SOME PROPERTIES OF A SEQUENCE OF INVERSION NUMBERS

Dexter Jane L. Indong and Gilbert R. Peralta
Department of Mathematics and Computer Science, University of the Philippines Baguio, Governor Pack Road, Baguio City, Philippines
e-mail: dlindong@upb.edu.ph, grperalta@upb.edu.ph

Abstract

In this paper, we consider a certain sequence of inversion numbers. We show that this sequence is a polynomial sequence and find its leading term. Using this, a characterization of the Hankel and inverse binomial transforms of these inversion numbers will be given and each of these transforms, together with an appropriate sequence, forms a basis for the space of real sequences having compact support. Also, with the aid of the generating function of the inversion numbers we will give a formula for a certain type of complex integral.

1 Introduction

Let σ be a permutation of the set $\{1,2, \ldots, n\}$. The pair $(\sigma(i), \sigma(j))$ is called an inversion of σ if $i<j$ and $\sigma(i)>\sigma(j)$. Inversions are used in sorting algorithms and have applications in computational molecular biology (see [2]). Denote $N(\sigma)$ to be the total number of inversions of the permutation σ. Then $N(\sigma)$ is the smallest number of factors such that the permutation σ can be written as a product of simple transpositions [1].

For each nonnegative integer k, we let $I_{n}(k)=\left|\left\{\sigma \in \mathbf{S}_{n}: N(\sigma)=k\right\}\right|$, where \mathbf{S}_{n} is the symmetric group of degree n. That is, $I_{n}(k)$ is the total number of permutations of the set $\{1,2, \ldots, n\}$ having k inversions. Then $I_{n}(k)=0$ for all $k>\binom{n}{2}$ and $I_{n}(k)>0$ for all $0 \leq k \leq\binom{ n}{2}$. The number $I_{n}(k)$ is called an inversion number. Finding the value of $I_{n}(k)$ is a classic area of combinatorics. Margolius, Louchard and Prodinger give asymptotic formulas of a certain sequence of inversion numbers, the sequence $\left\{I_{n+k}(n): n \geq 0\right\}$, where k is a fixed positive integer [4, 6]. The results of Louchard and Prodinger are based on the saddle point method. In a recent paper [5] the authors consider another sequence of inversion numbers, the sequence $\left\{I_{n+k}(k): n \geq 0\right\}$, where $k \geq 1$ is fixed. Interestingly, these sequences are polynomial sequences as we can see later.

The inversion numbers have the following recursive formula

$$
I_{1}(0)=I_{2}(0)=I_{2}(1)=1
$$

and

$$
\begin{equation*}
I_{n}(k)=\sum_{i=\max \{0, k-n+1\}}^{\min \left\{k,\binom{n-1}{2}\right\}} I_{n-1}(i), \quad n \geq 3 . \tag{1}
\end{equation*}
$$

This formula was obtained using a specific partition of the symmetric group. For $n>1$, this can be simplified into

$$
I_{n}(k)= \begin{cases}1, & \text { if } k=0 \tag{2}\\ I_{n}(k-1)+I_{n-1}(k), & \text { if } 1 \leq k \leq n-1 ; \\ I_{n}(k-1)+I_{n-1}(k)-I_{n-1}(k-n), & \text { if } n \leq k \leq\binom{ n-1}{2} \\ I_{n}(k-1)-I_{n-1}(k-n), & \text { if }\binom{n-1}{2}<k \leq\binom{ n}{2}\end{cases}
$$

For more details about these recursive formulas, we refer the reader to [5].
In Section 2, we give a complete proof showing that the sequence $\left\{I_{n+k}(k): n \geq 0\right\}$ is a polynomial sequence and that the leading term of this polynomial sequence is $(k!)^{-1}$. Further, we compare the monotonicity of the two sequences $\left\{I_{n+l}(n): n \geq 0\right\}$ and $\left\{I_{n+k}(k): n \geq 0\right\}$, where k and l are fixed
positive integers. Section 3 relates a specific type of an integral of a complex valued function to the inversion numbers. Finally, we characterize the Hankel and inverse binomial transforms of $\left\{I_{n+k}(k)\right.$: $n \geq 0\}$ in Section 4.

2 Characterizations of a sequence of inversion numbers

In the following lemma, we consider the sum $\sum_{j=1}^{n} j^{h-1}$. As we can see later, this sum is closely related to the sequence $\left\{I_{n+k}(k): n \geq 0\right\}$.
Lemma 1. For each positive integer h let $P_{h}(n)=\sum_{j=1}^{n} j^{h-1}$. Then $P_{h}(n)$ is a polynomial of the variable n of degree h and

$$
\lim _{n \rightarrow \infty} \frac{P_{h}(n)}{n^{h}}=\frac{1}{h} .
$$

Proof. We prove the lemma by strong induction. Is is easy to see that the conclusion holds if $h=1$. Now, assume that $P_{l}(n)$ is a polynomial of degree l for all $1 \leq l \leq h$. Using the Binomial Theorem, we get

$$
\begin{aligned}
\sum_{j=1}^{n}\left[j^{h+1}-(j-1)^{h+1}\right] & =\sum_{j=1}^{n}\left[j^{h+1}-\sum_{l=0}^{h+1}(-1)^{l}\binom{h+1}{l} j^{h-l+1}\right] \\
& =\sum_{l=1}^{h+1}(-1)^{l+1}\binom{h+1}{l}\left(\sum_{j=1}^{n} j^{h-l+1}\right) \\
& =\sum_{l=1}^{h+1}(-1)^{l+1}\binom{h+1}{l} P_{h-l+2}(n) \\
& =(h+1) P_{h+1}(n)+\sum_{l=0}^{h-1}(-1)^{l+1}\binom{h+1}{l+2} P_{h-l}(n) .
\end{aligned}
$$

But

$$
\sum_{j=1}^{n}\left[j^{h+1}-(j-1)^{h+1}\right]=n^{h+1}
$$

and so

$$
\begin{equation*}
P_{h+1}(n)=\frac{n^{h+1}}{h+1}+Q(n) \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
Q(n)=\frac{1}{h+1} \sum_{l=0}^{h-1}(-1)^{l}\binom{h+1}{l+2} P_{h-l}(n) . \tag{4}
\end{equation*}
$$

Using Equation (4) and the induction hypothesis, we can see that $Q(n)$ is a polynomial of degree h. Thus, from Equation (3), $P_{h+1}(n)$ is a polynomial of degree $h+1$. Further, since $Q(n) / n^{h+1} \rightarrow 0$ as $n \rightarrow \infty$ we have $P_{h+1}(n) / n^{h+1} \rightarrow 1 /(h+1)$ as $n \rightarrow \infty$.

Lemma 2. Let k be a fixed positive integer and n be a nonnegative integer. Then

$$
I_{n+k}(k)=I_{k}(k)+\sum_{j=1}^{n} I_{j+k}(k-1) .
$$

Proof. The above formula is clear if $n=0$, so let us assume that $n \geq 1$. Note that $1 \leq k \leq(n+k-i)-1$ for all $i=0,1, \ldots, n-1$. Using this and the recursive formula (2) we have

$$
\begin{aligned}
I_{n+k}(k) & =I_{n+k}(k-1)+I_{n+k-1}(k) \\
& =I_{n+k}(k-1)+I_{n+k-1}(k-1)+I_{n+k-2}(k) \\
& =I_{n+k}(k-1)+I_{n+k-1}(k-1)+\cdots+I_{k+1}(k-1)+I_{k}(k) \\
& =\sum_{j=1}^{n} I_{j+k}(k-1)+I_{k}(k)
\end{aligned}
$$

This completes the proof of the lemma.
Theorem 3. If $k \geq 1$, then the sequence $\left\{I_{n+k}(k): n \geq 0\right\}$ is a polynomial sequence of degree k and

$$
\lim _{n \rightarrow \infty} \frac{I_{n}(k)}{n^{k}}=\frac{1}{k!}
$$

Moreover, the leading term of $I_{n+k}(k)$ is $1 / k!$.
Proof. Since $I_{n+1}(1)=n$ for all $n \geq 0$, the theorem trivially holds if $k=1$. Assume that $I_{n+k}(k)=$ $\sum_{i=0}^{k} a_{k i} n^{i}$, where $a_{k k} \neq 0$ in order for $I_{n+k}(k)$ to have degree k. Following [5] and using Lemma 2 we have

$$
\begin{aligned}
I_{n+k+1}(k+1) & =I_{k+1}(k+1)+\sum_{j=1}^{n} I_{j+1+k}(k) \\
& =C_{k+1}+\sum_{j=1}^{n} \sum_{i=0}^{k} a_{k i}(j+1)^{i} \\
& =C_{k+1}+\sum_{j=1}^{n} \sum_{i=0}^{k} a_{k i}\left(\sum_{h=0}^{i}\binom{i}{h} j^{h}\right) \\
& =C_{k+1}+\sum_{i=0}^{k} \sum_{h=0}^{i}\binom{i}{h} a_{k i} P_{h+1}(n),
\end{aligned}
$$

where $C_{k+1}=I_{k+1}(k+1)$. Using Lemma 1 it follows that $I_{n+k+1}(k+1)$ is a polynomial of degree $k+1$. Moreover, observe that

$$
I_{n}(k+1)=C_{k+1}+\sum_{i=0}^{k} \sum_{h=0}^{i}\binom{i}{h} a_{k i} P_{h+1}(n-k-1)
$$

for all $n \geq k+1$. Notice that $\lim _{n \rightarrow \infty} I_{n}(1) / n=1$. Assume that $\lim _{n \rightarrow \infty} I_{n}(k) / n^{k}=1 / k$!, and so $a_{k k}=1 / k$!. From Lemma 1 we obtain

$$
\lim _{n \rightarrow \infty} \frac{P_{h+1}(n-k-1)}{n^{k+1}}= \begin{cases}0, & \text { if } 0 \leq h \leq k-1 \\ \frac{1}{k+1}, & \text { if } h=k\end{cases}
$$

Hence

$$
\lim _{n \rightarrow \infty} \frac{I_{n}(k+1)}{n^{k+1}}=\lim _{n \rightarrow \infty} \frac{a_{k k} P_{k+1}(n-k-1)}{n^{k+1}}=\frac{a_{k k}}{k+1}=\frac{1}{(k+1)!}
$$

The 'moreover' part follows immediately. This establishes the theorem.
Using Lemma 2 and Faulhaber's formulas we have

$$
\begin{aligned}
I_{n+1}(1) & =n \\
I_{n+2}(2) & =n(n+3) / 2 \\
I_{n+3}(3) & =(n+3)\left(n^{2}+6 n+2\right) / 6 \\
I_{n+4}(4) & =(n+4)(n+5)\left(n^{2}+9 n+6\right) / 24 \\
I_{n+5}(5) & =(n+4)(n+11)\left(n^{3}+15 n^{2}+66 n+60\right) / 120 \\
I_{n+6}(6) & =(n+5)(n+6)\left(n^{4}+34 n^{3}+401 n^{2}+1844 n+2160\right) / 720 \\
I_{n+7}(7) & =\left(n^{7}+63 n^{6}+1645 n^{5}+22995 n^{4}+184534 n^{3}+841302 n^{2}+1983540 n+1809360\right) / 5040
\end{aligned}
$$

Suppose that $I_{n+k}(k)=\sum_{i=0}^{k} a_{k i} n^{i}$. It can be shown that the constant term of the polynomial $P_{h+1}(n)$, where $h \geq 0$, is zero. Thus, we can write $P_{h+1}(n)=\sum_{j=1}^{h+1} p_{h+1, j} n^{j}$. From the proof of Theorem 3 we have

$$
I_{n+k+1}(k+1)=I_{k+1}(k+1)+\sum_{i=0}^{k} \sum_{h=0}^{i} \sum_{j=1}^{h+1}\binom{i}{h} a_{k i} p_{h+1, j} n^{j}
$$

Therefore, if $I_{n+k+1}(k+1)=\sum_{i=0}^{k+1} a_{k+1, i} n^{i}$, then the coefficients of $I_{n+k+1}(k+1)$ is related to the coefficients of $I_{n+k}(k)$ and $P_{h+1}(n)$ and we have

$$
a_{k+1, l}= \begin{cases}I_{k+1}(k+1), & \text { if } l=0 \\ \sum_{i=l-1}^{k} \sum_{h=l-1}^{i}\binom{i}{h} a_{k i} p_{h+1, l}, & \text { if } 1 \leq l \leq k \\ \frac{1}{(k+1)!}, & \text { if } l=k+1\end{cases}
$$

As a consequence of the previous theorem we have the following corollary.
Corollary 4. For each real number x we have $\sum_{j=0}^{\infty} \lim _{n \rightarrow \infty} I_{n}(j)\left(\frac{x}{n}\right)^{j}=e^{x}$.
From Euler's pentagonal number theorem we have

$$
Q(z)=\prod_{j=1}^{\infty}\left(1-z^{j}\right)=\sum_{i \in \mathbb{Z}}(-1)^{i} z^{i(3 i-1) / 2}
$$

Set $q_{0}=Q(1 / 2), q_{1}=Q^{\prime}(1 / 2)$ and $q_{2}=Q^{\prime \prime}(1 / 2) / 2$.
Corollary 5. For each $k, l \geq 1$,

$$
\frac{I_{n+l}(n)}{I_{n+k}(k)}=\frac{2^{2 n+l-1} k!}{\sqrt{\pi} n^{k+1 / 2}}\left(q_{0}-\frac{8 q_{0} l^{2}+2\left(q_{1}-q_{0}\right) l+q_{2}-2 q_{1}+\left(1+8 k!a_{k, k-1}\right) q_{0}}{8 n}+O\left(n^{-2}\right)\right) .
$$

Proof. If $k \geq 2$ then

$$
\begin{aligned}
I_{n+k}(k) & =\frac{n^{k}}{k!}\left(1+\frac{a_{k, k-1} k!}{n}+\frac{1}{n^{2}} \sum_{i=0}^{k-2} \frac{a_{k i} k!}{n^{k-i-2}}\right) \\
& =\frac{n^{k}}{k!}\left(1+\frac{a_{k, k-1} k!}{n}+O\left(n^{-2}\right)\right) .
\end{aligned}
$$

If $k=1$ then we have the same result. Combining this with the result of Louchard and Prodinger, which is

$$
I_{n+l}(n)=\frac{2^{2 n+l-1}}{\sqrt{\pi n}}\left(q_{0}-\frac{8 q_{0} l^{2}+2\left(q_{1}-q_{0}\right) l+q_{2}-2 q_{1}+q_{0}}{8 n}+O\left(n^{-2}\right)\right)
$$

we obtain the desired asymptotic formula.
Let k and l be two fixed positive integers. We can see that after a sufficiently large number of terms, the sequence $\left\{I_{n+l}(n): n \geq 0\right\}$ increases faster than the sequence $\left\{I_{n+k}(k): n \geq 0\right\}$. Indeed, from Corollary 5

$$
\lim _{n \rightarrow \infty} \frac{I_{n+k}(k)}{I_{n+l}(n)}=0
$$

3 Inversion numbers and integrals

We will use Equation (1) to prove algebraically that the generating function of the sequence $\left\{I_{n}(k): k=\right.$ $\left.0,1, \ldots,\binom{n}{2}\right\}$ is

$$
\begin{equation*}
\Phi_{n}(x)=\sum_{k=0}^{\binom{n}{2}} I_{n}(k) x^{k}=\prod_{k=1}^{n} \sum_{i=0}^{k-1} x^{i} . \tag{5}
\end{equation*}
$$

It can be easily verified that Equation (5) holds if $n=1,2$. Suppose $n \geq 3$. Then

$$
\begin{aligned}
\Phi_{n-1}(x) \sum_{j=0}^{n-1} x^{j} & =\left(\begin{array}{c}
\binom{n-1}{2} \\
i=0
\end{array} I_{n-1}(i) x^{i}\right)\left(\sum_{j=0}^{n-1} x^{j}\right) \\
& =\sum_{k=0}^{\binom{n}{2}}\left(\sum_{i+j=k} I_{n-1}(i)\right) x^{k} \\
& =\sum_{k=0}^{\binom{n}{2}}\left(\sum_{i=\max \{0, k-n+1\}}^{\min \left\{k,\binom{n-1}{2}\right\}} I_{n-1}(i)\right) x^{k} .
\end{aligned}
$$

From this, we get $\Phi_{n-1}(x) \sum_{j=0}^{n-1} x^{j}=\Phi_{n}(x)$. Using this and an induction argument proves 5 . .
For each multi-index $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, where each α_{i} is a nonnegative integer, we define $\alpha!=$ $\alpha_{1}!\cdots \alpha_{n}$! and $|\alpha|=\alpha_{1}+\cdots+\alpha_{n}$. The following lemma is the generalized Leibniz's rule for differentiation.

Lemma 6. If f_{1}, \ldots, f_{n} are analytic complex valued functions in an open set $U \subset \mathbb{C}$, then

$$
\frac{d^{m}}{d z^{m}} \prod_{j=1}^{n} f_{j}(z)=\sum_{|\alpha|=m} \frac{m!}{\alpha!} \prod_{j=1}^{n} f_{j}^{\left(\alpha_{j}\right)}(z)
$$

for all $m \in \mathbb{N}$ and for all $z \in U$.
Proof. We prove the lemma by induction on m. Notice that the lemma is clear if $m=1$. Suppose that the lemma holds for $m=k$. Now we show that the lemma is true for $m=k+1$. Using the induction hypothesis we get

$$
\begin{aligned}
\frac{d^{k+1}}{d z^{k+1}} \prod_{j=1}^{n} f_{j}(z) & =\frac{d}{d z} \sum_{|\alpha|=k} \frac{k!}{\alpha!} \prod_{j=1}^{n} f_{j}^{\left(\alpha_{j}\right)}(z) \\
& =\sum_{|\alpha|=k} \sum_{|\beta|=1} \frac{k!}{\alpha!} \prod_{j=1}^{n} f_{j}^{\left(\alpha_{j}+\beta_{j}\right)}(z)
\end{aligned}
$$

If $\beta_{j}=1$ then

$$
\frac{(k+1)!}{(\alpha+\beta)!}=\frac{k+1}{\alpha_{j}+\beta_{j}} \cdot \frac{k!}{\alpha!}
$$

Now, let $\gamma=\alpha+\beta$. Then $|\gamma|=|\alpha|+|\beta|=k+1$ and

$$
\begin{aligned}
\frac{d^{k+1}}{d z^{k+1}} \prod_{j=1}^{n} f_{j}(z) & =\sum_{|\gamma|=k+1} \sum_{j=1}^{n} \frac{\gamma_{j}}{k+1} \cdot \frac{(k+1)!}{\gamma!} \prod_{j=1}^{n} f_{j}^{\left(\gamma_{j}\right)}(z) \\
& =\sum_{|\gamma|=k+1} \frac{(k+1)!}{\gamma!} \prod_{j=1}^{n} f_{j}^{\left(\gamma_{j}\right)}(z)
\end{aligned}
$$

This completes the proof of the lemma.
Theorem 7. Let $f: D \subset \mathbb{C} \rightarrow \mathbb{C}$ and suppose that f is analytic in an open set $U \subset D$. If $m \in \mathbb{N}$ and \mathcal{C} is a closed simple contour lying inside U and z_{0} is any point interior to \mathcal{C}, then for all positive integer k we have

$$
\begin{equation*}
\int_{\mathcal{C}} \frac{1}{\left(z-z_{0}\right)^{k+1}}\left(\prod_{l=1}^{m} \sum_{i=0}^{l-1}[f(z)]^{i}\right) d z=\frac{2 \pi i}{k!} \sum_{1 \leq j \leq\binom{ m}{2}} I_{m}(j) M_{j}\left(z_{0}\right), \tag{6}
\end{equation*}
$$

where

$$
M_{j}\left(z_{0}\right)=\sum_{\left|\left(\alpha_{1}, \ldots, \alpha_{j}\right)\right|=k} \frac{k!}{\alpha_{1}!\cdots \alpha_{j}!} f^{\left(\alpha_{1}\right)}\left(z_{0}\right) \cdots f^{\left(\alpha_{j}\right)}\left(z_{0}\right)
$$

Proof. Letting $x=f(z)$ in Equation (5), dividing by $\left(z-z_{0}\right)^{k+1}$ and then integrating we get

$$
\begin{equation*}
\int_{\mathcal{C}} \frac{1}{\left(z-z_{0}\right)^{k+1}}\left(\prod_{l=1}^{m} \sum_{i=0}^{l-1}[f(z)]^{i}\right) d z=\sum_{0 \leq j \leq\binom{ m}{2}} I_{m}(j) \int_{\mathcal{C}} \frac{[f(z)]^{j}}{\left(z-z_{0}\right)^{k+1}} d z \tag{7}
\end{equation*}
$$

By Cauchy's integral formula,

$$
\int_{\mathcal{C}} \frac{[f(z)]^{j}}{\left(z-z_{0}\right)^{k+1}} d z= \begin{cases}0, & \text { if } j=0 \\ \frac{2 \pi i}{k!} \cdot \frac{d^{k}\left(\left[f\left(z_{0}\right)\right]^{j}\right)}{d z^{k}}, & \text { if } j \geq 1\end{cases}
$$

Using the generalized Leibniz's rule for differentiation we get

$$
\begin{equation*}
\frac{d^{k}\left(\left[f\left(z_{0}\right)\right]^{j}\right)}{d z^{k}}=\sum_{\left|\left(\alpha_{1}, \ldots, \alpha_{j}\right)\right|=k} \frac{k!}{\alpha_{1}!\cdots \alpha_{j}!} f^{\left(\alpha_{1}\right)}\left(z_{0}\right) \cdots f^{\left(\alpha_{j}\right)}\left(z_{0}\right) \tag{8}
\end{equation*}
$$

for all $j \geq 1$. Hence, Equation (6) follows from Equations (7) and (8).
If we let $z_{0}=0, f(z)=z$ and $m=n+k$, we have the following corollary.
Corollary 8. Let k be a fixed positive integer. Then for each nonnegative integer n we have

$$
\int_{\mathcal{C}} \frac{(1+z)\left(1+z+z^{2}\right) \cdots\left(1+z+\cdots+z^{n+k-1}\right)}{z^{k+1}} d z=2 \pi i I_{n+k}(k)
$$

where \mathcal{C} is any simple closed contour containing the origin.
Example 9. Using the previous corollary we have

$$
\begin{aligned}
\int_{\mathcal{C}} \frac{(1+z)\left(1+z+z^{2}\right) \cdots\left(1+z+\cdots+z^{n}\right)}{z^{2}} d z & =2 n \pi i \\
\int_{\mathcal{C}} \frac{(1+z)\left(1+z+z^{2}\right) \cdots\left(1+z+\cdots+z^{n+1}\right)}{z^{3}} d z & =\left(n^{2}+3 n\right) \pi i \\
\int_{\mathcal{C}} \frac{(1+z)\left(1+z+z^{2}\right) \cdots\left(1+z+\cdots+z^{n+2}\right)}{z^{4}} d z & =\frac{\left(n^{3}+9 n^{2}+20 n+6\right) \pi i}{3}
\end{aligned}
$$

for all $n \geq 0$, where \mathcal{C} is any closed contour containing the origin.

4 Hankel and inverse binomial transforms

Let $A=\left\{a_{n}\right\}_{n=0}^{\infty}$ be a sequence. The inverse binomial transform of the sequence A is the sequence denoted by $B^{-1}(A)=\left\{b_{n}\right\}_{n=1}^{\infty}$ where b_{n} is defined by the formula

$$
b_{n}=\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k} a_{k}
$$

for all $n \geq 0$. Let $H=\left[h_{i j}\right]_{i, j \in \mathbb{N}}$, where $h_{i j}=a_{i+j-2}$. Thus

$$
H=\left[\begin{array}{cccc}
a_{0} & a_{1} & a_{2} & \cdots \\
a_{1} & a_{2} & a_{3} & \cdots \\
a_{2} & a_{3} & a_{4} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

The Hankel matrix H_{n} of order n of the sequence A is defined to be the $(n+1) \times(n+1)$ upper left submatrix of H, that is, $H_{n}=\left[h_{i j}\right]_{1 \leq i, j \leq n+1}$. Let h_{n} denote the determinant of the Hankel matrix H_{n} of order n. The sequence $H(A)=\left\{h_{n}\right\}_{n=0}^{\infty}$ is called the Hankel transform of the sequence A.

Some properties of the Hankel transform are discussed in [3] and [7. Further, Spivey and Steil [7] proved that the Hankel transform is invariant under falling k-binomial transform and since the inverse binomial transform is just a special type of a falling k-binomial transform, where $k=-1$, it follows that the Hankel transform is also invariant under inverse binomial transform. (For more details, we refer the reader to the work of Spivey and Steil [7.) Hence we have the following theorem.

Theorem 10. If $A=\left\{a_{n}\right\}_{n=0}^{\infty}$ is a sequence, then $H\left(B^{-1}(A)\right)=H(A)$.
Given a sequence $A=\left\{a_{k}\right\}_{k=0}^{\infty}$, the support of A is defined by $\operatorname{supp}(A)=\left\{k: a_{k} \neq 0\right\}$. The set of all real sequences having a finite support is denoted by c_{00}. Note that c_{00} is a vector space over \mathbb{R} under the usual componentwise addition and scalar multiplication.

The next two theorems characterize the inverse binomial transform and the Hankel transform of the sequence $\left\{I_{n+k}(k): n \geq 0\right\}$.
Theorem 11. For each $k \geq 1$, let $A_{k}=\left\{I_{n+k}(k): n \geq 0\right\}$ and $I_{n+k}(k)=\sum_{i=0}^{k} a_{k i} n^{i}$. Then $B^{-1}\left(A_{k}\right)=$ $\left\{b_{m}\right\}_{m=0}^{\infty} \in c_{00}$ and $b_{m}=m!\sum_{i=m}^{k} a_{k i} S(i, m)$, for all $1 \leq m \leq k$, where $S(i, m)$ is a Stirling number of the second kind, and $b_{m}=0$ for all $m>k$.

Proof. Let $m \geq 1$. Using the definition, we have

$$
b_{m}=a_{k 0} \sum_{n=0}^{m}(-1)^{m-n}\binom{m}{n}+\sum_{i=1}^{k} a_{k i}\left(\sum_{n=0}^{m}(-1)^{m-n}\binom{m}{n} n^{i}\right) .
$$

Note that we have

$$
\sum_{n=0}^{m}(-1)^{m-n}\binom{m}{n}=0
$$

and

$$
S(i, m)=\frac{1}{m!} \sum_{n=0}^{m}(-1)^{m-n}\binom{m}{n} n^{i}
$$

for all $1 \leq m \leq i$. Define Δ_{x} by $\Delta_{x}=x \frac{d}{d x}$. Then for $1 \leq i<m$

$$
\Delta_{x}^{i}(x-1)^{m}=\sum_{n=0}^{m}(-1)^{m-n}\binom{m}{n} n^{i} x^{n}
$$

Since $\Delta_{x}(x-1)^{m}=m x(x-1)^{m-1}$ then $(x-1)^{m-1}$ divides $\Delta_{x}(1-x)^{m}$. Suppose that $1 \leq i<m-1$ and $(x-1)^{m-i}$ divides $\Delta_{x}^{i}(x-1)^{m}$. Thus $\Delta_{x}^{i}(x-1)^{m}=(x-1)^{m-i} g_{i}(x)$ for some polynomial $g_{i}(x)$. Applying Δ_{x} once more, we get

$$
\Delta_{x}^{i+1}(x-1)^{m}=x \frac{d\left[(x-1)^{m-i} g_{i}(x)\right]}{d x}=x(m-i)(x-1)^{m-i-1} g_{i}(x)+x(x-1)^{m-i} g_{i}^{\prime}(x)
$$

Hence $(x-1)^{m-(i+1)}$ divides $\Delta_{x}^{i+1}(x-1)^{m}$. This shows that for all $m>i \geq 1$, we can find a polynomial $g_{i}(x)$ satisfying $\Delta_{x}^{i}(x-1)^{m}=(x-1)^{m-i} g_{i}(x)$. If we let $x=1$ we get

$$
\sum_{n=0}^{m}(-1)^{m-n}\binom{m}{n} n^{i}=\left.\Delta_{x}^{i}(x-1)^{m}\right|_{x=1}=0
$$

for all $m>i$. From these, we have

$$
b_{m}=m!\sum_{i=m}^{k} a_{k i} S(i, m)
$$

for all $1 \leq m \leq k$ and $b_{m}=0$ for all $m>k$. Therefore $\left\{b_{m}\right\}_{m=0}^{\infty} \in c_{00}$.
Now, $b_{k}=k!a_{k k} S(k, k)=1$. Therefore, the last nonzero term of $B^{-1}\left(A_{k}\right)$ is 1 . Let $A_{0}=\left\{I_{n}(0): n \geq\right.$ $1\}$. Then $A_{0}=\{1,1, \ldots\}$ and $B^{-1}\left(A_{0}\right)=\{1,0,0, \ldots\}$. From these it follows that $\left\{B^{-1}\left(A_{k}\right)\right\}_{k=0}^{\infty}$ forms a basis for c_{00}.

Example 12. Using the above theorem, we have

$$
\begin{aligned}
B^{-1}\left(A_{1}\right) & =\{0,1,0,0,0,0,0, \ldots\} \\
B^{-1}\left(A_{2}\right) & =\{0,2,1,0,0,0,0, \ldots\} \\
B^{-1}\left(A_{3}\right) & =\{1,5,4,1,0,0,0, \ldots\} \\
B^{-1}\left(A_{4}\right) & =\{5,15,14,6,1,0, \ldots\}
\end{aligned}
$$

Theorem 13. For each positive integer $k, H\left(A_{k}\right) \in c_{00}$. Furthermore, $\left\{H\left(A_{k}\right)\right\}_{k=0}^{\infty}$ forms a basis for c_{00}.

Proof. First, note that $H\left(A_{0}\right)=H\left(B^{-1}\left(A_{0}\right)\right)=B^{-1}\left(A_{0}\right)$. Suppose $k \geq 1$. Let $B^{-1}\left(A_{k}\right)=\left\{b_{m}\right\}_{m=0}^{\infty}$ and $H\left(B^{-1}(A)\right)=\left\{h_{n}\right\}_{n=0}^{\infty}$. From the previous theorem, we have $b_{m}=0$ for all $m>k$. Hence the $(m+1)$ st row of the m th order Hankel matrix H_{m} has only zero entries for all $m>k$. Consequently, the determinant of of H_{m} is zero for all $m>k$. Therefore $h_{m}=0$ for all $m>k$. Since $H(A)=H\left(B^{-1}(A)\right)$, it follows that the Hankel transform of A_{k} lies in c_{00}. Consider the Hankel matrix of $B^{-1}\left(A_{k}\right)$ of order k. Then we have $h_{i j}=0$ for all $i+j>k+2$ and $h_{i j}=1$ for all $i+j=k+2$. It follows that $h_{k}=-1$ if $k \equiv 1,2(\bmod 4)$ and $h_{k}=1$ if $k \equiv 0,3(\bmod 4)$. Therefore the last nonzero term of the Hankel transform of A_{k} is either -1 or 1 . Consequently, $\left\{H\left(A_{k}\right)\right\}_{k=0}^{\infty}$ is a basis for c_{00}.

Example 14. From Example 12 , we get the following

$$
\begin{aligned}
H\left(A_{1}\right) & =\{0,-1,0,0,0,0,0,0,0,0, \ldots\} \\
H\left(A_{2}\right) & =\{0,-4,-1,0,0,0,0,0,0, \ldots\} \\
H\left(A_{3}\right) & =\{1,-21,-25,1,0,0,0,0, \ldots\} \\
H\left(A_{4}\right) & =\{5,-155,-559,155,1,0, \ldots\} .
\end{aligned}
$$

In general, one can similarly prove the following theorem.
Theorem 15. For each $k \in \mathbb{N}$ let $p_{k}(n)$ be a polynomial in the variable n such that $\operatorname{deg} p_{k}(n)=k$. Let $A_{k}=\left\{p_{k}(n): n \in \mathbb{N}\right\}$. Then $B^{-1}\left(A_{k}\right), H\left(A_{k}\right) \in c_{00}$. Furthermore $\left\{B^{-1}\left(A_{k}\right)\right\}_{k=0}^{\infty}$ or $\left\{H\left(A_{k}\right)\right\}_{k=0}^{\infty}$ forms a basis for c_{00}.

References

[1] M. Aigner, Combinatorial Theory, Springer-Verlag, 1997.
[2] N. Eriksen, $(1+\epsilon)$-approximation of sorting by reversals and transpositions, Theor. Comput. Sci. 289 (2002), 517-529.
[3] J. Layman, The Hankel transform and some of its properties, J. of Integer Seq. 4 (2001), Article 01.1.5.
[4] G. Louchard and H. Prodinger, The number of inversions in permutations: A saddle point approach, J. of Integer Seq. 6 (2003), Article 03.2.8.
[5] D. Indong and G. Peralta, Inversions of permutations in symmetric, alternating and dihedral groups, J. of Integer Seq. 11 (2008), Article 08.4.3.
[6] B. H. Margolius, Permutations with inversions, J. of Integer Seq. 4 (2001), Article 01.2.4.
[7] M. Spivey and L. Steil, The k-binomial transform and the Hankel transform, J. of Integer Seq. 9 (2006), Article 06.1.1.

