v∗||ψ|dx

≤ r2

∫
Ωs

|ϕ|2 dx+

∫
Ωs

|w∗|2 dx+
1

2

∫
Ωs

|v∗|2 dx+
1

2
(r2 + 1)

∫
Ωs

|ψ|2 dx. (82)

Plugging (82) in (81) yields the following estimate for some C > 0

1

2
(r2−3)

∫
Ωs

|ψ|2 dx ≤ C
(∫

Ωs

|∇ψ|2+|w∗|2+|v∗|2 dx+

∫
Γs

|ψ|2 dx

)
+r2

∫
Ωs

|ϕ|2 dx.



A PARABOLIC-HYPERBOLIC PDE WITH DELAY 3077

The assumption |r| ≥
√

6 implies that (r2 − 3)/2 ≥ r2/4 and applying this to the
above inequality we obtain (80).

Step 3. The next step is to show that for every ε > 0 there exist constants C > 0
and Cε > 0 such that

‖∇ψ‖2L2(Ωs)
≤ Cε(r

2‖ψ‖2L2(Γs)
+ r2‖ϕ‖2H1(Ωs)

+ r2‖w∗‖2L2(Ωs)
+ ‖v∗‖2L2(Ωs)

)

+ (εr2 + C)‖ψ‖2L2(Ωs)
(83)

for every |r| ≥ 1. This is the place where we apply the energy identity in Proposition
2 where s = 1 − r2, f = ψ∗ and with the vector-field η in the statement of the
theorem.

We estimate the terms on the right-hand side of (76). From the boundary con-

dition ∂ψ
∂ν = −ψ we obtain∣∣∣∣12

∫
Γs

∂ψ

∂ν
· (ψ div η) dx

∣∣∣∣ ≤ Cη

∫
Γs

|ψ|2 dx (84)∣∣∣∣ (1− r2)

2

∫
∂Ω

|ψ|2η · ν dx

∣∣∣∣ ≤ Cηr
2

∫
Γs

|ψ|2 dx. (85)

In (85) we used the inequality |r2 − 1| ≤ r2 which is valid for |r| ≥ 1√
2
. On the

other hand, using Young’s inequality we derive the following estimates∣∣∣∣∫
Γs

∂ψ

∂ν
· (η · ∇ψ) dx

∣∣∣∣ ≤ η0

4

∫
Γs

|∇ψ|2 dx+ Cη0,η

∫
Γs

|ψ|2 dx (86)∣∣∣∣∫
Ωs

∇ψ · (ψ · ∇(div η)) dx

∣∣∣∣ ≤ ρ

4

∫
Ωs

|∇ψ|2 dx+ Cη,ρ

∫
Ωs

|ψ|2 dx. (87)

In the succeeding analysis, we estimate the last term in (76) where f = ψ∗ =
(r2 − 1)ϕ+ irw∗ + v∗. First, we have∣∣∣∣∫

Ω

(irw∗ + v∗) · (η · ∇ψ) dx

∣∣∣∣ ≤ Cη,ρ ∫
Ωs

r2|w∗|2 + |v∗|2 dx+
ρ

4

∫
Ωs

|∇ψ|2 dx. (88)

According to the divergence theorem it can be seen that∫
Ωs

r2ϕ · (η · ∇ψ) dx

=

∫
Γs

(rϕ) · (rψ)η · ν dx−
∫

Ωs

(rϕ) · ((rψ) div η) dx−
∫

Ωs

(r∇ϕ) · (rψη) dx.

Using this equation and then invoking Young’s inequality we obtain the estimate∣∣∣∣∫
Ωs

(r2 − 1)ϕ · (η · ∇ψ) dx

∣∣∣∣ (89)

≤ Cη,ρ,ε
∫

Γs

|rψ|2 dx+ Cη,ρ,ε

∫
Ωs

|rϕ|2 + |r∇ϕ|2 dx+
ρε

2
r2

∫
Ωs

|ψ|2 dx.

The terms on the left hand side of (76) can be estimated below by∫
Ω

(Jη)∇ψ · ∇ψ dx+
1

2

∫
Ωs

|∇ψ|2η · ν dx

≥ ρ
∫

Ωs

|∇ψ|2 dx+
η0

2

∫
Γs

|∇ψ|dx. (90)
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Using the estimates (84)–(90) in (76) and the assumption |r| ≥ 1 we obtain (83)
with C = Cη,ρ and Cε = Cη,ρ,ε after multiplying by 2/ρ.

Step 4. The next step is to estimate the first two terms on the right hand side of
(83). We show that there exists C > 0 such that for every |r| ≥ 1 there holds∥∥∥∂w

∂ν

∥∥∥2

H−
1
2 (Γs)

+ r2‖w‖2
H−

1
2 (Γs)

≤ C|r|(‖∇u‖2L2(Ωf ) + ‖Y ∗‖2X,a) (91)

and as a consequence for every ε1 > 0 there exists Cε1 > 0 such that for every
|r| ≥ 1

r2‖ψ‖2L2(Γs)
+ r2‖ϕ‖2H1(Ωs)

≤ ε1‖ψ‖2H1(Ωs)
+Cε1 |r|3(‖∇u‖2L2(Ωf ) + ‖Y ∗‖2X,a). (92)

First we prove (91). Rewrite the boundary conditions for u and w on Γs given
in (38) and (39) as follows

irw =
eirτs

α

(
u− γ ∂u

∂ν

)
+ τs

∫ 1

0

eirτsθz∗(θ) dθ + w∗ (93)

∂w

∂ν
= −δirw + βe−irτf

(
∂u

∂ν
+ τf

∫ 1

0

e−irτfθy∗(θ) dθ

)
. (94)

Following [5], we define ũ ∈ H1(Ωf ) to be the solution of the following elliptic
problem

∆ũ = ∆u+ u∗ in Ωf , ũ = 0 on ∂Ωf ,

which, by a standard elliptic estimate, satisfies the inequality

‖∇ũ‖L2(Ωf ) ≤ C‖∆u+ u∗‖H−1(Ωf ) ≤ C(‖∇u‖L2(Ωf ) + ‖u∗‖L2(Ωf )). (95)

Since iru = ∆ũ = div(∇ũ) we have |r|‖u‖H−1(Ωf ) = ‖∆ũ‖H−1(Ωf ) ≤ ‖∇ũ‖L2(Ωf ).
From this estimate and (95), together with interpolation, the Poincaré and Cauchy-
Schwarz inequalities, we have

|r|‖u‖2L2(Ωf ) ≤ |r|‖u‖H−1(Ωf )‖u‖H1(Ωf ) ≤ C(‖∇u‖2L2(Ωf ) + ‖u∗‖2L2(Ωf )). (96)

By the continuity of the first-order trace operator (recall Section 1.1), the equation
∆u = iru− u∗, the Poincaré inequality and (96) we obtain for |r| ≥ 1∥∥∥∂u

∂ν

∥∥∥2

H−
1
2 (Γs)

≤ C(‖u‖2H1(Ωf ) + ‖∆u‖2L2(Ωf ))

≤ C|r|(‖∇u‖2L2(Ωf ) + ‖u∗‖2L2(Ωf )). (97)

Using the embedding L2(Γs) ⊂ H−
1
2 (Γs), trace theory and Poincaré inequality

to majorize the norm of u in L2(Γs) by the norm of its gradient in L2(Ωf ) in (93)

r2‖w‖2
H−

1
2 (Γs)

≤ C|r|(‖∇u‖2L2(Ωf ) + ‖Y ∗‖2X,a). (98)

Employing the inequalities (97) and (98) in (94) we get∥∥∥∂w
∂ν

∥∥∥2

H−
1
2 (Γs)

≤ C|r|(‖∇u‖2L2(Ωf ) + ‖Y ∗‖2X,a). (99)

The sum of (98) and (99) gives us (91), and this in turn implies the estimate

‖ϕ‖2H1(Ωs)
≤ C

∥∥∥∂w
∂ν

+ w
∥∥∥2

H−
1
2 (Γs)

≤ C|r|(‖∇u‖2L2(Ωs)
+ ‖Y ∗‖2X,a) (100)
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by the continuity of the Robin map R. To estimate the norm of rψ in L2(Γs), we
rewrite this norm, using the equation ψ = w − ϕ, as follows

r2‖ψ‖2L2(Γs)
= 〈r2w,ψ〉 −

∫
Γs

rψ · rϕdx, (101)

where the brackets denote the duality pairing between H−
1
2 (Γs) and H

1
2 (Γs). The

first term on the right hand side of (101) can be estimated above by

|〈r2w,ψ〉| ≤ r2‖w‖
H−

1
2 (Γs)

‖ψ‖
H

1
2 (Γs)

≤ Cε1r4‖w‖2
H−

1
2 (Γs)

+ ε1‖ψ‖2H1(Ωs)
. (102)

The second term of the said equation will be simply estimated as follows∣∣∣∣∫
Γs

rψ · rϕdx

∣∣∣∣ ≤ 1

2

∫
Γs

r2|ψ|2 dx+
1

2

∫
Γs

r2|ϕ|2 dx. (103)

Using (102) and (103) in (101), taking the sum of the resulting estimate with (100)
and finally using (98), we obtain (92) by virtue of the assumption that |r| ≥ 1.

Step 5. Now we combine the estimates provided in the previous steps to prove
that there exist r0 >

√
6 and a constant C > 0 such that for |r| ≥ r0 there holds

r2‖ψ‖2L2(Ωs)
+ ‖∇ψ‖2L2(Ωs)

≤ C|r|3(‖∇u‖2L2(Ωf ) + ‖Y ∗‖2X,a). (104)

From (80), (83) and (92), it follows that if |r| ≥
√

6 then

r2‖ψ‖2L2(Ωs)
+ ‖∇ψ‖2L2(Ωs)

≤ Cεε1‖ψ‖2H1(Ωs)
+ (Cεr2 + C)‖ψ‖2L2(Ωs)

+Cε,ε1 |r|3(‖∇u‖2L2(Ωf ) + ‖Y ∗‖2X,a) (105)

where C is independent of r and ε. We choose the constants r0, ε and ε1 so that
the following inequalities are satisfied

(1− Cε)r2 − C − Cεε1 ≥
r2

4
and 1− Cεε1 ≥

1

2
(106)

whenever |r| ≥ r0. For example, we take ε > 0 small enough so that 1− Cε ≥ 1/2,
and then choose ε1 sufficiently small so that the second inequality in (106) is sat-
isfied. The first inequality in (106) is satisfied for every |r| ≥ r0 if we choose r0

sufficiently large, for example one may take r0 = max(
√

6, 2
√
C + Cεε1). Rearrang-

ing the terms in (105) and then using (106) yield (104).

Step 6. In this intermediate step, we will estimate the L2-norm in Γs of the trace
∂u
∂ν . In fact, we will prove that if |r| ≥ 1 then∥∥∥∂u

∂ν

∥∥∥2

L2(Γs)
≤ C(|r|3‖∇u‖2L2(Ωf ) + ‖w‖2H1(Ωs)

+ |r|3‖Y ∗‖2X,a). (107)

From the boundary condition (93) one can derive the following equation

γ

∫
Γs

∣∣∣∂u
∂ν

∣∣∣2dx =

∫
Γs

∂u

∂ν
·
(
u− αe−irτs(irw − w∗)− αe−irτsτs

∫ 1

0

eirτsθz∗(θ) dθ
)

dx.

According to Young’s inequality and trace theory applied to w∗, and Fubini’s the-
orem and Hölder’s inequality applied to z∗ we have∣∣∣∣∫

Γs

∂u

∂ν
·
(
αe−irτsw∗ − αe−irτsτs

∫ 1

0

eirτsθz∗(θ) dθ
)

dx

∣∣∣∣
≤ γ

2

∫
Γs

∣∣∣∂u
∂ν

∣∣∣2dx+ Cγ

∫
Ωs

|w∗|2 + |∇w∗|2 dx+ Cγ

∫ 1

0

∫
Γs

|z∗(θ)|2 dxdθ. (108)
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Estimate (97) and the trace theorem imply that∣∣∣∣∫
Γs

∂u

∂ν
· udx

∣∣∣∣ ≤ ∥∥∥∂u∂ν ∥∥∥H− 1
2 (Γs)

‖u‖
H

1
2 (Γs)

≤ C|r| 12 (‖∇u‖2L2(Ωf ) + ‖Y ∗‖2X,a) (109)

and similarly, now using the assumption |r| ≥ 1,∣∣∣∣∫
Γs

∂u

∂ν
· αe−irτsirw dx

∣∣∣∣ ≤ C
(
|r|2
∥∥∥∂u
∂ν

∥∥∥2

H−
1
2 (Γs)

+ ‖w‖2
H

1
2 (Γs)

)
≤ C(|r|3‖∇u‖2L2(Ωf ) + ‖w‖2H1(Ωs)

+ |r|3‖Y ∗‖2X,a). (110)

The estimates (108)–(110) give us the claim (107).

Step 7. Finally, we prove (78). From the equation w = ψ + ϕ and the estimates
(100) and (104) it can be seen that

‖w‖2H1(Ωs)
≤ C|r|3(‖∇u‖2L2(Ωf ) + ‖Y ∗‖2X,a). (111)

Again, using (100) and (104) once more, now with the equation v = irw − w∗ =
ir(ψ + ϕ)− w∗, we likewise have

‖v‖2L2(Ωs)
≤ C|r|3(‖∇u‖2L2(Ωf ) + ‖Y ∗‖2X,a). (112)

By trace theory, Poincaré inequality and the fact that r0 > 1 we obtain

‖u‖2L2(Ωf ) + ‖u‖2L2(Γs)
≤ C|r|3‖∇u‖2L2(Ωf ). (113)

Now, using (36) where λ = ir, and then applying the estimate (107) we obtain

‖y‖2L2
θ(L2(Γs))

≤ C

(∥∥∥∂u
∂ν

∥∥∥2

L2(Γs)
+ ‖y∗‖2L2

θ(L2(Γs))

)
≤ C|r|3(‖∇u‖2L2(Ωf ) + ‖Y ∗‖2X,a). (114)

On the other hand, replacing irw − w∗ in (93) by v the estimate

‖v‖2L2(Γs)
≤ C

(
‖u‖2L2(Γs)

+
∥∥∥∂u
∂ν

∥∥∥2

L2(Γs)
+ ‖z∗‖2L2

θ(L2(Γs))

)
holds. This inequality, together with (107), (111), (113) and (37), implies the
following

‖z‖2L2
θ(L2(Γs))

≤ C|r|3(‖∇u‖2L2(Ωs)
+ ‖Y ∗‖2X,a). (115)

Inequalities (111)–(115) give us (78). The proof of the theorem is now completed
by applying Theorem 5.1.

6. Further remarks. One may also consider possible delays in the feedback con-
trols as has been done in [12, 13] for the one-dimensional wave equation and in [32]
for the multidimensional case. The feedbacks in (2) will be replaced byF (t, x) = γ1

∂u

∂ν
(t, x) + γ2

∂u

∂ν
(t− τ̃f , x), (t, x) ∈ (0,∞)× Γs,

G(t, x) = δ1wt(t, x) + δ2wt(t− τ̃s, x), (t, x) ∈ (0,∞)× Γs,

(116)

for some delay parameters τ̃f > 0 and τ̃s > 0 and coefficients γ1 > 0, δ1 > 0, and
γ2, δ2 ∈ R. Using the methodologies presented in Section 4, it can be shown that the
corresponding system is exponentially stable provided that γ1 > |γ2|, δ1 > |δ2| and
(γ1 − |γ2|)(δ1 − |δ2|) > αβ. This follows from the more general version of Theorem
7.1 given in [37]. On the other hand, it is rationally stable for γ1 > |γ2|, δ1 > |δ2|
and (γ1 − |γ2|)(δ1 − |δ2|) = αβ by using the same techniques given in Section 5.
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Finally, we note that the above results can be adapted when there is no delay, that
is, τf = τ̃f = τs = τ̃s = 0.

7. Appendix. Consider the quadratic form Qa : R4 → R defined by

Qa(u, v, y, z) = (2a1γ−a3)u2+(2a2δ−a4)v2+a3y
2+a4z

2+2a1αuz+2a2βvy (117)

where a = (a1, a2, a3, a4) ∈ R4. The quadratic form Qa clearly satisfies the estimate

|Qa(u, v, y, z)| ≤ R(|u|2 + |v|2 + |y|2 + |z|2), for every (u, v, y, z) ∈ R4, (118)

where R > 0 is a constant depending only on a and (α, β, γ, δ). Under suitable
assumptions on the parameters (α, β, γ, δ), this form will be positive-definite, that
is, there exists a constant ρ > 0 such that

Qa(u, v, y, z) ≥ ρ(|u|2 + |v|2 + |y|2 + |z|2), for every (u, v, y, z) ∈ R4,

or nonnegative definite, that is, Qa(u, v, y, z) ≥ 0 for every (u, v, y, z) ∈ R4. This is
the content of the following theorem.

Theorem 7.1. Suppose that α, β, γ, δ > 0 satisfies αβ < γδ. Then the quadratic
form Qa is positive definite for some a ∈ R4

+. If αβ = γδ then Qa is nonnegative
definite for some a ∈ R4

+.

Proof. The positive definiteness of the form Qa for some a ∈ R4
+ under the condition

αβ < γδ has been already established in [37]. Thus, we only need to prove the
second part. Following [37], we rewrite the quadratic form as follows

Qa(u, v, y, z) =

[
−α

2

a4

(
a1 −

a4γ

α2

)2

+
a4γ

2

α2
− a3

]
u2 + a4

(
z +

a1α

a4
u

)2

+

[
−β

2

a3

(
a2 −

a3δ

β2

)2

+
a3δ

2

β2
− a4

]
v2 + a3

(
y +

a2β

a3
v

)2

.

If we choose the positive constants a3 and a4 to satisfy a4/a3 = α2/γ2 and then take
a1 = a4γ/α

2, then the coefficient for u2 in the above equation will become zero. On
the other hand, by taking a2 = a3δ/β

2 and using the fact that a3/a4 = γ2/α2 =
β2/δ2, we can see that the coefficient of v2 also vanishes. Therefore, with these
choices for the constants a1, a2, a3, a4, the quadratic form is nonnegative definite
provided that αβ = γδ.
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