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Abstract
We analyze a distributed optimal control problemwhere the state equation is governed
by the coupling of the two-dimensional Cahn–Hilliard and Oberbeck–Boussinesq sys-
temsmodelling incompressible viscous two-phase flows with convective heat transfer.
Pointwise constraints are imposedon the controls that act as external sources in thefluid
and convection–diffusion equations. The objective functional is of tracking-type that
consists of a weighted energy of the difference between the state and a desired target.
We establish the existence of optimal controls, the differentiability of the control-to-
state operator, and the necessary and sufficient optimality conditions. For initial and
target data with finite energy norms, limited space–time regularity of the adjoint states
arises due to convection and surface tension.

Keywords Cahn–Hilliard equation · Oberbeck–Boussinesq system · Two-phase
flows · Galerkin method · Optimal control · Optimality system
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1 Introduction

Phase-field models aim to provide quantitative and qualitative descriptions for the
dynamics of multiphase flows and phase transitions such as solidification, segrega-
tion, crystallization, and precipitation to name a few. One of the classical problems
is to determine both the reduced temperature and the interface or boundary separat-
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ing two bulk phases, often called the Stefan problem [50]. In this formulation, the
interface is defined as the level set of temperature at some critical value. For example,
the equilibrium melting temperature in solidification processes. The phases are then
characterized by the sign difference of the temperatures.

In [9], Caginalp proposed an approach to the above free boundary value problem
by using mean field theories from statistical mechanics and condensed matter physics.
Starting with the enthalpy or H-method in [46] that combines the heat and latent heat
as a single equation, the method is to replace the step phase function, also called the
order parameter or concentration, by a continuous one. In the evolutionary case, the
rate of change of the order parameter must be proportional to the minimizer of a free
energy functional, an extension of the Landau–Ginzburg theory for equilibrium phase
transitions. When the difference between the chemical potentials of the phases is also
taken into account, one has the Cahn–Hilliard equation for spinodal decomposition
[11,12]. The asymptotic analysis in [10] showed that this equation can be obtained
from the phase-field system when the latent heat vanishes. Other recent developments
in the field include hydrodynamic properties for which the Navier–Stokes equation
is used to model the mean velocity [4,15,27,33], stress diffusion for non-Newtonian
fluids [16], and Cattaneo–Maxwell law for finite speed heat propagation in place of
the usual Fourier law of heat conduction [3].

In this paper, we study a distributed optimal control problem governed by a
Cahn–Hilliard–Oberbeck–Boussinesq phase-field system describing the dynamics of
a binary viscous and incompressible fluid mixture incorporating thermal effects. For
the sake of the reader, we shall outline the essential parts of the model formula-
tion. Further details on the modelling aspect and other related papers are referred to
[7,15,16,27,35,47,48] and the references therein.

Let T > 0 be a fixed final time and Ω ⊂ R
2 be the region occupied by the binary

mixture. For technical reasons, we assume that Ω is an open, connected, and bounded
domain that is either of class C2 or convex polygonal with boundary Γ . Denote by
u : (0, T ) × Ω → R

2 the mean velocity of the fluid mixture, p : (0, T ) → R

the pressure, θ : (0, T ) × Ω → R the relative temperature around some critical
value θc, and φ : (0, T ) × Ω → R the order parameter or concentration describing
the normalized fractional part of one fluid in the mixture. We consider without loss
of generality that θc = 0. Typically, φ = 1 represents one phase while φ = −1
designates the other phase.

Following [9,46], let us introduce the function H(θ, φ) := θ − lhφ, where lh > 0
is a constant related to the latent heat and q be the heat flux. Then the evolution of the
temperature is governed by the equation

ρ0cpDt H(θ, φ) + div q = α0g · u + s,

where Dt = ∂t + u · ∇ denotes the material derivative, ρ0 the reference density, cp the
specific heat at constant pressure, and s an external heat source or sink. The second
term on the right hand side expresses linearized adiabatic effects at some reference
temperature, where g is the gravitational constant, see also [36] and [55, Sect. 9.3] in
the context of the Bènard problem. Assuming Fourier’s law of thermal conduction, the
heat flux can be expressed as q = −κ∇θ , where κ > 0 is the thermal conductivity,
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and one obtains the convection–diffusion equation

ρ0cp[∂tθ − lh∂tφ + u · ∇(θ − lhφ)] − κΔθ = α0g · u + s. (1)

From the mass conservation law, the evolution of the order parameter is given by

ρ0Dtφ + div j = 0

where j is themass flux.A typical assumption is Fick’s law j = −m∇μ, wherem > 0
is the diffusive mobility andμ : (0, T )×Ω → R is the chemical potential. The Cahn–
Hilliard description for the chemical potentialμ is a minimizer to the following Gibbs
free energy incorporating the temperature

G(φ, θ) :=
∫

Ω

(α

2
|∇φ|2 + F(φ) + lcθφ

)
dx,

where lc > 0 is a constant related to the latent heat, see [15,38,39,47] for instance.Here,
the parameter α > 0 characterizes the thickness of the boundary layer or interface
that separates the two phases. In this work, we take the Ginzburg–Landau–Wilson free
energy functional corresponding to the double-well potential F(φ) := 1

4 (1 − φ2)2.
This is an approximation of the logarithmic-type potential in [21]. Taking formally the
variational derivative of G with respect to φ and under suitable boundary conditions,
one obtains the following Cahn–Hilliard equation with temperature:

ρ0(∂tφ + u · ∇φ) = mΔμ (2)

μ = ∂φG(φ, θ) = −αΔφ + φ3 − φ + lcθ. (3)

Ignoring the latent heat and without convection (lc = 0 and u = 0), these equations
reduce to the standard Cahn–Hilliard model for non-equilibrium phase separation.

The description of the mean velocity starts with the momentum balance equation

ρ0Dtu − div T = ρ0�(φ, θ)g + f .

Here, T is the stress tensor, ρ0�(φ, θ) := ρ0(α1 + α2φ + α3θ) having the constant
parameters α1, α2, and α3 is the linearized equation of state, and f is an external
body force, see [35, Chap. 8] for instance. By assuming that the relative momentum
and kinetic energy of each phase is small compared to net fluid flow, the stress tensor
can be written as a sum T = T cs + T st of two second-order tensors [27]. The first
component T cs = ν(∇u + ∇u�) − pI is the classical Cauchy stress tensor for New-
tonian incompressible viscous fluids, with ν > 0 the kinematic viscosity and I the
identity tensor, while the other component T st = Kα( 13 |∇φ|2 I −∇φ ⊗∇φ) accounts
for the capillary forces due to surface tension, where K > 0 is the capillarity stress
coefficient. Such formulation already appeared in the work of Korteweg for gradient
fluids where the density is utilized instead of the concentration [57, Sect. 124].
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From the equation of the chemical potential in (3), we have the identity

K(μ − lcθ)∇φ = K∇
(α

2
|∇φ|2 + F(φ)

)
− Kα div (∇φ ⊗ ∇φ).

By setting p := p+K(α
6 |∇φ|2+F(φ)), the above considerations lead to the following

modified incompressible Navier–Stokes equation

ρ0[∂tu + (u · ∇)u] − νΔu + ∇ p = K(μ − lcθ)∇φ + ρ0�(φ, θ)g + f (4)

div u = 0. (5)

Neglecting the gravitational force and the latent heat (g = 0 and lc = 0) in (2)-(5), we
end up with the coupled Cahn–Hilliard–Navier–Stokes system in [27]. On the other
hand, without surface tension (K = 0) and ignoring the latent heat (lh = 0), equations
(1), (4) and (5) comprise theOberbeck–Boussinesq system [7,45] in thermohydraulics.
Now for simplicity of exposition, we set ρ0, cp and α0 all equal to 1, and assume that
the remaining parameters appearing in (1)–(4) to be constant.

The present paper is devoted to the study of a nonlinear infinite-dimensional opti-
mization problem:

min
( y,z)∈Qad

J (φ, μ, u, θ, y, z), (6)

where the objective function J is given by

J (φ, μ, u, θ, y, z)

:= G(φ, μ, u, θ) + γf

2

∫ T

0

∫
ωf

| y(t, x)|2 dx dt + γh

2

∫ T

0

∫
ωh

|z(t, x)|2 dx dt .

Here, y and z are the controls that act as external body force and heat source on
certain parts of the domain, respectively. The quadruple (φ, μ, u, θ) is a suitable
weak solution of the two-dimensional coupled Cahn–Hilliard–Oberbeck–Boussinesq
system (1)–(5). More precisely, the equation of the state with the application of the
controls is governed by the system

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂tφ + u · ∇φ − mΔμ = 0

μ = −αΔφ + φ3 − φ + lcθ

∂tu + (u · ∇)u − νΔu + ∇ p = K(μ − lcθ)∇φ + �(φ, θ)g + χωf y

div u = 0

∂tθ − lh∂tφ + u · ∇(θ − lhφ) − κΔθ = g · u + χωh z

(7)

in (0, T ) × Ω , and supplied with the initial conditions

φ(0) = φ0, u(0) = u0, θ(0) = θ0 in Ω. (8)
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The set Qad of admissible controls and the tracking-type functionalG will be discussed
in detail below. In (6), γf > 0 and γh > 0 are Tikhonov regularization parameters,
the control regions ωf and ωh are nonempty open subsets of Ω , and χω denotes the
characteristic function of a set ω ⊂ Ω in (7).

The boundary conditions that we are interested in are the following:

∂nφ = ∂nΔφ = 0, u = 0, ∂nθ = 0, on (0, T ) × Γ , (9)

where n is the unit normal vector outward to Γ and ∂nh = ∇h ·n is the derivative of a
function h in the direction of n. The second condition is the no-slip boundary condition
for the fluid, while the third equation imposes that there is no heat flux through the
boundary. On the other hand, the first condition requires that locally the interface is
orthogonal to the boundary and there is no diffusion across it.

The set of admissible controls Qad ⊂ Q := L2((0, T ); L2(ωf)
2) × L2((0, T );

L2(ωh)) in (6) is defined by

Qad := {( y, z) ∈ Q : af ≤ y ≤ bf a.e. (0, T ) × ωf , ah ≤ z ≤ bh a.e. (0, T ) × ωh},

where af = (af1, af2), bf = (bf1, bf2), −∞ ≤ ah < bh ≤ ∞ and −∞ ≤ afi <

bfi ≤ ∞ for i = 1, 2. Here and throughout the rest of the paper, “a.e.” stands for the
measure-theoretic terminologyalmost everywhere. For vectors and functions, the usual
notation for order relations in R are to be understood componentwise and pointwise,
respectively.

Let us define the modified Ginzburg–Landau free energy functional

E(φ(t), θ(t)) := 1

2

∫
Ω

α|∇φ(t, x)|2 + 1

2
(1 − φ(t, x)2)2 + lc|θ(t, x)|2 dx .

Formal calculations lead us to the following energy identity for the solutions of the
system (7)–(9):

E(φ(t), u(t), θ(t)) +
∫ t

0

∫
Ω

m

lc
|∇μ(s, x)|2 + ν

Klc
|∇u(s, x)|2 + κ

lh
|∇θ(s, x)|2 ds dx

= E(φ(0), u(0), θ(0)) +
∫ t

0

∫
Ω

1

Klc
[�(φ(s, x), θ(s, x))g + χωf (x) y(s, x)] · u(s, x) dx ds

+
∫ t

0

∫
Ω

1

lh
[g · u(s, x) + χωh (x)z(s, x)]θ(s, x) dx ds

for every t ∈ [0, T ], where E denotes the total energy of the system given by

E(φ(t), u(t), θ(t)) := 1

2

(
1

lc
E(φ(t), l−1/2

h θ(t)) +
∫

Ω

1

Klc
|u(t, x)|2 dx

)
. (10)

Indeed, this energy identity can be derived by using the test functions l−1
c μ, l−1

c ∂tφ,
(Klc)−1u, and l−1

h θ in (7), see also Sect. 3. Ignoring gravitational effects and without
the controls, we see that the energy decreases through time due to diffusion in the fluid,
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heat, and chemical potential. Moreover, for each t ∈ [0, T ] we have the conservation
law

1

|Ω|
∫

Ω

φ(t, x) dt = 1

|Ω|
∫

Ω

φ0(x) dx,

where |Ω| is the Lebesgue measure ofΩ . This follows by integrating the first equation
in (7), using the divergence theorem, and invoking the boundary conditions (9) and as
well as

∂nμ = −α∂nΔφ + (3φ2 − 1)∂nφ + lc∂nθ = 0 on (0, T ) × Γ ,

at least for sufficiently smooth solutions.
We consider a cost functional G that incorporates various goals of steering at least

one of the velocity, vorticity, temperature, order parameter, chemical potential and as
well as their fluxes to a given set of desired targets. More precisely, the objective G is
suppose to be separable in the sense that

G(φ, μ, u, θ) = G1(φ) + G2(μ) + G3(u) + G4(θ), (11)

where the terms on the right hand side are given by

G1(φ) := 1

2

∫ T

0
αo‖φ − φd‖2 + δo‖∇φ − ψd‖2 dt

+ βo

2
‖φ(T ) − φT ‖2 + ωo

2
‖∇φ(T ) − ψT ‖2

G2(μ) := 1

2

∫ T

0
αc‖μ − μd‖2 + δc‖∇μ − ξd‖2 dt

G3(u) := 1

2

∫ T

0
αf‖u − ud‖2 + δf‖∇ × u‖2 dt + βf

2
‖u(T ) − uT ‖2

G4(θ) := 1

2

∫ T

0
αh‖θ − θd‖2 + δh‖∇θ − ζ d‖2 dt + βh

2
‖θ(T ) − θT ‖2. (12)

In (12), ‖·‖ denotes either the norm of the Lebesgue space L2(Ω) or L2(Ω)×L2(Ω),
where it is suitable. The given structure of G is motivated from the energy identity
discussed above, for which the norms appearing in G are precisely those that are
involved in the energy E . Also, αo, δo, βo, ωo, αc, δc, αf , δf , βf , αh, δh, βh ∈ [0,∞)

are fixed nonnegative parameters, where at least one of them is nonzero in order to
have a nontrivial solution to (6). These parameters signify on which parts of the energy
are to be prioritized. The subscripts o, c, f, and h stand for order parameter, chemical
potential, fluid velocity, and heat. Furthermore, the functions φd , ψd , μd , ξd , ud ,
θd , ζ d , φT , ψT , uT , and θT are given target states, having the appropriate regularity
conditions that will be discussed precisely in Sect. 6.
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For the past decades, there are numerous contributions that deal with the analy-
sis of optimal control problems for time-dependent fluid flows with either distributed
or boundary controls: Navier–Stokes equation [1,31,59], Allen–Cahn equation [20],
Cahn–Hilliard equation [17–19,25,28,32,62–64], Boussinesq system [1,6,34,40], cou-
pled Cahn–Hilliard–Navier–Stokes system [23,24,29,30], and phase-field systems
[41,53]. This is of course an incomplete list and we refer the reader to the literature
provided in these works. For the coupling of the Cahn–Hilliard and inviscid Boussi-
nesq systems, the global well-posedness, regularity, and blow-up criteria have been
discussed in [44,61,65], respectively.

Most of the works presented above deal with smooth enough initial data, for which
the method of transposition can be applied to successfully derive the first order nec-
essary condition characterizing the solutions of the optimal control problem. In this
paper, we shall consider initial data that are at the very least have finite energies, that
is, E(φ0, u0, θ0) < ∞with E given by (10). In the case of instationary Navier–Stokes
equation with the tracking type functionalG3 as defined above, this direction has been
investigated thoroughly in [31,59]. It has been shown that the time derivative of the
optimal adjoint velocity admits lower integrability compared to that of the optimal
velocity. In this case, the solutions of the state equation are not admissible test func-
tions to the adjoint system. To circumvent the difference in regularity, duality methods
were utilized.

The limited regularity stems from the convection term. Following the methods in
[31], we will also achieve this property for the solutions of (6). Due to the presence of
the order parameter flux and the chemical potential in the cost function, one can also
expect even less regularity in space for the adjoint states corresponding to these state
variables. This makes the analysis of the control problemmore involved. Nevertheless,
additional regularity on the initial and desired data is expected to result in more regular
adjoint states, and we shall take advantage of this in order to establish the second order
sufficient conditions. As in [13,14], the gap between the necessary and sufficient con-
ditions is the usual one as in the context of finite-dimensional optimization problems
with box constraints.

It will be shown in terms of PDEs (see Sects. 5 and 6) that the optimal adjoint state
is either an appropriate weak or very weak solution, depending on the regularity of
the data, of the following system that is posed backward in time:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− ∂tϕ + lh∂tϑ − u · ∇(ϕ − lhϑ) + αΔη

= f ′(φ)η + α2g · v − Kv · ∇(μ − lcθ) + αo(φ − φd) − δoDiv(∇φ − ψT )

− η = −mΔϕ − Kv · ∇φ − αc(μ − μd) + δcDiv(∇μ − ξd)

− ∂tv − (u · ∇)v + (∇u)�v − νΔv + ∇π

= ϑ g − ϕ∇φ − ϑ∇(θ − lhφ) + αf(u − ud) + δf∇ × (∇ × u)

div v = 0

− ∂tϑ − u · ∇ϑ + Klcv · ∇φ − κΔϑ

= α3g · v + lcη + αh(θ − θd) − δhDiv(∇θ − ζ d)
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in (0, T ) × Ω , with the boundary conditions ∂nϕ = ∂nη = 0, v = 0, ∂nϑ = 0 on
(0, T ) × Γ , and the terminal conditions

ϕ(T ) − lhϑ(T ) = βo(φ(T ) − φT ) − ωoDiv(∇φ(T ) − ψT ) in Ω,

v(T ) = βf(u(T ) − uT ), ϑ(T ) = βh(θ(T ) − θT ) in Ω.

Here, Div is an extension of the distributional divergence with test functions in the
Sobolev space H1(Ω), see (146) for the precise definition. The curl of a vector-valued
function u = (u1, u2) is given by ∇ × u = ∂x2u1 − ∂x1u2, while the curl of a scalar-
valued function h is defined by ∇ × h := (−∂x2h, ∂x1h), provided that the derivatives
exist, see [59]. The above linear system can be readily obtained by a formal Lagrangian
approach. Such a formalism will be justified rigorously in this paper. We would like to
point out that a first step towards the development of efficient gradient-based numerical
schemes for the approximation of the controls is by identifying a dual problem to the
state equation.

The plan of the paper is as follows: In Sect. 2, we recall the relevant function spaces
and operators involved in the weak formulation of (7)–(9) and write the equivalent
evolution equations in suitable Bochner spaces. The well-posedness of the state, lin-
earized state, and adjoint systems are the concerns of Sects. 3, 4, and 5, respectively.
Finally, we discuss the analysis of the optimal control problem (6), including the first
and second order necessary and sufficient optimality conditions in Sect. 6.

2 Preliminaries

Given 1 ≤ p ≤ ∞ and s ∈ R, L p(Ω) and Hs(Ω) are the usual Lebesgue and
Sobolev spaces equipped with the norms denoted by ‖ · ‖L p and ‖ · ‖Hs . A subscript
will be indicated to emphasize the space where the norm or inner product is defined.
Let Hs

0 (Ω) be the closure of the space C∞
0 (Ω), the set of infinitely differentiable

functions that are compactly supported in Ω , with respect to the norm of Hs(Ω). We
refer to the classical text [2] for more details.

Let I = (0, T ) be the time interval and Ī = [0, T ] be its closure. Given a
Banach space Y with norm ‖ · ‖Y , C( Ī ; Y ) and L p(I ; Y ) are the space of con-
tinuous functions and Bochner spaces with values in Y endowed with the norms
‖u‖C(Y ) := supt∈ Ī ‖u(t)‖Y , ‖w‖L∞(Y ) := ess supt∈I ‖w(t)‖Y ,

‖v‖L p(Y ) :=
(∫ T

0
‖v(t)‖p

Y dt

)1/p

(1 ≤ p < ∞).

For each positive integer k, Wk,p(I ; Y ) is the Banach space of all elements u ∈
L p(I ; Y ) having derivatives ∂

j
t u ∈ L p(I ; Y ) for every 1 ≤ j ≤ k in the sense of

vector-valued distributions, and set Hk(I ; Y ) := Wk,2(I ; Y ). The dual of Y will be
denoted by Y ∗ and 〈y∗, y〉Y ∗×Y represents the duality pairing between y∗ ∈ Y ∗ and
y ∈ Y . For Banach spaces Y and Z , the norm of the intersection Y ∩ Z will be given
by ‖u‖Y∩Z := max{‖u‖Y , ‖u‖Z }.
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In the following, all Hilbert spaces are assumed to be separable. Given 1 ≤ p ≤ ∞
and two Hilbert spaces Y and Z such that Y ⊂ Z continuously, let

W p(I ; Y , Z) := {u ∈ L2(I ; Y ) : ∂t u ∈ L p(I ; Z)}.

This is a Banach space with respect to the graph norm

‖u‖W p(Y ,Z) := ‖u‖L2(Y ) + ‖∂t u‖L p(Z).

In the case where the larger space is the dual of Y , we simply write W p(I ; Y ) instead
of W p(I ; Y ,Y ∗) and ‖u‖W p(Y ) = ‖u‖L2(Y ) + ‖∂t u‖L p(Y ∗).

Note thatW p(I ; Y , Z) ⊂ C( Ī ; Z) continuously for every 1 ≤ p ≤ ∞. In studying
the linearized and adjoint systems, the following closed subspace ofW p(I ; Y , Z)will
be utilized

W p
0 (I ; Y , Z) := {u ∈ W p(I ; Y , Z) : u(0) = 0},

and we set W p
0 (I ; Y ) := W p

0 (I ; Y ,Y ∗). If there is another Hilbert space X such that
Y ⊂ X is compact and X ⊂ Z is continuous, then by the well-known Aubin–Lions–
Simon Lemma, the compact embedding W p(I ; Y , Z) ⊂ L2(I ; X) holds. For the
interpolation space [Y , Z ]1/2 between Y and Z , we have the continuous embedding

W 2(I ; Y , Z) ⊂ C( Ī ; [Y , Z ]1/2). (13)

IfY ⊂ X is dense, then X∗ ⊂ Y ∗ is also dense andW 2(I ; Y ) ⊂ C( Ī ; X) continuously.
The space of linear and bounded operators from Y into Z will be denoted by L(Y , Z).
For more details on these topics, we refer the reader to [43] and [51].

In the remaining parts of the paper, we let X := L2(Ω), Y := H1(Ω), X := X×X
and Y := Y × Y . The classical function spaces for square-integrable and divergence-
free vector fields with the no-slip boundary condition will be denoted by

H := {u ∈ X : div u = 0 in Ω, u · n = 0 on Γ }, V := H ∩ H1
0 (Ω)2.

These are endowed with the norms ‖u‖H := ‖u‖X and ‖u‖V := ‖∇u‖X×X , respec-
tively. Then the Helmholtz decomposition X = H ⊕ ∇X holds and denote by
PH : X → H the orthogonal projection of X onto H . Thanks to this, one can
eliminate the pressure in the weak formulation.

We now introduce the notation for the Laplace operators associated with the system
(7). Let AS : D(AS) ⊂ H → H be the Stokes operator with domain D(AS) =
V∩H2(Ω)2 and defined by ASu = −PHΔu, see [37] in the case of convex polygonal
domains and [52, Theorem III.2.1.1] in the case of C2-domains. The linear operator
AS is a positive self-adjoint operator with compact resolvents. The norms ‖ · ‖H2×H2

and ‖AS · ‖X are equivalent on D(AS) and there exist constants c1, c2 > 0 such that
‖u‖H ≤ c1‖u‖V for every u ∈ V and ‖u‖V ≤ c2‖ASu‖X for every u ∈ D(AS).
The first inequality is the Poincaré inequality while the second is a consequence of the
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equivalence just mentioned. Moreover, AS admits an extension AS : V → V ∗ that is
also linear and bounded.

The Neumann map AN : D(AN ) ⊂ X → X is defined by ANφ = −Δφ with
domain D(AN ) = {φ ∈ H2(Ω) : ∂nφ = 0 on Γ }, see [26] for instance. Let us extend
this definition to AN : Y → Y ∗ by 〈ANφ,ψ〉Y ∗×Y := (∇φ,∇ψ)X for φ,ψ ∈ Y .
Integrating by parts and using the density of Y in X , this extension coincides with the
earlier definition of ANφ for φ ∈ D(AN ).

Given φ ∈ L1(Ω), the average of φ over Ω is given by 〈φ〉 := |Ω|−1(φ, 1)X . By
the Poincaré–Wirtinger inequality, there is a constant c > 0 such that

‖φ − 〈φ〉‖X ≤ c‖∇φ‖X ∀φ ∈ Y . (14)

Therefore the usual norm ‖ · ‖X + ‖∇ · ‖X of the Sobolev space Y is equivalent to
|〈 · 〉| + ‖∇ · ‖X . Also note that the norm |〈 · 〉| + ‖AN · ‖X is equivalent to ‖ · ‖H2 in
D(AN ). From the inequality |〈φ〉| ≤ |Ω|1/2‖φ‖X , we obtain for a constant c > 0 that

‖φ‖H2 ≤ c(‖Δφ‖X + ‖φ‖X ) ∀φ ∈ D(AN ). (15)

Let X̂ := {φ ∈ X : 〈φ〉 = 0} and consider the restriction ÂN : D( ÂN ) ⊂ X̂ → X̂
of AN to square-integrable functions with zero average, that is, ÂNφ = ANφ for
φ ∈ D( ÂN ) = D(AN ) ∩ X̂ . Notice that D(AN ) = D( ÂN ) ⊕ R. It follows that ÂN

is a positive self-adjoint operator having compact resolvents. For each φ ∈ D(AN ), it
holds that

‖∇φ‖Y = ‖∇(φ − 〈φ〉)‖Y ≤ ‖φ − 〈φ〉‖H2 ≤ c‖Δφ‖X (16)

for a constant c > 0 independent of φ, and consequently ‖∇φ‖X ≤ c‖Δφ‖X .
By using Fourier spectral decompositions, the positive powers Ar

S and Âr
N are

well-defined for every r > 0. In this way, for r > 0 and s ≥ 2 we shall set

Y s := {φ ∈ D(AN ) : ANφ ∈ D( Â(s−2)/2
N )}, V r := D(Ar/2

S ),

where Â0
N := I is the identity operator in X̂ . Particular cases are V 1 = V , Y 2 =

D(AN ) and Y 4 = D(A2
N ). If φ ∈ Y s for an s ≥ 3, then 〈ANφ〉 = 0 by Green’s

identity, and from (14) we get

‖Δφ‖Y ≤ c‖∇Δφ‖X ∀φ ∈ Y 3, ‖Δφ‖H2 ≤ c‖Δ2φ‖X ∀φ ∈ Y 4. (17)

We shall equip Y 2, Y 3 and Y 4 with the norms

‖φ‖Y 2 := ‖φ‖X + ‖Δφ‖X , ‖ψ‖Y 3 := ‖ψ‖X + ‖∇Δψ‖X , ‖ϕ‖Y 4

:= ‖ϕ‖X + ‖Δ2ϕ‖X

for φ ∈ Y 2, ψ ∈ Y 3, and ϕ ∈ Y 4. These are Hilbert spaces with the inner products
associated with the given norms. The dual spaces Y s∗ and V r∗ of Y s and V r shall
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be taken with respect to the pivot spaces X and H , respectively. For further details
regarding these topics, the reader is referred to [5,52,54].

We shall often use the Sobolev embedding Y ⊂ L p(Ω) for every 1 ≤ p <

∞, which is valid for two-dimensional bounded Lipschitz domains Ω . Also, the
Gagliardo–Nirenberg inequality

‖φ‖L4 ≤ cGN‖φ‖1/2X ‖φ‖1/2Y ∀φ ∈ Y (18)

and Agmon’s inequality combined with (15)

‖φ‖L∞ ≤ cA‖φ‖1/2X ‖φ‖1/2
Y 2 ∀φ ∈ Y 2 (19)

will be often utilized. The positive constants cGN and cA depend on the domain Ω ,
but are independent of φ.

In situations where the context is clear, we shall adopt the common notation −Δ

for the operators AS , AN , and ÂN . All throughout this paper, c will denote a generic
positive constant that depends on the parameters in the state equation, the domain Ω

and the terminal time T . A subscript will be used to emphasize the dependence of
this constant. Likewise, C : Rk → (0,∞) for k ≥ 1 will denote a generic positive
continuous function.

3 Analysis of the State Equation

In this section, we shall specify the notion of weak solutions to (7) and formulate
the equivalent abstract evolution system. First, let us define the trilinear forms arising
from the convection and surface tension terms. Let b : V × V × V → R and
r : V × Y × Y → R be defined by b(u,w, v) = ((u · ∇)w, v)X and r(v, φ, ϕ) =
(v, ϕ∇φ)X = (v · ∇φ, ϕ)X for u,w, v ∈ V and φ, ϕ ∈ Y . Integrating by parts and
using the fact that elements of V are divergence-free and vanish on the boundary Γ ,
the following identities hold:

b(u,w, v) = −b(u, v,w), b(u,w, v) = ((∇w)�v, u)X , r(v, φ, ϕ) = −r(v, ϕ, φ).

In particular, b(u,w,w) = r(v, φ, φ) = 0 for every u, v,w ∈ V and φ ∈ Y .
We set f (φ) := φ3 − φ for the nonlinear term in the equation for the chemical

potential. Let us abbreviate the weak solution space by

W := W 2(I ; Y 3,Y ∗) × L2(I ; Y ) × W 2(I ; V ) × W 2(I ; Y ).

For now, we shall ignore the characteristic functions appearing on (7).

Definition 1 Let y ∈ L2(I ; V ∗), z ∈ L2(I ; Y ∗), φ0 ∈ Y , u0 ∈ H , and θ0 ∈ X . A
quadruple (φ, μ, u, θ) ∈ W is called aweak solution of (7) if the following variational
equations hold:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈∂tφ, ϕ〉Y ∗×Y + r(u, φ, ϕ) + m(∇μ, ∇ϕ)X = 0 ∀ϕ ∈ Y , a.e. in I ,

μ = −αΔφ + f (φ) + lcθ a.e. in I × Ω,

〈∂tu, v〉V∗×V + b(u, u, v) + ν(∇u, ∇v)X×X

= Kr(v, φ, μ − lcθ) + (�(φ, θ)g, v)X + 〈 y, v〉V∗×V ∀v ∈ V , a.e. in I ,

〈∂tθ, ϑ〉Y ∗×Y − lh〈∂tφ, ϑ〉Y ∗×Y + r(u, θ − lhφ, ϑ)

+ κ(∇θ,∇ϑ)X = (g · u, ϑ)X + 〈z, ϑ〉Y ∗×Y ∀ϑ ∈ Y , a.e. in I ,

(20)

as well as the initial conditions φ(0) = φ0 in Y , u(0) = u0 in H , and θ(0) = θ0 in
X .

Note that the initial conditions in the above definition are meaningful due to the
continuity of the embeddings W 2(I ; Y 3,Y ∗) ⊂ C( Ī ; Y ), W 2(I ; V ) ⊂ C( Ī ; H), and
W 2(I ; Y ) ⊂ C( Ī ; X). If (φ, μ, u, θ) ∈ W is aweak solution of (7), then the following
energy identity is satisfied:

E(φ(t), u(t), θ(t)) +
∫ t

0

m

lc
‖∇μ(s)‖2X + ν

Klc
‖u(s)‖2V + κ

lh
‖∇θ(s)‖2X ds

= E(φ0, u0, θ0) +
∫ t

0

1

Klc
[(�(φ(s), θ(s))g, u(s))X + 〈 y(s), u(s)〉V∗×V ] ds

+
∫ t

0

1

lh
[(g · u(s), θ(s))X + 〈z(s), θ(s)〉Y ∗×Y ] ds

for almost every t ∈ [0, T ], where E is given by (10).Asmentioned in the introduction,
this followsbychoosing the test function (ϕ, v, ϑ) = (l−1

c μ(s), (Klc)−1u(s), l−1
h θ(s))

in (20), taking the duality pairing of the second equation in (20) with l−1
c ∂tφ(s) and

then integrating over [0, t].

3.1 Analysis of State Equation

Let us convert the variational equations (20) in the framework of Bochner spaces. To
do this, we extend the definitions of the Laplace operators defined in the preliminary
section to the time-dependent case, and for simplicity adapt the same notations. Define
the linear operators AS : L2(I ; V ) → L2(I ; V ∗) and AN : L2(I ; Y ) → L2(I ; Y ∗)
according to (ASu)(t) := ASu(t) and (ANφ)(t) := ANφ(t) for a.e. t ∈ I , u ∈
L2(I ; V ), and φ ∈ L2(I ; Y ). These operators are bounded, that is, they satisfy the
estimates

‖ASu‖L2(V∗) ≤ c‖u‖L2(V ), ‖ANφ‖L2(Y ∗) ≤ c‖φ‖L2(Y ). (21)

With regard to the terms corresponding to convection and surface tension, we
introduce the bilinear operators B1 : W 2(I ; V ) × W 2(I ; Y ) → L2(I ; Y ∗) and
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B2 : L2(I ; Y ) × L∞(I ; Y ) → L2(I ; V ∗) defined respectively by

〈B1(u, φ), ϕ〉L2(Y ∗)×L2(Y ) =
∫ T

0
r(u(t), φ(t), ϕ(t)) dt

〈B2(μ,ψ), v〉L2(V∗)×L2(V ) =
∫ T

0
r(v(t), ψ(t), μ(t)) dt

for u ∈ W 2(I ; V ), v ∈ L2(I ; V ), φ ∈ W 2(I ; Y ), ψ ∈ L∞(I ; Y ), and ϕ, μ ∈
L2(I ; Y ). For the convection term in the Navier–Stokes equation, let us introduce the
bilinear operator B : W 2(I ; V ) × W 2(I ; V ) → L2(I ; V ∗) given by

〈B(u,w), v〉L2(V∗)×L2(V ) =
∫ T

0
b(u(t),w(t), v(t)) dt (22)

for u,w ∈ W 2(I ; V ), v ∈ L2(I ; V ), and set B(u) := B(u, u). These maps are
well-defined according to the Gagliardo–Nirenberg and Hölder inequalities. Indeed,
we have the following:

‖B2(μ,ψ)‖L2(V∗) ≤ c‖μ‖L2(Y )‖ψ‖L∞(Y ) (23)

‖B1(u, φ)‖L2(Y ∗) ≤ c(‖u‖L∞(H)‖φ‖L2(Y ) + ‖φ‖L∞(X)‖u‖L2(V )) (24)

‖B(u,w)‖L2(V∗) ≤ c(‖u‖L∞(H)‖w‖L2(V ) + ‖w‖L∞(H)‖u‖L2(V )) (25)

for every u,w ∈ W 2(I ; V ), φ ∈ W 2(I ; Y ), μ ∈ L2(I ; Y ), and ψ ∈ L∞(I ; Y ).
The inequalities on the right hand sides of (24) and (25) are valid according to the
continuity of the embeddings W 2(I ; V ) ⊂ L∞(I ; H) and W 2(I ; Y ) ⊂ L∞(I ; X).

Finally, let us define f : L∞(I ; Y ) ∩ L2(I ; Y 2) → L2(I ; Y ) by f (φ) = φ3 − φ.
Applying the Hölder inequality and Sobolev embedding, there is a constant c > 0
such that for every φ ∈ L∞(I ; Y ) ∩ L2(I ; Y 2)

‖ f (φ)‖L2(Y ) ≤ c(‖φ‖3L∞(Y ) + ‖φ‖2L∞(Y )‖φ‖L2(Y 2) + ‖φ‖L∞(Y )). (26)

The weak formulation in Definition 1 can now be written equivalently as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂tφ + B1(u, φ) + mANμ = 0 in L2(I ; Y ∗),
μ = αANφ + f (φ) + lcθ in L2(I ; Y ),

∂tu + B(u) + νASu = KB2(μ − lcθ, φ) + �(φ, θ)g + y in L2(I ; V ∗),
∂tθ − lh∂tφ + B1(u, θ − lhφ) + κAN θ = g · u + z in L2(I ; Y ∗),
φ(0) = φ0 in Y , u(0) = u0 in H, θ(0) = θ0 in X .

(27)

Indeed, multiplying the variational equations (20) by functions in C∞
0 (I ) and using

the density of the linear span of the set {χ f : χ ∈ C∞
0 (I ), f ∈ Z} in L2(I ; Z),

where Z is either Y or V , we see that the equations in (27) are valid. The converse
is analogous by using smooth test functions. Take note that the second equation in
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(27) holds in L2(I ; Y ) according to the continuous embedding W 2(I ; Y 3,Y ∗) ⊂
L∞(I ; Y ) ∩ L2(I ; Y 3) and the estimate (26). All throughout, we shall use the more
convenient system (27) as the definition of weak solutions.

The existence of a weak solution is established by a standard spectral Galerkin
method, and we provide the details for future reference, especially in the context of
regularity of solutions, the linearized system, and the existence of optimal controls.
For the Galerkin method applied to the Navier–Stokes and the Cahn–Hilliard–Navier–
Stokes system, we refer to [8,16,54].

Let {v j }∞j=1 and {ϕ j }∞j=2 be orthonormal bases for H and X̂ consisting of eigenfunc-

tions of AS and ÂN , respectively. Define the constant function ϕ1 := |Ω|−1/2. Then
{ϕ j }∞j=1 is an orthonormal basis for X . Let Hk and Xk be the subspaces generated by

{v j }kj=1 and {ϕ j }kj=1, respectively, and set the orthogonal projections PHk : H → Hk

and PXk : X → Xk by

PHku :=
k∑
j=1

(u, v j )Hv j , PXkφ :=
k∑
j=1

(φ, ϕ j )Xϕ j = 〈φ〉 +
k∑
j=2

(φ, ϕ j )Xϕ j ,

for u ∈ H and φ ∈ X . Note that PHk ∈ L(Hk, V ) and PXk ∈ L(Xk,Y ), hence for
the adjoint operators, we have P∗

Hk
∈ L(V ∗, Hk) and P∗

Xk
∈ L(Y ∗, Xk), where H∗

k
and X∗

k are identified with Hk and Xk , respectively.

Theorem 1 Suppose that y ∈ L2(I ; V ∗), z ∈ L2(I ; Y ∗), φ0 ∈ Y , u0 ∈ H , and
θ0 ∈ X. Then the nonlinear system (27) has a unique solution (φ, μ, u, θ) ∈ W .
Furthermore, there exists a continuous function C > 0, independent of (φ, μ, u, θ),
such that

‖(φ, μ, u, θ)‖W ≤ C(‖φ0‖Y , ‖u0‖H , ‖θ0‖X , ‖ y‖L2(V∗), ‖z‖L2(Y ∗)). (28)

In particular, φ ∈ C( Ī ; Y ), u ∈ C( Ī ; H), and θ ∈ C( Ī ; X).

Proof Let us divide the proof in several steps for ease of reading.
Step 1. Finite-dimensional approximation. Given a fix positive integer k, let φk0 =
PXkφ0, uk0 = PHku0, θk0 = PXk θ0 and consider the following ansatz

φk(t) =
k∑
j=1

α j (t)ϕk, uk(t) =
k∑
j=1

β j (t)vk, θk(t) =
k∑
j=1

γ j (t)ϕk, (29)
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where α j , β j , γ j ∈ H1(I ) for j = 1, . . . , k. From the Cauchy–Lipschitz Theorem,
the nonlinear finite-dimensional system of differential equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tφk + P∗
Xk

(B1(uk, φk) + mANμk) = 0 in L2(I ; Xk),

μk = αANφk + PXk f (φk) + lcθk in H1(I ; Xk),

∂tuk + P∗
Hk

(B(uk) + νASuk)

= P∗
Hk

(KB2(μk − lcθk, φk) + �(φk, θk)g + y) in L2(I ; Hk),

∂tθk − lh∂tφk + P∗
Xk

(B1(uk, θk − lhφk) + κAN θk)

= P∗
Xk

(g · uk + z) in L2(I ; Xk),

(30)

with the initial conditions φk(0) = φk0, uk(0) = uk0, and θk(0) = θk0, admits a local
solution on Ik := [0, tk) for some tk ∈ (0, T ]. Moreover, φk, μk, θk ∈ H1(Ik; Xk)

and uk ∈ H1(Ik; Hk). The a priori estimates below will show that in fact we have
tk = T for every k.
Step 2.Energy-type estimates. Integrating the first equation of (30), we have 〈∂tφk(t)〉
= 0, and hence the conservation property 〈φk(t)〉 = 〈φk0〉 = 〈PXkφ0〉 = 〈φ0〉 for
every t ∈ Ik . On the other hand, taking the inner product of the said equation with
l−1
c μk in X yields

1

lc
(∂tφk, μk)X + m

lc
‖∇μk‖2X = − 1

lc
r(uk, φk, μk). (31)

Likewise, taking the inner product of the second equation of (30) with l−1
c ∂tφk in X

leads to

1

lc
(μk, ∂tφk)X = 1

2lc

d

dt

(
‖∇φk‖2X + 1

2
‖1 − φ2

k‖2X
)

+ (θk, ∂tφk)X . (32)

Combining (31) and (32), and using the fact that 〈φk〉 is constant on I , we get

1

2lc

d

dt

(
‖∇φk‖2X + |〈φk〉|2 + 1

2
‖1 − φ2

k‖2X
)

+ m

lc
‖∇μk‖2X

= − 1

lc
r(uk, φk, μk) − (∂tφk, θk)X . (33)

For the inner product of the third equation of (30) and (lcK)−1uk in H , we have

1

2Klc

d

dt
‖uk‖2H + ν

Klc
‖uk‖2V

= 1

lc
r(uk, φk, μk − lcθk) + 1

Klc
(�(φk, θk)g, uk)X + 1

Klc
〈 y, uk〉V∗×V . (34)
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The second and third terms on the right hand side of (34) can be estimated from above
by the Cauchy–Schwarz inequality as follows:

1

Klc
|〈 y, uk〉V∗×V | ≤ ν

2Klc
‖uk‖2V + c‖ y‖2V ∗

1

Klc
|(�(φk, θk)g, uk)X | ≤ c

(
1 + 1

lc
‖φk‖2X + 1

lh
‖θk‖2X + 1

Klc
‖uk‖2H

)
.

Using these estimates in (34), and then applying the Poincaré–Wirtinger inequality
(14), we obtain

1

2Klc

d

dt
‖uk‖2H + ν

2Klc
‖uk‖2V ≤ 1

lc
r(uk, φk, μk − lcθk)

+ c

(
1 + 1

lc
‖∇φk‖2X + 1

lc
|〈φk〉|2 + 1

Klc
‖uk‖2H + 1

lh
‖θk‖2X + ‖ y‖2V ∗

)
. (35)

Finally, taking the inner product of the fourth equation of (30) with l−1
h θk in X and

using the Cauchy–Schwarz inequality once more, we have the following estimate:

1

2lh

d

dt
‖θk‖2X + κ

2lh
‖∇θk‖2X

≤ c

(
1

Klc
‖uk‖2H + 1

lh
‖θk‖2X + ‖zk‖2Y ∗

)
+ (∂tφk, θk)X + r(uk, φk, θk). (36)

Let us introduce the following dissipation and energy functionals defined on the
interval Ik

Dk := 1

2

(
2m

lc
‖∇μk‖2X + ν

Klc
‖uk‖2V + κ

lh
‖∇θk‖2X

)

Ek := 1

2

(
1

lc
‖∇φk‖2X + 1

lc
|〈φk〉|2 + 1

2lc
‖1 − φ2

k‖2X + 1

Klc
‖uk‖2H + 1

lh
‖θk‖2X

)
.

Taking the sum of (33), (35), and (36), and then integrating over [0, t], we deduce that

Ek(t) +
∫ t

0
Dk(s) ds ≤ c

(
1 + Ek(0) +

∫ t

0
Ek(s) + ‖ y(s)‖2V∗ + ‖z(s)‖2Y ∗ ds

)

for every t ∈ Ik . By the Gronwall Lemma, there is a constant c > 0 independent on k
such that

sup
t∈Ik

Ek(t) +
∫ tk

0
Dk(s) ds ≤ cecT (1 + Ek(0) + ‖ y‖2L2(V∗) + ‖z‖2L2(Y ∗)). (37)

We will estimate the initial energy Ek(0). First, the Sobolev embedding yields the
inequality ‖1−φ2

k0‖X ≤ c(1+‖φk0‖X +‖φk0‖2Y ). According to ‖PHk‖L(H,H) ≤ 1,
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‖PXk‖L(X ,X) ≤ 1, and ‖PXk‖L(Y ,Y ) ≤ 1 for every k, we have ‖φk0‖Y ≤ ‖φ0‖Y ,
‖uk0‖H ≤ ‖u0‖H , and ‖θk0‖X ≤ ‖θ0‖X . Thus, we obtain

Ek(0) ≤ c(1 + ‖φ0‖2Y + ‖φ0‖4Y + ‖u0‖2H + ‖θ0‖2X ). (38)

Therefore, from (37) and (38), we deduce the following inequality after taking square
roots

‖φk‖L∞(Y ) + ‖uk‖L∞(H) + ‖θk‖L∞(X) + ‖∇μk‖L2(X) + ‖uk‖L2(V ) + ‖∇θk‖L2(X)

≤ c(1 + ‖φ0‖2Y + ‖φ0‖Y + ‖u0‖H + ‖θ0‖X + ‖ y‖L2(V ∗) + ‖z‖L2(Y ∗)) (39)

where c > 0 is a constant independent on the initial data and the source terms. By
a standard continuation argument, it follows from (39) that the finite-dimensional
system (30) has a solution on the whole interval I .
Step 3. Additional a priori estimates. From the boundary condition ∂nφk = 0 on
I × Γ and Green’s identity, we have 〈ANφk〉 = 0 in I . Hence, for the average of μk ,
one has

|〈μk〉| ≤ 1

|Ω|
∫

Ω

|φk − φ3
k | dx + lc

|Ω|
∫

Ω

|θk | dx ≤ c(‖φk‖X + ‖φk‖3Y + ‖θk‖X ).

Taking the square and then integrating over I , this inequality leads to

|〈μk〉|L2(I ) ≤ c(‖φk‖L2(X) + ‖φk‖3L∞(Y ) + ‖θk‖L2(X)). (40)

From the equation Δφk = −α−1PXk (μk − φ3
k + φk − lcθk), we deduce that

‖Δφk‖L2(X) ≤ c(‖μk‖L2(X) + ‖φk‖3L∞(Y ) + ‖φk‖L2(X) + ‖θk‖L2(X)). (41)

On the other hand, from ∇(μk − φ3
k + φk − lcθk) = ∇μk − (3φ2

k − 1)∇φk − lc∇θk
and the fact that ‖∇PXkϕ‖X ≤ ‖∇ϕ‖X for every ϕ ∈ Y , we obtain the estimate

‖∇Δφk‖X ≤ c(‖∇μk‖X + ‖φk‖2Y ‖Δφk‖X + ‖∇φk‖X + ‖∇θk‖X )

by (16) and the Sobolev embedding. Thus, we have the inequality

‖∇Δφk‖L2(X) ≤ c(‖∇μk‖L2(X) + (‖φk‖2L∞(Y ) + 1)‖Δφk‖L2(X) + ‖∇θk‖L2(X)).

(42)

Using the estimates (39)–(42) and the Poincaré–Wirtinger inequality, we see that the
sequences {φk}∞k=1, {μk}∞k=1, {uk}∞k=1, and {θk}∞k=1 are bounded in the function spaces
L∞(I ; Y ) ∩ L2(I ; Y 3), L2(I ; Y ), L∞(I ; H) ∩ L2(I ; V ), and L∞(I ; X) ∩ L2(I ; Y ),
respectively.
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Step 4. A priori estimates on time derivatives. Utilizing (24) and ‖P∗
Xk

‖L(Y ∗,Y ∗) ≤ 1
for every k in the system of differential equations (30), we have

‖∂tφk‖L2(Y ∗) ≤ c(‖uk‖L∞(H)‖φk‖L2(Y ) + ‖φk‖L∞(X)‖uk‖L2(V ) + ‖μk‖L2(Y ))

(43)

‖∂tθk‖L2(Y ∗) ≤ c(‖∂tφk‖L2(Y ∗) + (1 + ‖uk‖L∞(H))‖θk‖L2(Y )

+ ‖θk‖L∞(X)‖uk‖L2(V ) + ‖uk‖L∞(H)‖φk‖L2(Y )

+ ‖φk‖L∞(X)‖uk‖L2(V ) + ‖uk‖L2(H) + ‖z‖L2(Y ∗)). (44)

In a similar way, from (23), (25), and ‖P∗
Hk

‖L(V∗,V ∗) ≤ 1 for every k, we obtain

‖∂tuk‖L2(V∗) ≤ c(1 + (1 + ‖uk‖L∞(H))‖uk‖L2(V ) + ‖φk‖L2(X)

+ ‖θk‖L2(X) + (‖μk‖L2(Y ) + ‖θk‖L2(Y ))‖φk‖L∞(Y ) + ‖ y‖L2(V∗)). (45)

From Step 3 and these estimates, it follows that {φk}∞k=1, {uk}∞k=1, and {θk}∞k=1 are
respectively bounded in W 2(I ; Y 3,Y ∗), W 2(I ; V ), and W 2(I ; Y ).
Step 5. Passage to limit. According to Steps 3 and 4, one can extract subsequences,
still denoted by the same indices for simplicity, so that in the weak and weak-star
topologies we have μk⇀μ in L2(I ; Y ),

φk
∗
⇀φ in L∞(I ; Y ), φk⇀φ in L2(I ; Y 3), ∂tφk⇀∂tφ in L2(I ; Y ∗),

uk
∗
⇀u in L∞(I ; H), uk⇀u in L2(I ; V ), ∂tuk⇀∂tu in L2(I ; V ∗),

θk
∗
⇀θ in L∞(I ; X), θk⇀θ in L2(I ; Y ), ∂tθk⇀∂tθ in L2(I ; Y ∗),

for some (φ, μ, u, θ) ∈ W . By the Aubin–Lions–Simon Lemma, after extracting
possibly another subsequence, we have φk → φ in L2(I ; Y 2), uk → u in L2(I ; H),
and θk → θ in L2(I ; X) strongly.

Now, let us pass to the limit in (30). Since the linear terms are straightforward, it is
enough to consider the nonlinear terms. For the surface tension term, ifw ∈ L∞(I ; V )

then

〈B2(μk , φk) − B2(μ, φ),w〉L2(V ∗)×L2(V ) = (φw,∇μ)L2(X) − (φkw,∇μk)L2(X) → 0

since ∇μk⇀∇μ in L2(I ; X) and φkw → φw in L2(I ; X). Given v ∈ L2(I ; V )

and ε > 0, there exists wε ∈ L∞(I ; V ) such that ‖v − wε‖L2(V ) < ε by density of
L∞(I ; V ) in L2(I ; V ). By (23) and the triangle inequality

|〈B2(μk, φk) − B2(μ, φ), v〉L2(V∗)×L2(V )|
≤ |〈B2(μk, φk) − B2(μ, φ),wε〉L2(V ∗)×L2(V )|

+ c(‖μk‖L2(Y )‖φk‖L∞(Y ) + ‖μ‖L2(Y )‖φ‖L∞(Y ))‖v − wε‖L2(V ).
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Taking the limit superior and recalling that {μk}∞k=1 and {φk}∞k=1 are bounded in
L2(I ; Y ) and L∞(I ; Y ), respectively, there exists a constant c > 0 independent on k
and ε such that

lim sup
k→∞

|〈B2(μk, φk) − B2(μ, φ), v〉L2(V∗)×L2(V )| ≤ cε.

Since ε > 0 and v ∈ L2(I ; V ) are arbitrary, this implies that B2(μk, φk)⇀B2(μ, φ)

in L2(I ; V ∗). In the same way, replacing μk by θk gives us B2(θk, φk)⇀B2(θ, φ)

in L2(I ; V ∗). The remaining trilinear terms associated to convection can be han-
dled in a similar fashion, see also [54, Lemma III.3.2], so that we have the weak
convergences B(uk)⇀B(u) in L2(I ; V ∗), B1(uk, φk)⇀B1(u, φ) in L2(I ; Y ∗), and
B1(uk, θk)⇀B1(u, θ) in L2(I ; Y ∗).

Using the fact that ANμk⇀ANμ in L2(I ; Y ∗) and P∗
Xk

ψk⇀ψ in L2(I ; Y ∗)when-
ever ψk⇀ψ in L2(I ; Y ∗), we obtain that

∂tφk + P∗
Xk

(B1(uk, φk) + mANμk)⇀∂tφ + B1(u, φ) + mANμ in L2(I ; Y ∗).

Analogous arguments allowus to pass to theweak limit in the third and fourth equations
in (30) thanks to the convergences discussed above.

For the second equation in (30), we write f (φk) − f (φ) = (φ2
k + φkφ + φ2 −

1)(φk −φ), and apply the Hölder inequality and Sobolev embedding in order to obtain

‖ f (φk) − f (φ)‖L2(X) ≤ c(‖φk‖2L∞(Y ) + ‖φ‖2L∞(Y ) + 1)‖φk − φ‖L2(Y ) → 0.

This implies that PXk f (φk) − f (φ) = PXk ( f (φk) − f (φ)) + (PXk − I ) f (φ) → 0
in L2(I ; X). Thus, μk − αANφk − PXk f (φk) − lcθk⇀μ − αANφ − f (φ) − lcθ in
L2(I ; X).

Next,we pass to the limit in the initial conditions. First, note that themapψ �→ ψ(0)
is continuous from W 2(I ; Y 3,Y ∗) into Y . As a consequence, φk(0)⇀φ(0) in Y , and
since φk0 → φ0 in Y , this implies that φ(0) = φ0. In a similar way, u(0) = u0 in H
and θ(0) = θ0 in X .

Therefore, we have verified that (φ, μ, u, θ) is a solution to (27). The estimate (28)
follows by taking the limit inferior in (39)–(44) and applying the lower sequential
semicontinuity of norms in the weak and weak-star topologies. Finally, the uniqueness
of the weak solution follows from the local Lipschitz continuity of the corresponding
solution operator, see Theorem 2 below. This completes the proof of the theorem. ��
Theorem 2 Given R > 0, there exists a constant cR > 0 such that for every ( yi , zi ) ∈
L2(I ; V ∗) × L2(I ; Y ∗) and (φ0i , u0i , θ0i ) ∈ Y × H × X with norms less than R for
i = 1, 2,

‖(φ1, μ1, u1, θ1) − (φ2, μ2, u2, θ2)‖W ≤ cR(‖φ01 − φ02‖Y
+ ‖u01 − u02‖H + ‖θ01 − θ02‖X + ‖ y1 − y2‖L2(V∗) + ‖z1 − z2‖L2(Y ∗)),

where (φi , μi , ui , θi ) ∈ W is the solution of (27) with source term ( yi , zi ) and initial
data (φ0i , u0i , θ0i ) for i = 1, 2.
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Proof The proof is similar to that of the linearized system provided in Theorem 6. We
shall skip the details to avoid repetition. ��

3.2 Regularity of Solutions

For the remaining part of this section, we will establish the existence of more regular
solutions to the state equation. The following theorem deals with improved regularity
of the solution to (27) under additional assumptions on the data and the source terms.
Let us define the following strong solution space

V := W 2(I ; Y 4, X) × W 2(I ; Y 2) × W 2(I ; V 2, H) × W 2(I ; Y 2, X).

Theorem 3 Suppose that y ∈ L2(I ; X), z ∈ L2(I ; X), φ0 ∈ Y 2, u0 ∈ V , and
θ0 ∈ Y . Then the solution of (27) satisfy (φ, μ, u, θ) ∈ V , and there exists a unique
p ∈ L2(I ; Y/R) such that

∂tu + (u · ∇)u − νΔu + ∇ p = K(μ − lcθ)∇φ + �(φ, θ)g + y in L2(I , X).

(46)

Furthermore, there is a continuous function C > 0 such that

‖(φ, μ, u, θ)‖V + ‖p‖L2(I ;Y/R) ≤ C(‖φ0‖Y 2 , ‖u0‖V , ‖θ0‖Y , ‖ y‖L2(X), ‖z‖L2(X)).

(47)

In particular, φ ∈ C( Ī ; Y 2), μ ∈ C( Ī ; X), u ∈ C( Ī ; V ), and θ ∈ C( Ī ; Y ).

Proof We proceed by deriving a priori estimates for the Galerkin approximations
(φk, μk, uk, θk), constructed from the proof of Theorem 1, with respect to the norm
of V . To simplify the a priori estimates, we shall write

C(φ0, u0, θ0, y, z) := C(‖φ0‖Y 2 , ‖u0‖V , ‖θ0‖Y , ‖ y‖L2(X), ‖z‖L2(X)),

where C : R
5 → (0,∞) is a generic continuous function. From the continuity of

the embeddings Y 2 ⊂ Y ⊂ X , V ⊂ H , L2(I ; X) ⊂ L2(I ; V ∗), and L2(I ; X) ⊂
L2(I ; Y ∗), the stability estimate (28) immediately implies that

‖φk‖W 2(Y 3,Y ∗) + ‖μk‖L2(Y ) + ‖uk‖W 2(V ) + ‖θk‖W 2(Y ) ≤ C(φ0, u0, θ0, y, z). (48)

Let us split the derivation of the a priori estimates into five steps. In the following,
ε > 0 will be a constant whose value varies in each step.
Step 1. L∞(Y ) and L2(Y 2) estimates for θk . Taking the inner product with−(Δθk −
lhΔφk) to the fourth equation in (30) in X and applying Green’s identity, one has
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1

2

d

dt
‖∇θk − lh∇φk‖2X + κ‖Δθk‖2X = r(uk, θk − lhφk,Δθk)

− lhr(uk, θk − lhφk,Δφk) + (g · uk + zk, lhΔφk − Δθk)X .

(49)

By the Cauchy–Schwarz inequality, one can estimate the last term on the right hand
side by

|(g · uk + zk, lhΔφk − Δθk)X | ≤ ε‖Δθk‖2X + cε(‖uk‖2H + ‖Δφk‖2X + ‖zk‖2X ).

(50)

For the trilinear terms, we apply the Hölder and Gagliardo–Nirenberg inequalities to
obtain

|r(uk, θk − lhφk,Δθk)| ≤ ε‖Δθk‖2X + cε‖uk‖2H‖uk‖2V (‖∇θk‖2X + ‖Δφk‖2X )

(51)

|lhr(uk, θk − lhφk,Δφk)| ≤ ε‖Δθk‖2X + cε‖Δφk‖2X
+ cε‖uk‖2H‖uk‖2V (‖∇θk‖2X + ‖Δφk‖2X ). (52)

Substituting (50)–(52) in (49) and choosing 6ε = κ , we get

1

2

d

dt
‖∇θk − lh∇φk‖2X + κ

2
‖Δθk‖2X ≤ K1k(‖∇θk‖2X + ‖Δφk‖2X ) + K2k, (53)

where K1k := c‖uk‖2H‖uk‖2V and K2k := c(‖Δφk‖2X +‖uk‖2H +‖zk‖2X ). Integrating
(53) over [0, t], and then using the triangle inequality to separate the term involving
φk , we have

‖∇θk(t)‖2X + κ

2

∫ t

0
‖Δθk(τ )‖2X dτ ≤ c(‖∇θk0‖2X + ‖∇φk0‖2X + ‖∇φk‖2L∞(X))

+ c
∫ t

0
K1k(τ )(‖∇θk(τ )‖2X + ‖Δφk(τ )‖2X ) + K2k(τ ) dτ.

Using Gronwall Lemma, ‖PXk‖L(Y ,Y ) ≤ 1 for every k, and the estimate (48), we
obtain

‖∇θk‖L∞(X) + ‖Δθk‖L2(X) ≤ C(φ0, u0, θ0, y, z). (54)

Step 2. L∞(Y 2) and L2(Y 4) estimates for φk . For the inner product of the first
equation in (30) with Δ2φk in X , one has

1

2

d

dt
‖Δφk‖2X − m(Δμk,Δ

2φk)X = −r(uk, φk,Δ
2φk). (55)
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We use the Gagliardo–Nirenberg and Hölder inequalities to the right hand side so that

|r(uk, φk,Δ
2φk)| ≤ ε‖Δ2φk‖2X + cε‖uk‖2H‖uk‖2V‖∇φk‖2X‖Δφk‖2X . (56)

Let us estimate from below the second term on the left hand side of (55). By the
chain rule, Δ f (φk) = f ′′(φk)|∇φk |2 + f ′(φk)Δφk = 6φk |∇φk |2 + (3φ2

k − 1)Δφk .
From the Sobolev embedding, Agmon inequality, (17), and ‖ΔPXkϕ‖X ≤ ‖Δϕ‖X for
every ϕ ∈ Y 2, we get

‖ΔPXk f (φk)‖2X ≤ c(‖φk‖2L6‖∇φk‖4L6 + (‖φk‖4L4 + 1)‖Δφk‖2L∞)

≤ ε‖Δ2φk‖2X + cε(‖φk‖2Y ‖Δφk‖2X + ‖φk‖8Y + 1)‖Δφk‖2X . (57)

Using (57), the Young inequality and the equation Δμk = PXk (−αΔ2φk +Δ f (φk)+
lcΔθk), we obtain that

− m(Δμk,Δ
2φk)X ≥ mα

2
‖Δ2φk‖2X − c‖ΔPXk f (φk)‖2X − c‖Δθk‖2X

≥
(mα

2
− cε

)
‖Δ2φk‖2X − cε((‖φk‖2Y ‖Δφk‖2X + ‖φk‖8Y + 1)‖Δφk‖2X + ‖Δθk‖2X ).

(58)

Substituting the estimates (56) and (58) in the equation (55), and then taking ε > 0
such that 4(c + 1)ε = mα, one obtains

1

2

d

dt
‖Δφk‖2X + mα

4
‖Δ2φk‖2X ≤ K3k‖Δφk‖2X + c‖Δθk‖2X , (59)

where K3k := c(‖uk‖2H‖uk‖2V‖∇φk‖2X +‖φk‖2Y ‖Δφk‖2X +‖φk‖8Y +1). Integrate (59)
in time and then use Gronwall lemma, (48), (54), and ‖Δφk0‖X ≤ ‖Δφ0‖X so that

‖Δφk‖L∞(X) + ‖Δ2φk‖L2(X) ≤ C(φ0, u0, θ0, y, z). (60)

Step 3. L2(Y 2) estimate for μk . From (54), (57) and (60), we immediately obtain

‖Δμk‖L2(X) ≤ c(‖Δ2φk‖L2(X) + ‖ΔPXk f (φk)‖L2(X) + ‖Δθk‖L2(X))

≤ C(φ0, u0, θ0, y, z). (61)

Step 4. L∞(V ) and L2(V 2) estimates for uk . By taking the inner product of the third
equation of (30) with −PHΔuk in H , we obtain

1

2

d

dt
‖uk‖2V + ν‖Δuk‖2H = b(uk, uk, PHΔuk)

− (K(μk − lcθk)∇φk + �(φk, θk)g + y, PHΔuk)X .

(62)
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Using the Cauchy–Schwarz inequality for the second term on the right hand side

|(K(μk − lcθk)∇φk + �(φk, θk)g + y, PHΔuk)X | ≤ ν

4
‖Δuk‖2H

+ c(1 + (‖μk‖2Y + ‖θk‖2Y )‖Δφk‖2X + ‖φk‖2X + ‖θk‖2X + ‖ y‖2X ).

Also, by the Gagliardo–Nirenberg inequality, we can estimate the trilinear term as

|b(uk, uk, PHΔuk)| ≤ ν

4
‖Δuk‖2H + c‖uk‖2H‖uk‖4V .

Substitution of the previous two inequalities to (62) leads to

1

2

d

dt
‖uk‖2V + ν

2
‖Δuk‖2H ≤ c‖uk‖2H‖uk‖4V

+ c(1 + (‖μk‖2Y + ‖θk‖2Y )‖Δφk‖2X + ‖φk‖2X + ‖θk‖2X + ‖ y‖2X ).

By the Gronwall Lemma and the estimates (48), (60), and ‖uk0‖V ≤ ‖u0‖V , we have

‖uk‖L∞(V ) + ‖Δuk‖L2(H) ≤ C(φ0, u0, θ0, y, z). (63)

Step 5. Estimates on the time derivatives. The differential equation for φk in (30)
together with (48), (60), (61), and ‖P∗

Xk
‖L(X ,X) ≤ 1 for all k yields

‖∂tφk‖L2(X) ≤ c(‖uk‖L2(V )‖Δφk‖L∞(X) + ‖Δμk‖L2(X)) ≤ C(φ0, u0, θ0, y, z).
(64)

On a similar note, the differential equation for θk and the inequalities (48), (54), (63),
and (64) imply that

‖∂tθk‖L2(X) ≤ c(‖∂tφk‖L2(X) + ‖uk‖L∞(V )(‖Δθk‖L2(X) + ‖Δφk‖L2(X)))

+ c(‖uk‖L2(H) + ‖zk‖L2(X)) ≤ C(φ0, u0, θ0, y, z). (65)

Taking the time derivative of both sides of the second equation in (27), we obtain
that ∂tμk = −αΔ∂tφk + PXk (3φ

2
k − 1)∂tφk + lc∂tθk . Hence, by Agmon’s inequality,

(48), (64) and (65), we deduce that

‖∂tμk‖L2(Y 2∗) ≤ c(1 + ‖φk‖2L∞(Y 2)
)‖∂tφk‖L2(X) + ‖∂tθk‖L2(X)

≤ C(φ0, u0, θ0, y, z). (66)

Lastly, using (48), (60) and (63), the time derivative of uk can be estimated from above
by

‖∂tuk‖H ≤ c(1 + ‖uk‖L∞(V )‖Δuk‖L2(H) + (‖μk‖L2(Y ) + ‖θk‖L2(Y ))‖Δφk‖L∞(X)

+ ‖φk‖L2(X) + ‖θk‖L2(X) + ‖ y‖L2(X)) ≤ C(φ0, u0, θ0, y, z). (67)
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Getting the sum of (64)–(67), one has

‖φk‖W 2(Y 4,X) + ‖μk‖W 2(Y 2) + ‖uk‖W 2(V 2,H) + ‖θk‖W 2(Y 2,X) ≤ C(φ0, u0, θ0, y, z).

This proves that, up to a subsequence, (φk, μk, uk, θk)⇀(φ,μ, u, θ) in V , and the
estimate (47) holds without the pressure term. The existence of a unique pressure
p ∈ L2(I ; Y/R) satisfying (46) and the estimate ‖p‖L2(I ;Y/R) ≤ C(φ0, u0, θ0, y, z)
follows directly from the well-known de Rham’s Theorem, see [54, Proposition I.2.3]
for instance. The last statement of the theorem is a consequence of the continuous
embedding (13), applied to the interpolation spaces [Y 4, X ]1/2 = Y 2, [Y 2,Y 2∗]1/2 =
X , [V 2, H]1/2 = V , and [Y 2, X ]1/2 = Y . ��

We close this section by establishing regularity theorems that deal with the time
derivatives of the solution.We provide a proof based on the linearization of the system.

Theorem 4 Assume that φ0 ∈ Y 4, u0 ∈ V 2, and θ0 ∈ Y 2. Let z ∈ W 2(I ; X ,Y 2∗) and
y ∈ W 2(I ; H, V ∗) be such that y(0) ∈ H . Then we have

(∂tφ, ∂tμ, ∂tu, ∂tθ) ∈ W 2(I ; Y 2) × L2(I ; X) × W 2(I ; V ) × W 2(I ; X ,Y 2∗).

Proof Due to the available time derivatives of y and z, it is permissible to take the time
derivative of the finite-dimensional system satisfied by the Galerkin approximations
(φk, μk, uk, θk). The derivatives then satisfy the linearized equation

Ak(φk, μk, uk, θk)(∂tφk, ∂tμk, ∂tuk, ∂tθk)

= (0, 0, P∗
Hk

∂t y, P∗
Xk

∂t z, ∂tφk(0), ∂tuk(0), ∂tθk(0)),

where Ak is the Galerkin approximation of the linear operator A defined by (68)
below. More precisely, (∂tφk, ∂tμk, ∂tuk, ∂tθk) satisfies (72), with (φ, μ, u, θ) being
replaced by (φk, μk, uk, θk). Thus, to establish the theorem, it suffices to verify that
(∂tφk(0), ∂tuk(0), ∂tθk(0)) is uniformly bounded in X × H × Y ∗ according to Theo-
rem 7 below.

Evaluating the first equation in (30) at t = 0, and using the Hölder and Agmon
inequalities

‖∂tφk(0)‖X ≤ ‖uk0 · ∇φk0‖X + m‖Δμk(0)‖X ≤ c(‖u0‖V‖φ0‖Y 2 + ‖Δμk(0)‖X ).

From the second equation in (30), the approximate initial chemical potential satisfies
the following inequalities

‖μk(0)‖X ≤ c(‖Δφk0‖X + ‖φ3
k0 − φk0‖X + ‖θk0‖X )

≤ c(‖φ0‖Y 2 + ‖φ0‖3Y + ‖φ0‖X + ‖θ0‖X )

‖Δμk(0)‖X ≤ c(‖Δ2φk0‖X + ‖6φk0|∇φk0|2 + (3φ2
k0 − 1)Δφk0‖X + ‖Δθk0‖X )

≤ c(‖φ0‖Y 4 + ‖φ0‖3Y 2 + ‖φ0‖Y 2 + ‖θ0‖Y 2).
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Evaluating the third equation in (30) at t = 0, we obtain the following bound

‖∂tuk(0)‖H ≤ c(1 + ‖u0‖V‖u0‖V 2 + ‖u0‖V 2

+ (‖μk(0)‖Y 2 + ‖θ0‖Y 2)‖φ0‖Y + ‖φ0‖X + ‖θ0‖X + ‖ y(0)‖H ).

Finally, using the approximate convection–diffusion equation in (30), one has

‖∂tθk(0)‖Y ∗ ≤ c(‖∂tφk(0)‖Y ∗ + ‖u0‖V (‖θ0‖Y + ‖φ0‖Y ))

+ c(‖θ0‖Y + ‖u0‖H + ‖z(0)‖Y ∗).

The last term of this inequality is valid due to the continuity of the embedding
W 2(I ; X ,Y 2∗) ⊂ C( Ī ; Y ∗). For the first term, note that ‖∂tφk(0)‖Y ∗ ≤ c‖∂tφk(0)‖X .
From these estimates, we deduce that indeed (∂tφk(0), ∂tuk(0), ∂tθk(0)) is bounded
in X × H × Y ∗. ��

Theorem 5 Suppose that φ0 ∈ Y 5, u0 ∈ V 2, θ0 ∈ Y 3, y ∈ W 2(I ; H, V ∗), and z ∈
W 2(I ; X ,Y ∗)where y(0) ∈ H and z(0) ∈ X.Then it holds that (∂tφ, ∂tμ, ∂tu, ∂tθ) ∈
W .

Proof The proof is similar to the one provided in the previous theorem, but now in this
case, one utilizes Theorem 6 rather than Theorem 7. Here, we note that the Hilbert
space Y 5 is endowed with the norm ‖φ0‖Y 5 = ‖φ0‖X + ‖∇Δ2φ0‖X . ��

4 Linearized System and Differentiability of the Solution Operator

The goal of this section is to study the linearization of (27) at a fixed element
(φ, μ,w, θ) ∈ W . The corresponding solution operator of this linearization deter-
mines the directional derivative of the so-called control-to-state map.

4.1 Linearized State Equation

First, let us discuss the existence, uniqueness and stability of solutions to the linearized
system. For this purpose, we introduce the following predual space for the source terms

Q := L2(I ; Y ) × L2(I ; Y ∗) × L2(I ; V ) × L2(I ; Y ).

Consider the nonlinear operator

A : W → L(W,Q∗ × Y × H × X) (68)

defined by A = (A, A0), where the component A : W → L(W,Q∗) is given by

A(φ, μ, u, θ)(ψ, ξ, w, ζ )
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:=

⎡
⎢⎢⎣

∂tψ + B1(u, ψ) + B1(w, φ) + mAN ξ

ξ − αANψ − f ′(φ)ψ − lcζ
∂tw + DB(u)w + νASw − K(B2(ξ − lcζ , φ) − B2(μ − lcθ, ψ)) − (α2ψ + α3ζ )g

∂t ζ − lh∂tψ + B1(u, ζ − lhψ) + B1(w, θ − lhφ) + κAN ζ − g · w

⎤
⎥⎥⎦ (69)

while the component A0 : W → L(W,Y×H×X) is defined by A0(φ, μ, u, θ)(ψ, ξ,

w, ζ ) := (ψ(0),w(0), ζ(0)). Here, DB(u)w = B(u,w) + B(w, u) is the Frechét
derivative of B at u in the direction w, see Lemma 1 below. It is easy to see that A is
well-defined.

Theorem 6 Given (φ, μ, u, θ) ∈ W , (s, σ, y, z) ∈ Q∗, and (φ0,w0, ζ0) ∈ Y×H×X,
there exists a unique (ψ, ξ,w, ζ ) ∈ W such that

A(φ, μ, u, θ)(ψ, ξ,w, ζ ) = (s, σ, y, z, φ0,w0, ζ0). (70)

Furthermore, there is a continuous function C > 0, independent of (ψ, ξ,w, ζ ), such
that

‖(ψ, ξ,w, ζ )‖W ≤ C(‖(φ, μ, u, θ)‖W )‖(s, σ, y, z, φ0,w0, ζ0)‖Q∗×Y×H×X . (71)

Proof The proof of existence is again based on the Galerkin method. Suppose that
(ψk, ξk,wk, ζk) ∈ H1(I ; Xk × Xk × Hk × Xk), with components having similar
representations as in (29), is the solution of the following finite-dimensional linear
system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tψk + P∗
Xk

(B1(u, ψk) + B1(wk, φ) + mAN ξk) = P∗
Xk
s in L2(I ; Xk),

ξk = αANψk + PXk ( f
′(φ)ψk) + lcζk + PXkσ in H1(I ; Xk),

∂twk + P∗
Hk

(DB(u)wk + νASwk)

= P∗
Hk

(KB2(ξk − lcζk, φ) + KB2(μ − lcθ, ψk))

+ P∗
Hk

((α2ψk + α3ζk)g + y) in L2(I ; Hk),

∂tζk − lh∂tψk + P∗
Xk

(B1(u, ζk − lhψk) + B1(wk, θ − lhφ))

+ P∗
Xk

(κAN ζk − g · wk − z) = 0 in L2(I ; Xk),

(72)

with initial conditions ψk(0) = PXkψ0, wk(0) = PHkw0, and ζk(0) = PXk ζ0. In
what follows, C will denote a generic positive continuous function.
Step 1. Estimate for ψk . Take the test function ψk in the first equation of (72) so that

1

2

d

dt
‖ψk‖2X − m(ξk,Δψk)X = −r(wk, φ, ψk) + 〈s, ψk〉Y ∗×Y . (73)

Using (15) and the Agmon inequality, the terms on the right hand side can be estimated
from above according to

|〈s, ψk〉Y ∗×Y | ≤ ε‖Δψk‖2X + cε(‖s‖2Y ∗ + ‖ψk‖2X ) (74)

|r(wk, φ, ψk)| ≤ ε‖Δψk‖2X + cε(‖∇φ‖2X‖wk‖2H + ‖ψk‖2X ). (75)
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For the term on the left hand side of (73), let us first estimate the L2-norm of
PXk ( f

′(φ)ψk) = PXk ((3φ
2 − 1)ψk) using the Gagliardo–Nirenberg inequality (18)

by

‖PXk ( f
′(φ)ψk)‖2X ≤ c(‖φ‖4L8‖ψk‖X‖ψk‖Y + ‖ψk‖2X )

≤ ε‖Δψk‖2X + cε(‖φ‖8Y + 1)‖ψk‖2X . (76)

Therefore, from ξk = −αΔψk + PXk ( f
′(φ)ψk) + lcζk + PXkσ , we obtain for ε = 1

that

‖ξk‖2X ≤ cα‖Δψk‖2X + K0‖ψk‖2X + c(‖ζk − lhψk‖2X + ‖σ‖2X ), (77)

where K0 := c(1 + ‖φ‖8Y ). Moreover, the second term on the left hand side of (73)
can be estimated from below by

−m(ξk,Δψk)X ≥ mα

2
‖Δψk‖2X − c(‖PXk ( f

′(φ)ψk)‖2X + ‖ζk‖2X + ‖σ‖2X )

≥
(mα

2
− cε

)
‖Δψk‖2X − cεK0‖ψk‖2X − c(‖ζk‖2 + ‖σ‖2X ). (78)

One can now apply the estimates (74), (75), and (78) in (73) so that for 4(c+2)ε =
mα, we have

1

2

d

dt
‖ψk‖2X + mα

4
‖Δψk‖2X

≤ K1(‖ψk‖2X + ‖wk‖2H ) + c(‖ζk − lhψk‖2X + ‖s‖2Y ∗ + ‖σ‖2X ), (79)

where K1 := c(K0 + ‖∇φ‖2X ). Here, we used ‖ζk‖X ≤ ‖ζk − lhψk‖X + lh‖ψk‖X .
Step 2. Estimate for ζk . Testing by ζk − lhψk the fourth equation in (72) leads to

1

2

d

dt
‖ζk − lhψk‖2X + κ‖∇ζk‖2X = − lhκ(ζk,Δψk)X − r(wk, θ − lhφ, ζk)

+ lhr(wk, θ − lhφ,ψk) + (g · wk, ζk − lhψk)X + 〈z, ζk − lhψk〉Y ∗×Y . (80)

Using the Cauchy–Schwarz and Gagliardo–Nirenberg inequalities to the first, fourth
and fifth terms on the right hand side of the previous equation, one has

|lhκ(ζk,Δψk)X | ≤ ε‖Δψk‖2X + cε‖ζk‖2X (81)

|(g · wk, ζk − lhψk)X | ≤ c(‖ψk‖2X + ‖wk‖2H + ‖ζk‖2X ) (82)

|〈z, ζk − lhψk〉Y ∗×Y | ≤ κ

4
‖∇ζk‖2X + ε‖Δψk‖2X + cε(‖ψk‖2X + ‖z‖2Y ∗). (83)

Similarly, for the trilinear terms on the right hand side of (80), we obtain

|lhr(wk, θ − lhφ,ψk)|
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≤ ε‖Δψk‖2X + cε((‖∇θ‖2X + ‖∇φ‖2X )‖wk‖2H + ‖ψk‖2X ) (84)

|r(wk, θ − lhφ, ζk)|
≤ κ

4
‖∇ζk‖2X + ν

4
‖wk‖2V + c(‖∇θ‖2X + ‖∇φ‖2X )(‖wk‖2H + ‖ζk‖2X ). (85)

Let K2 := c(1+‖∇θ‖2X +‖∇φ‖2X ). By applying (81)–(85) in (80), taking 24ε = mα,
and using the inequality ‖ζk‖X ≤ ‖ζk − lhψk‖X + lh‖ψk‖X once more, we obtain

1

2

d

dt
‖ζk − lhψk‖2X + κ

2
‖∇ζk‖2X − ν

4
‖wk‖2V − mα

8
‖Δψk‖2X

≤ K2(‖ψk‖2X + ‖wk‖2H + ‖ζk − lhψk‖2X ) + c‖z‖2Y ∗ . (86)

Step 3. Estimate for wk . We test the third equation in (72) by wk so that

1

2

d

dt
‖wk‖2H + ν‖wk‖2V = b(wk,wk, u) + Kr(wk, φ, ξk − lcζk)

+ K(wk, ψk, μ − lcθ) + ((α2ψk + α3ζk)g,wk)X + 〈 y,wk〉V ∗×V .

(87)

We apply the Cauchy–Schwarz inequality to the last two terms on the right hand side

|〈 y,wk〉V ∗×V | ≤ ν

6
‖wk‖2V + c‖ y‖2V ∗ (88)

|((α2ψk + α3ζk)g,wk)X | ≤ c(‖ψk‖2X + ‖wk‖2H + ‖ζk‖2X ). (89)

To deal with the trilinear terms, we again utilize the Gagliardo–Nirenberg, Holdër
and Young inequalities to obtain the following estimates

|b(wk,wk, u)| ≤ ν

6
‖wk‖2V + c‖u‖2H‖u‖2V‖wk‖2H (90)

|Kr(wk, ψk, μ − lcθ)| ≤ ε‖Δψk‖2X + cε(‖μ‖2Y + ‖θ‖2Y )‖wk‖2H (91)

|Kr(wk, φ, ξk − lcζk)| ≤ ν

6
‖wk‖2V + ε‖ξk‖2X + ε‖ζk‖2X

+ cε‖∇φ‖2X‖Δφ‖2X‖wk‖2H . (92)

Substituting the estimates (88)–(92) in equation (87) yields

1

2

d

dt
‖wk‖2H + ν

2
‖wk‖2V − ε‖Δψk‖2X − ε‖ξk‖2X

≤ K3ε(‖ψk‖2X + ‖wk‖2H + ‖ζk − lhψk‖2X ) + c(‖ζk − lhψk‖2X + ‖ y‖2V ∗) (93)

where K3ε := cεC(‖φ‖L∞(Y ), ‖u‖L∞(H))(1 + ‖Δφ‖2X + ‖μ‖2Y + ‖θ‖2Y + ‖u‖2V ).
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Step 4. Estimate for ∇ψk . With the test function −Δψk in the first equation of (72),
we obtain

1

2

d

dt
‖∇ψk‖2X − m(∇ξk,∇Δψk)X

= −r(u,Δψk, ψk) − r(wk,Δψk, φ) − 〈s,Δψk〉Y ∗×Y . (94)

Applying the Hölder, Gagliardo–Nirenberg and Young inequalities, the terms on the
right hand side satisfy the following inequalities

|〈s,Δψk〉Y ∗×Y | ≤ ε‖∇Δψk‖2X + cε‖s‖2Y ∗ (95)

|r(u,Δψk, ψk)| ≤ ε‖∇Δψk‖2X + cε(‖u‖2H‖u‖2V‖∇ψk‖2X + ‖ψk‖2X ) (96)

|r(wk,Δψk, φ)| ≤ ε‖∇Δψk‖2X + ‖wk‖2V + cε‖φ‖2X‖∇φ‖2X‖wk‖2H . (97)

By the chain rule ∇( f ′(φ)ψk) = 6φψk∇φ + (3φ2 − 1)∇ψk , and estimating the
L2-norm yields

‖∇PXk ( f
′(φ)ψk)‖2X ≤ c(‖φ‖2L6‖ψk‖2L6‖∇φ‖2L6 + (‖φ‖4L8 + 1)‖∇ψk‖X‖∇Δψk‖X )

≤ ε‖∇Δψk‖2X + cε(‖φ‖2Y ‖Δφ‖2X + ‖φ‖8Y + 1)(‖∇ψk‖2X + ‖ψk‖2X ).

Let K4 := c(1 + ‖φ‖2Y ‖Δφ‖2X + ‖φ‖8Y ). In particular, for ε = 1 one obtains that

‖∇ξk‖2X ≤ cα‖∇Δψk‖2X + K4(‖∇ψk‖2X + ‖ψk‖2X ) + c(‖∇ζk‖2X + ‖∇σ‖2X ). (98)

Likewise, we have the following estimate for the term on the left hand side of (94)

− m(∇ξk ,∇Δψk)X ≥ mα

2
‖∇Δψk‖2X − c(‖∇PXk ( f

′(φ)ψk)‖2X + ‖∇ζk‖2X + ‖∇σ‖2X )

≥
(mα

2
− cε

)
‖∇Δψk‖2X − cεK4(‖∇ψk‖2X + ‖ψk‖2X ) − c(‖∇ζk‖2X + ‖∇σ‖2X ). (99)

Take ε > 0 such that 4(c + 3)ε = mα. Plugging the estimates (95), (96), (97), and
(99) in (94), we deduce by putting K5 := c(1 + K4 + ‖u‖2H‖u‖2V + ‖φ‖2X‖∇φ‖2X )

that

1

2

d

dt
‖∇ψk‖2X + mα

4
‖∇Δψk‖2X − c(‖wk‖2V + ‖∇ζk‖2X )

≤ K5(‖∇ψk‖2X + ‖ψk‖2X + ‖wk‖2H ) + c(‖s‖2Y ∗ + ‖∇σ‖2X ). (100)

Step 5. Energy-type estimate. Multiplying (77) and (100) by ε̃ > 0, (98) by ε̃2 and
then taking the sum of the resulting inequalities with (79), (86), and (93) we obtain
that

1

2

d

dt
Ek,ε̃ +

(mα

8
− cαε̃ − ε

)
‖Δψk‖2X +

(mα

4
− cαε̃

)
ε̃‖∇Δψk‖2X + (ε̃ − ε)‖ξk‖2X

+ ε̃2‖∇ξk‖2X +
(ν

4
− cε̃

)
‖wk‖2V +

(κ

2
− cε̃ − cε̃2

)
‖∇ζk‖2X
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≤ cε̃Kε,ε̃Ekε̃ + cε,ε̃(‖s‖2Y ∗ + ‖σ‖2Y + ‖ y‖2V ∗ + ‖z‖2Y ∗),

where Ek,ε̃ := ‖ψk‖2X + ε̃‖∇ψk‖2X + ‖ζk − lhψk‖2X + ‖wk‖2H and Kε,ε̃ = ε̃K0 +
ε̃K5 + ε̃2K4 + K1 + K2 + K3ε.

By a straightforward calculation, ‖Kε,ε̃‖L1(I ) ≤ cε,ε̃C(‖(φ, μ, u, θ)‖W ). Choose
ε̃ > ε > 0 small enough so that the coefficients on the left hand side are positive.
Thus, by applying the Gronwall Lemma, we deduce that {ψk}∞k=1, {ξk}∞k=1, {wk}∞k=1,
and {ζk}∞k=1 are bounded in L∞(I ; Y )∩ L2(I ; Y 3), L2(I ; Y ), L∞(I ; H)∩ L2(I ; V ),
and L∞(I ; X) ∩ L2(I ; Y ), respectively. In fact, we have

‖ψk‖L∞(Y )∩L2(Y 3) + ‖ξk‖L2(Y ) + ‖wk‖L∞(H)∩L2(V ) + ‖ζk − lhψk‖L∞(X)

+ ‖∇ζk‖L2(X) ≤ C(‖(φ, μ, u, θ)‖W )‖(s, σ, y, z, φ0,w0, ζ0)‖Q∗×Y×H×X

(101)

and utilize ‖ζk‖L∞(X) ≤ ‖ζk − lhψk‖L∞(X) + lh‖ψk‖L∞(X) in order to bound
‖ζk‖L∞(X) by the right hand side of (101).

Following Step 4 in the proof of Theorem 1, and applying (21)–(25) together with
the a priori estimate (101), the norms ‖∂tψk‖L2(Y ∗), ‖∂twk‖L2(V ∗), and ‖∂tζk‖L2(Y ∗)
canbe estimated fromaboveby the right hand side of (101). This implies that (71) holds
with (ψ, ξ,w, ζ ) replaced by (ψk, ξk,wk, ζk). Thus, {(ψk, ξk,wk, ζk)}∞k=1 is bounded
in W . Extraction of a suitable subsequence leads to a solution of (70) satisfying
(71). Finally, the uniqueness of solution follows from standard arguments, the a priori
estimate (71), and the linearity of the system (70). ��

For coefficients (φ, μ, u, θ) ∈ V , one can allow less regular source terms and initial
data in the linearized system (70). For this, one has to consider very weak solutions to
the linearized Cahn–Hilliard and convection–diffusion equations. By duality princi-
ples, this will lead to more regular solutions to the adjoint system. In this direction, we
introduce the following weaker solution space and the predual space of less regular
source terms

U := W 2(I ; Y 2) × L2(I ; X) × W 2(I ; V ) × W 2(I ; X ,Y 2∗)
Y := L2(I ; Y 2) × L2(I ; X) × L2(I ; V ) × L2(I ; Y 2).

The inclusionsW ⊂ U andQ∗ ⊂ Y∗ are continuous and dense. Notice that for these
embeddings, the third components are left unchanged.

To facilitate the proof of the next theorem, let us consider the closed, positive and
self-adjoint linear operator C := I + AN : Y 2 → X . Note that C : Y 2 → X is a
unitary operator and it admits a unique extension C : X → Y 2∗ that is again unitary.
Also, C1/2 : Y → X and C1/2 : X → Y ∗ are unitary operators, provided that
Y = H1(Ω) is equipped with its usual norm. Thus, ‖C−1θ‖Y 2 = ‖θ‖X for every
θ ∈ X and ‖C−1ϑ‖Y = ‖C−1/2ϑ‖X = ‖ϑ‖Y ∗ for every ϑ ∈ Y ∗. For a proof of these
remarks, we refer to [58, Proposition 3.4.5]. The operator C will be also defined in the
time-dependent case in the obvious way. Finally, we point out that the operator AN

has a unique extension as a mapping AN : L2(I ; X) → L2(I ; Y 2∗) that is also linear
and continuous.
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Theorem 7 Suppose that (φ, μ, u, θ) ∈ V , (s, σ, y, z) ∈ Y∗, and (φ0,w0, ζ0) ∈
X × H × Y ∗. Then (70) has a unique solution (ψ, ξ,w, ζ ) ∈ U and there is a
continuous function C > 0 that is independent of (ψ, ξ,w, ζ ) such that

‖(ψ, ξ,w, ζ )‖U ≤ C(‖(φ, μ, u, θ)‖V )‖(s, σ, y, z, φ0,w0, ζ0)‖Y∗×X×H×Y ∗ . (102)

In particular, A : V → L(U ,Y∗ × X × H × Y ∗).

Proof We shall proceed by a density argument. Choose sequences {(sk, σk, zk)}∞k=1 ⊂
L2(I ; Y ∗) × L2(I ; Y ) × L2(I ; Y ∗) and {(φk0, ζk0)}∞k=1 ⊂ Y × X in such a way that
(sk, σk, zk) → (s, σ, z) in L2(I ; Y 2∗) × L2(I ; X) × L2(I ; Y 2∗) and (φk0, ζk0) →
(φ0, ζ0) in X×Y ∗. Then, byTheorem6, there exists (ψk , ξk,wk, ζk) ∈ W that satisfies
the linear systemA(φ, μ, u, θ)(ψk, ξk,wk, ζk) = (sk, σk, y, zk, φk0,w0, ζk0) inQ∗×
Y × H × X .

We revisit some computations in the proof of the previous theorem. First, by replac-
ing the estimate (74) by

|〈sk, ψk〉Y 2∗×Y 2 | ≤ ε‖Δψk‖2X + cε(‖sk‖2Y 2∗ + ‖ψk‖2X ),

instead of (79) we get that

1

2

d

dt
‖ψk‖2X + mα

4
‖Δψk‖2X

≤ K1(‖ψk‖2X + ‖wk‖2H ) + c(‖ζk − lhψk‖2X + ‖sk‖2Y 2∗ + ‖σk‖2X ).

(103)

On the other hand, the estimates for ξk and wk given by (93) and (77), respectively,
remain the same except that z must be replaced by zk .

For the linearized convection–diffusion equation, we shall use the test function
C−1(ζk − lhψk) ∈ L2(I ; Y 2) and write AN ζk = C(ζk − lhψk) + lhCψk − ζk to the
obtain equation

1

2

d

dt
‖C−1/2(ζk − lhψk)‖2X + κ‖ζk − lhψk‖2X = − lhκ(ψk, ζk − lhψk)X

+ κ(ζk,C
−1(ζk − lhψk))X + r(wk,C

−1(ζk − lhψk), θ − lhφ)

+ r(u,C−1(ζk − lhψk), ζk − lhψk) + 〈g · wk + zk,C
−1(ζk − lhψk)〉Y 2∗×Y 2 .

According to the discussion preceding the theorem, we have ‖C−1(ζk − lhψk)‖Y 2 =
‖ζk − lhψk‖X and ‖C−1(ζk − lhψk)‖Y = ‖C−1/2(ζk − lhψk)‖X = ‖ζk − lhψk‖Y ∗ .
Using the Cauchy–Schwarz inequality and ‖g · wk‖Y 2∗ ≤ c‖wk‖H it holds that

|lhκ(ψk, ζk − lhψk)X | ≤ κ

6
‖ζk − lhψk‖2X + c‖ψk‖2X

|〈g · wk + zk,C
−1(ζk − lhψk)〉Y 2∗×Y 2 | ≤ κ

6
‖ζk − lhψk‖2X + c(‖wk‖2H + ‖zk‖2Y 2∗).
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In the case of the trilinear terms, by applying the Hölder and Agmon inequalities, we
get

|r(wk,C
−1(ζk − lhψk), θ − lhφ)| ≤ c(‖ζk − lhψk‖2Y ∗ + c(‖θ‖2Y 2 + ‖φ‖2Y 2)‖wk‖2H )

|r(u,C−1(ζk − lhψk), ζk − lhψk)| ≤ κ

6
‖ζk − lhψk‖2X + c‖u‖2

V 2‖ζk − lhψk‖2Y ∗ .

For the remaining term, let us write

(ζk,C
−1(ζk − lhψk))X = ‖ζk − lhψk‖2Y ∗ + lh(C

−1/2ψk,C
−1/2(ζk − lhψk))X

and use the Cauchy–Schwarz inequality and ‖C−1/2ψk‖X ≤ c‖ψk‖X , so that we have

|κ(ζk,C
−1(ζk − lhψk))X | ≤ c(‖ζk − lhψk‖2Y ∗ + ‖ψk‖2X ).

Taking the above estimates into consideration, putting K7 := c(1+‖u‖2
V 2 +‖θ‖2

Y 2 +
‖φ‖2

Y 2) and then invoking the Gronwall Lemma, we deduce that

1

2

d

dt
‖ζk − lhψk‖2Y ∗ + κ

2
‖ζk − lhψk‖2X

≤ K7(‖ψk‖2X + ‖ζk − lhψk‖2Y ∗ + ‖wk‖2H ) + c‖z‖Y 2∗ . (104)

Multiplying (93) and (103) by ε̃ > 0, (77) by ε̃2 and then taking the sum of the
resulting estimates with (104) yields the inequality

1

2

d

dt
Ek,ε̃ +

(mα

4
− cαε̃ − ε

)
ε̃‖Δψk‖2X

+ (ε̃ − ε)ε̃‖ξk‖2X +
(κ

2
− c(2 + ε̃)ε̃

)
‖ζk − lhψk‖2X + ν

2
‖wk‖2V

≤ cε̃Kε,ε̃Ek,ε̃ + cε,ε̃(‖sk‖2Y 2∗ + ‖σk‖2X + ‖ y‖2V ∗ + ‖zk‖2Y 2∗),

where Ek,ε̃ := ε̃‖ψk‖2X+‖ζk−ψk‖2Y ∗+ε̃‖wk‖2H and Kε,ε̃ := ε̃2K0+ε̃K1+ε̃K3ε+K7.
It is not difficult to see that ‖Kε,ε̃‖L1(I ) ≤ cε,ε̃C(‖(φ, μ, u, θ)‖V ). Taking ε̃ > ε > 0
small enough, applying the Gronwall Lemma, and using the estimates ‖ψk0‖Y ∗ ≤
c‖ψk0‖X and ‖ζk‖L∞(Y ∗) ≤ ‖ζk − lhψk‖L∞(Y ∗) + c‖ψk‖L∞(X), we obtain

‖ψk‖L∞(X)∩L2(Y 2) + ‖ξk‖L2(X) + ‖wk‖L∞(H)∩L2(V ) + ‖ζk‖L∞(Y ∗)∩L2(X)

≤ C(‖(φ, μ, u, θ)‖V )‖(sk, σk, y, zk, φk0,w0, ζk0)‖Y∗×X×H×Y ∗ . (105)

Let us turn into the estimates of the time derivatives. Applying the continu-
ity of L2(I ; Y ∗) ⊂ L2(I ; Y 2∗) in the convection term and the boundedness of
AN : L2(I ; X) → L2(I ; Y 2∗), we have

‖∂tψk‖L2(Y 2∗) ≤ c(‖u‖L∞(H)‖ψk‖L2(Y ) + ‖ψk‖L∞(X)‖u‖L2(V ) + ‖ξk‖L2(X)
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+ ‖φ‖L∞(X)‖wk‖L2(V ) + ‖wk‖L∞(H)‖φ‖L2(X) + ‖sk‖L2(Y 2∗)). (106)

Similarly, using ‖B1(u, ζk −lhψk)‖L2(Y 2∗) ≤ c‖u‖L∞(V )(‖ζk‖L2(X) +‖ψk‖L2(X))we
obtain

‖∂tζk‖L2(Y 2∗) ≤ c(‖∂tψk‖L2(Y 2∗) + ‖u‖L∞(V )(‖ζk‖L2(X) + ‖ψk‖L2(X)) + ‖ζk‖L2(X)

+ ‖wk‖L2(H) + ‖wk‖L∞(H)‖θ‖L2(Y ) + ‖θ‖L∞(X)‖wk‖L2(V )

+ ‖zk‖L2(Y 2∗)). (107)

From ‖B2(μ−lcθ, ψk)‖L2(V∗) ≤ c(‖μ‖L∞(X)+‖θ‖L∞(X))‖ψk‖L2(Y 2) and ‖B2(ξk−
lcζk, φ)‖L2(V∗) ≤ c(‖ξk‖L2(X) + ‖ζk‖L2(X))‖φ‖L∞(Y 2), the time derivative of wk can
be estimated as follows:

‖∂twk‖L2(V ∗) ≤ c(‖u‖L∞(H)‖wk‖L2(V ) + ‖wk‖L∞(H)‖u‖L2(V ) + ‖wk‖L2(V )

+ (‖μ‖L∞(X) + ‖θ‖L∞(X))‖ψk‖L2(Y 2) + (‖ξk‖L2(X) + ‖ζk‖L2(X))‖φ‖L∞(Y 2)

+ ‖ψk‖L2(X) + ‖ζk‖L2(X) + ‖ y‖L2(V∗)). (108)

Taking the sum of what we have obtained from (105) to (108), one can see that

‖(ψk, ξk,wk, ζk)‖U ≤ C(‖(φ, μ, u, θ)‖V )‖(sk, σk, y, zk, φk0,w0, ζk0)‖Y∗×X×H×Y ∗ .

When applied to the difference, this implies that {(ψk, ξk,wk, ζk)}∞k=1 is a Cauchy
sequence in U , so that (ψk, ξk,wk, ζk) → (ψ, ξ,w, ζ ) in U and the limit is a solu-
tion of (70). For this solution, we have (102) due to strong convergence. Finally, the
uniqueness of the solution follows from the previous theorem along with standard
arguments. This completes the proof. ��

In the above discussions, the main interest is when the initial conditions in the
linearized system vanish. For this, we let W0 to be the space of all elements in W
where the first, third, and last components vanish at t = 0. The function spaces V0
and U0 in relation to V and U are defined analogously.

Corollary 1 The operator A(φ, μ, u, θ) ∈ L(W0,Q∗) defined by (69) is an isomor-
phism for every (φ, μ, u, θ) ∈ W . Also, A(φ, μ, u, θ) ∈ L(U0,Y∗) is an isomorphism
for all (φ, μ, u, θ) ∈ V .
Proof This is a direct consequence of Theorems 6 and 7. ��

The following theorem will be utilized in the proof of second order sufficient con-
dition.

Theorem 8 Suppose that (φ, μ, u, θ) ∈ V , y ∈ L2(I ; X), and z ∈ L2(I ; X). Then
there is a unique solution (ψ, ξ,w, ζ ) ∈ V0 to the equation

A(φ, μ, u, θ)(ψ, ξ,w, ζ ) = (0, 0, y, z).
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Moreover, there exists a continuous function C > 0 such that

‖(ψ, ξ,w, ζ )‖V0 ≤ C(‖(φ, μ, u, θ)‖V )(‖ y‖L2(X) + ‖z‖L2(X)). (109)

Proof We follow the proof provided in Theorem 3. The a priori estimates from Theo-
rem6and the continuous embeddings L2(I ; X) ⊂ L2(I ; V ∗), L2(I ; X) ⊂ L2(I ; Y ∗),
and V ⊂ W imply

‖(ψk, ξk,wk, ζk)‖W0 ≤ C(‖(φ, μ, u, θ)‖V )(‖ y‖L2(X) + ‖z‖L2(X))

=: C(φ, μ, u, θ, y, z). (110)

Choosing the test function −(Δζk − lhΔψk) in the equation satisfied by ζk and
using the Gagliardo–Nirenberg and Agmon inequalities, we obtain that

1

2

d

dt
‖∇ζk − lh∇ψk‖2X + κ‖Δζk‖2X = r(u, ζk − lhψk ,Δζk − lhΔψk)

+ r(wk , θ − lhφ,Δζk − lhΔψk) − (g · wk + z,Δζk − lhΔψk)X

≤ κ

2
‖Δζk‖2X + c(‖u‖2

V 2 (‖∇ζk‖2X + ‖∇ψk‖2X ) + ‖Δψk‖2X + (‖θ‖2Y 2 + ‖φ‖2Y 2 )‖wk‖2H )

+ c((‖θ‖2Y + ‖φ‖2Y )‖wk‖2V + ‖wk‖2H + ‖z‖2X ).

Utilizing the Gronwall Lemma and applying (110) yields

‖∇ζk‖L∞(X) + ‖Δζk‖L2(X) ≤ C(φ, μ, u, θ, y, z). (111)

Using the test function Δ2ψk in the equation satisfied by ψk , we obtain

1

2

d

dt
‖Δψk‖2X − m(Δξk,Δ

2ψk)X

≤ mα

16
‖Δ2ψk‖2X + c(‖u‖2V‖Δψk‖2X + ‖wk‖2V‖Δφ‖2X ). (112)

Next, we shall estimate the norm of Δ( f ′(φ)ψk). By a simple calculation, we obtain
from the chain rule thatΔ( f ′(φ)ψk) = 6(φΔφ+|∇φ|2)ψk +12φ∇φ ·∇ψk + (3φ2−
1)Δψk . Hence, by the Hölder and Gagliardo–Nirenberg inequalities as well as the
Sobolev embedding

‖ΔPXk ( f
′(φ)ψk)‖2X ≤ c(‖φ‖2Y ‖φ‖2Y 3 + ‖φ‖4Y 2)‖ψk‖2X

+ c(‖φ‖2Y ‖φ‖2Y 2 + ‖φ‖4Y + 1)‖Δψk‖2X .

This estimate and the one given in (110) imply that

‖ΔPXk ( f
′(φ)ψk)‖L2(X) ≤ C(φ, μ, u, θ, y, z) (113)

since φ ∈ W 2(I ; Y 4, X) ⊂ L∞(I ; Y 2).
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Note that for the second term on the left hand side of (112) it holds that

−m(Δξk,Δ
2ψk)X ≥ mα

4
‖Δ2ψk‖2X − c(‖ΔPXk ( f

′(φ)ψk)‖2X + ‖Δζk‖2X ). (114)

In addition, we have ‖Δξk‖2X ≤ cα‖Δ2ψk‖2X + c(‖ΔPXk ( f
′(φ)ψk)‖2X + ‖Δζk‖2X ).

Upon substitution of (114) in (112) we obtain

1

2

d

dt
‖Δψk‖2X + mα

8
‖Δ2ψk‖2X + m

16cα

‖Δξk‖2X
≤ c(‖u‖2V‖Δψk‖2X + ‖wk‖2V‖Δφ‖2X + ‖ΔPXk ( f

′(φ)ψk)‖2X + ‖Δζk‖2X ).

Applying the Gronwall Lemma to this inequality and invoking the estimates (111) and
(113), one has

‖Δψk‖L∞(X) + ‖Δ2ψk‖L2(X) + ‖Δξk‖2L2(X)
≤ C(φ, μ, u, θ, y, z). (115)

To derive an priori estimate for w, let us note the following

‖(μ − lcθ)∇ψk‖L2(X) + ‖(ξk − lcζk)∇φ‖L2(X)

≤ c((‖μ‖L2(Y ) + ‖θ‖L2(Y ))‖Δψk‖L∞(X) + (‖ξk‖L2(Y ) + ‖ζk‖L2(Y ))‖Δφ‖L∞(X)).

From this, and by a similar argument as in the nonlinear state equation, it can be
deduced that

‖wk‖L∞(V ) + ‖Δwk‖L2(H) ≤ C(φ, μ, u, θ, y, z). (116)

According to the differential equations satisfied by ψk , wk , and ζk , as well as the a
priori estimates (111), (115) and (116), we have

‖∂tψk‖L2(X) + ‖∂twk‖L2(H) + ‖∂tζk‖L2(X) ≤ C(φ, μ, u, θ, y, z).

Finally, from ∂tξk = −αΔ∂tψk + PXk ((3φ
2 − 1)∂tψk + 6φψk∂tφ) + ∂tζk , we obtain

that

‖∂tξk‖L2(Y 2∗) ≤ c((1 + ‖φ‖2L∞(Y 2)
)‖∂tψk‖L2(X)

+ ‖φ‖L∞(Y 2)‖ψk‖L∞(Y 2)‖∂tφ‖L2(X) + ‖∂tζk‖L2(X)) ≤ C(φ, μ, u, θ, y, z).

Overall, we have established that {(ψk, ξk,wk, ζk)}∞k=1 is bounded in V0. Therefore
the weak solution constructed from the Galerkin method satisfies (ψ, ξ,w, ζ ) ∈ V0.
Finally, taking the limit inferior of the above a priori estimates for the Galerkin approx-
imations yields (109). ��

123



S1254 Applied Mathematics & Optimization (2021) 84 (Suppl 2):S1219–S1279

4.2 Differentiability of the Control-to-State Map

We shall now discuss the differentiability of the operator that maps a control to a
solution of the state equation. All throughout, the dual of the ambient control space Q
will be identified with itself. Define the nonlinear map

N : W × Q → Q∗ × Y × H × X

according to N = (N , N0), where N : W × Q → Q∗ is given by

N (φ, μ, u, θ, y, z)

:=

⎡
⎢⎢⎣

∂tφ + B1(u, φ) + mANμ

μ − αANφ − f (φ) − lcθ
∂tu + B(u) + νASu − KB2(μ − lcθ, φ) − �(φ, θ)g − χωf y

∂tθ − lh∂tψ + B1(u, θ − lhφ) + κAN θ − g · u − χωh z

⎤
⎥⎥⎦

and N0 : W × Q → Y × H × X is defined by N0(φ, μ, u, θ, y, z) = (φ(0) −
φ0, u(0) − u0, θ(0) − θ0). Here, (φ0, u0, θ0) ∈ Y × H × X is a given fixed initial
data.

According to the existence and uniqueness of weak solutions, cf.Theorem 1, for a
given ( y, z) ∈ Q there exists a unique (φ, μ, u, θ) ∈ W that satisfies the equation

N (φ, μ, u, θ, y, z) = 0. (117)

Define the operator S : Q → W by S( y, z) = (φ, μ, u, θ) if and only if (117) holds.
We will prove that S is of class C∞. To show this, it is enough to treat the nonlinear
terms appearing in N . For this, we need the following lemma.

Lemma 1 Themappings B : W 2(I ; V ) → L2(I ; V ∗), B1 : W 2(I ; V )×W 2(I ; Y ) →
L2(I ; Y ∗), B2 : L2(I ; Y )×W 2(I ; Y 3,Y ∗) → L2(I ; V ∗), and f : W 2(I ; Y 3,Y ∗) →
L2(I ; Y ) are of class C∞. The derivatives of order at least 3 for B, B1, and B2, and
of order at least 4 for f all vanish.

Proof The differentiability of B, B1, and B2 follows from the bilinearity of these
maps together with the estimates in (23)–(25). For future reference, we write
the directional derivatives: For every (φ, μ, u, θ), (ψ, ξ,w, ζ ) ∈ W it holds that
DB(u)w = B(u,w) + B(w, u), DB1(u, θ)(w, ζ ) = B1(u, ζ ) + B1(w, θ), and
DB2(μ, φ)(ξ, ψ) = B2(μ,ψ)+B2(ξ, φ). Moreover, the action of the second deriva-
tives are given by

D2B(u)[w1,w2] = B(w1,w2) + B(w2,w1),

D2B1(u, θ)[(w1, ζ1), (w2, ζ2)] = B1(w1, ζ2) + B1(w2, ζ1),

D2B2(μ, φ)[(ξ1, ψ1), (ξ2, ψ2)] = B2(ξ1, ψ2) + B2(ξ2, ψ1),
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for every (ψi , ξi ,wi , ζi ) ∈ W for i = 1, 2. Since these are independent on
(φ, μ, u, θ) ∈ W , it follows that the derivatives of order at least 3 for these oper-
ators vanish.

Let us establish the differentiability of f . Let φ,ψ ∈ W 2(I ; Y 3,Y ∗). By Taylor’s
expansion, f (φ+ψ)− f (φ)− f ′(φ)ψ = 6(φψ2+ψ3). From the Hölder and Agmon
inequalities we obtain

‖φψ2 + ψ3‖L2(X) ≤ c(‖φ‖L2(Y )‖ψ‖2L∞(Y ) + ‖ψ‖3L∞(Y )).

On the other hand, by computing the gradient of the right hand side, we get ∇(φψ2 +
ψ3) = ψ2∇φ + (2φψ + 3ψ2)∇ψ . We then estimate from above according to

‖ψ2∇φ + (2φψ + 3ψ2)∇ψ‖L2(X) ≤ c(‖φ‖L2(Y 2)‖ψ‖2L∞(Y )

+ ‖φ‖L∞(Y )‖ψ‖L∞(Y )‖ψ‖L2(Y 2) + ‖ψ‖2L∞(Y )‖ψ‖L2(Y 2)).

Combining the previous estimates and recalling W 2(I ; Y 3,Y ∗) ⊂ L∞(I ; Y ) ∩
L2(I ; Y 2), there is a constant c = c(‖φ‖W 2(Y 3,Y ∗)) > 0 such that

‖ f (φ + ψ) − f (φ) − f ′(φ)ψ‖L2(Y ) ≤ c(1 + ‖ψ‖W 2(Y 3,Y ∗))‖ψ‖2W 2(Y 3,Y ∗).

From this, we see that f is Frechét differentiable and D f (φ) = f ′(φ), where the right
hand side is to be understood as a multiplication operator.

For the second derivative, if φ,ψ1, ψ2 ∈ W 2(I ; Y 3,Y ∗) then we have f ′(φ)ψ1 −
f ′(φ + ψ2)ψ1 − f ′′(φ)ψ1ψ2 = 6ψ1ψ

2
2 and

‖ψ1ψ
2
2‖L2(Y ) ≤ c‖ψ1‖W 2(I ;Y 3,Y ∗)‖ψ2‖2W 2(I ;Y 3,Y ∗).

Thus D2 f (φ) = f ′′(φ). In addition, if ψ3 ∈ W 2(I ; Y 3,Y ∗) then D3 f (φ)ψ1ψ2ψ3 =
6ψ1ψ2ψ3. Since this is independent on φ, the derivatives beyond order 3 of f vanish.
This completes the proof of the lemma. ��

Due to the fact that the controls are only present in the Oberbeck–Boussinesq
system, it is advantageous to consider the operator P : Q → Q∗ defined by P( y, z) =
(0, 0, χωf y, χωh z). The adjoint operator P

∗ : Q → Q is given by P∗(ϕ, η, v, ϑ) =
(χωf v, χωhϑ). Note that one may also consider P : Q → Y∗ and P∗ : Y → Q.

Theorem 9 The map S : Q → W is of class C∞. For every ( y, z), (δ y, δz) ∈ Q we
have

DS( y, z)(δ y, δz) = A(S( y, z))−1P(δ y, δz) (118)

and for every (δ y1, δz1), (δ y2, δz2) ∈ Q it holds that
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D2S( y, z)((δ y1, δz1), (δ y2, δz2))

= −A(S( y, z))−1

⎡
⎢⎢⎣

B1(w1, ψ2) + B1(w2, ψ1)

6φψ1ψ2
D2B(u)[w1, w2] − KB2(ξ1 − lcζ1, ψ2) − KB2(ξ2 − lcζ2, ψ1)

B1(w1, ζ2 − lhψ2) + B1(w2, ζ1 − lhψ1)

⎤
⎥⎥⎦ ,

(119)

where (ψi , ξi ,wi , ζi ) = DS( y, z)(δ yi , δzi ) for i = 1, 2 and φ is the first component
of S( y, z).

Proof From Lemma 1 it follows that N ∈ C∞(W × Q,Q∗ × Y × H × X). Let
( ȳ, z̄) ∈ Q so that there exists a unique (φ̄, μ̄, ū, θ̄ ) = S( ȳ, z̄) ∈ W that satisfies
N (φ̄, μ̄, ū, θ̄ , ȳ, z̄) = 0. According to Theorem 6, the linear operator

∂N (φ̄, μ̄, ū, θ̄ , ȳ, z̄)
∂(φ, μ, u, θ)

= A(φ̄, μ̄, ū, θ̄ ) ∈ L(W,Q∗ × Y × H × X)

is an isomorphism.
From the implicit function theorem, see [60, Sect. 4.7] for instance, there exist open

sets O( ȳ,z̄) ⊂ Q and OS( ȳ,z̄) ⊂ W containing ( ȳ, z̄) and S( ȳ, z̄), respectively, and a
map S̃ ∈ C∞(O( ȳ,z̄),OS( ȳ,z̄)) such that the equationN (S̃( y, z), y, z) = 0 is satisfied
for every ( y, z) ∈ O( ȳ,z̄).However, this implies that S̃( y, z) = S( y, z)by the definition
of S. Since ( ȳ, z̄) was an arbitrary element of Q, it follows that S ∈ C∞(Q,W).
Furthermore, applying the chain rule to the identity N (S( y, z), y, z) = 0, we have

DS( y, z)(δ y, δz) = −A(S( y, z))−1 ∂

∂( y, z)
N (S( y, z), y, z)(δ y, δz)

= A(S( y, z))−1P(δ y, δz)

for every ( y, z), (δ y, δz) ∈ Q, and thus (118). In particular, A(S( y, z))DS( y, z)(δ y, δz)
= P(δ y, δz). By applying the chain and product rules to the latter equation, we get

D2S( y, z)((δ y1, δz1), (δ y2, δz2))

= −A(S( y, z))−1DA(S( y, z))(DS( y, z)(δ y1, δz1),DS( y, z)(δ y2, δz2)).
(120)

Here, note that DA : W → L(W,L(W0,Q∗)), where the latter space is isometrically
isomorphic to the Banach space L(W ×W0,Q∗). Using the second derivatives of the
nonlinear operators presented in the proof of Lemma 1, we see that equation (120)
implies (119). ��
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Remark 1 In terms of PDEs, DS( y, z)(δ y, δz) = (ψ, ξ,w, ζ ) if and only if
(ψ, ξ,w, ζ ) ∈ W0 is the weak solution of the following linear system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tψ + u · ∇ψ + w · ∇φ − mΔξ = 0 in I × Ω

ξ = −αΔψ + (3φ2 − 1)ψ + lcζ in I × Ω,

∂tw + (u · ∇)w + (w · ∇)u − νΔw + ∇π

= K(μ − lcθ)∇ψ + K(ξ − lcζ )∇φ + (α2ψ + α3ζ )g + χωf δ y in I × Ω,

divw = 0 in I × Ω,

∂tζ − lh∂tψ + u · ∇(ζ − lhψ) + w · ∇(θ − lhφ) − κΔζ = g · w + χωhδz in I × Ω,

satisfying the boundary conditions ∂nψ = ∂nΔψ = 0, w = 0, and ∂nζ = 0 on
I × Γ , and the initial conditions ψ(0) = 0, w(0) = 0, and ζ(0) = 0 in Ω , where
(φ, μ, u, θ) = S( y, z).

Similarly, D2S( y, z)[(δ y1, δz1), (δ y2, δz2)] = (ψ, ξ,w, ζ ) if and only if (ψ, ξ,

w, ζ ) ∈ W0 is the weak solution of the linear system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tψ + u · ∇ψ + w · ∇φ − mΔξ = −w1 · ∇ψ2 − w2 · ∇ψ1 in I × Ω,

ξ = −αΔψ + (3φ2 − 1)ψ + 6φψ1ψ2 + lcζ in I × Ω,

∂tw + (u · ∇)w + (w · ∇)u − νΔw + ∇π = K(μ − lcθ)∇ψ

+ K(ξ − lcζ )∇φ + K(ξ1 − lcζ1)∇ψ2 + K(ξ2 − lcζ2)∇ψ1

+ (α2ψ + α3ζ )g − (w1 · ∇)w2 − (w2 · ∇)w1 in I × Ω,

divw = 0 in I × Ω,

∂tζ − lh∂tψ + u · ∇(ζ − lhψ) + w · ∇(θ − lhφ) − κΔζ

= g · w − w1 · ∇(ζ2 − lhψ2) − w2 · ∇(ζ1 − lhψ1) in I × Ω,

with the boundary conditions ∂nψ = ∂nΔψ = 0, w = 0, and ∂nζ = 0 on I × Γ , and
the homogeneous initial conditions ψ(0) = 0, w(0) = 0, and ζ(0) = 0 in Ω . Here,
(ψi , ξi ,wi , ζi ) = DS( y, z)(δyi , δzi ) for i = 1, 2 and (φ, μ, u, θ) = S( y, z).

Lemma 2 The map S : Q → W is weak-weak continuous, that is, if ( yk, zk)⇀( y, z)
in Q then S( yk, zk)⇀S( y, z) inW .

Proof First we note that since the involved function spaces are both reflexive and sepa-
rable, the notions of continuity and sequential continuity are equivalent with respect to
the weak topologies, see [22, Theorem V.5.2]. Suppose ( yk, zk)⇀( y, z) in Q and let
(φk, μk, uk, θk) = S( yk, zk). Then {( yk, zk)}∞k=1 is bounded inQ, and as consequence,
{S( yk, zk)}∞k=1 is also bounded inW by (28). Then after taking a subsequence, denoted
by the same indices for simplicity, we have S( yk, zk)⇀(φ,μ, u, θ) in W for some
(φ, μ, u, θ) ∈ W . Recall from the Aubin–Lions–Simon Lemma that the embeddings
W 2(I ; Y 3,Y ∗) ⊂ L2(I ; Y 2), W 2(I ; V ) ⊂ L2(I ; H), and W 2(I ; Y ) ⊂ L2(I ; X) are
compact, and thus one can further extract a subsequence so that φk → φ in L2(I ; Y 2),
uk → u in L2(I ; H), and θk → θ in L2(I ; X). By adapting the argument in Step 5
of the proof of Theorem 1, we have N (φ, μ, u, θ, y, z) = 0.

Since the map ϕ �→ ϕ(0) is continuous from W 2(I ; Y 3,Y ∗) into Y , it follows that
φk(0)⇀φ(0) in Y and thus φ(0) = φ0. In a similar fashion, u(0) = u0 in H and
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θ(0) = θ0 in X . Thus, N0(φ, μ, u, θ, y, z) = 0 and hence N (φ, μ, u, θ, y, z) =
0. This implies that (φ, μ, u, θ) = S( y, z). In particular, (φ, μ, u, θ) is uniquely
determined, and as a result the whole sequence {S( yk, zk)}∞k=1 and not only the chosen
subsequence must be weakly convergent. This means that S( yk, zk)⇀S( y, z) in W .
This establishes the weak-weak continuity of S. ��

5 The Adjoint System

In this section, we shall analyze the adjoint system corresponding to the linearized
state equation. Note from Theorem 9 that the adjoint operator DS( y, z)∗ of DS( y, z)
is given by

DS( y, z)∗ = P∗A(S( y, z))−∗, (121)

where A(S( y, z))−∗ denotes the inverse of the adjoint of A(S( y, z)). If S( y, z) ∈ W ,
then DS( y, z)∗ ∈ L(W∗

0 , Q), and if S( y, z) ∈ V , then DS( y, z)∗ ∈ L(V∗
0 , Q), see

Corollary 1.

Theorem 10 Let (φ, μ, u, θ) ∈ W . Given (g1, g2, g3, g4) ∈ W∗
0 , there exists a unique

solution (ϕ, η, v, ϑ) ∈ Q to the variational equation

〈∂tψ + B1(u, ψ) + B1(w, φ) + mAN ξ, ϕ〉L2(Y ∗)×L2(Y )

+ 〈η, ξ − αANψ − f ′(φ)ψ − lcζ 〉L2(Y ∗)×L2(Y )

+ 〈∂tw + DB(u)w + νASw − KB2(ξ − lcζ , φ), v〉L2(V∗)×L2(V )

+ 〈−KB2(μ − lcθ, ψ) − (α2ψ + α3ζ )g, v〉L2(V ∗)×L2(V )

+ 〈∂tζ − lh∂tψ + B1(u, ζ − lhψ) + B1(w, θ − lhφ)

+ κAN ζ − g · w, ϑ〉L2(Y ∗)×L2(Y )

= 〈(g1, g2, g3, g4), (ψ, ξ,w, ζ )〉W∗
0×W0 ∀(ψ, ξ,w, ζ ) ∈ W0. (122)

There exists a constant c > 0 depending on ‖(φ, μ, u, θ)‖W but not on (ϕ, η, v, ϑ)

such that

‖(ϕ, η, v, ϑ)‖Q ≤ c‖(g1, g2, g3, g4)‖W∗
0
. (123)

Proof Let us note that the variational equation (122) is equivalent to the equation
A(φ, μ, u, θ)∗(ϕ, η, v, ϑ) = (g1, g2, g3, g4) inW∗

0 .Therefore, the existence, unique-
ness, and stability of the solution to the variational equation is a direct consequence
of the fact that A(φ, μ, u, θ)∗ : Q → W∗

0 is an invertible operator having a bounded
inverse. This remark follows directly from Theorem 6. Furthermore, one can take
c = ‖A(φ, μ, u, θ)−∗‖L(W∗

0 ,Q) in (123). ��
Remark 2 Suppose that (φ, μ, u, θ) ∈ V and (g1, g2, g3, g4) ∈ U∗

0 ⊂ W∗
0 . Then for

the unique solution of (122), it holds that (ϕ, η, v, ϑ) ∈ Y , and moreover, it satisfies
the variational equation posed in the space U0 instead ofW0. To be precise, in lieu of

123



Applied Mathematics & Optimization (2021) 84 (Suppl 2):S1219–S1279 S1259

the duality pairings 〈·, ·〉L2(Y ∗)×L2(Y ), we have 〈·, ·〉L2(Y 2∗)×L2(Y 2) in the first and third
terms and (·, ·)L2(X) in the second term, and 〈·, ·〉W∗

0×W0 is replaced by 〈·, ·〉U∗
0 ×U0 .

In this case, there exists a constant c > 0 depending on ‖(φ, μ, u, θ)‖V but not on
(ϕ, η, v, ϑ) such that

‖(ϕ, η, v, ϑ)‖Y ≤ c‖(g1, g2, g3, g4)‖U∗
0
. (124)

These statements follow immediately from A(φ, μ, u, θ)−∗ ∈ L(U∗
0 ,Y), see Corol-

lary 1 above.

In the following theorem, we shall write the evolution system that governs the
adjoint states under additional assumptions on (g1, g2, g3, g4). Before we proceed,
we note that AN : L2(I ; Y 3) → L2(I ; Y ) and thus for the adjoint operator we have
A∗
N : L2(I ; Y ∗) → L2(I ; Y 3∗).

Theorem 11 Let (φ, μ, u, θ) ∈ W . Suppose that the first, third, and fourth components
of (g1, g2, g3, g4) ∈ W∗

0 have the following decompositions:

g1 = g1ΩT + g1T , g3 = g3ΩT
+ g3T , g4 = g4ΩT + g4T , (125)

where the first terms satisfy the regularity conditions

g1ΩT ∈ W 2
0 (I ; Y 3,Y ∗)∗ ∩ L4/3(I ; Y 3∗),

g3ΩT
∈ W 2

0 (I ; V )∗ ∩ L4/3(I ; V ∗),
g4ΩT ∈ W 2

0 (I ; Y )∗ ∩ L4/3(I ; Y ∗),

and the second terms are defined by

〈g1T , ψ〉W 2
0 (Y 3,Y ∗)∗×W 2

0 (Y 3,Y ∗) = 〈ϕT , ψ(T )〉Y ∗×Y

〈g3T ,w〉W 2
0 (V )∗×W 2

0 (V ) = (vT ,w(T ))H

〈g4T , ζ 〉W 2
0 (Y )∗×W 2

0 (Y ) = (ϑT , ζ(T ))X ,

with ϕT ∈ Y ∗, vT ∈ H , and ϑT ∈ X. Then the solution (ϕ, η, v, ϑ) ∈ Q of (122) is
given equivalently as the weak solution of the linear system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− ∂tϕ + lh∂tϑ − B1(u, ϕ − lhϑ) − αA∗
Nη

= D f (φ)∗η + α2g · v − KB1(v, μ − lcθ) + g1ΩT in L4/3(Y 3∗),
− η = mANϕ − KB1(v, φ) − g2 in L2(I ; Y ∗),
− ∂tv + DB(u)∗v + νASv

= ϑ g − B2(ϕ, φ) − B2(ϑ, θ − lhφ) + g3ΩT
in L4/3(I ; V ∗),

− ∂tϑ − B1(u, ϑ) + KlcB1(v, φ) + κANϑ

= α3g · v + lcη + g4ΩT in L4/3(I ; Y ∗),

(126)
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with the terminal conditions

ϕ(T ) − lhϑ(T ) = ϕT in Y ∗, v(T ) = vT in H, ϑ(T ) = ϑT in X . (127)

Thus, ϕ ∈ W 4/3(I ; Y ,Y 3∗), η ∈ L2(I ; Y ∗), v ∈ W 4/3(I ; V ), and ϑ ∈ W 4/3(I ; Y ).
Furthermore, there exists C = C(‖(φ, μ, u, θ)‖W ) > 0 such that

‖ϕ‖W 4/3(Y ,Y 3∗) + ‖η‖L2(Y ∗) + ‖v‖W 4/3(V ) + ‖ϑ‖W 4/3(Y )

≤ C(‖ϕT ‖Y ∗ + ‖vT ‖H + ‖ϑT ‖X + ‖g1ΩT ‖W 2
0 (Y 3,Y ∗)∗∩L4/3(Y 3∗)

+ ‖g2‖L2(Y ∗) + ‖g3ΩT
‖W 2

0 (V )∗∩L4/3(V∗) + ‖g4ΩT ‖W 2
0 (Y )∗∩L4/3(Y ∗)). (128)

Proof We shall proceed through integration by parts and density arguments. The main
idea is to take one arbitrary component of the product spaceW0 of test functions and
the rest are set to zero. First, let us show that the solution of the variational equation
(122) satisfies (126)–(128).
Step 1. Time regularity of ϑ . Taking ϕ = 0, ξ = 0, w = 0, and ζ ∈ W 2

0 (I ; Y ) ∩
L4(I ; Y ) in (122) yields the variational equation

〈∂tζ, ϑ〉L2(Y ∗)×L2(Y ) + 〈B1(u, ζ ), ϑ〉L2(Y ∗)×L2(Y ) + κ〈AN ζ, ϑ〉L2(Y ∗)×L2(Y )

+ Klc〈B2(ζ, φ), v〉L2(V ∗)×L2(V ) − (α3g · v, ζ )L2(X) − lc〈η, ζ 〉L2(Y ∗)×L2(Y )

= 〈g4ΩT , ζ 〉L4/3(Y ∗)×L4(Y ) + (ϑT , ζ(T ))X .

From the Hölder and Gagliardo–Nirenberg inequalities, we obtain that

|〈B1(u, ζ ), ϑ〉L2(Y ∗)×L2(Y )| ≤ c‖u‖1/2L∞(H)‖u‖1/2
L2(V )

‖ϑ‖L2(Y )‖ζ‖L4(Y ).

Therefore, by duality we have

〈B1(u, ζ ), ϑ〉L2(Y ∗)×L2(Y ) = −〈B1(u, ϑ), ζ 〉L4/3(Y ∗)×L4(Y )

and ‖B1(u, ϑ)‖L4/3(Y ∗) ≤ c‖u‖W 2(V )‖ϑ‖L2(Y ). Similarly, we have

|〈B2(ζ, φ), v〉L2(V∗)×L2(V )| ≤ c‖φ‖W 2(Y 3,Y ∗)‖v‖L2(V )‖ζ‖L4(Y ).

By duality once again, this implies

〈B2(ζ, φ), v〉L2(V∗)×L2(V ) = 〈B1(v, φ), ζ 〉L4/3(Y ∗)×L4(Y )

and ‖B1(v, φ)‖L4/3(Y ∗) ≤ c‖φ‖W 2(Y 3,Y ∗)‖v‖L2(V ). As a consequence, it holds that

〈∂tζ, ϑ〉L2(Y ∗)×L2(Y ) = (ϑT , ζ(T ))X

+ 〈B1(u, ϑ) − KlcB1(v, φ) − κANϑ + α3g · v + lcη + g4ΩT , ζ 〉L4/3(Y ∗)×L4(Y ).

(129)
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Taking ζ ∈ C∞
0 (I ; Y ) in (129) shows that the fourth equation in (126) is satisfied in

the sense of vector-valued distributions and ∂tϑ ∈ L4/3(I ; Y ∗). Thus,ϑ ∈ W 4/3(I ; Y )

and we deduce that

‖∂tϑ‖L4/3(Y ∗) ≤ c(‖B1(u, ϑ)‖L4/3(Y ∗) + ‖B1(v, φ)‖L4/3(Y ∗))

+ c‖AN ζ‖L2(Y ∗) + ‖v‖L2(H) + ‖η‖L2(Y ∗) + ‖g4ΩT ‖L4/3(Y ∗))

≤ C(‖ϑ‖L2(Y ) + ‖ζ‖L2(Y ) + ‖v‖L2(V ) + ‖η‖L2(Y ∗) + ‖g4ΩT ‖L4/3(Y ∗)), (130)

where C = C(‖φ‖W 2(Y 3,Y ∗), ‖u‖W 2(V )). To prove that the terminal condition for ϑ

holds, let us note that C1( Ī ; Y ) is dense in W 4/3(I ; Y ), see [49, Lemma 7.2] for
instance, and therefore we can find a sequence {ϑk}∞k=1 ⊂ C1( Ī ; Y ) such that ϑk → ϑ

in W 4/3(I ; Y ). Hence, for every ζ ∈ C1( Ī ; Y ) such that ζ(0) = 0, we have

〈∂tζ, ϑ〉L2(Y ∗)×L2(Y ) = lim
k→∞(∂tζ, ϑk)L2(X) = lim

k→∞[(ζ(T ), ϑk(T ))X − (ζ, ∂tϑk)L2(X)]
= 〈ϑ(T ), ζ(T )〉Y ∗×Y − 〈∂tϑ, ζ 〉L4/3(Y ∗)×L4(Y ),

where in the last equationwe used the continuous embeddingW 4/3(I ; Y ) ⊂ C( Ī ; Y ∗).
Using this in (129) we obtain 〈ϑ(T )−ϑT , ζ(T )〉Y ∗×Y = 0, and since ζ(T ) can assume
any value in Y , it follows that ϑ(T ) = ϑT in X .
Step 2. Time regularity of ϕ. By taking ψ ∈ W 2

0 (I ; Y 3,Y ∗) ∩ L4(I ; Y 3), ξ = 0,
w = 0, and ζ = 0 in (122), we obtain the variational equation

〈∂tψ, ϕ − lhϑ〉L2(Y ∗)×L2(Y ) + 〈B1(u, ψ), ϕ − lhϑ〉L2(Y ∗)×L2(Y )

− 〈η, αANψ〉L2(Y ∗)×L2(Y ) − 〈η, f ′(φ)ψ〉L2(Y ∗)×L2(Y )

− K〈B2(μ − lcθ, ψ), v〉L2(V∗)×L2(V ) − (α2g · v, ψ)L2(X)

= 〈g1ΩT , ψ〉L4/3(Y 3∗)×L4(Y 3) + 〈ϕT , ψ(T )〉Y ∗×Y . (131)

Let us note that by assumptionψ ∈ L4(I ; Y )∩L2(I ; Y 3). By using a similar argument
as in the previous step, we obtain that

〈B1(u, ψ), ϕ − lhϑ〉L2(Y ∗)×L2(Y ) = −〈B1(u, ϕ − lhϑ),ψ〉L4/3(Y ∗)×L4(Y )

‖B1(u, ϕ − lhϑ)‖L4/3(Y ∗) ≤ c‖u‖W 2(V )(‖ϕ‖L2(Y ) + ‖ϑ‖L2(Y )).

For the third term in (131), we have ‖A∗
Nη‖L2(Y 3∗) ≤ c‖η‖L2(Y ∗) and

〈η, αANψ〉L2(Y ∗)×L2(Y ) = 〈αA∗
Nη,ψ〉L2(Y 3∗)×L2(Y 3).

To treat the fourth duality pairing in (131), observe that D f (φ)ψ = f ′(φ)ψ ∈
L2(I ; Y ) and

‖D f (φ)ψ‖L2(Y ) ≤ ‖(3φ2 − 1)ψ‖L2(X) + ‖(3φ2 − 1)∇ψ‖L2(X) + ‖6φψ∇φ‖L2(X)

≤ c((‖φ‖2L∞(Y ) + 1)‖ψ‖L2(Y 2) + ‖φ‖3/2L∞(Y )‖ψ‖L4(Y )‖φ‖1/2
L2(Y 2)

)
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≤ C(‖φ‖W 2(Y 3,Y ∗))‖ψ‖L4(Y 2).

This estimate implies that ‖D f (φ)∗η‖L4/3(Y 2∗) ≤ C(‖φ‖W 2(Y 3,Y ∗))‖η‖L2(Y ∗) and

〈η, f ′(φ)ψ〉L2(Y ∗)×L2(Y ) = 〈D f (φ)∗η,ψ〉L4/3(Y 2∗)×L4(Y 2).

On the other hand, substituting the equation μ − lcθ = −αΔφ + φ3 − φ in the
fifth term of (131) and then applying the Hölder inequality, Green identity, and the
estimate (16), we have

|〈B2(μ − lcθ, ψ), v〉L2(V∗)×L2(V )| ≤
∫ T

0
|(v · ∇ψ,μ − lcθ)X | dt

≤
∫ T

0
α|((∇2ψ)v,∇φ)X + α|((∇v)∇ψ,∇φ)X | + |(v · ∇ψ, φ3 − φ)X | dt

≤ c
∫ T

0
‖v‖V‖φ‖1/2Y ‖φ‖1/2

Y 2 ‖ψ‖Y 2 + (‖φ‖3Y + ‖φ‖X )‖v‖V‖ψ‖Y 2 dt

≤ c(1 + ‖φ‖1/2L∞(Y )‖φ‖1/2
L2(Y 2)

+ ‖φ‖3L∞(Y ) + ‖φ‖L∞(X))‖v‖L2(V )‖ψ‖L4(Y 2).

It follows that ‖B1(v, μ − lcθ)‖L4/3(Y 2∗) ≤ C(‖φ‖W 2(Y 3,Y ∗))‖v‖L2(V ) and by duality

〈B2(μ − lcθ, ψ), v〉L2(V∗)×L2(V ) = −〈B1(v, μ − lcθ), ψ〉L4/3(Y 2∗)×L4(Y 2).

Using the continuous embeddings L4/3(I ; Y ∗) ⊂ L4/3(I ; Y 2∗) ⊂ L4/3(I ; Y 3∗)
and L2(I ; Y 3∗) ⊂ L4/3(I ; Y 3∗), we find that

〈∂tψ, ϕ − lhϑ〉L2(Y ∗)×L2(Y ) = 〈ϕT , ψ(T )〉Y ∗×Y + 〈B1(u, ϕ − lhϑ),ψ〉L4/3(Y 3∗)×L4(Y 3)

+ 〈αA∗
Nη + D f (φ)∗η + α2g · v − KB1(v, μ − lcθ) + g1ΩT , ψ〉L4/3(Y 3∗)×L4(Y 3).

For ψ ∈ C∞
0 (I ; Y 3), this implies that the first equation in (126) holds true and ∂tϕ −

lh∂tϑ ∈ L4/3(I ; Y 3∗). Since ∂tϑ ∈ L4/3(I ; Y ∗) ⊂ L4/3(I ; Y 3∗) we have ∂tϕ ∈
L4/3(I ; Y 3∗), and hence ϕ ∈ W 4/3(I ; Y ,Y 3∗). Moreover, one has

‖∂tϕ‖L4/3(I ;Y 3∗) ≤ c(‖∂tϑ‖L4/3(Y ∗) + ‖B1(u, ϕ − lhϑ)‖L4/3(Y ∗) + ‖A∗
Nη‖L2(Y 3∗))

+ c(‖D f (φ)∗η‖L4/3(Y 2∗) + ‖v‖L2(H) + ‖B1(v, μ − lcθ)‖L4/3(Y 2∗))

+ c‖g1ΩT ‖L4/3(Y 3∗) ≤ C(‖∂tϑ‖L4/3(Y ∗) + ‖ϕ‖L2(Y ) + ‖η‖L2(Y ∗) + ‖v‖L2(V ))

+ C(‖ϑ‖L2(Y ) + ‖g1ΩT ‖L4/3(Y 3∗)) (132)

where C = C(‖φ‖W 2(Y 3,Y ∗), ‖u‖W 2(V )). Using a similar density argument as in Step
1, the terminal condition ϕ(T ) − lhϑ(T ) = ϕT is satisfied in Y ∗.
Step 3. Equation for η. If ξ ∈ L2(I ; Y ), ψ = 0, w = 0, and ζ = 0 in (122) then we
get

〈η + mANϕ − KB1(v, φ) − g2, ξ 〉L2(Y ∗)×L2(Y ) = 0.

123



Applied Mathematics & Optimization (2021) 84 (Suppl 2):S1219–S1279 S1263

Note that ‖B1(v, φ)‖L2(Y ∗) ≤ c‖v‖L2(V )‖φ‖L∞(Y ). These imply that the second equa-
tion in (126) holds and

‖η‖L2(Y ∗) ≤ C(‖φ‖W 2(Y 3,Y ∗))(‖ϕ‖L2(Y ) + ‖v‖L2(V ) + ‖g2‖L2(Y ∗)). (133)

Step 4. Time regularity of v. To prove the regularity of ∂tv, we takew ∈ W 2
0 (I ; V )∩

L4(I ; V ), ψ = 0, ξ = 0, and ζ = 0 in (122) so that

〈∂tw, v〉L2(V ∗)×L2(V ) + 〈DB(u)w + νASw, v〉L2(V∗)×L2(V )

+ 〈B1(w, φ), ϕ〉L2(Y ∗)×L2(Y ) + 〈B1(w, θ − lhφ), ϑ〉L2(Y ∗)×L2(Y )

− (ϑ g,w)L2(X) = 〈g3ΩT
,w〉L4/3(V∗)×L4(V ) + (vT ,w(T ))H .

From the Hölder and Gagliardo–Nirenberg inequalities we obtain the following

|〈DB(u)w, v〉L2(V∗)×L2(V )| ≤ c‖u‖1/2L∞(H)‖u‖1/2
L2(V )

‖v‖L2(V )‖w‖L4(V )

|〈B1(w, φ), ϕ〉L2(Y ∗)×L2(Y )| ≤ c‖φ‖L∞(Y )‖ϕ‖L2(Y )‖w‖L2(V )

|〈B1(w, θ − lhφ), ϑ〉L2(Y ∗)×L2(Y )| ≤ c(‖θ‖W 2(Y ) + ‖φ‖L∞(Y ))‖ϑ‖L2(Y )‖w‖L4(V ).

Applying duality argument once more, it follows from these estimates that

‖DB(u)∗v‖L4/3(V∗) ≤ c‖u‖W 2(V )‖v‖L2(V )

‖B2(φ, ϕ)‖L2(V∗) ≤ c‖φ‖W 2(Y 3,Y ∗)‖ϕ‖L2(Y )

‖B2(ϑ, θ − lhφ)‖L4/3(V∗) ≤ c(‖θ‖W 2(Y ) + ‖φ‖W 2(Y 3,Y ∗))‖ϑ‖L2(Y )

and moreover we have

〈DB(u)w, v〉L2(V∗)×L2(V ) = 〈DB(u)∗v,w〉L4/3(V∗)×L4(V )

〈B1(w, φ), ϕ〉L2(Y ∗)×L2(Y ) = 〈B2(ϕ, φ),w〉L2(V∗)×L2(V )

〈B1(w, θ − lhφ), ϑ〉L2(Y ∗)×L2(Y ) = 〈B2(ϑ, θ − lhφ),w〉L4/3(V∗)×L4(V ).

Taking these into account, we can now rewrite the variational equation for v accord-
ing to

〈∂tw, v〉L2(V ∗)×L2(V ) = (vT ,w(T ))H + 〈ϑ g − DB(u)∗v,w〉L4/3(V∗)×L4(V )

+ 〈−νASv − B2(ϕ, φ) − B2(ϑ, θ − lhφ) + g3ΩT
,w〉L4/3(V∗)×L4(V ).

This implies the third equation in (126), and as a consequence ∂tv ∈ L4/3(I ; V ∗).
Hence v ∈ W 4/3(I ; V ) and

‖∂tv‖L4/3(V∗) ≤ C(‖ϕ‖L2(Y ) + ‖v‖L2(V ) + ‖ϑ‖L2(Y ) + ‖g3ΩT
‖L4/3(V∗)) (134)

where C = C(‖φ‖W 2(Y 3,Y ∗), ‖u‖W 2(V ), ‖θ‖W 2(Y )). Using a similar argument as in
Step 1, one can deduce that v(T ) = vT in H .
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It remains to show the estimate (128). From the decompositions of g1, g3, g4, and
the continuity of W 2

0 (I ; Y 3,Y ∗) ⊂ C( Ī ; Y ), W 2
0 (I ; Y ) ⊂ C( Ī ; X), and W 2

0 (I ; V ) ⊂
C( Ī ; H), it follows that

‖g4‖W 2
0 (Y )∗ ≤ c(‖g4ΩT ‖W 2

0 (Y )∗ + ‖ϑT ‖X )

‖g3‖W 2
0 (V )∗ ≤ c(‖g3ΩT

‖W 2
0 (V )∗ + ‖vT ‖H )

‖g1‖W 2
0 (Y 3,Y ∗)∗ ≤ c(‖g1ΩT ‖W 2

0 (Y 3,Y ∗)∗ + ‖ϕT ‖Y ∗).

Using these estimates along with (123), (130), (132), (133), and (134), we obtain
(128).

Finally, to show that every solution of (126) also satisfies (122), one can apply
smooth test functions in (126), take the sum of the resulting equations and perform
the above steps backward by passing all derivatives to the test functions. The proof of
the theorem is now complete. ��
Remark 3 In terms of PDEs, the solution of the adjoint system (126) can be equiva-
lently characterized as the very weak solution of the following linear system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− ∂tϕ + lh∂tϑ − u · ∇(ϕ − lhϑ) + αΔη

= f ′(φ)η + α2g · v − Kv · ∇(μ − lcθ) + g1ΩT in I × Ω,

− η = −mΔϕ − Kv · ∇φ − g2 in I × Ω,

− ∂tv − (u · ∇)v + (∇u)�v − νΔv + ∇π

= ϑ g − ϕ∇φ − ϑ∇(θ − lhφ) + g3ΩT
in I × Ω,

div v = 0 in I × Ω,

− ∂tϑ − u · ∇ϑ + Klcv · ∇φ − κΔϑ = α3g · v + lcη + g4ΩT in I × Ω,

satisfying the terminal conditions ϕ(T ) = ϕT + lhϑT , v(T ) = vT , ϑ(T ) = ϑT in Ω ,
and the boundary conditions ∂nϕ = ∂nη = 0, v = 0, and ∂nθ = 0 on I × Γ in the
weak sense.

Next, we shall prove the regularity of the adjoint states by gradually considering
additional regularity on the desired data for the temperature, fluid velocity, order
parameter, and chemical potential.

Corollary 2 Let (φ, μ, u, θ) ∈ V . Suppose that (g1, g2, g3, g4) ∈ U∗
0 admits the

decompositions (125)with g1ΩT ∈ L2(I ; Y 2∗), g3ΩT
∈ L2(I ; V ∗), g4ΩT ∈ L2(I ; X),

〈g1T , ψ〉W 2
0 (Y 2)∗×W 2

0 (Y 2) = (ϕT , ψ(T ))X

〈g3T ,w〉W 2
0 (V )∗×W 2

0 (V ) = (vT ,w(T ))H

〈g4T , ζ 〉W 2
0 (X ,Y 2∗)∗×W 2

0 (X ,Y 2∗) = 〈ζ(T ), ϑT 〉Y ∗×Y

where ϕT ∈ X, vT ∈ H , and ϑT ∈ Y . Then for the solution of (126) it holds that
ϕ ∈ W 2(I ; Y 2), η ∈ L2(I ; X), v ∈ W 2(I ; V ), and ϑ ∈ W 2(I ; Y 2, X). Moreover,
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there exists C = C(‖(φ, μ, u, θ)‖V ) > 0 such that

‖ϕ‖W 2(Y 2) + ‖η‖L2(X) + ‖v‖W 2(V ) + ‖ϑ‖W 2(Y 2,X) ≤ C(‖ϕT ‖X + ‖vT ‖H

+ ‖ϑT ‖Y + ‖g1ΩT ‖L2(Y 2∗) + ‖g2‖L2(X) + ‖g3ΩT
‖L2(V∗) + ‖g4ΩT ‖L2(X)).

(135)

Proof Let us recall thatU∗
0 = W 2

0 (I ; Y 2)∗×L2(I ; X)×W 2
0 (I ; V )∗×W 2

0 (I ; X ,Y 2∗)∗.
Under the given assumptions, the solution to (122) satisfies (ϕ, η, v, ϑ) ∈ Y , see
Remark 2. Furthermore, the solution satisfies the estimate

‖ϕ‖L2(Y 2) + ‖η‖L2(X) + ‖v‖L2(V ) + ‖ϑ‖L2(Y 2) ≤ c‖(g1, g2, g3, g4)‖U∗
0

(136)

thanks to (124). Using the decompositions of g1, g3, g4, and the continuity of the
embeddings W 2

0 (I ; Y 2) ⊂ C( Ī ; X), W 2
0 (I ; V ) ⊂ C( Ī ; H), and W 2

0 (I ; X ,Y 2∗) ⊂
C( Ī ; Y ∗), we have

‖g1‖W 2
0 (Y 2)∗ ≤ c(‖g1ΩT ‖L2(Y 2∗) + ‖ϕT ‖X ) (137)

‖g3‖W 2
0 (V )∗ ≤ c(‖g3ΩT

‖L2(V ∗) + ‖vT ‖H ) (138)

‖g4‖W 2
0 (X ,Y 2∗)∗ ≤ c(‖g4ΩT ‖L2(X) + ‖ϑT ‖Y ). (139)

Observe that g1ΩT ∈ L2(I ; Y 2∗) ⊂ W 2
0 (I ; Y 3,Y ∗)∗ ∩ L4/3(I ; Y 3∗), g2 ∈

L2(I ; X) ⊂ L2(I ; Y ∗), g3ΩT
∈ L2(I ; V ∗) ⊂ W 2

0 (I ; V )∗ ∩ L4/3(I ; V ∗), and
g4ΩT ∈ L2(I ; X) ⊂ W 2

0 (I ; Y )∗ ∩ L4/3(I ; Y ∗). Hence (ϕ, η, v, ϑ) satisfies (126)
according to Theorem 11. Moreover, the term D f (φ)∗η in the first equation equation
of (126) can be replaced by f ′(φ)η.

Using the Hölder inequality, we obtain ‖B1(u, ϑ)‖L2(X) ≤ c‖u‖L∞(V )‖ϑ‖L2(Y 2)

and ‖B1(v, φ)‖L2(X) ≤ c‖φ‖W 2(Y 4,X)‖v‖L2(V ). Thus, ∂tϑ ∈ L2(I ; X) and

‖∂tϑ‖L2(X) ≤ C(‖ϑ‖L2(Y 2) + ‖v‖L2(V ) + ‖η‖L2(X) + ‖g4ΩT ‖L2(X)), (140)

where C = C(‖φ‖W 2(Y 4,X), ‖u‖W 2(V 2,H)). From the equation satisfied by η and
‖B1(v, φ)‖L2(X) ≤ c‖v‖L2(V )‖φ‖L∞(Y 2) we obtain that

‖η‖L2(X) ≤ C(‖φ‖W 2(Y 4,X))(‖ϕ‖L2(Y 2) + ‖v‖L2(V ) + ‖g2‖L2(X)). (141)

Note that ‖B1(u, ϕ − lhϑ)‖L2(X) ≤ c‖u‖L∞(V )(‖ϕ‖L2(Y 2) + ‖ϑ‖L2(Y 2)) and
‖B1(v, μ − lcθ)‖L2(Y 2∗) ≤ c‖v‖L2(V )(‖μ‖L∞(X) + ‖θ‖L∞(X)). Also, using the
continuity of the embedding L∞(I ; Y 2) ⊂ L∞(ΩT ) we get ‖ f ′(φ)‖L∞(ΩT ) ≤
c(‖φ‖2

L∞(Y 2)
+ 1). Thus, the time derivative of ϕ can be estimated as follows:

‖∂tϕ‖L2(Y 2∗) ≤ c(‖∂tϑ‖L2(Y ∗) + ‖B1(u, ϕ − lhϑ)‖L2(X) + ‖A∗
Nη‖L2(Y 2∗))

+ c(‖D f (φ)∗η‖L2(X) + ‖v‖L2(H) + ‖B1(v, μ − lcθ)‖L2(Y 2∗))
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+ c‖g1ΩT ‖L2(Y 2∗) ≤ C(‖∂tϑ‖L2(X) + ‖ϕ‖L2(Y 2) + ‖η‖L2(X))

+ C(‖v‖L2(V ) + ‖ϑ‖L2(Y 2) + ‖g1ΩT ‖L2(Y 2∗)) (142)

where C = C(‖φ‖W 2(Y 4,X), ‖μ‖W 2(Y 2), ‖u‖W 2(V ), ‖θ‖W 2(Y 2,X)).
Likewise, we also have the estimates ‖DB(u)∗v‖L2(V∗) ≤ c‖u‖L∞(V )‖v‖L2(V ),

‖B2(ϑ, θ−lhφ)‖L2(X) ≤ c‖ϑ‖L2(Y 2)(‖θ‖L∞(Y )+‖φ‖L∞(Y )), and‖B2(ϕ, φ)‖L2(X) ≤
c‖ϕ‖L2(Y )‖φ‖L∞(Y 2). As a consequence, it holds that

‖∂tv‖L2(V∗) ≤ C(‖ϕ‖L2(Y 2) + ‖v‖L2(V ) + ‖ϑ‖L2(Y 2) + ‖g3ΩT
‖L2(V∗)) (143)

where C = C(‖φ‖W 2(Y 4,X), ‖u‖W 2(V 2,H), ‖θ‖W 2(Y 2,X)). Combining the above a pri-
ori estimates from (136) to (143) yields (135). ��
Corollary 3 Consider the assumptions of Corollary 2 and in addition vT ∈ V and
g3ΩT

∈ L2(I ; X). Then the components of the weak solution to (126) satisfy ϕ ∈
W 2(I ; Y 2), η ∈ L2(I ; X), v ∈ W 2(I ; V 2, H), and ϑ ∈ W 2(I ; Y 2, X). Furthermore,
there exists C = C(‖(φ, μ, u, θ)‖V ) > 0 such that

‖ϕ‖W 2(Y 2) + ‖η‖L2(X) + ‖v‖W 2(V 2,H) + ‖ϑ‖W 2(Y 2,X) ≤ C(‖ϕT ‖X + ‖vT ‖V
+ ‖ϑT ‖Y + ‖g1ΩT ‖L2(Y 2∗) + ‖g2‖L2(X) + ‖g3ΩT

‖L2(X) + ‖g4ΩT ‖L2(X)). (144)

Proof From the previous corollary, it remains to demonstrate the regularity of v with
the given additional assumptions vT ∈ V and g3ΩT

∈ L2(I ; X). Let F3 := ϑ g −
ϕ∇φ−ϑ∇(θ −lhφ)+ g3ΩT

. Therefore, v is the weak solution to the following adjoint
equation to the linearized Navier–Stokes equation:

{
− ∂tv − (u · ∇)v + (∇u)�v + νΔv + ∇π = F3 in I × Ω,

div v = 0 in I × Ω, v = 0 on I × Γ , v(T ) = vT in V .

From ϑ ∈ W 2(I ; Y 2, X) ⊂ L∞(I ; Y ), θ ∈ L2(I ; Y 2), and φ ∈ W 2(I ; Y 4, X) ⊂
L∞(I ; Y 2), we have ϑ∇(θ − lhφ) ∈ L2(I ; X). Similarly, since ϕ ∈ L2(I ; Y 2) and
φ ∈ L∞(I ; Y 2), we deduce that ϕ∇φ ∈ L2(I ; X). Thus, F3 ∈ L2(I ; X) and

‖F3‖L2(X) ≤ C(‖ϑ‖W 2(Y 2,X) + ‖ϕ‖L2(Y ) + ‖g3ΩT
‖L2(X)),

where C = C(‖φ‖W 2(Y 4,X), ‖θ‖W 2(Y 2,X)). Applying the regularity result in [31,
Proposition 2.4] yields v ∈ W 2(I ; V 2, X) and

‖v‖W 2(V 2,H) ≤ C(‖u‖W 2(V 2,H))(‖vT ‖V + ‖F3‖L2(X)).

The previous two estimates and (135) imply the a priori estimate (144). ��
Corollary 4 Consider the assumptions of Corollary 3 and in addition g1ΩT ∈
L2(I ; Y ∗), g2 ∈ L2(I ; Y ) and ϕT ∈ Y . Then the weak solution to (126) satisfies
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ϕ ∈ W 2(I ; Y 3,Y ∗), η ∈ L2(I ; Y ), v ∈ W 2(I ; V 2, H), and ϑ ∈ W 2(I ; Y 2, X).
Furthermore, there exists C = C(‖(φ, μ, u, θ)‖V ) > 0 such that

‖ϕ‖W 2(Y 3,Y ∗) + ‖η‖L2(Y ) + ‖v‖W 2(V 2,H) + ‖ϑ‖W 2(Y 2,X) ≤ C(‖ϕT ‖Y + ‖vT ‖V
+ ‖ϑT ‖Y + ‖g1ΩT ‖L2(Y ∗) + ‖g2‖L2(Y ) + ‖g3ΩT

‖L2(X) + ‖g4ΩT ‖L2(X)).

Proof Let F1 := u ·∇(ϕ− lhϑ)+ f ′(φ)η+α2g ·v−αΔ(Kv ·∇φ+g2)−Kv ·∇(μ−
lcθ) + g1ΩT − lh∂tϑ , so that ϕ is a weak solution of the following backward-in-time
biharmonic heat equation

⎧⎪⎨
⎪⎩

− ∂tϕ + mαΔ2ϕ = F1 in I × Ω,

∂nϕ = ∂n(mΔϕ + Kv · ∇φ + g2) = 0 on I × Γ ,

ϕ(T ) = ϕT + lhϑT in Y .

We claim that v · ∇φ ∈ L2(I ; Y ). Indeed, since ∇(v · ∇φ) = (∇v)∇φ + (∇2φ)v,
we get from v ∈ L∞(I ; V ) ∩ L2(I ; V 2) and φ ∈ L∞(I ; Y 2) that

‖v · ∇φ‖L2(Y ) ≤ c(‖v‖L∞(V )‖φ‖L2(Y 2) + ‖v‖L2(V 2)‖φ‖L∞(Y 2)).

It can be also shown that the other terms in F1 lies in L2(I ; Y ∗). Hence, it holds that
F1 ∈ L2(I ; Y ∗) and

‖F1‖L2(Y ∗) ≤ C(‖ϕ‖L2(Y 2) + ‖η‖L2(X) + ‖v‖W 2(V 2,H)

+ ‖g2‖L2(Y ) + ‖g1ΩT ‖L2(Y ∗) + ‖ϑ‖W 2(Y 2,X))

where C = C(‖φ‖W 2(Y 4,X), ‖u‖W 2(V 2,H), ‖μ‖L2(Y 2), ‖θ‖W 2(Y 2,X)). Therefore, we

obtain that ϕ ∈ W 2(I ; Y 3,Y ∗).
Following themethods given in the linearized system, cf.Theorem6, one can deduce

that

‖ϕ‖W 2(Y 3,Y ∗) ≤ C(‖ϕT ‖Y + ‖ϑT ‖Y + ‖F1‖L2(Y ∗)).

From this we also get that η ∈ L2(I ; Y ) and

‖η‖L2(Y ) ≤ C(‖ϕ‖L2(Y 3) + ‖v‖W 2(V 2,H) + ‖g2‖L2(Y )).

Combining the above a priori estimates and the one given in the previous corollary,
we obtain the desired stability estimate as stated by the corollary. ��

6 Analysis of Optimal Control Problem

In this section we analyze the existence of solutions to the optimal control problem
(6) and characterize the necessary and sufficient conditions for optimality. Introducing
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the reduced cost functional j : Q → R by

j( y, z) := J (S( y, z), y, z) = G(S( y, z)) + γf

2

∫ T

0
‖ y‖2L2(ωf )2

dt

+ γh

2

∫ T

0
‖z‖2L2(ωh)

dt

we can equivalently write this problem as a constrained optimization on Qad:

min
( y,z)∈Qad

j( y, z). (145)

We define the set of all feasible directions at ( y, z) ∈ Qad by

Fad( y, z) := {(δ y, δz) ∈ Q : ∃ω > 0 such that ( y + εδ y, z + εδz) ∈ Qad ∀ε ∈ [0, ω]}.

The minimum requirement for the initial data and target data in order for G to be
well-defined is as follows:

(A) It holds that φd , μd , θd ∈ L2(I ; X), ψd , ξd , ζ d ∈ L2(I ; X), ud ∈ L2(I ; X),
ψ0 ∈ Y , u0, uT ∈ H , θ0, θT , φT ∈ X , and ψT ∈ X .

Theorem 12 Suppose that (A) holds. The optimization problem (145) admits a global
solution, that is, there exists ( y�, z�) ∈ Qad such that j( y�, z�) ≤ j( y, z) for every
( y, z) ∈ Qad.

Proof The proof is based on classical sequential compactness arguments in [42,56],
which we outline for the sake of the reader. Since j is bounded from below, j admits a
minimizing sequence {( yk, zk)}∞k=1 ⊂ Qad, that is, j( yk, zk) → inf( y,z)∈Qad j( y, z).
Let (φk, μk, uk, θk) = S( yk, zk). It follows that {( yk, zk)}∞k=1 is bounded in Q, and
consequently {(φk, μk, uk, θk)}∞k=1 is bounded inW by (28). Since Qad is closed and
convex, it is weakly closed, so that for a subsequence we have ( yk, zk)⇀( y�, z�) in
Q for some ( y�, z�) ∈ Qad. According to the weak-weak continuity of S in Lemma 2,
we get S( yk, zk)⇀S( y�, z�) inW .

Let (φ�, μ�, u�, θ�) = S( y�, z�). Since the map ϕ �→ ϕ(T ) from W 2(I ; Y 3,Y ∗)
into Y is continuous, we have φk(T )⇀φ�(T ) in X and ∇φk(T )⇀∇φ�(T ) in X .
Similarly, uk(T )⇀u�(T ) in H and θk(T )⇀θ�(T ) in X . Passing to the limit inferior
and using the weak lower semicontinuity of norms, we obtain

j( y�, z�) = J (S( y�, z�), y�, z�) ≤ lim inf
k→∞ J (S( yk, zk), yk, zk) = inf

( y,z)∈Qad
j( y, z).

Thus, j( y�, z�) ≤ j( y, z) for every ( y, z) ∈ Qad and this proves the existence of a
global solution to (145). ��
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6.1 First Order Optimality Condition

A control ( y�, z�) ∈ Qad is said to be a local solution to (145) if there exists a constant
ε > 0 such that j( y�, z�) ≤ j( y, z) for every ( y, z) ∈ Qad with ‖( y− y�, z−z�)‖Q <

ε. A local solution is said to be strict if there is a neighborhood for which it is only the
local solution to the reduced problem. For the action of the second derivatives, we shall
simply write D2 j( y�, z�)( y, z)2 instead of D2 j( y�, z�)(( y, z), ( y, z)) for instance.

Define the Y ∗-distributional divergence operator Div : X → Y ∗ by

〈Divφ, ψ〉Y ∗×Y := −(φ,∇ψ)X , φ ∈ X, ψ ∈ Y . (146)

One can easily see that AN = −Div∇ as a map from Y into Y ∗, and by the diver-
gence theorem that Divφ = divφ if φ ∈ Y satisfies φ · n = 0. Let us introduce
(g1, g2, g3, g4) = (g1(φ), g2(μ), g3(u), g4(θ)) ∈ W∗

0 with components defined as
follows: Given (φ, μ, u, θ) ∈ W and under the hypothesis (A), let

g2(μ) := αc(μ − μd) + δc(ANμ + Div ξd) ∈ L2(I ; Y ∗)

and g1(θ), g3(u), and g4(θ) have the decompositions (125) with

g1ΩT (φ) := αo(φ − φd) + δo(ANφ + Divψd) ∈ L2(I ; Y ∗)
g3ΩT

(u) := αf(u − ud) + δf∇ × (∇ × u) ∈ L2(I ; V ∗)
g4ΩT (θ) := αh(θ − θd) + δh(AN θ + Divζ d) ∈ L2(I ; Y ∗)
〈g1T (φ), ϕ〉W 2

0 (Y 3,Y ∗)∗×W 2
0 (Y 3,Y ∗)

:= βo(φ(T ) − φT , ϕ(T ))X + ωo〈ANφ(T ) + DivψT , ϕ(T )〉Y ∗×Y

〈g3T (u),w〉W 2
0 (V )∗×W 2

0 (V ) := βf(u(T ) − uT ,w(T ))H

〈g4T (θ), ζ 〉W 2
0 (Y )∗×W 2

0 (Y ) := βh(θ(T ) − θT , ζ(T ))X .

With regards to the tracking part of J , let us note that G ∈ C∞(W,R), and for
(φ, μ, u, θ) ∈ W and (ψ, ξ,w, ζ ) ∈ W0 we have

DG(φ, μ, u, θ)(ψ, ξ,w, ζ ) = 〈(g1(φ), g2(μ), g3(u), g4(θ)), (ψ, ξ,w, ζ )〉W∗
0×W0 .

(147)

The action of the second derivative is given by

D2G(φ, μ, u, θ)(ψ, ξ,w, ζ )2 = βo‖ψ(T )‖2X + ωo‖∇ψ(T )‖2X
+ βf‖w(T )‖2H + βh‖ζ(T )‖2X
+

∫ T

0
αo‖ψ‖2X + δo‖∇ψ‖2X + αc‖ξ‖2X + δc‖∇ξ‖2X dt

+
∫ T

0
αf‖w‖2H + δf‖∇ × w‖2X + αh‖ζ‖2X + δh‖∇ζ‖2X dt .
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Notice that the right hand side is independent on the argument (φ, μ, u, θ), and there-
fore we simply write D2G(ψ, ξ,w, ζ )2 for the left hand side.

Lemma 3 Assume that (A) is satisfied. Then the map j : Q → R is of class C∞. Given
( y, z), (δ y, δz) ∈ Q, denote the respective solutions of the state, linearized state, and
adjoint systems by (φ, μ, u, θ) = S( y, z) ∈ W , (ψ, ξ,w, ζ ) = DS( y, z)(δ y, δz) ∈
W0, and

(ϕ, η, v, ϑ) = A(S( y, z))−∗(g1(φ), g2(μ), g3(u), g4(θ)) ∈ Q.

The first and second order derivatives of j at ( y, z) in the direction (δ y, δz) are given
by

D j( y, z)(δ y, δz) =
∫ T

0
(v + γf y, δ y)L2(ωf )2

dt +
∫ T

0
(ϑ + γhz, δz)L2(ωh)

dt (148)

D2 j( y, z)(δ y, δz)2 = D2G(ψ, ξ,w, ζ )2 −
∫ T

0
2(w · ∇ψ, ϕ)X dt

−
∫ T

0
6〈η, φψ2〉Y ∗×Y dt −

∫ T

0
2[((w · ∇)w, v)X − K(v, (ξ − lcζ )∇ψ)X ] dt

−
∫ T

0
2(w · ∇(ζ − lhψ), ϑ)X dt +

∫ T

0
γf‖δ y‖2L2(ωf )2

dt +
∫ T

0
γh‖δz‖2L2(ωh)

dt .

(149)

Proof Since G ∈ C∞(W,R) and S ∈ C∞(Q,W), it follows that j ∈ C∞(Q,R).
Let ( y, z), (δ y, δz) ∈ Q. According to the chain rule

D j( y, z)(δ y, δz) = DG(S( y, z))DS( y, z)(δ y, δz)

+
∫ T

0
γf( y, δ y)L2(ωf )2

dt +
∫ T

0
γh(z, δz)L2(ωh)

dt .

From Theorem 10 and (147), the first term on the right hand side can be written as

DG(S( y, z))DS( y, z)(δ y, δz)

= (P∗A(S( y, z))−∗(g1(φ), g2(μ), g3(u), g4(θ)), (δ y, δz))Q

=
∫ T

0
(v, δ y)L2(ωf )2

dt +
∫ T

0
(ϑ, δz)L2(ωh)

dt .

Thus (148) is verified. On the other hand, applying the chain rule once more we obtain

D2 j( y, z)(δ y, δz)2 = D2G(DS( y, z)(δ y, δz))2 + DG(S( y, z))D2S( y, z)(δ y, δz)2

+
∫ T

0
γf‖δ y‖2L2(ωf )2

dt +
∫ T

0
γh‖δz‖2L2(ωh)

dt . (150)
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The first term on the right hand side of this equation is precisely the term
D2G(ψ, ξ,w, ζ )2 in (149) since (ψ, ξ,w, ζ ) = DS( y, z)(δ y, δz). For the second
term, we apply (120) and (147) to get

DG(S( y, z))D2S( y, z)(δ y, δz)2

= −〈(g1(φ), g2(μ), g3(u), g4(θ)), A(S( y, z))−1DA(S( y, z))

(DS( y, z)(δ y, δz))2〉W∗
0×W0

= −〈DA(S( y, z))(ψ, ξ,w, ζ )2, (ϕ, η, v, ϑ)〉Q∗×Q. (151)

Comparing (119) and (120),we see that the right hand side of this equation corresponds
to the first four integrals in (149). ��

With the help of the previous lemma, one can now establish the following first order
necessary condition for local optimality.

Theorem 13 Suppose that (A) is satisfied and ( y�, z�) ∈ Qad is a local solution to the
optimization problem (145). Then

∫ T

0
(v� + γf y�, y − y�)L2(ωf )2

dt +
∫ T

0
(ϑ� + γhz

�, z − z�)L2(ωh)
dt ≥ 0 (152)

for all ( y, z) ∈ Qad, where (v�, ϑ�) ∈ W 4/3(I ; V ) × W 4/3(I ; Y ) are the last two
components of the solution for the adjoint system (126) corresponding to the source
term (g1(φ�), g2(μ�), g3(u

�), g4(θ�)) ∈ W∗
0 .

Proof If ( y�, z�) ∈ Qad is a local solution to (145) thenD j( y�, z�)( y− y�, z−z�) ≥ 0
for every ( y, z) ∈ Qad, see [42]. The variational inequality (152) now follows from
(148), while the regularity of (v�, ϑ�) is a consequence of Theorem 11. ��

From the above theorem, a local optimal solution ( y�, z�) is given equivalently as

y�(t, x) = Proj[af ,bf ](−γ −1
f v�(t, x)) a.e. (t, x) ∈ I × ωf ,

z�(t, x) = Proj[ah,bh](−γ −1
h ϑ�(t, x)) a.e. (t, x) ∈ I × ωh,

where Proj[af ,bf ] and Proj[ah,bh] are the projections onto the rectangle [af , bf ] and
the interval [ah, bh], respectively. This can be seen by taking ( y, z) in (152) to be
either (y1, y�

2, z
�), (y�

1, y2, z
�), and (y�

1, y
�
2, z) with (y1, y2, z) ∈ Qad and using

classical arguments to pass from the variational inequalities to pointwise inequal-
ities. Notice that if y�(t, x) ∈ (af , bf) then we have y�(t, x) = −γ −1

f v�(t, x),
hence v�(t, x) + γf y�(t, x) = 0. In a similar way, z�(t, z) ∈ (ah, bh) implies that
ϑ�(t, x) + γhz�(t, x) = 0.

In the unconstrained case Qad = Q and ωf = ωh = Ω , we have y� = γ −1
f v� and

z� = γ −1
h ϑ�. In this case, the regularity of (v�, ϑ�) and the optimal control ( y�, z�)

coincide. Next, let us discuss the regularity of the adjoint states beyond the assumption
(A):
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(A′) It holds that φd , μd , θd ∈ L2(I ; X), ψd , ξd , ζ d ∈ L2(I ;Y), ud ∈ L2(I ; X),
u0 ∈ V , uT ∈ H , θ0, θT ∈ Y , ψT ∈ Y , φT ∈ X , φ0 ∈ Y 2, ψd · n = ξd · n =
ζ d · n = 0 on I × Γ , and ψT · n = 0 on Γ .

Suppose that (A′) holds and consider a local solution ( y�, z�) to (145). Denote the
corresponding optimal states and adjoint states by (φ�, μ�, u�, θ�) = S( y�, z�) and

(ϕ�, η�, v�, ϑ�) = A(S( y�, z�))−∗(g1(φ�), g2(μ
�), g3(u

�), g4(θ
�)). (153)

Then (φ�, μ�, u�, θ�) ∈ V by Theorem 3 and

(ϕ�, η�, v�, ϑ�) ∈ W 2(I ; Y 2) × L2(I ; X) × W 2(I ; V ) × W 2(I ; Y 2, X)

by Corollary 2. Thus, one can replace the duality pairing 〈·, ·〉Y ∗×Y by the inner prod-
uct (·, ·)X in (149). If in addition, uT ∈ V then v� ∈ W 2(I ; V 2, H) in virtue of
Corollary 3.

Assume that (A′) is satisfied and in addition μd ∈ L2(I ; Y ), uT ∈ V , φT ∈ Y , and
ωo = δc = 0. Then we can apply Corollary 4 so that

(ϕ�, η�, v�, ϑ�) ∈ W 2(I ; Y 3,Y ∗) ∩ L2(I ; Y ) ∩ W 2(I ; V 2, H) ∩ W 2(I ; Y 2, X).

In particular, ( y�, z�) ∈ W 2(I ; V 2, H)∩W 2(I ; Y 2, X) in the unconstrained case and
ωf = ωh = Ω . Note that this is not true anymore in the constrained scenario due to
the projections. The assumption ωo = δc = 0 is imposed since we only know that
μ ∈ L2(I ; Y 2) and φ(T ) ∈ Y 2. More precisely, g2(μ) = αc(μ − μd) ∈ L2(I ; Y )

and g1T (φ) = βo(φ(T ) − φT ) ∈ Y .
Finally, under additional assumptions on the data, it is possible to establish further

regularity of the controls in the unconstrained case, cf. Theorems 4 and 5. However,
we do not pursue the details here and leave the precise formulations to the reader.

6.2 Second Order Optimality Conditions

To formulate the second order conditions, we follow [14] and consider the following
directions corresponding to the set of points where the constraints are active

As( y�) := { y ∈ L2(I ; L2(ωf)
2) : yi (t, x) ≥ 0 if y�

i (t, x) = afi ,

yi (t, x) ≤ 0 if y�
i (t, x) = bfi for a.e. (t, x) ∈ I × ωf , i = 1, 2}

As(z
�) := {z ∈ L2(I ; L2(ωh)) : z(t, x) ≥ 0 if z�(t, x) = ah,

z(t, x) ≤ 0 if z�(t, x) = bh for a.e. (t, x) ∈ I × ωh}.

From these, we define the cone of critical directions C( y�, z�) := C( y�) × C(z�) with

C( y�) := {y ∈ As( y�) : yi (t, x) = 0 if (v�
i + γf y

�
i )(t, x) �= 0

for a.e. (t, x) ∈ I × ωf , i = 1, 2}
C(z�) := {z ∈ As(z

�) : z(t, x) = 0 if (ζ � + γhz
�)(t, x) �= 0 for a.e. (t, x) ∈ I × ωh}.
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Notice that C( y�, z�) andAs( y�, z�) := As( y�) ×As(z�) are closed and convex sub-
sets of Q. From the definition of the critical cones, it follows that D j( y�, z�)( y, z) = 0
for every ( y, z) ∈ C( y�, z�).

Lemma 4 Given ( y, z) ∈ C( y�, z�), there is a sequence {( yk, zk)}∞k=1 ⊂ FQad ( y
�, z�)

∩ C( y�, z�) such that ( yk, zk) → ( y, z) in Q.

Proof We shall present the proof in the case af , bf ∈ R
2, ah, bh ∈ R, af < bf and

ah < bh. The other cases where at least one of the endpoints take an infinite value can
be dealt with analogously. Following [14], let ( y, z) ∈ C( y�, z�) and take k0 > 0 large
enough so that af+(k0+k)−1 < bf−(k0+k)−1 and ah+(k0+k)−1 < bh−(k0+k)−1

for every positive integer k. Set

Kk
f := {(t, x) ∈ I × ωf : y�(t, x) ∈ (af , af + (k0 + k)−1) ∪ (bf − (k0 + k)−1, bf)}

Kk
h := {(t, x) ∈ I × ωh : z�(t, x) ∈ (ah, ah + (k0 + k)−1) ∪ (bh − (k0 + k)−1, bh)}.

Let us define the projected functions yk := Proj[−(k0+k),k0+k]2(1−χKk
f
) y and zk :=

Proj[−(k0+k),k0+k](1 − χKk
h
)z. By construction, one can see that ( yk, zk) ∈ C( y�, z�).

Also, | yk | ≤ | y|, yk → y a.e. in I × ωf and |zk | ≤ |z|, zk → z a.e. in I × ωh.
From the Lebesgue Theorem, ( yk, zk) → ( y, z) in Q. By adapting the arguments
in [14, Theorem 3.6], it can be shown that ( y� + ρ yk, z

� + ρzk) ∈ Qad for every
0 < ρ < (k0 + k)−2, and therefore ( yk, zk) ∈ FQad for every k. ��

From this lemma, one can now establish a second order necessary optimality con-
dition.

Theorem 14 Under the assumption (A), if ( y�, z�) ∈ Qad is a local solution of (145)
then D2 j( y�, z�)( y, z)2 ≥ 0 for every ( y, z) ∈ C( y�, z�).

Proof Let ( y, z) ∈ C( y�, z�). According to Lemma4, there is a sequence {( yk, zk)}∞k=1⊂ FQad ( y
�, z�)∩C( y�, z�)with ( yk, zk) → ( y, z) in Q. For each k, there exists δk > 0

such that ( y� + ε yk, z
� + εzk) ∈ Qad for every 0 < ε < δk by feasibility of ( yk, zk).

Therefore, by Taylor’s Theorem and the fact that D j( y�, z�)( yk, zk) = 0, we have

0 ≤ j( y� + ε yk, z
� + εzk) − j( y�, z�) ≤ ε2

2
D2 j( y� + σεε yk, z

� + σεεzk)( yk, zk)
2

for some 0 < σε < 1. Dividing by ε2/2 and passing ε → 0 yield D2 j( y�, z�)( yk, zk)
2

≥ 0. Consequently, by letting k → ∞ and using the fact that D2 j( y�, z�) ∈ L(Q ×
Q,R) we obtain that D2 j( y�, z�)( y, z)2 ≥ 0. ��

Wenowdiscuss a second order sufficient condition under additional assumptions on
the initial data. Similar to the case of finite-dimensional problemswith box constraints,
the non-negativity of the Hessian on C( y�, z�) is a necessary optimality condition,
while the positive-definiteness of the Hessian on C( y�, z�) is a sufficient condition for
optimality.
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Theorem 15 Consider the assumption (A) and in addition that either (φ0, u0, θ0) ∈
Y 2 × V × Y or ωo = δc = δf = δh = βf = βh = 0. Let ( y�, z�) ∈ Qad satisfy (152)
and suppose that there exists δ > 0 such that

D2 j( y�, z�)( y, z)2 ≥ δ‖( y, z)‖2Q for all ( y, z) ∈ C( y�, z�). (154)

Then there exist ε > 0 and σ > 0 such that

j( y�, z�) + σ

2
‖( y − y�, z − z�)‖2Q ≤ j( y, z) (155)

holds for every ( y, z) ∈ Qad with ‖( y − y�, z − z�)‖Q < ε. In particular, ( y�, z�) is
a strict local solution to (145).

Proof We shall only prove the case where (φ0, u0, θ0) ∈ Y 2 ×V ×Y , while the other
alternative can be shown in a similar way. Suppose on the contrary that for every ε > 0
and σ > 0 there exists ( yε,σ , zε,σ ) ∈ Qad such that ‖( yε,σ − y�, zε,σ − z�)‖Q < ε and
j( y�, z�) + σ

2 ‖( y, z)‖2Q > j( yε,σ , zε,σ ). In particular, taking σ = 2
k and ε = 1

k for

every positive integer k, there is ( ỹk, z̃k) ∈ Qad such that ‖( ỹk − y�, z̃k − z�)‖Q < 1
k

and

j( ỹk, z̃k) < j( y�, z�) + 1

k
‖( ỹk − y�, z̃k − z�)‖2Q . (156)

Let ρk = ‖( ỹk − y�, z̃k − z�)‖Q and ( yk, zk) = ( ỹk − y�, z̃k − z�)/ρk so that
‖( yk, zk)‖Q = 1. Then there is a subsequence, still denoted by ( yk, zk), such that
( yk, zk)⇀( y, z) in Q.We claim that ( y, z) ∈ C( y�, z�). Since ( ỹk, z̃k) ∈ Qad, we have
( yk, zk) ∈ As( y�, z�). The set As( y�, z�) is closed and convex in Q, hence weakly
closed, and we have ( y, z) ∈ As( y�, z�). We will prove that in fact ( y, z) ∈ C( y�, z�).

By Taylor’s expansion, we obtain

j( ỹk, z̃k) = j( y� + ρk yk, z
� + ρk zk)

= j( y�, z�) + ρkD j( y�, z�)( yk, zk) + ρ2
k

2
D2 j( y�, z�)( yk, zk)

2 + o(ρ2
k )

(157)

where o(ρ2
k )/ρ

2
k → 0 as ρk → 0. Dividing by ρk and applying (156) we get

D j( y�, z�)( yk, zk) ≤ ρk

k
− ρk

2
D2 j( y�, z�)( yk, zk)

2 − o(ρ2
k )

ρk

≤ 1

k2
+ 1

2k
‖D2 j( y�, z�)‖L(Q×Q,R) − o(ρ2

k )

ρk
. (158)

From (148) we see that ( yk, zk)⇀( y, z) implies D j( y�, z�)( yk, zk) → D j( y�, z�)
( y, z). Passing to the limit k → ∞ in the inequality (158) yields D j( y�, z�)( y, z) ≤ 0.
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Let (φ�, μ�, u�, θ�) = S( y�, z�) and (ϕ�, η�, v�, ϑ�) be given by (153). From the
admissibility of ( ỹk, z̃k), it holds that D j( y�, z�)( yk, zk) = D j( y�, z�)( ỹk − y�, z̃k −
z�)/ρk ≥ 0, so that D j( y�, z�)( y, z) ≥ 0 after letting k → ∞. Consequently, from
(148) we have

∫ T

0
(v� + γf y�, y)L2(ωf )2

dt +
∫ T

0
(ϑ� + γhz

�, z)L2(ωh)
dt = 0. (159)

The condition (152) implies that (v�
i + γf y�

i )yi ≥ 0 for a.e. in I × ωf for i = 1, 2 and
(ϑ� + γhz�)z ≥ 0 for a.e. in I × ωh. Hence, the equation (159) is equivalent to

∫ T

0

∫
ωf

|(v�
i + γf y

�
i )yi | dx dt =

∫ T

0

∫
ωh

|(ϑ� + γhz
�)z| dx dt = 0, i = 1, 2.

Thus, if v�
i (t, x)+γf y�

i (t, x) �= 0 then yi (t, x) = 0 for a.e.(t, x) ∈ I×ωf and i = 1, 2.
Similarly, ifϑ�(t, x)+γhz�(t, x) �= 0 then z(t, x) = 0 for a.e.(t, x) ∈ I×ωh. Together
with ( y, z) ∈ As( y�, z�), we have verified the claim that ( y, z) ∈ C( y�, z�).

From (156), (157), and the fact that D j( y�, z�)( yk, zk) ≥ 0, we have

D2 j( y�, z�)( yk, zk)
2 < 2

(
1

k
− o(ρ2

k )

ρ2
k

)
. (160)

Let (ψk, ξk,wk, ζk) := DS( y�, z�)( yk, zk).According toTheorem3, (φ�, μ�, u�, θ�) ∈
V . Then it follows from Theorem 8 that {(ψk, ξk,wk, ζk)}∞k=1 is bounded in V0,
so that in particular, {(ψk(T ),wk(T ), ζk(T ))}k=1 is bounded in Y 2 × V × Y . By
further extracting a subsequence, we obtain that (ψk, ξk,wk, ζk)⇀(ψ, ξ,w, ζ ) =
DS( y�, z�)( y, z) in V0. Invoking the compact embeddings Y 2 ×V ×Y ⊂ Y × H × X
and V0 ⊂ L2(I ; Y 2) × L2(I ; Y ) × L2(I ; V ) × L2(I ; Y ), by extraction of another
subsequence, the following strong convergences hold:

(ψk, ξk,wk, ζk) → (ψ, ξ,w, ζ ) in L2(I ; Y 2) × L2(I ; Y ) × L2(I ; V ) × L2(I ; Y )

(161)

and (ψk(T ),wk(T ), ζk(T )) → (ψ(T ),w(T ), ζ(T )) in Y × H × X . These conver-
gences imply that

D2G(ψk, ξk,wk, ζk)
2 → D2G(ψ, ξ,w, ζ )2. (162)

By adapting the argument presented in Step 5 in the proof of Theorem 1, we can
deduce from the limit (161) that

∫ T

0
2(wk · ∇ψk, ϕ

�)X dt +
∫ T

0
2((wk · ∇)wk, v

�)X dt

−
∫ T

0
2K(v�, (ξk − lcζk)∇ψk)X dt +

∫ T

0
2(wk · ∇(ζk − lhψk), ϑ

�)X dt
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→
∫ T

0
2(w · ∇ψ, ϕ�)X dt +

∫ T

0
2((w · ∇)w, v�)X dt

−
∫ T

0
2K(v�, (ξ − lcζ )∇ψ)X dt +

∫ T

0
2(w · ∇(ζ − lhψ), ϑ�)X dt . (163)

On the other hand, we have φ�ψ2
k → φ�ψ2 in L2(I ; Y ) thanks to the estimate

‖φ�ψ2
k − φ�ψ2‖L2(Y ) ≤ C(‖φ�‖L∞(Y 2), ‖ψk‖L∞(Y 2), ‖ψ‖L∞(Y 2))‖ψk − ψ‖L2(Y 2)

for some positive continuous function C. Thus, we have

∫ T

0
〈η�, φ�ψ2

k 〉Y ∗×Y dt →
∫ T

0
〈η�, φ�ψ2〉Y ∗×Y dt . (164)

From (151), (163), and (164), one obtains

DG(S( y�, z�))D2S( y�, z�)( yk, zk)
2 → DG(S( y�, z�))D2S( y�, z�)( y, z)2. (165)

Passing to the limit inferior as k → ∞ in (160) and recalling (154) lead us to
δ‖( y, z)‖2Q ≤ D2 j( y�, z�)( y, z)2 ≤ 0. This is possible only if ( y, z) = (0, 0) in Q
since δ > 0. According to (150), (160), (162), and (165) we have

lim sup
k→∞

(γf‖ yk‖2L2(L2(ωf )2)
+ γh‖zk‖2L2(L2(ωh))

)

≤ lim sup
k→∞

[
2

(
1

k
− o(ρ2

k )

ρ2
k

)
− D2G(ψk, ξk,wk, ζk)

2

− DG(S( y�, z�))D2S( y�, z�)( yk, zk)
2
]

= − D2G(DS( y�, z�)( y, z))2 − DG(S( y�, z�))D2S( y�, z�)( y, z)2 = 0.

Since γf > 0 and γh > 0 we have ‖( yk, zk)‖Q → 0. Combined with ( yk, zk)⇀(0, 0)
in Q, we have ( yk, zk) → (0, 0) in Q. However, this is a contradiction to the fact that
‖( yk, zk)‖Q = 1 for every k. Therefore, (155) must be true and this completes the
proof of the theorem. ��
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48. Rajagopal, K.R., Røužička, M., Srinivasa, A.R.: On the Oberbeck-Boussinesq approximation. Math.

Models Methods Appl. Sci. 6, 1157–1167 (1996)
49. Roubíc̆ek, T.: Nonlinear Partial Differential Equations with Applications. Birkhäuser, Basel (2013)
50. Rubinstein, L.I.: The Stefan Problem, vol. 27. American Mathematical Society, Providence (1986)
51. Simon, J.: Compact sets in L p(0, T ; B). Ann. Mat. Pur. Appl. 146, 65–96 (1987)
52. Sohr, H.: The Navier-Stokes Equations: An Elementary Functional Analytic Approach. Birkhäuser,

Berlin (2001)
53. Sprekels, J., Zheng, S.: Optimal control problems for a thermodynamically consistent model of phase-

field type for phase transitions. Adv. Math. Sci. Appl. 1, 113–125 (1992)
54. Temam, R.: Navier-Stokes Equations. Theory and Numerical Analysis. AMS Chelsea Publishing,

Providence (2001)
55. Temam, R., Miranville, A.: Mathematical Modeling in Continuum Mechanics, 2nd edn. Cambridge

University Press, New York (2005)
56. Tröltzsch, F.: Optimal Control of Partial Differential Equations: Theory, Methods and Applications.

American Mathematical Society, Providence (2010)
57. Truesdell, C., Noll, W.: The Non-Linear Field Theories of Mechanics, 3rd edn. Springer, Berlin (2004)
58. Tucsnak, M., Weiss, G.: Observation and Control for Operator Semigroups. Birkhäuser, Basel (2009)
59. Wachsmuth, D.: Optimal Control of the Unsteady Navier-Stokes Equations. PhD thesis, Technischen

Universität Berlin (2006)
60. Zeidler, E.: Nonlinear Functional Analysis and its Applications, vol. I. Springer, New York (1986)
61. Zhao, K.: Global regularity for a coupled Cahn-Hilliard-Boussinesq system on bounded domains. Q.

Appl. Math. 69, 331–356 (2011)

123



Applied Mathematics & Optimization (2021) 84 (Suppl 2):S1219–S1279 S1279

62. Zhao, X.P., Liu, C.C.: Optimal control problem for viscous Cahn-Hilliard equation. Nonlinear Anal.
74, 6348–6357 (2011)

63. Zhao, X.P., Liu, C.C.: Optimal control of the convective Cahn-Hilliard equation. Appl. Anal. 92,
1028–1045 (2013)

64. Zhao, X.P., Liu, C.C.: Optimal control for the convective Cahn-Hilliard equation in 2D case. Appl.
Math. Optim. 70, 61–82 (2014)

65. Zhou, Y., Fan, J.: Blow-up criteria of smooth solutions for the Cahn-Hilliard-Boussinesq system with
zero viscosity in a bounded domain. Abstr. Appl. Anal. 802876 (2012)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Distributed Optimal Control of the 2D Cahn–Hilliard–Oberbeck–Boussinesq System for Nonisothermal Viscous Two-Phase Flows
	Abstract
	1 Introduction
	2 Preliminaries
	3 Analysis of the State Equation
	3.1 Analysis of State Equation
	3.2 Regularity of Solutions

	4 Linearized System and Differentiability of the Solution Operator
	4.1 Linearized State Equation
	4.2 Differentiability of the Control-to-State Map

	5 The Adjoint System
	6 Analysis of Optimal Control Problem
	6.1 First Order Optimality Condition
	6.2 Second Order Optimality Conditions

	Acknowledgements
	References




