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Abstract

We analyze a distributed optimal control problem where the state equation is governed
by the coupling of the two-dimensional Cahn—Hilliard and Oberbeck—Boussinesq sys-
tems modelling incompressible viscous two-phase flows with convective heat transfer.
Pointwise constraints are imposed on the controls that act as external sources in the fluid
and convection—diffusion equations. The objective functional is of tracking-type that
consists of a weighted energy of the difference between the state and a desired target.
We establish the existence of optimal controls, the differentiability of the control-to-
state operator, and the necessary and sufficient optimality conditions. For initial and
target data with finite energy norms, limited space—time regularity of the adjoint states
arises due to convection and surface tension.
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1 Introduction

Phase-field models aim to provide quantitative and qualitative descriptions for the
dynamics of multiphase flows and phase transitions such as solidification, segrega-
tion, crystallization, and precipitation to name a few. One of the classical problems
is to determine both the reduced temperature and the interface or boundary separat-
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ing two bulk phases, often called the Stefan problem [50]. In this formulation, the
interface is defined as the level set of temperature at some critical value. For example,
the equilibrium melting temperature in solidification processes. The phases are then
characterized by the sign difference of the temperatures.

In [9], Caginalp proposed an approach to the above free boundary value problem
by using mean field theories from statistical mechanics and condensed matter physics.
Starting with the enthalpy or H-method in [46] that combines the heat and latent heat
as a single equation, the method is to replace the step phase function, also called the
order parameter or concentration, by a continuous one. In the evolutionary case, the
rate of change of the order parameter must be proportional to the minimizer of a free
energy functional, an extension of the Landau—Ginzburg theory for equilibrium phase
transitions. When the difference between the chemical potentials of the phases is also
taken into account, one has the Cahn—Hilliard equation for spinodal decomposition
[11,12]. The asymptotic analysis in [10] showed that this equation can be obtained
from the phase-field system when the latent heat vanishes. Other recent developments
in the field include hydrodynamic properties for which the Navier—Stokes equation
is used to model the mean velocity [4,15,27,33], stress diffusion for non-Newtonian
fluids [16], and Cattaneo—Maxwell law for finite speed heat propagation in place of
the usual Fourier law of heat conduction [3].

In this paper, we study a distributed optimal control problem governed by a
Cahn-Hilliard-Oberbeck—Boussinesq phase-field system describing the dynamics of
a binary viscous and incompressible fluid mixture incorporating thermal effects. For
the sake of the reader, we shall outline the essential parts of the model formula-
tion. Further details on the modelling aspect and other related papers are referred to
[7,15,16,27,35,47,48] and the references therein.

Let T > 0 be a fixed final time and 2 C R? be the region occupied by the binary
mixture. For technical reasons, we assume that £2 is an open, connected, and bounded
domain that is either of class C? or convex polygonal with boundary I". Denote by
u: (0, 7T) x 2 — R? the mean velocity of the fluid mixture, p : (0,7) — R
the pressure, 0 : (0,7) x 2 — R the relative temperature around some critical
value 6., and ¢ : (0, T) x £2 — R the order parameter or concentration describing
the normalized fractional part of one fluid in the mixture. We consider without loss
of generality that 6. = 0. Typically, ¢ = 1 represents one phase while ¢p = —1
designates the other phase.

Following [9,46], let us introduce the function H (0, ¢) := 6 — ly¢, where I, > 0
is a constant related to the latent heat and ¢ be the heat flux. Then the evolution of the
temperature is governed by the equation

pocpDH(O, ¢) +divg = apg - u + s,

where D; = 9; +u - V denotes the material derivative, py the reference density, ¢, the
specific heat at constant pressure, and s an external heat source or sink. The second
term on the right hand side expresses linearized adiabatic effects at some reference
temperature, where g is the gravitational constant, see also [36] and [55, Sect. 9.3] in
the context of the Benard problem. Assuming Fourier’s law of thermal conduction, the
heat flux can be expressed as ¢ = —«k'V0, where k > 0 is the thermal conductivity,
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and one obtains the convection—diffusion equation
Pocpl0:0 — Ih0,p +u - V(O — Ih¢)] — kA0 =apg -u +s. (1
From the mass conservation law, the evolution of the order parameter is given by
poDi¢p +divj =0

where j is the mass flux. A typical assumptionis Fick’slaw j = —mVu, wherem > 0
is the diffusive mobility and u : (0, T') x £2 — R s the chemical potential. The Cahn—
Hilliard description for the chemical potential 1 is a minimizer to the following Gibbs
free energy incorporating the temperature

66.0) = [ (5190P + F(@) +109) dx,
2

where [, > 0is aconstant related to the latent heat, see [15,38,39,47] for instance. Here,
the parameter « > 0 characterizes the thickness of the boundary layer or interface
that separates the two phases. In this work, we take the Ginzburg—Landau—Wilson free
energy functional corresponding to the double-well potential F(¢) := %(1 — 22
This is an approximation of the logarithmic-type potential in [21]. Taking formally the
variational derivative of G with respect to ¢ and under suitable boundary conditions,
one obtains the following Cahn—Hilliard equation with temperature:

po(Bi¢p +u - Vo) =mAp 2)
1= 3G, 0) = —aAp + ¢ — ¢ + 6. 3)

Ignoring the latent heat and without convection (I = 0 and u = 0), these equations
reduce to the standard Cahn—Hilliard model for non-equilibrium phase separation.
The description of the mean velocity starts with the momentum balance equation

poDiu — divT = pol(¢,0)g + f.

Here, T is the stress tensor, pol(¢, 0) := po(o1 + a2¢ + «36) having the constant
parameters o1, oz, and «3 is the linearized equation of state, and f is an external
body force, see [35, Chap. 8] for instance. By assuming that the relative momentum
and kinetic energy of each phase is small compared to net fluid flow, the stress tensor
can be written as a sum T = Ty + T of two second-order tensors [27]. The first
component T'¢s = v(Vu + VuT) — pl is the classical Cauchy stress tensor for New-
tonian incompressible viscous fluids, with v > 0 the kinematic viscosity and I the
identity tensor, while the other component 7'y = ICot(% Vo2 I — V¢ ® V) accounts
for the capillary forces due to surface tension, where U > 0 is the capillarity stress
coefficient. Such formulation already appeared in the work of Korteweg for gradient
fluids where the density is utilized instead of the concentration [57, Sect. 124].
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From the equation of the chemical potential in (3), we have the identity
o 2 .
Kp —1.0)Vp = KV (5|V¢>| + F(d))) — Ko div (Ve @ Vo).

Bysetting p :=p —i—IC(% |V|%+ F(¢)), the above considerations lead to the following
modified incompressible Navier—Stokes equation

poldiu + (u - Vyu] —vAu +Vp = K(u —10)V + pol(p,0)g + f (4
divae = 0. (5

Neglecting the gravitational force and the latent heat (g = 0 and /. = 0) in (2)-(5), we
end up with the coupled Cahn—Hilliard—Navier—Stokes system in [27]. On the other
hand, without surface tension (XC = 0) and ignoring the latent heat (/;, = 0), equations
(1), (4) and (5) comprise the Oberbeck—Boussinesq system [7,45] in thermohydraulics.
Now for simplicity of exposition, we set pg, ¢p and g all equal to 1, and assume that
the remaining parameters appearing in (1)—(4) to be constant.

The present paper is devoted to the study of a nonlinear infinite-dimensional opti-
mization problem:

min  J(¢, u,u,0,y,2), (6)
(¥,2)€Qad

where the objective function J is given by

J(@,n,u,0,y,z2)

v [T wm [T
= G(¢,/L,u,9)+—/ / |y(t,x)|2dxdt+—/ f lz(t, x)|* dx dr.
2 0 Jox 2 0 Jwn

Here, y and z are the controls that act as external body force and heat source on
certain parts of the domain, respectively. The quadruple (¢, u, u, 0) is a suitable
weak solution of the two-dimensional coupled Cahn—Hilliard—Oberbeck—Boussinesq
system (1)—(5). More precisely, the equation of the state with the application of the
controls is governed by the system

o +u-Vo —mAu =0

p=—aAp+¢* —p+10

du+ (u-Viu—vAu+Vp =K(u —1.0)Vp + £(d,0)8 + Xor Yy (7
divu =0

0:0 —hoip+u-V(O —lng) — kA0 =g - u + X2

in (0, T') x £2, and supplied with the initial conditions

¢(0) = ¢o, u(0) =uop, 6(0)=6 inL. ®)
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The set Q,q of admissible controls and the tracking-type functional G will be discussed
in detail below. In (6), yr > 0 and y, > 0 are Tikhonov regularization parameters,
the control regions wy and wy are nonempty open subsets of £2, and yx,, denotes the
characteristic function of a set w C £2 in (7).

The boundary conditions that we are interested in are the following:

I =dnAp =0, u=0, 3,06=0, on(0,T)xT, ©)

where n is the unit normal vector outward to I" and 9,4 = V& - n is the derivative of a
function 4 in the direction of n. The second condition is the no-slip boundary condition
for the fluid, while the third equation imposes that there is no heat flux through the
boundary. On the other hand, the first condition requires that locally the interface is
orthogonal to the boundary and there is no diffusion across it.

The set of admissible controls Q,q C Q = L?((0, T); L*(wr)?) x L?((0, T);
L%(wp)) in (6) is defined by

Qaa :={(y.2) € Q:ar <y <brae. (0,T) x wf, an <z <bpae. (0,T) x wp},
where a¢ = (af1, ar2), by = (br1, bp2), —00 < ap < by < oo and —o0 < af; <
bgi < oo fori = 1, 2. Here and throughout the rest of the paper, “a.e.” stands for the
measure-theoretic terminology almost everywhere. For vectors and functions, the usual
notation for order relations in R are to be understood componentwise and pointwise,

respectively.
Let us define the modified Ginzburg—Landau free energy functional

E@(1),0()) = %fﬂaww,xnz + %(1 — ¢, 1)) + 1|0, x)| dx.

Formal calculations lead us to the following energy identity for the solutions of the
system (7)—(9):

t
E(¢(t),u(t),0(t))+// TV (s, )12 + —— | Vals, 02 + V6 (s, x)2 ds dx
0J2 lC ICIL lh
teo
=E(¢(0>,u(0>,9<0>)+f0/9 L9 5.0, 005, 18 + g ()35 0] (s, x) e ds
feo
+// —[g - uls, x) + Xo, (X)2(s, x)]10(s, x) dx ds
0Je h

for every ¢ € [0, T], where E denotes the total energy of the system given by

1

1 _ 1
E@0), u(),0(1) = 5(1—5(¢<r>,lh ”20(r>)+/glc—l|u<r,x)|2dx). (10)

Indeed, this energy identity can be derived by using the test functions [ Y, Io 130,
(Kl)"'u, and Ly 19 in (7), see also Sect. 3. Ignoring gravitational effects and without

the controls, we see that the energy decreases through time due to diffusion in the fluid,
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heat, and chemical potential. Moreover, for each ¢ € [0, T] we have the conservation
law

1 1
ﬁfgqb(t,x)dt= @/Q%(x)dx,

where |£2] is the Lebesgue measure of §2. This follows by integrating the first equation
in (7), using the divergence theorem, and invoking the boundary conditions (9) and as
well as

dnpt = —aduAd + 3% — 1)dpd + 10,0 =0 on (0, T) x T,

at least for sufficiently smooth solutions.

We consider a cost functional G that incorporates various goals of steering at least
one of the velocity, vorticity, temperature, order parameter, chemical potential and as
well as their fluxes to a given set of desired targets. More precisely, the objective G is
suppose to be separable in the sense that

G(¢, u,u,0) = Gi(p) + Ga(n) + G3(u) + G4(9), (11)

where the terms on the right hand side are given by

1 T
Gi(¢) := 5/0 Aol — dall® + 8oV — ¥4I dt

+ %Ilqb(T) —orl* + %nwm — ¥l

1 T
Ga(w) = —/ el — pall® + 8V — & 4117 dr

2 Jo
Lt 2 2 Br 2
G3(u) == Ef atllu —ugll” + 8¢V x ul|”dt + ?Ilu(T) —url|
0
1 T 2 2 ﬂh 2
G4(9) := 5/0 anll0 — 041" + SullVO — &4 df+7||9(T)—9T|| . (12)

In (12), || - || denotes either the norm of the Lebesgue space Lz(.Q) or Lz(.Q) X LZ(.Q),
where it is suitable. The given structure of G is motivated from the energy identity
discussed above, for which the norms appearing in G are precisely those that are
involved in the energy E. Also, &, 8o, Bos ®o, ¢, ¢, Of, Of, Bt, &h, 6h, Bn € [0, 00)
are fixed nonnegative parameters, where at least one of them is nonzero in order to
have a nontrivial solution to (6). These parameters signify on which parts of the energy
are to be prioritized. The subscripts o, ¢, f, and h stand for order parameter, chemical
potential, fluid velocity, and heat. Furthermore, the functions ¢4, ¥4, 1a, &4, Ua,
04, &4, ¢T, ¥ 7, ur, and O7 are given target states, having the appropriate regularity
conditions that will be discussed precisely in Sect. 6.
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For the past decades, there are numerous contributions that deal with the analy-
sis of optimal control problems for time-dependent fluid flows with either distributed
or boundary controls: Navier—Stokes equation [1,31,59], Allen—Cahn equation [20],
Cahn-Hilliard equation [17-19,25,28,32,62—-64], Boussinesq system [1,6,34,40], cou-
pled Cahn-Hilliard—Navier—Stokes system [23,24,29,30], and phase-field systems
[41,53]. This is of course an incomplete list and we refer the reader to the literature
provided in these works. For the coupling of the Cahn—Hilliard and inviscid Boussi-
nesq systems, the global well-posedness, regularity, and blow-up criteria have been
discussed in [44,61,65], respectively.

Most of the works presented above deal with smooth enough initial data, for which
the method of transposition can be applied to successfully derive the first order nec-
essary condition characterizing the solutions of the optimal control problem. In this
paper, we shall consider initial data that are at the very least have finite energies, that
is, E(¢o, ug, 8p) < oo with E given by (10). In the case of instationary Navier—Stokes
equation with the tracking type functional G3 as defined above, this direction has been
investigated thoroughly in [31,59]. It has been shown that the time derivative of the
optimal adjoint velocity admits lower integrability compared to that of the optimal
velocity. In this case, the solutions of the state equation are not admissible test func-
tions to the adjoint system. To circumvent the difference in regularity, duality methods
were utilized.

The limited regularity stems from the convection term. Following the methods in
[31], we will also achieve this property for the solutions of (6). Due to the presence of
the order parameter flux and the chemical potential in the cost function, one can also
expect even less regularity in space for the adjoint states corresponding to these state
variables. This makes the analysis of the control problem more involved. Nevertheless,
additional regularity on the initial and desired data is expected to result in more regular
adjoint states, and we shall take advantage of this in order to establish the second order
sufficient conditions. As in [13,14], the gap between the necessary and sufficient con-
ditions is the usual one as in the context of finite-dimensional optimization problems
with box constraints.

It will be shown in terms of PDEs (see Sects. 5 and 6) that the optimal adjoint state
is either an appropriate weak or very weak solution, depending on the regularity of
the data, of the following system that is posed backward in time:

— 00 + 1400 —u-V(p — W) +aAn

= fi (P +o2g-v—Kv-V(u—10) + ao(® — ¢pa) — 8oDiV(V) — ¥ry)
—n=-mAp —Kv -V —ac( — pa) + Div(Vie — &)
—0v—(u-V)v+ (Vu)Tv —vAv+ Vr

=0g — 9oV —0V(O — ) +ar(u —uy) + 6tV x (V X u)

dive =0

— 00 —u- VO +Klev - Vo — K AD

=a3g v+ Lln+an@ —0g) — nDiv(VE — &)
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in (0, T) x £2, with the boundary conditions d,¢ = d,n = 0, v = 0, 3,89 = 0 on
(0, T) x I', and the terminal conditions

o(T) — W (T) = Bo(@(T) — ¢7) — woDIV(VY(T) —¥7)  in£2,
o(T) = Br(T) —ur), 9(T)=pn@()—0r) inL2.

Here, Div is an extension of the distributional divergence with test functions in the
Sobolev space H L(£2), see (146) for the precise definition. The curl of a vector-valued
function u = (uy, uz) is given by V x u = 9dy,u1 — 0y, u2, while the curl of a scalar-
valued function % is defined by V x h := (—09y,h, 9y, h), provided that the derivatives
exist, see [59]. The above linear system can be readily obtained by a formal Lagrangian
approach. Such a formalism will be justified rigorously in this paper. We would like to
point out that a first step towards the development of efficient gradient-based numerical
schemes for the approximation of the controls is by identifying a dual problem to the
state equation.

The plan of the paper is as follows: In Sect. 2, we recall the relevant function spaces
and operators involved in the weak formulation of (7)—(9) and write the equivalent
evolution equations in suitable Bochner spaces. The well-posedness of the state, lin-
earized state, and adjoint systems are the concerns of Sects. 3, 4, and 5, respectively.
Finally, we discuss the analysis of the optimal control problem (6), including the first
and second order necessary and sufficient optimality conditions in Sect. 6.

2 Preliminaries

Given 1 < p < ocoand s € R, L?(£2) and H*(§2) are the usual Lebesgue and
Sobolev spaces equipped with the norms denoted by || - ||z and || - || gs. A subscript
will be indicated to emphasize the space where the norm or inner product is defined.
Let H;($2) be the closure of the space C(°(£2), the set of infinitely differentiable
functions that are compactly supported in §2, with respect to the norm of H*(£2). We
refer to the classical text [2] for more details.

Let I = (0,T) be the time interval and I = [0, T] be its closure. Given a
Banach space Y with norm | - |y, C(I;Y) and LP(I;Y) are the space of con-
tinuous functions and Bochner spaces with values in ¥ endowed with the norms

lullcry == sup,cj lu@lly, lwllpoe(yr) := ess sup,cfllw(®)|ly,

T 1/p
lvllLryy == (/0 ||v(t)||’y’dt> (I <p <o00).

For each positive integer k, WP (I;Y) is the Banach space of all elements u €
LP(1I;Y) having derivatives 8tju € LP(I;Y) forevery 1 < j < k in the sense of
vector-valued distributions, and set H*(I; Y) := WX-2(I; Y). The dual of ¥ will be
denoted by Y* and (y*, y)y=«y represents the duality pairing between y* € Y* and
y € Y. For Banach spaces Y and Z, the norm of the intersection ¥ N Z will be given
by [lullynz := max{llully, [lullz}.
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In the following, all Hilbert spaces are assumed to be separable. Given 1 < p < 0o
and two Hilbert spaces Y and Z such that ¥ C Z continuously, let

WP, Y, Z):={ueL*(I;Y): du € LP(I; Z))}.
This is a Banach space with respect to the graph norm

lullwry.zy == llull2yy + 10:ullLr(2).

In the case where the larger space is the dual of Y, we simply write W”(I; Y') instead
of WP(I; Y, Y*) and |lullwr vy = llullL2¢yy + lI:ullLr v

Note that W”(I; Y, Z) C C(I; Z) continuously forevery 1 < p < 0o. In studying
the linearized and adjoint systems, the following closed subspace of W”(1; Y, Z) will
be utilized

Wl Y, Z) == {ue WP(I;Y,Z) : u(0) = 0},

and we set W' (I1;Y) := W) (I; Y, Y*). If there is another Hilbert space X such that
Y C X is compact and X C Z is continuous, then by the well-known Aubin—Lions—
Simon Lemma, the compact embedding WP (I;Y,Z) C LZ(I ; X) holds. For the
interpolation space [Y, Z];,2 between Y and Z, we have the continuous embedding

W(I;Y,Z) € CU; Y, Zh). (13)

IfY C Xisdense, then X* C Y*isalsodenseand W2(I; Y) C C(I; X) continuously.
The space of linear and bounded operators from Y into Z will be denoted by L(Y, Z).
For more details on these topics, we refer the reader to [43] and [51].

In the remaining parts of the paper, we let X := L?(2),Y := H'(£2),X := X x X
and Y := Y x Y. The classical function spaces for square-integrable and divergence-
free vector fields with the no-slip boundary condition will be denoted by

H:={ueX:divu=0in2, u-n=0on I}, V::HﬂHé(Q)z.

These are endowed with the norms ||u||g := ||#| x and ||u|ly := || Vu| xxx, respec-
tively. Then the Helmholtz decomposition X = H & VX holds and denote by
Py : X — H the orthogonal projection of X onto H. Thanks to this, one can
eliminate the pressure in the weak formulation.

We now introduce the notation for the Laplace operators associated with the system
(7). Let As : D(As) C H — H be the Stokes operator with domain D(Ag) =
VNH? (Q)2 and definedby Asu = — P g Au, see [37] in the case of convex polygonal
domains and [52, Theorem III.2.1.1] in the case of C 2_domains. The linear operator
A is a positive self-adjoint operator with compact resolvents. The norms || - || g2 g2
and ||As - || x are equivalent on D(Ag) and there exist constants cy, ¢z > 0 such that
lullg < cillully forevery u € V and |lu|ly < c2||Asulx for every u € D(Ag).
The first inequality is the Poincaré inequality while the second is a consequence of the
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equivalence just mentioned. Moreover, A g admits an extension As : V — V* that is
also linear and bounded.

The Neumann map Ay : D(Ay) C X — X is defined by Ay¢p = —A¢ with
domain D(Ay) = {¢ € H?*(£2) : dp¢ = 0 on I}, see [26] for instance. Let us extend
this definition to Ay : ¥ — Y* by (An¢, ¥)y+xy := (Vo,Vy)x for ¢, € Y.
Integrating by parts and using the density of Y in X, this extension coincides with the
earlier definition of Ay ¢ for ¢ € D(An).

Given ¢ € L'(£2), the average of ¢ over £2 is given by (¢) := |£2|" (¢, 1)x. By
the Poincaré—Wirtinger inequality, there is a constant ¢ > 0 such that

¢ —(P)llx =cllVolx VoeY. (14)

Therefore the usual norm | - ||x + ||V - ||x of the Sobolev space Y is equivalent to
[(-)] + 11V - |lx. Also note that the norm |(-)| 4 ||Ax - || x is equivalent to || - || 52 in
D(An). From the inequality [(¢)| < |£2| 1721 |l x, we obtain for a constant ¢ > 0 that

¢l g2 < c(llAdlix + lI¢llx) Vo € D(An). (15)

Let X := {¢ € X : (¢) = 0} and consider the restriction Ay : D(Ay) C X — X
of Ay to square-integrable functions with zero average, that is, A, N¢ = An¢ for
¢ € D(Ay) = D(Ay) N X. Notice that D(Ay) = D(Ay) @ R. It follows that Ay

is a positive self-adjoint operator having compact resolvents. For each ¢ € D(Ay), it
holds that

IVolly = IV(@ — (oDlly = 1¢ — (D)2 < cllAdllx (16)
for a constant ¢ > 0 independent of ¢, and consequently [|Vo|x =< cl|Ad|x.

By using Fourier spectral decompositions, the positive powers A and A’ are
well-defined for every r > 0. In this way, for » > 0 and s > 2 we shall set

= (¢ € D(An) : Ang € DAY %)), V= DAY,
where X?\, := [ is the identity operator in X. Particular cases are V! = V, Y2 =
D(Ay) and Y* = D(A}).If ¢ € Y* forans > 3, then (Ay¢) = O by Green’s
identity, and from (14) we get
IAglly <clVApllx V¢ €Y, [Adly <clA’llx YpeY® — (17)

We shall equip Y2, Y3 and Y* with the norms

Iplly2 := lgllx + 1Adlx, 1¥lys == 1¥lx + IVAYIx, l@lys
= llollx + 14%llx

forp € Y2, € Y3, and ¢ € Y*. These are Hilbert spaces with the inner products
associated with the given norms. The dual spaces Y** and V"™ of Y* and V" shall
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be taken with respect to the pivot spaces X and H, respectively. For further details
regarding these topics, the reader is referred to [5,52,54].

We shall often use the Sobolev embedding ¥ C LP(£2) for every 1 < p <
oo, which is valid for two-dimensional bounded Lipschitz domains 2. Also, the
Gagliardo—Nirenberg inequality

Iplle < conllgly >l Vo e ¥ (18)

and Agmon’s inequality combined with (15)

1/2 1/2
Igllze < caldlly o1y Ve € ¥ (19)

will be often utilized. The positive constants cgn and cp depend on the domain £2,
but are independent of ¢.

In situations where the context is clear, we shall adopt the common notation —A
for the operators Ag, Ay, and A ~- All throughout this paper, ¢ will denote a generic
positive constant that depends on the parameters in the state equation, the domain §2
and the terminal time 7. A subscript will be used to emphasize the dependence of
this constant. Likewise, ¢ : R¥ — (0, 00) for k > 1 will denote a generic positive
continuous function.

3 Analysis of the State Equation

In this section, we shall specify the notion of weak solutions to (7) and formulate
the equivalent abstract evolution system. First, let us define the trilinear forms arising
from the convection and surface tension terms. Let b : V x V x V — R and
r:VxY xY — Rbe defined by b(u, w,v) = (u - V)w,v)x and r (v, ¢, ¢) =
(v,9oVe)x = (v-Vo,p)x foru,w,v € V and ¢, ¢ € Y. Integrating by parts and
using the fact that elements of V are divergence-free and vanish on the boundary I,
the following identities hold:

b(u, w,v) = —bu,v,w), b, w,v)=((Vw) v,u)x, r@, ¢,9)=-r@, @, ).
In particular, b(u, w, w) = r(v, ¢, p) =0foreveryu,v,w e Vandgp € Y.

We set f(¢) := ¢> — ¢ for the nonlinear term in the equation for the chemical
potential. Let us abbreviate the weak solution space by

W= W2 Y3, Y x L2(1;Y) x WX(I; V) x W2(1; Y).
For now, we shall ignore the characteristic functions appearing on (7).

Definition1 Let y € L2(I; V*),z € L>(I;Y*), ¢op € Y, uo € H,and 6y € X. A
quadruple (¢, u, u, 0) € Wiscalled aweak solution of (7) if the following variational
equations hold:
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(019, @) yrxy +rw,¢,9) +m(Viu, Vo) x =0 Vo eV, ae.inl,
n=—alAe+ f(p)+ 10 ae.inl x 2,
(Oru, v)y*yy +b(u,u,v) +v(Vu, Vo) x« x

=Kr(w, ¢, u—1c0)+ (@, 0)g. v)x + (¥, v)y=xy YveV, ae.inl,
(000, P y*xy — 001, D)ysxy +r(m,0 —lho, V)

+x(VO, V) x = (g -u,)x + (2, ) y*xy V9 €Y, ae.inl,

(20)

as well as the initial conditions ¢ (0) = ¢g in Y, u(0) = ug in H, and 0(0) = 6y in
X.

Note that the initial conditions in the above definition are meaningful due to the
continuity of the embeddings W2(I; Y3, Y*) c C(I;Y), W>(I; V) c C(I; H), and
W2(1;Y) Cc CI; X).If (¢, u, u, 6) € Wisaweak solution of (7), then the following
energy identity is satisfied:

Vv

K
o lu()13 + Euve(s)n%( ds

t
E@@), u(t), 6(0)) +/0 21V +

L1
= E(¢o, uo, to) +/O ﬁ[(ﬁ(fﬁ(s), 0(s))g. u(s)x + (y(s), u(s))yxvlds

1
+/0 (& 1), 06)x + (2(5), 06 vyl ds

foralmostevery ¢ € [0, T], where E is given by (10). As mentioned in the introduction,
this follows by choosing the test function (¢, v, ¥) = (lc_lu(s), (KL tu(s), l;le(s))
in (20), taking the duality pairing of the second equation in (20) with ;- latqb(s) and
then integrating over [0, ¢].

3.1 Analysis of State Equation

Let us convert the variational equations (20) in the framework of Bochner spaces. To
do this, we extend the definitions of the Laplace operators defined in the preliminary
section to the time-dependent case, and for simplicity adapt the same notations. Define
the linear operators Ag : L3(I; V) — L3(I; V¥ and Ay : L3(1;Y) — L*(I; Y*)
according to (Asu)(t) := Asu(t) and (Anyp)(t) := Ano(t) forae.t € I, u €
L2(I ;V),and ¢ € L2(I ; Y). These operators are bounded, that is, they satisfy the
estimates

||ASu||L2(V*) = c||u||L2(V), ||AN¢||L2(Y*) = C||¢||L2(Y)- (21)

With regard to the terms corresponding to convection and surface tension, we
introduce the bilinear operators By : W2(I; V) x W2(I;Y) — L*(I;Y*) and
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By : L*(I;Y) x L®(I; Y) — L*(I; V*) defined respectively by

T

(Bi(u, ), @) 2(v+)x12(v) =/0 r(u(r), ¢(t), ¢(t)) ds
T

(Ba(p, ¥), v) 12v+)x12(v) 2/0 r(u(), ¥ (1), n@)de

foru € W>(I; V), v € L>(I; V), ¢ € WX (I;Y), ¥ € L®(;Y), and ¢, u €
L?(I; Y). For the convection term in the Navier—Stokes equation, let us introduce the
bilinear operator B : W2(I; V) x W2(I; V) — L*(I; V*) given by

T
<B(u, W), v>L2(V*)XL2(V) = /0 b(u(l), W(t), v(t)) dt (22)

foru,w € W2(I; V), v € L>(I; V), and set B(u) := B(u, u). These maps are
well-defined according to the Gagliardo—Nirenberg and Holder inequalities. Indeed,
we have the following:

B2 (e, Yl 2wy < cllell 2oy ¥ Iy (23)
1B1(u, P)ll L2(y+) = cllwllLoocm @l 2yy + NPl el 2ev)) (24)
1B (u, w)llp2y+) < cUllullzemllwlz2vy + lwllzeen lullz2v)) (25)

for every u,w € W2(I; V), ¢ € W?(I;Y), u € L>(1;Y), and ¥ € L®(I;Y).
The inequalities on the right hand sides of (24) and (25) are valid according to the
continuity of the embeddings W2(I; V) c L°°(I; H) and W2(1; Y) C L®(; X).

Finally, let us define f : L°°(I;Y) N L3(1; YY) — L2(1:Y) by f(¢) = @ — ¢.
Applying the Holder inequality and Sobolev embedding, there is a constant ¢ > 0
such that for every ¢ € L°°(I; Y) N L>(I; Y?)

1F @2y < cUdliecyy + 16130 I8l 202 + [llze).  (26)

The weak formulation in Definition 1 can now be written equivalently as follows:

¥+ Bi(u, ) + mAypu =0 in L*(I; Y*),
n=aANg+ f(p)+ 10 in L*(1; Y),
du+ B) +vAsu =KBy(u — 1.0, ¢) + (¢, 0)g +y inL*I; V¥, 27)
8,0 —Ind;p+Bi(u,0 —lnd) +kANO =g -u+z in L2(I; "),

¢0) =¢o inY, u©)=ug inH, 6(0) =06y in X.

Indeed, multiplying the variational equations (20) by functions in C§°([) and using
the density of the linear span of the set {x f : x € C;°(I), f € Z} in L*(I; 7),
where Z is either Y or V, we see that the equations in (27) are valid. The converse
is analogous by using smooth test functions. Take note that the second equation in
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(27) holds in L%(I;Y) according to the continuous embedding W2(I; Y3, Y% C
L®(I;Y) N L*>(I; Y?) and the estimate (26). All throughout, we shall use the more
convenient system (27) as the definition of weak solutions.

The existence of a weak solution is established by a standard spectral Galerkin
method, and we provide the details for future reference, especially in the context of
regularity of solutions, the linearized system, and the existence of optimal controls.
For the Galerkin method applied to the Navier—Stokes and the Cahn—Hilliard—Navier—
Stokes system, we refer to [8,16,54].

Let{v; }‘>O and {g; }OO , be orthonormal bases for H and X consisting of eigenfunc-

tions of Ag and Ay, respectively. Define the constant function ¢; := |£2|~'/2. Then
{o; }]=] is an orthonormal basis for X. Let H; and X be the subspaces generated by

{v; }’]‘.:1 and {@; }]]‘.=1 ,respectively, and set the orthogonal projections Py, : H — H
and Py, : X — Xy by

k

k k
Puou:=) @, v)uvj, Px,¢:=Y (b, 0)x¢; =)+ (& ¢,)x9),

foru € H and ¢ € X. Note that Py, € L(H, V) and Px, € L(Xk, Y), hence for
the adjoint operators, we have P*Hk € L(V*, Hy) and P;;k € L(Y*, Xi), where H}
and X} are identified with Hy and X, respectively.

Theorem 1 Suppose that y € L*(I; V*), z € L*(I;Y*), ¢o € Y, ug € H, and
0o € X. Then the nonlinear system (27) has a unique solution (¢, u,u,0) € W.
Furthermore, there exists a continuous function € > 0, independent of (¢, u, u, 0),
such that

(P, e, u, 0)llw =< E(ligolly luollm. 10ollx. 1y 20w+ 2l L2 y+)- (28)

In particular, € C(I;Y), u € C(I; H), and 0 € C(I; X).

Proof Let us divide the proof in several steps for ease of reading.
STEP 1. Finite-dimensional approximation. Given a fix positive integer k, let ¢ro =
Px, ¢0, uro = P g uo, 6o = Px, 00 and consider the following ansatz

k k k
$(t) =Y ajOpr, w@® =Y B, GO =) yi"Oer, (29

j=1 j=1 j=1
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where o, Bj,v; € H 1(I ) for j =1, ..., k. From the Cauchy-Lipschitz Theorem,
the nonlinear finite-dimensional system of differential equations

dx + Py, (Bi(ug, ¢) +mAyug) =0 in L2(I; Xp),
Wk =« ANk + Px, [ () + 16k in H'(I; Xp),
dur + Py, (B(ug) + vAsuy)

= Py (KBy(ui — bk i) + Lk, 0)g +y)  in L2(I; Hp),
Ok — Indrpr + Py, (B1(uk, Ok — Ingx) + k An6)

= Py, (g -ur +2) in L2(I: Xy,

(30)

with the initial conditions ¢ (0) = ¢ro, ux(0) = uyg, and 6; (0) = Gk, admits a local
solution on [ := [0, ) for some 7, € (0, T]. Moreover, ¢, i, O € HY'(I:: X3)
and u; € H'(Iy; Hy). The a priori estimates below will show that in fact we have
tr = T for every k.

STEP 2. Energy-type estimates. Integrating the first equation of (30), we have (9, ¢y (1))
= 0, and hence the conservation property (¢x (1)) = {(¢r0) = (Px,¢0) = (¢o) for
every t € I;. On the other hand, taking the inner product of the said equation with
17wy in X yields

1 m 1
— @B, 1) x + —IViely = ——r @i, de, i) (1)
le e le

Likewise, taking the inner product of the second equation of (30) with [ 1 0 in X
leads to

(i 9 pi)x = 5~ — | IVollx + 511 =il ) + Gk d:di)x.  (32)
le 2l dt 2

Combining (31) and (32), and using the fact that (¢ ) is constant on I, we get

1

1 IVl +|<<z)k>|2+1||1—<z>2||2 + Vel
21, dt X 2 kX I X

1
- _l_r(uk, ks i) — (b, O x - (33)

For the inner product of the third equation of (30) and (I.50)"'uy in H, we have

Vv

2
Kis llailly

- = 2
3Kl ar el T

1 1 1
= - 3 5 _l 6 E ,0 . _ s * . 34
lcr(uk Pics g — LO) + ’Clc( (Pr, O g, ui)x + K. (Y, up)yexv. (34
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The second and third terms on the right hand side of (34) can be estimated from above
by the Cauchy—Schwarz inequality as follows:

1
—— 1y w) vy < e lugll 4 cllyl3

Kl - 2/Cl

1 1
— (e, Op) g, <c1+— 2 1613
ICICK (D1, O g ui) x| < C< + e lprlly + I 10k Iy + K. ||”k||H>

Using these estimates in (34), and then applying the Poincaré—Wirtinger inequality
(14), we obtain

R d 2
dr . - — 1.6
2Kl ar Ml 2/cz luelly < - L (ke s ik — 165)

1 1
+ec (1 + —IVerllk + l—|(¢k>|2 —— gl + ||9k||§ + ||y||2w) . (35)
C C C

Kl

Finally, taking the inner product of the fourth equation of (30) with [, 16, in X and
using the Cauchy—Schwarz inequality once more, we have the following estimate:

1

0 Vo4
2 d;” ll% + zh” il x

1
(Kl |3y + —||9k||%( + ||zk||2y*) + Drpr, O x + r(ur, ¢, ). (36)

Let us introduce the following dissipation and energy functionals defined on the
interval I

Dy = 2 —2'"||v 1% + = llukll} ||ve I3

== u

k AWA Hillx + /Clc klly + kil x

Epi= i l||V<z>k||%(+—|<¢k>| +—||1—¢£||§+ : lukll 3 + _||9k||%( :
2\l I 2, Kl

Taking the sum of (33), (35), and (36), and then integrating over [0, 7], we deduce that

t

t
Ek(r)+/0 Dk<s)ds5c(1+Ek(0>+/0 Ei(s) + 1y 13 + 12(5) 13+ ds)

for every ¢ € Ii. By the Gronwall Lemma, there is a constant ¢ > 0 independent on k
such that

179
sup Ey (1) + /0 Dy(s)ds < ce (1 + Ex(0) + 13172y + 12172+ BT

tely

We will estimate the initial energy Ej(0). First, the Sobolev embedding yields the
inequality [|1 = ¢gollx < c(1+llgrollx + llgroll). According to || P, |l ooy < 1,
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| Px.llzcx.xy < 1, and || Px,llzr,yy < 1 for every k, we have ||[¢rolly < lidolly,
luwollg < lluollm, and [[6kollx < 60l x. Thus, we obtain

Ex(0) < c(1+ llgoll3 + lidolly + lluoll 3 + 16011%)- (38)

Therefore, from (37) and (38), we deduce the following inequality after taking square
roots

lprllLoo vy + lurlloocmy + 10kl oox) + Vel 2 xy + ekl 2vy + 1VO L2(x)
<c(1+ Igolly + ligolly + llwoller + 1€0llx + ¥l 20 + Izl z2r%)  (39)
where ¢ > 0 is a constant independent on the initial data and the source terms. By
a standard continuation argument, it follows from (39) that the finite-dimensional
system (30) has a solution on the whole interval 7.
STEP 3. Additional a priori estimates. From the boundary condition d,¢r = 0 on

I x I' and Green’s identity, we have (Ay¢x) = 0 in 1. Hence, for the average of iy,
one has

(i) | = —/ | — 7] dox + —

2 / 161 dx < cClignllx + llxlly + 16 ]1x)-

1£2]
Taking the square and then integrating over /, this inequality leads to
i) 2y < el p2cxy + Bk 00 vy + 16kl 22x))- (40)

From the equation A¢; = —a ™! Px, (ux — (]5,3 + ¢ — 1.0r), we deduce that
IAGN 12 (x) < cUliillz2x) + ||¢k||im>(y) + ol 2 x) + 10kl L2(x))- (41)

On the other hand, from V (u; — d:,? + ¢ — 16) = Vi — (3¢,§ — DVer —I.VO
and the fact that ||V Py, ¢llx < ||Vl x for every ¢ € Y, we obtain the estimate

IVAlx < cIVurlix + Ioelly 1A¢llx + Vel x + VOl x)

by (16) and the Sobolev embedding. Thus, we have the inequality

IV Al 2000 < eIVl 20 + Ukl oo vy + DIAGKI 20x0) + 11 V6N 2 0x))-
(42)

Using the estimates (39)—(42) and the Poincaré—Wirtinger inequality, we see that the
sequences {¢x } 7o 1, 1k} pe s (ur) s> and {0k )22 | are bounded in the function spaces
LO°(I;Y)NL2(1; Y3, L*(1; Y), L°(I; HYNL*(I; V),and L°°(I; X)NL*(I;Y),
respectively.
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STEP 4. A priori estimates on time derivatives. Utilizing (24) and || P;‘;k o+ ys <1
for every k in the system of differential equations (30), we have

10 Picll 2 v+ < Uil ooy Pl 2cvy + Nkl Loo oy Nl 2wy + Nkl L2¢vy)

(43)
10:6kll L2¢y=) < cUl0:PrllL2 v+ + (L + llwllLoocmy) 10kl L2(y)
+ 110kl Loox) Nl L2 vy + Nukll ooy 1Nl L2y
+ Pl ooyl 2 vy + Nkl g2y + lzllp2rs)- (44)

In a similar way, from (23), (25), and ||P’;Ik | z(v* v+ < 1 forevery k, we obtain

0wkl 2(vey < (1 + (1 + llugllLoocay) lukll 2 vy + Nl 2 (x)
+ 10kl 22(x) + Ukl L2¢ry + 10kl L2 v @i oo yy + Yl L2 ve))- (45)

From Step 3 and these estimates, it follows that {¢}72,, {u}7 ., and {6;}72, are
respectively bounded in W2(1; Y3, Y®), WZ(I; V), and W2(1; Y).

STEP 5. Passage to limit. According to Steps 3 and 4, one can extract subsequences,
still denoted by the same indices for simplicity, so that in the weak and weak-star
topologies we have pg—u in L>(1; Y),

G in L1 Y),  ¢r—¢in L2(I;Y3), 8,¢x—d¢ in L2(I; Y"),
wp—uin L°(I; H), wup—uin L3I, V), dup—duin L2(I; V*),
G0 in LI X), 6p—0in L2(1;Y),  8,60—0,0 in L2(I; Y*),

for some (¢, u,u,0) € Y. By the Aubin-Lions—Simon Lemma, after extracting
possibly another subsequence, we have ¢ — ¢ in L2(I;Y?), uy — uin L2(I; H),
and 6y — 6 in L>(I; X) strongly.

Now, let us pass to the limit in (30). Since the linear terms are straightforward, it is
enough to consider the nonlinear terms. For the surface tension term, if w € L°°(/; V)
then

(B2 (ks ¢r) — Ba(p, ), w)LZ(V*)xL2(V) = (pw, VM)LZ(X) — (drw, Vﬂk)LZ(X) -0
since Vug—Vu in L2(I; X) and ¢rw — ¢w in L>(I; X). Given v € L%(I; V)
and ¢ > 0, there exists w, € L°°(I; V) such that ||v — we|[z2(yy < € by density of

L*®(I;V)in LZ(I; V). By (23) and the triangle inequality

[{(Ba(ftks dr) — Ba(i, @), v) 1252wyl
< B2k, ox) — Ba(it, @), We) p2(y+yw12(v) ]
+clllmill 2yl Prlloory + el 2y @l ) v — well 2y
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Taking the limit superior and recalling that {u}2, and {¢}p2, are bounded in
L2(I ; Y) and L°°(1; Y), respectively, there exists a constant ¢ > 0 independent on k
and ¢ such that

lim sup [(Ba(ik, Px) — Ba(ie, @), v) p2(y+)x12(vy| < ce.

k—o00

Since ¢ > Oand v € L2(I; V) are arbitrary, this implies that B, (1k, ¢r)— B2 (1, ¢)
in L2(I; V*). In the same way, replacing uy by 0y gives us B2 (0, ¢pr)—B2(0, ¢)
in L?(I; V*). The remaining trilinear terms associated to convection can be han-
dled in a similar fashion, see also [54, Lemma III.3.2], so that we have the weak
convergences B(u;)— B(u) in L2(I; V*), Bi(uy, ¢)—Bi(u, ¢) in L*(I; Y*), and
Bi(ug, 0x)— B (u, 0) in L2(I; Y*).

Using the fact that Ay pux— Ay in L2(1; Y*) and P} Yx— in L2(I; Y*) when-
ever Y — in Lz(l; Y*), we obtain that

didx + P§, (B (ur. ¢p) + mAn ) —,¢ + Bi(u, ¢) + mAyp in L*(I; Y*).

Analogous arguments allow us to pass to the weak limit in the third and fourth equations
in (30) thanks to the convergences discussed above.

For the second equation in (30), we write f(¢r) — f(¢) = (¢,§ + orp + ¢2 —
1) (¢x — @), and apply the Holder inequality and Sobolev embedding in order to obtain

1f (@) — F@ll2x) < cllidellTooy) + 1D 170y + Dlidr — Sl 20y — 0.

This implies that Py, f (@) — f(@) = Px, (f (@) — f@) + (Px, — D f($) — 0
in L*(I; X). Thus, uy — aAngx — Px, f(dx) — lebh—p — aAnd — f(¢) — Ic6 in
L3(I; X).

Next, we pass to the limit in the initial conditions. First, note that the map ¥ — ¥ (0)
is continuous from W2(I; Y3, Y*) into Y. As a consequence, ¢ (0)—¢(0) in Y, and
since ¢rog — ¢o in Y, this implies that ¢ (0) = ¢p. In a similar way, #(0) = ug in H
and 6(0) = 6y in X.

Therefore, we have verified that (¢, w, u, 0) is a solution to (27). The estimate (28)
follows by taking the limit inferior in (39)—(44) and applying the lower sequential
semicontinuity of norms in the weak and weak-star topologies. Finally, the uniqueness
of the weak solution follows from the local Lipschitz continuity of the corresponding
solution operator, see Theorem 2 below. This completes the proof of the theorem. O

Theorem 2 Given R > 0, there exists a constant cg > 0 such that for every (y;, z;) €
L2(I; V*) x L>(I; Y*) and (¢oi, uoi, 60;) € Y x H x X with norms less than R for
i=1,2,

(@1, per, wr, 61) — (@2, 2, uz, 02) lyy < cr(lldo1 — do2lly
+ lluor —uo2llg + 1601 — Oo2llx + 1y — ¥2llz2qvey + Izt — 220l 2 (v+))

where (¢, i, ui, 0;) € W is the solution of (27) with source term (y;, z;) and initial
data (¢o;, woi, 6o;) fori =1,2.
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Proof The proof is similar to that of the linearized system provided in Theorem 6. We
shall skip the details to avoid repetition. O

3.2 Regularity of Solutions

For the remaining part of this section, we will establish the existence of more regular
solutions to the state equation. The following theorem deals with improved regularity
of the solution to (27) under additional assumptions on the data and the source terms.
Let us define the following strong solution space

V= WX Y4, X) x W2(I; Y?) x W2(I; V2, H) x W(I; Y2, X).

Theorem 3 Suppose that y € L*(I: X), z € L*(I: X), ¢o € Y2 uy € V, and
6o € Y. Then the solution of (27) satisfy (¢, i, u,0) € V, and there exists a unique
p € L%(I; Y /R) such that

du+ w-Vu—vAu+Vp =K(u—1.0)Vp +p,0)g+y inL*U,X).
(46)

Furthermore, there is a continuous function € > 0 such that

(P, p,w, Dlly + 1Pl 2y /ry = CIGolly2, Nmollv, 16olly 1¥llz2cx), 121122 (x))-
(47)

In particular, ¢ € C(1; Y?), p e C(I; X), u € C(I; V), and6 € C(I; Y).

Proof We proceed by deriving a priori estimates for the Galerkin approximations
(¢, Mk, Uk, Ox), constructed from the proof of Theorem 1, with respect to the norm
of V. To simplify the a priori estimates, we shall write

(o, uo, 00, ¥, 2) := Cllgolly2, llwollv, 10olly, ¥l L2(x)> 1zl L2(x))s
where € : RS — (0, 00) is a generic continuous function. From the continuity of

the embeddings Y> c Y ¢ X,V C H, L>(I; X) C L>(I; V*), and L*>(I; X) C
L*(I; Y™), the stability estimate (28) immediately implies that

P llw2ys vy + ikl L2ry + Nukllwz vy + 10llw2yy < €(o, o, bo, y, 2). (48)

Let us split the derivation of the a priori estimates into five steps. In the following,
¢ > 0 will be a constant whose value varies in each step.

STEP 1. L%(Y) and L*(Y?) estimates for 6. Taking the inner product with — (A —
Ih Ay ) to the fourth equation in (30) in X and applying Green’s identity, one has
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1d
5 77 1V0 = IV elk + | AGk Ik = r (s, 6k — I, A%k

— Inr (g, O — lngr, Apr) + (g - up + 2k, hAd — Abp)x.
(49)

By the Cauchy—Schwarz inequality, one can estimate the last term on the right hand
side by

(g -tk + 2k, WA — A0 x| < ell Akl + ce(lurll 3y + 1 Adll% + llzel13)-
(50)

For the trilinear terms, we apply the Holder and Gagliardo—Nirenberg inequalities to
obtain

Ir (ux, Ok — Ingi, AO)| < el ANl % + celluell3y el (V% + 11 Adk1I%)
(51)
Iy (g, O — g, Adi)| < el Abk |5 + cell Agell %
+ cellue %y a3 (VO + 11 Agel%)- (52)
Substituting (50)—(52) in (49) and choosing 6¢ = «, we get

ld 2 | K 2 2 2
EE”W" —hVrlly + E”Aekux < Kie(IVOllx + 1Agkll) + Kok, (53)

where K i := cllugllg luxlly and Ko := c(| Aill%, + lugllyy + llzl1%). Integrating

(53) over [0, ¢], and then using the triangle inequality to separate the term involving
¢, we have

t
K
IVOOI% + 5 /0 146k () 1% dT < c(IVOrolI% + Vol % + Vil x))

t
e fo K@ (V@I + 146 (D)%) + Ko (0) dr.

Using Gronwall Lemma, || Px,|lzy,y) < 1 for every k, and the estimate (48), we
obtain

IV6k | Lo x) + 1 A6kl 2x) < (o, 0. bo. 3. 2). (54)

STEP 2. L®(Y?) and L*>(Y*) estimates for ¢y. For the inner product of the first
equation in (30) with A2¢k in X, one has

1d

EE”A@(”%{ — m(Apk, AP x = —r(ur, ¢, A%Pr). (55)
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We use the Gagliardo—Nirenberg and Holder inequalities to the right hand side so that

r (e, i, A2p)| < el A%pillk + celluell gy luel3 IV x 1 Adi % (56)
Let us estimate from below the second term on the left hand side of (55). By the
chain rule, Af (¢x) = f"(@)IVox|* + f'(d) Adx = 66 |Vr|> + 37 — 1) Ady.

From the Sobolev embedding, Agmon inequality, (17), and |APx, ¢llx < [|Ag| x for
every ¢ € Y2, we get

IAPx, f @)% < cllidelFslVerlts + gl s + DI A7)
< el A%k + celduly 1 Adwlx + llgelly + DI A% (57)

Using (57), the Young inequality and the equation Auy = Py, (—« A2¢k + Af(¢r) +
[. A6), we obtain that

mo
—m(Apk, A% x > 7||A2¢k||§( — clAPx, f(@) % — cll Abkl%

= (5 —ce) 1A%k — e (UelFNAG I + I9ul + DIAGI + 146:15).
(58)

Substituting the estimates (56) and (58) in the equation (55), and then taking ¢ > 0
such that 4(c + 1) = ma, one obtains

1d mao
5 7 140k + 1A%k < Kall Agelk + cll A6k, (59)

where K3t := c(llugllg lukll3 11 Vil %+ I9e 17 11 Ai % + Iy +1). Integrate (59)
in time and then use Gronwall lemma, (48), (54), and || A¢rollx < ||A¢ollx so that

I AGkll oo x) + 1A%kl 12 (x) < €(o. uo. G0, ¥, 2). (60)
STEP 3. L2(Y?) estimate for . From (54), (57) and (60), we immediately obtain

Al 2%y < C(||A2¢k||L2(X) + 1APx, f (D)l 12 x) + 146k 2 (x))
< &(¢o, ug, 0o, y,2). (61)

STEP 4. L%°(V) and L*(V?) estimates for uy. By taking the inner product of the third
equation of (30) with — P g Auy in H, we obtain

1d 2 2
zallukllv +vllAug g = b(ui, ug, PuAuy)

— (K(uk =16V + L(dr, 0)8 +y, PaAuy)x.
(62)
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Using the Cauchy—Schwarz inequality for the second term on the right hand side
v
|Gk = 1B Vi + £ei )8 + y, PrAu)x| < 7l Auely
+ (1 + (lpelly + 10 1A% + lpellk + 161k + 1315

Also, by the Gagliardo—Nirenberg inequality, we can estimate the trilinear term as
b PyAup)| < 2 Aug)? 2 el
bk, up, P dup)| = 2l Aurly + clluclly lully-

Substitution of the previous two inequalities to (62) leads to

1d v
Mnukn% + 5||Auk||%, < cllugllg luely
+ (4 Nuelly + 1011 Adi % + Idrcllx + 166115 + Iy 15%)-

By the Gronwall Lemma and the estimates (48), (60), and |luxo|lv < ||uollv, we have

lakllLoovy + 1 Aukll 2y < (o, wo, 6o, ¥, 2)- (63)

STEP 5. Estimates on the time derivatives. The differential equation for ¢, in (30)
together with (48), (60), (61), and ||P;k lcx,x) < 1forall k yields

10: @kl 2(xy < cUllurll 2wyl AdiliLoex) + 1 ALK 2(x)) < €(o, uo, b0, ¥, 2).
(64)

On a similar note, the differential equation for 6; and the inequalities (48), (54), (63),
and (64) imply that

10: 0kl 2(xy < clledrll2(x) + NlukllLooovy 1Akl 12 x) + 1 AdkllL2(x)))
+ c(lluill 2y + llzkliz2(x)) < €(do. uo. 6o, ¥, 2)- (65)
Taking the time derivative of both sides of the second equation in (27), we obtain

that 0,y = —a Ay + Py, (3(1),% — 1)0:¢x + 1.0:6;. Hence, by Agmon’s inequality,
(48), (64) and (65), we deduce that

100t 2 v2e) < Q1 1012 ey 1Bk L20x) + 10BN L2,
< &(go. uo. 6. . 2). (66)

Lastly, using (48), (60) and (63), the time derivative of u; can be estimated from above
by

lOcukllg < c(1 + llugllLoovyll Aukll L2y + Ukl g2 vy + 10kl L2 ) 1ABk Nl Lo (x)
+ldelli2cxy + 16kl 2x) + 1Y 22(x) = €(do, uo, 6o, ¥, 2). (67)
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Getting the sum of (64)—(67), one has

lokllw2 s, x) + ek llwzy2y + lurllwz vz gy + 10wz vz, x) < E(do, uo, 0o, y, 2).

This proves that, up to a subsequence, (¢k, tk, Uk, Ok)— (¢, i, u,0) in V, and the
estimate (47) holds without the pressure term. The existence of a unique pressure
p € L>(I; Y /R) satisfying (46) and the estimate PNz, v /my = €do, uo, 0o, y, 2)
follows directly from the well-known de Rham’s Theorem, see [54, Proposition 1.2.3]
for instance. The last statement of the theorem is a consequence of the continuous
embedding (13), applied to the interpolation spaces (Y4, Xl = Y2, [Y2, YZ*]l/z =
X,[V2, Hlip=V,and [Y?, X]1p =Y. o

We close this section by establishing regularity theorems that deal with the time
derivatives of the solution. We provide a proof based on the linearization of the system.

Theorem 4 Assume that po € Y*, ug € V2, and 6y € Y2. Let z € W2(I; X, Y**) and
y € W2(I; H, V*) be such that y(0) € H. Then we have

(0, du, du, 3,0) € W2(I; Y?) x L>(I; X) x W(I; V) x W2(I; X, Y.

Proof Due to the available time derivatives of y and z, it is permissible to take the time
derivative of the finite-dimensional system satisfied by the Galerkin approximations
(¢x, 1k, Uk, Or). The derivatives then satisfy the linearized equation

A by s wie, ) (0 Py ¢ puk, 0y, 3,0k)
= (0,0, Py, 3y, Px, 9z, 3¢k (0), d;ux (0), 3,6, (0)),

where A is the Galerkin approximation of the linear operator A defined by (68)
below. More precisely, (9;¢x, 0; 1Lk, 0 Uk, 0;0x) satisfies (72), with (¢, u, u, 6) being
replaced by (¢r, (i, uk, Or). Thus, to establish the theorem, it suffices to verify that
(0:01(0), 0;uy (0), 3,01 (0)) is uniformly bounded in X x H x Y* according to Theo-
rem 7 below.

Evaluating the first equation in (30) at + = 0, and using the Holder and Agmon
inequalities

19:¢k (0)llx < lluxo - Vorollx +mllApx(O)llx = c(llmollvligolly2 + | Ani(0)]1x).

From the second equation in (30), the approximate initial chemical potential satisfies
the following inequalities

e Ollx < c(lAdrollx + 67y — drollx + 16kollx)
< c(lgolly2 + ligolly + lidollx + l160llx)
Ak O)Ix < c(lA¢rollx + 166k0I Verol* + Beig — D AGkollx + [ Abkollx)
< c(lgollys + ligoll32 + ligolly2 + l1€olly2)-
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Evaluating the third equation in (30) at t = 0, we obtain the following bound

19 ux(O)lg < c(1 + l[uollv luolly2 + lluolly2
+ (k@) lly2 + ll6olly2) ligolly + lldollx + 16ollx + 1y (O]l m)-

Finally, using the approximate convection—diffusion equation in (30), one has

19:0k () [ly+ =< c(ll0:px(0) Iy + llmollv (16olly + li¢olly))
+cllfolly + lluoll g + [1z(0)[[y+).

The last term of this inequality is valid due to the continuity of the embedding
W2(I; X, Y?*) C C(I; Y*). For the first term, note that ||3;¢x (0) |y < ¢||3;¢x(0)| x.
From these estimates, we deduce that indeed (9;¢(0), 9;ux(0), 9,6, (0)) is bounded
inX x HxY* O
Theorem 5 Suppose that pg € Y3, ug € V2, 6y € Y3, y € W2(I; H,V*), and z €
W2(I; X, Y*) where y(0) € H and z(0) € X. Thenit holds that (3;¢, d: ., d:u, 9;0) €
W.

Proof The proof is similar to the one provided in the previous theorem, but now in this
case, one utilizes Theorem 6 rather than Theorem 7. Here, we note that the Hilbert
space Y7 is endowed with the norm lgollys = ll¢ollx + [V A%¢ollx. O
4 Linearized System and Differentiability of the Solution Operator
The goal of this section is to study the linearization of (27) at a fixed element

(¢, u, w,0) € W. The corresponding solution operator of this linearization deter-
mines the directional derivative of the so-called control-to-state map.

4.1 Linearized State Equation

First, let us discuss the existence, uniqueness and stability of solutions to the linearized
system. For this purpose, we introduce the following predual space for the source terms

Q:=L*1:Y) x L*(1; Y*) x L>(I; V) x L*(I; Y).
Consider the nonlinear operator
AW — LWV, Q" xY x H x X) (68)

defined by A = (A, Ap), where the component A : W — LWV, Q) is given by

AP, u, 0)(¥, 5, w,¢)
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oY + Bi(u, ¥) + Bi(w, ) + mAy§
§— ANy — /@Y — I 69)
w+DBw)w + vAsw — K(B2(§ — I8, @) — Bo(u — 1c0, ¥)) — (o2 + a38)g
0 — oy + Bi(u,l —hhw)+ Bi(w,0 —lhp) + kAN — g - w

while the component Ag : W — LW, Y x H x X) is defined by Ao (¢, ., u, 0)(¢, &,
w, ¢) := (¥ (0), w(0), £(0)). Here, DB(u)w = B(u, w) + B(w, u) is the Frechét
derivative of B at u in the direction w, see Lemma 1 below. It is easy to see that A is
well-defined.

Theorem 6 Given (¢, u,u,0) e W, (s, 0, y,z) € QF and (¢g, wo, {o) € Y xH x X,
there exists a unique (Y, &, w, &) € W such that

A, u,0)(, 6w, 8) = (5,0, ¥, 2, ¢o, wo, &o). (70)

Furthermore, there is a continuous function € > 0, independent of (¥, &, w, ¢), such
that

(W, & w, D) lhw = (P, . u, O)IW)I(s. 0. ¥, 2, b0, Wo, So)l| Qs xy xHxx- (T1)

Proof The proof of existence is again based on the Galerkin method. Suppose that
Wi, &k, wi, &x) € Hl(I; Xy x Xy x Hy x Xy), with components having similar
representations as in (29), is the solution of the following finite-dimensional linear
system

dvk + Py (Bi(w, yn) + Bi(wi, ¢) + mAy&) = Pys  in L*(I3 Xy),

& = a ANV + Py (f' @)¥n) + L&y + Px,0 in H'(I; Xp).

dwr + Py, (DBm)wi + vAswy)

= Py, (KBy(5 — ek, #) + KBa(1 — 10, Y1) (72)
+ Py (¥ + a380)8 + 3) in L*(I; Hy),

Ok — nd Y + Py, (Bi(u, &k — i) + Bi(wg, 0 — Ing))

+ Py, (KANG — g -we —2) =0 in L2(I; Xy),

with initial conditions ¥ (0) = Px, %o, wg(0) = Py, wo, and & (0) = Px, . In
what follows, € will denote a generic positive continuous function.
STEP 1. Estimate for . Take the test function v in the first equation of (72) so that

1d

zalllﬁkllﬁ —m (&, AYi)x = —r(Wk, @, i) + (s, Yi)yexy. (73)

Using (15) and the Agmon inequality, the terms on the right hand side can be estimated
from above according to

(s, Y yexr| < el AWl % + ce (sl + I¥ell%) (74)
(Wi, d, Yl < ell Ayl + ce IVl lwelly + Ivell%)- (75)
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For the term on the left hand side of (73), let us first estimate the L2-norm of
Px, (f ()vr) = PXk((iM)2 — D)) using the Gagliardo—Nirenberg inequality (18)
by

1Px, ('@ vl < cUlldslvelix vl + llvl3)
< el Ayl + ce (Bl + DIVl (76)

Therefore, from & = —a Ay + Px, (f' (@) V) + Ltk + Px,0, we obtain for ¢ = 1
that

€% < call Avell% + Kollvell% + c(llge — byl + o113, (77)

where Ko := c(1 + ||qb||§,). Moreover, the second term on the left hand side of (73)
can be estimated from below by

\

mo 2 / 2 2 2
—m &, AY)x > TIIAI/kaIX —c(IPx, (f @Dy + 1slx + llolly)

v

(5 = ce) 1wl = ceKoll vl = il + o 13- (78)

One can now apply the estimates (74), (75), and (78) in (73) so that for 4(c +2)e =
ma, we have

1d

mo
5 7 Vel + -l Avilk

< K1 (Wil + llwie3p) + clce — vl + sl + o 13), (79)

where K| := c(Ko + Vo |%). Here, we used [|¢¢llx < 15k — Ik llx + Il vl x.
STEP 2. Estimate for . Testing by ¢ — Ih ¥k the fourth equation in (72) leads to

1d
5 ;1% = Inillx + «lIVElF = — Ik (G, A x — r(wi, 6 — Iné, &)
+ hr(wg, 0 —he, Vi) + (8 - Wk, &k — i) x + (2, &k — i) yexy.  (80)

Using the Cauchy—Schwarz and Gagliardo—Nirenberg inequalities to the first, fourth
and fifth terms on the right hand side of the previous equation, one has

ke (Ck, AV x| < el A% + cellall% (81)
(g - wi, & — ) x| < eVl + lwily + 1gell%) (82)

K
(2, & = ) yexr| < ZIVEI + el AVl + el + Izl (83)
Similarly, for the trilinear terms on the right hand side of (80), we obtain
[Inr (i, 6 — Ined, Yio)|
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< ell Ayxllx + e (VO + IVl lwill gy + 1vel%) (84)
Ir(wi, 6 — Ing, )|

< S1VallX + Slwill + c(IVOl% + VeI (wel? + 1213).  (85)
=7 kX4kVC X Allx) Nwell gy Cllx)-

Let K» :=c(1+ || V6 |I§( + ||V¢||§(). By applying (81)—(85) in (80), taking 24e = ma,
and using the inequality ||¢kllx < &k — ¥k |lx + Il ¥k |l x once more, we obtain

L — vl + 1Vl = il = "2 a2
—_—— — — _—— w —_— —
2dt§k hkxzs“kx4kv 3 klly
< Ko(IYil% + llwiely + 1ce — mvel%) +clizl3e.  (86)
STEP 3. Estimate for wy. We test the third equation in (72) by wy so that

1d
ankn%, +vllwell} = b(wg, w, u) + Kr(wg, ¢, & — L&)

+ K(wi, Y, 0 — 1c0) + ((ca¥x + @38i) g, wi)x + (¥, wi)yrxy-
(87)

We apply the Cauchy—Schwarz inequality to the last two terms on the right hand side
I v 2 2

yowivexvl = cllwilly +cllylly- (88)

(@2 + a3t g wi)x| < cUYily + lwilg + 15 1%)- (89)

To deal with the trilinear terms, we again utilize the Gagliardo—Nirenberg, Holdér
and Young inequalities to obtain the following estimates

v
b(wy, wg, w)| < gnwknzv + cllul? lully w3 (90)
IKr (W, Vi, 1t — 10)] < ell AYrell% + ce(llly + 11013 w3 91)
V
\Kr(w, ¢, & — le&)| < gnwknzv +ell&lk +eliclly

+ ceIVOIXI1AGI w3 (92)

Substituting the estimates (88)—(92) in equation (87) yields

1d 2 v 2 2 2
EEIIWkIIH + E”wk”V —ell Ayl — elldklly

< Kae (Wil + lwillyy + 1ce — el + clige — ywlly + 1y13+) (93)

where K3 == c:€(ll¢ll vy, lullzoemn) (1 + 141K + Iwly + 1015 + lull).
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STEP 4. Estimate for V. With the test function — A in the first equation of (72),
we obtain

L Ve, VA
EE” Vil —m(VE, VAY)x
Z—V(u, Awka Wk)_r(wk,Alﬂkyd’)_(S, AWk)Y*xY‘ (94)

Applying the Holder, Gagliardo—Nirenberg and Young inequalities, the terms on the
right hand side satisfy the following inequalities

(s, Ay yexy| < ellVAYRI% + cells |1 (95)
Ir(u, A, Vi)l < el VAU + celullg lul3 Vel + 1vely)  (96)
Ir(wi, A, ) < el VAYl + llwell3 + cellpl 3 IIVo 5 lwill - (97)

By the chain rule V(' (¢)¥r) = 6pviVe + (3> — 1)V, and estimating the
L?-norm yields

IV P, (f @il % < clglsllvell7sIVols + (dlTs + DIVYlx IV AYlx)
<e|VAWIg + e (ol 1A81% + 1915 + DAVYellx + vl

Let K4 :=c(1 + ||¢||§||A¢||§( + |I¢||§). In particular, for ¢ = 1 one obtains that

IVENY < call VAV + Ka(IVYrlk + 1Wkl13) + (Ve + 1IVal%). (98)
Likewise, we have the following estimate for the term on the left hand side of (94)

—m(Vé, VAY)x = ﬂ;||VA¢k||§ — c(IVPx (f' @VOI% + IValk + IVo %)

= (5 = ce) IVAYIR — e Kall VYRl + IWal}) = c(IValk + 190 1%). (99)

Take ¢ > 0 such that 4(c 4+ 3)¢ = ma. Plugging the estimates (95), (96), (97), and
(99) in (94), we deduce by putting K5 := c(1 + Ky + llulF [uly, + 1615 1Vel%)
that

1d mo
5 g IVVlx + IV AV = cClwelly + 1Vel1%)

< Ks(IVYrlk + 1vll% + lwell3p) + clisliZ + Vo lZ)- (100)

STEP 5. Energy-type estimate. Multiplying (77) and (100) by & > 0, (98) by &> and
then taking the sum of the resulting inequalities with (79), (86), and (93) we obtain
that

1d mo . 2 mo N - 5 - )
St (T = cat = o) Al + (5 — cof) BV AR + G - olal}
2dt 8 4
. v B K - -
+20VelG + (5 — c8) lwely + (5 — & — c8?) Vel
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2 2 2 2
< Ko zEps + coz(lIsllys + llally +1yly« + lizlly,

where Egz == [Vellk + EIVYrlk + 15 — il + lwilgy and K.z = EKo +
EKs+ &2 Ka + K1 + K2 + K3e.

By a straightforward calculation, |[K¢ |11y < ¢z €((¢, 1, u, 0) ). Choose
¢ > ¢ > 0 small enough so that the coefficients on the left hand side are positive.
Thus, by applying the Gronwall Lemma, we deduce that {1 }2 ., {&k}72, {wrlpe ;.
and {¢ )22, are bounded in L>(I; Y)NL2(1; Y?), L>(1; Y), L™(I; H)NL*(1; V),
and L°°(I; X) N L3(1:Y), respectively. In fact, we have

1kl oo (vynrzrdy + Ikl L2ry + 1wkl Loo (anynrzvy + 16k — Wkl Lo x)

+ 1IVEkli2xy < €@, 1, u, D) wW)I(s, 0, ¥, 2, ¢o, Wo, o) | Q*xy x Hx X
(101)

and utilize [|&kllLexy < 16k — hvkllLox) + hllYrllLe(x) in order to bound
1¢k |l oo (x) by the right hand side of (101).

Following Step 4 in the proof of Theorem 1, and applying (21)—(25) together with
the a priori estimate (101), the norms [|0; Yk | 12 (y+)> [0 Wi |l L2(y+), and [10; i ll 2y
can be estimated from above by the right hand side of (101). This implies that (71) holds
with (Y, &, w, ¢) replaced by (Y, &k, W, ¢x). Thus, {(Yk, &, wg, ;“k)},fil is bounded
in W. Extraction of a suitable subsequence leads to a solution of (70) satisfying
(71). Finally, the uniqueness of solution follows from standard arguments, the a priori

estimate (71), and the linearity of the system (70). O

For coefficients (¢, 1, u, 8) € V, one can allow less regular source terms and initial
data in the linearized system (70). For this, one has to consider very weak solutions to
the linearized Cahn-Hilliard and convection—diffusion equations. By duality princi-
ples, this will lead to more regular solutions to the adjoint system. In this direction, we
introduce the following weaker solution space and the predual space of less regular
source terms

U:=W I Y?) x L>(I; X) x W2(I; V) x W(I; X, Y>)
Y:=L*I:Y*) x L*(I; X) x L>(I; V) x L*(I; Y?).

The inclusions W C U and Q* C Y* are continuous and dense. Notice that for these
embeddings, the third components are left unchanged.

To facilitate the proof of the next theorem, let us consider the closed, positive and
self-adjoint linear operator C := I + Ay : Y> — X.Note that C : ¥> — X isa
unitary operator and it admits a unique extension C : X — Y 2* that is again unitary.
Also, CY/? : 'Y — X and C'? : X — Y* are unitary operators, provided that
Y = HY(£2) is equipped with its usual norm. Thus, ||C_19||y2 = ||0]|x for every
6 € Xand||C~ 19|y = |CV29|x = |9y~ for every ¢ € Y*. For a proof of these
remarks, we refer to [58, Proposition 3.4.5]. The operator C will be also defined in the
time-dependent case in the obvious way. Finally, we point out that the operator Ay
has a unique extension as a mapping Ay : L>(I; X) — L2(I; Y?*) that is also linear
and continuous.
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Theorem 7 Suppose that (¢, u,u,0) € V, (s,0,y,2) € V* and ($g, wo, o) €
X x H x Y*. Then (70) has a unique solution (y,&,w,¢) € U and there is a
continuous function € > 0 that is independent of (y, &, w, {) such that

I, & w, Dl < CU(@, w, w, DIV, 0,y, 2, Po, Wo, L) |y xxHxY*. (102)
In particular, A .V — LU, YV* x X x H x Y*).

Proof We shall proceed by a density argument. Choose sequences {(sx, 0k, 2k) e C
L2(I;Y*) x L3(I;Y) x L2(I; Y*) and {(¢r0, Cr0)}pe; C Y x X in such a way that
(5> 0k, 26) = (5,0,2) in L5 Y**) x LA(I5 X) x L2(I; Y**) and (¢xo, (ko) —
(0, o) in X x Y*. Then, by Theorem 6, there exists (¥, &, w, {x) € YV that satisfies

the linear system A(¢, ., u, 0) (Yi, &, Wi, &) = (Sk, Ok, ¥, Zk» Pro, Wo, $ko) in Q* X
Y x H x X.

We revisit some computations in the proof of the previous theorem. First, by replac-
ing the estimate (74) by

(ks Y y2e y2 ) < el A% + ce(lsell3an + 1¥elI%),
instead of (79) we get that

1d mo
5 77 Wk + 1 Avel

< Ki(Ivlik + llwillFp) + clge — mvellk + lsell3a. + loxll%)-
(103)

On the other hand, the estimates for & and wy given by (93) and (77), respectively,
remain the same except that z must be replaced by zy.

For the linearized convection—diffusion equation, we shall use the test function
C (¢ — Inyw) € L*(I; Y?) and write Ay&e = C (& — W) + InCre — Ck to the
obtain equation

1d _
TS V2o — i)l + 62k — vl s = — Ik (W, Sk — InWi) x

+ k(G €N = I x + r(wi, €7 Gk — ). 0 — Ingp)
+r @, CN G — ), Sk — W) + (g - Wi + 2k, €&k — In Vi) y2e sy
According to the discussion preceding the theorem, we have ||C -1 Ck — i) |ly2 =

¢k — llx and [C™ 1 e — W) lly = 1€ Y28 — W) llx = 15k — Ikl v+
Using the Cauchy—Schwarz inequality and || g - wg||y2« < c||wk| g it holds that

K
ke (e, &k = I x| < 16 — Invillk + cllvelly

_ K
(g - wi + 2k €71 (G — l¥)) y2r y2| < o = el x + cUlwiellF + lzell3a.)-
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In the case of the trilinear terms, by applying the Holder and Agmon inequalities, we
get

lr (i, C™' (& = ), 0 — )| < c(l& — el + 0152 + 1@l 52) lwilF)
I, €™ (G = ). Gk — )| < %nck — Wyl + cllwl}a g — g

For the remaining term, let us write
6k €71k = i) x = N6k — Il ye + I (C™ P, €12 (G — i) x
and use the Cauchy—Schwarz inequality and ||C 129 x < cllyxllx, so that we have
e (Gies €71 Gk = i) x| < ek — vl + 19l %)-

Taking the above estimates into consideration, putting K7 := c(1+ ||u ||%/2 + 116 ||§/2 +
(1) ||§2) and then invoking the Gronwall Lemma, we deduce that

1d K
e = IVl + 76 = RV}

< K7l + 126 — Wil 3 + lwiell3p) + clizllyes. (104)

Multiplying (93) and (103) by & > 0, (77) by & and then taking the sum of the
resulting estimates with (104) yields the inequality

1d mo - - 2
5B + (5 — caf —e) Bl AV}
= = 2 K o~ 2 v 2
+ @ — Ry + (5 — c@+97) o — vl + 5 lwily

2 2 2 2
= Ce g gk g £, 2 X v 2% )
< s KezEx s + ce g (Iskllyae + okl + 1yIy+ + llzellya)

where Ey ; = E|[Yill}+12e— V|3 +E lwe Iy and K, 5 := 2Ko+EK1+EK3:+K7.
It is not difficult to see that || K¢zl 11y < cez€(1(@, u, u, 0)[ly). Taking &€ > ¢ > 0
small enough, applying the Gronwall Lemma, and using the estimates ||}y <
cllvrollx and [[Skll ooy < 18k — ¥ llLoey+) + cll Ykl LX), we obtain

IVl Lo xynr2(v2) + Ikl L2x) + Wil poo (mnynr2 vy + 18kl oo (vo)nz2cx)
< €(l(p, 1, u, NI (sk> Oks ¥ 2k Pk0s W05 kO | y*xxx Hxy+-  (105)

Let us turn into the estimates of the time derivatives. Applying the continu-
ity of L2(I;Y*) C L%*(I;Y?) in the convection term and the boundedness of
Ay L2(I; X) — L*(I; Y**), we have

||az‘/fk||L2(Y2*) = C(||“||L°°(H)||Wk||L2(Y) + ||1/fk||L°°(X)||u||L2(V) + ||§§k||L2(X)
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+ l1olle o lwell 2wy + lwellzemn 1él L2x) + skl L2r2x))- (106)

Similarly, using || By (u, § — i) I 2 (y2e) < cllullooqvy ISkl 2 o) + 1¥k 2 x)) wWe
obtain

10 S ll 2(v2ey < cU0 Wil 2 vy + NNl Loo vy NSkl 22 0x) + Il 2 0x)) + Wkl 20y
+ lwillp2cay + lwellLomn 101 22¢vy + 101 Loox)y lwill 2 vy
+ llzkll 2 (y2e))- (107)

From || B2 (=10, i)l 2v+) = cUlpelloecxy + 101 oo xy) 1kl L2 (v2) and || B2(§x —
LSk, D) p2vey < Ukl 2xy + 18kl 22(x)) 191l oo (v2y, the time derivative of wy can
be estimated as follows:

10:willL2y+) < cUlwllLoocm llwillL2evy + lwllLoecmn @l L2 vy + lwrllz2v)
+ (leellzoocxy + 101 e o) IVl 2v2y + Ukl 2x) + 1k 20 1Dl L (v2)
+ Wkl L2x) + Ikl 2y + 1Y 2 0v)- (108)

Taking the sum of what we have obtained from (105) to (108), one can see that

| (Wi, &k wies S lleg < €D, w1, w, )W) I (Sks Oks ¥ Zhes Pr0s WO, $k0) 130 5 X 5 H x v+ -

When applied to the difference, this implies that {(V¥, &, wy, §k)},fil is a Cauchy
sequence in U, so that (Y, &, wk, &) — (¥, &, w, ¢) in U and the limit is a solu-
tion of (70). For this solution, we have (102) due to strong convergence. Finally, the
uniqueness of the solution follows from the previous theorem along with standard
arguments. This completes the proof. O

In the above discussions, the main interest is when the initial conditions in the
linearized system vanish. For this, we let Wy to be the space of all elements in W
where the first, third, and last components vanish at ¢+ = 0. The function spaces V)
and Uy in relation to V and U are defined analogously.

Corollary 1 The operator A(¢, i, u,0) € LWy, QF) defined by (69) is an isomor-
phismforevery (¢, u,u,0) € W. Also, A(¢p, u, u,0) € LUy, V*) is anisomorphism
forall (¢, u,u,0) e V.

Proof This is a direct consequence of Theorems 6 and 7. O

The following theorem will be utilized in the proof of second order sufficient con-
dition.

Theorem 8 Suppose that (¢, 1, u,0) €V, y € LZ(I; X), and 7 € LZ(I; X). Then
there is a unique solution (Y, &, w, {) € V) to the equation

A, o u, 0)(, 8, w,8) =(0,0,y,2).
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Moreover, there exists a continuous function € > 0 such that

1, & w, Ollvy = €A@@, . u, O V)Y L2x) + 12l 22(x))- (109)

Proof We follow the proof provided in Theorem 3. The a priori estimates from Theo-
rem 6 and the continuous embeddings L2(I; X) C LA(I; V), L3(I; X) C L2(1; Y™,
and V C W imply

(ks &y wies S vy < CAND, ey w, DIIVIUAIY I L2x) + 12122 (x))
=:C(¢, n,u,0,y,2). (110)

Choosing the test function —(A¢r — IlhAvy) in the equation satisfied by ¢ and
using the Gagliardo—Nirenberg and Agmon inequalities, we obtain that
1d ) 2
EZ”VQ =Vl + cllAllx = r(u, S — e, Alk — hAy)
+r(w, 0 —Ihg, Ay — hAYr) — (g - wi + 2, Ak — Ay x
1AGN% + el (IValx + IVl + 1Av % + (0152 + Io152) lwellg)

+ (1013 + oI Iwell3 + lwelidy + lzI%)-

<

N X

Utilizing the Gronwall Lemma and applying (110) yields
IVEllLoex) + 1ALkl 2 x) = €, i, u, 6, y, 2). (111)

Using the test function A2y in the equation satisfied by 1/, we obtain

1d

5 | AV % — m(A&k, A% i) x

mo 2 2 2 2 2 2
< EIIA Yillx + cllully | Avelly + llwelly | Adllx)- (112)

Next, we shall estimate the norm of A(f/(¢)v). By a simple calculation, we obtain
from the chain rule that A(f'(¢) ) = 6(p AP+ V| Yi + 120V - Vi + 3> —
1) Ayri.. Hence, by the Holder and Gagliardo—Nirenberg inequalities as well as the
Sobolev embedding

IAPx, (f' @Vl < ol Idl5s + o) vl
+c(lplF g3, + gl + DAY .

This estimate and the one given in (110) imply that

IAPx, (f (@)Yl 12x) < E(@, 1,6, y,2) (113)
since ¢ € W2(I; Y4, X) c L®(; Y?).

@ Springer



Applied Mathematics & Optimization (2021) 84 (Suppl 2):S1219-S1279 S1253

Note that for the second term on the left hand side of (112) it holds that
2 mo. o2 / 2 2
—m(Ask, A"Yi)x = TIIA Villx — cUlAPx, (f (@)Y llx + 1ALlIx). (114)

In addition, we have | A& 1% < callA%Yl% + c(I1APx, (f (@Y% + 11 ALI%).
Upon substitution of (114) in (112) we obtain

1d ) me o, )
EEIIAWIIX+?IIA Yilly +
=<

YA
16¢4 kllx

clulld 1AYEl% + lwelly 14015 + IAPx, (f' @)Yl + 1ALI%)-

Applying the Gronwall Lemma to this inequality and invoking the estimates (111) and
(113), one has

1Akl o) + 1A%l 200y + 1A&N T2 ) < €@, o w,6,3,2).  (115)

To derive an priori estimate for w, let us note the following

(e = 1)Vl 2x) + 116Gk — L&) VAl L2x)
< c(Ulll 2y 10N L2p) 1Akl oo (x) + kNl L2vy + 18kl 2w ) 1 AD N Lo (x))-

From this, and by a similar argument as in the nonlinear state equation, it can be
deduced that

lwllzeowy + [Awli 2y = €, w0, y, 2). (116)

According to the differential equations satisfied by v, wg, and &, as well as the a
priori estimates (111), (115) and (116), we have

10: il 2(xy + N0 will L2y + 10: Skl 2%y < €(P, ey, 0, y, 2).

Finally, from 0,&, = —a Ad; ¥k + Px, ((3(1)2 — 1)0; Yk + 6 0; ) + 9; Lk, We obtain
that

1968kl L2y2ey < (1 A+ 1170 2 1Bl 2 )
+ 1@l oo v2) 1kl Lo (vr2y 10: @l L2 (x) + 10: 8kl L2 (x) < €D, e, u, 0, y, 2).
Overall, we have established that { (Y, &, wg, &) },fil is bounded in Vy. Therefore
the weak solution constructed from the Galerkin method satisfies (¢, &, w, ¢) € V.

Finally, taking the limit inferior of the above a priori estimates for the Galerkin approx-
imations yields (109). O
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4.2 Differentiability of the Control-to-State Map

We shall now discuss the differentiability of the operator that maps a control to a
solution of the state equation. All throughout, the dual of the ambient control space Q
will be identified with itself. Define the nonlinear map

N:WxQ—> Q" xYxHxX
according to N = (N, Ny), where N : W x Q — Q¥ is given by

N(p,p,u,0,y,z)

01 + Bi(u, p) + mAyu
u—aAng — f(@) — L0
o + B(u) + vAsu — KBo(u — 10, ) — £(d,0)g — XY
00 — Ino, ¥ + B1(u, 0 — Ing) + kANO — g - U — X2

and Ng : W x Q — Y x H x X is defined by No(¢, u,u,0,y,z) = (¢(0) —
@0, u(0) — ug, 6(0) — 6p). Here, (¢o, up,6p) € ¥ x H x X is a given fixed initial
data.

According to the existence and uniqueness of weak solutions, cf. Theorem 1, for a
given (y, z) € Q there exists a unique (¢, u, u, 6) € VW that satisfies the equation

N@, p,u,6,y,2)=0. (117)

Define the operator S : O — Wby S(y, z) = (¢, i, u, 0) if and only if (117) holds.
We will prove that S is of class C*°. To show this, it is enough to treat the nonlinear
terms appearing in \. For this, we need the following lemma.

Lemma 1 Themappings B : W*(I; V) — L>(I; V*), By : W>(I; V)xW?3(I;Y) —
L2(I;Y*), By : L>(I; Y)XW2(I; Y3, Y*) — L>(I; V¥, and f : W>(I; Y3, Y*) —
L2(I; Y) are of class C*°. The derivatives of order at least 3 for B, B}, and B>, and
of order at least 4 for f all vanish.

Proof The differentiability of B, B, and B, follows from the bilinearity of these
maps together with the estimates in (23)—(25). For future reference, we write
the directional derivatives: For every (¢, u,u,0), (¥, &, w,¢) € W it holds that
DB(u)w = B(u,w) + B(w,u), DB{(u,0)(w,¢) = Bi(u,¢) + Bi(w,0), and
DB>(u, )&, ) = Ba(u, )+ Ba(&, ¢). Moreover, the action of the second deriva-
tives are given by

D*B(u)[w;, wy] = B(w, w2) + B(wy, wy),
D?B(u, )[(w1, £1), (w2, &)1 = Bi(w1, &) + By (w2, &1),
D2 B, (i, 9)[(£1, Y1), (€2, ¥2)] = Ba(&1, ¥2) + Ba(&2, ¥1),
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for every (¢, &,w;,¢) € W for i = 1,2. Since these are independent on
(¢, u,u,0) € W, it follows that the derivatives of order at least 3 for these oper-
ators vanish.

Let us establish the differentiability of f.Let ¢, ¥ € W?(I; Y3, Y*). By Taylor’s
expansion, f(¢+¥)— f(P)— f (D) = 6(¢y2+ ). From the Holder and Agmon
inequalities we obtain

v + ¥ Ml 2x) < el 2o 1V 170y + 1V 1700 (r))-

On the other hand, by computing the gradient of the right hand side, we get V(¢ +
1/;3) = w2V¢ + QoY + 31//2)V1/f. We then estimate from above according to

102V + Qov + 30V 200 < cUldll 2z 19 1o )
Il 1 e 19l vy + 19 13y 1 2 r2)-

Combining the previous estimates and recalling W2(I Y3y N C L*®U;Y) N
L%(I; Y?), there is a constant ¢ = c(@llw2(y3,y+)) > 0 such that

1f @+ ) = F@) = '@Vl < e+ 1 lws y ) 1Y By s ye-

From this, we see that f is Frechét differentiable and D f (¢) = f'(¢»), where the right
hand side is to be understood as a multiplication operator.
For the second derivative, if ¢, ¥(, Y € WZ(I; Y3, Y*) then we have f'(¢)vy —

F'@ + ¥y — (@) 12 = 6193 and
W3l < clvillwe s, 1252y pe-

Thus D? £ (¢) = f”(¢). In addition, if y3 € W2(I; Y3, Y*) then D3 f ()1 Y213 =
61 Y2 3. Since this is independent on ¢, the derivatives beyond order 3 of f vanish.
This completes the proof of the lemma. O

Due to the fact that the controls are only present in the Oberbeck—Boussinesq
system, it is advantageous to consider the operator P : Q — Q* defined by P(y, z) =
(0,0, Xas ¥s Xw,z)- The adjoint operator P* : Q — Q is given by P*(p, n,v,9) =
(Xw; Vs Xw,?)- Note that one may also consider P : Q — Y*and P*:) — Q.

Theorem 9 The map S : Q — W is of class C*°. For every (y, z), (8y, 8z) € QO we
have

DS(y.2)(8y. 82) = A(S(y,2)) "' P(8y, 62) (118)
and for every (8y1,621), (8y,,822) € Q it holds that
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D?S(y.2)((8y1,8z21). (832.822))

Bi(wy, ¥2) + By (wy, Y1)
641y
D?B(u)[w, wa] — KB (&) — leg1, ¥2) — KBo(82 — leto, Y1)
Bi(wy, & — Iny) + Bi(wa, &1 — hwn)

= —AGSy, 27!
(119)

where (V;, &, w;, &) = DS(y, 2)(8y;, 8z;) fori = 1,2 and ¢ is the first component
of S(y, 2).

Proof From Lemma 1 it follows that N e C°°(W x Q,9" xY x H x X). Let
(y, 7) € Q S0 that there exists a unique (¢ o, u, 0) = S(y,z) € W that satisfies
N (@, i, ia,0,y,7) = 0. According to Theorem 6, the linear operator

AIN(p, i, 1,0,5,7)
(P, u,u,0)

= AP, i, u,0) € LOV, Q* x Y x H x X)

is an isomorphism.

From the implicit function theorem, see [60, Sect. 4.7] for instance, there exist open
sets O(y 7 C O and Os(3,z) C W containing (y, 7) and S(y, z), respectively, and a
map Sec® (O@.2), Os(3,7)) such that the equat10n ./\/(S(y 2), ¥, z) = 0is satisfied
forevery (y, z) € O(y, 7). However, this implies that S (¥, z) = S(y, z) by the definition
of S. Since (y, z) was an arbitrary element of Q, it follows that S € C*(Q, W).
Furthermore, applying the chain rule to the identity A'(S(y, z), y, z) = 0, we have

DS(y, 2)(8y, 82) = —A(S(y, 2) "

. )/\/(S(y 2),¥,2)@8y, 82)
= A(S(y,2)" ' Py, 8z2)

forevery (y, z), (8y, 8z) € Q,andthus (118).Inparticular, A(S(y, 2))DS(y, 2)(8y, 62)
= P(8y, §z). By applying the chain and product rules to the latter equation, we get

D%S(y, 2)((8y1, 821), (82, 622))

= —A(S5(y, ) 'DA(S(y, 9)(DS(y, 2)(8y1, 821), DS(y, 2) (85, 622)).-
(120)

Here, note that DA : W — LWV, LWy, QF)), where the latter space is isometrically
isomorphic to the Banach space L(W x Wy, Q). Using the second derivatives of the
nonlinear operators presented in the proof of Lemma 1, we see that equation (120)
implies (119). O
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Remark 1 In terms of PDEs, DS(y,z)(8y,d8z) = (¥,&, w,¢) if and only if
W, &, w, &) € W) is the weak solution of the following linear system:

oY +u-Vy+w-Vp —mA§ =0 inl x £
E=—aAY + (3¢ — DY +1cg inlx 2,
oow—~+ (u-Vyw+ (w-V)u —vAw + Vr

=Ku = 1OVY + K(E =15V + (2 + a38)g + X 8y inl x £,
divw =0 inl x £2,
¢~y +u- VU —hy)+w- V(O —hd) —kAl =g - w+ xu,0z inl x £,

satisfying the boundary conditions d,¥ = 9,A¢¥ = 0, w = 0, and 9, = 0 on
I x I', and the initial conditions ¥ (0) = 0, w(0) = 0, and ¢(0) = 0 in £2, where
(¢, n,u,0) =Sy, 2).

Similarly, D2S(y, 2)[(8y1. 821), (8y2,822)] = (¥, & w, &) if and only if (. &,
w, §) € W) is the weak solution of the linear system

oY +u-Vy4+w- -V —mAE = —w - Vi, — wy - Vi inl x £2,
£ = —aAY + 3¢* — DY + 61y + IcC inl x 2,
ow—+ (u-VYw+ (w-Vu—vAw + Vo = K(u — [.0)Vy

+ K€ =1V + K& — L)V + K& — 1c02) Vi

+ (Y +a38)g — (wy - VIwy — (w2 - V)w; inl x £2,
divw =0 inl x $2,
e =y +u-VE—hy)+w-V(EO —ho) — kAL

=g -w—w;- V(& —hy2) — w2 V(&1 — ) inl x £,

with the boundary conditions 9, = 9,AY¥ =0, w =0,and 9, =0on I x I',and
the homogeneous initial conditions ¥ (0) = 0, w(0) = 0, and ¢(0) = 0 in §2. Here,
(Wi, &, wi, &) = DS(y,2)(8y;i, 8z;) fori = 1,2 and (¢, u, u, 0) = S(y, 2).

Lemma2 The map S : Q — W is weak-weak continuous, that is, if (yy, zx)— (¥, 2)
in Q then S(yi, zk)—S(y, z) in W.

Proof First we note that since the involved function spaces are both reflexive and sepa-
rable, the notions of continuity and sequential continuity are equivalent with respect to
the weak topologies, see [22, Theorem V.5.2]. Suppose (¥, zk)— (¥, z) in Q and let
(k> k> Uk, Ok) = S(¥i» 2x)- Then {(yy, zx) )72 | isboundedin Q, and as consequence,
{S(yk» 21172 is also bounded in W by (28). Then after taking a subsequence, denoted
by the same indices for simplicity, we have S(y, zx)— (¢, u, u, 8) in W for some
(¢, u,u,0) € W. Recall from the Aubin—Lions—Simon Lemma that the embeddings
W2(I; Y3, Y% c L3(I; Y%, W2(I; V) C L*>(I; H), and W?(I; Y) C L*(I; X) are
compact, and thus one can further extract a subsequence so that ¢y — ¢ in L2(1 ; YZ),
ur, — uin L?>(I; H), and 6y — 6 in L?(I; X). By adapting the argument in Step 5
of the proof of Theorem 1, we have N (¢, u,u,0,y,z) =0.

Since the map ¢ +— ¢(0) is continuous from Wz(l; Y3, Y*) into Y, it follows that
¢ (0)—¢ (0) in Y and thus ¢ (0) = ¢o. In a similar fashion, #(0) = ugy in H and
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0(0) = 6y in X. Thus, No(¢p, 0, u,8,y,z) = 0 and hence N (¢, u,u,0,y,z) =
0. This implies that (¢, u,u,0) = S(y, z). In particular, (¢, i, u, 6) is uniquely
determined, and as a result the whole sequence {S(yy, zk)},fil and not only the chosen
subsequence must be weakly convergent. This means that S(y;, zx)—S(y, z) in W.
This establishes the weak-weak continuity of S. O

5 The Adjoint System

In this section, we shall analyze the adjoint system corresponding to the linearized
state equation. Note from Theorem 9 that the adjoint operator DS(y, z)* of DS(y, z)
is given by

DS(y,2)* = P*A(S(y,2)) 7%, (121)

where A(S(y, z))~* denotes the inverse of the adjoint of A(S(y, z)). If S(y,z) € W,
then DS(y, 2)* € LOV;, Q), and if S(y,z) € V, then DS(y, 2)* € LV, Q), see
Corollary 1.

Theorem 10 Let (¢, i, u, 0) € W. Given (g1, 2, 83, 84) € W, there exists a unique
solution (¢, n, v, %) € Q to the variational equation

(0:y + Bi(u, ) + Bi(w, ) + mANE, @) 12(y+)x12(y)
+ (0. & —aAnY — 1@V = 18) 2y x12v)
+ (0w +DB@)w +vAsw — KB2(§ — 1L, ), V) [2(v)xL2(V)
+ (=KBa(u — 10, ¥) — (2% + @38)g, v) 20y 12(v)
+ (3¢ — oy + Bi(u, & — ) + Bi(w, 0 — ho)
+KANE — 8- W, D) 20y L2(y)
= ((81. 82. &3, 84). (V. &, w. O)hwrwy, YW 6w, 0) e Wo.  (122)

There exists a constant ¢ > 0 depending on ||(¢, u, u, 0)|lyy but not on (¢, n, v, %)
such that

(@, n, v, 9)llg = cll(g1, &2, &3, g - (123)

Proof Let us note that the variational equation (122) is equivalent to the equation
A, o u,0)* (¢, n,v,0) = (g1, 82, 83, g4) in W{)‘.Therefore, the existence, unique-
ness, and stability of the solution to the variational equation is a direct consequence
of the fact that A(¢, u, u,0)* : Q — VV(’)k is an invertible operator having a bounded
inverse. This remark follows directly from Theorem 6. Furthermore, one can take

¢ =A@, 1. 1. 0)"* |l Lowg. Q) in (123). o

Remark 2 Suppose that (¢, u, u,0) € V and (g1, g2, &3, g4) € U5 C W;. Then for
the unique solution of (122), it holds that (¢, n, v, ¥#) € ), and moreover, it satisfies
the variational equation posed in the space U instead of Wy. To be precise, in lieu of
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the duality pairings (-, -) 12y« 12(y)> We have (-, -) 2(y2¢) 12(y2) in the first and third
terms and (-, -);2(x) in the second term, and (-, ')ngwo is replaced by (-, ‘>Z/13‘x1/lo'
In this case, there exists a constant ¢ > 0 depending on ||(¢, u, u, 6)||y but not on
(¢, n, v, V) such that

(@, n. v, Dy < cll(g1, 82. 83. 84) v - (124)

These statements follow immediately from A(¢, u, u, 6)™* € LU, V), see Corol-
lary 1 above.

In the following theorem, we shall write the evolution system that governs the
adjoint states under additional assumptions on (g1, g2, &3, g4). Before we proceed,
we note that Ay : L2(I; Y3) — L%*(I;Y) and thus for the adjoint operator we have
A% L2(1; YY) — L2(1; Y3%).

Theorem 11 Let (¢, 1, u, 0) € W. Suppose that the first, third, and fourth components
of (g1, 82, &3, 84) € Wy have the following decompositions:

81 =282 t 817, 83 =830, + 837, 84 = 4o + 84t (125)
where the first terms satisfy the regularity conditions
giay € Wo (I Y2, Y N L3 (1 7™,
830, € Wg(I; VY* N LY3(1; v,
gaor € Wo(I; V) N LY (1, v,

and the second terms are defined by

(g1r, W>W§(Y3,Y*)*><W&(Y3,Y*) = (o1, ¥ (T))y*xy
(&7, w>W§(V)*XW§(V) = (vr, w(T))u
(g4t é-)Wg(Y)*ng(Y) = 7, ¢(M)x,

with o7 € Y*, vy € H, and ¥1 € X. Then the solution (¢, n,v, ) € Q of (122) is
given equivalently as the weak solution of the linear system

— 0@ + o0 — Bi(u, ¢ — In?¥) —aAyn
=Df(@)'n+og-v—KBi(v,pu—10) + g1a, in L*3 (),
—n=mAnp —KB1(v,¢) — g in L*(I; Y*),

— v +DBm)*v+vAgv (126)
=g — B2(¢, $) — B2(9,0 — Ing) + g3, in LY3(1; V),

— 0 — Bi(u,®) + Kl.B1 (v, ¢) + k ANV

=38 - v+ Ly + g4, in L*3(1; Y%,
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with the terminal conditions
o(T) =W (T) =@y inY*, v(T)=vrinH, 9(T)=7v7inX. (127)

Thus, ¢ € W31, Y, Y3), n e L>(I; Y*), v € W*3(I; V), and 9 € W*3(I; Y).
Furthermore, there exists € = C(||(¢, u, u, 0)|lyy) > 0 such that

lellwany,y3 + Inllp2cvs + T0llwas vy + 19 wasyy
= Cllerly« +llvrlla + 197 llx + 8127 lw2eys yoynrss s

+ ||82||L2(Y*) + ||g3_QT ||W5(V)*QL4/3(V*) + ”8497 ||W§(Y)*ML4/3(Y*))' (128)

Proof We shall proceed through integration by parts and density arguments. The main
idea is to take one arbitrary component of the product space W) of test functions and
the rest are set to zero. First, let us show that the solution of the variational equation
(122) satisfies (126)—(128).

STEP 1. Time regularity of v. Taking ¢ = 0,§ =0, w = 0, and ¢ € W02(I; Y)yn
L*(I;Y) in (122) yields the variational equation

(0:5, D) 2y xr2ry T (B, £), O) p2yoyr2(ry + KAANS, ) L2y xL2(v)
+ ]CZC<BZ(§, ¢), v>L2(V*)><L2(V) — ((X?,g -0, {)LZ(X) — IC(T], §)L2(Y*)><L2(Y)
= (8407 O)an v+ L4y T (07, L(T))x.

From the Holder and Gagliardo—Nirenberg inequalities, we obtain that

12 1/2
[(B1(u,£), 0) 2(yyxr2r)l = C||u||L/m(H)||u||L/z(V)||l9||L2(Y)||C||L4(Y)~

Therefore, by duality we have
(Bi(u, £), 0) p2ysyxr2yy = —(B1(@, 9), &) 43 vy 14(v)
and || B (u, D parys =< cllulwzon P L2y- Similarly, we have
(B2(5, @), v) 2y w2yl = cll@llwzys v vl L2 1S 1 L4y
By duality once again, this implies
(B2(C, @), v) 12(veyxr2(vy = (B1(v, @), §) 143 (y)x14(v)

and || B1(v, ®) 2473 (y+) =< cll@llwzcys v lvli2(v)- As a consequence, it holds that

(0:C, D) 2ymyxr2(ry = O1, E(T))x

+(Bi(u, V) — KlcB1(v, §) — Kk AND +a3g - v+ 1en + 8a2r, &) 453 voyxL4(v)-
(129)
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Taking ¢ € C5°(1; Y) in (129) shows that the fourth equation in (126) is satisfied in
the sense of vector-valued distributions and 8,9 € L*3(I; Y*). Thus, 9 € W¥3(I;Y)
and we deduce that

10: 0| a3 vy < cUIBi(u, D)l pars iy + | B1(v, d)l 1473 (y+))
+ cllANC Il L2ry + 1l L2y + 10l L2 + 18427 1473 (v +))
< CUI l2ery + IS l2cyy + IV 20wy + Il p2(vey + 842 L3 vsy),  (130)

where € = €([|pllw2(y3, y+), lullw2(yy)- To prove that the terminal condition for ¢
holds, let us note that C1(I; Y) is dense in W*3(I; Y), see [49, Lemma 7.2] for
instance, and therefore we can find a sequence {9 },fi ccC I(I; Y) such that 9 —
in W4/3 (I;Y). Hence, for every ¢ € C! (I_; Y) such that ¢ (0) = 0, we have

(008, D) p2ymyxr2eyy = kl_ig:o(at;’ Vi) r2x) = kl_i)ngo[(f(T), De(T))x — (£, 0:9%) 12(x)]
= (H(T), {(T))y*xy — (D, C)L4/3(y*)><L4(Y),
where in the last equation we used the continuous embedding W43, Y) c C(I; Y¥).
Using this in (129) we obtain (3 (T) — o7, {(T))y=xy = 0, and since £ (7T') can assume
any value in Y, it follows that 9 (7)) = ¥7 in X.
STEP 2. Time regularity of . By taking ¥ € WZ(I; Y3, Y*) N L*(I;Y?), & = 0,
w = 0, and ¢ = 0 in (122), we obtain the variational equation
(0,  — D) 2 (yeywr2(vy T (B1@, ¥), @ — ) p2(y+)12(v)
—{n, OlANlﬁ)LZ(y*)xLZ(Y) —{n, f/(¢)W>L2(Y*)xL2(Y)
— K(Ba(u — 10, ¥), v) 20y p2(vy — (@28 - 0, ) p2(x)
= (127> I/f)L4/3(Y3*)><L4(y3) + (o1, ¥ (T))y*xy- (131)
Let us note that by assumption ¢ € L*(I; Y)NL*(I; Y?). By using a similar argument
as in the previous step, we obtain that
(Br(u, ¥), ¢ — lh9>L2(y*)xL2(Y) = —(Bi(u, ¢ — lnv), W)L4/3(y*)xL4(y)
Bi(u, ¢ — W)l a3y < clullw2ovyUlell 2y + 10122 r))-

For the third term in (131), we have [|Ay 0|l 2(y3+ < clnll2(y+) and

<7’], O‘ANIMLZ(Y*)xU(Y) = <(XA);<VT], w>L2(Y3*)><L2(Y3)'

To treat the fourth duality pairing in (131), observe that D f(¢)y = f(d)¥ €
L3(I;Y) and

IDF @V ll2vy < I139* = DV ll2x) + 130* = DV 120x) + 160 VoIl 12,

3/2 1/2
< (911 qry + DIV 2z + 11520 1V s 101 oy )
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< €@ llw2(ys, ys )Vl L4 cv2).-

This estimate implies that [|D f () *nll L4/3(y2e) < €@l w2(y3 v Nl L2(y+) and

M, 1 @V) 12veyxr2(ry = (DD N, W) 143 (y2eyx 14 (v2)-

On the other hand, substituting the equation & — [0 = —aAd + ¢> — ¢ in the
fifth term of (131) and then applying the Holder inequality, Green identity, and the
estimate (16), we have

T
[(Ba(it — 16,9, 0) vy xr2v | < /O (- VY, 1 — 1e0)x | di

T
=< fo a|(V*Y)v, Vo) x +al(Vo)VY, Vo) x| + (v Vi, ¢ — p)x| dz

172, 12

T
SC/O lollv gl Il ¥ vz + Al + gl vyl iy di

1/2 1/2
< o1+ 1Dl ) 191 5y, + 1130y + I8l DD 20w 19 3y

It follows that || By (v, u — 1c0) || a3 (y2+) < U@ lw2(y3,y#)) IVl 2(v) and by duality
(Ba(p — 10, ), V)12V L2(V) = —(B1(v, u — 1c0), V) 143 (v 2 ) x LA (Y?2)-

Using the continuous embeddings L*/3(I; Y*) ¢ L*¥3(1; Y*>*) ¢ L*3(1; Y*)
and L2(I; Y3*) ¢ L*3(I; Y**), we find that

(0, @ —h®) p2(yeyxr2(ry = (o1, Y (D)yexy + (B1, @ — h®), ¥) par3y3nyx14(v3)
+ (@AY +Df (@) 'n+aag - v —KBi1(v, & —10) + 8127, ¥) 1453 (v3*)x L4 (v3)-

For ¢ € Cgo(l . Y3), this implies that the first equation in (126) holds true and d;¢ —
o0 € L*3(I:Y*). Since 8,9 € L*3(I;Y*) c L*3(I;Y?>) we have 9,9 €
L4/3 (I Y3*), and hence ¢ € w4/3 (1,7, Y3*). Moreover, one has

190l Lar3r.y3ey < (0D | Lar3ysy + I1B1 @, @ — ) || a3 yey + AN L2(y3+)
+c(IDf (D) Nl Larny2ey + 10l 20y + 1 B1(v, o — 1) [l 473 y2x))
+cligrar llzam s = €U D I a3y + Nl@ll2iry + InllL2rs) + 10lL20v))
+ U L2¢vy + 181027 I 1473 (¥3+)) (132)

where € = €([|@ly2(y3 y+), [#llw2(yy)- Using a similar density argument as in Step
1, the terminal condition ¢(T') — Iy® (T) = ¢ is satisfied in Y*.

STEP 3. Equation for n. If & € LZ(I; Y),y =0, w=0,and ¢ = 0 in (122) then we
get

(n+mANp — KB1(v, ) — 82, &) p2(y»yx12(yv) = 0-
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Note that || By (v, @) L2(y+) < cllvllL2(y)ll@ [l Lo (v)- These imply that the second equa-
tion in (126) holds and

Il 2vey < CI@Nlw2eys, y=) U@l L2ery + 1vllL2evy + 1821 L2 (v+)- (133)

STEP 4. Time regularity of v. To prove the regularity of d;v, we take w € Wg([ ; V)N
LYI; V), Y =0,& =0,and ¢ = 0in (122) so that

<a[w, v>L2(V*)><L2(V) =+ (DB(u)w + UAS'w, v>L2(V*)><L2(V)
+ (B1(w, ), @) 2(y+yx12(v) T (B1(W, 0 — h@), O) 2(y+)x120v)
— (08, w)2x) = (830, W) 4B xr4vy + 07, w(T))H.

From the Ho6lder and Gagliardo—Nirenberg inequalities we obtain the following
KDB@)w, v) 2y 2v)| = C||u||Loo(H)||u||Lz(V)||v||L2(V)||w||L4(V)

{B1(w, 9), ©)L2y+)x12(r)| = cll@llLemllell L2y llwllL2y)
[{(Bi(w, 0 — Iho), ﬁ)LZ(Y*)xLZ(Y)l = C(”@“W?(Y) + ||¢||L°°(Y))||7—9||L2(Y)||w||L4(V)-

Applying duality argument once more, it follows from these estimates that

IDB @) vl 453 vy < cllullw2vyllvll2ey)
1B2(d, @)l L2v+ < clldllwzys yollellL2y
1B2(0, 6 — )l a3 vy < cUONlw2yy + 1Dlw2 sy 101 L2y

and moreover we have

(DB@)w. v) 12y x12v) = (DB@)" 0, W) 143 v+ 14 (v
(Bi(w, @), 9} r2(v+yx12(y) = (B2(@, §), W) 12y%yx12(v)
(Bi(w, 0 — o), 19>L2(Y*)><L2(Y) = (B2(8,0 — o), w>L4/3(V*)><L4(V)-

Taking these into account, we can now rewrite the variational equation for v accord-
ing to

(Ow, v) 2y r2vy = 1, W(T))E + (Vg = DB@)" 0, W) 143y 14(v)
+ (=vAsv — B2(p, ) — B2(D, 0 — Ihg) + &30, W) 43 (v*)x 14(V)-

This implies the third equation in (126), and as a consequence ;v € LAY3(1; v*).
Hence v € W4/3(I; V) and

19l Lasve) = €@l L2y + 102wy + 10l L2y) + 18302, 1La3ve)  (134)

where € = €([@llw2(y3, y+)s ||u||Wz(V), €1lw2(y))- Using a similar argument as in
Step 1, one can deduce that v(7) = vy in H.
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It remains to show the estimate (128_). From the decomposi_tions of g1, g3, g4, and
the continuity of Wi (1; Y3, Y*) C C(I;Y), W(I; Y) C C(I; X), and W§(I; V) C
C(I; H), it follows that

||g4||W§(y)* = C(||84.QT||W§(Y)* + 197lx)
||g3||W02(V)* = C(||g3§27 ”WOZ(V)* + lorllm)

g1 ||W§(Y3,y*)* = C(”gl.QT”Wg(y»?,y*)* + lerlly+).

Using these estimates along with (123), (130), (132), (133), and (134), we obtain
(128).

Finally, to show that every solution of (126) also satisfies (122), one can apply
smooth test functions in (126), take the sum of the resulting equations and perform
the above steps backward by passing all derivatives to the test functions. The proof of
the theorem is now complete. O

Remark 3 In terms of PDEs, the solution of the adjoint system (126) can be equiva-
lently characterized as the very weak solution of the following linear system:

— 0/ +1h00 —u - V(p —Ihd) +aAn
= f(P)n+a2g - v—Kv-V(u—10) + g1, inl x £2,
—n=-mAp—Kv-V¢ — g inl x £,
—8tv—(u-V)v+(Vu)Tv— VAV + Vo
=0g—¢Vo -9V — o) + &30, inl x £2,
dive =0 inl x £2,
— 00 —u-VO+Klv- Vo —kAV =azg-v+In+ 840, inl x 2,

satisfying the terminal conditions ¢(T) = ¢7 + WO, v(T) = vy, 9(T) = Y7 in £2,
and the boundary conditions d,¢ = 9,7 = 0, v = 0, and 9,0 = 0O on I x I" in the
weak sense.

Next, we shall prove the regularity of the adjoint states by gradually considering
additional regularity on the desired data for the temperature, fluid velocity, order
parameter, and chemical potential.

Corollary 2 Let (¢, u,u,0) € V. Suppose that (g1, &2, 83, 84) € L{é‘ admits the
decompositions (125)with g1o, € L3(I; Y?"), 830, € L3(I; V¥), 840r € L3(I; X),
<ng7 W>W3(Y2)*Xwg(y2) = (QDT, W(T))X
<g3T, w>W§(V)*><WOZ(V) = (vr,w(T)n

(gar, §>W§(X,Y2*)*><W§(X,Y2*) = (&(T), O1)y*xy

where o7 € X, vr € H, and v7 € Y. Then for the solution of (126) it holds that
¢ € WX(I;Y?), n e L>(I; X), v € WX(I; V), and 9 € W?(I; Y2, X). Moreover,
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there exists € = C(|[(p, u, u, 0)|y) > 0 such that

lellwy2y + Inlliz2x) + Ivllw2 vy + 13 w2z, x) < Clerlix + llvrlla

+ 107lly + 1181027 lp2(v2ey + 1821l L2(x) + 18302, IL2v+) + 184027 I2¢x))-
(135)

Proof Letusrecall thattff = W3 (I; Y2)* x L2(I; X)x WS (I; V)*x W3 (I; X, Y?*)*.
Under the given assumptions, the solution to (122) satisfies (¢, n, v, %) € V), see
Remark 2. Furthermore, the solution satisfies the estimate

lollzzv2y + lnll2cx) + Ivll2ery + 101 22v2) < cll(81. 82, 83, 8l (136)

thanks to (124). Using the decompositions of g, g3, g4, and the continuity of the
embeddings W3 (I; Y?) C C(I; X), Wg(I: V) C C(I; H), and W3(I; X, Y**) C
C(I;Y*), we have

Ig1llwz vy = clligier 2z + lerlix) 137
Igsllwz vy = cUligzer 2+ + llvrlla) (138)
ligallwz x y2eys = cUigagrllL2x) + 197 lly)- (139)

Observe that g1, € L3(I;Y*) C Wg(l; Y3, v%)* N LY3(1; Y3, g0 €
LX(I;X) C L*(I;Y*), g3q, € L*(I; V) C WgU; V)* n L¥Y3(I; V*), and
gaor € L2(I;X) € WZ(I; Y)* N LY3(I; Y*). Hence (¢, n, v, 9) satisfies (126)
according to Theorem 11. Moreover, the term D f (¢)*n in the first equation equation
of (126) can be replaced by f/(¢)n.

Using the Holder inequality, we obtain || By (u, ¥) [ 12(x) < cllullLeow)lPl2(v2y
and ”Bl(v, ¢)||L2(X) < C||¢||W2(Y4’X)||v||L2(V). Thus, 8['19 (S Lz([, X) and

19911 20x) < €D NI 20v2) + M0l2vy + I0ll20x) + 18427 llr20x)),  (140)

where € = €([Pllw2y+ x)s lully2y2 py)- From the equation satisfied by »n and
1B1(v, )llz2(x) < cllvlliz2v)ll@ll L (y2) we obtain that

Inllz2x) < €U@llw2va, x) U@l 2v2y + 10l 2wy + 8211 22(x))- (141)

Note that [|Bi(u,¢ — )l 2 < clullzea) (@l 2wy + 190202 and
IBi(v, u — L)l 2y = cllvlizeyyUlplleoexy + 10llL(x)). Also, using the
continuity of the embedding L°°(/; Y2) C L®(27) we get | f (@) Loy <
c(||¢||im (r?) + 1). Thus, the time derivative of ¢ can be estimated as follows:

190l 2y2ey < 18Dl 20y+y + 1 Br(w, @ — )l 2(x) + 1ANTI L2(y2+)
+c(IDF@ nll2cx) + 10l L2y + 1B1(w, = LeO) || 12 (y2x))
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+cllgrer 2 < €U 2x) + @l 22y + InllL2(x)
+ vl 2wy + 112 (v2y + 18127 I 12 (v2+)) (142)

where € = €(||¢||W2(y4,x), ||M||W2(Y2), ||”||W2(V)v ||9||W2(Y2,X))-
Likewise, we also have the estimates [DBu)*v| 2y < cllullLow)llvllL 2y,

1B2(0, 0=l 2x) < cllP 22y U0l oo ryHl@liLoory), and [| B2(@, §) Il 2 (x) <
clleliz2vy i@l oo (v2)- As a consequence, it holds that

10wl 20wy = €ll@ll2v2y + IVl 2wy + 10l 2(v2) + 18302, 2(ve)  (143)

where € = C(|| [l w2y x) ”u”WZ(VZ,H)’ 161l w2(y2 x))- Combining the above a pri-
ori estimates from (136) to (143) yields (135). O

Corollary 3 Consider the assumptions of Corollary 2 and in addition vr € V and
830, € L%(I; X). Then the components of the weak solution to (126) satisfy ¢ €
W2(I; Y%, n e L2(I; X), v e W2(I; V2, H), and® € W2(I; Y2, X). Furthermore,
there exists € = E(||(¢, u, u, 0)|ly) > 0 such that

leliw2r2y + iz + 10w gy + 10 w2 vz, x) < €llerllx + llvrlly
+ 197lly + 1812 lr2(v2e) + 11821l 12(x) + 18302, 122(x) + 18427 I 2(x))- (144)
Proof From the previous corollary, it remains to demonstrate the regularity of v with
the given additional assumptions v € V and g30, € L*(I; X). Let F3 := 9g —

oV -0V (0 —Inp)+ &30, - Therefore, v is the weak solution to the following adjoint
equation to the linearized Navier—Stokes equation:

—9v—(-V)Yv+ (Vu) v+ vAv+Vr = F3 inl x £,
divv=0 inl x £2, v=0 onl x I, v(T)=vy inV.

From 9 € W2(I; Y%, X) C L®(1;Y),0 € L*(I; Y?),and ¢ € W2(I; Y*, X) C
L®(I; Y?), we have 9V(0 — lng) € L*>(I; X). Similarly, since ¢ € L*>(I; Y?) and
¢ € L>®(I; Y?), we deduce that V¢ € L*>(I; X). Thus, F3 € L>(I; X) and

13l 2x) = CUP w2 vz, x) + 1@ll2ry + 118302, 1220x))

where € = Q:(||¢||W2(y4’x), 101l w2(y2 x))- Applying the regularity result in [31,
Proposition 2.4] yields v € WZ(I; V2, X) and

1ol g < €l g Urlly + 1F3020x0).
The previous two estimates and (135) imply the a priori estimate (144). O

Corollary 4 Consider the assumptions of Corollary 3 and in addition g1, €
L2(I; %), g € L2(I:Y) and o1 € Y. Then the weak solution to (126) satisfies
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@ € WXUI; Y3, Y%, n e LAI;Y), v € W2(I; V%, H), and 0 € W2(I; Y2, X).
Furthermore, there exists € = C(||(¢, u, u, 0)|ly) > 0 such that

lellw2rs v + liL2ry + 10lwav2 gy + 19w vz, x) < €llerlly + llorllv
+ 1107 lly + 118127 2+ + 1820l L2¢yy + 118302, 1 2(x) + 184527 I L2¢x))-
Proof Let Fi :=u-V(p—Iy?)+ f(p)n+arg-v—aAKv-Vo+g2) —Kv-V(u—

[c0) + g12,; — Ih0; ¥, so that ¢ is a weak solution of the following backward-in-time
biharmonic heat equation

— 4o +manlp=F inl x £,
Opp = Op(mAp +Kv-Vop+g)=0 onl x I,
o(T) = o7 + V1 inY.

We claim that v - V¢p € L2(I; Y). Indeed, since V(v - Vo) = (Vv)V + (V2p)v,
we get from v € L®(I; V)N L?(I; V?) and ¢ € L>®(I; Y?) that

lv- V¢||L2(Y) = C(||”||L°°(V)||¢||L2(y2) + ||v||L2(v2)||¢||L°O(Y2))-

It can be also shown that the other terms in Fj lies in L2(I; Y*). Hence, it holds that
Fy € L*(I; Y*) and

”Fl”LZ(Y*) = €(”(PHLZ(Yz) + ||77||L2(X) + ”v”WZ(VZ’H)
+ g2l 2cyy + 8127 L2(v) + 1P lw2(v2 x))
where € = C([|¢lly2y4 x), ||u||W2(Vz’H), lellz2cy2ys 191lw2(y2 x))- Therefore, we
obtain that ¢ € W2(1; Y3, Y*).

Following the methods given in the linearized system, cf.Theorem 6, one can deduce
that

lllwys.ys < €llorlly + 197 lly + I F1ll20pe)-
From this we also get that n € L?(I;Y) and

InliL2ry = €ll@ll2eys) + 10llw2 vz gy + 11821 L2r))-

Combining the above a priori estimates and the one given in the previous corollary,
we obtain the desired stability estimate as stated by the corollary. O

6 Analysis of Optimal Control Problem

In this section we analyze the existence of solutions to the optimal control problem
(6) and characterize the necessary and sufficient conditions for optimality. Introducing
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the reduced cost functional j : Q — R by

T
. Yt
F002) = I8, 3,0 = GO N+ 5 [ Il e
T
Yh 2
+ 7/(; ||Z||L2(a)h) dr

we can equivalently write this problem as a constrained optimization on Q,q:

min  j(y, 2). (145)
(.YsZ)EQad] Y

We define the set of all feasible directions at (y, z) € Qaq by
Fad(¥,2) :={(8y,8z) € Q : 3w > O such that (y + &8y, z + €87) € Qaq Ve € [0, w]}.

The minimum requirement for the initial data and target data in order for G to be
well-defined is as follows:

(A) It holds that ¢g. pa. 0a € L*(I; X), ¥4, £4. &g € L*(I: X), ug € L*(I; X),
Yo €Y, ug, ur € H,0, 0r, o7 € X,and ¥y € X.

Theorem 12 Suppose that (A) holds. The optimization problem (145) admits a global
solution, that is, there exists (y*,z*) € Qaq such that j(y*,z*) < j(y, 2) for every
(¥,2) € Qua-

Proof The proof is based on classical sequential compactness arguments in [42,56],
which we outline for the sake of the reader. Since j is bounded from below, j admits a
minimizing sequence {(y, zk)};o; C Qad, thatis, j(y,, zx) — inf(y e, J (¥, 2)-
Let (¢x, tx, wr, 6k) = S(yy, zx)- It follows that {(yy, zx)};2, is bounded in Q, and
consequently {(¢x, (i, Uk, Ok)},fil is bounded in W by (28). Since Q,q is closed and
convex, it is weakly closed, so that for a subsequence we have (y;, zx)—(y*, z*) in
Q for some (y*, 7*) € Qag. According to the weak-weak continuity of S in Lemma 2,
we get S(yi, zk)—~S(y*, z*) in W.

Let (¢*, u*, u*,0*) = S(y*, z*). Since the map ¢ — ¢(T) from W>(I; Y3, Y*)
into Y is continuous, we have ¢y (T)—¢*(T) in X and V¢ (T)—~Ve*(T) in X.
Similarly, ux (T)—u*(T) in H and 6;(T)—6*(T) in X. Passing to the limit inferior
and using the weak lower semicontinuity of norms, we obtain

JO* ) =TS, 2N, y". 2 < liminf J(S(yg, zk), ¥r, zk) = inf  j(y, 2).
k— 00 (,2)€Qad

Thus, j(y*, z*) < j(y, z) for every (y,z) € Qa4 and this proves the existence of a
global solution to (145). O

@ Springer



Applied Mathematics & Optimization (2021) 84 (Suppl 2):S1219-S1279 S1269

6.1 First Order Optimality Condition

A control (y*, z*) € Q,q is said to be a local solution to (145) if there exists a constant

e > Osuchthat j(y*, z*) < j(y, z) forevery (y, 2) € Qaa With [(y —y*, z—2")llg <

€. A local solution is said to be strict if there is a neighborhood for which it is only the

local solution to the reduced problem. For the action of the second derivatives, we shall

simply write D?j(y*, z*)(y, z)? instead of D2 (y*, z*)((y, z), (¥, z)) for instance.
Define the Y*-distributional divergence operator Div : X — Y* by

(Dive, ¥)ysxy :=—(9,Vi)x, ¢eX, yeV. (146)

One can easily see that Ay = —DivV as a map from Y into Y*, and by the diver-
gence theorem that Divegp = dive if ¢ € Y satisfies ¢ - n = 0. Let us introduce

(81, 82, 83, 84) = (81(#), g2(1), g3(u), g4(9)) € Wy with components defined as
follows: Given (¢, u, u, 8) € VW and under the hypothesis (A), let

82(1) = (it — pa) + 8c(Anp + Divéy) € L*(I; Y*)
and g1(0), g5(u), and g4(6) have the decompositions (125) with

8127 (9) = (¢ — da) + 8o(An¢ + Divp,) € L (I3 Y*)
830, W) = ar(u —ug) + 5V x (V xu) € LX(I; V¥)
842, (0) == an(0 — 0g) + Sp(ANO + Dive ) € L*(I; Y
(g17 (), §0>W§(y3,y*)*xw02(y3,y*)
= Bo(@(T) — p7, 9(T))x + @o{ANG(T) + Divihrz, o(T))y+xy
(837 (W) Wy yyexwa(y) = Br(T) —ur, w(T)pg

(841 (0), é‘)Wg(Y)*xW(%(Y) = Bn(0(T) — 0r, ¢(T))x.

With regards to the tracking part of J, let us note that G € C*°(W, R), and for
(¢, n,u,0) e Wand (¥, §, w, {) € Wy we have

DG (¢, . u,0) (Y. &, w, &) = ((g1(#). &2(1), g3(m), g4(0)), (V. &, w, O))wixw-
(147)

The action of the second derivative is given by

D2G(p, i, u, 0) (Y, &, w, £)? = Bolly ()15 + wol VY (T) 15
+ Brlw(D)lIgy + Bull¢(DII%

T
+/0 ol V1% + 8ol VI + ccllE N + 8l VEI% di

T
+[ arllwld + 81V x w5 + anllc 15 + Sl VEII% dr.
0
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Notice that the right hand side is independent on the argument (¢, i, u, 0), and there-
fore we simply write D2G(1//, & w, ;)2 for the left hand side.

Lemma 3 Assume that (A) is satisfied. Thenthe map j : Q — Ris of class C*°. Given
(¥, 2), 8y, 82) € Q, denote the respective solutions of the state, linearized state, and
adjoint systems by (. i, u,0) = S(y,2) € W, (Y, &, w,£) = DS(y,2)(6y,62) €
W, and

((ps n,v, 19) = A(S(_V» Z))_*(gl(d))’ gZ(M)» gS(u)’ 84(9)) € Q

The first and second order derivatives of j at (y, z) in the direction (8y, 87) are given
by

T T
Dj(y,2)(8y,éz) = A W+ %Y, 8Y) 122 df + /(; (0 + ¥n2, 82) 12(gy,) dr (148)
T
D?j(y,2)(8y, 82)* =D*G(y, &, w, {)* — / 2wV, @)y dt
0
T T
- /0 6(n, P ) yrxy dr — fo 2[((w - VYw, v)x — K, (€ — L)V x]dr

T T T
2 2
- /0 2w - V(¢ —Iyyp), 9)x di + /0 yillsy122,, 2 dt + /0 mlszll2a,,, dr.
(149)

Proof Since G € C®°(W,R) and § € C®(Q, W), it follows that j € C®(Q, R).
Let (y, 2), (8y, 8z) € Q. According to the chain rule

Dj(y,2)(8y,8z) = DG(S(y, 2))DS(y, 2)(8y, 8z)

T T
=+ / yf(y, Sy)LZ(wl_)Z dr + / )’h(Z, (SZ)LZ((uh) dr.
0 0
From Theorem 10 and (147), the first term on the right hand side can be written as

DG (S(y.2))DS(y. 2)(8y. 2)
= (P*A(S(y, 2) 7" (81(). 82(n), g3(w), 84(9)). (8y.82)) o

T T
= / (v, 5y)L2(wf)2 dt + / (19, SZ)LZ(wh) dt
0 0
Thus (148) is verified. On the other hand, applying the chain rule once more we obtain

D?j(y,2)(8y, 82)* = D’G(DS(y, 2)(8y, 82))* + DG(S(y, 2))D*S(y, 2)(8y, 62)*

T T
+ / VeI Y 172 2 dF + f ml8zl72,,,, 4r- (150)
0 0
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The first term on the right hand side of this equation is precisely the term
D*G(y, £, w, £)? in (149) since (¥, &, w, £) = DS(y, z)(8y, 8z). For the second
term, we apply (120) and (147) to get

DG(S(y. 2))D*S(y, 2)(8y, 82)*
= —((81(9), g2(10). g3(), 84(9)). A(S(y.2)) 'DA(S(y.2))
(DS(y, )6y, 82w
= —(DAS(Y. D)W £, w. £)*, (9. 7. v.9)) 0 x0- (151)

Comparing (119) and (120), we see that the right hand side of this equation corresponds
to the first four integrals in (149). O

With the help of the previous lemma, one can now establish the following first order
necessary condition for local optimality.

Theorem 13 Suppose that (A) is satisfied and (y*, z*) € Qad is a local solution to the
optimization problem (145). Then

T T
/ O+ Y = Y (22 df + f (0" + 702" 2 — 2 2, A1 = 0 (152)
0 0

for all (y,z) € Qaq, where (v*,9*) € W*3(I; V) x W¥3(I; Y) are the last two
components of the solution for the adjoint system (126) corresponding to the source
term (g1(9*), g2(u*), g3(u*), g4(6*)) € W.

Proof If (y*, z*) € Q.qisalocal solution to (145) thenDj (y*, z*)(y —y*, z—2*) > 0
for every (y, z) € Qad, see [42]. The variational inequality (152) now follows from
(148), while the regularity of (v*, ¥*) is a consequence of Theorem 11. O

From the above theorem, a local optimal solution (y*, z*) is given equivalently as

yi(t,x) = Proj[af’bf](—yf_lv*(t,x)) ae. (t,x) € I x wy,

Z(t, x) = Proji, . (=¥ 0¥t X)) ae. (t,x) € I x an,

where Proj,, 5. and Projy, ,, are the projections onto the rectangle [af, bf] and
the interval [ay, bn], respectively. This can be seen by taking (y, z) in (152) to be
either (y1, y3,2%), (3], y2,2%), and (y{, y3,2) with (y1,y2,2) € Qad and using
classical arguments to pass from the variational inequalities to pointwise inequal-
ities. Notice that if y*(f,x) € (as, bf) then we have y*(¢f,x) = —yf_lv*(t,x),
hence v*(¢, x) + yry* (¢, x) = 0. In a similar way, z*(¢, z) € (an, bp) implies that
(¢, x) + yhz* (¢, x) = 0.

In the unconstrained case Q,q¢ = Q and wf = wp = §2, we have y* = y{lv* and
* = yh_lz?*. In this case, the regularity of (v*, #*) and the optimal control (y*, z*)
coincide. Next, let us discuss the regularity of the adjoint states beyond the assumption
(A):
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(A) It holds that ¢g, 114, 64 € L>(I; X), ¥y, &4, &y € L>(I;Y), uy € L*(I; X),
upeViur e H,0p, 0r €Y, yr Y, pr e X, 9o Y, ¥, n=&, n=
Cg-nm=0onlxI,and¥r -n=0onT.

Suppose that (A”) holds and consider a local solution (y*, z*) to (145). Denote the
corresponding optimal states and adjoint states by (¢*, u*, u*, 6*) = S(y*, z*) and

(@*, 0", v*, 9%) = A(S(Y*, 7)) (g1(9%), g2(1%), g3 (™), g4(0).  (153)
Then (¢*, u*, u*, 6*) € V by Theorem 3 and
(0*, ", v*, 9%) € WH(I; Y?) x L*(I; X) x WX(I; V) x W(I; Y2, X)

by Corollary 2. Thus, one can replace the duality pairing (-, -) y=xy by the inner prod-
uct (-, -)x in (149). If in addition, uy € V then v* € WZ(I; V2, H) in virtue of
Corollary 3.

Assume that (A’) is satisfied and in addition g € L2(I; Y),ur e V,¢r € Y,and
wo = 6 = 0. Then we can apply Corollary 4 so that

(@, 0", v*, 9% e WAL Y2, YN LY, Y)NW2(I; V2, H)YNW2(I; Y2, X).

In particular, (y*, z*) € W2(I: V2, H)NW?2(I:; Y2, X) in the unconstrained case and
wr = wy = £2. Note that this is not true anymore in the constrained scenario due to
the projections. The assumption w, = 8. = 0 is imposed since we only know that
w e L*(I; Y?) and ¢(T) € Y. More precisely, g2() = oc(u — pg) € L*(I;Y)
and g17(¢) = Bo(@(T) —¢r) €Y.

Finally, under additional assumptions on the data, it is possible to establish further
regularity of the controls in the unconstrained case, cf. Theorems 4 and 5. However,
we do not pursue the details here and leave the precise formulations to the reader.

6.2 Second Order Optimality Conditions

To formulate the second order conditions, we follow [14] and consider the following
directions corresponding to the set of points where the constraints are active

As(y*) i={y € L*(I; L*(wp)?) = yi(t, x) = 0if y1(t, x) = a;,

yi(t,x) <0if y (¢, x) = by; forae. (t,x) € I x wy, i = 1,2}
Ay (2%) i={z € L*(I; L*(wn)) : z(r, x) > 0if 2*(t, x) = an,

z(t,x) < 0if z*(¢t, x) = by fora.e. (t,x) € I x wp}.

From these, we define the cone of critical directions C(y*, z*) := C(y*) x C(z*) with

CY" ={y e A;(y") : yi(t, x) = 0if (v} + yry[)(t, x) #0
forae.(t,x) el xws, i = 1,2}
C(z*) :i={z € Ag(2") : z(t, x) = 0if (C* + yz*)(t, x) £ Oforace. (t,x) € I x wyp}.
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Notice that C(y*, z*) and A (y*, 2*) := A (y*) x As(z*) are closed and convex sub-
sets of Q. From the definition of the critical cones, it follows that D j (y*, z*)(y,z) = 0
for every (y, z) € C(y*, z%).

Lemma4 Given (y,z) € C(y*, 2*), there is a sequence {(yi, z) 1%, C Fo(¥*, 2*)
NC(y*, z*) such that (y;, zx) — (y,z) in Q.

Proof We shall present the proof in the case ag, by € R?, an, by € R, a; < by and
an < by. The other cases where at least one of the endpoints take an infinite value can
be dealt with analogously. Following [14], let (y, z) € C(y*, z*) and take ko > O large
enough so that ag + (ko+k) ™' < by — (ko+k) ™" and an + (ko+k) ™' < by — (ko+k) ™!
for every positive integer k. Set

KE:={(t,x) € I xwr : y*(t,x) € (ar, ar + (ko +k)~") U (b — (ko + k)1, b))
KF:={(t.x) € I X wp : 2°(t,x) € (an, an + (ko + k)~ U (b — (ko + k)", by)}.

Let us define the projected functions y; := Proji_ i, +1).ko+412 (1 _XKf)y and zx :=
Proj[_(k0+k)’k0+k](1 — XK{;)Z~ By construction, one can see that (y;, zx) € C(y*, z%).
Also, |yi| < |yl, y¢ — yae.in I x o and |zx| < |z|, zx = z a.e.in [ X wy.
From the Lebesgue Theorem, (y;, zk) — (¥, z) in Q. By adapting the arguments
in [14, Theorem 3.6], it can be shown that (y* + py;, z* + pzx) € Qaa for every
0 < p < (ko + k)2, and therefore Yk, 2k) € Fo,, for every k. O

From this lemma, one can now establish a second order necessary optimality con-
dition.

Theorem 14 Under the assumption (A), if (y*, z*) € Qad is a local solution of (145)
then D? j(y*, 2)(y, 2)* = 0 for every (y,2) € C(y*, 2*).

Proof Let(y, z) € C(y*, z*). According to Lemma 4, there is a sequence {(y;, zk)}3o,
C Fo,u (¥, z)NC(y*, 2*) with (¥, zk) — (¥, z) in Q. For each k, there exists §x > 0
such that (y* + ey, 2* + e€zx) € Qad for every 0 < ¢ < §; by feasibility of (y, zx).
Therefore, by Taylor’s Theorem and the fact that Dj (y*, z*) (¥, zx) = 0, we have

2
P N . - & . *
0<j(y +ey, 2" +eu)—jy" 2" < 3D2J(y* + 0ee i, 2+ 0eez) (Vs k)

forsome 0 < o, < 1. Dividing by £?/2 and passing ¢ — 0yield D?j (y*, z*) (¥, 2x)°
> 0. Consequently, by letting k — oo and using the fact that D2 j (y*, z*) € £(Q x
0, R) we obtain that D?j (y*, z*)(y, z)? > 0. o

We now discuss a second order sufficient condition under additional assumptions on
the initial data. Similar to the case of finite-dimensional problems with box constraints,
the non-negativity of the Hessian on C(y*, z*) is a necessary optimality condition,
while the positive-definiteness of the Hessian on C(y*, z*) is a sufficient condition for
optimality.
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Theorem 15 Consider the assumption (A) and in addition that either (¢g, ug, 6y) €
Y2X VXY orw,=38 =8 =68y=p=pn=0. Let (y*,z*) € Qaq satisfy (152)
and suppose that there exists § > 0 such that

DX j(y*. (.27 = 8l(y. Dy forall (y.2) €C(y*. 2. (154)

Then there exist ¢ > 0 and o > 0 such that
ok K o * *\ 112 .
.](yvz)—i_i”(y_y»Z_Z)”QSJ(yvz) (155)

holds for every (y,z) € Qaq with ||(y — y*, 2 — 2")|lo < . In particular, (y*, 7*) is
a strict local solution to (145).

Proof We shall only prove the case where (¢o, #o, 6y) € Y2 x V x Y, while the other
alternative can be shown in a similar way. Suppose on the contrary that for every ¢ > 0
and o > 0O there exists (¥, 5, Ze,0) € Qad suchthat |(y, , —¥*, ze.c —2")|l@ < € and
JO* 2+ Z(y, z)||2Q > j(¥e.o» Ze.0)- In particular, taking o = % and ¢ = % for

every positive integer k, there is (¥, Zx) € Qag such that [|(¥;, — ¥*, Zx —2")llo < %

and
o~ o~ % % 1 ~ * ~ *\ 112
](yksZk)<](yaZ)+E”(yk_yvZk_Z)||Q~ (156)

Let pr = (¥ — ¥, 2k — 29 l@ and (yg, z2x) = (¥ — ¥*, 2k — 2%)/px so that
I(yx, zk)lo = 1. Then there is a subsequence, still denoted by (y,, zx), such that
(¥k> zk)—(y, z2)in Q. We claim that (y, z) € C(y*, z*). Since (¥, Zx) € Qad, We have
Yi> zk) € Ag(¥*, 2%). The set As(y*, z¥) is closed and convex in Q, hence weakly
closed, and we have (y, z) € A;(y*, z*). We will prove that in fact (y, z) € C(y*, 7*).

By Taylor’s expansion, we obtain

J ks Z6) = JO* + o yi» 25 + pzk)

2
: N : N P -
= j(y*, 2+ aDj (", 2 (e ze) + 7’€D21<y L2 e 207 + 0(p)
(157)
where o(plf) / ,o,f — 0 as pr — 0. Dividing by px and applying (156) we get
2
e Pk Pk2 . w o(py)
Dj(y* 2 2x) < — — S DX (0 2 (e 20)? — ———
k2 Pk
1 1 TN o(p?)
< ﬁ+§uD2]<y ) zoxor) — ——=. (158)

From (148) we see that (y;, zx)—(y, z) implies D;j(y*, z)(y;, 2x) — Dj(y*, 2
(¥, z). Passing to the limit k — oo in the inequality (158) yields Dj(y*, z*)(y, z) < 0.
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Let (¢*, u*, u*, 6*) = S(y*, z¥) and (¢*, n*, v*, ¥*) be given by (153). From the
admissibility of (¥, zx), it holds that Dj (y*, z*) (¥, zx) = Dj(y*, 2°) (¥ — ¥, 2k —
7*)/pr > 0, so that Dj(y*, z*)(y, z) > O after letting k — oo. Consequently, from
(148) we have

T T
/0 O+ Y, Y) 122 At + /0 (0" + ¥h2", 2 [2(y) dt = 0. (159)

The condition (152) implies that (v} + yry;)y; > 0 fora.e.in I x w¢ fori = 1,2 and

(0* + ymz*)z > 0 for a.e.in I x wy. Hence, the equation (159) is equivalent to

T T
/ | + vey))yil dx dz =/ |(@* + ynzMzldxdt =0, i=1,2.
0 Jor

0 Jwp

Thus, if v} (¢, x)+y¢y} (¢, x) # Otheny; (¢, x) = Ofora.e.(t,x) €  xwrandi = 1, 2.
Similarly, if 9*(z, x)+ynz*(t, x) # Othenz(z, x) = Ofora.e.(r, x) € I Xxwy. Together
with (y, z) € A;(y*, z¥), we have verified the claim that (y, z) € C(y*, z*).

From (156), (157), and the fact that Dj(y*, z*)(yy, zx) = 0, we have

2
D?j(y*, 2) (. 20)* < 2 (% — Lpf) ) (160)
P

Let (Yk, &, wk, &) := DS(y*, %) (¥g, zk). According to Theorem 3, (¢p*, u*, u*, 6*) €
V. Then it follows from Theorem 8 that {(Vk, &, wi, &k)}2, is bounded in Vp,
so that in particular, {(Y(T), wi(T), ¢k (T))}k=1 is bounded in Y2xV xY. By
further extracting a subsequence, we obtain that (g, &, wy, &)=, &, w, §) =
DS(y*, z*)(y, z) in V. Invoking the compact embeddings Y2 x V x Y C ¥ x H x X
and Vo C L*>(1; Y?) x L?>(I;Y) x L>(I; V) x L*(I; Y), by extraction of another
subsequence, the following strong convergences hold:

(Wks & i, &) — (W, &, w, 8) in L2(1; Y2) x LA(1; Y) x L2(I; V) x L2(1; Y)
(161)

and (Y (T), wi(T), ek (T)) — (W (T), w(T),¢(T)) in Y x H x X. These conver-
gences imply that

DG (Y, &, wi, &) — DG (¥, &, w, £)*. (162)

By adapting the argument presented in Step 5 in the proof of Theorem 1, we can
deduce from the limit (161) that

T T
/ 2(wy - Vg, o) x dt +/ 2((wy - VIwg, v*)x dr
0 0

T

T
- /0 2K, (5 — L&) Vi) x dt +/O 2wk - V(& — i), 9" x dt
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T T
— / 2(w - Vv, <p*)xdt+/ 2((w - VYw, v*)x dr
0 0

T

T
—f 2", (6 =15V x dt+/ 2w - V(& — ), 9" x de. (163)
0 0
On the other hand, we have ¢>*1pk2 — ¢*y% in L2(I; Y) thanks to the estimate

l*E — 0* V2 2y < €A™ I Loov2ys 1 ooy, 1V N o) IV — Wl 22(r2)

for some positive continuous function €. Thus, we have

/OTW, "YU yexy dt — /OTW, ¢ Yy di. (164)

From (151), (163), and (164), one obtains
DG(S(y*, 2ND*S(y*, ) (¥ 26)” = DG(S(y*, 2)D*S(y*, 2 (3, 2)°. (165)
Passing to the limit inferior as k — oo in (160) and recalling (154) lead us to
8(y. 2113 < D%j(y*,z*)(y.2)*> < 0. This is possible only if (y,z) = (0,0) in Q

since § > 0. According to (150), (160), (162), and (165) we have

hm Sup (Vt”)’k ”iZ(LZ(wf)Z) + Vh”zk ||22(L2(wh)))

k—o00
. 1 o(p})
< lim sup |:2 (— - —2k — D*G (Y, &k, wi, &)*
k—00 k Pk

— DG(S(y*, 2)D2S(y*, ) (¥ Zk)z]
= —D?’G(DS(y*, 2)(y, 2))* = DG(S(y*, 2)D*S(y*, ) (y, 2)* = 0.

Since yr > 0 and yy, > 0 we have [|(y, zx)llo — 0. Combined with (y;, zx)—(0, 0)
in Q, we have (y;, zk) — (0, 0) in Q. However, this is a contradiction to the fact that
I(¥r, zx)llo = 1 for every k. Therefore, (155) must be true and this completes the
proof of the theorem. O
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