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Abstract
Mixed and hybrid finite element discretizations for distributed optimal control prob-
lems governed by an elliptic equation are analyzed. A cost functional keeping track
of both the state and its gradient is studied. A priori error estimates and super-
convergence properties for the continuous and discrete optimal states, adjoint states,
and controls will be given. The approximating finite-dimensional systems will be
solved by adding penalization terms for the state and the associated Lagrange
multipliers. In general, performing optimization, discretization, hybridization, and
penalization in any order lead to the same optimality system. Numerical examples
based on the Raviart–Thomas finite elements will be presented.

Keywords Poisson equation · Optimal control · Mixed finite elements ·
Hybrid method · Post-processing · Penalty method · Error estimates
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1 Introduction

In this paper, we analyze mixed and hybrid finite element discretizations for the dis-
tributed optimal control of a linear elliptic problem with a homogeneous Dirichlet
boundary condition. For example, the state equation models stationary heat distri-
bution on a two-dimensional medium. We consider the following linear-quadratic
optimal control problem

min
q∈L2(Ω)

J (u, ∇u, q) := 1

2

∫
Ω

α|u − ud |2 + β|∇u − σ d |2 + γ |q|2 dx (1)
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subject to the state equation[ −Δu = f + q in Ω,

u = 0 on ∂Ω .
(2)

In (2), u = u(x) is the temperature of a certain material at the point x ∈ Ω . We
assume that Ω is an open and convex polygonal domain in R

2. The functions ud :
Ω → R and σ d : Ω → R

2 are given desired temperature distribution and heat flux,
and the precise function spaces where they belong will be stated below. Moreover,
f : Ω → R represents an external heat source or sink, while q : Ω → R is the
control. The parameters in the cost functional J are assumed to satisfy α, β ≥ 0
with α + β > 0 and γ > 0. For simplicity of exposition, the thermal diffusivity is
normalized to 1.

In the case β = 0, a typical discretization scheme for the optimal control problem
(1) is the H 1-conforming scheme using piecewise Lagrange polynomials. However,
if the gradient of the state variable is included in the objective functional, then mixed
methods are advantageous in the sense that both the state variable and its gradient
can be approximated at the same order of accuracy. If one wishes to obtain super-
convergence for the gradient in the H 1-conforming scheme, then post-processing
is necessary. Mixed and hybrid methods for approximating the solutions of partial
differential equations and their applications to optimal control problems have been
well studied in the literature. For instance, the reader may consult to [3, 9, 12, 26]
for elliptic problems, [10, 27] for parabolic problems, and [5, 13–15, 17, 19, 25] for
hyperbolic problems.

In this work, we want to extend the study under a post-processing method and
penalization of the mixed and hybrid finite element methods. Specifically, by apply-
ing a post-processing strategy developed by Arnold and Brezzi [1], we prove the
super-convergence properties of the optimal controls, as well as the correspond-
ing optimal states and adjoint states. The advantage of the hybrid formulation is
to simplify the construction of basis functions by introducing appropriate Lagrange
multipliers relaxing the continuity requirement across the edges of the elements. At
the theoretical level, the solutions of the mixed and hybrid formulations coincide;
however, they differ with respect to the implementation aspect, for instance, the total
degrees of freedom for the flux is different.

From the practical point of view, the disadvantage of the hybrid finite element
method is the additional degrees of freedom. For example, in the case of the Raviart–
Thomas finite elements, these additional unknowns correspond to the Lagrange
multipliers on the interior edges of the subdivision of the domain. There are several
methods in order to compute numerically the resulting saddle point problems, for
instance, the mixed-Schur complement, mixed-Lagrangian, conjugate gradient, and
Uzawa algorithms can be utilized.

We shall add regularization terms to the finite-dimensional system and by reduc-
tion, the resulting system will be in terms of the discretized scalar state only.
Moreover, the associated matrix is symmetric and positive-definite; hence, conjugate
gradient methods are applicable in this case. This penalization strategy is widely used
in the discretization of the Stokes equation. Of course, the additional error due to this
penalization will be studied as well. Both at the continuous and discrete levels, the
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analysis of mixed variational problems under certain perturbations has been studied
by Bercovier [6].

For the proposed numerical scheme, the order of performing optimization, dis-
cretization, hybridization, and penalization is immaterial, and they lead to the same
optimality system. A more detailed explanation will be given in the succeeding
sections.

The plan of the paper is as follows: In Section 2, we briefly discuss the mixed and
hybrid formulations of the state equation and the corresponding discretizations by the
Raviart–Thomas finite elements. A priori error estimates for the primal, adjoint, and
control variables in the mixed, hybrid, and penalized discretizations will be developed
in Sections 3 and 4. Finally, in Section 5, we present a gradient-based algorithm
approximating the optimal control and provide numerical examples that illustrate the
results of the paper.

2 Weak formulation and discretization of the state equation

2.1 Weak formulation

In this section, we briefly discuss the mixed formulation of the state equation (2) and
recall the standard existence, uniqueness, and stability of solutions with respect to
the data. Also, the corresponding conforming finite element discretization through
the Raviart–Thomas finite elements as well as its hybridized form will be presented.
For more details, we refer the reader to [8, 22, 23].

First, let us define the appropriate functional spaces in the weak formulation.
Given an open and convex two-dimensional polygonal domain Ω , we consider the
Hilbert spacesW = L2(Ω) and V = H (div, Ω) := {σ ∈ L2(Ω)2 : div σ ∈ L2(Ω)},
where the latter space is equipped with the graph norm

‖σ‖div :=
(
‖σ‖2 + ‖div σ‖2

) 1
2
,

as the state spaces for the temperature and heat flux. We denote the space of controls
by Q = L2(Ω). The norm and inner product in L2(Ω) will be denoted by (·, ·) and
‖ · ‖, respectively. For convenience, we shall also use the same notation for the norm
and inner product ofL2-spaces on arbitrary measurable domains. The typical notation
for the Sobolev spaces Hk(Ω) and Hk

0 (Ω) will be utilized here and ‖ · ‖k denotes
the associated Sobolev norms. Furthermore, we let L2(Ω) = L2(Ω) × L2(Ω) and
H k(Ω) = Hk(Ω) × Hk(Ω).

Introducing the temperature flux σ := ∇u as a new state variable, we can recast
the state equation (2) as follows

[
σ − ∇u = 0 in Ω,

div σ = − (f + q) in Ω .

Define the continuous bilinear form b : V × W → R by

b(σ , u) = (div σ , u).
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The weak formulation of the Poisson equation now reads as follows: Given f ∈ W

and q ∈ Q, find (σ , u) ∈ V × W that satisfies[
(σ , τ ) + b(τ , u) = 0 ∀τ ∈ V ,

b(σ , v) = − (f + q, v) ∀v ∈ W .
(3)

Observe that in this case, the homogeneous Dirichlet boundary condition now turns
as a natural boundary condition in the mixed formulation. It is well-known that the
pair (V , W) satisfies the inf-sup condition

inf
u∈W\{0} sup

σ∈V \{0}
b(σ , u)

‖σ‖div‖u‖ ≥ c > 0. (4)

In what follows, we shall consider the following general variational problem in
order to accommodate also for the analysis of the adjoint equation. Given f ∈ L2(Ω)

and g ∈ W , find (σ , u) ∈ V × W such that[
(σ , τ ) + b(τ , u) = (f , τ ) ∀τ ∈ V ,

b(σ , v) = (g, v) ∀v ∈ W .
(5)

This problem corresponds to the mixed formulation of the elliptic boundary value
problem [ −Δu = divf − g in Ω,

u = 0 on Ω .
(6)

Using the continuous embedding L2(Ω) ⊂ V ∗, where V ∗ denotes the dual of
V , we have the following existence, uniqueness, and stability of solutions to (5) in
virtue of the Brezzi splitting theorem. For a proof, we refer the reader to [8]. Further-
more, by the divergence theorem and elliptic regularity theory, one can show further
regularity of the component u.

Proposition 1 Given f ∈ L2(Ω) and g ∈ W , the variational system (5) has a
unique solution (σ , u) ∈ V × W and there exists a constant C > 0 independent of
the data and the solution such that

‖σ‖div + ‖u‖ ≤ C(‖f ‖ + ‖g‖). (7)

Moreover, if f ∈ V , then ∇u = σ −f and u ∈ H 1
0 (Ω)∩H 2(Ω) is the weak solution

(6).

2.2 Discretization

In this subsection, we present the mixed and hybrid finite element discretizations for
the variational problem (5). Let {Th}0<h<h0 be a shape-regular family of triangula-
tions ofΩ parametrized by their mesh sizes h = maxK∈Th

hK , where hK is the length
of the largest edge of K . This means that there exists a constant C > 0 such that
h ≤ C�K and hK ≤ CϑK for every K ∈ Th and 0 < h < h0, where �K and ϑK are
the radii of the largest inscribed and the smallest circumscribed balls of K̄ , respec-
tively. In particular, this implies that h ≤ ChK for every K ∈ Th. In other words, the
length of the edges of the triangles in the mesh is equivalent to the mesh size.
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Given a set S and a nonnegative integer k, we denote by Pk(S) the space of all
polynomials in S of degree at most k. For each triangle K ∈ Th, let RTk(K) be the
kth-order Raviart–Thomas finite element on K , that is,

RTk(K) = Pk(K)2 ⊕ xP ◦
k (K),

where P ◦
k (K) is the space of homogeneous polynomials of degree k in K .

Associated with a triangulation Th, we define the following standard finite element
spaces

V k
h = {σ h ∈ V : σ h|K ∈ RTk(K) ∀K ∈ Th}

Wk
h = {uh ∈ W : uh|K ∈ Pk(K) ∀K ∈ Th}.

Define the Fortin projection operator Πk
h : V → V k

h such that∫
∂K

(
Πk

hσ · ν
)

λh ds =
∫

∂K

(σ · ν)λh ds ∀λh ∈ Pk(∂K),

∫
K

Πk
hσ · uh dx =

∫
K

σ · uh dx ∀uh ∈ Pk−1(K) × Pk−1(K),

for every K ∈ Th and σ ∈ V , where we set P−1(K) = {0}. For the existence of Πk
h,

we refer to [8]. Also, define the L2-projection operator P k
h : W → Wk

h by∫
K

(P k
h u)uh dx =

∫
K

uuh dx ∀uh ∈ Wk
h ,

for every u ∈ W and K ∈ Th. It is well-known that we have P k
h div = divΠk

h from
V into Wk

h . Moreover, the following projection errors hold

‖P k
h u − u‖ ≤ Chk+1‖u‖k+1 (8)

‖Πk
hσ − σ‖ ≤ Chk+1‖σ‖k+1 (9)

‖divΠk
hσ − div σ‖ ≤ Chk+1‖div σ‖k+1, (10)

as long as the regularity requirements u ∈ Hk+1(Ω), σ ∈ H k+1(Ω), and div σ ∈
Hk+1(Ω) are satisfied.

Similar to the continuous case (4), the pair
(
V k

h, W
k
h

)
also satisfies the following

discrete inf-sup condition

inf
uh∈Wk

h \{0}
sup

σh∈V k
h\{0}

b(σ h, uh)

‖σ h‖div‖uh‖ ≥ c (11)

for some c > 0 independent of h.
The mixed finite element discretization of (5) is given as follows: Given f ∈

L2(Ω) and g ∈ W , find (σ h, uh) ∈ V k
h × Wk

h such that
[

(σ h, τh) + b(τh, uh) = (f , τh) ∀τh ∈ V k
h,

b(σ h, vh) = (g, vh) ∀vh ∈ Wk
h .

(12)

In virtue of the definition of the discrete spaces, V k
h ⊂ V and Wk

h ⊂ W , thus (12) is a
conforming approximation of (5). Moreover, thanks to the discrete inf-sup condition
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(11), we have the following well-posedness result. Again, we refer to [8] for a proof
of this proposition.

Proposition 2 Given f ∈ L2(Ω) and g ∈ W , (12) has a unique solution (σ h, uh) ∈
V k

h × Wk
h and there exists a constant C > 0 independent of h, the data, and the

solution such that

‖σ h‖div + ‖uh‖ ≤ C(‖f ‖ + ‖g‖). (13)

Now, let us consider the hybridization of the finite element approximation (12).
For this purpose, we denote by Eh and E i

h the set of all edges and interior edges in the
triangulation Th, respectively. Define the kth-order discontinuous Raviart–Thomas
finite element space

Y k
h =

{
σ h ∈ L2(Ω) : σ h|K ∈ RTk(K) ∀K ∈ Th

}

and the space of Lagrange multipliers associated with the edges of the triangulation

Lk
h =

{
λh ∈ L2(Eh) : λh|e ∈ Pk(e) ∀e ∈ Eh

}
.

Let Mk
h = {

λh ∈ Lk
h : λh|e = 0 ∀e ∈ Eh \ E i

h

}
be the elements in Lk

h that vanish on
the boundary edges. We denote by div σ h the piecewise divergence of σ h ∈ Y k

h, that
is, div σ h|K = div(σ h|K) for every K ∈ Th. Given λh ∈ Lk

h, consider the norm

‖λh‖2h :=
∑

K∈Th

∫
∂K

hK |λh|2 ds.

By shape-regularity of the triangulations, ‖λh‖h is equivalent to h
1
2 ‖λh‖.

In addition, let us define the bilinear operators bh : Y k
h × Wk

h → R and dh :
Y k

h × Mk
h → R according to

bh(σ h, uh) =
∑

K∈Th

∫
K

(div σ h)uh dx

dh(σ h, λh) = −
∑

K∈Th

∫
∂K

σ h · νKλh ds,

where νK is the unit normal vector on ∂K pointing outward fromK . Likewise, define
the projection operator πk

h : H 1(Ω) → Lk
h by∫

e

(
πk

hu
)

λh ds =
∫

e

uλh ds ∀λh ∈ Pk(e),

for every e ∈ Eh.
With the above notations, the hybridization of (12) is given as follows: Given

f ∈ L2(Ω) and g ∈ W , find (σ h, uh, λh) ∈ Y k
h × Wk

h × Mk
h such that⎡

⎣ (σ h, τh) + bh(τh, uh) + dh(τh, λh) = (f , τh) ∀τh ∈ Y k
h,

bh(σ h, vh) = (g, vh) ∀vh ∈ Wk
h ,

dh(σ h, μh) = 0 ∀μh ∈ Mk
h .

(14)
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Let us recall that σ h ∈ Y k
h satisfies dh(σ h, μh) = 0 for every μh ∈ Mk

h if and only
if σ h ∈ V k

h. Hence, it follows that if (σ h, uh, λh) is a solution of (14), then (σ h, uh)

is a solution of (12). On the other hand, the existence and uniqueness of solution
to (14) follow from the fact that the corresponding matrix for the finite-dimensional
square system is injective. For the details, we refer to [1].

In particular, the solution of (14) satisfies the stability estimate (13). Furthermore,
the Lagrange multiplier λh satisfies the stability estimate

‖λh‖h ≤ C(h‖f ‖ + h‖σ h‖ + ‖uh‖). (15)

To see this, let us first recall from [23, Sections 3 and 4] or [1, page 13] that there
exists ζ h ∈ Y k

h such that ζ h · ν|e = λh|e for every edge e in Th and there exists a
constant C > 0 independent of λh and h such that

h2
∑

K∈Th

∫
K

|∇ζ h|2 dx + ‖ζ h‖2 ≤ C‖λh‖2h. (16)

Taking ζ h as the test function in (14), and utilizing (16) yields

‖λh‖2 = − dh(ζ h, λh) = (σ h, ζ h) + bh(ζ h, uh) − (f , ζ h)

≤ C(‖f ‖ + ‖σ h‖ + h−1‖uh‖)‖λh‖h

and therefore, we have (15).
Let us recall the post-processing method described in [1]. Let k be an even integer.

From [1, Lemma 2.1], we can deduce that for each (λh, uh) ∈ Lk
h × Wk

h , there exists
a unique ũh ∈ Wk+1

h such that

∑
e∈Eh

∫
e

(̃uh − λh)μh ds = 0 ∀μh ∈ Lk
h,

∫
Ω

(̃uh − uh)vh dx = 0 ∀vh ∈ Wk−2
h ,

where we set W−2
h = {0}. Therefore, Rk+1

h : (λh, uh) �→ ũh is a well-defined map
from Lk

h × Wk
h into Wk+1

h . We shall call Rk+1
h as the Arnold–Brezzi post-processing

operator. Moreover, it holds that

‖Rk+1
h (λh, uh)‖ ≤ C(‖λh‖h + ‖uh‖). (17)

If k = 0, then we simply write R1
hλh for R1

h(λh, uh) since the post-processing
operator R1

h is independent of the second argument.
The assumption that k is even was imposed in order to have a unified proof for the

above properties of the operator Rk+1
h . For odd k, one needs to construct ad hoc non-

conforming approximation in order for such properties of Rk+1
h to hold. For example,

the cases where k = 1 or k = 3 have been considered in [1].
To provide a priori error estimates for the discrete and continuous primal and dual

variables, we shall often use the following general stability theorem. All throughout
this paper, we shall assume additional regularity on the optimal primal states, dual
states, and control. By classical elliptic regularity theory, these conditions can be
achieved if the convex domain Ω is smooth enough and the desired states are also
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sufficiently regular. Note that it is also possible to manufacture solutions that satisfy
such smoothness properties on rectangular domains, see for instance the discussion
in Section 5 that involves eigenfunctions.

Theorem 1 Suppose that g, y ∈ W , f ∈ V , f h ∈ V k
h, and divf h = P k

h divf . Let
(σ , u) ∈ V × W be the solution of[

(σ , τ ) + b(τ , u) = (f , τ ) ∀τ ∈ V ,

b(σ , v) = (g, v) ∀v ∈ W,
(18)

and (σ h, uh, λh) ∈ Y k
h × Wk

h × Mk
h be the solution of

⎡
⎣ (σ h, τh) + bh(τh, uh) + dh(τh, λh) = (f h, τh) ∀τh ∈ Y k

h,

bh(σ h, vh) = (y, vh) ∀vh ∈ Wk
h ,

dh(σ h, μh) = 0 ∀μh ∈ Mk
h .

(19)

Suppose that σ , f ∈ H k+2(Ω) and g ∈ Hk+1(Ω). Then, there exists a constant
C > 0 independent of h, the data, and on the continuous and discrete solutions such
that

‖σ − σ h‖div + ‖u − uh‖ ≤ Chk+1‖σ‖k+2 + C(‖f − f h‖ + ‖g − y‖) (20)

‖P k
h u − uh‖ ≤ Chk+2(‖g‖k+1 + ‖divf ‖k+1) (21)

+ C‖P k
h g − P k

h y‖ + Ch(‖f − f h‖ + ‖σ − σ h‖).

Proof First, let us observe that the solution of (18) satisfies the following system of
variational equations:

⎡
⎣

(
Πk

hσ , τh

) + bh

(
τh, P

k
h u

) + dh

(
τh, π

k
hu

) = (
f + Πk

hσ − σ , τh

) ∀τh ∈ Y k
h,

bh

(
Πk

hσ , vh

) = (g, vh) ∀vh ∈ Wk
h ,

dh

(
Πk

hσ , μh

) = 0 ∀μh ∈ Mk
h .

(22)

Consider the difference (δσ h, δuh, δλh) := (
Πk

hσ − σ h, P
k
h u − uh, π

k
hu − λh

)
of the solutions for (22) and (19). By taking the difference of the variational
formulations, we obtain the following system:⎡

⎣ (δσ h, τh) + bh(τh, δuh) + dh(τh, δλh) = (rh, τh) ∀τh ∈ Y k
h,

bh(δσ h, vh) = (g − y, vh) ∀vh ∈ Wk
h ,

dh(δσ h, μh) = 0 ∀μh ∈ Mk
h,

(23)

where rh = f − f h + Πk
hσ − σ . Due to the stability estimate (13), we have

‖δσ h‖div + ‖δu‖ ≤ C(‖f − f h‖ + ‖Πk
hσ − σ‖ + ‖g − y‖). (24)

By rewriting σ − σ h and u − uh as follows:

σ − σ h =
(
σ − Πk

hσ
)

+ Πk
hσ − σ h =

(
σ − Πk

hσ
)

+ δσ h

u − uh =
(
u − P k

h u
)

+
(
P k

h u − uh

)
=

(
u − P k

h u
)

+ δuh,

we can deduce (20) from (8), (9), and (24).
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The proof of (21) is based on a standard duality argument. Let z ∈ H 1
0 (Ω) ∩

H 2(Ω) be the weak solution of the elliptic boundary value problem Δz = δuh in Ω

with homogeneous Dirichlet boundary condition z = 0 on ∂Ω , and define ϕ = ∇z.
By standard regularity theory, it holds that

‖ϕ‖1 + ‖z‖2 ≤ C‖δuh‖. (25)

Taking Πk
hϕ ∈ V k

h ⊂ Y k
h as the test function in (23), using the definition of the

Fortin projection, and invoking the fact that ϕ changes signs on opposite sides of
each interior edges, we have

dh

(
Πk

hϕ, δλh

)
= −

∑
K∈Th

∫
∂K

ϕ · νKδλh ds = 0,

and thus we obtain the following:

‖δuh‖2 =
(
f − f h, Π

k
hϕ

)
−

(
Πk

hϕ, σ − σ h

)

=
(
f − f h, Π

k
hϕ − ϕ

)
−

(
Πk

hϕ − ϕ, σ − σ h

)

−(∇z, σ − σ h) + (∇z, f − f h). (26)

From the divergence theorem, it follows that

− (∇z, σ − σ h) = (z, div σ − div σ h) −
∑

K∈Th

∫
∂K

(σ − σ h) · νKz ds.

Note that σ h ∈ V k
h according to [1, Lemma 1.2]. The above boundary terms vanish

due to the fact that both σ and σ h are in V . Hence, according to div σ = g and
div σ h = P k

h y, we deduce that

−(∇z, σ − σ h) =
(
g − P k

h y, z
)

=
(
g − P k

h g, z
)

+
(
P k

h g − P k
h y, z

)

=
(
g − P k

h g, z − P k
h z

)
+

(
P k

h g − P k
h y, z

)
.

As a result, the following estimate holds

|(∇z, σ − σ h)| ≤ C
(
hk+2‖g‖k+1 + ‖P k

h g − P k
h y‖

)
‖z‖1. (27)

Applying the same line of arguments and the assumption that divf h = P k
h divf ,

− (∇z, f − f h) = (divf − divf h, z) =
(
divf − P k

h divf , z − P k
h z

)
,

and therefore, it holds that

|(∇z, f − f h)| ≤ Chk+2‖divf ‖k+1‖z‖1. (28)

Since ‖Πk
hϕ − ϕ‖ ≤ Ch‖ϕ‖1, we have

|
(
f − f h, Πk

hϕ − ϕ
)

| + |
(
Πk

hϕ − ϕ, σ − σ h

)
| ≤ Ch(‖f − f h‖ + ‖σ − σ h‖)‖ϕ‖1. (29)

Using (27)–(29) and (25) in (26) yields (21).
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The following theorem deals with the error between the post-processed state and
the component u of the solution. We would like to emphasize that the proofs of the
estimates below are independent of the proofs of the estimates given in the previous
theorem.

Theorem 2 Suppose that f , f h ∈ L2(Ω) and g, y ∈ W . Let (σ , u) and (σ h, uh, λh)

be the solutions of the variational equations in Theorem 1. Then, there exists a
constant C > 0 independent of h, the data, and on the solutions such that

‖πk
hu − λh‖h ≤ C

(
‖P k

h u − uh‖ + h‖σ − σ h‖ + h‖f − f h‖
)
. (30)

Moreover, if k is an even integer, then it holds that

‖u − Rk+1
h (λh, uh)‖ ≤ C

(
‖πk

hu − λh‖h + ‖P k
h u − uh‖

)
+ Chk+2‖u‖k+2. (31)

Proof We utilize the notations in the proof of the preceeding theorem. Similar to the
proof of (15), choose ζ h ∈ Y k

h such that ζ h · ν = δλh on each interior edge of the
triangulation and such that

h2
∑

K∈Th

∫
K

|∇ζ h|2 dx + ‖ζ h‖2 ≤ C‖δλh‖2h.

Taking ζ h as the test function in (23), we have

‖δλh‖2 = − dh(ζ h, δλh) = (σ − σ h, ζ h) + bh(ζ h, δuh) − (f − f h, ζ h),

and by the Cauchy–Schwarz inequality and the above estimate for ζ h, this implies
(30).

Consider the nonconforming approximation ûh = Rk+1
h

(
πk

hu, P k
h u

) ∈ Wk+1
h . By

standard scaling argument, see [16] for instance, we have

‖u − ûh‖ ≤ Chk+2‖u‖k+2. (32)

According to the linearity of the Arnold–Brezzi post-processing operator and the fact
that P k−2

h u = P k−2
h (P k

h u), we have ûh − Rk+1
h (λh, uh) = Rk+1

h (δλh, δuh), and
consequently, utilizing the estimate (32) along with the boundedness of the operator
Rk+1

h given in (17), we obtain (31).

Remark 1 Combining (30) and (31), we obtain

‖u−Rk+1
h (λh, uh)‖ ≤ C

(
‖P k

h u − uh‖ + h‖σ − σ h‖ + h‖f − f h‖
)
+Chk+2‖u‖k+2,

provided that u ∈ Hk+2(Ω). Therefore, in order to prove super-convergence of the
post-processed state Rk+1

h (λh, uh) to u, it is enough to establish super-convergence
of the discrete solution uh to the projection P k

h u of u.
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3 Error estimates for the primal, adjoint, and control variables

The goal of the current section is to recast the optimal control problem (1) in its
mixed and hybrid formulations given in the previous section. We then address the
well-posedness of the optimal control problem. Finally, we shall prove a priori error
estimates for the continuous and discrete optimal states, adjoint states, and controls.

With the mixed formulation of the Poisson equation, the optimal control problem
(1) can be expressed as

min
q∈Q

J(u, σ , q) subject to (3). (33)

Introducing the control-to-state map q �→ (σ , u) = (σ (q), u(q)) : L2(Ω) → V ×
L2(Ω), where (σ (q), u(q)) is the solution of (3) for a given control q, as well as the
reduced cost j : Q → R by j (q) = J (u(q), σ (q), q), the constrained optimization
problem (33) can be equivalently formulated as an unconstrained minimization in Q

as

min
q∈Q

j (q). (34)

The derivative of j at q ∈ Q in the direction δq ∈ Q is given by

j ′(q)δq = α(u(q) − ud, u(δq)) + β(σ (q) − σ d , σ (δq)) + γ (q, δq).

Introducing the adjoint variable (ϕ(q), w(q)) = (ϕ, w) ∈ V × W solving the
problem [

(ϕ, ψ) + b(ψ, w) = − β(σ (q) − σ d , ψ) ∀ψ ∈ V ,

b(ϕ, φ) = − α(u(q) − ud, φ) ∀φ ∈ W,
(35)

we can express the above directional derivative as

j ′(q)δq = (γ q + w(q), δq).

Take note that the solution of the variational system (35) satisfies divϕ(q) =
−α(u(q) − ud), and if σ d ∈ V , then w(q) ∈ H 1

0 (Ω) ∩ H 2(Ω) is the weak solution
of the following boundary value problem:[ −Δw(q) = α(u(q) − ud) − βdiv(σ (q) − σ d) in Ω,

w(q) = 0 on ∂Ω .
(36)

The following well-posedness result can be established using standard methods in
linear-quadratic optimal control problems, see [24]. Moreover, the first-order neces-
sary optimality condition j ′(q̄)δq = 0 for all δq ∈ Q for the optimal control q̄ is
also sufficient.

Theorem 3 Given f ∈ L2(Ω), ud ∈ L2(Ω), and σ d ∈ L2(Ω), the optimal con-
trol problem (33) has a unique solution (q̄, σ̄ , ū) ∈ Q × V × W , where (σ̄ , ū) =
(σ (q̄), u(q̄)) is the corresponding optimal state. Moreover, if (ϕ̄, w̄) = (ϕ(q̄), w(q̄))

is the associated optimal adjoint state, then q̄ = −γ −1w̄.

Now we discuss the semidiscretization of (33), that is, the optimal control problem
where the state equation as well as the desired states are discretized, while the control
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space is still retained. For the state equation, we have the following mixed finite
element semidiscretization: Given q ∈ Q, find (σ h, uh) ∈ V k

h × Wk
h such that

[
(σ h, τh) + b(τh, uh) = 0 ∀τh ∈ V k

h,

b(σ h, vh) = − (fh + q, vh) ∀vh ∈ Wk
h ,

(37)

where fh ∈ W is a certain approximation of f .
Given appropriate approximations udh ∈ W and σ dh ∈ V of the desired states

ud and σ d , to be specified concretely below, consider the discretized cost functional
Jh : W × V × Q → R defined by

Jh(u, σ , q) := α

2
‖u − udh‖2 + β

2
‖σ − σ dh‖2 + γ

2
‖q‖2

and the semidiscrete reduced cost functional jh : Q → R given by

jh(q) = Jh(uh(q), σ h(q), q),

where q �→ (σ h, uh) := (σ h(q), uh(q)) : Q → V k
h × Wk

h is the operator that maps
a control q ∈ Q to the solution of (37). The reduced semidiscrete control problem is
now given by

min
q∈Q

jh(q). (38)

As in the continuous case, the directional derivative of jh at q ∈ Q in the direction
δq ∈ Q is given by

j ′
h(q)δq = (γ q + wh(q), δq),

where wh(q) is the second component of the pair (ϕh, wh) = (ϕh(q), wh(q)) ∈
V k

h × Wk
h solving the semidiscrete adjoint equation
[

(ϕh, ψh) + b(ψh, wh) = − β(σ h(q) − σ dh, ψh) ∀ψh ∈ V k
h,

b(ϕh, φh) = − α(uh(q) − udh, φh) ∀φh ∈ Wk
h .

(39)

Observe that (39) is the mixed finite element discretization of the continuous adjoint
equation (35). Hence, the processes of optimization and discretization commute for
the finite element scheme discussed above. In other words, the discretized optimality
system of the continuous control problem is the optimality system of the discretized
control problem. Analogous to the continuous case, we have the following existence
theorem.

Theorem 4 Suppose that fh ∈ L2(Ω), udh ∈ L2(Ω), and σ dh ∈ L2(Ω). Then, the
optimal control problem (33) has a unique solution (q̄h, σ̄ h, ūh) ∈ Q × V k

h × Wk
h ,

where (σ̄ h, ūh) = (σ h(q̄h), uh(q̄h)) is the corresponding optimal state. Moreover, if
(ϕ̄h, w̄h) = (ϕh(q̄h), wh(q̄h)) is the optimal adjoint state, then q̄h = −γ −1w̄h.

The hybrid formulation of the semidiscrete state equation (37) is⎡
⎣ (σ h, τh) + bh(τh, uh) + dh(τh, λh) = 0 ∀τh ∈ Y k

h,

bh(σ h, vh) = −(fh + q, vh) ∀vh ∈ Wk
h ,

dh(σ h, μh) = 0 ∀μh ∈ Mk
h .

(40)
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For a given control q ∈ Q, we denote the solution of (40) by (σ h(q), uh(q), λh(q)) ∈
V k

h × Wk
h × Mk

h . By the remarks on the previous section, the solution of the optimal
control problem (38) is the same if we replace the solution operator determined by
(37) with the solution operator determined by the hybrid form (40).

On the other hand, if (40) is utilized as the state equation in (38), the corresponding
adjoint equation will be⎡

⎣ (ϕh, ψh) + bh(ψh, wh) + dh(ψh, μh) = − β(σ h(q) − σ dh, ψh) ∀ψh ∈ Y k
h,

bh(ϕh, φh) = − α(uh(q) − udh, φh) ∀φh ∈ Wk
h ,

dh(ϕh, θh) = 0 ∀θh ∈ Mk
h .

(41)

For a given control q ∈ Q, we denote by (ϕh(q), wh(q), μh(q)) ∈ V k
h × Wk

h × Mk
h

the solution of (41).
Take note that (41) is the hybrid formulation of the adjoint equation (39).

Therefore, with the proposed numerical scheme, the processes of optimization and
hybridization commute at the discrete level. For this type of approximation, we
denote the optimal state by (σ̄ h, ūh, λ̄h) = (σ h(q̄h), uh(q̄h), λh(q̄h)) and the optimal
adjoint state by (ϕ̄h, w̄h, μ̄h) = (ϕh(q̄h), wh(q̄h), μh(q̄h)).

We now consider the fully discrete optimal control problem, that is, the con-
trol space is also discretized. Given a finite-dimensional subspace Qρ of Q, let
(σ h(qρ), uh(qρ)) be the solution of (37) with q replaced by qρ . For example, one
may take Qρ = Wk

h in the mixed case and Qρ = Wk+1
h in the hybrid case. As in

the continuous and semidiscrete case, consider the fully discrete reduced cost func-
tional jhρ = jh|Qρ : Qρ → R. The fully discrete finite-dimensional approximation
of (34) is

min
qρ∈Qρ

jhρ(qρ) := Jh(uh(qρ), σ h(qρ), qρ). (42)

The directional derivative of jhρ is j ′
hρ(qρ)δqρ = (γ qρ +wh(qρ), δqρ). Similar to

the above discussions, the unique optimal control of (42), denoted by q̄hρ , is given by
q̄hρ = −γ −1wh(q̄hρ). Likewise, if the fully discrete state equation (37) with q = qρ

is replaced by its hybridized form (40) with q = qρ , then we denote the correspond-
ing optimal state and adjoint state by (σ̄ hρ, ūhρ, λ̄hρ) = (σ h(q̄hρ), uh(q̄hρ), λh(q̄hρ))

and (ϕ̄hρ, w̄hρ, μ̄hρ) = (ϕh(q̄hρ), wh(q̄hρ), μh(q̄hρ)), respectively. Again, at the
discrete level, the processes of optimization and hybridization commute.

The first a priori estimate we will establish is concerned on the discretization errors
between the continuous and semidiscrete state and adjoint equations with a given
fixed control. In the following and for the remaining parts of the paper, we assume
that the primal, dual, and control variables are sufficiently smooth.

Theorem 5 Let � ≥ k, fh = P �
hf , udh = P �

hud , and σ dh = Πk
hσ d . Suppose

that σ (q), σ d ∈ H k+2(Ω), f, q, ud ∈ Hk+1(Ω), and u(q) ∈ Hk+2(Ω). Given a
control q ∈ Q, there exists a constant C > 0 that depends on ‖σ (q)‖k+2, ‖f ‖k+1,
‖q‖k+1, and ‖u(q)‖k+2 but independent of h and on the continuous and semidiscrete
solutions such that

‖σ (q) − σ h(q)‖div + ‖u(q) − uh(q)‖ ≤ Chk+1 (43)

‖P k
h u(q) − uh(q)‖ + ‖πk

hu(q) − λh(q)‖h ≤ Chk+2. (44)
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Similarly, for the adjoint equations, assuming that ϕ(q) ∈ H k+2(Ω) and w(q) ∈
Hk+2(Ω), we have

‖ϕ(q) − ϕh(q)‖div + ‖w(q) − wh(q)‖ ≤ Chk+1 (45)

‖P k
h w(q) − wh(q)‖ + ‖πk

hw(q) − μh(q)‖h ≤ Chk+2 (46)

for some positive constant C depending only of ‖σ (q)‖k+2, ‖σ d‖k+2, ‖ϕ(q)‖k+2,
‖f ‖k+1, ‖q‖k+1, ‖ud‖k+1, ‖u(q)‖k+2, and ‖w(q)‖k+2. Moreover, if k is an even
integer, then it holds that

‖u(q) − Rk+1
h (λh(q), uh(q))‖ ≤ Chk+2 (47)

‖w(q) − Rk+1
h (μh(q), wh(q))‖ ≤ Chk+2. (48)

These estimates also hold if we replace the control q in the discrete variables σ h, uh,
λh, ϕh, wh, and μh by the projection P k

h q of q.

Proof The estimates (43) and (46) involving the state variables can be obtained from
Theorem 1 by taking f = f h = 0, g = −(f + q), and y = − (

P �
hf + q

)
. Indeed,

(20) implies that

‖σ (q) − σ h(q)‖div + ‖u(q) − uh(q)‖ ≤ Chk+1 (‖σ (q)‖k+2 + ‖f ‖k+1)

while (21), (30), and P k
h g = − (

P k
h f + P k

h q
) = − (

P k
h P �

hf + P k
h q

) = P k
k y, since

� ≥ k, give us the estimate

‖P k
h u(q) − uh(q)‖ + ‖πk

hu(q) − λh(q)‖h ≤ Chk+2‖f + q‖k+1 + Ch‖σ (q) − σ h(q)‖.
Furthermore, Remark 1 and (43) imply (44).
With regard to the adjoint variables, we take f = −β(σ (q) − σ d), f h =

−β(σ h(q) − σ dh), g = −α(u(q) − ud), and y = −α(uh(q) − udh). Observe that
P k

h div σ (q) = −P k
h (f + q) = div σ h(q) and P k

h div σ d = divΠk
hσd = div σ dh.

Hence, P k
h divf = divf h. Also, one can see that P k

h g − P k
h y = −α(P k

h u(q) −
uh(q)). Applying Theorem 1, we obtain

‖ϕ(q) − ϕh(q)‖div + ‖w(q) − wh(q)‖
≤ Chk+1 + C(‖σ (q) − σ h(q)‖ + ‖σ d − σ dh‖ + ‖u(q) − uh(q)‖ + ‖ud − udh‖),
and this implies (45) using (43) and the definition of the discretizations σ dh and udh.
From Theorems 1 and 2, we also have

‖P k
h w(q) − wh(q)‖ + ‖πk

hw(q) − μh(q)‖h ≤ Chk+2 + C‖P k
h u(q) − uh(q)‖

+ Ch(‖σ (q) − σ h(q)‖ + ‖σ d − σ dh‖)
+ Ch‖ϕ(q) − ϕh(q)‖.

Utilizing the error estimates (43) and (44), we obtain (46). Moreover, if k is even,
then we also obtain from Theorem 2 the corresponding super-convergence error
estimate (48).

For the last statement of the theorem, it is enough to observe that

(σ h(q), uh(q), λh(q)) =
(
σ h

(
P k

h q
)

, uh

(
P k

h q
)

, λh

(
P k

h q
))
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and as a consequence, we also have the equality

(ϕh(q), wh(q), μh(q)) =
(
ϕh

(
P k

h q
)

, wh

(
P k

h q
)

, μh

(
P k

h q
))

.

This completes the proof of the theorem.

In the following lemma, we establish an error estimate between the directional
derivative of the reduced cost and reduced semidiscrete cost, as well as the Lipschitz
continuity of the reduced semidiscrete cost functional, see [21].

Lemma 1 There exists a constant C > 0 such that for every p, q, δq ∈ Q we have

|j ′(q)δq − j ′
h(q)δq| ≤ ‖w(q) − wh(q)‖‖δq‖

|j ′
h(p)δq − j ′

h(q)δq| ≤ C‖p − q‖‖δq‖

Proof The first estimate follows from j ′(q)δq − j ′
h(q)δq = (w(q)−wh(q), δq). On

the other hand, the second one is a direct consequence of

j ′
h(p)δq − j ′

h(q)δq = γ (p − q, δq) + (wh(p) − wh(p), δq)

and the stability estimate

‖wh(p) − wh(q)‖ ≤ C(‖σ h(p) − σ h(q)‖ + ‖uh(p) − uh(q)‖) ≤ C‖p − q‖,
where the last inequality is based on the discrete stability estimate obtained from
Proposition 2.

The following result states that the error between the optimal controls of the
continuous and fully discrete control problems can be bounded by the sum of the dis-
cretization error and the approximation error between the discretized control space
and the solution of the semidiscrete optimal control problem.

Theorem 6 Assume that σ̄ , ϕ̄, σ d ∈ H k+2(Ω), f, q̄, ud ∈ Hk+1(Ω), and ū, w̄ ∈
Hk+2(Ω). Let q̄, q̄h, and q̄hρ be the optimal controls to the continuous (34), semidis-
crete (38), and fully discrete (42) control problems, respectively. Then, there exists a
positive constant C independent of h and ρ such that

‖q̄hρ − q̄‖ ≤ C inf
pρ∈Qρ

‖q̄h − pρ‖ + Chk+1. (49)

In particular, if Wk
h ⊂ Qρ , then q̄h = q̄hρ = P k

h q̄hρ and

‖q̄hρ − q̄‖ ≤ Chk+1. (50)

Proof We adapt the proof in [21]. Fix an element pρ ∈ Qρ . Let us split the error
q̄hρ − q̄ in three parts as follows:

q̄hρ − q̄ = (q̄hρ − pρ) + (pρ − q̄h) + (q̄h − q̄). (51)
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According to the linear-quadratic structure of the reduced cost functional, we have
for every q, δq, δp ∈ Q

j ′′
h (q)(δq, δp) = α(uh(δq), uh(δp)) + β(σ h(δq), σ h(δp)) + γ (δq, δp).

In particular, j ′′
h (q) is independent of q. Using this, invoking the fact that

j ′
h(q̄hρ)(q̄hρ − pρ) = j ′

h(q̄h)(q̄hρ − pρ) = 0, and applying the previous lemma, we
obtain

γ ‖q̄hρ − pρ‖2 ≤ j ′′
h (q̄)

(
q̄hρ − pρ, q̄hρ − pρ

)
= j ′

h(q̄hρ)(q̄hρ − pρ) − j ′
h(pρ)(q̄hρ − pρ)

= j ′
h(q̄h)(q̄hρ − pρ) − j ′

h(pρ)(q̄hρ − pρ)

≤ C‖q̄h − pρ‖‖q̄hρ − pρ‖.
Thus, γ ‖q̄hρ − pρ‖ ≤ C‖q̄h − pρ‖.

Similarly, from the optimality conditions, we have j ′(q̄)(q̄h − q̄) = 0 and
j ′
h(q̄h)(q̄h − q̄) = 0, and therefore from the previous lemma

γ ‖q̄h − q̄‖2 ≤ j ′′
h (q̄)(q̄h − q̄, q̄h − q̄)

= j ′
h(q̄h)(q̄h − q̄) − j ′

h(q̄)(q̄h − q̄)

= j ′(q̄)(q̄h − q̄) − j ′
h(q̄)(q̄h − q̄)

≤ ‖w(q) − wh(q)‖‖q̄h − q̄‖.
Consequently, it follows from the stability estimate for the solution of the adjoint
system in Theorem 5 that

γ ‖q̄h − q̄‖ ≤ ‖w(q̄) − wh(q̄)‖ ≤ Chk+1.

Combining the above estimates in (51), we obtain (49).
For the remaining part, it is enough to note that if Qρ contains Wk

h , then q̄h =
−γ −1w̄h ∈ Wk

h . As a result, the above infimum in (49) vanishes, and thus (50)
is satisfied. Furthermore, q̄h and P k

h q̄hρ satisfy the same optimality system for the
fully discrete optimal control problem; hence by uniqueness, it follows that we have
q̄h = q̄hρ = P k

h q̄hρ .

The following is concerned with the error estimates for the optimal state and
adjoint state. We would like to point out that these are valid both in the mixed and
hybrid formulations.

Corollary 1 Let q̄ and q̄hρ be the optimal controls to the continuous (34) and
fully discrete (42) control problems, respectively. If (σ̄ , ū) and (σ̄ hρ, ūhρ) are the
corresponding optimal states, then

‖σ̄ hρ − σ̄‖div + ‖ūhρ − ū‖ ≤ Chk+1 + C‖q̄hρ − q̄‖. (52)

Also, if (ϕ̄, w̄) and (ϕ̄hρ, w̄hρ) are the corresponding optimal adjoint states, then

‖ϕ̄hρ − ϕ̄‖div + ‖w̄hρ − w̄‖ ≤ Chk+1 + C‖q̄hρ − q̄‖. (53)
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Proof Decompose the error in two parts according to σ̄ hρ−σ̄ = (σ h(q̄hρ)−σ h(q̄))+
(σ h(q̄) − σ (q̄)) and ūhρ − ū = (uh(q̄hρ) − uh(q̄)) + (uh(q̄) − u(q̄)). Then, apply-
ing the stability estimates in Propositions 1 and 2, we obtain (52). Using similar
decompositions for the adjoint variables yields (53).

The above corollary together with (50) implies that if Qρ contains Wk
h , then

‖σ̄ hρ − σ̄‖div + ‖ūhρ − ū‖ + ‖ϕ̄hρ − ϕ̄‖div + ‖w̄hρ − w̄‖ ≤ Chk+1. (54)

Now, we prove super-convergence of the discrete optimal control to the projection
of the continuous optimal control. As a result, we have the super-convergence of the
scalar state and adjoint state in terms of the Arnold–Brezzi post-processing operator.

Theorem 7 Suppose that q̄ and q̄hρ are the optimal controls to the continuous (34)
and fully discrete (42) control problems, respectively. Let (σ̄ , ū) and (σ̄ hρ, ūhρ, λ̄hρ)

be the corresponding optimal states. Also, let (ϕ̄, w̄) and (ϕ̄hρ, w̄hρ, μ̄hρ) be the
optimal adjoint states. If Wk

h ⊂ Qρ , then there exists a constant C > 0 such that

‖q̄hρ − P k
h q̄‖ ≤ Chk+2. (55)

In addition, if k is an even integer, then it holds that

‖Rk+1
h

(
λ̄hρ, ūhρ

) − ū‖ + ‖Rk+1
h

(
μ̄hρ, w̄hρ

) − w̄‖ ≤ Chk+2. (56)

Proof By applying a similar strategy as in the proof of Theorem 6, one can deduce
that

γ ‖q̄hρ − P k
h q̄‖2 ≤ j ′

h(q̄hρ)
(
q̄hρ − P k

h q̄
)

− j ′
h

(
P k

h q̄
) (

q̄hρ − P k
h q̄

)

= j ′(q̄)
(
q̄hρ − P k

h q̄
)

− j ′
h

(
P k

h q̄
) (

q̄hρ − P k
h q̄

)

= γ
(
q̄ − P k

h q̄, q̄hρ − P k
h q̄

)
+

(
P k

h w(q̄) − wh

(
P k

h q̄
)

, q̄hρ − P k
h q̄

)

≤ ‖P k
h w(q̄) − wh

(
P k

h q̄
)

‖‖q̄hρ − P k
h q̄‖.

The first term on the third line vanishes since q̄hρ − P k
h q̄ ∈ Wk

h . Thus, γ ‖q̄hρ −
P k

h q̄‖ ≤ ‖P k
h w(q̄) − wh

(
P k

h q̄
) ‖.

According to the last statement of Theorem 1, it holds that

‖P k
h w(q̄) − wh

(
P k

h q̄
)

‖ ≤ Chk+2,

and therefore (55) is satisfied. Next, we decompose the following difference as
follows

P k
h u(q̄) − uh

(
q̄hρ

) =
(
P k

h u(q̄) − uh

(
P k

h q̄
))

+
(
uh

(
P k

h q̄
)

− uh

(
q̄hρ

))
.

The first difference on the right-hand side can be estimated using the last statement
of Theorem 1, while the second difference can be estimated by invoking Proposition
2 and (55). Hence,

‖P k
h u(q̄) − uh

(
q̄hρ

) ‖ ≤ Chk+2.
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Therefore, from Remark 1, we have ‖Rk+1
h

(
λ̄hρ, ūhρ

) − ū‖ ≤ Chk+2, which proves
the first part of (56).

For the case of adjoint variables, we also write the error P k
h w(q̄) − wh(q̄hρ) as

P k
h w(q̄) − wh

(
q̄hρ

) =
(
P k

h w(q̄) − wh

(
P k

h q̄
))

+
(
wh

(
P k

h q̄
)

− wh

(
q̄hρ

))

and use the same reasoning as above to establish that ‖Rk+1
h

(
μ̄hρ, w̄hρ

) − w̄‖ ≤
Chk+2. This verifies the other part of (56).

Let us analyze the error between the fully discrete post-processed optimal control
and the continuous control. Likewise, we also prove error estimates if this new control
is used on the fully discrete state equation and on the fully discrete adjoint equation
with the state variable uh replaced by the associated Arnold–Brezzi post-processed
state.

Theorem 8 Let k be even and Wk
h ⊂ Qρ . Consider the post-processed control

q∗
hρ = −γ −1Rk+1

h

(
μ̄hρ, w̄hρ

)

and let
(
σ ∗

hρ, u∗
hρ, λ∗

hρ

)
=

(
σ h(q

∗
hρ), uh(q

∗
hρ), λh

(
q∗
hρ

))
and

(
ϕ∗

hρ, w∗
hρ, μ∗

hρ

)
be

the solution of the modified discrete hybrid adjoint system⎡
⎢⎣

(ϕ∗
hρ, ψh) + bh(ψh, w

∗
hρ) + dh(ψh, μ

∗
hρ) = − β(σ ∗

hρ − σ dh, ψh) ∀ψh ∈ Y k
h,

bh(ϕ
∗
hρ, φh) = − α(Rk+1

h (λ∗
hρ, u∗

hρ) − udh, φh) ∀φh ∈ Wk
h ,

dh(ϕ
∗
hρ, θh) = 0 ∀θh ∈ Mk

h .

Then, there exists a constant C > 0 independent of h such that

‖q∗
hρ − q̄‖ ≤ Chk+2 (57)

‖Rk+1
h (λ∗

hρ, u∗
hρ) − ū‖ + ‖Rk+1

h

(
μ∗

hρ, w∗
hρ

)
− w̄‖ ≤ Chk+2 (58)

‖σ ∗
hρ − σ̄‖div + ‖ϕ∗

hρ − ϕ̄‖div + ‖u∗
hρ − ū‖ + ‖w∗

hρ − w̄‖ ≤ Chk+1. (59)

Proof The estimate (57) follows directly from the following equation

q∗
hρ − q̄ = − 1

γ

(
Rk+1

h

(
μ̄hρ, w̄hρ

) − w̄
)

and the error estimate for the post-processed adjoint state given by (56) in the
previous theorem. According to Theorem 1, we have

‖σ ∗
hρ − σ̄‖div + ‖u∗

hρ − ū‖
≤ ‖σ ∗

hρ − σ̄ hρ‖div + ‖σ̄ hρ − σ̄‖div + ‖u∗
hρ − ūhρ‖ + ‖ūhρ − ū‖

≤ C‖q∗
hρ − q̄hρ‖ + Chk+1 ≤ Chk+1. (60)

Next, we split error P k
h ū − u∗

hρ as

P k
h ū − u∗

hρ = (P k
h u(q̄) − uh(q̄)) + (uh(q̄) − uh(q

∗
hρ)).
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We then apply Theorem 1, Proposition 2, and (57) to deduce that ‖P k
h ū − u∗

hρ‖ ≤
Chk+2. As a consequence of Remark 1, it holds that

‖Rk+1
h

(
λ∗

hρ, u∗
hρ

)
− ū‖ ≤ Chk+2. (61)

Therefore, (58) and (59) are verified in the case of the state variables.

For the adjoint variables, we shall write ϕ∗
hρ − ϕ̄ =

(
ϕ∗

hρ − ϕ̄hρ

)
+ (

ϕ̄hρ − ϕ̄
)

and w∗
hρ − w̄ =

(
w∗

hρ − w̄hρ

)
+ (

w̄hρ − w̄
)
. The second terms can be bounded from

above thanks to (54). Also, the first terms can be estimated as follows in virtue of
Proposition 2

‖ϕ∗
hρ − ϕ̄hρ‖div + ‖w∗

hρ − w̄hρ‖ ≤ C
(
‖σ ∗

hρ − σ̄ hρ‖ + ‖Rk+1
h

(
λ∗

hρ, u∗
hρ

)
− ūhρ‖

)
. (62)

By further writing σ ∗
hρ − σ̄ hρ =

(
σ ∗

hρ − σ̄
)

+ (
σ̄ − σ̄ hρ

)
and Rk+1

h

(
λ∗

hρ, u∗
hρ

)
−

ūhρ =
(
Rk+1

h

(
λ∗

hρ, u∗
hρ

)
− ū

)
+ (ū − ūhρ), and utilizing (54), (60), (61), and

Theorem 7, one has

‖ϕ∗
hρ − ϕ̄‖div + ‖w∗

hρ − w̄‖ ≤ Chk+1. (63)

Moreover, according to the decomposition

P k
h w̄ − w∗

hρ =
(
P k

h w(q̄) − wh(q̄)
)

+
(
wh(q̄) − wh

(
q∗
hρ

))

along with the same argument as in the case of the state equation, we have

‖Rk+1
h

(
μ∗

hρ, w∗
hρ

)
− w̄‖ ≤ Chk+2.

These show (58) and (59) in the case of the adjoint variables.

4 Penalization of the optimal control problems

To compute numerically the finite-dimensional systems corresponding to the discrete
state and adjoint equations, we shall add penalty terms for the second and third equa-
tions in the hybrid formulation. This is to reduce the size of the system matrix via
elimination and substitution but at the expense of an additional error, see (100) and
(101) in the succeeding section.

Before going to the discrete case, let us discuss the situation of adding a penalty
term at the continuous level. Given ε > 0, let us consider the optimal control problem

min
q∈Q

jε(q) := J (uε(q), σ ε(q), q) (64)

where given q ∈ Q, the pair (σ ε(q), uε(q)) = (σ ε, uε) ∈ V × W is the solution of
the penalized state equation[

(σ ε, τ ) + b(τ , uε) = 0 ∀τ ∈ V ,

b(σ ε, v) − ε(uε, v) = − (f + q, v) ∀v ∈ W .
(65)

For this state equation, the corresponding bilinear form on V × W is coercive;
hence, existence and uniqueness of solutions to (65) follow immediately from the
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Lax–Milgram Lemma. Moreover, we have div σ ε = εuε − (f + q) and uε ∈
H 1

0 (Ω) ∩ H 2(Ω) is the weak solution of[ −Δuε + εuε = f + q in Ω,

uε = 0 on ∂Ω,
(66)

which is a linear perturbation of (6).
The directional derivative of jε at q in the direction δq ∈ Q is similarly

given by j ′
ε(q)δq = (γ q + wε(q), δq), where wε(q) is the second component of

(ϕε(q), wε(q)) = (ϕε, wε) ∈ V × W , the solution to[
(ϕε, ψ) + b(ψ, wε) = − β(σ ε(q) − σ d, ψ) ∀ψ ∈ V ,

b(ϕε, φ) − ε(wε, φ) = − α(uε(q) − ud, φ) ∀φ ∈ W .
(67)

Again, the strong form of the equation for wε(q) in (67) is the following linear
perturbation of the elliptic boundary value problem (36)[ −Δwε(q) + εwε(q) = α(uε(q) − ud) − βdiv(σ ε(q) − σ d) in Ω,

wε(q) = 0 on Ω .

Thus, we can see that the two approaches penalize-then-optimize and optimize-then-
penalize lead to the same optimality system.

Theorem 9 Let q̄ε be the optimal control for (64), (σ̄ ε, ūε) the optimal state, and
(ϕ̄ε, w̄ε) the optimal adjoint state. Then, there exists a constant C > 0 independent
of ε such that

‖q̄ − q̄ε‖ + ‖σ̄ − σ̄ ε‖div + ‖ū − ūε‖ + ‖ϕ̄ − ϕ̄ε‖div + ‖w̄ − w̄ε‖ ≤ Cε.

Proof Applying the idea of the proof in Theorem 6, one can deduce that

γ ‖q̄ε − q̄‖ ≤ ‖w(q̄) − wε(q̄)‖. (68)

According to [6, Theorem 3.1], we know that

‖σ (q̄) − σ ε(q̄)‖div + ‖u(q̄) − uε(q̄)‖ ≤ Cε. (69)

Let us write the difference of the solutions to the adjoint equations by w(q̄) −
wε(q̄) = (w(q̄)−wε(q̄))+ (wε(q̄)−wε(q̄)) and ϕ(q̄)−ϕε(q̄) = (ϕ(q̄)−ϕε(q̄))+
(ϕε(q̄) − ϕε(q̄)), where (ϕε(q̄), wε(q̄)) ∈ V × W is the solution of[

(ϕε(q̄), ψ) + b (ψ, wε(q̄)) = − β(σ ε(q̄) − σ d, ψ) ∀ψ ∈ V ,

b(ϕε(q̄), φ) = − α(uε(q̄) − ud, φ) ∀φ ∈ W .

From the stability estimate in Proposition 2 and (69), we have

‖ϕ(q̄) − ϕε(q̄)‖div + ‖w(q̄) − wε(q̄)‖ ≤ C(‖σ (q̄) − σ ε(q̄)‖) + ‖u(q̄) − uε(q̄)‖ ≤ Cε. (70)

For the other terms, we again apply [6, Theorem 3.1] to deduce that

‖ϕε(q̄) − ϕε(q̄)‖div + ‖wε(q̄) − wε(q̄)‖ ≤ Cε. (71)

Utilizing (70) and (71) in the above decomposition and invoking (68), we obtain the
desired estimate for the error in optimal controls.
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The error estimates for the optimal states can now be established from ū − ūε =
(u(q̄)−u(q̄ε))+ (u(q̄ε)−uε(q̄ε)) and σ̄ − σ̄ ε = (σ (q̄)−σ (q̄ε))+ (ϕ(q̄ε)−ϕε(q̄ε)),
while the case of optimal adjoint states can be handled in a similar way.

Now, we discuss the case of the fully discrete problem. Let ε = (ε1, ε2) be a pair
of nonnegative numbers such that |ε| := ε1 + ε2 > 0. The penalized semidiscrete
hybridized optimal control problem is

min
q∈Q

jhε(q) := Jh(uhε(q), σ hε(q), q) (72)

where q �→ (uhε(q), σ hε(q), λhε(q)) is the solution operator which maps a control
q ∈ Q into the solution (σ hε, uhε, λhε) = (uhε(q), σ hε(q), λhε(q)) ∈ Y k

h×Wk
h ×Mk

h

of the penalized discrete state equation⎡
⎣ (σ hε, τh) + bh(τh, uhε) + dh(τh, λhε) = 0 ∀τh ∈ Y k

h,

bh(σ hε, vh) − ε1(uhε, vh) = − (fh + q, vh) ∀vh ∈ Wk
h ,

dh(σ hε, μh) − ε2(λhε, μh)h = 0 ∀μh ∈ Mk
h .

(73)

Here (·, ·)h is the inner product corresponding to the norm ‖ · ‖h in Lk
h.

If ε2 > 0, then this is a nonconforming approximation of (3) since Y k
h is not con-

tained in V . On the other hand, if ε2 = 0, then the solution of (73) corresponds to
the mixed finite element discretization of (65). The existence and uniqueness of solu-
tions follow from the fact that the corresponding finite-dimensional square system is
injective. In fact, if ε1 > 0 and ε2 > 0, then the corresponding form is coercive.

The directional derivative of jhε at q ∈ Q in the direction δq ∈ Q is given by
j ′
hε(q)δq = (γ q + whε(q), δq), where whε is the second component for the triple

(ϕhε, whε, μhε) = (ϕhε(q), whε(q), μhε(q)) ∈ Y k
h×Wk

h ×Mk
h solving the associated

adjoint equation⎡
⎣ (ϕhε, ψh) + bh(ψh, whε) + dh(ψh, μhε) = − β(σ hε(q) − ϕdh, ψh) ∀ψh ∈ Y k

h,

bh(ϕhε, φh) − ε1(whε, φh) = − α(uhε(q) − udh, φh) ∀φh ∈ Wk
h ,

dh(ϕhε, θh) − ε2(μhε, θh)h = 0 ∀θh ∈ Mk
h .

(74)

In an analogous way, we consider the fully discrete penalized hybrid optimal
control problem

min
qρ∈Qρ

jhερ(qρ) := Jh(uhε(qρ), σ hε(qρ), qρ). (75)

We have j ′
hερ(qρ)δqρ = (γ qρ +whε(qρ), δqρ) for every qρ, δqρ ∈ Qρ . Let us denote

the optimal controls of (72) and (75) by q̄hε and q̄hερ , respectively.
At this point, we have four processes, namely optimization, discretization,

hybridization, and penalization. Since discretization comes first before hybridization,
there are 12 possible ways of doing these processes in succession. In the event where
hybridization is performed before penalization, the optimality system consists of the
state equation (73) with q = q̄hερ , the adjoint equation (74) with q = q̄hερ , and the
optimality condition j ′

hερ(q̄hερ)δqρ = 0 for every δqρ ∈ Qρ . On the other hand, in
the approaches where penalization is performed before hybridization, the resulting
optimality system is almost the same as in the above approaches, the main difference
is that ε2 = 0. We can view the former optimality system as a penalization of the
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latter optimality system. Therefore, loosely speaking, the processes of performing
optimization, discretization, hybridization, and penalization commute.

In the following, we establish a priori estimates for the discrete equations with
penalizations.

Theorem 10 Let f ∈ L2(Ω), g ∈ W , and ε = (ε1, ε2) with ε1, ε2 ≥ 0. Suppose
that (σ h, uh, λh) ∈ V k

h × Wk
h × Mk

h is the solution of
⎡
⎣ (σ h, τh) + bh(τh, uh) + dh(τh, λh) = (f , τh) ∀τh ∈ Y k

h,

bh(σ h, vh) = (g, vh) ∀vh ∈ Wk
h ,

dh(σ h, μh) = 0 ∀μh ∈ Mk
h,

(76)

and let (σ hε, uhε, λhε) ∈ Y k
h × Wk

h × Mk
h be the solution of

⎡
⎣ (σ hε, τh) + bh(τh, uhε) + dh(τh, λhε) = (f , τh) ∀τh ∈ Y k

h,

bh(σ hε, vh) − ε1(uhε, vh) = (g, vh) ∀vh ∈ Wk
h ,

dh(σ hε, μh) − ε2(λhε, μh)h = 0 ∀μh ∈ Mk
h .

⎤
⎦ (77)

Suppose that 0 < h < h0 and |ε| < 1. Then, for some constant C = C(h0) > 0
independent of the h, ε, and on the solutions, we have

‖σ hε − σ h‖div + ‖uhε − uh‖ + ‖λhε − λh‖h ≤ C|ε|(‖f ‖ + ‖g‖) (78)

‖Rk+1
h (λhε, uhε) − Rk+1

h (λh, uh)‖ ≤ C|ε|(‖f ‖ + ‖g‖). (79)

Proof Recall the stability estimate from Proposition 2 and (15)

‖σ h‖ + ‖uh‖ + ‖λh‖h ≤ C(‖f ‖ + ‖g‖). (80)

Let us define the difference of solutions as

(δσ hε, δuhε, δλhε) := (σ h − σ hε, uh − uhε, λh − λhε) ∈ Y k
h × Wk

h × Mk
h,

which satisfies the following variational system
⎡
⎣ (δσ hε, τh) + bh(τh, δuhε) + dh(τh, δλhε) = 0 ∀τh ∈ Y k

h,

bh(δσ hε, vh) − ε1(δuhε, vh) = −ε1(uh, vh) ∀vh ∈ Wk
h ,

dh(δσ hε, μh) − ε2(δλhε, μh)h = −ε2(λh, μh)h ∀μh ∈ Mk
h .

With (δσ hε, δuhε, δλhε) as the test function in this system, we have

‖δσ hε‖2 + ε1‖δuhε‖2 + ε2‖δλhε‖2h ≤ C(ε1‖uh‖‖δuhε‖ + ε2‖λh‖h‖δλhε‖h).

Applying the uniform boundedness in h of the discrete solution given by (80), we
obtain

‖δσ hε‖2 ≤ Cε(‖f ‖‖δuhε‖ + ‖g‖‖δλhε‖h). (81)

Since div δσ hε ∈ Wk
h , it follows that

‖div δσ h‖ = sup
‖vh‖=1

|bh(δσ h, vh)| ≤ Cε(‖δuhε‖ + ‖uh‖). (82)
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Let ϕ and ζ be as in the proof of Theorem 1 with δuh and δλh replaced by δuhε

and δλhε, respectively. Then, by applying the same argument as in the proof of the
said theorem, one obtains

‖δuhε‖2 = bh

(
Πk

hϕ, δuhε

)
= −

(
δσ hε, Π

k
hϕ

)
,

and thus, ‖δuhε‖ ≤ C‖δσ hε‖. Likewise, ‖δλhε‖ ≤ Ch‖δσ hε‖ + ‖δuhε‖ ≤
C(h0)‖δσ hε‖ since

‖δλhε‖2 = − dh(ζh, δλhε) =
(
δσ hε, Π

k
hζ

)
+ bh

(
Πk

hζ , δuhε

)
.

Using these in (81) and (82) yields (78). The second estimate (79) follows from (78)
together with the linearity and boundedness of the Arnold–Brezzi post-processing
operator Rk+1

h given by (17).

Next, we prove a priori error estimates for the above discretizations with the
additional penalty terms in the optimal control problem.

Theorem 11 Let q̄ and q̄hερ be the optimal controls to the continuous (34) and fully
discrete penalized (75) control problems, respectively. Suppose that Wk

h ⊂ Qρ , |ε| <

1, and 0 < h < h0. Then, there exists a constant C(h0) > 0 independent of h and ε

such that

‖q̄hερ − P k
h q̄‖ ≤ C

(
hk+2 + |ε|

)
(83)

‖q̄hερ − q̄‖ ≤ C
(
hk+1 + |ε|

)
. (84)

If (σ̄ , ū) and
(
σ̄ hερ, ūhερ, λ̄hερ

)
are the corresponding optimal states, then

‖σ̄ hερ − σ̄‖div + ‖ūhερ − ū‖ ≤ C
(
hk+1 + |ε|

)
(85)

‖Rk+1
h

(
λ̄hερ, ūhερ

) − ū‖ ≤ C
(
hk+2 + |ε|

)
. (86)

Also, if (ϕ̄, w̄) and (ϕ̄hερ, w̄hερ, μ̄hερ) are the corresponding optimal adjoint states,
then

‖ϕ̄hερ − ϕ̄‖div + ‖w̄hερ − w̄‖ ≤ C
(
hk+1 + |ε|

)
(87)

‖Rk+1
h

(
μ̄hερ, w̄hερ

) − w̄‖ ≤ C
(
hk+2 + |ε|

)
. (88)

Proof Following the arguments in the proof of Theorem 6, one can deduce that

γ ‖q̄hερ − P k
h q̄‖ ≤ ‖P k

h w(q̄) − whε

(
P k

h q̄
)

‖. (89)

Let (ϕ̃h, w̃h, μ̃h) be the solution of the adjoint hybrid system (41) with σ h(q) and
uh(q) replaced by the discrete penalized counterparts σ hε

(
P k

h q̄
)
and uhε

(
P k

h q̄
)
,

respectively. We separate the norm of the error P k
h w(q̄) − whε

(
P k

h q̄
)
as follows:
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‖P k
h w(q̄) − whε

(
P k

h q̄
)

‖
≤ ‖P k

h w(q̄) − wh

(
P k

h q̄
)

‖ + ‖wh

(
P k

h q̄
)

− w̃h‖ + ‖w̃h − whε

(
P k

h q̄
)

‖. (90)
According to Theorem 1, we have ‖P k

h w(q̄) − wh

(
P k

h q̄
) ‖ ≤ Chk+2. From the

stability estimate in Proposition 2

‖wh

(
P k

h q̄
)

− w̃h‖ ≤ C(‖σ h

(
P k

h q̄
)

− σ hε

(
P k

h q̄
)

‖ + ‖uh

(
P k

h q̄
)

− uhε

(
P k

h q̄
)

‖). (91)

Applying Theorem 10 to the right-hand side of (91) and the fact that ‖α(fh +
P k

h q̄)‖ ≤ Cα(‖f ‖ + ‖q̄‖), we have
‖σ h

(
P k

h q̄
)

− σ hε

(
P k

h q̄
)

‖ + ‖uh

(
P k

h q̄
)

− uhε

(
P k

h q̄
)

‖ ≤ C|ε|. (92)

Similarly, since 0 < ε < 1, we obtain that

‖w̃h − whε

(
P k

h q̄
)

‖ ≤ C|ε|. (93)

The estimate (83) now follows from (89) to (93). Moreover, using the projection error
(8), this also implies (84). In particular, from Theorem 7, we have

‖q̄hερ − q̄hρ‖ ≤ ‖q̄hερ − P k
h q̄‖ + ‖P k

h q̄ − q̄hρ‖ ≤ C
(
hk+2 + |ε|

)
. (94)

The error estimates involving the state variables can be established by writing the
difference in solutions as

‖ūhερ − ū‖ ≤ ‖ūhερ − ūhρ‖ + ‖ūhρ − ū‖
‖σ̄ hερ − σ̄‖div ≤ ‖σ̄ hερ − σ̄ hρ‖div + ‖σ̄ hρ − σ̄‖div.

One can estimate the second terms on the right-hand sides of these inequalities
by using (54). On the other hand, the first terms and the corresponding Lagrange
multipliers can be estimated in two parts according to

‖ūhερ − ūhρ‖ ≤ ‖uhε(q̄hερ) − uh(q̄hερ)‖ + ‖uh(q̄hερ) − uh(q̄hρ)‖
‖λ̄hερ − λ̄hρ‖h ≤ ‖λhε(q̄hερ) − λh(q̄hερ)‖h + ‖λh(q̄hερ) − λh(q̄hρ)‖h

‖σ̄ hερ − σ̄ hρ‖div ≤ ‖σ hε(q̄hερ) − σ h(q̄hερ)‖div + ‖σ h(q̄hερ) − σ h(q̄hρ)‖div.
Note that ‖q̄hερ‖ ≤ ‖q̄hερ − q̄‖ + ‖q̄‖ ≤ C, for some constant C > 0 independent
of ε and h, whenever 0 < h < h0 and |ε| < 1. This implies that Theorem 10 can be
utilized to bound the first terms on the right-hand sides. For the remaining terms, we
can apply Proposition 2 and (94). Hence,

‖ūhερ − ūhρ‖ + ‖σ̄ hερ − σ̄ hρ‖div + ‖λ̄hερ − λ̄hρ‖h ≤ C
(
hk+2 + |ε|

)
. (95)

Utilizing the above estimates yields (85).
With regard to the post-processing operator, we write

Rk+1
h

(
λ̄hερ, ūhερ

) − ū = Rk+1
h

(
λ̄hερ − λ̄hρ, ūhερ − ūhρ

) +
(
Rk+1

h

(
λ̄hρ, ūhρ

) − ū
)

and apply the boundedness of Rk+1
h , the inequality (95), and Theorem 7 to

obtain (86).
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Finally, let us consider the case of the adjoint equations. Denote by
(σ̃ hερ, w̃hερ, μ̃hερ) the solution of (41) with σ h(q) and uh(q) replaced by the penal-
ized counterparts σ̄ hερ and ūhερ . We shall also bound the error on the adjoint
variables as

‖w̄hερ − w̄‖ ≤ ‖w̄hερ − w̄hρ‖ + ‖w̄hρ − w̄‖
‖ϕ̄hερ − ϕ̄‖div ≤ ‖ϕ̄hερ − ϕ̄hρ‖div + ‖ϕ̄hρ − ϕ̄‖div.

The second terms on the right-hand sides are again estimated from (54). We
decompose the first terms along with their corresponding Lagrange multipliers as
follows

‖w̄hερ − w̄hρ‖ ≤ ‖whε(q̄hερ) − w̃hερ‖ + ‖w̃hερ − wh(q̄hρ)‖
‖λ̄hερ − λ̄hρ‖h ≤ ‖λhε(q̄hερ) − λ̃hερ‖h + ‖̃λhερ − λh(q̄hρ)‖h

‖ϕ̄hερ − ϕ̄hρ‖div ≤ ‖ϕhε(q̄hερ) − ϕ̃hερ‖div + ‖ϕ̃hερ − ϕh(q̄hρ)‖div.
The first terms of these inequalities can be estimated from above with the help of
Theorem 10, while for the second terms we apply Proposition 2 and (95). Doing these
yields

‖w̄hερ − w̄hρ‖ + ‖ϕ̄hερ − ϕ̄hρ‖div + ‖λ̄hερ − λ̄hρ‖h ≤ C
(
hk+2 + |ε|

)

and consequently (87). By the same argument as in (86), one can also deduce the
estimate (88).

To close this section, we present error estimates with the post-processed optimal
control for the penalized hybrid system similar to that in Theorem 8.

Theorem 12 Suppose that k is even, Wk
h ⊂ Qρ , |ε| < 1, and 0 < h < h0. Define

q∗
hερ = −γ −1Rk+1

h

(
μ̄hερ, w̄hερ

)

and let
(
σ ∗

hερ, u∗
hερ, λ∗

hερ

)
=

(
σ hε

(
q∗
hερ

)
, uhε

(
q∗
hερ

)
, λhε

(
q∗
hρ

))
and(

ϕ∗
hερ, w∗

hερ, μ∗
hερ

)
be the solution of the modified hybrid adjoint system with

penalization
⎡
⎢⎣

(ϕ∗
hερ,ψh) + bh(ψh,w∗

hερ) + dh(ψh, μ∗
hερ) = −β(σ ∗

hερ − σ dh,ψh) ∀ψh ∈ Y k
h,

bh(ϕ∗
hερ, φh) − ε1(w

∗
hερ, φh) = −α

(
Rk+1

h

(
λ∗

hερ, u∗
hερ

)
− udh, φh

)
∀φh ∈ Wk

h ,

dh(ϕ∗
hερ, θh) − ε2(μ

∗
hερ, θh)h = 0 ∀θh ∈ Mk

h .

Then, there exists a constant C > 0 independent of h and ε such that

‖q∗
hερ − q̄‖ ≤ C

(
hk+2 + |ε|

)
(96)

‖Rk+1
h

(
λ∗

hερ, u∗
hερ

)
− ū‖ + ‖Rk+1

h

(
μ∗

hερ, w∗
hερ

)
− w̄‖ ≤ C

(
hk+2 + |ε|

)
(97)

‖σ ∗
hερ − σ̄‖div + ‖ϕ∗

hερ − ϕ̄‖div + ‖u∗
hερ − ū‖ + ‖w∗

hερ − w̄‖ ≤ C
(
hk+1 + |ε|

)
. (98)
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Proof The first estimate (96) follows immediately from (88) in the previous theorem.
Next, we shall write

u∗
hερ − ū =

(
uhε

(
q∗
hερ

)
− u∗

hρ

)
+

(
u∗

hρ − ū
)

σ ∗
hερ − σ̄ =

(
σ hε

(
q∗
hερ

)
− σ ∗

hρ

)
+

(
σ ∗

hρ − σ̄
)

,

where σ ∗
hρ and u∗

hρ are those that are given in Theorem 8. We further decompose the
first terms as follows:

u∗
hερ − u∗

hρ =
(
u∗

hερ − uh

(
q∗
hερ

))
+

(
uh

(
q∗
hερ

)
− uh

(
q∗
hρ

))

λ∗
hερ − λ∗

hρ =
(
λ∗

hερ − λh

(
q∗
hερ

))
+

(
λh

(
q∗
hερ

)
− λh

(
q∗
hρ

))

σ ∗
hερ − σ ∗

hρ =
(
σ ∗

hερ − σ h

(
q∗
hερ

))
+

(
σ h

(
q∗
hερ

)
− σ h

(
q∗
hρ

))
.

For the post-processing, we write the error as follows:

Rk+1
h

(
λ∗

hερ, u∗
hερ

)
−ū = Rk+1

h

(
λ∗

hερ − λ∗
hρ, u∗

hερ − u∗
hρ

)
+

(
Rk+1

h

(
λ∗

hρ, u∗
hρ

)
− ū

)
.

These decompositions along with the same arguments as in the proof of previous
theorem can be used to prove the required a priori error estimates involving the state
equations in (97) and (98). The main difference is the use of Theorem 8 instead of
Theorem 7.

With regard to the adjoint equations, we also split the error into two parts as

w∗
hερ − w̄ =

(
w∗

hερ − w∗
hρ

)
+

(
w∗

hρ − w̄
)

ϕ∗
hερ − ϕ̄ =

(
ϕ∗

hερ − ϕ∗
hρ

)
+

(
ϕ∗

hρ − ϕ̄
)
.

Let (ϕ̃hερ, w̃hερ, μ̃hερ) be the solution of the discrete hybrid adjoint equation (41)

with uh(q) and σ h(q) replaced by Rk+1
h

(
λ∗

hερ, u∗
hερ

)
and σ ∗

hερ , respectively. With

this definition, we further split the first terms as follows:

ϕ∗
hερ − ϕ∗

hρ =
(
ϕ∗

hερ − ϕ̃hερ

)
+

(
ϕ̃hερ − ϕh

(
q∗
hρ

))

w∗
hερ − w∗

hρ =
(
w∗

hερ − w̃hερ

)
+

(
w̃hερ − wh

(
q∗
hρ

))

μ∗
hερ − μ∗

hρ =
(
μ∗

hερ − μ̃hερ

)
+

(
μ̃hερ − μh

(
q∗
hρ

))
.

Applying the same reasoning as in the proof of the previous theorem to these
decompositions, one can obtain the a priori error estimates for the adjoint variables
stipulated in the inequalities (97) and (98).

Now, let us introduce more practical penalty terms. For this purpose, we define
the symmetric discrete positive-definite bilinear forms sh : Wk

h × Wk
h → R and

rh : Mk
h × Mk

h → R as follows:
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sh(uh, vh) = h2
∑

K∈Th

1

|K|
∫

K

uhvh dx

rh(λh, μh) = h2
∑
e∈E i

h

1

|e|
∫

e

λhμh ds

where |K| and |e| denote the area of the triangle K and the length of the edge e,
respectively. In the case where k = 0, the corresponding mass matrices for rh and sh
will be scalar multiples of the identity. This is in fact the usual strategy in practice.
The penalized discrete state equation can be alternatively replaced by the problem

⎡
⎣ (σ hε, τh) + bh(τh, uhε) + dh(τh, λhε) = 0 ∀τh ∈ Y k

h,

bh(σ hε, vh) − ε1rh(uhε, vh) = − (fh + qρ, vh) ∀vh ∈ Wk
h ,

dh(σ hε, μh) − ε2sh(λhε, μh)h = 0 ∀μh ∈ Mk
h .

(99)

The factor h2 is used in the above bilinear forms so that rh and sh will be equiv-
alent to the norms on Wk

h and Mk
h , respectively. Indeed, due to the shape-regularity

of the triangulations, there exist constants c, C > 0 independent of h such that
sh(uh, uh) ≥ c‖uh‖2 and |sh(uh, vh)| ≤ C‖uh‖‖vh‖ for every uh, vh ∈ Wk

h . In a
similar way, we have rh(λh, λh) ≥ c‖λh‖2h and |rh(λh, μh)| ≤ C‖λh‖h‖μh‖h when-
ever λh, μh ∈ Mk

h . Using the same methodologies as above, the error estimates in
the previous theorem also hold if we consider the alternative state equation (99) with
the given mesh-dependent penalty terms. The formulation (99) will be utilized in the
implementation given in the succeeding section.

5 Numerical examples

In this section, we give numerical examples illustrating the results of the paper. First,
we shall write the corresponding algebraic form for the penalized discrete and adjoint
equations. We shall utilize the lowest order Raviart Thomas finite element space.
The space of controls will be discretized using the space Qh := Qρ = W 1

h in the
hybrid formulation and Qh := Qρ = W 0

h in the mixed formulation. In the following
discussion, we only present the case of the hybrid formulation, and the case of mixed
formulation can be treated in a similar manner.

Let NKh and Neh be the number of triangles and interior edges of the triangu-

lation Th. Let
{
ψk

h

}3NKh

k=1 ,
{
φ

j
h

}NKh

j=1
,
{
vk
h

}3NKh

k=1 , and
{
θ�
h

}Neh

�=1 be bases for Y 0
h, W 0

h ,

W 1
h , and M0

h , respectively. Define the matrices Ah, Bh, Dh, Eh, and Gh having sizes
of 3NKh × 3NKh, 3NKh × NKh, 3NKh × Neh, 3NKh × NKh, and 3NKh × 3NKh,
respectively, with the corresponding entries

(Ah)kl =
(
ψk

h, ψ
l
h

)
, (Bh)kj = bh

(
ψk

h, φ
j
h

)
,

(Dh)k� = dh

(
ψk

h, θ
�
h

)
, (Eh)kj =

(
vk
h, φ

j
h

)
, (Gh)kl =

(
vk
h, v

l
h

)
.
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In the implementation, we shall take the penalty parameters to be of the form
ε1 = ε0h

−2 and ε2 = ε0h
−2 for a fixed 0 < ε0 � 1. Also, we shall use P 1

h ud and
P 1

h f as the approximations of the desired state ud and the external source f . Every
element qh ∈ W 1

h can be written uniquely as

qh =
3NKh∑
k=1

qkv
k
h.

Similarly, every element of σ h ∈ Y 0
h, uh ∈ W 0

h , and λh ∈ M0
h has the following

unique representations

σ h =
3NKh∑
k=1

σkψ
k
h, uh =

NKh∑
j=1

ujφ
j
h, λh =

Neh∑
�=1

λ�θ
�
h .

With slight abuse of notation, we identify an element of a vector space with
the vector of coefficients with respect to a given basis. For instance, we let
qh = (qk)k=1,...,3NKh

, σ h = (σk)k=1,...,3NKh
, uh = (uj )j=1,...,NKh

, and λh =
(λ�)�=1,...,Neh

. Furthermore, we shall use the same notation R1
h for the matrix

determined by the post-processing operator R1
h.

The algebraic form of the penalized hybrid discrete system (99) is now given
as follows: Given qh ∈ Qh, find (σ hε, uhε, λhε) = (σ hε(qh), uhε(qh), λhε(qh)) ∈
R
3NKh × R

NKh × R
Neh such that⎡

⎣ Ahσ hε + BT
h uhε + DT

h λhε = 0
Bhσ hε − ε0uhε = −Eh(fh + qh)

Dhσ hε − ε0λhε = 0.

Here, the superscript T denotes transposition. This system is equivalent to the
following ⎡

⎢⎣
Fhσ hε = − 1

ε0
BT

h Eh(fh + qh),

uhε = 1
ε0

Bhσ hε + 1
ε0

Eh(fh + qh),

λhε = 1
ε0

Dhσ hε

(100)

where

Fh = Ah + 1

ε0
BT

h Bh + 1

ε0
DT

h Dh,

which is symmetric and positive-definite. Similarly, for the solution (ϕhε, whε,

μhε) = (ϕhε(qh), whε(qh), μhε(qh)) ∈ R
3NKh ×R

NKh ×R
Neh of the modified hybrid

adjoint equation with penalization, we have the system⎡
⎢⎣

Fhϕhε = −βAh (σ hε − σ dh) − 1
ε0

αBT
h Eh

(
R1

hλhε − udh

)
whε = 1

ε0
Bhϕhε + 1

ε0
αEh

(
R1

hλhε − udh

)
μhε = 1

ε0
Dhϕhε.

(101)

After solving the above adjoint equation, we shall post-process the componentμhε

of the adjoint state and consider the following control

q∗
hε = −γ −1R1

hμhε(qh). (102)
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The corresponding modified discrete cost functional where the Lagrange multipliers
associated to the primal and dual states are post-processed, which is still denoted by
jhε, is given by

jhε(qh) = α

2

(
R1

hλhε − udh

)T

Gh

(
R1

hλhε − udh

)

+β

2
(σ hε − σ dh)

T Ah(σ hε − σ dh) + γ

2
q∗T
hε Ghq

∗
hε. (103)

We present the gradient-based algorithm utilized in this paper to approximate the
solution of the optimal control problem. The reduced optimization problem is solved
by the Barzilai–Borwein gradient method where the steplength is selected alternately
[4]. The second iterate in the gradient method is computed by backtracking with
the Armijo rule as a steplength selection criterion. We refer the reader to [2] for the
analysis of the Barzilai–Borwein method when applied to strictly convex quadratic
optimization problems in infinite-dimensional Hilbert spaces.

In the following algorithm, given a control qk
h at the kth iteration, the variables(

σ k
hε, u

k
hε, λ

k
hε

)
,
(
ϕk

hε, w
k
hε, μ

k
hε

)
, q∗k

hε , and jk
hε are the solutions of (100), (101), (102),

and the value of (103), respectively, with qh = qk
h .

Algorithm 1 Gradient method for penalized hybrid optimal control.
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In system (100), the flux component σ hε is calculated first using the conjugate
gradient method, and then the result is substituted to the second and third equations
to obtain the other components uhε and λhε. The same strategy will be employed in
the case of the adjoint (101) after post-processing the Lagrange multiplier λhε. Aside
from (101) and (102), the Arnold–Brezzi post-processing operator was also utilized
in the steplength selection of the Barzilai–Borwein method and the derivative of the
reduced cost functional. An alternative stopping criterion is ‖γ q∗k

hε + R1
hμ

k
hε‖ < τ ,

that is, when the optimality residual is less than the prescribed tolerance.
We shall construct an analytical solution of (1) based on the eigenfunction

e(x, y) = sin(2πx) sin(2πy) (104)

of the Laplacian on Ω = (0, 1)2. Define the following state, adjoint, control, desired
states, and source term

ū = w̄ = e, σ̄ = ϕ̄ = ∇e, q̄ = −γ −1e,

f = −Δe + γ −1e, ud = e + α−1Δe, σ d = ∇e.

One can easily verify that these satisfy the optimality system for the control problem
(1) for any given positive parameters α, β, and γ .

Now, we verify the error estimates given in the previous sections by starting with a
uniform triangulation of the domain Ω and successively refine the mesh by bisection.
For the parameters appearing in the cost, we shall use α = 1, β = 1, γ = 10−1, and
ε0 = 10−10. The mesh sizes for the triangulations are h = √

2/2k for 2 ≤ k ≤ 9. On
the other hand, in order to examine the behavior of the errors due to the penalization,
we shall use a fixed triangulation with mesh size h = √

2/26 and vary the penalty
parameter using the values ε0 = 10−k for 2 ≤ k ≤ 10. We terminate the optimization
algorithm once the relative error between two consecutive cost values is less than the
tolerance 10−6.

The algorithm presented above for the reduced optimal control problem was
implemented in Python 3.9.7 (Python Software Foundation, http://www.python.org)
on a 2.3-GHz Intel Core i5 with 8GB RAM. The source code and the numeri-
cal values for the discretization errors are available at https://github.com/grperalta/
rtpoisson.

We report in Table 1 the number of elements and interior edges corresponding to
the triangulations with mesh size h = √

2/2k . The total dof (degrees of freedom) is
computed by 4NKh +Neh, which corresponds to the dimension of the approximating
space Y 0

h × W 0
h × M0

h . The reduction percentage, that is, the ratio of the eliminated
components in the linear system to the total number of unknowns, is calculated by

reduction = dof − reduced ssm

dof
= NKh + Neh

4NKh + Neh

.

Overall, we can observe an approximate 45% reduction for the size of the linear
systems when the penalty method is applied to compute the solution of the discrete
saddle point problems associated with the state and adjoint equations.

In Fig. 1, we plot the discretization errors for the state variables (left) and the
adjoint and control variables (right) by reducing the mesh sizes. We can see the
expected order of convergenceO(h2) according to Theorem 11. In fact, we also have
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Table 1 Number of elements (NKh), interior edges (Neh), total degrees of freedom (dof = 4NKh + Neh),
reduced ssm (size of system matrix 3NKh), and the reduction percentage for the discrete state variable
with decreasing mesh sizes in the hybrid formulation

k NKh Neh dof Reduced ssm Reduction

2 32 40 168 96 42.86%

3 128 176 688 384 44.19%

4 512 736 2784 1536 44.83%

5 2048 3008 11,200 6144 45.14%

6 8192 12,160 44,928 24,576 45.30%

7 32,768 48,896 179,968 98,304 45.38%

8 131,072 19,6096 720,384 393,216 45.42%

9 524,288 785,408 2,882,560 1,572,864 45.54%

a quadratic order of convergence for the Fortin projection of the components σ̄ and ϕ̄

of the state and adjoint variables to their numerical counterparts, which is better than
the one expected. This is due to the fact that our triangulations are uniform, see for
instance [7].

In Fig. 2, we plot the discretization errors for the state variables (left) and the
adjoint and control variables (right) by successively reducing the penalty parame-
ter. It can be seen that the errors for the state and flux are large, unless we take the
penalization parameter ε0 = 10−10. Although penalization reduces the dimension of
the system matrix, one drawback is that the resulting reduced system can have huge
condition numbers that may result to large errors. Nevertheless, we can observe an
approximate order of convergenceO(ε) for the majority of the error between the con-
tinuous and penalized discrete state, adjoint state, and control as stated by Theorem
11. Also, the error decreased faster at ε0 = 10−10. We would like to mention that

Fig. 1 Discretization errors for the primal, dual, and control variables with respect to the mesh size in the
hybrid finite element method with fixed penalization parameter ε0 = 10−10

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



   70 Page 32 of 35 G. Peralta

Fig. 2 Penalization errors for the primal, dual, and control variables in the hybrid finite element method
for a fixed triangulation with mesh size h = √

2/26

for ε0 = 10−11, the corresponding error increases. Therefore, in practice, there is a
threshold for the penalty parameter due to round-off errors. Moreover, appropriate
preconditioners can be applied for larger penalty parameters due to large condition
number of the system matrix.

We note that the solutions of the penalized mixed method differ from those that
are given by the penalized hybrid method. In fact, as mentioned in the previous
section, the optimality system of the latter optimal control problem is a penalization
of the former problem, where the penalty term appears in the Lagrange multipliers.
In Table 2, we compare the norms of the difference between the computed solutions
obtained from the hybrid and mixed formulations. To distinguish the solutions of the
two methods, we append the superscripts H and M corresponding to the hybrid and
mixed methods, respectively.

The penalization parameter ε0 = 10−10 was utilized in the comparison. As the
mesh size decreases, we can observe that the difference between the solutions pro-
vided by the two methods decreases as well. The errors in the computed optimal
controls are comparably larger than those in the state and adjoint variables due to the
different discretization of the control space. Furthermore, one can see a linear order
of reduction of the difference in the optimal controls, which is consistent from the
one obtained in the theory, see for instance the a priori estimate (50).

To compare the norms of the fluxes in the state and adjoint variables, they are
expressed in terms of the Lagrange shape functions on each triangle corresponding
to the discontinuous P 1 finite element space. This is to compensate the different
representations of the flux variables used in the approximations. In particular, the
dimensions of the coefficient vectors of each method differ, for which the number
of interior edges corresponds to the dimension in the mixed method while thrice the
number of elements to that of the hybrid method. In general, the mixed formulation
requires more gradient iterations in contrast with the hybrid one.
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Table 2 Norms of differences between the solutions of the mixed and hybrid finite element approxima-
tions for decreasing mesh sizes

k ‖q̄H
hε − q̄M

hε‖ ‖σ̄H
hε − σ̄M

hε‖ ‖ūH
hε − ūM

hε‖ ‖ϕ̄H
hε − ϕ̄M

hε‖ ‖w̄H
hε − w̄M

hε‖

2 7.759187e–1 2.612056e–2 3.485176e–3 2.080860e–2 4.932468e–3

3 9.768092e–1 1.449179e–2 2.367384e–3 1.562847e–2 2.436102e–3

4 6.100684e–1 4.309833e–3 5.442836e–4 4.206953e–4 5.393033e–4

5 3.217493e–1 2.396436e–3 4.918615e–4 3.177990e–4 1.402689e–3

6 1.629187e–1 3.054530e–4 6.175866e–5 1.010845e–4 9.919974e–5

7 8.172378e–2 7.018624e–5 8.740210e–6 1.287241e–5 1.324480e–5

8 4.089508e–2 1.813897e–5 2.278971e–6 1.089335e–5 2.972948e–6

9 2.045165e–2 7.612611e–6 8.190436e–7 1.150863e–5 9.860226e–7

Let us compare the performance of the penalized hybrid formulation with post-
processing and the typical H 1-conforming method. Here, we utilized the same test
example based on the eigenfunction (104). The Lagrange interpolations of the exact
solutions are denoted by ũh, q̃h, w̃h, while the approximations obtained from the
usual method are given by ûh, q̂h, ŵh.

If Ãh and M̃h are the stiffness and mass matrices for the H 1-method, then the
coupled primal-dual system is given by[

Ãhûh = M̃hf̃h − γ −1ŵh

Ãhŵh = αM̃h(̂uh − ũdh) + βÃh(̂uh − ẽh).
(105)

where f̃h, ũdh, and ẽh are the Lagrange interpolations of the source, desired state,
and eigenfunction, respectively. Unlike for the hybrid method where we used a gra-
dient algorithm to compute for the solutions of the optimal control problem, the
solutions to the coupled system (105) were calculated using a sparse solver. We can
observe from Fig. 3 that the usual method has quadratic orders of convergence for
the errors; however, the hybrid method yields smaller errors in comparison to the
conforming one.

Fig. 3 Discretization errors for the primal, dual, and control variables obtained from the usual H 1-
conforming FEM (dashed lines) and the penalized hybrid FEM with post-processing (solid lines)
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A disadvantage of the mixed method is the larger number of degrees of freedom
in relation to the usual H 1-conforming method. Also, the treatments of the resulting
saddle point problems are not trivial tasks. In this work, additional penalty terms have
been introduced to reduce the size of the corresponding linear systems, leading to
symmetric and positive-definite equations.

To circumvent the difficulties arising from mixed methods, hybridizable discon-
tinuous Galerkin (HDG) methods have been studied and successfully applied to the
discretization of optimal control problems with PDE constraints. For example, in
the case of elliptic PDEs, we refer to [18] and [20] with Dirichlet and Neumann
controls, respectively. Other related discretization schemes that can be explored are
the so-called hybrid high-order (HHO) methods, see [11] for instance. It would be
interesting to compare the performance of mixed and hybrid formulations to other
hybridizable methods. Since these are out of the scope of the current manuscript, we
recommend such topics for future theoretical and numerical investigations.
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