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Abstract: In this paper, we discuss sufficient conditions to guarantee the exis-
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1 Introduction

There are many results in establishing the existence and uniqueness of solutions
of the Volterra integral equation of the second kind and various methods were
developed to obtain these results. Knowing that there is only one solution does not
content mathematicians to further study these integral equations. Of course, one
obvious question is that what are the exact solutions for these integral equations?
A lot of techniques in finding explicit solutions of these equations were made and in
the event of obtaining an exact solution is impossible, approximations of the exact
solution were also studied. For a more detailed discussion, we refer the readers to
[2], [5], [6], and [7].



44 Chamchuri J. Math. 1(2009), no. 2: G. Peralta

In this paper, we will consider a more general integral equation of the type

f(x) = λ

∫ x

a

K(x, y)F (x, y, f(y)) dy + φ(x), (1)

which is called a Volterra integral equation of the second kind. The said
integral equation arises in several problems in mathematical physics (see [3]). We
give sufficient conditions for the kernel K and the function F such that given a
function φ in a certain space, for example the space of continuous function or the
Lp spaces, we can find a unique function f belonging to the same class and satisfies
(1). In the literature, there are results regarding the existence and uniqueness of
solutions of integral equations of the type

f(x) = λ

∫ x

a

K(x, y)G(y, f(y)) dy + φ(x). (2)

We can see that if the variable x can be absorbed by K(x, y), then Equation (1)
can be reduced to Equation (2). To be exact, if F (x, y, f(y)) = g(x)G(y, f(y)),
then we can let our kernel to be K0(x, y) = K(x, y)g(x). But there are integral
equations for which the variable x cannot be absorbed by the kernel K(x, y), for
instance, the integral equation

f(x) =
∫ 1

0

(x2 + y2) cos(xf(y)) dy + 1.

Also, Gori and Santi [1] provided a method for solving (1) numerically in the
case where the kernel K is of the convolution type K(x−y) and K(t) is continuous
at t > 0 and integrable at t = 0. Their method is based on quasi-interpolatory
splines. In this work, we establish the existence and uniqueness of solutions of the
integral equation (1) in the space of continuous functions and the Lebesgue Lp

spaces, for p > 1.

2 Main Results

2.1 Continuous Kernels

First, we consider the case where the kernel is continuous. If the function F is
continuous and satisfies a certain Lipschitz condition, then we are guaranteed that
there is a unique solution to the Volterra integral equation (1). This is the content
of the following theorem.
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Theorem 2.1. Let F : [a, b]× [a, b]× R→ R be a continuous function such that
it satisfies a Lipschitz condition of the form

|F (x, y, z1)− F (x, y, z2)| ≤ M(x, y)|z1 − z2|
for all x, y ∈ [a, b] and z1, z2 ∈ R where

0 < sup
a≤x,y≤b

|M(x, y)| < ∞.

Assume that K : [a, b]× [a, b] → R and φ : [a, b] → R are continuous and λ ∈ R .
Then there exists a unique function f ∈ C([a, b],R) such that f satisfies (1) .

Proof. If either K = 0 or λ = 0, then we may take f = φ . Now assume that
neither K nor λ is zero. For convenience, we let M0 = supa≤x,y≤b |M(x, y)| and
K0 = maxa≤x,y≤b |K(x, y)|. By assumption M0 and K0 are positive. Define a
mapping T : C([a, b],R) → C([a, b],R) by

(Tu)(x) = λ

∫ x

a

K(x, y)F (x, y, u(y)) dy + φ(x).

The continuity of the kernel K and the function F implies that the integral in
Tu is continuous on [a, b] , and since φ is continuous on [a, b] it follows that
Tu ∈ C([a, b],R). Therefore T is well-defined. For u, v ∈ C([a, b],R) we have, by
induction,

|(Tnu)(x)− (Tnv)(x)| ≤ (|λ|K0M0(x− a))n‖u− v‖∞
n!

. (3)

for all n ∈ N . Taking the supremum of (3) we obtain

‖Tnu− Tnv‖∞ ≤ (|λ|K0M0(b− a))n

n!
‖u− v‖∞.

From the inequality
√

n ≤ n
√

n! we have 1/ n
√

n! → 0 as n → ∞ . Hence, there
exists a positive integer N such that

1
n
√

n!
<

1
|λ|K0M0(b− a)

.

whenever n ≥ N . In particular,

(|λ|K0M0(b− a))N

N !
< 1

so that TN is a contraction mapping. Therefore by the Contraction Mapping
Theorem, there exists a unique f ∈ C([a, b],R) such that Tf = f . This completes
the proof of the theorem.
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Since the function F : [a, b]× [a, b]× R→ R defined by F (x, y, z) = z clearly
satisfies the Lipschitz condition given in the previous theorem, we have the follow-
ing classical result.

Corollary 2.2. Assume that K : [a, b] × [a, b] → R and φ : [a, b] → R are
continuous and λ ∈ R . Then there exists a unique function f ∈ C([a, b],R) such
that f satisfies the Volterra integral equation of the second kind

f(x) = λ

∫ x

a

K(x, y)f(x) dy + φ(x)

for all x ∈ [a, b] .

2.2 Measurable and Symmetric Kernels

Let I be an interval. If F : I × I × C → C , u : I → C and x ∈ I we define the
function H(F, x, u; ·) : I → C by

H(F, x, u; y) = F (x, y, u(y))

for all y ∈ I .

Definition 2.3. Let M > 0. A Lebesgue measurable function F : I × I × C→ C ,
where I is an interval, is said to be of class M if it satisfies the following condi-
tions.

(a) |H(F, x, u; y)| ≤ M |u(y)| for all x, y ∈ I and u ∈ C(I,C) (or Lp(I)).

(b) If x ∈ I then H(F, x, αu + v; ·) = αH(F, x, u; ·) + H(F, x, v; ·) for all u, v ∈
C(I,C) (or Lp(I)) and for all scalar α .

For kernels which are not necessarily continuous, we have the following theo-
rems.

Theorem 2.4. Let −∞ ≤ a < b ≤ ∞, 1 < p < ∞ and λ ∈ C . Suppose
F : (a, b)×(a, b)×C→ C is of class M for some M > 0 . Let K : (a, b)×(a, b) → C
be Lebesgue measurable and define G : (a, b) → C by

G(x) =
∫ x

a

|K(x, y)|p/(p−1) dy.

If G ∈ Lp−1(a, b) and H(F, x, u; ·) ∈ Lp(a, b) for all x ∈ (a, b) and u ∈ Lp(a, b) ,
then given φ ∈ Lp(a, b) , there exists a unique f ∈ Lp(a, b) such that f satisfies
the Volterra integral equation of the second kind (1) .
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Proof. If λ = 0 we can take f = φ . Now let us consider the case where λ is
nonzero. Since H(F, x, u; ·) ∈ Lp(a, b) Hölders inequality implies that

(∫ x

a

|K(x, y)F (x, y, u(y))|dy

)p

≤ Mp[G(x)]p−1

∫ x

a

|u(y)|p dy, (4)

whenever u ∈ Lp(a, b) and x ∈ (a, b).
Define an operator T : Lp(a, b) → Lp(a, b) by

(Tu)(x) =
∫ x

a

K(x, y)F (x, y, u(y)) dy.

Given u ∈ Lp(a, b), it follows from (4) that

‖Tu‖p
p =

∫ b

a

∣∣∣∣
∫ x

a

K(x, y)F (x, y, u(y)) dy

∣∣∣∣
p

dx

≤ Mp‖u‖p
p‖G‖p−1

p−1.

Thus
‖Tu‖p ≤

(
M‖G‖(p−1)/p

p−1

)‖u‖p < ∞,

because G ∈ Lp−1(a, b), so that T is well-defined and T ∈ B(Lp(a, b)). Also, T

is a linear operator since

(T (αu + v))(x) =
∫ x

a

K(x, y)H(F, x, αu + v; y) dy

=
∫ x

a

K(x, y)[αH(F, x, u; y) + H(F, x, v; y)] dy

= (αT (u) + T (v))(x)

whenever α ∈ C and u, v ∈ Lp(a, b).
Fix an element u ∈ Lp(a, b) and define vn : (a, b) → R by

vn(x) =
∫ x

a

|(Tnu)(y)|p dy

for nonnegative integers n . By replacing u by Tnu in (4), we get

vn+1(x) =
∫ x

a

∣∣∣∣
∫ s

a

K(s, y)F (s, y, (Tnu)(y)) dy

∣∣∣∣
p

ds

≤ Mp

∫ x

a

[G(s)]p−1

(∫ s

a

|(Tnu)(y)|p dy

)
ds

= Mp

∫ x

a

[G(s)]p−1vn(s) ds (5)
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for all n ≥ 0. Our next step is to prove the following estimate for the function vn

vn(x) ≤ Mnp

(n− 1)!

∫ x

a

(∫ x

y

[G(s)]p−1 ds

)n−1

[G(y)]p−1v0(y) dy (6)

for all n ∈ N . We proceed by mathematical induction. Indeed, one can see that
the basis step can be verified by letting n = 0 in (5). Assuming that (6) holds for
n = k we have, in virtue of (5)

vk+1(x) ≤ M (k+1)p

(k − 1)!

∫ x

a

∫ t

a

ξ(t, y)[G(y)]p−1v0(y) dy dt

where

ξ(t, y) =
(∫ t

y

[G(s)]p−1 ds

)k−1

[G(t)]p−1.

Let us consider the integral
∫ x

a

∫ t

a

ξ(t, y)[G(y)]p−1v0(y) dy dt.

Changing the order of integration gives us
∫ x

a

∫ t

a

ξ(t, y)[G(y)]p−1v0(y) dy dt =
∫ x

a

∫ x

y

ξ(t, y)[G(y)]p−1v0(y) dt dy.

Consequently,

vk+1(x) ≤ M (k+1)p

(k − 1)!

∫ x

a

(∫ x

y

ξ(t, y) dt

)
[G(y)]p−1v0(y) dy. (7)

The first fundamental theorem of the calculus gives us
∫ x

y

ξ(t, y) dt =
1
k

(∫ x

y

[G(s)]p−1 ds

)k

.

Using this in (7) gives us

vk+1(x) ≤ M (k+1)p

k!

∫ x

a

(∫ x

y

[G(s)]p−1 ds

)k

[G(y)]p−1v0(y) dy.

This completes the proof of the estimate (6).
Again, note that

d
dy

∫ x

y

[G(s)]p−1 ds = −[G(y)]p−1.
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and so
∫ x

a

(∫ x

y

[G(s)]p−1 ds

)n−1

[G(y)]p−1 dy =
1
n

(∫ x

a

[G(s)]p−1 ds

)n

. (8)

Since v0(y) ≤ v0(b), by (6) and (8) we get

vn(x) ≤ Mnp

(n− 1)!
v0(b)

∫ x

a

(∫ x

y

[G(s)]p−1 ds

)n−1

[G(y)]p−1 dy

≤ Mnp

n!
v0(b)

(∫ x

a

[G(s)]p−1 ds

)n

≤ Mnp

n!
‖G‖n(p−1)

p−1 v0(b).

Because v0(b) = ‖u‖p
p we have

‖Tnu‖p = vn(b)1/p ≤
(

Mnp‖G‖n(p−1)
p−1

n!

)1/p

‖u‖p.

Therefore, it follows that

‖Tn‖1/n ≤
(

Mp‖G‖p−1
p−1

n
√

n!

)1/p

‖u‖1/n
p ,

and this estimate implies that ‖Tn‖1/n → 0 as n →∞ . Hence, the spectral radius
of T is 0. The boundedness of the closed operator T implies that its spectrum
is nonempty and so σ(T ) = {0} and ρ(T ) = C \ {0} . Thus λ−1 ∈ ρ(T ) for each
nonzero λ and since λ−1φ ∈ Lp(a, b) we have

f = (λ−1I − T )−1(λ−1φ) ∈ Lp(a, b).

From this, we get (λ−1I − T )f = λ−1φ and so f − λTf = φ . Therefore f is the
solution of the integral equation. From the above discussion, it is also clear that
such f is unique. This completes the proof of the theorem.

From the proof of the previous theorem, we have the following limit (see The-
orem 1.6.8 of Miklavc̆ic̆ [4])

lim
n→∞

∥∥∥∥∥f −
n∑

k=0

T kλkφ

∥∥∥∥∥
p

= 0.

Moreover, since F (x, y, z) = z is clearly a continuous function of class M = 1, we
have the following corollary.
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Corollary 2.5. Let −∞ ≤ a < b ≤ ∞, 1 < p < ∞ and λ ∈ C . Let K :
(a, b)× (a, b)× C be Lebesgue measurable and define G : (a, b) → C by

G(x) =
∫ x

a

|K(x, y)|p/(p−1) dy.

If G ∈ Lp−1(a, b) , then given φ ∈ Lp(a, b) , there exists a unique f ∈ Lp(a, b) such
that f satisfies the Volterra integral equation of the second kind

f(x) = λ

∫ x

a

K(x, y)f(y) dy + φ(x).

A function K : [a, b]× [a, b] → C is said to be symmetric if K(x, y) = K(y, x)
for all x, y ∈ [a, b] . For symmetric kernels, we have the following existence and
uniqueness theorem.

Theorem 2.6. Let −∞ < a < b < ∞ and λ ∈ C . Assume that K : [a, b]×[a, b] →
C is Lebesgue measurable, bounded, and symmetric, and F : [a, b]× [a, b]×C→ C
is a continuous function of class M for some M > 0 . If K(x, ·) ∈ L1(a, b) for all
x ∈ [a, b] , then given φ ∈ C([a, b],C) , there exists a unique f ∈ C([a, b],C) such
that f satisfies the Volterra integral equation (1)

Proof. Let G : [a, b] → R be defined by

G(x) = sup
a≤y≤b

|K(x, y)|.

The boundedness of the kernel K implies that ‖G‖∞ < ∞ . Define a linear
operator T : C([a, b],C) → C([a, b],C) by

(Tu)(x) =
∫ x

a

K(x, y)F (x, y, u(y)) dy.

One can easily check that ‖Tu‖∞ ≤ M(b− a)‖G‖∞‖u‖∞ , and from this we have
T ∈ B(C([a, b],C)).

For each nonnegative integer n let vn : [a, b] → R be the increasing function
given by

vn(x) = sup
a≤y≤x

|(Tnu)(y)|.

Then for each nonnegative integer n ,

vn+1(x) ≤ M sup
a≤y≤x

∫ y

a

|K(y, s)||(Tnu)(s)|ds.
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For y ≤ x , ‖K(y, ·)Tnu‖L1(a,y) ≤ ‖K(y, ·)Tnu‖L1(a,x) and so

vn+1(x) ≤ M

∫ x

a

(
sup

a≤y≤x
|K(y, s)|

)
|(Tnu)(s)| ds.

The symmetry of the kernel and the fact that |(Tnu)(s)| ≤ vn(s) we obtain

vn+1(x) ≤ M

∫ x

a

G(s)vn(s) ds.

Using a similar argument as in the proof of Theorem 2.4 we obtain

vn(x) ≤ Mn

(n− 1)!

∫ x

a

(∫ x

y

G(s) ds

)n−1

G(y)v0(y) dy

for all n ≥ 1, x ∈ [a, b] . Because v0(y) ≤ v0(b) = ‖u‖∞ we have

vn(x) ≤ Mn

(n− 1)!
‖u‖∞

∫ x

a

(∫ x

y

G(s) ds

)n−1

G(y) dy.

From the inequality
∫ x

a

(∫ x

y

G(s) ds

)n−1

G(y) dy ≤ 1
n
‖G‖n

∞(x− a)n

we obtain

vn(x) ≤ Mn(b− a)n‖G‖n
∞

n!
‖u‖∞

for all x ∈ [a, b] . The equality vn(b) = ‖Tnu‖∞ gives us

‖Tnu‖∞ ≤ Mn(b− a)n‖G‖n
∞

n!
‖u‖∞.

Therefore
‖Tn‖1/n ≤ M(b− a)‖G‖∞

n
√

n!
and this estimate yields ‖Tn‖1/n → 0 as n → ∞ . Thus ρ(T ) = C \ {0} and
the unique solution to the nonhomogeneous Volterra integral equation is given by
f = (λ−1I − T )−1(λ−1φ) ∈ C([a, b],C).

Corollary 2.7. Let −∞ < a < b < ∞ and λ ∈ C . Assume that K : [a, b] ×
[a, b] → C is Lebesgue measurable, bounded, and symmetric. If K(x, ·) ∈ L1(a, b)
for all x ∈ [a, b] , then given φ ∈ C([a, b],C) , there exists a unique f ∈ C([a, b],C)
such that

f(x) = λ

∫ x

a

K(x, y) 〈T (f(y)), h0〉H dy + φ(x),

where T : C→ H is a bounded linear operator, H is a Hilbert space and h0 ∈ H .
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Proof. If T = 0 or h0 = 0, then the integral in the conclusion of the corollary is
zero and hence we may take f = φ . Now, assume that T is not the zero operator
and h0 is a nonzero vector in H . From the previous theorem, it remains to show
that the function F : [a, b]× [a, b]×C→ C defined by F (x, y, z) = 〈T (z), h0〉H is
continuous and of class M for some M > 0. If α ∈ C and u, v ∈ C([a, b],C) then
using the linearity of the operator T and the linearity of the inner product in the
first argument, we have H(F, x, αu + v; y) = αH(F, x, u; y) + H(F, x, v; y) for all
y ∈ [a, b] . Furthermore, using the Cauchy-Schwartz Inequality we have

|H(F, x, αu + v; y)| = | 〈T (u(y)), h0〉H |
≤ ‖T‖B(C,H)‖h0‖H |u(y)|.

Since T and h0 are both nonzero, then it follows that ‖T‖B(C,H) > 0 and ‖h0‖H >

0. Note that the measurability of F follows from its continuity. Therefore it
follows that F is a function of class M = ‖T‖B(C,H)‖h0‖H > 0, provided that it
is continuous.

It remains to show that F is indeed continuous. To prove this, let ε > 0.
Choose δ = ε/M . If |(x, y, z)− (x̃, ỹ, z̃)| < δ then |z − z̃| < δ . Hence

| 〈T (z), h0〉H − 〈T (z̃), h0〉H | ≤ ‖T‖B(C,H)‖h0‖H |z − z̃| < δM = ε.

Thus F is continuous and this establishes our result.
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