Proceedings of the 5" Asian Mathematical Conference, Malaysia 2009

SOME PROPERTIES OF A SEQUENCE OF INVERSION
NUMBERS

Dexter Jane L. Indong and Gilbert R. Peralta

Department of Mathematics and Computer Science, University of the Philippines Baguio,
Governor Pack Road, Baguio City, Philippines
e-mail: dlindong@upb.edu.ph, grperalta@upb.edu.ph

Abstract. In this paper, we consider a certain sequence of inversion numbers. We show that this sequence
is a polynomial sequence and find its leading term. Using this, a characterization of the Hankel and inverse
binomial transforms of these inversion numbers will be given and each of these transforms, together with an
appropriate sequence, forms a basis for the space of real sequences having compact support. Also, with the
aid of the gemerating function of the inversion numbers we will give a formula for a certain type of complex
integral.

1 Introduction

Let o be a permutation of the set {1,2,...,n}. The pair (c(i),0(j)) is called an inversion of o if
i < j and o(i) > o(j). Inversions are used in sorting algorithms and have applications in computational
molecular biology (see [2]). Denote N (o) to be the total number of inversions of the permutation o.
Then N(o) is the smallest number of factors such that the permutation ¢ can be written as a product
of simple transpositions [IJ.

For each nonnegative integer k, we let I,(k) = |{c € S,, : N(0) = k}|, where S,, is the symmetric
group of degree n. That is, I,(k) is the total number of permutations of the set {1,2,...,n} having
k inversions. Then I,(k) = 0 for all k > (3) and I,(k) > 0 for all 0 < k < (%). The number
I,,(k) is called an inversion number. Finding the value of I,(k) is a classic area of combinatorics.
Margolius, Louchard and Prodinger give asymptotic formulas of a certain sequence of inversion numbers,
the sequence {I,yr(n) : n > 0}, where k is a fixed positive integer [4] [6]. The results of Louchard and
Prodinger are based on the saddle point method. In a recent paper [5], the authors consider another
sequence of inversion numbers, the sequence {I,,+x(k) : n > 0}, where k > 1 is fixed. Interestingly, these
sequences are polynomial sequences as we can see later.

The inversion numbers have the following recursive formula

1,(0) = 15(0) = I>(1) = 1
and
min{k,("3")}
I(k) = > I,_1(i), n>3. (1)

i=max{0,k—n+1}

This formula was obtained using a specific partition of the symmetric group. For n > 1, this can be
simplified into

1, if k = 0;
L(k) = I,(k=1)+ L,—1(k), fl1<k<n-1; @)
" Li(k—1)+IL_1(k) = Lok —n), ifn<k<(";");

Lk —1) = I_1(k —n), if (";N) <k< (%)

For more details about these recursive formulas, we refer the reader to [5].

In Section 2, we give a complete proof showing that the sequence {I,,1 (k) : n > 0} is a polynomial
sequence and that the leading term of this polynomial sequence is (k!)~!. Further, we compare the
monotonicity of the two sequences {I,1;(n) : n > 0} and {I,+x(k) : » > 0}, where k and [ are fixed



positive integers. Section 3 relates a specific type of an integral of a complex valued function to the
inversion numbers. Finally, we characterize the Hankel and inverse binomial transforms of {I,, (k) :
n > 0} in Section 4.

2 Characterizations of a sequence of inversion numbers

In the following lemma, we consider the sum Z;.Lzl jh=1. As we can see later, this sum is closely related
to the sequence {I,1x(k) : n > 0}.

Lemma 1. For each positive integer h let Pp(n) = 370, gh=L.

variable n of degree h and

Then Py(n) is a polynomial of the

Pu(n) 1

lim —— = —.

nseo b h
Proof. We prove the lemma by strong induction. Is is easy to see that the conclusion holds if h = 1.
Now, assume that P;(n) is a polynomial of degree [ for all 1 < < h. Using the Binomial Theorem, we

get

n n h+1
S - G- = 3 [jh—kl _ i(_l) (thF1> o z+1]
j=1

j=1 1=0

h+1 n
h+1
_ +1 -h—I1+1
= > (-1 ( ; ) E J
=1 Jj=1

h+1
= Z(—l)lH (h —; 1) Pp_i42(n)

=1

pare l+2
But .
Z ch+1 )h+1] nh+17
j=1
and so e
Praa(n) = 1-— + Q(n). (3)
where
am =S (" e 1
| o <l+2> h=t(n)- )

Using Equation and the induction hypothesis, we can see that Q(n) is a polynomial of degree h.
Thus, from Equation , Py11(n) is a polynomial of degree h + 1. Further, since Q(n)/n"*! — 0 as
n — oo we have Py 1(n)/n"*t — 1/(h+1) as n — oco. O

Lemma 2. Let k be a fized positive integer and n be a nonnegative integer. Then
i (k) = (k) + ng+k - 1).

Proof. The above formula is clear if n = 0, so let us assume that n > 1. Note that 1 <k < (n+k—4)—1
forallt=0,1,...,n — 1. Using this and the recursive formula we have
Inyi(k) = Inpr(k—1) + Lnye—1(k)
= Lnytp(k = 1) + Lnpr—1(k = 1) + Lnjp—2(k)
= Iniw(k—1)+ Ligk—1(k— 1)+ + Ip1(k — 1) + I (k)

= ZIj+k(k = 1) + Ii(k).



This completes the proof of the lemma. O

Theorem 3. If k > 1, then the sequence {I,1x(k) : n > 0} is a polynomial sequence of degree k and
I, (k) 1

lim = —.
n—oo pk k!

Moreover, the leading term of Iy (k) is 1/k!.

Proof. Since I,,41(1) = n for all n > 0, the theorem trivially holds if ¥ = 1. Assume that I,4x(k) =

; akinl Wllele Ak () m OIdeI fOI n+k tO lla\/e egree . O lng g
f—() 17 I —+ k d k F 11()W Il al d S11 I emima 2 we
ha\/e

Lipera(k+1) = Lepa(B+1)+ Y Liae(k)
j=1

n k
= Cpu1+ Z Zaki(j + 1)

j=1i=0

= Cpsr + zn: Zk: ani (Z <;L) jh>

j*l i=0 h=0
= Crp +ZZ ( )akzph+1 (n),

=0 h=0

where Cj41 = Iy41(k+1). Using Lemma[f]it follows that I,,44+1(k+1) is a polynomial of degree k + 1.
Moreover, observe that

In(k + 1 = Cg+1 +ZZ < )akZPh_H n—k— 1),

i=0 h=0

for all n > k + 1. Notice that lim, .o, I,,(1)/n = 1. Assume that lim, .., I,,(k)/n* = 1/k!, and so
ake = 1/k!. From Lemma [I] we obtain

ke 0, if0<h<k-1,;
im D k=D )%
n—o0 nk+t1 —, ifh=k.
k+1
Hence
. In(k + 1) T akkPk+1(n —k— 1) ark 1
e I nkt1 T k+1 (kD0
The ‘moreover’ part follows immediately. This establishes the theorem. O

Using Lemma [2| and Faulhaber’s formulas we have

Ina(1) = n,

In2(2) = n(n+3)/2,

In43(3) = (n+3)(n*+6n+2)/6,

Liva(4) = (n+4)(n+5)(n® +9n+6)/24,

Liis(5) = (n+4)(n+11)(n® + 1502 + 66n + 60) /120,

Lii6(6) = (n+5)(n+6)(n*+ 34n® + 401n? + 1844n + 2160),/720,

Luyr(7) (n” + 63n° + 1645n° 4 229950 + 184534n> 4 841302n2 + 1983540n + 1809360) /5040.

Suppose that I,4x(k) = E?:o arin’. It can be shown that the constant term of the polynomial
P+1(n), where h > 0, is zero. Thus, we can write Ppi1(n) = Z?:ll prt+1,;n’. From the proof of
Theorem [ we have

i h+1
Fnk 4 ) = Lk + D)+ 30303 ( )WWHLJ,”J.

1=0 h=0 j=1



Therefore, if I, ypi1(k+1) = Zf:ol ap+1,in’, then the coefficients of I,,;,11(k + 1) is related to the
coefficients of I, (k) and Py41(n) and we have

Ik+1(k —|— 1), if 1 = 0;
Ap+1,0 = Z Z ()akipiwu, if1<1<k;
' i= lllh -1
(kL 1) ifl=k+1.
(k+1)V ! +

As a consequence of the previous theorem we have the following corollary.

J
Corollary 4. For each real number x we have Z hm L.(5) (%) =e".
j=0

From Euler’s pentagonal number theorem we have

ﬁ 1— Zj Z(_l)izi(si—l)/z_

1€EZL

Set go = Q(1/2),q1 = Q'(1/2) and g2 = Q"(1/2)/2.
Corollary 5. For each k,l > 1,

Lngi(n) _ 22" 1k  8qol® +2(q1 — qo)l + g2 — 2q1 + (1 + 8klagk—1)qo
Liw(k) — anb+12 \ P sn

Proof. If k > 2 then

+ O(n2)> .

TLk Ak k— 1]€ a;ﬂk'
Inyi(k) = M (1 L n2 Z nk—i—2
nk ak_k_lk' _9

If £ = 1 then we have the same result. Combining this with the result of Louchard and Prodinger, which
is

22—t 8¢0l” +2(q1 — o)l + g2 — 2¢1 + qo
In = — O —2 7
+l(n) \/TTh < 0 8N + (ﬂ )>
we obtain the desired asymptotic formula. O

Let k£ and [ be two fixed positive integers. We can see that after a sufficiently large number of terms,
the sequence {I,,1;(n) : n > 0} increases faster than the sequence {I,;r(k) : n > 0}. Indeed, from
Corollary

lim Ing (k) =
n—oo I 1(n)

3 Inversion numbers and integrals

We will use Equation to prove algebraically that the generating function of the sequence {I,, (k) : k =

0,1,...,(3)}is

—~

5) n
O () =Y Luk)a" =] ‘ ' (5)



It can be easily verified that Equation holds if n = 1,2. Suppose n > 3. Then
n—1 ] (";1) ) n—1 ]
EDOLI b P CEN N § 3
§=0 i=0 j=0

(]

Z Infl(l) ka

k=0 \i+j=k
(3 min{k,("; ')}

> > In_1(i) | 2"
k=0

i=max{0,k—n+1}

n—1

From this, we get ®,,_1(z) > =0 2/ = ®,,(x). Using this and an induction argument proves .
For each multi-index a@ = (aq,...,qy,), where each «; is a nonnegative integer, we define a! =
a!- - apland |a] = ag+- - -+a,. The following lemma is the generalized Leibniz’s rule for differentiation.

Lemma 6. If f1,..., f, are analytic complex valued functions in an open set U C C, then
dm m! 1 s
a Hne =3 G107
j=1 |a]=m t =1

for allm € N and for all z € U.

Proof. We prove the lemma by induction on m. Notice that the lemma is clear if m = 1. Suppose that
the lemma holds for m = k. Now we show that the lemma is true for m = k + 1. Using the induction
hypothesis we get

F fat B Q])
dzk+1 jl;[lfg(z) T 6 |a§:k Jl_[lf
- T ¥ ﬁf@*ﬂﬂ
jal=k 181=1 " =

If 3; =1 then
(E+1)! k+1 K

(a+pB)  a;+08; a
Now, let ¥ = o+ . Then |y| = |a| + |8] = k+ 1 and

dett ' T o
P e = 3 >y B

j=1 lv|=k+1 j= 1 j=1
k+1
_ Z ( )! H f(’YJ (2).
N
This completes the proof of the lemma. O

Theorem 7. Let f : D C C — C and suppose that f is analytic in an open set U C D. If m € N and C
is a closed simple contour lying inside U and zy is any point interior to C, then for all positive integer k

we have
m -1 .
/C ﬁ ([[ ;mz)r‘) az =21 K;m) Ln () M;(z0), (6)
where
MG = B e O an) e [ )

«
l(a1,...a;)|=k



Proof. Letting x = f(z) in Equation (5| , dividing by (z — 20)**! and then integrating we get

m -1 j
/ (z — zp)F+1 <HZ )dz_ Z Im / Z[f(zo))]k-&-l dz. (7

1=11=0 0<<m)

~—

By Cauchy’s integral formula,

j 0 if 7 =0;
[f ()l ’ , I
dz =4 2mi d"([f(20))
— L \k+1 0 e
C(z ZO) FT, 1f]21
Using the generalized Leibniz’s rule for differentiation we get
dk( f(ZO) j) k! @ a;
T X e ) ®
It -05)|=k !
for all ;7 > 1. Hence, Equation @ follows from Equations @ and . O

If we let z9 = 0, f(z) = z and m = n + k, we have the following corollary.

Corollary 8. Let k be a fixed positive integer. Then for each nonnegative integer n we have

I+ 2)142422) (1424 -4 2ntE 1)
c Skl

dz = 2mil, (k)

where C is any simple closed contour containing the origin.

Example 9. Using the previous corollary we have

1 1 2y.. . (1 n
/( +2)(1+2+7) 5 Utz F2 )dz = 2nmi,
C z
1 1 2y... (1 n+1
/( +AA+z+2) z3( R e )dz = (n*+ 3n)mi,
C
/(1+z)(1+z—|—22)-~-(1—|—z—|—---+z”+2)dz ~ (n®49n* 4 20n + 6)7i
C 24 o 3 ’

for all n > 0, where C is any closed contour containing the origin.

4 Hankel and inverse binomial transforms

Let A = {an}52 be a sequence. The inverse binomial transform of the sequence A is the sequence
denoted by B~1(A) = {b,}5°; where b, is defined by the formula

— i n k( )
Qg
k=0
for all n > 0. Let H = [hij]i,jel\h where hij = Qj4j5—2- Thus

ap ai a2
ay az ag
H=1 a6 a3 a4

The Hankel matrix H,, of order n of the sequence A is defined to be the (n+ 1) x (n + 1) upper left
submatrix of H, that is, H, = [hij]i<ij<n+1. Let h, denote the determinant of the Hankel matrix H,
of order n. The sequence H(A) = {h,}>2, is called the Hankel transform of the sequence A.

Some properties of the Hankel transform are discussed in [3] and [7]. Further, Spivey and Steil [7]
proved that the Hankel transform is invariant under falling k-binomial transform and since the inverse
binomial transform is just a special type of a falling k-binomial transform, where k = —1, it follows that
the Hankel transform is also invariant under inverse binomial transform. (For more details, we refer the
reader to the work of Spivey and Steil [7].) Hence we have the following theorem.



Theorem 10. If A = {a,}>%, is a sequence, then H(B~1(A)) = H(A).

Given a sequence A = {ay};2,, the support of A is defined by supp(A) = {k : ar # 0}. The set of
all real sequences having a finite support is denoted by cgg. Note that cyg is a vector space over R under
the usual componentwise addition and scalar multiplication.

The next two theorems characterize the inverse binomial transform and the Hankel transform of the
sequence {I,yr(k) : n > 0}.

Theorem 11. For each k > 1, let Ay, = {I4r(k) : n > 0} and Lyr(k) = E?:o agin®. Then B=Y(Ag) =
{bm}22_y € coo and by, = m! Zfzm axiS(i,m), for all 1 < m <k, where S(i,m) is a Stirling number of
the second kind, and b,, =0 for all m > k.

Proof. Let m > 1. Using the definition, we have

by = akoé(l)m”C:)wLiaki (i(l)m”CZ)ni)-

Note that we have

and i
Sim) = >y ()

for all 1 < m <i. Define A, by A, :x%. Then for 1 <i<m

. U m .
Al _ 1 m — _1 m—n K2 n.
A Yl (T
Since Ay (x —1)™ = ma(x —1)™~! then (z — 1)™~! divides A, (1 — z)™. Suppose that 1 <i <m —1
and (x — 1)™~% divides A%(x — 1)™. Thus Al(x — 1)™ = (x — 1) %g;(x) for some polynomial g;(x).
Applying A, once more, we get

A (e -1y =MD iy 1)) 4 e - 1))

Hence (z — 1)~ 0+ divides Al (z — 1)™. This shows that for all m > > 1, we can find a polynomial
gi(x) satisfying A% (z — 1)™ = (x — 1)™g;(x). If we let = 1 we get

§<—1>m‘”(f) ni= Ala - 1), =0

for all m > 7. From these, we have
k
by, = m! Z ar;S (i, m)

for all 1 <m <k and b,,, = 0 for all m > k. Therefore {b,,}5°_, € coo. O

Now, by = klay,S(k, k) = 1. Therefore, the last nonzero term of B~1(Ay) is 1. Let Ag = {I,,(0) : n >
1}. Then Ag = {1,1,...} and B'(4y) = {1,0,0,...}. From these it follows that {B~*(Ax)}>, forms
a basis for cyq.

Example 12. Using the above theorem, we have

B7Y(4;) = {0,1,0,0,0,0,0,...},
B~ YA;) = {0,2,1,0,0,0,0,...},
B7Y(A3) = {1,5,4,1,0,0,0,...},
B7Y(Ay) = {5,15,14,6,1,0,...}.



Theorem 13. For each positive integer k, H(Ay) € coo. Furthermore, {H(Ar)}32, forms a basis for
Co0-

Proof. First, note that H(Ag) = H(B~'(Ag)) = B~(Ap). Suppose k > 1. Let B~ (Ax) = {bm}3_,
and H(B71(A)) = {h,}3%,. From the previous theorem, we have b,, = 0 for all m > k. Hence the
(m+ 1)st row of the mth order Hankel matrix H,, has only zero entries for all m > k. Consequently, the
determinant of of H,, is zero for all m > k. Therefore h,, = 0 for all m > k. Since H(A) = H(B~!(A)),
it follows that the Hankel transform of Ay lies in cgp. Consider the Hankel matrix of B~1(Ay) of order
k. Then we have h;; =0 for all i+ j > k+2 and hy; = 1 for all i 4+ j = k 4 2. It follows that hy = —1
if k=1,2 (mod4) and hy = 1 if & = 0,3 (mod 4). Therefore the last nonzero term of the Hankel
transform of Ay, is either —1 or 1. Consequently, {H (Ax)}%2, is a basis for cgo. O

Example 14. From Example[12] we get the following

H(4,) = {0,-1,0,0,0,0,0,0,0,0,...},
H(A;) = {0,-4,-1,0,0,0,0,0,0,...},
H(A3) = {1,-21,-25,1,0,0,0,0,...},
H(A)) = {5,—155,—559,155,1,0,...}.

In general, one can similarly prove the following theorem.

Theorem 15. For each k € N let pr.(n) be a polynomial in the variable n such that deg pr(n) = k. Let
Ay, = {pr(n) : n € N}. Then B='(Ay), H(Ay) € coo. Furthermore { B~ (Ax)}72, or {H(Ax)}2, forms
a basis for cyg.
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