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Abstract.
We consider optimal control problems for the two-dimensional stationary
Navier–Stokes equation with cost functionals involving the pressure, stress,
diffusion, and convection. Likewise, we study observations for the velocity,
pressure, and stress, concentrated on a finite collection of points located either in
the domain or on the boundary. Such observations are known to produce PDEs
with measure data for the corresponding adjoint equation. Depending on the
nature of the objective cost functional, the control set will be either the space
of square-integrable functions without constraints, with constraints in Lebesgue
spaces, or with weak derivatives. We prove generalized Green’s theorems for the
weak and very weak solutions that involve the trace and normal stress on the
boundary. Finally, the local optimality systems for such control problems will be
derived and the regularity of the optimal states will be established.
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1. Introduction

Consider an open, connected, and bounded domain Ω ⊂ R2 with sufficiently smooth
boundary Γ. We study optimal control problems of the form

min
(y,p,u)∈W2,2(Ω)×W 1,2(Ω)×L2(Ω)

J0(y, p,u) := J0(y, p) +
ρ

2
‖u‖2

L2(Ω) (1.1)

where for a given u ∈ L2(Ω), the pair (y, p) ∈W2,2(Ω) ×W 1,2(Ω) is a solution to
the two-dimensional stationary Navier–Stokes equation −ν∆y + (y · ∇)y +∇p = u in Ω,

div y = 0 in Ω, y = 0 on Γ,

∫
Ω

p dx = 0.
(1.2)

The functions y : Ω → R2 and p : Ω → R in (1.2) represent the velocity and
pressure, respectively, and u : Ω→ R2 acts as a control distributed over the domain
Ω. The detailed discussion on the notation and definition of function spaces as well
as the review of the existence and regularity of solutions and the corresponding a
priori estimates will be given in the succeeding section. We refer to Section 3 for
the concrete definitions of the cost functionals.

We shall also consider (1.1) with control constraints, that is, we replace L2(Ω)
with the control space

Uad := {u ∈ L2(Ω) : a ≤ u ≤ b a.e. Ω}
for suitable a,b : Ω→ R2, taken as a closed subspace of L2(Ω). The relation ≤ on
R2 is to be understood componentwise. The control space Uad with a,b ∈ Ls(Ω)
where 2 < s <∞ will be appropriate in dealing with functionals that involve point
evaluations of the pressure or the normal stress on the boundary. In this case, it
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holds that Uad ⊂ Ls(Ω) and it can be shown from regularity theory for the Stokes
equation that (y, p) ∈W2,s(Ω)×W 1,s(Ω) (see Subsection 2.2 for the details). With
this, aside from (1.1), we also study minimization problems of the form

min
(y,p,u)∈W2,s(Ω)×W 1,s(Ω)×Uad

J1(y, p,u) := J1(y, p) +
ρ

2
‖u‖2

L2(Ω) (1.3)

subject to (1.2).
Alternatively, if one wishes to avoid control constraints, then one can utilize con-

trols that are weakly differentiable. More precisely, for the control space W1,2(Ω),
we also consider optimal control problems of the form

min
(y,p,u)∈W3,2(Ω)×W 2,2(Ω)×W1,2(Ω)

J2(y, p,u) := J2(y, p) +
ρ

2
‖u‖2

W1,2(Ω) (1.4)

subject to (1.2). The optimal control problem (1.4) can be viewed as a regularization
of (1.1) if we equipW1,2(Ω) with the norm ‖u‖W1,2(Ω) = (‖u‖2

L2(Ω)+ε‖∇u‖2
L2(Ω)2)

1/2,
where ε > 0 is a given small parameter. Here, we shall take ε = 1 for simplicity
as we are not interested on the asymptotic behavior of the solutions when ε → 0.
Specific and precise definitions of (1.1), (1.3), and (1.4) will be given in Section 3.

Note that p(x), for x ∈ Ω̄, is well-defined as soon as p ∈ W 1,s(Ω) or p ∈ W 2,2(Ω),
thanks to the Sobolev embeddings W 1,s(Ω) ⊂ C(Ω̄) for 2 < s < ∞ and W 2,2(Ω) ⊂
C(Ω̄). Hence, (1.3) and (1.4) are suitable for problems with point observations of
the pressure.

The cost functional Jk will include derivatives of the velocity, such as the gradient,
Laplacian, or convection within the domain, the derivative normal to the boundary,
or point evaluations within the domain or on the boundary. With respect to the
pressure, we also investigate the interior, boundary, or point tracking problems. For
optimal control problems of the Navier–Stokes equation, the pressure is typically
not considered in the vast existing literature, particularly for boundary and point
observations of the pressure. The analysis of optimal control problems involving the
pressure is the main contribution of the current work.

The Cauchy stress
T(y, p) := −ν∇y + pI

within the domain or its associated conormal derivative

T(y, p)n = −ν∂ny + pn

on the boundary, where n is the unit normal outward on Γ with respect to Ω, will
be examined in this manuscript as well. In order for the observations of the states
on the boundary or at points in the domain to be well-defined, suitable regularity
is needed, hence there is a need to consider smooth controls. As mentioned above,
smoothness can be achieved by either imposing control constraints or by allowing
weak differentiability of the controls.

Pointwise tracking leads to the investigation of linear PDEs with measure data.
For example, optimality systems and finite element approximations for linear elliptic,
semilinear elliptic, and the Stokes equations have been examined in [8], [2], and
[6, 7], respectively. When considering point-evaluations of the pressure or the normal
Cauchy stress tensor at points on the boundary in the cost functional, we must take
a space larger than the space of regular Borel measures. One framework in the

Department of Mathematics and Computer Science, College of Science, University of the Philippines Baguio



Optimal Control for NSE Involving Pressure and Stress 3 / 47

study of PDEs with measure data involves reformulating the problem in suitable
negative-indexed Sobolev spaces and resorting to duality arguments.

In general, the adjoint equation to the optimal control problems we consider
here will be a Stokes-type equation having a non-homogenous source, divergence,
or boundary conditions. In particular, for problems with measure data, the notion
of very weak solutions can be employed. Such solutions for the Stokes, Oseen, and
Navier–Stokes equations have been thoroughly investigated and extensively studied
over the past decades (see, for instance, [5, 4, 14, 16, 18, 21, 22], and the references
therein).

In this work, we deal with the optimal control problems (1.1), (1.3) and (1.4)
having the specific structures given in Section 3, all subject to (1.2), locally at
regular solutions. Roughly speaking, regular solutions are those solutions that yield
topological isomorphisms for the linearized operators, and consequently, leading to
uniqueness of solutions in a certain neighborhood. In this way, a control-to-state
mapping can be defined locally. This framework was introduced in [10] to study
Borel measure controls to the stationary Navier–Stokes equation (1.2). We adapt
the method presented in the latter paper to the linearized problem around an optimal
regular solution, wherein we demonstrate the existence of two mutually exclusive
(Fredholm) alternatives: the associated operator is either an isomorphism or has a
nontrivial kernel. Earlier works that utilized the notion of regular or non-singular
solutions for the steady-state Navier–Stokes equation can be found in [17], where
such concept was used as a framework for numerical approximations, and in [11] as
an application to optimal control problems with distributed control. We emphasize
here that our results are valid provided that appropriate smallness conditions on
the data are satisfied, namely, the smallness of the Reynolds’ number or the norm
of the controls. Such conditions will guarantee the existence and uniqueness of the
so-called regular solutions.

The structure of the paper is as follows: Section 2 deals with the well-posedness
of the state, linearized state, and adjoint equations. Moreover, we prove that weak
and very weak solutions in Lp-spaces for 1 < p <∞ to the Stokes equation possess
a well-defined normal Cauchy stress on the boundary, extending the results in the
Hilbertian case presented in [21, 22]. Section 3 focuses on the optimality systems
and the regularity of the optimal solutions of the localized problems around regular
solutions.

2. Analysis of state, linearized state and adjoint equa-
tions

2.1. Function spaces. Let 1 ≤ s ≤ ∞ and s′ = s
s−1

be the Hölder conjugate
when 1 < s <∞. The Lebesgue spaces and Sobolev spaces will be denoted by Ls(Ω)
and W r,s(Ω), respectively [1]. For the vector case, we set Ls(Ω) := Ls(Ω) × Ls(Ω)
and Wr,s(Ω) := W r,s(Ω)×W r,s(Ω). The set of all elements in W1,s(Ω) that vanish
on the boundary in the sense of traces will be denoted byW1,s

0 (Ω). We letX2,s(Ω) :=
W1,s

0 (Ω) ∩W2,s(Ω),

L̂s(Ω) :=

{
p ∈ Ls(Ω) :

∫
Ω

p dx = 0

}
,
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and Ŵ 1,s(Ω) := W 1,s(Ω) ∩ L̂s(Ω).
With regard to divergence-free vector fields, we use the following notations:

Lsσ(Ω) := {y ∈ Ls(Ω) : div y = 0 in Ω, y · n = 0 on Γ},
V1,s(Ω) := {y ∈W1,s

0 (Ω) : div y = 0 in Ω},
V2,s(Ω) := {y ∈ X2,s(Ω) : div y = 0 in Ω}.

In the definition of Lsσ(Ω), the equation y · n = 0 on Γ is taken in the sense of
W− 1

s
,s(Γ), see [23, Lemma I.1.2.2] for instance. We denote the associated norms by

‖u‖Lsσ(Ω) := ‖u‖Ls(Ω),

‖v‖V1,s(Ω) := ‖∇v‖Ls(Ω)2 ,

‖w‖V2,s(Ω) := ‖∆w‖Ls(Ω),

for u ∈ Lsσ(Ω), v ∈ V1,s(Ω), and w ∈ V2,s(Ω).
The dual spaces will be denoted with a negative order, that is, we shall write

X−2,s(Ω) := X2,s′(Ω)′, W−1,s(Ω) := W1,s′

0 (Ω)′, and V−k,s(Ω) := Vk,s′(Ω)′ for
k = 1, 2. For the spacesW k,s′(Ω) and Ŵ k,s′(Ω), the respective dual spaces will be de-
noted by the usual notation W k,s′(Ω)′ and Ŵ k,s′(Ω)′. Similarly, we set W−σ,s(Γ) :=
Wσ,s′(Γ)′ for σ > 0. We also set

Lsdiv(Ω) := {u ∈ Ls(Ω) : divu ∈ Ls(Ω)}
endowed with the graph norm ‖u‖Lsdiv(Ω) := ‖u‖Ls(Ω) + ‖ divu‖Ls(Ω).

The space of bounded linear operators from a Banach spaceX into a Banach space
Y is denoted by L(X, Y ) and L(X) := L(X,X). The collection of isomorphisms
in L(X, Y ) will be written as Liso(X, Y ). Here, by an isomorphism we mean a
topological one, that is, the bounded linear operator is invertible, hence, has a
bounded inverse according to the open mapping theorem.

Recall that the well-posedness for the Stokes equation with non-homogeneous
divergence and boundary conditions requires compatibility conditions. However,
the data in the observations may not satisfy such conditions, hence, there is a need
to achieve compatibility. In this direction, let t, r ∈ R and 1 < s < ∞. To have
a single definition on the spaces associated with the compatibility conditions, we
introduce the notation

F t,s(Ω) :=

{
W t,s(Ω) if t ≥ 0,

W−t,s′(Ω)′ if t < 0.
(2.1)

Same definition will be applied to F̂ t,s(Ω) where we replace W with Ŵ , and to
Fr,s(Γ) where we replace t with r, W with W, and Ω with Γ.

Given g ∈ F t,s(Ω) and h ∈ Fr,s(Γ), we set

〈g, 1〉Ω :=


∫

Ω

g dx if t ≥ 0,

〈g, 1〉W−t,s′ (Ω)′,W−t,s′ (Ω) if t < 0,

〈h,n〉Γ :=


∫

Γ

h · n ds if r ≥ 0,

〈h,n〉W−r,s′ (Γ)′,W−r,s′ (Γ) if r < 0.
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Then, we consider the function space

Zt,r,s(Ω,Γ) :=
{

(g,h) ∈ F t,s(Ω)× Fr,s(Γ) : 〈g, 1〉Ω + 〈h,n〉Γ = 0
}

taken as a closed subspace of F t,s(Ω)× Fr,s(Γ). The dual space of Zt,r,s(Ω,Γ) with
respect to the pivot space Z0,0,2(Ω,Γ) is given by Zt,r,s(Ω,Γ)′ = Z−t,−r,s

′
(Ω,Γ).

Define the bounded linear operator Π : F t,s(Ω)× Fr,s(Γ)→ F t,s(Ω) by

Π(g,h) := g − 1

|Ω|
(〈g, 1〉Ω + 〈h,n〉Γ).

Then, it follows that

(Π(g,h),h) ∈ Zt,r,s(Ω,Γ) ∀(g,h) ∈ F t,s(Ω)× Fr,s(Γ). (2.2)

Likewise, we introduce the bounded linear operators Λ : F t,s(Ω) → F̂ t,s(Ω) and
Σ : Fr,s(Γ)→ R by

Λg := Π(g,0) = g − 1

|Ω|
〈g, 1〉Ω,

Σh := Π(0,h) = − 1

|Ω|
〈h,n〉Γ.

By definition, it is clear that Λg ∈ F̂ t,s(Ω) and (Σh,h) ∈ Zt,r,s(Ω,Γ) for every
g ∈ F t,s(Ω) and h ∈ Fr,s(Γ).

2.2. Strong solutions to the state equation. In this subsection, we
recall briefly the well-posedness theory and the a priori estimates for the solutions of
the stationary Navier–Stokes equation (1.2) for a given control u. In what follows, c
or with a subscript will denote a generic positive constant independent on the state
and control variables, unless stated otherwise.

Suppose that u ∈ W−1,2(Ω). Then, (1.2) admits a weak solution (y, p) ∈
V1,2(Ω)× L̂2(Ω) satisfying the a priori estimates

‖y‖V1,2(Ω) ≤
1

ν
‖u‖W−1,2(Ω), (2.3)

‖p‖L̂2(Ω) ≤ c

(
‖u‖W−1,2(Ω) +

1

ν2
‖u‖2

W−1,2(Ω)

)
,

for some constant c > 0 independent of y, p, u, and ν, see [15, Theorems IX.3.1].
If u ∈ L2(Ω), then (y, p) ∈ V2,2(Ω) × Ŵ 1,2(Ω). Let us derive a priori estimates

where the dependence on the viscosity coefficient ν is explicitly stated. For this, we
rewrite (1.2) as follows: −ν∆y +∇p = u− (y · ∇)y in Ω,

div y = 0 in Ω, y = 0 on Γ,

∫
Ω

p dx = 0.
(2.4)

Invoking the a priori estimate for the Stokes equation to (2.4), see [23, Theorem
III.1.5.3] for instance, we obtain

‖y‖V2,2(Ω) +
1

ν
‖p‖Ŵ 1,2(Ω) ≤

c

ν
(‖u‖L2(Ω) + ‖(y · ∇)y‖L2(Ω)), (2.5)
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where c > 0 denotes a generic constant independent of ν. Using the Hölder and
Ladyzhenkaya inequalities, the continuity of the embedding V1,2(Ω) ⊂ L4(Ω), and
Young inequality, we get

‖(y · ∇)y‖L2(Ω) ≤ ‖y‖L4(Ω)‖∇y‖L4(Ω)2

≤ c‖y‖3/2

V1,2(Ω)‖y‖
1/2

V2,2(Ω)

≤ c

2ν
‖y‖3

V1,2(Ω) +
ν

2c
‖y‖V2,2(Ω).

Plugging the last estimate in (2.5), applying (2.3), and using the continuity of
L2(Ω) ⊂W−1,2(Ω), we deduce that

‖y‖V2,2(Ω) +
1

ν
‖p‖Ŵ 1,2(Ω) ≤

c

ν

(
‖u‖L2(Ω) +

1

ν4
‖u‖3

L2(Ω)

)
. (2.6)

Assume that a,b ∈ Ls(Ω) where 2 < s < ∞. If u ∈ Uad, then u ∈ Ls(Ω) and it
holds that

‖u‖Ls(Ω) ≤ cs(‖a‖Ls(Ω) + ‖b‖Ls(Ω)) (2.7)

for some (generic) constant cs > 0, thanks to the inequalities |u| ≤ max{|a|, |b|} ≤
|a|+ |b| almost everywhere in Ω. Thus, we have

‖(y · ∇)y‖Ls(Ω) ≤ ‖y‖L∞(Ω)‖∇y‖Ls(Ω)2 ≤ c‖y‖2
V2,2(Ω), (2.8)

thanks to the continuity of V2,2(Ω) ⊂ L∞(Ω)∩W1,s(Ω) due to the Sobolev embed-
ding theorem. Regularity theory for the Stokes equation [3, 12] in general Lebesgue
spaces, (2.6), and (2.8) lead to (y, p) ∈ V2,s(Ω)× Ŵ 1,s(Ω) and

‖y‖V2,s(Ω) +
1

ν
‖p‖Ŵ 1,s(Ω) ≤

c

ν
(‖u‖Ls(Ω) + ‖(y · ∇)y‖Ls(Ω))

≤ c

ν

(
‖u‖Ls(Ω) +

1

ν2
‖u‖2

L2(Ω) +
1

ν10
‖u‖6

L2(Ω)

)
. (2.9)

Without explicit dependence on ν, this a priori estimate can also be derived by
applying the well-known result for the stationary Navier–Stokes equation, see [15,
Theorem IX.5.2].

According to Sobolev embedding theorem [13, Section 5.6.3], V2,s(Ω) ⊂ X2,s(Ω)

⊂ C0(Ω)∩C1,1− 2
s (Ω̄) and Ŵ 1,s(Ω) ⊂ C0,1− 2

s (Ω̄) continuously. Therefore, we deduce
from (2.9) that

‖y‖
C0(Ω)∩C1,1− 2

s (Ω̄)
+

1

ν
‖p‖

C0,1− 2
s (Ω̄)

≤ c

ν

(
‖u‖Ls(Ω) +

1

ν2
‖u‖2

L2(Ω) +
1

ν10
‖u‖6

L2(Ω)

)
.

In particular, since C1,1− 2
s (Ω̄) ⊂ C1(Ω̄) and C0,1− 2

s (Ω̄) ⊂ C(Ω̄) continuously, the
following a priori estimate holds:

‖y‖C0(Ω)∩C1(Ω̄) +
1

ν
‖p‖C(Ω̄) ≤

c

ν

(
‖u‖Ls(Ω) +

1

ν2
‖u‖2

L2(Ω) +
1

ν10
‖u‖6

L2(Ω)

)
.
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Suppose that we have a control u ∈W1,2(Ω). Then, by the Hölder’s inequality
and the continuous embedding V2,2(Ω) ⊂ L∞(Ω) ∩W1,4(Ω), we get

‖∇((y · ∇)y)‖L2(Ω)2 ≤ c(‖∇y‖2
L4(Ω)2 + ‖y‖L∞(Ω)‖∇2y‖L2(Ω)2×2)

≤ c‖y‖2
V2,2(Ω). (2.10)

Invoking the regularity theory for the Stokes equation [9, Theorem IV.5.8], (2.8),
and (2.10), we obtain

‖y‖V3,2(Ω) +
1

ν
‖p‖Ŵ 2,2(Ω) ≤

c

ν
(‖u‖W1,2(Ω) + ‖(y · ∇)y‖W1,2(Ω))

≤ c

ν

(
‖u‖W1,2(Ω) +

1

ν2
‖u‖2

L2(Ω) +
1

ν10
‖u‖6

L2(Ω)

)
.

Consequently, by the continuity of the embeddings V3,2(Ω) ⊂ C0(Ω) ∩ C1(Ω̄) and
Ŵ 2,2(Ω) ⊂ C(Ω̄), it holds that

‖y‖C0(Ω)∩C1(Ω̄) +
1

ν
‖p‖C(Ω̄) ≤

c

ν

(
‖u‖W1,2(Ω) +

1

ν2
‖u‖2

L2(Ω) +
1

ν10
‖u‖6

L2(Ω)

)
.

Take note that the results for the cases where the controls belong to Uad or
W1,2(Ω) yield that point-evaluations involving the pressure and the gradient of the
velocity are well-defined. As a result, observations involving such quantities can be
studied.

2.3. Well-Posedness of the Linearized and Adjoint Systems. In
this subsection, we analyze the linearized version of (1.2) and the associated dual
problem for this linearized system. Specifically, we consider the linearized system
with non-homogenous divergence and boundary conditions and apply duality argu-
ments to derive the associated dual problem having similar non-homogeneities.

The linearized problem around a reference state y is given by −ν∆w + (w · ∇)y + (y · ∇)w +∇π = r in Ω,

− divw = q in Ω, w = z on Γ,

∫
Ω

π dx = 0,
(2.11)

where r, q, and z are suitable data with the compatibility condition∫
Ω

q dx+

∫
Γ

z · n ds = 0. (2.12)

In the case of less regular q or z, these integrals should be replaced by duality
pairings. Note that the compatibility condition (2.12) is a consequence of the second
and third equations in (2.11) and the divergence theorem.

The dual problem corresponding to (2.11) is given by −ν∆v + (∇y)>v − (y · ∇)v +∇σ = f in Ω,

− div v = g in Ω, v = h on Γ,

∫
Ω

σ dx = 0,
(2.13)

for appropriate f , g, and h with the compatibility condition∫
Ω

g dx+

∫
Γ

h · n ds = 0. (2.14)
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For smooth enough solutions (w, π) for (2.11) and (v, σ) for (2.13), integration
by parts leads to the following equation:∫

Ω

f ·w dx+

∫
Ω

gπ dx+

∫
Γ

h ·T(w, π)n ds

=

∫
Ω

v · r dx+

∫
Ω

σq dx+

∫
Γ

T(v, σ)n · z ds. (2.15)

In particular, when z = 0, (2.16) reduces to∫
Ω

f ·w dx+

∫
Ω

gπ dx+

∫
Γ

h ·T(w, π)n ds =

∫
Ω

v · r dx+

∫
Ω

σq dx. (2.16)

This equation motivates the definition of very weak solutions to (2.13) with rough
data (see Definition 2.11 below) and the conversion of the required compatibility of
the data arising from the cost functional.

Sufficient regularity assumptions for the validity of the equation (2.15) are as
follows: y ∈ V2,2(Ω), r ∈ Ls(Ω), q ∈ W 1,s(Ω), z ∈ W2− 1

s
,s(Γ), f ∈ Ls

′
(Ω), g ∈

W 1,s′(Ω), and h ∈ W2− 1
s′ ,s
′
(Γ), where 1 < s < ∞. Consequently, we have w ∈

W2,s(Ω), π ∈ Ŵ 1,s(Ω), v ∈ W2,s′(Ω), and σ ∈ Ŵ 1,s′(Ω), and hence, T(w, π)n ∈
W1− 1

s
,s(Γ), and T(v, σ)n ∈ W1− 1

s′ ,s
′
(Γ). For less regular f , g, or h, the integrals

appearing on the left-hand side of (2.15) will be replaced by duality pairings. In
particular, (2.15) will be generalized in Theorem 2.14 and Theorem 2.15.

Given a fixed y ∈ V2,2(Ω), consider the bounded linear operator

Ay : W1,s
0 (Ω)× L̂s(Ω)→W−1,s(Ω)× L̂s(Ω)

defined by

Ay(w, π) := (Ay(w, π),− divw),

Ay(w, π) := −ν∆w + (w · ∇)y + (y · ∇)w +∇π.

Note that for (w, π) ∈W1,s
0 (Ω)× L̂s(Ω) and v ∈W1,s′

0 (Ω),

〈Ay(w, π),v〉
W−1,s(Ω),W1,s′

0 (Ω)

:=

∫
Ω

ν∇w : ∇v + (w · ∇)y · v + (y · ∇)w · v − π div v dx. (2.17)

Similarly, define the bounded linear operator

A?
y : W1,s′

0 (Ω)× L̂s′(Ω)→W−1,s′(Ω)× L̂s′(Ω)

according to

A?
y(v, σ) := (A?y(v, σ),− div v),

A?y(v, σ) := −ν∆v + (∇y)>v − (y · ∇)v +∇σ,

where, for (v, σ) ∈W1,s′

0 (Ω)× L̂s′(Ω) and w ∈W1,s
0 (Ω),

〈A?y(v, σ),w〉W−1,s′ (Ω),W1,s
0 (Ω)

:=

∫
Ω

ν∇w : ∇v + (∇y)>v ·w − (y · ∇)v ·w − σ divw dx. (2.18)
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The operators Ay and A?
y are dual to each other in the sense that

〈Ay(w, π), (v, σ)〉
W−1,s(Ω)×L̂s(Ω),W1,s′

0 (Ω)×L̂s′ (Ω)

= 〈(w, π),A?
y(v, σ)〉W−1,s′ (Ω)×L̂s′ (Ω),W1,s

0 (Ω)×L̂s(Ω) (2.19)

for every (w, π) ∈ W1,s
0 (Ω) × L̂s(Ω) and (v, σ) ∈ W1,s′

0 (Ω) × L̂s′(Ω). This can be
established easily from the above definitions.

Definition 2.1. A solution y ∈ V2,2(Ω) to (1.2) with associated pressure p ∈
Ŵ 1,2(Ω) corresponding to a source u ∈ L2(Ω) is called regular if

Ay ∈ Liso(V1,2(Ω)× L̂2(Ω),W−1,2(Ω)).

To deal with optimal control problems having point-evaluations of the velocity as
observations, it is necessary to extend this definition so that Ay ∈ Liso(V1,r(Ω) ×
L̂r(Ω),W−1,r(Ω)) with r 6= 2. We will prove this in Lemma 2.7. Moreover, to treat
observations that are point-evaluations of the pressure or the normal stress on the
boundary, we need to study the case of non-homogeneous divergence and Dirichlet
boundary data. This will be done in Lemma 2.10 and Corollary 2.13.

The following lemma tells us that there are two alternatives for the operator
Ay ∈ L(V1,2(Ω)× L̂2(Ω),W−1,2(Ω)), compare with [15, Lemma IX.2.2].

Proposition 2.2. Given y ∈ V2,2(Ω), either Ay ∈ Liso(V1,2(Ω)×L̂2(Ω),W−1,2(Ω))
or Ay has a nontrivial kernel.

Proof. First, let us note that by the triangle and Hölder inequalities

‖(w · ∇)y + (y · ∇)w‖L2(Ω) ≤ ‖w‖L4(Ω)‖∇y‖L4(Ω)2 + ‖y‖L∞(Ω)‖∇w‖L2(Ω)2

≤ c‖y‖V2,2(Ω)‖w‖V1,2(Ω) (2.20)

thanks to the continuous embeddings V2,2(Ω) ⊂ L∞(Ω) ∩W1,4(Ω) and V1,2(Ω) ⊂
L4(Ω).

Consider the bounded linear operator Ây : V1,2(Ω)→ V−1,2(Ω) defined by

Âyw := −ν∆w + I[(w · ∇)y + (y · ∇)w],

where I denotes the canonical embedding from L2(Ω) into V−1,2(Ω). Let us decom-
pose this operator as Ây =: Cy +Ky, where

Cyw := −ν∆w + I[(y · ∇)w], Kyw := I[(w · ∇)y].

Since 〈Cyw,w〉V−1,2(Ω),V1,2(Ω) = ν‖w‖V1,2(Ω), it follows that

Cy ∈ Liso(V1,2(Ω),V−1,2(Ω))

from the Lax–Milgram Lemma.
On the other hand, for every w ∈ L2

σ(Ω) and v ∈ V1,2(Ω)

|〈Kyw,v〉V−1,2(Ω),V1,2(Ω)| ≤ ‖w‖L2(Ω)‖∇y‖L4(Ω)2‖v‖L4(Ω)

≤ c‖w‖L2
σ(Ω)‖y‖V2,2(Ω)‖v‖V1,2(Ω).

Thus, Ky ∈ L(L2
σ(Ω),V−1,2(Ω)), and as result, Ky ∈ L(V1,2(Ω),V−1,2(Ω)) is com-

pact due to the compactness of V1,2(Ω) ⊂ L2
σ(Ω).
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For w ∈ V1,2(Ω) and r ∈ V−1,2(Ω), the equation Âyw = r in V−1,2(Ω) is equiv-
alent to (1 + C−1

y Ky)w = C−1
y r in V1,2(Ω). Since C−1

y Ky ∈ L(V1,2(Ω)) is com-
pact, we deduce from the Fredholm alternative that −1 is either in the resolvent
set or in the point spectrum of C−1

y Ky. In the first alternative, we obtain that
Ây ∈ Liso(V1,2(Ω),V−1,2(Ω)). Thanks to the Banach inverse theorem, if Âyw = r,
then

‖w‖V1,2(Ω) ≤ c‖r‖V−1,2(Ω), c := ‖Â−1
y ‖L(V−1,2(Ω),V1,2(Ω)).

The second alternative implies that Ây has a nontrivial kernel.
Given r ∈W−1,2(Ω) ⊂ V−1,2(Ω), the preceding paragraph yields either Âyw = r

for a unique w ∈ V1,2(Ω) and
‖w‖V1,2(Ω) ≤ c‖r‖W−1,2(Ω),

or Âyw = 0 for some 0 6= w ∈ V1,2(Ω). In the first case, we obtain from de Rham’s
theorem the existence of a unique π ∈ L̂2(Ω) such that Ay(w, π) = r and

‖π‖L̂2(Ω) ≤ c‖∇π‖W−1,2(Ω) ≤ c(‖r‖W−1,2(Ω) + ‖w‖V1,2(Ω)) ≤ c‖r‖W−1,2(Ω).

Thus, we have
‖w‖V1,2(Ω) + ‖π‖L̂2(Ω) ≤ c‖r‖W−1,2(Ω). (2.21)

It follows that Ay is surjective. It is also injective, since Ay(w, π) = (0, 0) implies
Âyw = 0 so that w = 0 by injectivity of Ây, and hence ∇π = 0, which leads to
π = 0 in L̂2(Ω). The second case obviously implies that (w, 0) 6= (0, 0) lies in the
kernel of Ay. �

Corollary 2.3. Let y ∈ V2,2(Ω). If for every 0 6= w ∈ V1,2(Ω) we have∫
Ω

ν|∇w|2 + (w · ∇)y ·w dx 6= 0,

then Ay ∈ Liso(V1,2(Ω)× L̂2(Ω),W−1,2(Ω)).

Proof. If the kernel of Ay contains a nontrivial element, say (w, π) ∈ V1,2(Ω) ×
L̂2(Ω), then we have w 6= 0 and

0 = 〈Ay(w, π),w〉W−1,2(Ω),W1,2
0 (Ω) =

∫
Ω

ν|∇w|2 + (w · ∇)y ·w dx.

This is a contradiction to the given hypothesis. Hence, Ay must be an isomorphism
due to Proposition 2.2. �

A sufficient condition for the existence of regular points is given in the following
theorem (see also [10, Definition 2.7]). In particular, this result tells us that if the
viscosity coefficient is sufficiently large, then it is guaranteed that there is at least
one regular point of (1.2). At this point, there is no need to specify the tracking
parts Jk, for k = 0, 1, 2, of the cost functionals Jk as the non-negativity of Jk will
suffice for the validity of the following theorem. Non-negativity of Jk is satisfied by
all functionals defined in Section 3. Unlike in the introduction, we now include the
last three equations in (1.2) for the function spaces for y and p.
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Theorem 2.4. Let (y, p,u) ∈ V2,2(Ω) × Ŵ 1,2(Ω) × L2(Ω) be such that (y, p) is a
solution of (1.2) with control u and J0(y, p,u) ≤ J0(0, 0,0), where J0 : V2,2(Ω)×
Ŵ 1,2(Ω)× L2(Ω)→ R is of the form

J0(y, p,u) := J0(y, p) +
ρ

2
‖u‖2

L2(Ω)

with J0 : V2,2(Ω)× Ŵ 1,2(Ω)→ R a non-negative function. Then, there exists ν0 > 0
such that if ν > ν0, then y is a regular solution to (1.2). Analogous results hold for
the case of cost functionals J1 : V2,s(Ω)× Ŵ 1,s(Ω)× Ls(Ω)→ R, with 2 < s <∞,
of the form

J1(y, p,u) := J1(y, p) +
ρ

2
‖u‖2

L2(Ω)

for some non-negative J1 : V2,s(Ω)× Ŵ 1,s(Ω)→ R, and J2 : (V2,2(Ω)∩W3,2(Ω))×
Ŵ 2,2(Ω)×W1,2(Ω)→ R of the form

J2(y, p,u) := J2(y, p) +
ρ

2
‖u‖2

W1,2(Ω)

for some non-negative J2 : (V2,2(Ω) ∩W3,2(Ω))× Ŵ 2,2(Ω)→ R.

Proof. Let J (0) := J0(0, 0,0) = J0(0, 0) and 0 6= w ∈ V1,2(Ω). Notice that (0, 0)
is a feasible point of (1.1). From the non-negativity of J0, we have ‖u‖2

L2(Ω) ≤
2J0(y, p,u)/ρ ≤ 2J (0)/ρ, and using this inequality in (2.3) we obtain

‖y‖V1,2(Ω) ≤ ν−1c0(2J (0)/ρ)1/2

where c0 > 0 denotes the operator norm of the embedding L2(Ω) ⊂W−1,2(Ω).
Note that ∣∣∣∣∫

Ω

(w · ∇)y ·w dx

∣∣∣∣ ≤ c‖w‖2
L4(Ω)‖∇y‖L2(Ω)2

≤ cc2
1ν
−1c0(2J (0)/ρ)1/2‖w‖2

V1,2(Ω),

where c1 > 0 is the operator norm of V1,2(Ω) ⊂ L4(Ω). By taking

ν0 > cc2
1ν
−1c0(2J (0)/ρ)1/2 ≥ 0,

we deduce that for ν > ν0 we have∫
Ω

ν|∇w|2 + (w · ∇)y ·w dx ≥ (ν − ν0)

∫
Ω

|∇w|2 dx > 0.

Using Corollary 2.3, we see that y is a regular solution of (1.2).
For the last statement of the theorem, note that the proof for the case of J1 is

the same but with J (0) replaced by J (1) := J1(0, 0,0) = J1(0, 0). On the other
hand, that of J2 can be established by applying the embedding W1,2(Ω) ⊂ L2(Ω)
and J (0) replaced by J (2) := J2(0, 0,0) = J2(0, 0). �

For a given fix ν > 0, it is possible to prove that a solution y of (1.2) is regular if
one imposes smallness condition on the size of the control. For example, if ‖u‖L2(Ω) <
δ, where δ > 0 is small enough so that ν2 − cc2

1c0δ > 0, then following the same
argument as above we can verify that y is regular.
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The results of Theorem 2.4 also hold if we replace Jk(y, p) and Jk(y, p,u) for
k = 0, 1, 2 with Jk(y) and Jk(y,u), or with Jk(p) and Jk(p,u), respectively, with
appropriate modifications on the spaces where these functionals are defined. Such
functionals are suitable when one has to deal with either the velocity or the pressure.

The following lemma provides an equivalent definition of regular points.

Lemma 2.5. Let y ∈ V2,2(Ω). Then, Ay ∈ Liso(V1,2(Ω)× L̂2(Ω),W−1,2(Ω)) if and
only if Ay ∈ Liso(W1,2

0 (Ω)× L̂2(Ω),W−1,2(Ω)× L̂2(Ω)).

Proof. If Ay : W1,2
0 (Ω)× L̂2(Ω)→W−1,2(Ω)× L̂2(Ω) is an isomorphism, then given

r ∈W−1,2(Ω) there exists a unique (w, π) ∈W1,2
0 (Ω)× L̂2(Ω) such that Ay(w, π) =

(r, 0) and (2.21) holds. Hence, w ∈ V1,2(Ω) and Ay(w, π) = r. Therefore, Ay is an
isomorphism.

Conversely, suppose that (r, q) ∈ W−1,2(Ω) × L̂2(Ω). Let (w1, π1) ∈ W1,2
0 (Ω) ×

L̂2(Ω) be the weak solution of the Stokes problem
−ν∆w1 +∇π1 = r in Ω, − divw1 = q in Ω, w1 = 0 on Γ.

Then, we have
‖w1‖W1,2

0 (Ω) + ‖π1‖L̂2(Ω) ≤ c(‖r‖W−1,2(Ω) + ‖q‖L̂2(Ω)). (2.22)

If Ay : V1,2(Ω)×L̂2(Ω)→W−1,2(Ω) is an isomorphism, then there exists a unique
(w2, π2) ∈ V1,2(Ω)× L̂2(Ω) such that Ay(w2, π2) = −(w1 · ∇)y − (y · ∇)w1 and

‖w2‖W1,2
0 (Ω) + ‖π2‖L̂2(Ω) ≤ c‖ − (w1 · ∇)y − (y · ∇)w1‖W−1,2(Ω)

≤ c‖y‖V2,2(Ω)(‖r‖W−1,2(Ω) + ‖q‖L̂2(Ω)), (2.23)

where we used (2.22) in the second inequality.
Setting (w, π) := (w1 +w2, π1 +π2) ∈W1,2

0 (Ω)×L̂2(Ω), we have Ay(w, π) = (r, q)
and from (2.22) and (2.23), one has

‖w‖W1,2
0 (Ω) + ‖π‖L̂2(Ω) ≤ c(1 + ‖y‖V2,2(Ω))(‖r‖W−1,2(Ω) + ‖q‖L̂2(Ω)).

Injectivity of Ay follows from that of Ay. Hence, Ay is an isomorphism. �

In the following lemma, we establish that Ay and A?
y are isomorphisms in general

Lebesgue spaces. Here, we adapt and generalize the proof provided in [10, Theorem
2.9].

Lemma 2.6. Let y ∈ V2,2(Ω) be a regular solution of (1.2) and 1 < s <∞. Then,
Ay,A

?
y ∈ Liso(W1,s

0 (Ω)× L̂s(Ω),W−1,s(Ω)× L̂s(Ω)).

Proof. First, we consider the case s = 2 for the operator A?
y. Let (r, q) ∈

W−1,2(Ω)× L̂2(Ω). Then, for some (w, π) ∈W1,2
0 (Ω)× L̂2(Ω) we have Ay(w, π) =

(r, q) by Lemma 2.5 and the assumption that y is regular. Moreover, for each
(v, σ) ∈W1,2

0 (Ω)× L̂2(Ω), it holds that
|〈(r, q), (v, σ)〉W−1,2(Ω)×L̂2(Ω),W1,2

0 (Ω)×L̂2(Ω)|
≤ c‖A?

y(v, σ)‖W−1,2(Ω)×L̂2(Ω)(‖w‖W1,2
0 (Ω) + ‖π‖L̂2(Ω))

≤ c‖A?
y(v, σ)‖W−1,2(Ω)×L̂2(Ω)(‖r‖W−1,2(Ω) + ‖q‖L̂2(Ω)).
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By duality, this estimate implies that A?
y is injective and it has a closed range.

Suppose that A?
y does not have a dense range so that

〈A?
y(v, σ), (w, π)〉W−1,2(Ω)×L̂2(Ω),W1,2

0 (Ω)×L̂2(Ω) = 0

for some nonzero (w, π) ∈W1,2
0 (Ω) × L̂2(Ω) and for all (v, σ) ∈W1,2

0 (Ω) × L̂2(Ω).
Then, Ay(w, π) = (0, 0) so that (w, π) = (0, 0) since Ay is injective, which is a
contradiction to the fact that Ay is an isomorphism. Thus, A?

y must have a dense
and closed range, and consequently, A?

y is surjective.
Suppose 2 < s < ∞. From the continuous embedding W−1,s(Ω) × L̂s(Ω) ⊂

W−1,2(Ω) × L̂2(Ω), given (f , g) ∈ W−1,s(Ω) × L̂s(Ω), the result of the previous
paragraph implies that there exists only one (v, σ) ∈W−1,2(Ω) × L̂2(Ω) such that
A?

y(v, σ) = (f , g), and moreover, we have the priori estimate

‖v‖W1,2
0 (Ω) + ‖σ‖L̂2(Ω) ≤ c(‖f‖W−1,2(Ω) + ‖g‖L̂2(Ω))

≤ c(‖f‖W−1,s(Ω) + ‖g‖L̂s(Ω)).

As before, it can be deduced that (∇y)>v − (y · ∇)v ∈ L2(Ω) ⊂W−1,s(Ω) and

‖(∇y)>v − (y · ∇)v‖W−1,s(Ω) ≤ c‖(∇y)>v − (y · ∇)v‖L2(Ω)

≤ c‖y‖V2,2(Ω)‖v‖W1,2
0 (Ω).

Hence, the Ls-regularity theory for the Stokes equation leads to (v, σ) ∈W1,s
0 (Ω)×

L̂s(Ω) and

‖v‖W1,s
0 (Ω) + ‖σ‖L̂s(Ω) ≤ c(1 + ‖y‖V2,2(Ω))(‖f‖W−1,s(Ω) + ‖g‖L̂s(Ω)).

This completes the proof of A?
y for 2 ≤ s < ∞. For the operator Ay, the case

s = 2 follows from Lemma 2.5, while the case 2 < s <∞ can be handled in a similar
manner as that of A?

y.
Now, assume that 1 < s < 2 and proceed by a density argument. Given

(r, q) ∈ W−1,s(Ω) × L̂s(Ω), there is a sequence (rn, qn) ∈ W−1,2(Ω) × L̂2(Ω) such
that (rn, qn) → (r, q) in W−1,s(Ω) × L̂s(Ω) since W−1,2(Ω) × L̂2(Ω) is dense in
W−1,s(Ω) × L̂s(Ω). For each n, we have Ay(wn, πn) = (rn, qn) for some (wn, πn) ∈
W1,2

0 (Ω) × L̂2(Ω). Let (f , g) ∈W−1,s′(Ω) × L̂s′(Ω), where 2 < s′ < ∞. The above
discussion shows that A?

y(v, σ) = (f , g) for some (v, σ) ∈W1,s′

0 (Ω)× L̂s′(Ω) and

|〈(f , g), (wn, πn)〉W−1,s′ (Ω)×L̂s′ (Ω),W1,s
0 (Ω)×L̂s(Ω)|

= |〈(rn, qn), (v, σ)〉
W−1,s(Ω)×L̂s(Ω),W1,s′

0 (Ω)×L̂s′ (Ω)
|

≤ ‖(rn, qn)‖W−1,s(Ω)×L̂s(Ω)‖(v, σ)‖
W1,s′

0 (Ω)×L̂s′ (Ω)

≤ c‖(rn, qn)‖W−1,s(Ω)×L̂s(Ω)‖(f , g)‖W−1,s′ (Ω)×L̂s′ (Ω).

By duality, we obtain up to a subsequence that (wn, πn) ⇀ (w, π) weakly in
W1,s

0 (Ω)× L̂s(Ω) for some (w, π) ∈W1,s
0 (Ω)× L̂s(Ω). Passing n→∞ in the varia-

tional form of Ay(wn, πn) = (rn, qn), we deduce that Ay(w, π) = (r, q), showing that
Ay maps W1,s

0 (Ω)×L̂s(Ω) onto W−1,s(Ω)×L̂s(Ω). The fact that that this map is in-
jective follows from the surjectivity of A?

y : W1,s′

0 (Ω)×L̂s′(Ω)→W−1,s′(Ω)×L̂s′(Ω).
Therefore, Ay ∈ Liso(W1,s

0 (Ω) × L̂s(Ω),W−1,s(Ω) × L̂s(Ω)). Analogously, it can be
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shown with the same arguments that A?
y ∈ Liso(W1,s

0 (Ω)×L̂s(Ω),W−1,s(Ω)×L̂s(Ω)).
�

Lemma 2.7. Let 1 < s <∞. If y ∈ V2,2(Ω) is a regular solution to (1.2), then

Ay,A
?
y ∈ Liso(X2,s(Ω)× Ŵ 1,s(Ω),Ls(Ω)× Ŵ 1,s(Ω)).

In particular, we have Ay, A
?
y ∈ Liso(V2,s(Ω)× Ŵ 1,s(Ω),Ls(Ω)).

Proof. We only deal with Ay since the case of A?
y is entirely similar. Given (r, q) ∈

Ls(Ω) × Ŵ 1,s(Ω) ⊂ W−1,s(Ω) × L̂s(Ω), there exists (w, π) ∈ W1,s
0 (Ω) × L̂s(Ω) for

which Ay(w, π) = (r, q) and according to Lemma 2.6, we have

‖w‖W1,s
0 (Ω) + ‖π‖L̂s(Ω) ≤ cy(‖r‖W−1,s(Ω) + ‖q‖L̂s(Ω))

≤ cy(‖r‖Ls(Ω) + ‖q‖Ŵ 1,s(Ω)) (2.24)

where cy := c(‖y‖V2,2(Ω)) > 0 and c : [0,∞)→ (0,∞) denotes a generic continuous
monotone increasing function.

If s = 2, then it follows from the standard regularity theory for Stokes equa-
tion, (2.20) with ‖w‖V1,2(Ω) replaced by ‖w‖W1,2

0 (Ω), and Ay ∈ Liso(W1,2
0 (Ω) ×

L̂2(Ω),W−1,2(Ω)× L̂2(Ω)) by Lemma 2.5 that

‖w‖X2,2(Ω) + ‖π‖Ŵ 1,2(Ω) ≤ cy(‖r‖L2(Ω) + ‖q‖Ŵ 1,2(Ω)).

For 1 < s < 2, we have (w · ∇)y + (y · ∇w) ∈ Ls(Ω) since

‖(w · ∇)y + (y · ∇w)‖Ls(Ω) ≤ ‖w‖L2s/(2−s)(Ω)‖∇y‖L2(Ω)2 + ‖y‖L∞(Ω)‖∇w‖Ls(Ω)2

≤ c‖y‖V2,2(Ω)‖w‖W1,s
0 (Ω)

due to W1,s
0 (Ω) ⊂ L2s/(2−s)(Ω) and V2,2(Ω) ⊂ L∞(Ω).

If 2 < s <∞, we also have (w · ∇)y + (y · ∇w) ∈ Ls(Ω) since

‖(w · ∇)y + (y · ∇w)‖Ls(Ω) ≤ ‖w‖L∞(Ω)‖∇y‖Ls(Ω)2 + ‖y‖L∞(Ω)‖∇w‖Ls(Ω)2

≤ c‖y‖V2,2(Ω)‖w‖W1,s
0 (Ω)

in virtue of the continuity of W1,s
0 (Ω) ⊂ L∞(Ω) and V2,2(Ω) ⊂ W1,s

0 (Ω). Using
the fact that Ay ∈ Liso(W1,s

0 (Ω) × L̂s(Ω),W−1,s(Ω) × L̂s(Ω)), (2.24), and the Ls-
regularity theory for the Stokes equation, we have

‖w‖X2,s(Ω) + ‖π‖Ŵ 1,s(Ω) ≤ cy(‖r‖Ls(Ω) + ‖q‖Ŵ 1,s(Ω)).

Therefore, we obtain that Ay ∈ Liso(X2,s(Ω) × Ŵ 1,s(Ω),Ls(Ω) × Ŵ 1,s(Ω)), and
as a result, Ay ∈ Liso(V2,s(Ω)× Ŵ 1,s(Ω),Ls(Ω)). �

For each % > 0 and 1 < s < ∞, we denote the open ball in V2,s(Ω) × Ŵ 1,s(Ω)

centered at (y, p) ∈ V2,s(Ω)×Ŵ 1,s(Ω) by B%,s(y, p). Similarly, if (y, p) ∈ (V2,2(Ω)∩
W3,2(Ω))×Ŵ 2,2(Ω), then B%(y, p) is the open ball in (V2,2(Ω)∩W3,2(Ω))×Ŵ 2,2(Ω).
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Theorem 2.8. Let 2 ≤ s < ∞ and y∗ ∈ V2,s(Ω) be a regular solution to (1.2)
corresponding to u∗ ∈ Ls(Ω) with an associated pressure p∗ ∈ Ŵ 1,s(Ω). Then, there
exists % > 0, an open, bounded, and convex set Us(u∗) ⊂ Ls(Ω) containing u∗,
and a C∞-map Ss : Us(u∗) → B%,s(y

∗, p∗) such that for each u ∈ Us(u∗), the pair
(y, p) = Ss(u) ∈ V2,s(Ω) × Ŵ 1,s(Ω) is the unique solution of (1.2) and S ′s(u) ∈
Liso(Ls(Ω),V2,s(Ω) × Ŵ 1,s(Ω)) for every u ∈ Us(u∗). Moreover, (w, π) := S ′s(u)r
for u ∈ Us(u∗) and r ∈ Ls(Ω) if and only if Ay(w, π) = r, that is, −ν∆w + (w · ∇)y + (y · ∇)w +∇π = r in Ω,

− divw = 0 in Ω, w = 0 on Γ,

∫
Ω

π dx = 0.
(2.25)

Proof. We follow the proof of [10, Theorem 2.10] by using the implicit function
theorem. Define the nonlinear operator Ts : V2,s(Ω)× Ŵ 1,s(Ω)→ Ls(Ω)× Ŵ 1,s(Ω)
according to

Ts(y, p,u) := −ν∆y + (y · ∇)y +∇p− u.

Clearly, Ts is a C∞-mapping and Ts(y∗, p∗,u∗) = 0. By Lemma 2.7
∂Ts

∂(y, p)
(y∗, p∗,u∗) = Ay∗ ∈ Liso(V2,s(Ω)× Ŵ 1,s(Ω),Ls(Ω))

due to the assumption that y∗ is regular. Therefore, the conclusions of the theorem
follow from the implicit function theorem for Banach spaces [26, Section 4.7] and
(2.25) can be obtained via implicit differentiation. �

The analog of the previous theorem for controls in the Sobolev space W1,2(Ω) is
given below.

Theorem 2.9. Let (y∗, p∗) ∈ (V2,2(Ω)∩W3,2(Ω))× Ŵ 2,2(Ω) be a solution to (1.2)
with control u∗ ∈ W1,2(Ω) such that y∗ is regular. Then, there is % > 0, an
open, bounded, and convex set V(u∗) ⊂ W1,2(Ω) containing u∗, and a C∞-map
R : V(u∗) → B%(y

∗, p∗) so that for each u ∈ V(u∗), the unique solution of (1.2) is
given by (y, p) = R(u) ∈ (V2,2(Ω) ∩W3,2(Ω))× Ŵ 2,2(Ω).

Proof. The proof is the same as that of the previous theorem, but now recognizing
the fact that Ay∗ ∈ Liso((V2,2(Ω) ∩W3,2(Ω)) × Ŵ 2,2(Ω),W1,2(Ω)) whenever y∗ is
regular. Indeed, suppose u ∈W1,2(Ω). Due to Ay∗ ∈ Liso(V2,2(Ω)×Ŵ 1,2(Ω),L2(Ω))

by regularity of y∗, there exists a unique (w, π) ∈ V2,2(Ω) × Ŵ 1,2(Ω) such that
Ay∗(w, π) = u. The latter equation is equivalent to −ν∆w +∇π = u− (y∗ · ∇)w − (w · ∇)y∗ in Ω,

divw = 0 in Ω, w = 0 on Γ,

∫
Ω

π dx = 0.

Moreover, we have

‖w‖V2,2(Ω) + ‖π‖Ŵ 1,2(Ω) ≤ c‖u‖L2(Ω). (2.26)

As in (2.10), one can show that (y∗ · ∇)w + (w · ∇)y∗ ∈W1,2(Ω) and

‖(y∗ · ∇)w + (w · ∇)y∗‖W1,2(Ω) ≤ c‖y∗‖V2,2(Ω)‖w‖V2,2(Ω). (2.27)
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Applying the regularity theory for the Stokes equation, (2.26), and (2.27), we
deduce that (w, π) ∈ (V2,2(Ω) ∩W3,2(Ω))× Ŵ 2,2(Ω) and

‖w‖V2,2(Ω)∩W3,2(Ω) + ‖π‖Ŵ 2,2(Ω) ≤ c(‖y∗‖V2,2(Ω))‖u‖W1,2(Ω).

Therefore, Ay∗ : (V2,2(Ω)∩W3,2(Ω))×Ŵ 2,2(Ω)→W1,2(Ω) is an isomorphism. �

Now, we include the traces of the linearized and adjoint velocities in the definition
of the operators discussed above. In this direction, we define the bounded linear
operators

By,Dy : W1,s(Ω)× L̂s(Ω)→W−1,s(Ω)× Z0,1− 1
s
,s(Ω,Γ)

according to

By(w, π) := (Ay(w, π),w|Γ), Dy(v, σ) := (A?
y(v, σ),v|Γ),

for (w, π), (v, σ) ∈W1,s(Ω)× L̂s(Ω). Here, Ay(w, π) and A?
y(v, σ) are defined as in

(2.17) and (2.18), respectively. These maps are well-defined in virtue of the trace
and Gauss divergence theorems:∫

Ω

(− divw) dx+

∫
Γ

w|Γ · n ds = 0 =

∫
Ω

(− div v) dx+

∫
Γ

v|Γ · n ds.

Hence, (− divw,w|Γ), (− div v,v|Γ) ∈ Z0,1− 1
s
,s(Ω,Γ).

The linear mapsBy andDy are isomorphisms provided that y is a regular solution
according to the succeeding lemma. For this, we define the Stokes operator

S : W2,s(Ω)× Ŵ 1,s(Ω)→ Ls(Ω)× Z1,2− 1
s
,s(Ω,Γ)

according to

S(w, π) := (−ν∆w +∇π,− divw,w|Γ). (2.28)

It is well-known that

S ∈ Liso(Wk,s(Ω)× F̂ k−1,s(Ω),Yk−2,s(Ω)× Zk−1,k− 1
s
,s(Ω,Γ)) (2.29)

for each non-negative integer k, where F̂ k−1,s(Ω) is defined in a similar way as in
(2.1) with W replaced by Ŵ and k replaced by k−1, and if Ω is bounded Cmax{2,k}-
domain, where Y−2,s(Ω) := X−2,s(Ω), Y−1,s(Ω) := W−1,s(Ω), Y0,s(Ω) := Ls(Ω),
and Yk,s(Ω) := Wk,s(Ω) when k > 0 is an integer. For this, see for instance [15,
Theorem IV.6.1] for k ≥ 2, [24, Proposition 2.3] for k ≥ 1, and [18, Theorem 7] for
k = 0.

For the operator S0 given by

S0(w, π) := −ν∆w +∇π, (2.30)

we have

S0 ∈ Liso(Vk,s(Ω)× F̂ k−1,s(Ω),Yk−2,s(Ω)). (2.31)

Lemma 2.10. If y ∈ V2,2(Ω) is a regular solution to (1.2), then for every 1 < s <
∞ we have

By,Dy ∈ Liso(W1,s(Ω)× L̂s(Ω),W−1,s(Ω)× Z0,1− 1
s
,s(Ω,Γ))
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∩ Liso(W2,s(Ω)× Ŵ 1,s(Ω),Ls(Ω)× Z1,2− 1
s
,s(Ω,Γ)).

Proof. Let (r, q, z) ∈W−1,s(Ω)×Z0,1− 1
s
,s(Ω,Γ). By (2.29) with k = 1, there exists

(w1, π1) ∈ W1,s(Ω) × L̂s(Ω) such that S(w1, π1) = (r, q, z) and satisfying the a
priori estimate

‖w1‖W1,s(Ω) + ‖π1‖L̂s(Ω) ≤ cy‖(r, q, z)‖
W−1,s(Ω)×Z0,1− 1

s ,s(Ω,Γ)
. (2.32)

Since (w1 · ∇)y + (y · ∇)w1 ∈ Ls(Ω), we obtain from Lemma 2.7 that Ay(w2, π2) =

(−(w1 · ∇)y − (y · ∇)w1, 0) for some (w2, π2) ∈ V2,s(Ω)× Ŵ 1,s(Ω) and

‖w2‖V2,s(Ω) + ‖π2‖Ŵ 1,s(Ω) ≤ cy‖w1‖W1,s(Ω). (2.33)

If (w, π) := (w1 +w2, π1 +π2) ∈W1,s(Ω)× L̂s(Ω), then By(w, π) = (r, q, z), and
by (2.32), (2.33), and the triangle inequality, one has

‖w‖W1,s(Ω) + ‖π‖L̂s(Ω) ≤ cy‖(r, q, z)‖
W−1,s(Ω)×Z0,1− 1

s ,s(Ω,Γ)
.

On the other hand, if (r, q, z) ∈ Ls(Ω)×Z1,2− 1
s
,s(Ω,Γ), then (w1, π1) ∈W2,s(Ω)×

Ŵ 1,s(Ω) from (2.29) for k = 2 with the a priori estimate

‖w1‖W2,s(Ω) + ‖π1‖Ŵ 1,s(Ω) ≤ cy‖(r, q, z)‖
Ls(Ω)×Z1,2− 1

s ,s(Ω,Γ)
. (2.34)

Therefore, (2.33) and (2.34) lead to

‖w‖W2,s(Ω) + ‖π‖Ŵ 1,s(Ω) ≤ cy‖(r, q, z)‖
Ls(Ω)×Z1,2− 1

s ,s(Ω,Γ)
.

The injectivity of Dy follows from that of Ay. This completes the proof for the
case of the operator By. The case of Dy is completely the same, where we use A?

y

instead of Ay. �

We now discuss the very weak formulation of the adjoint equation (2.13). The
following definition is based on the duality equation (2.16). This definition extends
that of the case of Hilbert spaces in [21, 22]. Moreover, in contrast to [18] for the
stationary Stokes and Navier–Stokes equations, we include the pressure in the defini-
tion, hence, one must consider test functions that are not necessarily divergence-free.
Although, these two formulations are equivalent by de Rham’s Theorem, the defi-
nition provided below is more appropriate when studying optimal control problems
with observations involving the pressure.

Definition 2.11. Let 1 < s <∞, f ∈ X−2,s(Ω), and (g,h) ∈ Z−1,− 1
s
,s(Ω,Γ). Then,

(v, σ) ∈ Ls(Ω) × Ŵ 1,s′(Ω)′ is called a very weak solution to the adjoint problem
(2.13) if the variational equation∫

Ω

v · (−ν∆w + (w · ∇)y + (y · ∇)w +∇π) dx

− 〈σ, divw〉Ŵ 1,s′ (Ω)′,Ŵ 1,s′ (Ω) = 〈f ,w〉X−2,s(Ω),X2,s′ (Ω)

+ 〈g, π〉W 1,s′ (Ω)′,W 1,s′ (Ω) + 〈h,T(w, π)n〉
W− 1

s ,s(Γ),W
1− 1

s′ ,s
′
(Γ)

(2.35)

holds for every test function (w, π) ∈ X2,s′(Ω)×W 1,s′(Ω).
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Theorem 2.12. Let y ∈ V2,2(Ω) be a regular solution to (1.2). Given 1 < s <∞,
the adjoint problem (2.13) with data f ∈ X−2,s(Ω) and (g,h) ∈ Z−1,− 1

s
,s(Ω,Γ) admits

a unique very weak solution (v, σ) ∈ Ls(Ω)× Ŵ 1,s′(Ω)′ such that

‖v‖Ls(Ω) + ‖σ‖Ŵ 1,s′ (Ω)′ ≤ c(‖f‖X−2,s(Ω) + ‖g‖W 1,s′ (Ω)′ + ‖h‖W− 1
s ,s(Γ)

). (2.36)

Proof. Take note that due to the compatibility condition for (g,h), the variational
equation (2.35) is equivalent to the one with test functions (w, π) ∈ X2,s′(Ω) ×
Ŵ 1,s′(Ω). Consider the linear map ` : Ls

′
(Ω)× Ŵ 1,s′(Ω)→ R given by

`(r, q) := 〈f ,w〉X−2,s(Ω),X2,s′ (Ω) + 〈g, π〉W 1,s′ (Ω)′,W 1,s′ (Ω)

+ 〈h,T(w, π)n〉
W− 1

s ,s(Γ),W
1− 1

s′ ,s
′
(Γ)

(2.37)

where, for a given (r, q) ∈ Ls
′
(Ω)× Ŵ 1,s′(Ω), the pair (w, π) ∈ X2,s′(Ω)× Ŵ 1,s′(Ω)

satisfies Ay(w, π) = (r, q). Such a pair exists due to Lemma 2.7, and furthermore,

‖w‖X2,s′ (Ω) + ‖π‖Ŵ 1,s′ (Ω) ≤ c(‖r‖Ls′ (Ω) + ‖q‖Ŵ 1,s′ (Ω)). (2.38)

By standard trace theory, we have

‖T(w, π)n‖
W

1− 1
s′ ,s
′
(Γ)
≤ c(‖w‖X2,s′ (Ω) + ‖π‖Ŵ 1,s′ (Ω)). (2.39)

Combining the estimates (2.38) and (2.39), we get

‖w‖X2,s′ (Ω) + ‖π‖Ŵ 1,s′ (Ω) + ‖T(w, π)n‖
W

1− 1
s′ ,s
′
(Γ)
≤ c(‖r‖Ls′ (Ω) + ‖q‖Ŵ 1,s′ (Ω)).

By duality, this inequality implies the existence of a pair (v, σ) ∈ Ls(Ω)×Ŵ 1,s′(Ω)′

such that

〈(v, σ), (r, q)〉Ls(Ω)×Ŵ 1,s′ (Ω)′,Ls′ (Ω)×Ŵ 1,s′ (Ω)

= `(r, q) ∀(r, q) ∈ Ls
′
(Ω)× Ŵ 1,s′(Ω). (2.40)

In addition, we obtain

‖v‖Ls(Ω) + ‖σ‖Ŵ 1,s′ (Ω)′ = ‖`‖[Ls′ (Ω)×Ŵ 1,s′ (Ω)]′

≤ c(‖f‖X−2,s(Ω) + ‖g‖W 1,s′ (Ω)′ + ‖h‖W− 1
s ,s(Γ)

).

Given a test function (w, π) ∈ X2,s′(Ω) × Ŵ 1,s′(Ω), we set (r, q) = Ay(w, q) so
that from (2.37) and (2.40),

〈(v, σ),Ay(w, π)〉Ls(Ω)×Ŵ 1,s′ (Ω)′,Ls′ (Ω)×Ŵ 1,s′ (Ω) = 〈f ,w〉X−2,s(Ω),X2,s′ (Ω)

+ 〈g, π〉W 1,s′ (Ω)′,W 1,s′ (Ω) + 〈h,T(w, π)n〉
W− 1

s ,s(Γ),W
1− 1

s′ ,s
′
(Γ)
.

This shows that (v, σ) is a very weak solution to (2.13) and (2.36) holds for this
pair.

If (v1, σ1) and (v2, σ2) are two very weak solutions of (2.13) in Ls(Ω)× Ŵ 1,s′(Ω)′,
then the difference (v, σ) := (v1 − v2, σ1 − σ2) satisfies

〈(v, σ),Ay(w, π)〉Ls(Ω)×Ŵ 1,s′ (Ω)′,Ls′ (Ω)×Ŵ 1,s′ (Ω) = 0

for every (w, π) ∈ X2,s′(Ω) × Ŵ 1,s′(Ω). From the surjectivity of Ay :

X2,s′(Ω) × Ŵ 1,s′(Ω) → Ls
′
(Ω) × Ŵ 1,s′(Ω) in Lemma 2.7, we conclude that
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(v, σ) = (0, 0), establishing the uniqueness of the very weak solution. �

Corollary 2.13. If y ∈ V2,2(Ω) is a regular solution to (1.2), then for every 1 <
s <∞, the linear operators By and Dy admit unique extensions such that

By,Dy ∈ Liso(Ls(Ω)× Ŵ 1,s′(Ω)′,X−2,s(Ω)× Z−1,− 1
s
,s(Ω,Γ)).

Proof. The case of Dy is precisely the result of Theorem 2.12, while the case of By

can be handled in a similar fashion where we use the operator A?
y instead of Ay. �

We close this section by proving general integration by parts formula and the
regularity of the normal Cauchy stress on the boundary for weak and very weak
solutions under certain conditions. From now on, we implicitly assume that y ∈
V2,2(Ω) is a regular solution to (1.2). For analogous results, we refer to [18].

Theorem 2.14. Let 1 < s < ∞, v ∈ W1,s
0 (Ω), and σ ∈ L̂s(Ω) be such that

A?y(v, σ) ∈ W1,s′(Ω)′. Then, there exists a unique s ∈ W− 1
s
,s(Γ) for which the

generalized Green’s identity

〈A?y(v, σ),w〉W1,s′ (Ω)′,W1,s′ (Ω) −
∫

Ω

π div v dx (2.41)

= 〈Ay(w, π),v〉W−1,s′ (Ω),W1,s
0 (Ω) −

∫
Ω

σ divw + 〈s,w|Γ〉
W− 1

s ,s(Γ),W
1− 1

s′ ,s
′
(Γ)

holds for every (w, π) ∈W1,s′(Ω)× L̂s′(Ω) such that Ay(w, π) ∈W−1,s′(Ω) and

‖s‖
W− 1

s ,s(Γ)
≤ c(‖A?y(v, σ)‖W1,s′ (Ω)′ + ‖ div v‖L̂s(Ω)). (2.42)

In addition, if v ∈ X2,s(Ω) and σ ∈ Ŵ 1,s(Ω), then s = T(v, σ)n in W1− 1
s
,s(Γ).

Proof. Let σ ∈ L̂s(Ω) and v ∈ W1,s
0 (Ω) be such that A?y(v, σ) ∈ W1,s′(Ω)′.

Consider the linear functional ` : W−1,s′(Ω)× Z0,1− 1
s′ ,s
′
(Ω,Γ)→ R defined by

`(r, q, z) := 〈A?y(v, σ),w〉W1,s′ (Ω)′,W1,s′ (Ω) −
∫

Ω

π div v dx,

where By(w, π) = (r, q, z) ∈W−1,s′(Ω) × Z0,1− 1
s′ ,s
′
(Ω,Γ) and (w, π) ∈W1,s′(Ω) ×

L̂s
′
(Ω). The existence of (w, π) follows from Lemma 2.10, and moreover,

‖w‖W1,s′ (Ω) + ‖π‖L̂s′ (Ω) ≤ c(‖r‖W−1,s′ (Ω) + ‖(q, z)‖
Z
0,1− 1

s′ ,s
′
(Ω,Γ)

).

Thus, we deduce that ` ∈ [W−1,s′(Ω) × Z0,1− 1
s′ ,s
′
(Ω,Γ)]′, and by duality there

exists (ṽ, σ̃, s̃) ∈W1,s
0 (Ω)× Z0,− 1

s
,s(Ω,Γ) such that

`(r, q, z) = 〈(r, q, z), (ṽ, σ̃, s̃)〉
W−1,s′ (Ω)×Z0,1− 1

s′ ,s
′
(Ω,Γ),W1,s

0 (Ω)×Z0,− 1
s ,s(Ω,Γ)

for every (r, q, z) ∈W−1,s′(Ω)× Z0,1− 1
s′ ,s
′
(Ω,Γ). Hence, we have

〈Ay(w, π), ṽ〉W−1,s′ (Ω),W1,s
0 (Ω) −

∫
Ω

σ̃ divw dx+ 〈s̃,w|Γ〉
W− 1

s ,s(Γ)×W1− 1
s′ ,s
′
(Γ)

= 〈By(w, π), (ṽ, σ̃, s̃)〉
W−1,s′ (Ω)×Z0,1− 1

s′ ,s
′
(Ω,Γ),W1,s

0 (Ω)×Z0,− 1
s ,s(Ω,Γ)
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= 〈A?y(v, σ),w〉W1,s′ (Ω)′,W1,s′ (Ω) −
∫

Ω

π div v dx (2.43)

for every (w, π) ∈W1,s′(Ω)× L̂s′(Ω) with Ay(w, π) ∈W−1,s′(Ω). Observe that the
uniqueness of the triple (ṽ, σ̃, s̃) follows from the surjectivity of By : W1,s′(Ω) ×
L̂s
′
(Ω)→W−1,s′(Ω)× Z0,1− 1

s′ ,s
′
(Ω,Γ). Moreover, one has the estimate

‖ṽ‖W1,s
0 (Ω) + ‖(σ̃, s̃)‖

Z0,− 1
s ,s(Ω,Γ)

≤ c(‖A?y(v, σ)‖W1,s′ (Ω)′ + ‖ div v‖L̂s(Ω)). (2.44)

Indeed, this follows from the estimate

|〈(r, q, z), (ṽ, σ̃, s̃)〉
W−1,s′ (Ω)×Z0,1− 1

s′ ,s
′
(Ω,Γ),W1,s

0 (Ω)×Z0,− 1
s ,s(Ω,Γ)

|

=

∣∣∣∣〈A?y(v, σ),w〉W1,s′ (Ω)′,W1,s′ (Ω) −
∫

Ω

π div v dx

∣∣∣∣
≤ ‖A?y(v, σ)‖W1,s′ (Ω)′‖w‖W1,s′ (Ω) + ‖ div v‖L̂s(Ω)‖π‖L̂s′ (Ω)

≤ c(‖A?y(v, σ)‖W1,s′ (Ω)′ + ‖ div v‖L̂s(Ω))‖(r, q, z)‖
W−1,s′ (Ω)×Z0,1− 1

s′ ,s
′
(Ω,Γ)

and by invoking the definition of the dual norm.
Suppose that (v, σ) ∈ X2,s(Ω) × Ŵ 1,s(Ω) and (w, π) ∈ W1,s′(Ω) × L̂s

′
(Ω) with

Ay(w, π) ∈W−1,s′(Ω). By density, we can take a sequence such that (rn, qn, zn) ∈
Ls
′
(Ω)×Z1,2− 1

s′ ,s
′
(Ω,Γ) for each n ∈ N, rn → Ay(w, π) as n→∞ in W−1,s′(Ω), and

(qn, zn)→ (− divw,w|Γ) in Z0,1− 1
s′ ,s
′
(Ω,Γ). Let (wn, πn) ∈W2,s′(Ω)× Ŵ 1,s′(Ω) be

such that By(wn, πn) = (rn, qn, zn). Then, (wn, πn)→ (w, π) in W1,s′(Ω)× L̂s′(Ω)

by continuity of B−1
y , and in particular, we have wn|Γ → w|Γ in W1− 1

s′ ,s
′
(Γ) by the

trace theorem. Passing to the limit in the equation∫
Ω

A?y(v, σ) ·wn dx−
∫

Ω

πn div v dx

=

∫
Ω

Ay(wn, πn) · v dx−
∫

Ω

σ divwn dx+

∫
Γ

T(v, σ)n ·wn ds

=

∫
Ω

Ay(wn, πn) · v dx−
∫

Ω

[(σ + κ(v, σ)] divwn dx

+

∫
Γ

[T(v, σ)n + κ(v, σ)n] ·wn ds

where

κ(v, σ) := − 1

|Ω|+ |Γ|
〈T(v, σ)n,n〉Γ, (2.45)

we can see that (2.43) holds for the triple (v, σ + κ(v, σ),T(v, σ)n + κ(v, σ)n) ∈
X2,s(Ω)× Z1,1− 1

s
,s(Ω,Γ) ⊂W1,s

0 (Ω)× Z0,− 1
s
,s(Ω,Γ), and in virtue of uniqueness, we

must have ṽ = v, σ̃ = σ + κ(v, σ), and s̃ = T(v, σ)n + κ(v, σ)n.
Let us return to the case (v, σ) ∈W1,s

0 (Ω) × L̂s(Ω) where A?y(v, σ) ∈W1,s′(Ω)′.
Using density once again, there exists a sequence (fn, gn) ∈ Ls(Ω) × Ŵ 1,s(Ω) such
that fn → A?y(v, σ) in W1,s′(Ω)′ and gn → − div v in L̂s(Ω). Define (vn, σn) ∈
X2,s(Ω)×Ŵ 1,s(Ω) by A?

y(vn, σn) = (fn, gn). By construction, we have A?
y(v−vn, σ−

σn) = (A?y(v, σ)− fn,− div v− gn). Hence, (vn, σn)→ (v, σ) in W1,s
0 (Ω)× L̂s(Ω) by
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continuity of (A?
y)−1 and the construction of fn and gn. Applying the result of the

preceding paragraph to the pair (vn, σn), we obtain that

〈Ay(w, π), ṽn〉W−1,s′ (Ω),W1,s
0 (Ω) −

∫
Ω

σ̃n divw dx (2.46)

+ 〈s̃n,w|Γ〉
W− 1

s ,s(Γ)×W1− 1
s′ ,s
′
(Γ)

= 〈fn,w〉W1,s′ (Ω)′,W1,s′ (Ω) +

∫
Ω

πgn dx,

where ṽn := vn, σ̃n := σn + κ(vn, σn) and s̃n := T(vn, σn)n + κ(vn, σn)n.
Subtracting (2.43) and (2.46), and then using a similar argument as in (2.44), we

have

‖ṽn − ṽ‖W1,s
0 (Ω) + ‖(σ̃n − σ̃, s̃n − s̃)‖

Z0,− 1
s ,s(Ω,Γ)

≤ c(‖fn − A?y(v, σ)‖W1,s′ (Ω)′ + ‖gn − div v‖L̂s(Ω)),

Thus, ṽn → ṽ in W1,s
0 (Ω), so that ṽ = v, and (σ̃n, s̃n) → (σ̃, s̃) in Z0,− 1

s
,s(Ω,Γ).

This implies that κ(vn, σn) = σ̃n − σn → σ̃ − σ and 〈T(vn, σn)n,n〉Γ = 〈s̃n −
κ(vn, σn)n,n〉Γ → 〈s̃,n〉Γ − |Γ|(σ̃ − σ). From the definition of κ in (2.45) and the
operator Σ, we get σ̃ = σ +Σs̃.

Sending n→∞ in (2.46), setting s := s̃− (Σs̃)n ∈W− 1
s
,s(Γ), and using

−
∫

Ω

σ̃ divw dx = −
∫

Ω

σ divw dx− 〈(Σs̃)n,w|Γ〉
W− 1

s ,s(Γ),W
1− 1

s′ ,s
′
(Γ)
,

we obtain the desired equation (2.41). Also, (2.42) follows immediately from (2.44).
Recall that s̃ = T(v, σ)n + κ(v, σ)n when (v, σ) ∈ X2,s(Ω)× Ŵ 1,s(Ω), hence direct
computation yields

s = T(v, σ)n + κ(v, σ)n +
1

|Ω|
〈T(v, σ)n + κ(v, σ)n,n〉Γn = T(v, σ)n.

Finally, suppose that s1, s2 ∈W− 1
s
,s(Γ) satisfy (2.41). Then,

〈s1 − s2,w|Γ〉
W− 1

s ,s(Γ),W
1− 1

s′ ,s
′
(Γ)

= 0

for every w ∈W2,s′(Ω). Since the trace map w 7→ w|Γ : W2,s′(Ω)→W2− 1
s′ ,s
′
(Γ) is

surjective and W2− 1
s′ ,s
′
(Γ) is dense in W1− 1

s′ ,s
′
(Γ), we have s1−s2 = 0 in W− 1

s
,s(Γ).

This establishes the uniqueness of s in W− 1
s
,s(Γ). The proof of the theorem is now

complete. �

Theorem 2.15. Let 1 < s < ∞, v ∈ Ls(Ω), σ ∈ Ŵ 1,s′(Ω)′, (f , g,h) := Dy(v, σ),
and assume that f ∈ W2,s′(Ω)′. Then, there exists a unique s ∈ W−1− 1

s
,s(Γ) such

that the following generalized Green’s identity

〈f ,w〉W2,s′ (Ω)′,W2,s′ (Ω)

+ 〈(g,h), (π + κ(w, π),T(w, π)n + κ(w, π)n)〉
Z−1,− 1

s ,s(Ω,Γ),Z
1,1− 1

s′ ,s
′
(Ω,Γ)

=

∫
Ω

v · Ay(w, π) dx (2.47)

+ 〈(σ + κ0(s), s + κ0(s)n), (− divw,w|Γ)〉
Z−1,−1− 1

s ,s(Ω,Γ),Z
1,2− 1

s′ ,s
′
(Ω,Γ)
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holds for every (w, π) ∈W2,s′(Ω)× Ŵ 1,s′(Ω), where

κ0(s) :=
|Ω|

|Ω|+ |Γ|
Σs

and we have the estimate

‖s‖
W− 1

s ,s(Γ)
≤ c(‖f‖W2,s′ (Ω)′ + ‖v‖Ls(Ω) + ‖σ‖Ŵ 1,s′ (Ω)′). (2.48)

In addition, if v ∈ W1,s(Ω) and σ ∈ L̂s(Ω), then h = v|Γ in W1− 1
s
,s(Γ). If

v ∈ W1,s
0 (Ω), σ ∈ L̂s(Ω), and A?y(v, σ) ∈ W1,s′(Ω)′, then s ∈ W− 1

s
,s(Γ) and this

coincides with the one given in Theorem 2.14. Furthermore, if v ∈ W2,s(Ω) and
σ ∈ Ŵ 1,s(Ω), then s = T(v, σ)n in W1− 1

s
,s(Γ).

Proof. By assumption, f ∈W2,s′(Ω)′ ⊂ X−2,s(Ω). From Corollary 2.13, we imme-
diately obtain the estimate

‖f‖X−2,s(Ω) + ‖(g,h)‖
Z−1,−1− 1

s ,s(Ω,Γ)
≤ c(‖v‖Ls(Ω) + ‖σ‖Ŵ 1,s′ (Ω)′). (2.49)

In addition, if v ∈W1,s(Ω) and σ ∈ L̂s(Ω), then h = v|Γ in W1− 1
s
,s(Γ) according

to the definition of Dy.
Following the proof provided for Theorem 2.14, we consider the bounded linear

functional ` : Ls
′
(Ω)× Z1,2− 1

s′ ,s
′
(Ω,Γ) given by

`(r, q, z) := 〈f ,w〉W2,s′ (Ω)′,W2,s′ (Ω) (2.50)
+ 〈(g,h), (π + κ(w, π),T(w, π)n + κ(w, π)n)〉

Z−1,− 1
s ,s(Ω,Γ),Z

1,1− 1
s′ ,s
′
(Ω,Γ)

where, for a given (r, q, z) ∈ Ls
′
(Ω)× Z1,2− 1

s′ ,s
′
(Ω,Γ), the pair (w, π) ∈W2,s′(Ω)×

Ŵ 1,s′(Ω) is the solution of the equation By(w, π) = (r, q, z), see Lemma 2.10. Then,
there exists a unique (ṽ, σ̃, s̃) ∈ Ls(Ω)× Z−1,−1− 1

s
,s(Ω,Γ) such that

〈f ,w〉W2,s′ (Ω)′,W2,s′ (Ω)

+ 〈(g,h), (π + κ(w, π),T(w, π)n + κ(w, π)n)〉
Z−1,− 1

s ,s(Ω,Γ),Z
1,1− 1

s′ ,s
′
(Ω,Γ)

=

∫
Ω

ṽ · Ay(w, π) dx+ 〈(σ̃, s̃), (− divw,w|Γ)〉
Z−1,−1− 1

s ,s(Ω,Γ),Z
1,2− 1

s′ ,s
′
(Ω,Γ)

for any (w, π) ∈W2,s′(Ω)× Ŵ 1,s′(Ω). Using (2.49) along with the definition of the
dual norm, we have

‖ṽ‖Ls(Ω) + ‖(σ̃, s̃)‖
Z−1,−1− 1

s ,s(Ω,Γ)

≤ c(‖f‖W2,s′ (Ω)′ + ‖(g,h)‖
Z−1,−1− 1

s ,s(Ω,Γ)
)

≤ c(‖f‖W2,s′ (Ω)′ + ‖v‖Ls(Ω) + ‖σ‖Ŵ 1,s′ (Ω)′). (2.51)

If v ∈W2,s(Ω) and σ ∈ Ŵ 1,s(Ω), then h = v|Γ in W2− 1
s
,s(Γ), and by applying the

uniqueness of the triple (ṽ, σ̃, s̃), we have ṽ = v, σ̃ = σ− κ0(s), and s̃ = s− κ0(s)n,
where s = T(v, σ)n, based on the proof of Theorem 2.14 and since κ0(s) = −κ(v, σ).

Take a sequence (fn, gn,hn) ∈ Ls(Ω)×Z1,2− 1
s
,s(Ω,Γ) such that fn → f in W2,s′(Ω)′

and (gn,hn) → (g,h) in Z−1,− 1
s
,s(Ω,Γ). Introduce (vn, σn) ∈ W2,s(Ω) × Ŵ 1,s(Ω)

by Dy(vn, σn) = (fn, gn,hn). Then, the difference (v − vn, σ − σn) satisfies Dy(v −
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vn, σ − σn) = (f − fn, g − gn,h − hn). Hence, we see that (vn, σn) → (v, σ) in
Ls(Ω)× Ŵ 1,s′(Ω)′ due to the continuity of D−1

y . Moreover,

〈fn,w〉W2,s′ (Ω)′,W2,s′ (Ω) (2.52)
+ 〈(gn,hn), (π + κ(w, π),T(w, π)n + κ(w, π)n)〉

Z−1,− 1
s ,s(Ω,Γ),Z

1,1− 1
s′ ,s
′
(Ω,Γ)

=

∫
Ω

ṽn · Ay(w, π) dx+ 〈(σ̃n, s̃n), (− divw,w|Γ)〉
Z−1,−1− 1

s ,s(Ω,Γ),Z
1,2− 1

s′ ,s
′
(Ω,Γ)

,

where ṽn = vn, σ̃n = σn−κ0(sn), s̃n = sn−κ0(sn)n, hn = vn|Γ, and sn = T(vn, σn)n.
Furthermore, thanks to (2.51), we have the estimate

‖ṽn − ṽ‖Ls(Ω) + ‖(σ̃n − σ̃, s̃n − s̃)‖
Z−1,−1− 1

s ,s(Ω,Γ)

≤ c(‖fn − f‖W2,s′ (Ω)′ + ‖(gn − g,hn − h)‖
Z−1,−1− 1

s ,s(Ω,Γ)
).

Similar to the argument provided in Theorem 2.14, we deduce that ṽ = v, σ̃ =

σ+Σs̃, and s̃ = s+(Σs̃)n in (2.48). The last equation implies that Σs̃ = |Ω|
|Ω|+|Γ|Σs =

κ0(s). Sending (2.52) to the limit leads to (2.47), and we obtain (2.48) from (2.51).
Suppose that v ∈ W1,s

0 (Ω), σ ∈ L̂s(Ω), and f = A?y(v, σ) ∈ W1,s′(Ω)′ ⊂
W−1,s(Ω). In this case, g = − div v ∈ L̂s(Ω) and h = 0 from the definition of
Dy. Hence, (2.47) reduces to

〈A?y(v, σ),w〉W2,s′ (Ω)′,W2,s′ (Ω) −
∫

Ω

π div v dx

=

∫
Ω

v · Ay(w, π) dx−
∫

Ω

σ divw dx+ 〈s,w|Γ〉
W−1− 1

s ,s(Γ),W
2− 1

s′ ,s
′
(Γ)

for all (w, π) ∈W2,s′(Ω) × Ŵ 1,s′(Ω). Given a fixed z ∈W2− 1
s′ ,s
′
(Γ), take (w, π) ∈

W2,s′(Ω)×Ŵ 1,s′(Ω) such that By(w, π) = (0, Σz, z). Thus, we deduce the estimate

|〈s, z〉
W−1− 1

s ,s(Γ),W
2− 1

s′ ,s
′
(Γ)
| ≤ cv,σ(‖w‖W1,s′ (Ω) + ‖π‖L̂s′ (Ω))

≤ cv,σ‖(Σz, z)‖
Z
1,2− 1

s′ ,s
′
(Ω,Γ)

≤ cv,σ‖z‖
W

2− 1
s′ ,s
′
(Γ)

where cv,σ = c(‖v‖Ls(Ω) + ‖σ‖Ŵ 1,s′ (Ω)′). Using the density of W2− 1
s′ ,s
′
(Γ) in

W1− 1
s′ ,s
′
(Γ), we obtain from the above estimate that s admits an extension,

denoted by the same notation, such that s ∈ W−1− 1
s
,s(Γ) and (2.41) holds for

(w, π) ∈ W2,s′(Ω) × Ŵ 1,s′(Ω), hence for all (w, π) ∈ W1,s′(Ω) × L̂s′(Ω) such that
Ay(w, π) ∈W−1,s′(Ω) by employing the same density argument as in the proof of
Theorem 2.14. Due to uniqueness, it follows that the functional s agrees with the
one given in Theorem 2.14.

Finally, suppose that s1, s2 ∈W−1− 1
s
,s(Γ) satisfy (2.47). Taking the difference of

(2.47) for s1 and s2 with test functions (w, π) ∈W2,s′(Ω)× Ŵ 1,s′(Ω) yields

〈(κ0(s1 − s2), s1 − s2 + κ0(s1 − s2)n), (− divw,w|Γ)〉
Z−1,−1− 1

s ,s(Ω,Γ),Z
1,2− 1

s′ ,s
′
(Ω,Γ)

= 〈s1 − s2,w|Γ〉
W−1− 1

s ,s(Γ),W
2− 1

s′ ,s
′
(Γ)

= 0
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from the divergence theorem. The surjectivity of the trace map w 7→ w|Γ :

W2,s′(Ω)→W2− 1
s′ ,s
′
(Γ) shows that s1 = s2. �

Let us compare the previous theorem with that of [18, Theorem 5]. Instead of
the generalized trace of the velocity, we studied the generalized normal stress on the
boundary. However, let us point out that [18, Theorem 5] is not entirely correct as
the result is valid only for more regular data [19]. Note that in the above theorem,
we did not prove the existence of the trace v|Γ, but instead used the extension of Dy

to implicitly construct the generalized trace. Nevertheless, the result given above
can be viewed as a generalization of [22, Theorem 9.3].

3. Optimality systems and regularity of optimal so-
lutions

In this section, we study the optimal control problems (1.1), (1.3), and (1.4) for
various cost functionals. The existence of solutions to the optimal control problems
can be established by following the methods in the standard text [25], in particular,
using weak sequential compactness arguments. Nonetheless, we provide the proofs
for the sake of completeness and clarity.

For k ≥ 2 integer and 1 < r <∞, we let

Xk,r(Ω) := W1,r
0 (Ω) ∩Wk,r(Ω), Vk,r(Ω) := V1,r(Ω) ∩Wk,r(Ω).

In the following, if we write (y∗, p∗) ∈ Vk,r(Ω)×Ŵ k−1,r(Ω) for some non-negative
integer k, then we implicitly assumed that Ω is a bounded Cmax{2,k}-domain. While
existence of solutions to the optimal control problems is guaranteed, the analysis on
the regularity of the optimal solutions will be done locally at regular solutions as
in [10], see also [11, 17]. In this way, the optimization problems with two or three
variables and a PDE constraint is converted to a local problem in one variable.

We point out that even though the regularity for the state variables can be de-
rived from the known results for the stationary Navier–Stokes equation, we provide
direct proofs by invoking those from the Stokes equation and by using a simple
bootstrapping argument. Indeed, note that (1.2) can be written as

S0(y∗, p∗) = u∗ − (y∗ · ∇)y∗ (3.1)

where S0 is the Stokes operator given by (2.30).

3.1. Stress and pressure tracking. We start our discussion with the op-
timization problem min

(y,p,u)∈V2,2(Ω)×Ŵ 1,2(Ω)×L2(Ω)

J (y, p,u) := J(y, p) +
ρ

2
‖u‖2

L2(Ω)

subject to (1.2)
(3.2)

with J : V2,2(Ω)× Ŵ 1,2(Ω)→ R given by

J(y, p) :=
1

2

∫
Ω

α|∇y −YΩ|2 + β|p− pΩ|2 + λ|T(y, p)− SΩ|2 dx, (3.3)

where α, β, λ ≥ 0, with α+ β + λ > 0, YΩ ∈ L2(Ω)2, pΩ ∈ L2(Ω), and SΩ ∈ L2(Ω)2.
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Let us prove that the problem (3.2)–(3.3) has at least one solution. Since J
is bounded from below, it has an infimum, say J ∗. Take a minimizing sequence
{(yn, pn,un)}∞n=1 in V2,2(Ω)×Ŵ 1,2(Ω)×L2(Ω) such that J (yn, pn,un) ≤ J (0, 0,0)
for every n and J (yn, pn,un) → J ∗. This implies that {un}∞n=1 is bounded in
L2(Ω), and hence, {(yn, pn)}∞n=1 is also bounded in V2,2(Ω) × Ŵ 1,2(Ω) thanks to
(2.6). Let u∗ ∈ L2(Ω) and (y∗, p∗) ∈ V2,2(Ω)× Ŵ 1,2(Ω) be such that, by passing to
a subsequence which we do not relabel for simplicity, we have un ⇀ u∗ in L2(Ω),
yn ⇀ y∗ in V2,2(Ω), and pn ⇀ p∗ in Ŵ 1,2(Ω). By the weak lower semicontinuity of
the norm

‖u∗‖2
L2(Ω) ≤ lim inf

n→∞
‖un‖2

L2(Ω). (3.4)

From the compactness of V2,2(Ω) ⊂ W1,4(Ω) and Ŵ 1,2(Ω) ⊂ L̂2(Ω), we get by
extraction of another subsequence that yn → y∗ in W1,4(Ω) and pn → p∗ in L̂2(Ω).
Hence, (yn · ∇)yn → (y∗ · ∇)y∗ strongly in L2(Ω) due to

‖(yn · ∇)yn − (y∗ · ∇)y∗‖L2(Ω)

≤ ‖yn − y∗‖L4(Ω)‖∇yn‖L4(Ω)2 + ‖y∗‖L4(Ω)‖∇yn −∇y∗‖L4(Ω)2 → 0.

Passing to the weak limit of both sides of the equation satisfied by (yn, pn,un), we
see that (y∗, p∗) is a solution of (1.2) with control u∗. Since we also have∇yn → ∇y∗
and T(yn, pn)→ T(y∗, p∗) both in L2(Ω)2, it follows that

lim
n→∞

J(yn, pn) = J(y∗, p∗). (3.5)

From (3.4) and (3.5), we obtain

J ∗ ≤ J (y∗, p∗,u∗) ≤ lim inf
n→∞

J (yn, pn,un) = J ∗. (3.6)

Therefore, (y∗, p∗,u∗) is a solution of (3.2)–(3.3).
Suppose that the local solution (y∗, p∗) corresponding to u∗ is regular and let
S2 : U2(u∗) → B%,2(y∗, p∗) be the map given in Theorem 2.8. Let Jr : U2(u∗) → R
be given by

Jr(u) := J(y(u), p(u)) (3.7)

and introduce the reduced cost functional Jr : U2(u∗)→ R defined by

Jr(u) := J (y(u), p(u),u) = J(y(u), p(u)) +
ρ

2
‖u‖2

L2(Ω) (3.8)

where (y(u), p(u)) = S2(u), that is, (y(u), p(u)) is the unique solution of (1.2)
corresponding to u ∈ U2(u∗). Thus, u∗ is a solution of the following local problem:

min
u∈U2(u∗)

Jr(u). (3.9)

Assumption 3.1. In what follows, we will assume in all localized problems that
the solution to the state equation corresponding to an optimal control is regular in
the sense of Definition 2.1.

Recall that Theorem 2.4 provides conditions for the existence of regular solutions.
Note that the condition J (y∗, p∗,u∗) ≤ J (0, 0,0) in Theorem 2.4 is always satisfied
by solutions of the optimal control problems.
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For simplicity, let us write (y,p) = (y(u), p(u)). Then, the derivative of Jr at
u ∈ U2(u∗) in the direction r ∈ L2(Ω) can be expressed as

J ′r(u)r =

∫
Ω

α(∇y −YΩ) : ∇w + β(p− pΩ)π + λ(T(y, p)− SΩ) : T(w, π) dx.

Here and for the rest of the paper, (w, π) ∈ V2,2(Ω)× Ŵ 1,2(Ω) is the solution of the
linearized problem (2.11) with y = y(u), q = 0, and z = 0.

The integrals involving the gradient and the stress can be expressed as follows:∫
Ω

α(∇y −YΩ) : ∇w dx = 〈α( divYΩ −∆y),w〉W−1,2(Ω),W1,2
0 (Ω)∫

Ω

λ(T(y, p)− SΩ) : T(w, π) dx =

∫
Ω

λ(T(y, p)− SΩ) : (−ν∇w + πI) dx

= 〈λ divSΩ − λν2∆y + λν∇p,w〉W−1,2(Ω),W1,2
0 (Ω) +

∫
Ω

λ(2p− TrSΩ)π dx

since divT(y, p) = −ν∆y + ∇p and TrT(y, p) = −ν div y + 2p = 2p. Using the
fact that π has zero mean over Ω, we obtain

J ′r(u)r = 〈f(y, p),w〉W−1,2(Ω),W1,2
0 (Ω) +

∫
Ω

πΛg(p) dx,

where

f(y, p) := α divYΩ + λ divSΩ − (α + λν2)∆y + λν∇p, (3.10)
g(p) := (β + 2λ)p− βpΩ − λTrSΩ. (3.11)

As a consequence, the directional derivative is given by

J ′r (u)r =

∫
Ω

(v + ρu) · r dx (3.12)

where A?
y(v, σ) = (f(y, p), Λg(p)).

As we are in the unconstrained setting, it follows that the local optimality system
corresponding to (y∗, p∗,u∗) is given by[

−ν∆y∗ + (y∗ · ∇)y∗ +∇p∗ = u∗ in Ω,

div y∗ = 0 in Ω, y∗ = 0 on Γ, 〈p∗, 1〉Ω = 0,
(3.13)[

−ν∆v∗ + (∇y∗)>v∗ − (y∗ · ∇)v∗ +∇σ∗ = f(y∗, p∗) in Ω,

div v∗ = −Λg(p∗) in Ω, v∗ = 0 on Γ, 〈σ∗, 1〉Ω = 0,
(3.14)

v∗ + ρu∗ = 0 in Ω, (3.15)

where f(y∗, p∗) and g(p∗) are defined as in (3.10) and (3.11), respectively. In this
case, the optimal control and optimal adjoint velocity has the same regularity.

To see (3.15), let us start with the fact that J ′r (u∗)(u − u∗) ≥ 0 for every u ∈
U2(u∗). Given r ∈ L2(Ω), choose ε > 0 small enough so that u := u∗± εr ∈ U2(u∗).
This is possible since U2(u∗) is an open set that contains u∗. With this, we have
J ′r (u∗)r = 0 for every r ∈ L2(Ω) and consequently (3.15).
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For emphasis, let us present special cases of (3.14). In the case α = λ = 0 in (3.3)
where we only keep track of the pressure, the adjoint system (3.14) reduces to[

−ν∆v∗ + (∇y∗)>v∗ − (y∗ · ∇)v∗ +∇σ∗ = 0 in Ω,

div v∗ = −βΛ(p∗ − pΩ) in Ω, v∗ = 0 on Γ, 〈σ∗, 1〉Ω = 0.

On the other hand, for the case where we only keep track of the Cauchy stress,
that is, α = β = 0, (3.14) becomes[
−ν∆v∗ + (∇y∗)>v∗ − (y∗ · ∇)v∗ +∇σ∗ = λ( divSΩ − ν2∆y∗ + ν∇p∗) in Ω,

div v∗ = −λΛ(2p∗ − TrSΩ) in Ω, v∗ = 0 on Γ, 〈σ∗, 1〉Ω = 0.

Finally, keeping track of the velocity gradient only, the adjoint system with β =
λ = 0 is given by[

−ν∆v∗ + (∇y∗)>v∗ − (y∗ · ∇)v∗ +∇σ∗ = α( divYΩ −∆y∗) in Ω,

div v∗ = 0 in Ω, v∗ = 0 on Γ, 〈σ∗, 1〉Ω = 0.

Theorem 3.2. Let α, β, λ ≥ 0 with α + β + λ > 0 in (3.3). If YΩ,SΩ ∈ Ls(Ω)2

and pΩ ∈ Ls(Ω) for some 2 ≤ s <∞, then for the solution of the optimality system
(3.13)–(3.15), we have

(y∗, p∗,u∗,v∗, σ∗) ∈ V3,s(Ω)× Ŵ 2,s(Ω)×W1,s
0 (Ω)×W1,s

0 (Ω)× L̂s(Ω). (3.16)

If YΩ,SΩ ∈ L2(Ω)2, divYΩ, divSΩ ∈ Lr(Ω), and pΩ,TrSΩ ∈ W 1,r(Ω) for some
1 < r <∞, then

(y∗, p∗,u∗,v∗, σ∗) ∈ V4,r(Ω)× Ŵ 3,r(Ω)×X2,r(Ω)×X2,r(Ω)× Ŵ 1,r(Ω). (3.17)

Moreover, if β = λ = 0, then u∗,v∗ ∈ V1,s(Ω) in (3.16) and u∗,v∗ ∈ V2,r(Ω) in
(3.17).

Proof. In the first situation, (3.10) and (3.11) give us f(y∗, p∗) ∈ W−1,s(Ω) and
Λg(p∗) ∈ L̂s(Ω) since divYΩ, divSΩ ∈W−1,s(Ω), ∆y∗,∇p∗ ∈ L2(Ω) ⊂W−1,s(Ω),
and p∗ ∈ Ŵ 1,2(Ω) ⊂ Ls(Ω). Hence, (v∗, σ∗) ∈W1,s

0 (Ω) × L̂s(Ω) and u∗ ∈W1,s
0 (Ω)

according to Lemma 2.6 for A?
y∗ and (3.15). As a consequence, we deduce that

(y∗, p∗) ∈ V3,2(Ω) × Ŵ 2,2(Ω) since (y∗ · ∇)y∗ ∈ W1,2(Ω), thanks to (2.31) with
(k, s) = (3, 2) and (3.1). This gives us y∗,∇y∗ ∈ W2,2(Ω), and since W2,2(Ω)
is a Banach algebra, we obtain that (y∗ · ∇)y∗ ∈ W2,2(Ω) ⊂ W1,r(Ω) for every
1 < r <∞. Applying (2.31) with k = 3, we see that (y∗, p∗) ∈ V3,s(Ω)× Ŵ 2,s(Ω).
This establishes (3.16).

If the additional regularity assumptions divYΩ, divSΩ ∈ Lr(Ω) and pΩ,TrSΩ ∈
W 1,r(Ω) for the desired states hold, then we have f(y∗, p∗) ∈ Lr(Ω) and Λg(p∗) ∈
Ŵ 1,r(Ω) since ∆y∗,∇p∗ ∈ W1,s(Ω) ⊂ W1,2(Ω) ⊂ Lr(Ω) and p∗ ∈ Ŵ 2,s(Ω) ⊂
W 2,2(Ω) ⊂ W 1,r(Ω). Thus, (v∗, σ∗) × X2,r(Ω) × Ŵ 1,r(Ω) and u∗ ∈ X2,r(Ω) by
Lemma 2.6 for A?

y∗ and (3.15) once again. Observe that (y∗ · ∇)y∗ ∈W1,r(Ω) from
the above arguments, and so y∗ ∈ V3,r(Ω) ⊂W1,∞(Ω). Thus,

‖∇2((y∗ · ∇)y∗)‖Lr(Ω)2×2

≤ c(‖∇2y∗‖Lr(Ω)2×2‖∇y∗‖L∞(Ω)2 + ‖y∗‖L∞(Ω)‖∇3y∗‖Lr(Ω)2×3)
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≤ c‖y∗‖2
V3,r(Ω).

Therefore, (y∗ · ∇)y∗ ∈W2,r(Ω) and we get (y∗, p∗) ∈ V4,r(Ω)× Ŵ 3,r(Ω) by (2.31)
with (k, s) = (4, r), and this shows (3.17).

Finally, if β = λ = 0, then g(p∗) = 0, and hence divu∗ = −ρ−1 div v∗ = 0. These
equations lead into u∗,v∗ ∈ V1,2(Ω) in (3.22) and u∗,v∗ ∈ V2,r(Ω) in (3.17). �

Next, let us consider the case with control constraints min
(y,p,u)∈V2,s(Ω)×Ŵ 1,s(Ω)×Uad

J (y, p,u) := J(y, p) +
ρ

2
‖u‖2

L2(Ω)

subject to (1.2)
(3.18)

with J : V2,s(Ω) × Ŵ 1,s(Ω) → R given by (3.3), a,b ∈ Ls(Ω), and 2 ≤ s < ∞.
Since u ∈ Uad ⊂ Ls(Ω), we have a solution (y, p) ∈ V2,s(Ω)× Ŵ 1,s(Ω) to (1.2), and
so J in the current case is well-defined.

The proof of existence of solutions to (3.18) is similar to (3.2). Indeed, following
the same notation as above and noting that Uad is a bounded, closed, and convex
subset of L2(Ω), it is weakly compact in L2(Ω). Thus, up to a subsequence, un ⇀ u∗

in L2(Ω) for some u∗ ∈ Uad. With this, we can now proceed as in the unconstrained
case to show the existence of at least one solution (y∗, p∗,u∗) ∈ V2,s(Ω)×Ŵ 1,s(Ω)×
Uad to (3.18).

Let us localize the current problem. Assume that (y∗, p∗,u∗) is a solution to (3.18)
such that (y∗, p∗) is regular, let Ss : Us(u∗)→ B%,s(y

∗, p∗) be the mapping provided
by Theorem 2.8, and define Jr : Us(u∗) → R and Jr : Us(u∗) → R as in (3.7) and
(3.8), where (y(u), p(u)) = Ss(u). Our discussion shows that u∗ is a solution of

min
u∈Us(u∗)∩Uad

Jr(u). (3.19)

Let η > 0 be such that Bη(u
∗) ⊂ Us(u∗), where Bη(u

∗) is the open ball in Ls(Ω)
with center at u∗ and radius η > 0. We consider the following localized version of
(3.19):

min
u∈Uad∩Bη(u∗)

Jr(u). (3.20)

By local optimality of u∗ and convexity of Uad∩Bη(u
∗), it holds that J ′r (u∗)(u−

u∗) ≥ 0 for every u ∈ Uad ∩ Bη(u
∗), with J ′r given by (3.12). Adapting the

discussion in [25, pp. 67-71] and noting that u∗ lies in the interior of Bη(u
∗) so

that the constraint is not active, the following projection formula for the pointwise
optimality condition can be deduced:

u∗ = P[a,b](−ρ−1v∗) := min{max{−ρ−1v∗,b}, a}
= −max{a−max{ρ−1v∗ − b,0} − b,0}+ a. (3.21)

Then, the local optimality system for (3.20) is given by (3.13), (3.14), and (3.21).
We see that the regularity of the control depends also on the constraints.

Theorem 3.3. Suppose that α, β, λ ≥ 0 with α+β+λ > 0 in (3.3). Let 2 ≤ s <∞
and a,b ∈W1,s(Ω). If YΩ,SΩ ∈ Ls(Ω)2 and pΩ ∈ Ls(Ω), then for the solution of
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the optimality system (3.13), (3.14), and (3.21) corresponding to (3.20), we have

(y∗, p∗,u∗,v∗, σ∗) ∈ V3,s(Ω)× Ŵ 2,s(Ω)×W1,s(Ω)×W1,s
0 (Ω)× L̂s(Ω). (3.22)

Moreover, if YΩ,SΩ ∈ L2(Ω)2, divYΩ, divSΩ ∈ Lr(Ω), and pΩ,TrSΩ ∈ W 1,r(Ω)
for some 1 < r <∞, then

(v∗, σ∗) ∈ X2,r(Ω)× Ŵ 1,r(Ω). (3.23)

In particular, if β = λ = 0, then v∗ ∈ V1,s(Ω) and v∗ ∈ V2,r(Ω) in (3.22) and
(3.23), respectively.

Proof. The first assumption on the desired states implies that (y, p∗) ∈ V2,s(Ω)×
Ŵ 1,s(Ω) due to (2.31) with k = 2 and Uad ⊂ Ls(Ω). Hence, f(y∗, p∗) ∈W−1,s(Ω)

and Λg(p∗) ∈ L̂s(Ω) from (3.10) and (3.11), and we obtain the regularity of (v∗, σ∗)
in (3.22) from Lemma 2.6. The classical theorem for the projection [20, Lemma A.1,
p. 50], a,b ∈W1,s(Ω), and (3.21) imply that u∗ ∈W1,s(Ω). Hence, we obtain the
regularity of (y∗, p∗) in (3.22) by (2.31) with k = 3 since (y∗ · ∇)y∗ ∈W1,s(Ω) from
the proof of Theorem 3.2.

If the additional assumption for the desired states hold, then f(y∗, p∗) ∈ Lr(Ω)

and Λg(p∗) ∈ Ŵ 1,r(Ω). Thus, we get (3.23) by Lemma 2.7. The last part follows
since as in Theorem 3.2, v∗ is divergence-free when β = λ = 0. �

Clearly, the results of the previous theorem hold in the standard case where
the controls satisfy a ≤ u ≤ b almost everywhere in Ω with constant constraints
a,b ∈ R2.

Now, we consider the following problem with controls in a Sobolev space min
(y,p,u)∈V3,2(Ω)×Ŵ 2,2(Ω)×W1,2(Ω)

J (y, p,u) := J(y, p) +
ρ

2
‖u‖2

W1,2(Ω)

subject to (1.2)
(3.24)

and J : V3,2(Ω) × Ŵ 2,2(Ω) → R is given by (3.3). Existence of local solutions can
be established as before. In fact, following the same notation as above, we have
un ⇀ u∗ in W1,2(Ω), and passing to another subsequence, this yields un → u∗ in
L2(Ω) in virtue of the compactness of W1,2(Ω) ⊂ L2(Ω).

Let (y∗, p∗,u∗) be a solution to (3.24) with a regular (y∗, p∗) and let R : V(u∗)→
B%(y

∗, p∗) be the C∞-map given in Theorem 2.9. Define Jr : V(u∗) → R as in
(3.7) with (y(u), p(u)) = R(u) and the corresponding reduced cost functional Jr :
V(u∗)→ R by

Jr(u) := J (y(u), p(u),u) = J(y(u), p(u)) +
ρ

2
‖u‖2

W1,2(Ω). (3.25)

Again, u∗ is a solution to the following local optimal control problem:

min
u∈V(u∗)

Jr(u). (3.26)

It can be shown that the directional derivative of Jr at u ∈ V(u∗) in the direction
of r ∈W1,2(Ω) is

J ′r (u)r =

∫
Ω

(v + ρu) · r + ρ∇u · ∇r dx (3.27)
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where A?
y(v, σ) = (f(y, p), Λg(p)) and the components of the right-hand side are

given by (3.10) and (3.11). Therefore, the optimality system for u∗ with respect to
(3.26) is given by (3.13), (3.14), and with u∗ ∈ W1,2(Ω) the weak solution to the
homogenous Neumann boundary problem

−∆u∗ + u∗ = −ρ−1v∗ in Ω, ∂nu
∗ = 0 on Γ. (3.28)

By standard elliptic regularity theory, u∗ is more regular than v∗.

Remark 3.4. Replacing the control space W1,2(Ω) by W1,2
0 (Ω) leads to the above

elliptic problem but with homogeneous Dirichlet condition u∗ = 0 on Γ in place of
the Neumann one.

Theorem 3.5. Assume that α, β, λ ≥ 0 with α + β + λ > 0 in (3.3). If YΩ,SΩ ∈
Ls(Ω)2 and pΩ ∈ Ls(Ω), where 2 ≤ s < ∞, then for the solution of the optimality
system (3.13), (3.14), and (3.28) for (3.26), it holds that

(y∗, p∗,u∗,v∗, σ∗) ∈ V5,s(Ω)× Ŵ 4,s(Ω)×W3,s(Ω)×W1,s
0 (Ω)× L̂s(Ω). (3.29)

If YΩ,SΩ ∈ L2(Ω)2, divYΩ, divSΩ ∈ Lr(Ω), and pΩ,TrSΩ ∈ W 1,r(Ω) for some
1 < r <∞, then

(y∗, p∗,u∗,v∗, σ∗) ∈ V6,r(Ω)× Ŵ 5,r(Ω)×W4,r(Ω)×X2,r(Ω)× Ŵ 1,r(Ω). (3.30)

Furthermore, if β = λ = 0, then v∗ ∈ V1,s(Ω) in (3.29), and v∗ ∈ V2,r(Ω) in (3.30),
respectively.

Proof. The regularity of the adjoint variables (v∗, σ∗) in (3.29) and (3.30) follow
from Theorem 3.3 since W1,2(Ω) ⊂ Ls(Ω). Hence, the results for the control u∗ in
(3.29) and (3.30) follow from (3.28) and classical elliptic regularity theory.

The same argument as in the proof of (3.17) leads to y∗ ∈ V4,s(Ω) ⊂W3,∞(Ω).
Thus, (y∗ · ∇)y∗ ∈W3,s(Ω) since

‖∇3((y∗ · ∇)y∗)‖Ls(Ω)2×3 ≤ c(‖∇y∗‖L∞(Ω)2‖∇3y‖L∞(Ω)2×3

+ ‖∇2y∗‖2
L∞(Ω)2×2 + ‖y∗‖L∞(Ω)2‖∇4y∗‖Ls(Ω)2×4) ≤ c‖y∗‖2

V4,s(Ω).

Applying (2.31) with k = 5 and u∗ ∈ W3,s(Ω), we have (y∗, p∗) ∈ V5,s(Ω) ×
Ŵ 4,s(Ω). This completes the proof of (3.29). To show (3.30) in the case of (y∗, p∗),
first we note that y∗ ∈ V5,s(Ω) ⊂ W5,2(Ω) since s ≥ 2. As W4,2(Ω) is a Banach
algebra, (y∗ · ∇)y∗ ∈W4,2(Ω), and so y∗ ∈ V6,2(Ω) by (2.31) with (k, s) = (5, 2).

Finally, using V6,2(Ω) ⊂W5,r(Ω) ∩W4,∞(Ω), one has

‖∇4((y∗ · ∇)y∗)‖Lr(Ω)2×4 ≤ c(‖∇y∗‖L∞(Ω)2‖∇4y∗‖L∞(Ω)2×4

+ ‖∇2y∗‖L∞(Ω)2×2‖∇3y∗‖L∞(Ω)2×3 + ‖y∗‖L∞(Ω)2‖∇5y∗‖Lr(Ω)2×5)

≤ c‖y∗‖2
V6,2(Ω)

so that (y∗ · ∇)y∗ ∈ W4,r(Ω). Therefore, (y∗, p∗) ∈ V6,r(Ω) × Ŵ 5,r(Ω) by (2.31)
with (k, s) = (6, r) and u∗ ∈W4,r(Ω). �

Remark 3.6. Without pressure terms in the cost functional, that is, when β = λ =
0, the divergence of the optimal control in the case of controls in W1,2(Ω) are smooth
in the interior of Ω. Indeed, taking the divergence of the first equation in (3.28) and
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using v∗ ∈ L2
σ(Ω), we have −∆ divu∗ + divu∗ = div v∗ = 0 in ω in the sense of

distributions for any smooth subset ω ⊂ ω ⊂ Ω. For instance, one can take ω to
be an open ball whose closure lies in Ω. It follows that divu∗ ∈ C∞(ω) by classical
elliptic regularity. Since ω is arbitrary, we have divu∗ ∈ C∞(Ω).

3.2. Convection, diffusion and pressure gradient tracking. For
this subsection, we study optimal control problems involving (y ·∇)y, ∆y, and ∇p.

First, let us consider the optimal control problem

min
(y,u)∈V2,2(Ω)×L2(Ω)

J (y,u) := J(y) +
ρ

2
‖u‖2

L2(Ω) subject to (1.2) (3.31)

where J : V2,2(Ω)→ R is the convection-tracking functional

J(y) :=
1

2

∫
Ω

λ|(y · ∇)y − cΩ|2 dx, (3.32)

with cΩ ∈ L2(Ω) and λ > 0. Following the notation in Subsection 3.1, the existence
of a solution to (3.31) can be established as we have J(yn)→ J(y∗).

For regular solutions, we consider the localized problem (3.9) corresponding to
(3.31) with Jr : U2(u∗)→ R given by

Jr(u) := J (y(u),u) = Jr(u) +
ρ

2
‖u‖2

L2(Ω)

where (y(u), p(u)) = S2(u) and Jr(u) = J(y(u)). The derivative of Jr : U2(u∗)→ R
at u ∈ U2(u∗) in the direction r ∈ L2(Ω) is given by

J ′r(u)r =

∫
Ω

λ((y · ∇)y − cΩ) · ((w · ∇)y + (y · ∇)w) dx

= 〈f(y),w〉X−2,2(Ω),X2,2(Ω)

where we set

f(y) := λ(∇y)>((y · ∇)y − cΩ)− λ(y · ∇)2y + λ(y · ∇)cΩ. (3.33)

Thus, (3.12) holds for Dy(v, σ) = (f(y), 0,0).
The above discussion implies that the optimality system for the localized problem

(3.9) corresponding to (3.31) consists of (3.13), (3.15), and the adjoint system −ν∆v∗ + (∇y∗)>v∗ − (y∗ · ∇)v∗ +∇σ∗

= λ[(∇y∗)>((y∗ · ∇)y∗ − cΩ)− (y∗ · ∇)2y∗ + (y∗ · ∇)cΩ] in Ω,

div v∗ = 0 in Ω, v∗ = 0 on Γ, 〈σ∗, 1〉Ω = 0.

(3.34)

Similarly, one can formulate the localized versions (3.21) and (3.28) of (3.31),
but now with controls in Uad and W1,2(Ω), respectively. We do not repeat the
discussions here for brevity. For the case of Uad, the optimality system is given by
(3.13), (3.34), and (3.15), and for the case of W1,2(Ω) we have (3.13), (3.34), and
(3.28).

Theorem 3.7. Let λ > 0 in (3.32) and 2 ≤ s < ∞. Then, we have the following
properties for the localized problems:

(i) In the case of L2(Ω), if cΩ ∈ Ls(Ω), then (3.16) holds with u∗,v∗ ∈ V1,s(Ω).
If cΩ ∈W1,r(Ω) for some 1 < r < ∞, then (3.17) is satisfied with u∗,v∗ ∈
V2,r(Ω).
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(ii) In the case of Uad, if a,b, cΩ ∈ Ls(Ω), then (3.22) is satisfied with v∗ ∈
V1,s(Ω). If cΩ ∈W1,r(Ω) for some 1 < r <∞, then (3.23) holds.

(iii) In the case of W1,2(Ω), if cΩ ∈ Ls(Ω), then we have (3.29) with v∗ ∈ V1,s(Ω).
If cΩ ∈W1,r(Ω) for some 1 < r <∞, then we have (3.30) with v∗ ∈ V2,r(Ω).

Proof. First, since y∗ ∈ V2,2(Ω) ⊂ W1,2r(Ω) for every 1 < r < ∞, we have the
following estimates

‖(∇y∗)>(y∗ · ∇)y∗‖Lr(Ω) ≤ c‖∇y∗‖2
L2r(Ω)2‖y∗‖L∞(Ω) ≤ c‖y∗‖3

V2,2(Ω)

‖(y∗ · ∇)2y∗‖L2(Ω) ≤ c(‖y∗‖L∞(Ω)‖∇y∗‖2
L4(Ω)2 + ‖y∗‖2

L∞(Ω)‖∇2y∗‖L2(Ω)2×2)

≤ c‖y∗‖3
V2,2(Ω)

by the Hölder’s inequality. These imply that (∇y∗)>(y∗ · ∇)y∗ ∈ Lr(Ω) and (y∗ ·
∇)2y∗ ∈ L2(Ω) ⊂W−1,r(Ω) for any 1 < r <∞.

Let us prove (i). Assume that cΩ ∈ Ls(Ω). Then, (y∗ · ∇)cΩ ∈W−1,s(Ω) due to
integration by parts and∫

Ω

(y∗ · ∇)ϕ · cΩ dx ≤ ‖y∗‖L∞(Ω)‖∇ϕ‖Ls′ (Ω)2‖cΩ‖Ls(Ω)

≤ c‖y∗‖V2,2(Ω)‖cΩ‖Ls(Ω)‖ϕ‖W1,s′
0 (Ω)

for all ϕ ∈ W1,s′

0 (Ω). Let us show that (∇y∗)>cΩ ∈ W−1,s(Ω). Indeed, if s = 2,
then (∇y∗)>cΩ ∈W−1,2(Ω) according to∫

Ω

(∇y∗)>cΩ ·ϕ dx ≤ ‖∇y∗‖L4(Ω)2‖cΩ‖L2(Ω)‖ϕ‖L4(Ω)

≤ c‖y∗‖V2,2(Ω)‖cΩ‖L2(Ω)‖ϕ‖W1,2
0 (Ω)

for all ϕ ∈ W1,2
0 (Ω) ⊂ L4(Ω). If 2 < s < ∞, then 1 < s′ < 2 and (∇y∗)>cΩ ∈

W−1,s(Ω) since∫
Ω

(∇y∗)>cΩ ·ϕ dx ≤ ‖∇y∗‖L2(Ω)2‖cΩ‖Ls(Ω)‖ϕ‖L2s′/(2−s′)(Ω)

≤ c‖y∗‖V2,2(Ω)‖cΩ‖Ls(Ω)‖ϕ‖W1,s′
0 (Ω)

for all ϕ ∈W1,s′

0 (Ω) ⊂ L2s′/(2−s′)(Ω). Hence, f(y∗) ∈W−1,s(Ω) from (3.33). From
the proof of Theorem 3.2, we obtain (3.16) and u∗,v∗ ∈ V1,s(Ω) since g(p∗) is zero.

Let cΩ ∈W1,r(Ω) for some 1 < r < ∞. Then, (y∗ · ∇)cΩ, (∇y∗)>cΩ ∈ Lr(Ω) as
in the proof of Theorem 2.7. Also, we have cΩ ∈ L2(Ω), and so y∗ ∈ V3,2(Ω) ⊂
W2,r(Ω) ∩W1,2r(Ω). Hence, (y∗ · ∇)2y∗ ∈ Lr(Ω) due to

‖(y∗ · ∇)2y∗‖Lr(Ω) ≤ c(‖y∗‖L∞(Ω)‖∇y∗‖2
L2r(Ω)2 + ‖y∗‖2

L∞(Ω)‖∇2y∗‖Lr(Ω)2×2)

≤ c‖y∗‖3
V3,2(Ω).

Thus, f(y∗) ∈ Lr(Ω), to which we have (3.17) with u∗,v∗ ∈ V2,r(Ω) from
Theorem 3.2. This completes the proof of (i). The proofs of (ii) and (iii) are
completely the same as with those given for Theorem 3.3 and Theorem 3.5,
respectively, the main difference here is that u∗ and v∗ are divergence-free. �
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Let us now consider the control problem involving the diffusion and pressure
gradient. Given ϕ ∈ L2(Ω) we define the generalized Laplacian ∆ϕ ∈ X−2,s(Ω) and
the generalized divergence divϕ ∈ W 1,s′(Ω)′ as follows:

〈∆ϕ,ψ〉X−2,s(Ω),X2,s′ (Ω) :=

∫
Ω

ϕ ·∆ψ dx ∀ψ ∈ X2,s′(Ω),

〈 divϕ, φ〉W 1,s′ (Ω)′,W 1,s′ (Ω) := −
∫

Ω

ϕ · ∇φ dx ∀φ ∈ W 1,s′(Ω).

Consider the optimal control problem (3.2) with the cost functional

J(y, p) :=
1

2

∫
Ω

α|∆y − yΩ|2 + β|∇p− qΩ|2 dx (3.35)

where yΩ,qΩ ∈ L2(Ω). As in Subsection 3.1, one can define Jr and Jr now for
the functional (3.35). Then, we can write the derivative of J at u ∈ U2(u∗) in the
direction r ∈ L2(Ω) as follows:

J ′r(u)r =

∫
Ω

α(∆y − yΩ) ·∆w + β(∇p− qΩ) · ∇π dx

= 〈f(y),w〉X−2,2(Ω),X2,2(Ω) + 〈Λg(p), π〉Ŵ 1,2(Ω)′,Ŵ 1,2(Ω),

where

f(y) := α∆(∆y − yΩ), g(p) := −β(∆p− div qΩ). (3.36)

Then, (3.12) holds for Dy(v, σ) = (f(y), g(p),0).
For the localized problem (3.2) with (3.35) at a regular point, the optimality

system is given by (3.13), (3.15), and (v∗, σ∗) is the very weak solution of[
−ν∆v∗ + (∇y∗)>v∗ − (y∗ · ∇)v∗ +∇σ∗ = α∆(∆y∗ − yΩ) in Ω,

div v∗ = βΛ(∆p∗ − div qΩ) in Ω, v∗ = 0 on Γ, 〈σ∗, 1〉Ω = 0,
(3.37)

in the sense of Definition 2.11. In the case where the controls lie in Uad or W1,2(Ω),
we have to replace (3.15) by (3.21) and (3.28), respectively, to obtain the optimality
systems of the localized problems.

Theorem 3.8. Let α, β ≥ 0 and α+β > 0 in (3.35). Then, the following properties
hold for the localized problems:

(i) In the case of L2(Ω), if yΩ,qΩ ∈ L2(Ω), then

(y∗, p∗,u∗,v∗, σ∗) ∈ V2,2(Ω)× Ŵ 1,2(Ω)× L2(Ω)× L2(Ω)× Ŵ 1,2(Ω)′. (3.38)

(ii) In the case of Uad, where a,b ∈ Ls(Ω) for some 2 ≤ s < ∞, if yΩ,qΩ ∈
Ls(Ω), then

(y∗, p∗,u∗,v∗, σ∗) ∈ V2,s(Ω)× Ŵ 1,s(Ω)× Ls(Ω)× Ls(Ω)× Ŵ 1,s′(Ω)′. (3.39)

(iii) In the case of W1,2(Ω), if yΩ,qΩ ∈ Ls(Ω) for some 2 ≤ s <∞, then

(y∗, p∗,u∗,v∗, σ∗) ∈ V4,s(Ω)× Ŵ 3,s(Ω)×W2,s(Ω)× Ls(Ω)× Ŵ 1,s′(Ω)′. (3.40)

If β = 0, then u∗,v∗ ∈ L2
σ(Ω) in (3.38), while v∗ ∈ Lsσ(Ω) in (3.39) and (3.40).

Department of Mathematics and Computer Science, College of Science, University of the Philippines Baguio



G. Peralta 34 / 47

Proof. From (3.36) we can see that f(y∗) ∈ X−2,s(Ω) and Λg(p∗) ∈ Ŵ 1,s′(Ω)′

whenever (y∗, p∗) ∈ V2,s(Ω) × Ŵ 1,s(Ω) and yΩ,qΩ ∈ Ls(Ω), with s = 2 in
the case of (i). Recall that Dy∗(v

∗, σ∗) = (f(y∗), g(p∗),0), and therefore,
(v∗, σ∗) ∈ Ls(Ω)× Ŵ 1,s′(Ω)′ according to Corollary 2.13. With these, we can follow
the same lines of argument as above to deduce the regularity of (y∗, p∗,u∗) in
(3.38), (3.39), and (3.40). �

Let us prove further regularity of the optimal solution under additional compat-
ibility conditions on the boundary for the case where the controls are in W1,2(Ω).
While the succeeding two theorems provide better regularity on the optimal solu-
tions, the compatibility conditions on the optimal states and the desired target may
not be achieved from a practical perspective.

Theorem 3.9. Let α, β ≥ 0 with α + β > 0, yΩ,qΩ ∈ L2(Ω) and consider the
localized problem with the functional (3.35) and controls in W1,2(Ω). Suppose that
∇yΩ ∈ Lr(Ω)2 and div qΩ ∈ Lr(Ω) for some 1 < r < ∞. If ∆y∗|Γ = yΩ|Γ
and ∂np

∗ = qΩ · n on Γ, then (3.29) holds with s replaced by r. In addition, if
∆yΩ ∈ Lr(Ω) and div qΩ ∈ W 1,r(Ω) for some 1 < r <∞, then we obtain (3.30).

Proof. Let t = min{2, r} so that yΩ ∈W1,t(Ω) and qΩ ∈ Ltdiv(Ω). Thus, yΩ|Γ ∈
W1− 1

t
,t(Γ) and qΩ · n ∈ W− 1

t
,t(Γ). On the other hand, Theorem 3.8 (iii) with

s = 2 provides us ∆y∗|Γ ∈W
3
2
,2(Γ) ⊂W1− 1

t
,t(Γ) and ∂np∗ ∈ W

3
2
,2(Γ) ⊂ W− 1

t
,t(Γ).

Therefore, the stated compatibility conditions are well-defined. Furthermore, using
Green’s identities, we have

J ′r(u
∗)r =

∫
Ω

α(∆y∗ − yΩ) ·∆w + β(∇p∗ − qΩ) · ∇π dx

= −
∫

Ω

α(∇∆y∗ −∇yΩ) : ∇w + β(∆p∗ − div qΩ)π dx

= 〈f(y∗),w〉
W−1,r(Ω),W1,r′

0 (Ω)
+

∫
Ω

πΛg(p∗) dx

for every r ∈ W1,2(Ω), where f(y∗) := α div (∇∆y∗ − ∇yΩ) ∈ W−1,r(Ω) and
Λg(p∗) := −βΛ(∆p∗ − div qΩ) ∈ L̂r(Ω). As in Theorem 3.5, this yields (3.29)
with r in place of s.

For the second part, it holds that

J ′r(u
∗)r =

∫
Ω

f(y∗) ·w dx+

∫
Ω

πΛg(p∗) dx.

where f(y∗) := α(∆2y∗ − ∆yΩ) ∈ Lr(Ω) and Λg(p∗) ∈ Ŵ 1,r(Ω). Hence, following
Theorem 3.5, we obtain (3.30). �

In the next theorem, we relax the first compatibility condition in Theorem 3.9,
however, with a new adjoint equation.

Theorem 3.10. Let α, β ≥ 0 with α+ β > 0 in (3.35) and consider the associated
localized problem with controls in W1,2(Ω). Assume that yΩ,qΩ ∈ Lsdiv(Ω) for some
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2 ≤ s <∞,

∆y∗ · n = yΩ · n on Γ, and ∂np
∗ = qΩ · n on Γ. (3.41)

Then,

(y∗, p∗,u∗,v∗, σ∗) ∈ V4,s(Ω)× Ŵ 3,s(Ω)×W2,s(Ω)×W1,s
0 (Ω)× L̂s(Ω), (3.42)

where u∗ is the solution of

−∆u∗ + u∗ = −1

ρ

[
v∗ − α

ν
(∆y∗ − yΩ)

]
in Ω, ∂nu

∗ = 0 on Γ, (3.43)

and A?
y∗(v

∗, σ∗) = (f(y∗), Λg(p∗)), where

f(y∗) :=
α

ν
(∇y∗)>(∆y∗ − yΩ)− α

ν
(y∗ · ∇)(∆y∗ − yΩ) (3.44)

g(p∗) :=
α

ν
div yΩ − β(∆p∗ − div qΩ). (3.45)

If yΩ ∈W2,r(Ω), qΩ ∈ L2(Ω), div yΩ, div qΩ ∈ W 1,r(Ω) for some 1 < r < ∞, and
(3.41) is satisfied, then we obtain (3.30).

Proof. Similar to the proof in Theorem 3.9, the compatibility conditions are mean-
ingful in W− 1

s
,s(Γ). Using the linearized equation (2.11), integrating by parts, in-

voking the conditions ∆y∗ · n = yΩ · n and ∂np
∗ = qΩ · n on Γ, and applying

div ∆y∗ = ∆ div y∗ = 0 in Ω, we obtain

J ′r(u
∗)r =

∫
Ω

α

ν
(∆y∗ − yΩ) · ((y∗ · ∇)w + (w · ∇)y∗ +∇π − r) dx

−
∫

Ω

β(∆p∗ − div qΩ)π dx

= −
∫

Ω

α

ν
(∆y∗ − yΩ) · r dx+ 〈f(y∗),w〉

W−1,s(Ω),W1,s′
0 (Ω)

+

∫
Ω

πΛg(p∗) dx,

where f(y∗) ∈W−1,s(Ω) and Λg(p∗) ∈ L̂2(Ω) are given by (3.44) and (3.45), respec-
tively, for every r ∈W1,2(Ω).

Let us show the declared regularity of f(y∗) and g(p∗) in the previous statement.
On one hand, that of Λg(p∗) is clear since div yΩ, divpΩ ∈ Ls(Ω) ⊂ L2(Ω) and
p∗ ∈ Ŵ 2,2(Ω). On the other hand, we have (∇y∗)>(∆y∗−yΩ) ∈ Ls(Ω) ⊂W−1,s(Ω)
and (y∗ · ∇)(∆y∗ − yΩ) ∈W−1,s(Ω) since∫

Ω

(∇y∗)>(∆y∗ − yΩ) ·w dx ≤ ‖∇y∗‖L∞(Ω)2(‖∆y∗‖Ls(Ω) + ‖yΩ‖Ls(Ω))‖w‖Ls′ (Ω)

≤ c‖y∗‖V3,2(Ω)(‖y∗‖V3,2(Ω) + ‖yΩ‖Ls(Ω))‖w‖Ls′ (Ω),∫
Ω

(y∗ · ∇)w · (∆y∗ − yΩ) dx ≤ ‖y∗‖L∞(Ω)‖∇w‖Ls′ (Ω)2(‖∆y∗‖Ls(Ω) + ‖yΩ‖Ls(Ω))

≤ c‖y∗‖V3,2(Ω)(‖y∗‖V3,2(Ω) + ‖yΩ‖Ls(Ω))‖w‖W1,s′
0 (Ω)

,

for every w ∈W1,s′

0 (Ω), due to y∗ ∈ V3,2(Ω) ⊂W1,∞(Ω)∩W2,s(Ω). Thus, f(y∗) ∈
W−1,s(Ω).
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The derivative of the localized reduced cost functional Jr at the optimal control
u∗ in the direction of r can be written as

0 = J ′r(u
∗)r =

∫
Ω

[
v∗ − α

ν
(∆y∗ − yΩ)

]
· r + ρu∗ · r + ρ∇u∗ : ∇r dx

for every r ∈W1,2(Ω), where A?
y∗(v

∗, σ∗) = (f(y∗), Λg(p∗)). Hence, u∗ is a solution
to the elliptic boundary value problem (3.43). Since f(y∗) ∈W−1,s(Ω) ⊂W−1,2(Ω)

and Λg(p∗) ∈ L̂2(Ω), we deduce that (v∗, σ∗) ∈ W1,2
0 (Ω) × L̂2(Ω) by Lemma 2.6.

This implies that v∗ − α
ν
(∆y∗ − yΩ) ∈ Ls(Ω) since W1,2

0 (Ω) ⊂ Ls(Ω), and as a
consequence, u∗ ∈ W2,s(Ω) by standard elliptic regularity theory. This regularity
of the control leads to (y∗, p∗) ∈ V4,s(Ω)× Ŵ 3,s(Ω). Hence, ∆p∗ ∈ W 1,s(Ω) and we
have Λg(p∗) ∈ L̂s(Ω). In turn, we deduce that (v∗, σ∗) ∈ W1,s

0 (Ω) × L̂s(Ω). This
completes the proof (3.42).

Assume that yΩ ∈W1,r(Ω), qΩ ∈ L2(Ω), and div yΩ, div qΩ ∈ W 1,r(Ω) for some
1 < r < ∞. Because W 1,r(Ω) ⊂ L2(Ω), we have yΩ,qΩ ∈ L2

div(Ω). This means
that (3.42) holds with s = 2. Note that (∇y∗)>(∆y∗ − yΩ) ∈ Lr(Ω) as above, and
moreover, (y∗ · ∇)(∆y∗ − yΩ) ∈ Lr(Ω) since y∗ ∈ V4,2(Ω) ⊂ L∞(Ω) ∩W3,r(Ω) and∫

Ω

(y∗ · ∇)(∆y∗ − yΩ) ·w dx ≤ ‖y∗‖L∞(Ω)(‖∇∆y∗‖Lr(Ω)2 + ‖yΩ‖Lr(Ω))‖w‖Lr′ (Ω)

≤ c‖y∗‖V4,2(Ω)(‖y∗‖V4,2(Ω) + ‖yΩ‖Lr(Ω))‖w‖Lr′ (Ω)

for every w ∈ Lr
′
(Ω). Hence, f(y∗) ∈ Lr(Ω).

Suppose that 1 < r ≤ 2. Then, from p∗ ∈ Ŵ 3,2(Ω) ⊂ W 3,r(Ω) we obtain Λg(p∗) ∈
Ŵ 1,r(Ω). Thus, (v∗, σ∗) ∈ X2,r(Ω) × Ŵ 1,r(Ω) by Lemma 2.7, which is the last
two components in (3.30). By elliptic regularity, we obtain u∗ ∈W3,r(Ω), so that
(y∗, p∗) ∈ V5,r(Ω)×Ŵ 4,r(Ω). As a consequence, the right-hand side of (3.43) belongs
to W2,r(Ω). Thus, u∗ ∈W4,r(Ω) and (y∗, p∗) ∈ V6,r(Ω)× Ŵ 5,r(Ω), establishing the
first three components in (3.30).

Now, assume that 2 < r < ∞. In this case, (3.30) holds for r = 2, and in
particular, (y∗, p∗) ∈ V6,2(Ω)× Ŵ 5,2(Ω) ⊂ V5,r(Ω)× Ŵ 4,r(Ω). From this, we again
deduce (3.30). �

In the context of Theorem 3.10, the optimality system of the localized problem
with cost functional (3.35) and controls in W1,2(Ω) is given by[

−ν∆y∗ + (y∗ · ∇)y∗ +∇p∗ = u∗ in Ω,

div y∗ = 0 in Ω, y∗ = 0 on Γ, 〈p∗, 1〉Ω = 0,
−ν∆v∗ + (∇y∗)>v∗ − (y∗ · ∇)v∗ +∇σ∗

= α
ν
(∇y∗)>(∆y∗ − yΩ)− α

ν
(y∗ · ∇)(∆y∗ − yΩ) in Ω,

div v∗ = −Λ
(
α
ν

div yΩ − β(∆p∗ − div qΩ)
)

in Ω,

v∗ = 0 on Γ, 〈σ∗, 1〉Ω = 0,[
−∆u∗ + u∗ = −1

ρ

(
v∗ − α

ν
(∆y∗ − yΩ)

)
in Ω,

∂nu
∗ = 0 on Γ.
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3.3. Boundary normal stress and pressure tracking. For this sub-
section, we analyze the problems (3.2), (3.18), and (3.24) in case of the cost func-
tional with boundary observations

J(y, p) :=
1

2

∫
Γ

α|∂ny − yΓ|2 + β|p− pΓ|2 + λ|T(y, p)n− sΓ|2 ds (3.46)

where α, β, λ ≥ 0 with α + β + λ > 0, yΓ, sΓ ∈ L2(Γ), and pΓ ∈ L2(Γ). Here, we
only provide the main ideas and refer the reader to Subsection 3.1 for the complete
details, in particular, to the localization of the current optimal control problem.

To show existence of solutions, it is enough to prove that (3.5) holds for J given
by (3.46). We only give the details in the case where the control space lies in
L2(Ω) as the other two cases can be dealt with a similar manner. As before,
note that {(yn, pn)}∞n=1 is bounded in V2,2(Ω)× Ŵ 1,2(Ω) and (yn, pn) ⇀ (y∗, p∗) in
V2,2(Ω)× Ŵ 1,2(Ω). Thanks to the Rellich–Kondrachev theorem, we have the com-
pact embeddings V2,2(Ω) ⊂W2−ε,2(Ω) and Ŵ 1,2(Ω) ⊂ W 1−ε,2(Ω), with 0 < ε < 1

2
.

Hence, one can extract a subsequence so that yn → y∗ in W2−ε,2(Ω) and pn → p∗

in W 1−ε,2(Ω). The continuity of ∂n : W2−ε,2(Ω) → W
1
2
−ε,2(Γ) and the trace op-

erator γ0 : W 1−ε,2(Ω) → W
1
2
−ε,2(Γ) along with the continuity of the embeddings

W
1
2
−ε,2(Γ) ⊂ L2(Γ) and W

1
2
−ε,2(Γ) ⊂ L2(Γ) imply that ∂nyn → ∂ny

∗ in L2(Γ),
pn|Γ → p∗|Γ in L2(Γ), and T(yn, pn)n → T(y∗, p∗)n in L2(Γ). Therefore, (3.5) is
satisfied for (3.46).

For the corresponding localized problems at regular points, we only discuss the
case of L2(Ω) once again. Denote by Jr : U2(u∗)→ R the reduced cost functional for
(3.46) constructed as in Subsection 3.1. For u ∈ U2(u∗) and r ∈ L2(Ω), we compute
the directional derivative as follows:

J ′r(u)r =

∫
Γ

α(∂ny − yΓ) · ∂nw + β(p− pΓ)π + λ(T(y, p)n− sΓ) ·T(w, π)n ds

=

∫
Γ

[
β(p− pΓ) +

α

ν
(∂ny − yΓ) · n

]
π ds

+

∫
Γ

[
λ(T(y, p)n− sΓ)− α

ν
(∂ny − yΓ)

]
·T(w, π)n ds. (3.47)

Here, we used the fact that ∂nw = − 1
ν
T(w, π)n + 1

ν
πn.

In order to derive the data for the adjoint equation, we need to introduce certain
operators that lift functions defined over the boundary into the domain. Given
ψ ∈ W− 1

s
,s(Γ), we define γ?0ψ ∈ W 1,s′(Ω)′ by

〈γ?0ψ, φ〉W 1,s′ (Ω)′,W 1,s′ (Ω) := 〈ψ, φ|Γ〉
W−

1
s ,s(Γ),W

1− 1
s′ ,s
′
(Γ)

∀φ ∈ W 1,s′(Ω).

In a similar fashion, given ψ ∈W− 1
s
,s(Γ), we define γ?1ψ ∈ X−2,s(Ω) by

〈γ?1ψ,ϕ〉X−2,s(Ω),X2,s′ (Ω) := 〈ψ, ∂nϕ〉
W− 1

s ,s(Γ),W
1− 1

s′ ,s
′
(Γ)

∀ϕ ∈ X2,s′(Ω).

Let us provide a formulation of the adjoint equation having homogeneous Dirich-
let boundary condition. Other formulations leading to the same regularity of the
optimal solutions will be provided below. Since T(w, π)n = −ν∂nw+πn and using
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π ∈ Ŵ 1,2(Ω), we obtain from (3.47) that

J ′r(u)r =

∫
Γ

(α(∂ny − yΓ)− λν(T(y, p)n− sΓ)) · ∂nw ds

+

∫
Γ

(β(p− pΓ) + λ(T(y, p)n− sΓ) · n)π ds

= 〈f(y, p),w〉X−2,2(Ω),X2,2(Ω) + 〈Λg(y, p), π〉Ŵ 1,2(Ω)′,Ŵ 1,2(Ω)

where

f(y, p) := γ?1[(α + λν2)∂ny − αyΓ − λν(pn− sΓ)], (3.48)
g(y, p) := γ?0 [(β + λ)p− βpΓ + λ(−ν∂ny · n− sΓ · n)], (3.49)

so that (3.12) is satisfied with Dy(v, σ) = (f(y, p), Λg(y, p),0).
As a consequence, the optimality system for the localized problem having the

cost functional (3.46) and controls in L2(Ω) is given by (3.13)–(3.15), where the
right-hand sides of (3.14) are those from (3.48) and (3.49). Once again, we need to
replace (3.15) by (3.21) or (3.28) in the situation where the controls belong to Uad

or W1,2(Ω), respectively.
In the succeeding theorem, we obtain twice the integrability order of the desired

states from the boundary to the interior with respect to the adjoint velocity.

Theorem 3.11. In the case of L2(Ω), yΓ, sΓ ∈ Ls(Γ), and pΓ ∈ Ls(Ω) for some
2 ≤ s <∞ in (3.46), we have

(y∗, p∗,u∗,v∗, σ∗) ∈ V2,2s(Ω)×Ŵ 1,2s(Ω)×L2s(Ω)×L2s(Ω)×Ŵ−1,2s(Ω). (3.50)

The same result holds for the case of Uad provided a,b ∈ L2s(Ω). Finally, in the
case of W1,2(Ω), it holds that

(y∗, p∗,u∗) ∈ V4,2s(Ω)× Ŵ 3,2s(Ω)×W2,2s(Ω). (3.51)

Proof. We show that γ?0ψ ∈ W 1, 2s
2s−1 (Ω)′ whenever ψ ∈ Ls(Γ). Indeed, if φ ∈

W 1, 2s
2s−1 (Ω), then φ|Γ ∈ W

1
2s
, 2s
2s−1 (Γ) ⊂ L

s
s−1 (Γ) = Ls

′
(Γ) by the one-dimensional

Sobolev embedding theorem since 1
2s−1

< 1. Thus, for each φ ∈ W 1,s′(Ω) ⊂
W 1, 2s

2s−1 (Ω), we have

〈γ?0ψ, φ〉W−1,s(Ω),W 1,s′ (Ω) =

∫
Γ

ψφ|Γ ds ≤ ‖ψ‖Ls(Γ)‖φ|Γ‖Ls′ (Γ)

≤ c‖ψ‖Ls(Γ)‖φ‖
W

1, 2s
2s−1 (Ω)

.

Since W 1,s′(Ω) is dense in W 1, 2s
2s−1 (Ω), we conclude that γ?0ψ ∈ W 1, 2s

2s−1 (Ω)′. In a
similar fashion, γ?1ψ ∈ X−2,2s(Ω) whenever ψ ∈ Ls(Ω).

From the equation Dy∗(v
∗, σ∗) = (f(y∗, p∗), Λg(y∗, p),0), where the compo-

nents on right-hand sides are given by (3.48) and (3.49), we get (v∗, σ∗) ∈
L2s(Ω) × Ŵ−1,2s(Ω) from Corollary 2.13, and hence u∗ ∈ L2s(Ω) by (3.15) in the
case of controls in L2(Ω). In light of (3.21), same conclusions hold for controls in
Uad as long as a,b ∈ L2s(Ω). For controls in W1,2(Ω), we have u∗ ∈ W2,2s(Ω)

according to (3.28) and v∗ ∈ L2s(Ω), and therefore, (y∗, p∗) ∈ V4,2s(Ω) × Ŵ 3,2s(Ω)

Department of Mathematics and Computer Science, College of Science, University of the Philippines Baguio



Optimal Control for NSE Involving Pressure and Stress 39 / 47

by (2.31). �

Let us provide an alternative adjoint equation with non-homogenous boundary
data. Utilizing the fact that g(y, p)−Π(g(y, p),h(y, p)) is constant, the derivative
provided in (3.47) can be written as

J ′r(u)r = 〈g(y, p), π〉W 1,2(Ω)′,W 1,2(Ω) +

∫
Γ

h(y, p) ·T(w, π)n ds

= 〈Π(g(y, p),h(y, p)), π〉Ŵ 1,2(Ω)′,Ŵ 1,2(Ω) +

∫
Γ

h(y, p) ·T(w, π)n ds

where

g(y, p) := γ?0

[
β(p− pΓ) +

α

ν
(∂ny − yΓ) · n

]
, (3.52)

h(y, p) := −
(
λν +

α

ν

)
∂ny + λ(pn− sΓ) +

α

ν
yΓ. (3.53)

This yields (3.12) with Dy(v, σ) = (0, Π(g(y, p),h(y, p)),h(y, p)).
Note that the above formulation leads to the same regularity result as in The-

orem 3.11. To see this, note that W
1
2s
, 2s
2s−1 (Γ) ⊂ Ls

′
(Γ) implies that Ls(Γ) ⊂

W− 1
2s
,2s(Γ) by duality. As a consequence, we obtain from (3.53) that h(y∗, p∗) ∈

W− 1
2s
,2s(Γ). As in the proof of the previous theorem, g(y∗, p∗) ∈ Ŵ 1, 2s

2s−1 (Ω)′. Since
(Π(g(y∗, p∗),h(y∗, p∗)),h(y∗, p∗)) ∈ Z−1,− 1

2s
,2s(Ω,Γ), we have (v∗, σ∗) ∈ L2s(Ω) ×

Ŵ 1, 2s
2s−1 (Ω)′ thanks to Corollary 2.13.

It is also possible to have a constant-divergence formulation for the adjoint equa-
tion. Indeed, since π = πn · n = T(w, π)n · n + ν∂nw · n we have

J ′r(u)r =

∫
Γ

α(∂ny − yΓ) · ∂nw + β(p− pΓ)π + λ(T(y, p)n− sΓ) ·T(w, π)n ds

=

∫
Γ

(α(∂ny − yΓ) + βν(p− pΓ)n) · ∂nw ds

+

∫
Γ

[λ(T(y, p)n− sΓ) + β(p− pΓ)n] ·T(w, π)n ds

= 〈f(y, p),w〉X−2,2(Ω),X2,2(Ω) + 〈Σh(y, p), π〉Ŵ 1,2(Ω)′,Ŵ 1,2(Ω)

+

∫
Γ

h(y, p) ·T(w, π)n ds

where

f(y, p) := γ∗1[α(∂ny − yΓ) + βν(p− pΓ)n], (3.54)
h(y, p) := −λν∂ny + (λ+ β)pn− λsΓ − βpΓn. (3.55)

Thus, we have (3.12) with

Dy(v, σ) = (f(y, p), Σh(y, p),h(y, p)) ∈ X−1,2s(Ω)× Z−1,− 1
2s
,2s(Ω,Γ),

and this gives the same result (3.50).
We close this subsection by highlighting the adjoint systems with observations

involving only the normal stress on the boundary, that is, when α = β = 0 in
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(3.46). On one hand, the corresponding adjoint problem with homogeneous Dirichlet
condition is given by the very weak solution to[
−ν∆v∗ + (∇y∗)>v∗ − (y∗ · ∇)v∗ +∇σ∗ = λνγ?1(ν∂ny

∗ − p∗n + sΓ) in Ω,

div v∗ = −λΛγ?0(p∗ − ν∂ny∗ · n− sΓ · n) in Ω, v∗ = 0 on Γ, 〈σ∗, 1〉Ω = 0.

This is based on (3.48) and (3.49) with α = β = 0. On the other hand, if we utilize
(3.52) and (3.53), then we obtain the following adjoint problem with homogeneous
force term  −ν∆v∗ + (∇y∗)>v∗ − (y∗ · ∇)v∗ +∇σ∗ = 0 in Ω,

div v∗ = λΣ(ν∂ny
∗ − p∗n + sΓ) in Ω,

v∗ = −λ(ν∂ny
∗ − p∗n + sΓ) on Γ, 〈σ∗, 1〉Ω = 0.

We can also obtain this adjoint problem with respect to (3.54) and (3.55) with
α = β = 0.

3.4. Pointwise velocity, stress, and pressure tracking. In this
final section, we deal with cost functionals taking into account point evaluations of
the velocity and the pressure. In the case of the pointwise tracking of the velocity,
the result is analogous in the one provided in [8] for linear elliptic problems and in
[6, 7] for the linear Stokes equation.

Consider the functional J : V2,2(Ω)→ R with pointwise velocity observations

J(y) :=
1

2

∑
ξ∈D

αξ|y(ξ)− yξ|2 (3.56)

where D is a nonempty finite subset of Ω and for each ξ ∈ D, αξ > 0 and yξ ∈ R2.
Existence of a solution to the optimal control problem (3.31) with the cost functional
(3.56) can be established as follows. Following the notation in Subsection 3.1, one
can obtain yn(ξ) → y∗(ξ) in R2 for every ξ ∈ Ω̄ thanks to the compact embedding
V2,2(Ω) ⊂ C(Ω̄). This yields J(yn)→ J(y∗), and hence, the existence of a solution
to (3.31). The same conclusion holds for the scenario where we have controls in Uad

and W1,2(Ω).
To write the adjoint systems, let us introduce the following notation. For a ∈ R,

φ ∈ C(Ω̄), and η ∈ Ω̄, we define aδη ∈M(Ω̄) := C(Ω̄)′ by

〈aδη, φ〉M(Ω̄),C(Ω̄) := aφ(η).

Similarly, given a ∈ R2, ϕ ∈ C0(Ω), and ξ ∈ Ω, we introduce a ⊗ δξ ∈ M0(Ω) :=
C0(Ω)′ by

〈a⊗ δξ,ϕ〉M0(Ω),C0(Ω) := a ·ϕ(ξ).

We now proceed with the local problems (3.2), (3.18), and (3.24) corresponding
to (3.56). Again, avoiding repetitive arguments, we only give the main ideas as
the procedure is completely the same as that with Subsection 3.1. Then, for the
induced local reduced version Jr of (3.56), the action of the directional derivative
can be written as

J ′r(u)r = 〈f(y),w〉M0(Ω),C0(Ω)
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where

f(y) :=
∑
ξ∈D

αξ(y(ξ)− yξ)⊗ δξ.

The above duality pairing is well-defined due to w ∈ W2,2
0 (Ω) ⊂ C0(Ω) by the

Sobolev embedding theorem. Thus, we obtain the equation (3.12) with A?
y(v, σ) =

(f(y), 0). Therefore, the adjoint system in the case of (3.56) is given by the very
weak solution of −ν∆v∗ + (∇y∗)>v∗ − (y∗ · ∇)v∗ +∇σ∗ =

∑
ξ∈D

αξ(y
∗(ξ)− yξ)⊗ δξ in Ω,

div v∗ = 0 in Ω, v∗ = 0 on Γ, 〈σ∗, 1〉Ω = 0.

Theorem 3.12. Let 1 < r < 2 and consider the localized optimal control problems
(3.9), (3.19), and (3.26) associated with (3.56). If the controls lie in L2(Ω), then we
have

(y∗, p∗,u∗,v∗, σ∗) ∈ V3,r(Ω)× Ŵ 2,r(Ω)×V1,r(Ω)×V1,r(Ω)× L̂r(Ω). (3.57)

If the controls lie in Uad with a,b ∈W1,r(Ω), then (3.57) holds except that we have
u∗ ∈W1,r(Ω). Finally, in the case of controls in W1,2(Ω), we obtain

(y∗, p∗,u∗,v∗, σ∗) ∈ V5,r(Ω)× Ŵ 4,r(Ω)×W3,r(Ω)×V1,r
0 (Ω)× L̂r(Ω). (3.58)

Proof. If 1 < r < 2, then r′ > 2 so that W1,r′

0 (Ω) ⊂ C0(Ω) by the
Sobolev embedding theorem. Hence, M0(Ω) ⊂ W−1,r(Ω) by duality. This
implies that f(y∗) ∈ W−1,r(Ω), and since A?

y∗(v
∗, σ∗) = (f(y∗), 0), we have

(v∗, σ∗) ∈ V1,r(Ω) × L̂r(Ω) by Lemma 2.6. Thus, u∗ ∈ V1,r(Ω) by (3.15) and
(y∗, p∗) ∈ V3,r(Ω) × Ŵ 2,r(Ω) by (2.31). The case where the controls lie in Uad

or W1,2(Ω) can be handled in a similar way, but now invoking (3.21) and (3.28),
respectively. �

Now, we shall take pointwise evaluations on the velocity gradient, the pressure,
and the normal stress, namely,

J(y, p) :=
1

2

∑
ξ∈E

(αξ|∇y(ξ)−Yξ|2 + βξ|p(ξ)− pξ|2 + λξ|T(y, p)(ξ)− Sξ|2)

+
1

2

∑
η∈G

(ζη|∂ny(η)− yη|2 + ρη|T(y, p)(η)n(η)− sη|2) (3.59)

where E and G are nonempty finite subsets of Ω̄ and Γ, respectively, and αξ, βξ, λξ,
ζη, ρη ≥ 0 for every ξ ∈ E and η ∈ G, for which at least one of these parameters
is nonzero. Also, pξ ∈ R, yη, sη ∈ R2, and Yξ,Sξ ∈ R2×2 are given data. Note
that (3.59) allows the case where the points can be different for each of the terms
appearing in the above summations.

Observe that controls in L2(Ω) are not amenable due to the limited regularity
of the velocity gradient and pressure, that is, we only have ∇y ∈ W1,2(Ω)2 and
p ∈ Ŵ 1,2(Ω) a priori. In particular, pointwise evaluations of ∇y and p are not
well-defined. Hence, Uad for suitable a and b, and W1,2(Ω) will be used instead.
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Now, we prove that (3.18) with the tracking functional (3.59) has a solu-
tion. Recall that Uad ⊂ Ls(Ω) whenever a,b ∈ Ls(Ω), where 2 < s < ∞. Let
{(yn, pn,un)}∞n=1 be a minimizing sequence. Then, {un}∞n=1 is bounded in Ls(Ω), and
consequently, {(yn, pn)}∞n=1 is bounded in V2,s(Ω)×Ŵ 1,s(Ω) thanks to (2.9). There-
fore, passing to a subsequence, there exists (y∗, p∗,u∗) ∈ V2,s(Ω) × Ŵ 1,s(Ω) ×Uad

such that (yn, pn) ⇀ (y∗, p∗) in V2,s(Ω) × Ŵ 1,s(Ω) and un ⇀ u∗ in Ls(Ω). Since
2 < s < ∞, we immediately see that the pair (y∗, p∗) is a solution to (1.2) with
control u∗.

By Rellich–Kondrachev theorem, we have the compact embeddings V2,s(Ω) ⊂
W2−ε,s(Ω) and Ŵ 1,s(Ω) ⊂ W 1−ε,s(Ω), where 0 < ε < (s − 2)/s. Hence, after
extraction of another subsequence, ∇yn → ∇y∗ in W1−ε,s(Ω) and pn → p∗ in
W 1−ε,s(Ω). The choice of ε leads to (1− ε)s > 2, and hence, we have the continuous
embeddingsW1−ε,s(Ω) ⊂ C(Ω̄) andW 1−ε,s(Ω) ⊂ C(Ω̄). As a result, for every ξ ∈ Ω̄,
we obtain ∇yn(ξ) → ∇y∗(ξ) in R2×2 and pn(ξ) → p∗(ξ) in R. These also imply
T(yn, pn)(ξ)→ T(y∗, p∗)(ξ) in R2×2.

From above, we also get from the continuity of the trace operators that ∂nyn →
∂ny

∗ and T(yn, pn)n→ T(y∗, p∗)n in W1− 1
s
−ε,s(Γ). Due to (1− 1

s
−ε)s > 1 and the

one-dimensional Sobolev embedding theorem, we have W1− 1
s
−ε,s(Γ) ⊂ C(Γ). Thus,

∂nyn(η)→ ∂ny
∗(η) and T(yn, pn)(η)n(η)→ T(y∗, p∗)(η)n(η) in R2 for every η ∈ Γ.

With the above considerations, we now see that J(yn, pn)→ J(y∗, p∗), and again,
this results into the existence of solutions to (3.18) with (3.59). For the case of
(3.24) with (3.59), we immediately obtain existence of a solution by recognizing the
continuous embedding W1,2(Ω) ⊂ Ls(Ω) for every 2 < s <∞.

In order to write the action of the derivative, we introduce a ⊗ δ′ξ,A ⊗ δ′ξ ∈
M1(Ω̄) := [C0(Ω) ∩C1(Ω̄)]′ for a ∈ R2, A ∈ R2×2, and ξ ∈ Ω̄ as follows:

〈a⊗ δ′ξ,ϕ〉M1(Ω̄),C0(Ω)∩C1(Ω̄) := ∇ϕ(ξ)a,

〈A⊗ δ′ξ,ϕ〉M1(Ω̄),C0(Ω)∩C1(Ω̄) := ∇ϕ(ξ) : A,

for ϕ ∈ C0(Ω) ∩C1(Ω̄).

Theorem 3.13. Let 1 < r < 2 and consider the localized problems (3.19) and (3.26)
associated with (3.59). In the case of controls in Uad with a,b ∈ Ls(Ω) for some
2 < s <∞, then for (3.59) we have

(y∗, p∗,u∗,v∗, σ∗) ∈ V2,s(Ω)× Ŵ 1,s(Ω)× Ls(Ω)× Lr(Ω)× Ŵ 1,r′(Ω)′. (3.60)

If we have controls in W1,2(Ω), then we obtain

(y∗, p∗,u∗,v∗, σ∗) ∈ V4,r(Ω)× Ŵ 3,r(Ω)×W2,r(Ω)× Lr(Ω)× Ŵ 1,r′(Ω)′. (3.61)

Proof. From the notations introduced above, the derivative of the reduced cost Jr

induced by (3.59) is given by (we refer the reader back to Subsection 3.1 for the
complete discussion):

J ′r(u)r =
∑
ξ∈E

αξ(∇y(ξ)−Yξ) : ∇w(ξ) (3.62)

=
∑
ξ∈E

[βξ(p(ξ)− pξ)π(ξ) + λξ(T(y, p)(ξ)− Sξ) : T(w, π)(ξ)]
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+
∑
η∈G

[ζη(∂ny(η)− yη) · ∂nw(η) + ρη(T(y, p)(η)n(η)− sη) ·T(w, π)(η)n(η)

= 〈f(y, p),w〉M1(Ω̄),C0(Ω)∩C1(Ω̄) + 〈Π(g(y, p),h(y, p)), π〉M(Ω̄),C(Ω̄)

+ 〈h(y, p),T(w, π)n〉M(Γ),C(Γ)

where M(Γ) := C(Γ)′ and

f(y, p) :=
∑
ξ∈E

[(αξ + λξν
2)∇y(ξ)− αξYξ − λξνp(ξ)n(ξ) + λξνSξ]⊗ δ′ξ

+
∑
η∈G

ζη(∂ny(η)− yη)⊗ [n(η)⊗ δ′η], (3.63)

g(y, p) :=
∑
ξ∈E

[(βξ + 2λξ)p(ξ)− βξpξ − λξTrSξ]δξ, (3.64)

h(y, p) :=
∑
η∈G

ρη(−ν∂ny(η) + p(η)n(η)− sη)⊗ δη. (3.65)

Let us show that the above duality pairings are well-defined. Note that Uad ⊂
Ls(Ω) whenever a,b ∈ Ls(Ω), and so u∗ ∈ Ls(Ω) and (y∗, p∗) ∈ V2,s(Ω)×Ŵ 1,s(Ω) ⊂
[C0(Ω)∩C1(Ω̄)]×C(Ω̄) since 2 < s <∞. Similarly, (w, π) ∈ [C0(Ω)∩C1(Ω̄)]×C(Ω̄).
Thus, f(y∗, p∗) ∈ M1(Ω̄) ⊂ X−2,r(Ω) and g(y∗, p∗) ∈ M(Ω̄) ⊂ Ŵ 1,r′(Ω)′ whenever
1 < r < 2 due to X2,r′(Ω) ⊂ C0(Ω) ∩ C1(Ω̄) and Ŵ 1,r′(Ω) ⊂ C(Ω̄). Moreover,
h(y∗, p∗) ∈M(Γ) ⊂W− 1

r
,r(Γ) since W

1
r
,r′(Γ) ⊂ C(Γ). Thus, we have

Dy∗(v
∗, σ∗) = (f(y∗, p∗), Π(g(y∗, p∗),h(y∗, p∗)),h(y∗, p∗))

∈ X−2,r(Ω)× Z−1,− 1
r
,r(Ω,Γ).

Therefore, by Corollary 2.13, (v∗, σ∗) ∈ Lr(Ω) × Ŵ 1,r′(Ω)′ and (3.60) has been
shown.

For the case of controls in W1,2(Ω), we have (3.60) for any 2 < s < ∞ because
W1,2(Ω) ⊂ Ls(Ω). Then, the regularity of the triple (y∗, p∗,u∗) in (3.61) follows
directly from (3.28) and by elliptic regularity theory. �

As in the case of the boundary observations discussed in the previous subsection,
it is also possible to formulate the adjoint equation with a homogeneous boundary
condition. Indeed, we expand T(w, π)(η)n(η) = −ν∇w(η) · n(η) + π(η)n(η) in
(3.62) to obtain

J ′r(u)r = 〈f̃(y, p),w〉M1(Ω̄),C0(Ω)∩C1(Ω̄) + 〈Λg̃(y, p), π〉M(Ω̄),C(Ω̄)

where

f̃(y, p) := f(y, p)−
∑
η∈G

νρη[−ν∂ny(η) + p(η)n(η)− sη]⊗ [n(η)⊗ δ′η], (3.66)

g̃(y, p) := g(y, p) +
∑
η∈G

νρη[−ν∂ny(η) · n(η) + p(η)− sη · n(η)]δη, (3.67)
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with f(y, p) and g(y, p) given by (3.63) and (3.64), respectively. In this case, the
optimal adjoint state is the solution to

Dy∗(v
∗, σ∗) = (f̃(y∗, p∗), Λg̃(y∗, p∗),0) ∈ X−2,s(Ω)× Z−1,− 1

s
,s(Ω,Γ).

Let us highlight a simplified version of (3.59). Here, we choose the case where
αξ = βξ = λξ = 0 and ζη = 0 for every ξ ∈ E and η ∈ G. This means that we
have the following cost functional keeping track of the normal stress at points on
the boundary:

J(y, p) =
1

2

∑
η∈G

ρη|T(y, p)(η)n(η)− sη|2. (3.68)

From the proof of Theorem 3.13, we see that the adjoint problem reduces to
−ν∆v∗ + (∇y∗)>v∗ − (y∗ · ∇)v∗ +∇σ∗ = 0 in Ω,

div v∗ = −
∑
η∈G

ρηΣ[(T(y∗, p∗)(η)n(η)− sη)⊗ δη] in Ω,

v∗ =
∑
η∈G

ρη(T(y∗, p∗)(η)n(η)− sη)⊗ δη on Γ, 〈σ∗, 1〉Ω = 0.

On the other hand, using (3.66) and (3.67), one has the following problem with
homogeneous Dirichlet data:

−ν∆v∗ + (∇y∗)>v∗ − (y∗ · ∇)v∗ +∇σ∗

= −
∑
η∈G

νρη[T(y∗, p∗)(η)n(η)− sη]⊗ [n(η)⊗ δ′η] in Ω,

div v∗ = −
∑
η∈G

νρηΛ{[T(y∗, p∗)(η)n(η)− sη] · n(η)δη} in Ω,

v∗ = 0 on Γ, 〈σ∗, 1〉Ω = 0.

We close the subsection with the following theorem wherein the control domain
is disjoint from the observation points.

Theorem 3.14. Let Ωc ⊂ Ω be open, and consider the optimal control problem

min
(y,p,u)∈W2,2(Ω)×W 1,2(Ω)×L2(Ωc)

J(y, p) +
ρ

2
‖u‖2

L2(Ωc) subject to (1.2)

with J given by (3.59), and dist(Ωc, E ∪G∪Γ) > 0. Let (y∗, p,u∗) be a solution such
that y∗ is regular. Then, (v∗|Ωc , σ

∗|Ωc) ∈W2,2(Ωc)×W 1,2(Ωc) and u∗ ∈W2,2(Ωc).

Proof. Take a cut-off function ϕ ∈ C2(Ω̄) such that ϕ = 1 on Ω̄ \ Ω0 where
Ω̄c ⊂ Ω0 ⊂ Ω, ϕ = 0 on Ω0, and E ∪G ⊂ Ω̄\Ω0. Note that the optimal state satisfies
(y∗, p∗) ∈ X2,2(Ω) ∩ Ŵ 1,2(Ω) ⊂ [W1,r

0 (Ω) ∩ L∞(Ω)] × L̂r(Ω) for every 1 < r < ∞.
Setting y∗ϕ = ϕy∗ and p∗ϕ = Λ(ϕp∗), we see from the state equation that −ν∆y∗ϕ +∇p∗ϕ = r∗ϕ in Ω,

− div y∗ϕ = q∗ϕ in Ω, y∗ϕ = 0 on Γ,

∫
Ω

p∗ϕ dx = 0,

where r∗ϕ := −2ν(∇ϕ · ∇)y∗ − (ν∆ϕ)y∗ − ϕ(y∗ · ∇)y∗ + p∗∇ϕ ∈ Lr(Ω) and q∗ϕ :=

−y∗ · ∇ϕ ∈ Ŵ 1,r(Ω). By (2.31), we have (y∗ϕ, p
∗
ϕ) ∈ X2,r(Ω)× Ŵ 1,r(Ω). As a result,
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(y∗, p∗) ∈ W2,r(Ω̄ \ Ω0) ×W 1,r(Ω̄ \ Ω0) ⊂ [C0(Ω̄ \ Ω0) ∩ C1(Ω̄ \ Ω0)] × C(Ω̄ \ Ω0)
when r > 2 since φ = 1 on Ω̄ \ Ω0. This implies that the cost functional (3.59) is
well-defined, and existence of a solution to the above optimal control problem can
be established as above.

As in the previous theorem, (v∗, σ∗) ∈ Ls(Ω)× Ŵ 1,s′(Ω)′ for all 1 < s < 2. Define
ς∗ := σ∗ + 1

|Ω| ∈ W
1,s′(Ω)′, that is,

〈ς∗, q〉W 1,s′ (Ω)′,W 1,s(Ω) := 〈σ∗, Λq〉Ŵ 1,s′ (Ω)′,Ŵ 1,s(Ω) +
1

|Ω|

∫
Ω

q dx ∀q ∈ W 1,s(Ω).

It is easy to see that ∇ς∗ = ∇σ∗ in the sense of distributions. Letting ψ := 1 − ϕ,
v∗ψ := ψv∗, ς∗ψ := Λ(ψς∗), we get the adjoint equation[

−ν∆v∗ψ + (∇y∗)>v∗ψ − (y∗ · ∇)v∗ψ +∇ς∗ψ = f∗ψ in Ω,

− div v∗ψ = g∗ in Ω, v∗ψ = 0 on Γ.
(3.69)

where f∗ψ := −2ν(∇ψ · ∇)v∗ − (ν∆ψ +∇ψ · y∗)v∗ + ς∗∇ψ ∈W−1,s(Ω) and g∗ψ :=

−v∗ · ∇ψ ∈ L̂s(Ω). Hence, one has (v∗ψ, ς
∗
ψ) ∈W1,s

0 (Ω) × L̂s(Ω), and so (v∗, σ∗) ∈
W2,s(Ω0)× Ŵ 1,s(Ω0) ⊂W1,2(Ω0)× L̂2(Ω0) since ψ = 1 in Ω0.

Now, define φ ∈ C2(Ω) such that φ = 1 on Ω̄c and φ = 0 in Ω̄ \ Ω̄0. Set-
ting v∗φ := φv∗, ς∗φ := Λ(φς∗), we deduce (3.69) with ψ replaced by φ. Then,
f∗φ ∈ L2(Ω) and g∗φ ∈ Ŵ 1,2(Ω). This yields (v∗φ, ς

∗
φ) ∈W2,2(Ω)× Ŵ 1,2(Ω). Therefore,

(v∗|Ωc , σ
∗|Ωc) ∈ W2,2(Ωc) × W 1,2(Ωc) since φ = 1 on Ωc, and as a consequence,

u∗ = −ρ−1v∗|Ωc ∈W2,2(Ωc). �
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