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Abstract. We consider first order hyperbolic systems on an interval with dynamic
boundary conditions. The well-posedness for linear systems is established by using a
variational method. The linear theory is used to analyze the local-in-time well-posedness
for nonlinear systems. The results are applied to a model describing the flow of an
incompressible fluid inside an elastic tube whose ends are attached to tanks. Global
existence and stability for data that are smooth enough and close to the steady state are
obtained by using energy and entropy methods.
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1 Introduction

The paper summarizes recent new results on first order hyperbolic systems on
a bounded interval with dynamic boundary conditions that have the following
form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut (t, x) + A(u(t, x))ux(t, x) = f (u(t, x)), t > 0, 0 < x < 1,

B0u(t, 0) = b0(t, h(t)), t > 0,

B1u(t, 0) = b1(t, h(t)), t > 0,

h′(t) = H (t, h(t), u(t, 0), u(t, 1)), t > 0,

u(0, x) = u0(x), 0 < x < 1,

h(0) = h0.

(1.1)
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This system occurs when the dynamics at the boundary interact with the waves
in the interior. Examples are models for the blood flow in the cardiovascular
system, as in [7, 19] and the references therein. If H does not depend on h then
(1.1) includes system of balance laws with nonlocal boundary conditions. The
dimensions of the constant boundary matrices B0 and B1 are p×n and (n−p)×n,
respectively, with 0 ≤ p ≤ n an integer to be specified below. For the functions
A : U → R

n×n , f : U → R
n, b0 : R × H → R

p, b1 : R × H → R
n−p

and H : R × H × R
2n → R

d , where U ⊂ R
n and H ⊂ R

d are open and
convex, we assume that they are infinitely differentiable. We are interested in the
well-posedness of the system (1.1) in a Sobolev space H m for an integer m ≥ 3
under suitable assumptions, using functional analytic Hilbert space methods.
This differs from the methods and results in [10] or [7] which are concerned with
spaces of continuous functions.

With regards to the PDE part, we assume the following standard hypotheses
for hyperbolic systems, see [2, 13].

Friedrichs Symmetrizability. There exists a symmetric positive-definite
matrix-valued function S ∈ C ∞(U;Rn×n), called the Friedrichs symmetrizer,
that is bounded as well as its derivatives, S(w)A(w) is symmetric for all w ∈ U,
and there exists α > 0 such that S(w) ≥ α In for all w ∈ U.

Diagonalizability. For each w ∈ U, A(w) is diagonalizable with p positive
eigenvalues and n − p negative eigenvalues. In particular, A(w) is invertible and
has n independent eigenvectors.

Uniform Kreiss-Lopatinskiı̆ Condition. There exists C > 0 such that for
all w ∈ U, there holds ‖V ‖ ≤ C‖B0V ‖ for all V ∈ Eu(A(w)) and ‖W‖ ≤
C‖B1W‖ for all W ∈ Es(A(w)). Here, Eu(A) and Es(A) denote the unstable
and stable subspaces of a matrix A, respectively.

We note that due to the diagonalizability, the system is non-characteristic.
For initial-boundary value problems associated with hyperbolic equations, care
should be taken in imposing the boundary conditions in order for the problem not
to be underdetermined or overdetermined. For diagonal systems, the number of
boundary conditions should be equal to the number of incoming characteristics
and the states corresponding to these should be imposed. For systems that are
not diagonal, the Uniform Kreiss-Lopatinskiı̆ Condition stated above provides
the appropriate form of the boundary conditions. In the case of half-space, the
UKL condition implies the decay at infinity x → +∞ for solutions of linear
hyperbolic systems of the form eλtU (x) where λ has a positive real part, refer
to [4].

Bull Braz Math Soc, Vol. 47, N. 2, 2016
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The well-posedness of (1.1) is established by linearizing the system and us-
ing an iterative scheme. There are several ways to perform the linearization. A
successful approach is to freeze the states u and h appearing in A, f and H ,
while retaining the coupling on the boundary conditions. In line with this, we
will discuss a linear version of (1.2), namely,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut (t, x) + A(v(t, x))ux(t, x) + R(t, x)u(t, x) = f (t, x),

B0u(t, 0) = g0(t) + Q0(t)h(t),

B1u(t, 1) = g1(t) + Q1(t)h(t),

h′(t) = H (t)h(t) + G0(t)u(t, 0) + G1(t)u(t, 1) + S(t),

u(0, x) = u0(x),

h(0) = h0,

(1.2)

for 0 < t < T and 0 < x < 1 and appropriate matrices A, R, Qi , Gi and H .
The coefficient v is assumed to be at least Lipschitz. The goal is to prove the
existence and uniqueness of weak solutions of (1.2) in L2((0, T )× (0, 1)). Writ-
ing the system in variational form, so as to apply Friedrichs method, a problem
occurs in eliminating the traces u|x=0 and u|x=1 in the differential equation for
h due to possible limited regularity of G0 and G1. In fact, we only consider the
case where they are bounded. This will be done by considering test functions in
a certain graph space.

In Section 2, we will define weak solutions of the linear system(1.2) and sketch
the proof of well-posedness and trace regularity. The nonlinear system (1.1) will
be the focus of Section 3. We apply the results to a model describing the flow of
a fluid in an elastic tube and outline the proof of global existence and stability.

2 Linear Hyperbolic PDE-ODE Systems

For the linear system (1.2) we assume that v ∈ W 1,∞(QT )n, R ∈ L∞(QT )n×n ,
Q0 ∈ L∞(0, T )p×d, Q1 ∈ L∞(0, T )(n−p)×d , H ∈ L∞(0, T )d×d , S ∈ L2(0, T )d

and G0, G1 ∈ L∞(0, T )d×n where QT = (0, T ) × (0, 1) is the time-space
domain.

The two main ingredients in writing the linear system into a variational form
is the choice of test functions and an appropriate decomposition of the flux
matrix in terms of the boundary matrices. For the latter, we note that there
exist N0 ∈ R(n−p)×n, N1 ∈ Rp×n, C0, M1 ∈ C ∞(U;R(n−p)×n) and C1, M0 ∈
C ∞(U;Rp×n) such that

A(w) = My(w)T By + Cy(w)T Ny , for all (w, y) ∈ U× {0, 1}.

Bull Braz Math Soc, Vol. 47, N. 2, 2016
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This is due to the hypothesis that B0 and B1 have full ranks, see [4]. In fact, N0

is chosen so that
(B0

N0

)
is invertible with inverse (Y0 D0) where Y0 ∈ Rn×p and

D0 ∈ Rn×(n−p) and one can take M0 = (AY0)
T and C0 = (AD0)

T .

Let L = ∂t + A(v)∂x + R and E(QT ) = {u ∈ L2(QT )n : Lu ∈ L2(QT )n}.
Define Ã = νx + A−Tνt where ν = (νt , νx) is the unit outward normal to
∂ QT . The linear map u 
→ Ãu|∂QT from H 1(QT )n into L2(∂ QT )n can be ex-
tended uniquely into a bounded linear operator from the graph space E(QT ) into
H − 1

2 (∂ QT ), see [1, 9]. Consider the subspace E(QT ) of E(QT ) defined as the
closure of H 1(QT )n with respect to the norm

‖u‖2
E(QT ) = ‖u‖2

L2(QT )n + ‖Lu‖2
L2(QT )n + ‖u|∂QT ‖2

L2(∂QT )n .

It follows immediately from the definition that u|∂QT ∈ L2(QT )n for every
u ∈ E(QT ). The spaces E∗(QT ) and E∗(QT ) are defined analogously where L
is replaced by the formal adjoint L∗ = −∂t − AT ∂x + RT of L.

Given f ∈ L2(QT )n, g0 ∈ L2(0, T )p, g1 ∈ L2(0, T )n−p, S ∈ L2(0, T )d ,
u0 ∈ L2(0, 1)n and h0 ∈ Rd , a pair of functions (u, h) ∈ L2(QT )n × L2(0, T )d

is called a weak solution of the system (1.2) if the variational equation
∫ T

0

∫ 1

0
u(t, x) · L∗ϕ(t, x) dx dt

−
∫ 1

0
u0(x) · ϕ(0, x) dx + h0 · η(0)

+
∫ T

0
h(t) · (η′(t) + H̃ (t)η(t)

+ Q1(t)
T M1(t)ϕ(t, 1) − Q0(t)

T M0(t)ϕ(t, 0)) dt

=
∫ T

0

∫ 1

0
f (t, x) · ϕ(t, x) dx dt

−
∫ T

0
g1(t) · (M1(t)ϕ(t, 1) + (G1(t)Y1)

T η(t)) dt

+
∫ T

0
g0(t) · (M0(t)ϕ(t, 0) − (G0(t)Y0)

T η(t)) dt

−
∫ T

0
S(t) · η(t) dt

(2.1)

where H̃ = (H + G1Y1 Q1 + G0Y0 Q0)
T , holds for all ϕ ∈ E∗(QT ) and for

all η ∈ H 1(0, T )d such that ϕ(T , ·) = 0, η(T ) = 0, C1ϕ|x=1 = −(G1 D1)
T η

and C0ϕ|x=0 = (G0 D0)
T η. This variational form is obtained by multiplying the

Bull Braz Math Soc, Vol. 47, N. 2, 2016
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differential equations by the appropriate test functions and then integrating by
parts.

Since G0 and G1 are in L∞, the functions (G1 D1)
T η and (G0 D0)

T η may be
only in L2 even for η ∈ H 1(0, T )d . In order for the compatibility conditions
C1ϕ|x=1 = −(G1 D1)

T η and C0ϕ|x=0 = (G0 D0)
T η to be meaningful, we take

the space E∗(QT ) to be the space for the first component instead of the space
H 1(QT )n used in hyperbolic systems.

The existence of a weak solution is obtained from the following result in [15]
generalizing the one given in [8]. Its proof is based on the Hahn-Banach and
Riesz representation theorems.

Theorem 2.1. Let X and Z be Hilbert spaces, Y be a subspace of X and
Λ : Y → X, Ψ : Y → Z , Φ : Y → Z be linear operators. Suppose that
W = ker(Φ) and Λ(W ) are nontrivial. If there exist γ > 0 and C > 0 such that

γ ‖w‖2
X + ‖Ψw‖2

Z ≤ C(γ −1‖Λw‖2
X + ‖Φw‖2

Z ), for all w ∈ Y,

then the variational equation

(u, Λw)X = (F, w)X + (G, Ψ )Z , for all w ∈ W, (2.2)

for a given (F, G) ∈ X × Z has a solution u ∈ X. In addition, the solution is
unique if and only if Λ(W ) is dense in X.

Introducing the weighted-in-time spaces

X = e−γ t L2(QT )n × e−γ t L2(0, T )d, Y = E∗(QT ) × H 1(0, T )d

and
Z = e−γ t L2(0, T )n−p × e−γ t L2(0, T )p × L2(0, 1)n × Rd,

it is not hard to see that (2.1) can be written in the form (2.2). Therefore the
first step in establishing well-posedness is to derive a priori estimates. For the
ODE part, we have the following Poincaré-type inequality in [15]. Given H ∈
L∞(0, T )d×d there are constants C > 0 and γ0 ≥ 1, both depending only on the
L∞-norm of H , such that

|η(0)|2 + γ ‖eγ tη‖2
L2(0,T )d ≤ C

(
1

γ
‖η′ + Hη‖2

L2(0,T )d + e2γ T |η(T )|2
)

(2.3)

holds for every η ∈ H 1(0, T )d and γ ≥ γ0.

Bull Braz Math Soc, Vol. 47, N. 2, 2016
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On the other hand, for the PDE part, due to the assumptions stated in the
introduction, there exist C > 0 and γ0 ≥ 1, both depending only on the W 1,∞-
norm of v, the range of v and the L∞-norm of R, such that

‖w|t=0‖2
L2(0,1)n + γ ‖eγ tw‖2

L2(QT )n

+ ‖eγ tw|x=0‖2
L2(0,T )n + ‖eγ tw|x=1‖2

L2(0,T )n

≤ C

(
e2γ T ‖w|t=T ‖2

L2(0,1)n + 1

γ
‖eγ t L∗w‖2

L2(QT )n

+ ‖eγ tC0(v)w|x=0‖2
L2(0,T )n−p + ‖eγ tC1(v)w|x=1‖2

L2(0,T )p

)
(2.4)

holds for all w ∈ E∗(QT ) and γ ≥ γ0. When w ∈ H 1(QT )n, the proof of this a
priori estimate can be found in [2, 5, 11]. The fact that it also holds in the space
E∗(QT ) is new and is established by a density argument.

Combining the a priori estimates (2.3) and (2.4) with an absorption argument,
Theorem 2.1 implies the following result. The interior-point trace regularity can
be shown by using standard multiplier techniques. For the proof, we refer to [15].

Theorem 2.2. The system (1.2) has a unique weak solution (u, h) ∈ L2(QT )n ×
L2(0, T )d . Furthermore, (u, h) ∈ [C([0, T ], L2(0, 1)n) ∩E(QT )] × H 1(0, T )d

and u|x=ξ ∈ L2(0, T )n for every ξ ∈ [0, 1]. The weak solution satisfies the
estimate

e−2γ T ‖u‖2
C([0,T ],L2(0,1)n)

+ γ ‖e−γ tu‖2
L2(QT )n

+ ‖e−γ tu|x=0‖2
L2(0,T )n + ‖e−γ tu|x=1‖2

L2(0,T )n + γ ‖e−γ th‖2
L2(0,T )d

≤ C

(
‖u0‖2

L2(0,1)n + |h0|2 + 1

γ
‖e−γ t f ‖2

L2(QT )n + ‖e−γ t g0‖2
L2(0,T )p

+ ‖e−γ t g1‖2
L2(0,T )n−p + 1

γ
‖e−γ t S‖2

L2(0,T )d

)

for all γ ≥ γ0 for some C > 0 and γ0 ≥ 1.

For the constant coefficient case, it can be shown that the weak solution in-
troduced above is equivalent to the one given by semigroup theory. However,
proving that the associated differential operator generates a strongly continuous
semigroup is a difficult task (see [15]).

3 Nonlinear Systems and Application

For the nonlinear system (1.1), the main result is the local-in-time well-posedness
and a blow-up criterion in finite time. The proof is technically long and for this

Bull Braz Math Soc, Vol. 47, N. 2, 2016
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reason we only outline the main ideas and refer to [13] for the details. In the
following, we use the notation CH m(QT ) = ⋂m

j=0 C j ([0, T ], H m− j(0, 1)n).

Theorem 3.1. Let m ≥ 3 be an integer and (u0, h0) ∈ H m(0, 1)n ×H satisfy
appropriate compatibility conditions. Suppose that the range of u0 lies inK1 ⊂
U, h0 ∈ G1 ⊂ H , whereK1 andG1 are compact and convex, and ‖u0‖H m(0,1)n ≤
M. Then there exists T > 0 depending only on (K1,G1, M) such that (1.1) has
a unique solution (u, h) ∈ CH m(QT )× H m+1(0, T )d with traces u|x=0, u|x=1 ∈
H m(0, T )n .

If the maximal time of existence T ∗ is finite then the range of (u(t), h(t)) leaves
every compact subset of U×H as t ↑ T ∗ or

lim
t↑T ∗ ‖∂xu(t)‖L∞(0,1)n = ∞.

Sketch of Proof. The first step is to determine an invariant set for the iteration.
Given R, T , K > 0 denote by V m

T,K ,R the set of all elements (v, g) ∈ CH m(QT )×
H m(0, T )d with the following properties: ∂

j
t v|t=0 = ∂

j
t u|t=0 and ∂

j
t g(0) =

∂
j

t h(0) for 1 ≤ j < m where the right hand sides can be written in terms of u0

and h0 by formal differentiation of the PDE and ODE, the range of (v, g) lies in
K1 × G1,

‖v‖W 1,∞(QT )n + ‖g‖W 1,∞(0,T )d ≤ K ,

and

‖v‖H m(QT )n + ‖v|x=0‖H m(0,T )n + ‖v|x=1‖H m(0,T )n + ‖g‖H m(0,T )d ≤ R.

Consider the map T : V m
T,K ,R → V m

T,K ,R defined as follows: Given (v, g) ∈
V m

T,K ,R, let T (v, g) =: (u, g) be the solution of the system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut + A(v)ux = f (v), in (0, T ) × (0, 1),

B0u|x=0 = b0(t, h(t)), in (0, T ),

B1u|x=1 = b1(t, h(t)), in (0, T ),

h′(t) = H (t, g(t), v(t, 0), v(t, 1)), in (0, T ),

u|t=0 = u0, in (0, 1),

h|t=0 = h0.

The theory for linear hyperbolic systems with variable coefficients in [2] can be
applied for the existence of a solution for this system. With additional a priori
estimates in terms of the Sobolev norms, it can be shown that there are constants

Bull Braz Math Soc, Vol. 47, N. 2, 2016
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T , K , R > 0 such that T (v, g) ∈ V m
K ,T,R whenever (v, g) ∈ V m

T,K ,R, that is,
V m

T,K ,R is invariant under T .

This introduces a sequence of elements (un, hn) ∈ V m
T,K ,R with (un, hn) =

T (un−1, hn−1) for n ≥ 1 where (u0, h0) ∈ V m
T,K ,R is a fixed element. By reduc-

ing T > 0 if necessary, it can be shown that the map T is contractive with respect
to the norm of L2(QT )n × L2(0, T )d and therefore the above sequence converges
in this space. The boundedness of the sequence in H m(QT )n × H m(0, T )d and
interpolation theory show that the limit of the sequence described above is the
solution of the nonlinear system. The additional regularity in time and the regu-
larity of the traces follow from the regularity theory for linear hyperbolic systems
with variable coefficients.

The proof of the blow-up criterion is standard. Indeed, one shows that if the
conditions are not satisfied then it is possible to extend the solution on a larger
time interval. We refer the details to the reference mentioned above. �

Now we consider the following system modeling the velocity u of a fluid
contained in a horizontal elastic tube of length 
, vertical cross section A, that at
each end is attached to tanks with horizontal cross section AT :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

At + u Ax + Aux = 0, t > 0, 0 < x < 
,

ut + κ2 A− 1
2 Ax + uux = −βu, t > 0, 0 < x < 
,

AT h′
0(t) = −A(t, 0)u(t, 0), t > 0,

AT h′

(t) = A(t, 
)u(t, 
), t > 0,

A(t, 0) = (a0 + bh0(t))2, t > 0,

A(t, 
) = (a
 + bh
(t))2, t > 0,

A(0, x) = A0(x), u(0, x) = u0(x), 0 < x < 
,

h0(0) = h0
0, h
 = h0


.

(3.1)

Here, h0 and h
 are the level heights of the fluid in the left and right tanks,
respectively, while the constants κ, a0, a
, b > 0 are related to the material
properties of the tube and the physical properties of the fluid. The constant β ≥ 0
is the damping coefficient which is related to the viscosity of the fluid. For more
details in this model and the precise formulas for the parameters we refer to [14].
The system (3.1) is similar to the one considered in [3, 12, 17] in the context
of valveless pumping, but none of these references addresses well-posedness or
stability issues. [19] defines and requires dissipativity of the boundary conditions
which is not satisfied by physically realistic models as in (3.1). Also, in [19] the
use of the Lemmas 2.1 and 2.2 in the proof of Theorem 2.1 is not entirely correct.

Bull Braz Math Soc, Vol. 47, N. 2, 2016
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With regards to the local-in-time existence and blow-up criterion, the result of
Theorem 3.1 is applicable to (3.1). The next question is the existence of global
solutions. The answer is affirmative provided that β > 0 and the initial data are
smooth and close to the constant steady state (Ae, 0, h0e, h
e). This steady state
is unique as long as the total volume of the fluid in the tube and in the tanks
is constant. The proof of the global existence is based on the energy estimates
obtained from appropriate entropy-entropy flux pairs for the hyperbolic system.
Define the energy functional Nk by

N2
k (t) = sup

s∈[0,t ]

(‖u(s)‖2
H k + ‖A

1
4 (s) − A

1
4
e ‖2

H k

+ |h0(s) − h0e|2 + |h
(s) − h
e|2
)

+
∫ t

0
‖u(s)‖2

H k + k‖(A
1
4 )x(s)‖2

H k−1 ds

for k = 0, 1, 2.

Theorem 3.2. Suppose that β > 0. There exists δ0 > 0 such that if N2(0) ≤ δ0

then (3.1) has a unique global solution such that A, u ∈ C([0, ∞), H 2(0, 
)) ∩
C1([0, ∞), H 1(0, 
)), h0, h
 ∈ C2[0, ∞) and N2(t) ≤ CN2(0) for all t ≥ 0.
Moreover, we have the asymptotic stability in H 1 × H 1 × R2

lim
t→∞(‖A(t) − Ae‖H 1(0,
) + ‖u(t)‖H 1(0,
) + |h0(t) − h0e| + |h
(t) − h
e|) = 0

and the exponential stability in L2 × L2 × R2

‖A(t)− Ae‖L2(0,
) +‖u(t)‖L2(0,
)+|h0(t)−h0e|+|h
(t)−h
e| ≤ C(1+ t k)e−σ t

for some constants C ≥ 1, σ > 0, k ∈ {0, 1} and for all t ≥ 0.

Proof. We only give the main ideas and refer to [16] for the complete proofs.
For the global existence, the main goal is to prove the existence of a constant
δ > 0 such that N2(T ) ≤ δ implies N2(T ) ≤ C(δ)N2(0) for some C(δ) >

0 independent of T . Lower order estimates can be obtained by utilizing the
following newfound relative entropy and its corresponding relative entropy flux

η0(A, u) = 1

2
Au2 + 4

3
κ2(A

3
2 − A

3
2
e ) − 2κ2 A

1
2
e (A − Ae),

q0(A, u) = 1

2
Au3 + 2κ2(A

1
2 − A

1
2
e )u A.

Bull Braz Math Soc, Vol. 47, N. 2, 2016
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On the other hand, higher order estimates can be obtained by introducing suit-
able entropy-entropy flux pairs for the diagonalized system similar to [19], but
appropriately reassimilated. Once this a priori estimate is proved, a standard
continuationargument shows that the local solutioncan be extended into a global
one.

The asymptotic stability in H 1 × H 1 × R
2 is a consequence of the uniform

boundedness of the energy functional N2 with respect to time. The exponential
stability with respect to X := L2 × L2 ×R2 is obtained by linearizing the system
around the steady state. This gives us a linear evolution equation

Ż(t) = AZ (t), A

⎛
⎜⎜⎝

B
v

g0

g


⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−Aevx

−αBx − βv

− Ae

AT
v(0)

Ae

AT
v(
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

withA a linear operator on X with domain

D(A) = {(B, v, g0, g
) ∈ H 1(0, 
)2 ×R2 : B(0) = γ g0, B(
) = γ g
}
and the constants are given explicitly by

α = κ2

√
Ae

, γ = 2b(a0 + bh0e) = 2b(a
 + bh
e).

The state for this equation is Z = (A, u, h0, h
)−(Ae, 0, h0e, h
e), the deviation
from the equilibrium.

The linear operator A generates a strongly continuous group (etA)t≥0 on X
and by the methods of nonharmonic Fourier analysis we have

‖etAZ0‖X ≤ C(1 + t k)e−σ t‖Z0‖X

for every Z0 ∈ ker(A)⊥, where σ = − sup{Re λ : λ ∈ σ(A)}, σ(A) is the
spectrum of A and k is either 0 or 1 depending on the value of β, see [14] for
the precise formulas.

Notice that this stability is only possible once the kernel ofA is factored out.
The elements of ker(A) are also steady states of the nonlinear system (3.1),
however, they correspond to a different volume of the fluid. There is no reason
for Z (t) to be in the domain of A. In fact, the compatibility conditions on the
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boundary stated in the domain ofA are, in general, not satisfied. For this reason,
we consider the new state variable Y = Z − (φ, 0, 0, 0) where

φ(t, x) = 
 − x



b2(h0(t) − h0e)

2 + x



b2(h
(t) − h
e)

2.

One can see that Y (t) ∈ D(A) for all t ≥ 0 and the non-homogeneous system

Ẏ (t) = AY (t) + F(Y (t))

holds for some source term F .
The final step is to decompose Y = Y1+Y2 in such a way that Y1(t) ∈ ker(A)⊥

and Y2(t) ∈ ker(A) for every t ≥ 0. For Y1 we apply the exponential stability of
the semigroup generated by A and for Y2 we prove that its norm in X is small
provided that N2(0) is small. The exponential stability of the nonlinear system
can now be obtained from these together with interpolation estimates and the
Gronwall-type Lemma in [6]. �
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