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Abstract.
Distributed optimal control problems for a binary mixture of non-isothermal,
incompressible, and non-Newtonian fluids under the framework of diffusive
Johnson–Segalman models will be discussed. The flow is governed by a coupling
of the two-dimensional Cahn–Hilliard equation for the order-parameter and
chemical potential, the biharmonic heat equation with Voigt-type damping
for the temperature, the incompressible Navier–Stokes equation for the mean
velocity, and a Jeffreys-type differential constitutive equation for the viscoelastic
stress tensor. The total Cauchy stress tensor for the model is given by the sum
of the viscous stress, the contribution due to surface tension, and a quadratic
function of the viscoelastic stress. The latter is based on a recent non-standard
constitutive law for the Helmholtz free energy. The coefficients pertaining to
diffusion processes depend on the concentration and temperature. We provide
regularity results for the optimal control with various objective cost functionals.
Such results rely on careful analysis of the corresponding linearized and adjoint
problems. In particular, we study the strong, weak, and very weak solutions
of the linearized and adjoint systems, and present the function spaces for the
distributional time-derivatives.
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1. Introduction
This manuscript aims to provide an extensive analysis of optimal control problems
for non-isothermal, incompressible, and viscoelastic multiphase flows. A typical
example of such complex fluid flows is a binary fluid mixture consisting of a sol-
vent and a diluted polymeric matter. The state variables of the model consist of
the order-parameter for the volumetric fraction between the two concentrations,
chemical potential, temperature, average velocity, pressure, and a viscoelastic stress
tensor. We consider the case where the mobility, thermal conductivity, viscosity, and
viscoelastic diffusion coefficients depend on the order-parameter and temperature.
These assumptions are physically relevant since it has been observed that most
viscoelastic rate-type fluids strongly depend on thermal effects (see, for instance,
[53]).
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The evolution of the concentration and velocity will be described using the Cahn–
Hilliard equation with a regular potential and the Navier–Stokes equation. For
the viscoelastic stress tensor, we will adapt a Jeffreys-type differential constitutive
equation [54]. The complete model belongs to a class of non-isothermal Johnson–
Segalman and PENE-Phan-Thien-Tanner/Peterlin-type models with an additional
diffusion term in the dynamic equation for the viscoelastic stress tensor [44]. As
the material derivative of the viscoelastic stress tensor is not objective, it must be
rectified in terms of a commutator and an anti-commutator with the strain rate and
vorticity tensors, respectively. The system allows for source terms, and in particular,
mass conservation may not hold.

Regarding the temperature, we will use the convection-diffusion equation with
biharmonic and Voigt-type regularizations. These provide a smoothing effect on
the heat equation that is suitable for addressing the difficulty arising from the de-
pendence of the diffusion coefficients on the temperature. Moreover, this approach
will enable us to study the differentiability of the control-to-state operator. Further
discussion on this matter will be provided below.

1.1. Model Formulation. We will now present the partial differential equa-
tions governing the binary fluid flow we are interested in. While we will not attempt
to provide complete details of the derivation of the system, we will include relevant
works from the current literature as references. The time interval will be denoted by
I := (0, T ), where T > 0 is a fixed finite-time horizon. Let Ω ⊂ R2 be a bounded and
connected domain with a sufficiently smooth boundary Γ , and let n denote the unit
vector that is outward normal to Γ . We set ΩT := I×Ω for the time-space cylinder
and ΓT := I × Γ for its lateral boundary. We denote the order-parameter, chemi-
cal potential, relative temperature around some fixed value, velocity, pressure, and
viscoelastic stress tensor by φ : ΩT → R, µ : ΩT → R, θ : ΩT → R, v : ΩT → R2,
p̃ : ΩT → R, and S : ΩT → R2×2

s (the space of 2 × 2 symmetric matrices with real
entries), respectively.

The evolution of the order-parameter φ can be obtained through the mass balance
law:

Dtφ+∇ · jm = fo in ΩT , (1.1)

where jm is the mass flux and fo is a concentration source or sink term. Here,
Dt := ∂t + v · ∇ denotes the material derivative. Using the Fickean law, the mass
flux can be expressed as

jm := −m(φ, θ)∇µ, (1.2)

where m > 0 is the diffusive mobility that depends on the order-parameter and
temperature.

In the Cahn–Hilliard formulation [13, 14], the chemical potential is a differential
with respect to the concentration of the following Ginzburg–Landau free energy
functional:

G(φ) =

∫
Ω

(α
2
|∇φ|2 + F (φ)

)
dx.
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The constant α > 0 is related to the interfacial thickness, that is, the region where
the two fluids mix. Also, the function F is commonly referred to as the Cahn–
Hilliard potential. Here, we consider polynomial-like potentials (see Section 2.3).
Thus, the chemical potential µ and the order-parameter φ are related via the semi-
linear elliptic equation

µ = ∂φG(φ) = −α∆φ+ F ′(φ) in ΩT . (1.3)

As we are in a temperature-dependent setting, a more realistic potential would
be of the form F (φ, θ), with singular and logarithmic terms dependent on both
the order-parameter and temperature. However, singular potentials require more
technical methods which are beyond the scope of the current manuscript. The
techniques presented here can be extended to the case with bounded, temperature-
dependent coefficients thanks to the Voigt and biharmonic regularizations that we
impose for the heat equation. To simplify the presentation, we will focus on the
case where the potential depends solely on φ (see also [11, 12] where the same
simplification for the Ginzburg–Landau free energy was utilized). Nevertheless, the
evolution of φ is influenced by θ through the diffusive mobility parameter m.

Concerning heat flux, we consider a higher-gradient extension of the classical
Fourier law for heat conduction and a spatial relaxation or a Voigt-type damping as
in [17]:

Dtθ − τ∆∂tθ +∇ · jh = a0g · v + S : Dv + fh in ΩT , (1.4)

where τ > 0 is a constant, g ∈ R2 is a (constant) gravitational force, and a0 ∈ R is
a constant expressing adiabatic heat effects obtained by linearization at some fixed
temperature [46].

The terms on the right-hand side of (1.4) can be considered as either heat sources
or sinks. The function fh is an external heat source, and S : Dv is the contribution
due to elastic components, where Dv := 1

2
(∇v+(∇v)t) is the symmetric part of the

velocity gradient, with t denoting transposition, called the strain rate or deformation
tensor. Here, we assume that the traction on the boundary is only due to the normal
component of the linear part of the viscoelastic stress tensor, see for instance [26]
and [67]. This assumption neglects the viscous part and the capillary effects due
to surface tension in the Cauchy stress tensor. This simplification enables us to
apply a Hilbert space framework for the biharmonic-like heat equation and obtain
the corresponding total energy identity, which holds globally in time (see Remark
3.2). If we were to take into account the complete stress tensor, then we would need
to deal with local-in-time solutions.

For the heat flux, we take into account the effects of the gradient of the tempera-
ture curvature profile that diminishes the heat gradient evacuation. More precisely,
we assume that the heat flux is given by

jh = b∇∆θ − χ(φ, θ)∇θ, (1.5)

where b > 0 is the spatial retardation coefficient and χ is the thermal conductivity.
In addition, we assume that the effects of the order-parameter on the first term are
small so that we can take b to be a constant parameter. This formulation of the
heat flux leads to an additional fourth-order term in the heat equation. For further
details, in particular the justification via asymptotic analysis, we refer to [17]. Hence,
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the governing equation for the temperature can be viewed as a convection-diffusion-
biharmonic equation.

As the mobility, thermal conductivity, viscosity, and viscoelastic stress diffusion
parameters depend not only on the order-parameter but also on the temperature,
the biharmonic term leads to better smoothness of the temperature, and this extra
regularity plays a crucial role in the analysis of the optimal control problems. In
this way, the temperature enjoys the same regularity as the order-parameter at the
level of basic energy estimates.

If the parameters pertaining to diffusion are independent on θ, then the methods
presented here are applicable even if b = τ = 0; however, the regularity of θ would be
of the same type as those with v and S. The Voigt damping was also incorporated
as a regularization for the optimal control of the three-dimensional Navier–Stokes
equation in [4, 5]. Recently, Voigt-type regularizations for the pressure has been
considered in [61]. For optimal control problems of viscoelastic semi-compressible
flows but without the Voigt and bi-Laplace regularizations, we refer to [62].

For the momentum equation, we consider the following extension of the Navier–
Stokes equation:

Dtv −∇ · Ts = ρ(θ, φ)g + fv + u, ∇ · v = 0 in ΩT . (1.6)

Here, fv and u are the external body forces and control, respectively, and ρ as the
equation of state. Avoiding technical difficulties, we will assume that the equation
of state ρ is linear, see hypothesis (A2)s in Section 2.3. We followed the simpli-
fication discussed in [45, Section 54], where density variations are incorporated as
body-forces for the momentum equation and are induced by temperature and con-
centration differences, but not by pressure.

The total Cauchy stress tensor consists of three parts

Ts := V(φ, θ,v, p̃) + K(φ) + M(θ, S). (1.7)

These parts correspond to the viscous stress, the stress due to surface tension, and
the contribution of viscoelastic stress, where

V(φ, θ,v, p̃) := 2ν(φ, θ)Dv − p̃I (1.8)

K(φ) := κα

(
1

2
|∇φ|2I−∇φ⊗∇φ

)
(1.9)

M(θ, S) := σ0a(S2 − S) + σθS + aTr(S)S, (1.10)

with ν the kinematic viscosity, κ the capillary coefficient, I the identity tensor, a
the rheological parameter, and Tr the trace operator. The stress tensor ∇φ ⊗ ∇φ
represents the capillary forces due to surface tension on the interface between the
fluid phases [49]. Also, σ0 and σ are constants related to the nature of viscoelasticity,
namely, the specific heat of phase transition and shear modulus related to relaxation
mechanisms, respectively [60].

The quadratic term in M was obtained by applying a thermodynamic approach
and resorting to a modified energy storage mechanism. With the free energy
Ψ(θ, S) := σ0a(1

2
S2 − S) + σθS + 1

2
aTr(S2)I, we can write M(θ, S) = S∂SΨ(θ, S).

As source terms for the Navier–Stokes equation, ∇ · (σ0a(S2 − S)) and ∇ · (σθS)
appeared in [7] and [8], respectively. Likewise, for a = 1, the term ∇ · (Tr(S)S)
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appears in Peterlin-type models, see [11, 12] and the references therein. In the
derivation of a priori estimates, it is crucial that the sign of the coefficient involving
the last term is the same as the rheological constant. For a complete and more
precise discussion in the case where σ = 0, we refer the reader to [8] in the
isothermal case and to [7, 50] in the non-isothermal setting. The term σθS was
added to compensate the term S : Dv in the heat equation. Such a bilinear term
can be realized as the effect of the change in the temperature to the viscoelastic
stress.

Finally, for the evolution of the viscoelastic stress, we consider a FENE-PTT-type
(finite-extensible-nonlinear-elastic-Phan-Thien-Tanner) model as follows (we refer
the reader to [18, 39, 28, 55, 59] and the bibliographies therein for other relevant
references):

Dt,aS−∇ · Td = λDv − `S + βTr(S)(I− Tr(S)S) + Fs in ΩT , (1.11)

with λ ∼ 1/We, ` ∼ 2(1− r)/(WeRe), and β ∼ 1/De, where ∼ means direct propor-
tionality, De, Re, and We correspond to the Deborah, Reynolds, and Weissenberg
numbers, and r is the ratio between the relaxation and retardation times. The op-
erator Dt,a := Dt+[·,Wv]−a{·,Dv} is the objective time derivative. The operators
[·, ·] and {·, ·} act as the commutator and anti-commutator of two tensors S1 and
S2, and are respectively defined as follows:

[S1,S2] := S1S2 − S2S1, {S1,S2} := S1S2 + S2S1.

Also, Wv := 1
2
(∇v−(∇v)t) denotes the anti-symmetric part of the velocity gradient,

called the vorticity tensor. Thus, the full expression of the invariant-time derivative
operator is

Dt,aS := ∂tS + (v · ∇)S + SWv −WvS− a(SDv + DvS).

For a ∈ [−1, 1], Dt,a is called a Gordon–Schowalter derivative [38]. Particular cases
are the corotational Jaumann–Zaremba derivative if a = 0 [43, 71] and the upper-
convected Oldroyd derivative if a = 1 [54].

The tensor-valued function Fs in (1.11) can be thought of as an external source
term [34]. We shall take Td := ε(φ, θ)∇S, giving us an additional diffusion term in
the evolution governed by the viscoelastic stress tensor. The inclusion of a diffusion
term was utilized for instance in [8, 19, 25, 28, 60, 70] for Oldroyd-B-type models
and in [6, 11, 12] for Peterlin–Navier–Stokes systems. In the absence of the diffusion
term, the evolution of the viscoelastic stress will be hyperbolic, see [48, 51] for non-
isothermal single-phase viscoelastic fluids, and consequently, the regularizing effect
of diffusion is not available and different tools are needed in the analysis of such
systems. Note that if the initial viscoelastic stress tensor S(0) is symmetric and Fs

is symmetric-valued in I, then it follows from (1.11) that S(t) is symmetric for every
t ∈ I. Thus, we obtain that Tt

s = Ts, that is, the total stress tensor is symmetric
[35].

Based on the following equation

κµ∇φ = κ∇ ·
(α

2
|∇φ|2I + F (φ)I

)
− κα∇ · (∇φ⊗∇φ)

= ∇ ·K(φ) + κ∇F (φ), (1.12)
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we introduce a new pressure p := p̃ + κ∇F (φ). Furthermore, we introduce the
following abbreviations:

J(v,S) := [S,Wv]− a{S,Dv} (1.13)
P(S) := − `S + βTr(S)(I− Tr(S)S). (1.14)

The equations (1.1)–(1.14) lead us to the following coupled non-isothermal Cahn–
Hilliard–Navier–Stokes and generalized diffusive Johnson–Segalman-type systems:

∂tφ+ v · ∇φ−∇ · (m(φ, θ)∇µ) = fo in ΩT ,

µ = −α∆φ+ F ′(φ) in ΩT ,

∂t(θ − τ∆θ) + v · ∇θ −∇ · (χ(φ, θ)∇θ) + b∆2θ

= a0g · v + S : Dv + fh in ΩT ,

∂tv + (v · ∇)v −∇ · (2ν(φ, θ)Dv) +∇p

= ∇ ·M(θ, S) + κµ∇φ+ ρ(φ, θ)g + fv + u in ΩT ,

∂tS + (v · ∇)S + J(v,S)−∇ · (ε(φ, θ)∇S) = λDv + P(S) + Fs in ΩT ,

∇ · v = 0 in ΩT ,

∂nφ = ∂nµ = 0, ∂nθ = ∂n∆θ = 0, v = 0, ∂nS = O on ΓT ,
φ(0) = φ0, θ(0) = θ0, v(0) = v0, S(0) = S0 in Ω.

(1.15)

Here, ∂n = n · ∇ is the directional derivative normal to the boundary and O is
the zero element in R2×2

s . We mention that the lack of a Lyapunov structure and
the presence of source terms in the energy identity provided in Remark 3.2 indicate
some difficulties in the analysis of (1.15).

For the boundary conditions, we assume no-concentration flux, zero concentration-
diffusion flux, zero heat-flux, zero diffusion-flux for the temperature, no-slip condi-
tion for the velocity, and a homogeneous Neumann condition for the viscoelastic
stress. The latter is considered here for the sake of simplicity. Take note that
for sufficiently smooth solutions, the boundary conditions ∂nφ = ∂nµ = 0 on ΓT
are equivalent to ∂nφ = ∂n∆φ = 0 on ΓT . Indeed, this follows from the equation
∂nµ = −α∂n∆φ + F ′′(φ)∂nφ obtained from the second equation in (1.15). For the
initial data, φ0, θ0 : Ω → R, v0 : Ω → R2, and S0 : Ω → R2×2

s denote the initial
order-parameter, temperature, velocity, and viscoelastic stress tensor, respectively.

If we set S = O and the temperature to constant, then we obtain the classical
Cahn–Hilliard–Navier–Stokes system [16, 40, 49], also known as Model H in dynamic
critical phenomena [42]. If −1 ≤ a ≤ 1, then one has diffusive variants of the
Johnson–Segalman models. In particular, for a = 1 and without the quadratic term
S2, we obtain a diffusive version of the classical Oldroyd-B and Peterlin models.
It was observed in [60] that the case a = 1 has good physical properties for the
viscoelastic tensor under a thermodynamical framework. Nonetheless, we point out
that the analysis presented in this work holds for any a ∈ R due to the quadratic
dependence of M on S. Also, the results of this paper can be easily adjusted to the
aforementioned simpler models.
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1.2. Statement of the Optimal Control Problem. We are interested
in non-convex optimal control problems of the form

min
u∈L2(I;L2(Ω))

Jo(φ) + Jc(µ) + Jh(θ) + Jv(v) + Js(S)

+
λq
2

∫
ΩT

|u|2 dx dt subject to (1.15), (1.16)

where λq > 0 is a Tikhonov regularization parameter. The precise definitions of
each component of the tracking part and specific examples will be formulated in
Section 6. The control u can be realized as the result of applying a mechanical
stirring device on the binary viscous fluid.

Throughout this paper, the roman subscripts o, c, h, v, and s signify that the
cost or source functions pertain to the order-parameter, chemical potential, heat,
velocity, and viscoelastic stress, respectively. Though the control appears only in
the equation governing the velocity, it is possible to include controls in the order-
parameter and temperature through modification of the fluid composition or appli-
cation of heat or cooling treatment as well (see Remark 6.2). Such control problems
are also interesting, for instance, in the context of glass ceramic production (see the
introduction of [58] on this matter).

There are several works dealing with optimal control problems for multiphase
flows and phase-field type equations, see for example [20, 22, 23, 24, 30, 31, 32, 36].
Some of these include dynamic boundary conditions and singular potentials as well.
For recent works on Cahn–Hilliard systems with source terms, we refer the reader
to [21, 29, 47, 52] and the references therein. These are only selected lists and
we refer to the references provided in these papers for additional related works.
Order-parameter-dependent mobility for the Cahn–Hilliard–Navier–Stokes system
was considered in [31], for which strong solutions were utilized in the analysis. For
the Boussinesq system with temperature-dependent viscosity, we refer to [9]. The
results of the latter paper were local-in-time and based on strong solutions as well.
The biharmonic and Voigt regularizations in (1.15) of the heat equation allow us to
pass from local to global results.

The theoretical frameworks used in [41, 69] for the Navier–Stokes equation and in
[56] for the Cahn–Hilliard–Oberbeck–Boussinesq system will be employed here. In
particular, we shall use the standard spectral Faedo–Galerkin method for the well-
posedness of the nonlinear and linearized systems and the method of transposition
for the analysis of the adjoint system. As we are dealing with the dynamics of
complex binary fluids, where the governing partial differential equations are strongly
coupled, it is expected that the computations here are more involved. In light of
the state dependence of the coefficient functions related to diffusion, the associated
evolution equations in the dual problem for the order-parameter and temperature
involve gradient terms with coefficients that are gradients of the state variables.
Such terms already appeared in the papers [9, 31] since these works considered
state-dependent viscosities. The appropriate choice of various Sobolev inequalities
plays a crucial step in the estimation of such bilinear terms.

To study the differentiability of the nonlinear operator that maps the controls
to the solutions of the state system, we need strong solutions to (1.15) as in [1,
9, 31]. On one hand, this framework ensures that solutions to the state equation
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are unique, and on the other hand, the regularity of solutions allows a very weak
formulation of the linearized system. Unlike [9, 31], we follow the ideas in [15]
by using the results for the linearized system and the implicit function theorem
in showing the differentiability of the control-to-state operator. The machinery
provided here on the linearized and adjoint systems is more elaborate and, after
appropriate adjustments, may be adapted to other optimal control problems of in-
stationary semi-linear parabolic PDEs. We shall also exploit the results for the
linearized system to prove existence of strong solutions for the nonlinear system
(1.15) with improved time-regularity under minimal assumptions on the source terms
and initial data (see Theorem A.4). We will utilize these results in Section 6 to
improve the regularity of the optimal control through a bootstrapping argument.

Strong solutions for the state system may also yield strong solutions to the lin-
earized system, and by a duality principle, the adjoint variables will have less regu-
larity. Such situations arise when the objective functional involves high derivatives
for the concentration (e.g. control of diffusion), a cost that involves the chemical
potential at the terminal time, time-derivatives of the states, or limited regularity
of the desired states. These may result in less regularity for the time-derivative of
the component dual to the order-parameter and chemical potential. Although not
considered here as it falls outside the scope of the current manuscript, it is also
interesting to study objective functionals that involve the material derivatives.

Let us emphasize the limitations of this study. While the nonlinear system (1.15)
may look somewhat complicated, it remains a “toy-model” for the optimal control of
non-isothermal viscoelastic multi-phase flows. Logarithmic and singular potentials
for the Cahn–Hilliard system were avoided in favor of polynomial-like potentials for
more tractable analysis. However, it is important to note that that singular poten-
tials were already been explored for Cahn–Hilliard–Navier–Stokes systems in [30, 31].
The heat equation was modified by including higher-order gradients. This modifi-
cation aims to obtain global-in-time solutions; however, such solutions may not be
physically realistic due to temperature discontinuities. We also deliberately chose a
two-dimensional setting as three-dimensional (3D) problems are significantly more
challenging. Due to the quadratic term for the viscoelastic stress in the Helmholtz
free energy, the existence of weak solutions for the 3D case might be achievable us-
ing techniques from [8]. However, the complete verification is left for the interested
reader. Lastly, questions regarding the existence of less regular solutions to (1.15),
similar to those for the linearized system, are also compelling. In this direction, we
refer the reader to [15, 57] where semigroup theory, interpolation methods, and max-
imal parabolic regularity were employed. Whether such approaches can be directly
applied to (1.15) is an open problem to the best knowledge of the author.

Let us briefly lay down the plan for this paper. The notation for the function
spaces and frequently used estimates are presented in Section 2. The well-posedness
of the non-linear system (1.15) and the second-order differentiability of the control-
to-state operator are the focus of Sections 3 and 4, respectively. The time-regularity
of the solutions to the dual system obtained via transposition method will be dis-
cussed in Section 5. Applications to optimal control problems will be considered in
Section 6. Finally, the complete details on the existence and uniqueness results for
various solution concepts of the linearized system will be provided in Appendix A.
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Further details on the goals and methods will be stated at the beginning of each
sections.

2. Preliminaries and Notations

2.1. Inner Products and Differential Operators. Scalar, vector,
and tensor quantities will be written in lowercase (a), boldface (a), and blackboard
bold (A) fonts, respectively. We shall write vectors in a column format. Components
of vectors and tensors will be in lowercase so that

v =

[
v1

v2

]
, S =

[
s11 s12

s21 s22

]
.

We denote by v ·w := v1w1 + v2w2, S : T := s1 · t1 + s2 · t2, and S ∴ T := S1 :
T1+S2 : T2 the (Frobenius) inner products of vectors v = [v1 v2]t,w = [w1 w2]t ∈ R2,
tensors S = [s1 s2],T = [t1 t2] ∈ R2×2, and block-tensorsS = [S1 S2]t,T = [T1 T2]t ∈
R4×2. Note that S : T = Tr(StT) = Tr(TtS) and

S : T = Tt : St = St : Tt = T : S. (2.1)

For the convenience of the reader, let us briefly recall the basic differential oper-
ators used in this paper. Consider smooth enough scalar-valued, vector-valued, and
tensor-valued functions φ : Ω → R, v : Ω → R2, and S : Ω → R2×2, respectively.
Then, the gradient fields ∇φ : Ω → R2, ∇v : Ω → R2×2, and ∇S : Ω → R4×2 are
given by

∇φ :=

[
∂1φ
∂2φ

]
, ∇v :=

[
∂1v1 ∂1v2

∂2v1 ∂2v2

]
,

∇S :=

[
∂1S
∂2S

]
, ∂kS :=

[
∂ks11 ∂ks12

∂ks21 ∂ks22

]
, k = 1, 2.

Given a vector field w : Ω → R2, the actions of the convective derivative operator
w · ∇ := w1∂1 + w2∂2 to a differentiable scalar, vector, and tensor valued functions
are component-wise:

w · ∇φ := w1∂1φ+ w2∂2φ, (w · ∇)v :=

[
w · ∇v1

w · ∇v2

]
,

(w · ∇)S :=

[
w · ∇s11 w · ∇s12

w · ∇s21 w · ∇s22

]
.

In particular, we have (w ·∇)v = (∇v)tw. The divergence operators are defined by

∇ · v = ∂1v1 + ∂2v2, ∇ · S =

[
∇ · s1

∇ · s2

]
, ∇ ·S := ∂1S1 + ∂2S2,

where v = [v1 v2]t : Ω → R2 with v1, v2 : Ω → R, S = [s1 s2] : Ω → R2×2 with
s1, s2 : Ω → R2, and S = [S1 S2]t : Ω → R4×2 with S1,S2 : Ω → R2×2. Finally, the
Laplace operator given by ∆ := ∇ · ∇ = ∂2

1 + ∂2
2 acts component-wise.
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2.2. Function Spaces. The standard notation for the Lebesgue spaces and
Sobolev spaces will be followed, namely, Lp(Ω) and W s,p(Ω) for s ≥ 0 and 1 ≤
p ≤ ∞. The subspace of W s,p(Ω) whose elements vanish on Γ in the sense of
traces will be denoted by W s,p

0 (Ω), see [2] for details. Let 〈φ〉 := 1
|Ω|

∫
Ω
φ dx be

the average of φ over Ω and set Lp(Ω)/R := {φ ∈ Lp(Ω) : 〈φ〉 = 0}. Likewise,
we set W s,p(Ω)/R := W s,p(Ω) ∩ (Lp(Ω)/R) for s > 0. The dual spaces will be
denoted by a negative superscript, for instance, W−s,p(Ω) := W s,p/(p−1)(Ω)∗ and
W−s,p

0 (Ω) := W
s,p/(p−1)
0 (Ω)∗ for 1 < p < ∞. Such notation will be adapted to the

function spaces discussed below.
With regard to function spaces with vanishing normal derivatives, we consider

W 2,2
n (Ω) := {φ ∈ W 2,2(Ω) : ∂nφ = 0 on Γ}, W 3,2

n (Ω) := {φ ∈ W 3,2(Ω) : ∂nφ =
0 on Γ}, and W 4,2

n (Ω) := {φ ∈ W 4,2(Ω) : ∂nφ = ∂n∆φ = 0 on Γ}. These are the
function spaces pertaining to the order-parameter and temperature. Recall that the
above are Hilbert spaces when equipped with the inner products induced by the
following respective norms:

‖φ‖W 2,2
n

:= (‖φ‖2
L2 + ‖∆φ‖2

L2)
1
2 ,

‖φ‖W 3,2
n

:= (‖φ‖2
L2 + ‖∇∆φ‖2

L2)
1
2 ,

‖φ‖W 4,2
n

:= (‖φ‖2
L2 + ‖∆2φ‖2

L2)
1
2 .

Let Lp(Ω) := Lp(Ω)2, W s,p(Ω) := W s,p(Ω)2, and W s,p
0 (Ω) := W s,p

0 (Ω)2. Con-
cerning velocity, we take the classical spaces of solenoidal or divergence-free vector
fields L2

σ(Ω) := {u ∈ L2(Ω) : ∇ · u = 0 in Ω, u · n = 0 on Γ}, W 1,2
0,σ(Ω) :=

W 1,2
0 (Ω) ∩ L2

σ(Ω), and W 2,2
0,σ(Ω) := W 2,2(Ω) ∩W 1,2

0,σ(Ω). These are Hilbert spaces
with the following norms:

‖u‖L2
σ

:= ‖u‖L2 , ‖u‖W 1,2
0,σ

:= ‖∇u‖(L2)2 , ‖u‖W 2,2
0,σ

:= ‖∆u‖L2 .

For tensor-valued Lebesgue spaces, we let Lps (Ω), W1,p
s (Ω), and W2,2

n,s(Ω) be the
subspaces consisting of all symmetric elements of Lp(Ω) := Lp(Ω)2, W1,p(Ω) :=
W 1,p(Ω)2, and W2,2

n (Ω) := W 2,2
n (Ω)2, respectively. These will be the function

spaces for the viscoelastic stress tensor.
In the derivation of a priori estimates, the following list of standard inequalities

will be utilized throughout the manuscript:

‖ϕ− 〈ϕ〉‖L2 ≤ c‖∇ϕ‖L2 ∀ϕ ∈ W 1,2(Ω), (2.2)

‖∇ϕ‖W 1,2 ≤ c‖∆ϕ‖L2 ∀ϕ ∈ W 2,2
n (Ω), (2.3)

‖ϕ‖W 2,2 ≤ c(‖ϕ‖L2 + ‖∆ϕ‖L2) ∀ϕ ∈ W 2,2
n (Ω), (2.4)

‖∆ϕ‖W 1,2 ≤ c‖∇∆ϕ‖L2 ∀ϕ ∈ W 3,2
n (Ω), (2.5)

‖∆ϕ‖W 2,2 ≤ c‖∆2ϕ‖L2 ∀ϕ ∈ W 4,2
n (Ω), (2.6)

‖y‖L2
σ
≤ c‖y‖W 1,2

0,σ
∀y ∈W 1,2

0,σ(Ω), (2.7)

‖y‖W 1,2
0,σ
≤ c‖y‖W 2,2

0,σ
∀y ∈W 2,2

0,σ(Ω). (2.8)

Here, c > 0 is a constant depending only on the domain Ω.
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The first inequality (2.2) is the well-known Poincaré–Wirtinger inequality. In
particular, the norm of W s,2

n (Ω) for s = 2, 3, 4 is equivalent to that of W s,2(Ω)
by (2.3)–(2.6) and the norm of W 2,2

0,σ(Ω) is equivalent to the one of W 2,2(Ω) by
(2.7) and (2.8). In addition to the above estimates, we shall frequently use the
Gagliardo–Nirenberg and Agmon inequalities [3]

‖ϕ‖L4 ≤ c‖ϕ‖1/2

L2 ‖ϕ‖1/2

W 1,2 ∀ϕ ∈ W 1,2(Ω), (2.9)

‖ϕ‖L∞ ≤ c‖ϕ‖1/2

L2 ‖ϕ‖1/2

W 2,2 ∀ϕ ∈ W 2,2(Ω). (2.10)

A general version of the Gagliardo–Nirenberg inequality is the following:

‖ϕ‖Lr ≤ c(‖ϕ‖L2 + ‖ϕ‖2/r

L2 ‖ϕ‖(r−2)/r

W 1,2 ) ∀ϕ ∈ W 1,2(Ω), 2 < r <∞. (2.11)

Finally, Green’s first identity and the Cauchy–Schwarz inequality give us

‖∇ϕ‖L2 ≤ ‖ϕ‖1/2

L2 ‖∆ϕ‖1/2

L2 ∀ϕ ∈ W 2,2
n (Ω), (2.12)

‖∇∆ϕ‖L2 ≤ ‖∆ϕ‖1/2

L2 ‖∆2ϕ‖1/2

L2 ∀ϕ ∈ W 4,2
n (Ω). (2.13)

As we are dealing with non-stationary problems, we need to consider functions
on an interval with values in a Banach space. Here, the Lebesgue–Bochner spaces
Lp(I;X) for 1 ≤ p ≤ ∞ and the space of k-times continuously differentiable func-
tions Ck(Ī;X) taking values in a Banach space X will be utilized. The norms will be
written as ‖ · ‖Lp(X) and ‖ · ‖Ck(X), respectively. Next, we need to consider Banach
space-valued functions with time-derivatives that possibly lie in a larger function
space. In this direction, let Y be another Banach space such that X ↪→ Y , where
the arrow represents a continuous embedding. This means that there is a constant
c > 0 such that ‖x‖Y ≤ c‖x‖X for every x ∈ X. Let

W 1,q,p(I;X, Y ) := {w ∈ Lq(I;X) : ∂tw ∈ Lp(I;Y )},

endowed with the graph norm ‖w‖W 1,q,p(X,Y ) := ‖w‖Lq(X) + ‖∂tw‖Lp(Y ). The time-
derivative is taken in the sense of vector-valued distributions.

For simplicity, we denote W 1,q,p(I;X) := W 1,q,p(I;X,X) and W 1,p(I;X) :=
W 1,p,p(I;X). Also, we will set W 1,q,p

0 (I;X, Y ) := {u ∈ W 1,q,p(I;X, Y ) : u(0) =
0}, considered as a subspace of W 1,q,p(I;X, Y ), W 1,q,p

0 (I;X) := W 1,q,p
0 (I;X,X),

W 1,p
0 (I;X) := W 1,p,p

0 (I;X), and W 1,p
0,0 (I;X) := {u ∈ W 1,p

0 (I;X) : u(T ) = 0}. Recall
that time-evaluation of elements inW 1,q,p(I;X, Y ) is well-defined thanks to the con-
tinuous embeddings W 1,q,p(I;X, Y ) ↪→ W 1,min{q,p}(I;Y ) ↪→ C(Ī;Y ) since X ↪→ Y .
We refer the reader to [73, Chapter 23] for the definitions and further details.

The space of linear and bounded operators from a Banach space X into another
Banach space Y will be written by L(X, Y ) and Liso(X, Y ) denote the open subset
consisting of topological isomorphisms.

Now, we prove simple observations on commutators and anti-commutators. These
will be utilized in the succeeding sections, for instance, in the well-posedness of the
state system and the derivation of the adjoint problem to the linearized system.

Lemma 2.1. Let v ∈W 1,r(Ω), S ∈ Lps (Ω), and T ∈ Lqs(Ω), where p, q, r ∈ [1,∞]
and 1

p
+ 1

q
+ 1

r
≤ 1. Then, [S,Wv] : T = ∇v : [S,T] and {S,Dv} : T = ∇v : {S,T}

in L1(Ω).
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Proof. The terms on both sides of each equation lie in L1(Ω) by the Hölder in-
equality. We have S∇v : T = Tr((∇v)tST) = ∇v : ST by symmetry of S. Similarly,
using (2.1), one has S(∇v)t : T = (∇v)t : ST = ∇v : (ST)t = ∇v : TS by symmetry
of S and T once again. Thus, SWv : T = 1

2
(∇v : ST − ∇v : TS) = 1

2
∇v : [S,T].

Since Wv is anti-symmetric, we have WvS : T = St(Wv)t : Tt = −SWv : T.
Therefore, [S,Wv] : T = SWv : T −WvS : T = 2SWv : T = ∇v : [S,T]. The case
of the anti-commutator is analogous and for this reason, we omit the details. �

2.3. Regularity Assumptions for the Potential and Coefficient
Functions. We shall consider the case where the Cahn–Hilliard potential F ap-
pearing in (1.15) is almost polynomial. More precisely, we assume for some s ∈ N
that:

(A1)s F ∈ Cs(R), F ≥ 0, and there exist constants cF > 0 and q ≥ 1 such that
|F ′(ϕ)| ≤ cF (F (ϕ)+1), F ′′(ϕ) ≥ −cF , and |F (s)(ϕ)| ≤ cF (|ϕ|q+1) for every
ϕ ∈ R.

The conditions for the potential listed above have been utilized in [10, 18, 63]
for instance. We emphasize here that the estimate for the derivative permits us to
consider source functions in the Cahn–Hilliard equation that do not necessarily have
zero mean. Hence, the mass of the fluids may not be conserved. The assumption
that F is non-negative can be relaxed to boundedness from below. Take note that
all other conditions hold if we add a constant on F , hence, we can assume without of
loss of generality that F ≥ 0. A typical example of a potential satisfying (A1) after
adding a suitable constant is the Ginzburg–Landau–Wilson double-well potential
F (ϕ) = c1ϕ

4 − c2ϕ
2 with c1, c2 > 0. This is typically used as an approximation

of the more realistic logarithmic potential introduced in [27]. The last criterion in
(A1)s also yields estimates on lower derivatives as stated in the following lemma.

Lemma 2.2. Suppose that (A1)s holds. For each k = 0, 1, . . . , s, there is cF,k > 0
such that

|F (k)(ϕ)| ≤ cF,k(|ϕ|q−k+s + 1) ∀ϕ ∈ R. (2.14)

Proof. Note that (2.14) with k = s is just (A1)s with cF,s = cF . If k = s− 1, then
from the mean-value theorem and the triangle inequality, for each ϕ ∈ R there is
0 ≤ θϕ ≤ 1 such that

|F (s−1)(ϕ)| ≤ |F (s)(θϕϕ)ϕ|+ |F (s−1)(0)|
≤ cF,s(|ϕ|q+1 + |ϕ|) + |F (s−1)(0)|.

If |ϕ| ≤ 1, then |F (s−1)(ϕ)| ≤ cF,s(|ϕ|q+1 + 1) + |F (s−1)(0)|. On the other hand, if
|ϕ| ≥ 1, then |ϕ| ≤ |ϕ|q+1 and so |F (s−1)(ϕ)| ≤ 2cF,s|ϕ|q+1 + |F (s−1)(0)|. Hence, one
can take cF,s−1 = 2cF,s+|F (s−1)(0)|. The proofs for lower values of k are similar. �

The previous lemma paves the way to the following estimates on the derivatives
of the potential in Lebesgue spaces.
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Lemma 2.3. Assume that (A1)s is satisfied. For each 1 ≤ r < ∞, there exists
c = cΩ,r > 0 such that for every k = 0, 1, . . . , s,

‖F (k)(φ)‖Lr ≤ c(‖φ‖q−k+s
W 1,2 + 1) ∀φ ∈ W 1,2(Ω). (2.15)

Furthermore, there is c = cΩ > 0 such that

‖F (k)(φ)‖L∞ ≤ c(‖φ‖q−k+s
W 2,2 + 1) ∀φ ∈ W 2,2(Ω). (2.16)

Proof. In virtue of (2.14), the triangle inequality, and the Sobolev embedding
W 1,2(Ω) ↪→ Lσ(Ω) for 1 ≤ σ <∞, we get

‖F (k)(φ)‖Lr ≤ cF,k(‖|φ|q−k+s‖Lr + |Ω|1/r)
≤ max

0≤k≤4
{cF,k + |Ω|1/r}(‖φ‖q−k+s

Lr(q−k+s)
+ 1)

≤ cΩ,r(‖φ‖q−k+s
W 1,2 + 1).

The proof of (2.16) is the same, but now using the Sobolev embedding
W 2,2(Ω) ↪→ L∞(Ω). �

Let Cs
b (R2) be the space of functions from R2 into R with bounded and continuous

derivatives up to order s. For the order parameter-dependent coefficient functions
and constants appearing in the model (1.15), we shall consider the following regu-
larity and non-degeneracy hypotheses:

(A2)s τ, b, σ0, σ, `, λ, β > 0, a, a0 ∈ R, ρ(φ, θ) := b1 + boφ + bhθ with b1, bo, bh ∈
R, and m,χ, ν, ε ∈ Cs

b (R2) are bounded from below by m0, χ0, ν0, ε0 > 0,
respectively.

We use the notation | · |∞ for the supremum norm. For instance, |m|∞ :=
sup(φ,θ)∈R2 |m(φ, θ)|. The parameters λ, `, and β are assumed to be constant,
nonetheless, the methods presented here can be adapted to the case where they
depend on (φ, θ) provided that we have similar conditions as for the parameters
related to the diffusion processes. The analysis of such generalizations is straight-
forward since λ, `, and β involve lower-order terms only, that is, Dv, S, Tr(S), and
Tr(S)2S.

Given a continuously differentiable function f : R2 → R and (φ, θ) ∈ R2, let
f ′(φ, θ) : R2 → R be the bilinear operator

f ′(φ, θ)(ψ, η) := fφ(φ, θ)ψ + fθ(φ, θ)η ∀(ψ, η) ∈ R2 (2.17)
with the subscripts denoting partial derivatives.

3. Well-Posedness of the State System

Let us denote the function spaces for a strong solution (φ, µ, θ,v, S) and an initial
data (φ0, θ0,v0,S0) in the state system (1.15) as follows:

W2(ΩT ) := W 1,2,2(I;W 4,2
n (Ω), L2(Ω))×W 1,2,2(I;W 2,2

n (Ω),W−2,2
n (Ω))

×W 1,2,2(I;W 4,2
n (Ω),W 2,2

n (Ω))×W 1,2,2(I;W 2,2
0,σ(Ω),L2

σ(Ω))

×W 1,2,2(I;W2,2
n,s(Ω),L2

s (Ω))

D2(Ω) := W 2,2
n (Ω)×W 3,2

n (Ω)×W 1,2
0,σ(Ω)×W1,2

s (Ω).
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The corresponding product norms will be denoted by ‖·‖W2 and ‖·‖D2 . The ambient
space of controls will be written as U := L2(I;L2(Ω)) = L2(ΩT ). Given appropriate
source functions, initial data, and a control, a quintuple (φ, µ, θ,v,S) ∈ W2(ΩT )
with the associated pressure p ∈ L2(I;W 1,2(Ω)/R) is called a strong solution of
(1.15) if the partial differential equations hold almost everywhere (a.e.) in ΩT , the
boundary conditions are satisfied a.e. on ΓT , and the initial conditions are fulfilled
a.e. in Ω.

The function spaces for the solution and initial data are compatible in the sense
that

W 1,2,2(I;W 4,2
n (Ω), L2(Ω)) ↪→ C(Ī;W 2,2

n (Ω)) (3.1)

W 1,2,2(I;W 4,2
n (Ω),W 2,2

n (Ω)) ↪→ C(Ī;W 3,2
n (Ω)) (3.2)

W 1,2,2(I;W 2,2
0,σ(Ω),L2

σ(Ω)) ↪→ C(Ī;W 1,2
0,σ(Ω)) (3.3)

W 1,2,2(I;W2,2
n,s(Ω),L2

s (Ω)) ↪→ C(Ī;W1,2
s (Ω)) (3.4)

due to classical interpolation theory. On the other hand, for the chemical potential,
we have

W 1,2,2(I;W 2,2
n (Ω),W−2,2

n (Ω)) ↪→ C(Ī;L2(Ω)). (3.5)

In virtue of the Agmon (2.10) and Gagliardo–Nirenberg (2.9) inequalities, it can be
deduced from (3.1), (2.12), and (3.2) respectively that

W 1,2,2(I;W 4,2
n (Ω), L2(Ω)) ↪→ L4(I;W 2,∞(Ω) ∩W 3,2

n (Ω)) (3.6)

W 1,2,2(I;W 4,2
n (Ω),W 2,2

n (Ω)) ↪→ L4(I;W 3,4(Ω)). (3.7)

Again, using the Gagliardo–Nirenberg inequality, (3.3), and (3.4), we have

W 1,2,2(I;W 2,2
0,σ(Ω),L2

σ(Ω)) ↪→ L4(I;W 1,4(Ω)) (3.8)

W 1,2,2(I;W2,2
n,s(Ω),L2

s (Ω)) ↪→ L4(I;W1,4(Ω)). (3.9)

Finally, thanks to (2.12) and (3.5), we obtain

W 1,2,2(I;W 2,2
n (Ω),W−2,2

n (Ω)) ↪→ L4(I;W 1,2(Ω)). (3.10)

The above continuous embeddings will be utilized in later discussions.
We shall follow a standard spectral Faedo–Galerkin method for the existence and

uniqueness of strong solutions to (1.15) as in [10, 18]. First, note that there are
orthonormal bases {ϕj}∞j=1, {yj}∞j=1, and {Yj}∞j=1 for L2(Ω), L2

σ(Ω), and L2
s (Ω),

respectively, comprising of normalized eigenfunctions for the Neumann Laplacian
AN := −∆ : W 2,2

n (Ω) ⊂ L2(Ω) → L2(Ω), the Stokes operator AS = −P σ∆ :
W 2,2

0,σ(Ω) ⊂ L2
σ(Ω) → L2

σ(Ω), and the Neumann Laplacian on symmetric tensors
AN : W2,2

n,s(Ω) ⊂ L2
s (Ω) → L2

s (Ω) (refer to [37] and [65] for details). Here, P σ :

L2(Ω) → L2
σ(Ω) is the Leray–Helmholtz projector with respect to the orthogonal

decomposition L2(Ω) = L2
σ(Ω)⊕∇(W 1,2(Ω)/R). The existence of such bases follows

from the fact that the Neumann Laplacian and the Stokes operator defined above
are closed operators with compact resolvents.

Let Φk, V k, and Sk be the linear spans generated by {ϕj}kj=1, {yj}kj=1, and
{Yj}kj=1. Denote the corresponding orthogonal projectors by P̃Φk : L2(Ω) → Φk,
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P̃ V k
: L2

σ(Ω)→ V k, and P̃Sk : L2
s (Ω)→ Sk, where

P̃Φkφ :=
k∑
j=1

(φ, ϕj)L2ϕj, P̃ V k
v :=

k∑
j=1

(v,yj)L2
σ
yj, P̃SkS :=

k∑
j=1

(S,Yj)L2
s
Yj,

for φ ∈ L2(Ω), v ∈ L2
σ(Ω), and S ∈ L2

s (Ω). Let EΦk : Φk → L2(Ω), EV k
: V k →

L2
σ(Ω), and ESk : Sk → L2

s (Ω) be the canonical injections. Then,

PΦk := EΦkP̃ΦkEΦk ∈ L(Φk, L
2(Ω)),

P V k
:= EV k

P̃ V k
EV k

∈ L(V k,L
2
σ(Ω)),

PSk := ESkP̃SkESk ∈ L(Sk,L2
s (Ω)).

Let P ∗Φk ∈ L(L2(Ω), Φk), P ∗V k
∈ L(L2

σ(Ω),V k), and P∗Sk ∈ L(L2
s (Ω),Sk) be the

associated Hilbert space adjoint operators.
Generic positive constants will be denoted by c or with a subscript to emphasize

the dependence of such constants. In general, these quantities depend on at least one
of the coefficient functions and the constants appearing in Lemma 2.2, the terminal
time T , and the spatial domain Ω. These constants may also depend on the given
source functions and initial data in (1.15), however, they do not depend on the
unknown state variables.

Theorem 3.1. Let (A1)3 and (A2)1 be satisfied. Suppose that we have initial data
(φ0, θ0,v0, S0) ∈ D2(Ω) and source functions such that fo ∈ L2(I;L2(Ω)), fh ∈
L2(I;L2(Ω)), fv ∈ L2(I;L2(Ω)), and Fs ∈ L2(I;L2

s (Ω)). For each control u ∈ U ,
the nonlinear system (1.15) has a unique strong solution (φ, µ, θ,v,S) ∈ W2(ΩT )
with an associated pressure p ∈ L2(I;W 1,2(Ω)/R). Moreover, there exists a mono-
tone increasing and continuous function C : [0,∞) → [0,∞) that depend on the
norms of the source functions in the given underlying spaces such that

‖(φ, µ, θ,v,S)‖W2 + ‖p‖L2(W 1,2/R) ≤ C(‖(φ0, θ0,v0,S0)‖D2 + ‖u‖U ). (3.11)

Proof. Let us start with the local-in-time existence of solutions for the projected
systems. For this, we consider unknown functions

φk(t) :=
k∑
j=1

αjk(t)ϕj, θk(t) :=
k∑
j=1

βjk(t)ϕj,

vk(t) :=
k∑
j=1

γjk(t)yj, Sk(t) :=
k∑
j=1

ηjk(t)Yj,
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where αjk, βjk, γjk, ηjk ∈ W 1,2(I), that satisfy the following finite-dimensional ap-
proximation of the state system:

∂tφk + P ∗Φk{vk · ∇φk −∇ · (mk∇µk)} = P ∗Φkfo in L2(I;Φk),

µk = −α∆φk + PΦkF
′(φk) in W 1,2(I;Φk),

∂t(θk − τ∆θk) + P ∗Φk{vk · ∇θk −∇ · (χk∇θk)}
+ b∆2θk = P ∗Φk{a0g · vk + Sk : Dvk + fh} in L2(I;Φk),

∂tvk + P ∗V k
{(vk · ∇)vk −∇ · (2νkDvk)}

= P ∗V k
{∇ ·M(θk,Sk) + κµk∇φk + ρ(φk, θk)g}

+P ∗V k
{fv + u} in L2(I;V k),

∂tSk + P∗Sk{(vk · ∇)Sk + J(vk,Sk)−∇ · (εk∇Sk)}
= P∗Sk{λDvk + P(Sk) + Fs} in L2(I;Sk),

φk(0) = PΦkφ0, θk(0) = PΦkθ0 in Ω,
vk(0) = P V k

v0, Sk(0) = PSkS0 in Ω,

(3.12)

where mk := m(φk, θk), χk := χ(φk, θk), νk := ν(φk, θk), and εk := ε(φk, θk).
In virtue of the classical Cauchy–Lipschitz Theorem for ordinary differen-

tial equations, (3.12) possesses a unique maximal solution with components
φk, µk ∈ W 1,2(Ik;Φk), vk ∈ W 1,2(Ik;V k), and Sk ∈ W1,2(Ik;Sk) for some interval
Ik := [0, Tk) ⊂ I. By a standard continuation argument, the succeeding uniform-
in-time a priori estimates will establish that this solution exists on the whole time
interval I. In what follows, δ > 0 denotes a generic positive constant, typically
chosen to be small.

Step 1. Energy-type estimates. Taking the test functions µk + φk and −∂tφk in
the first and second equations of (3.12), utilizing (vk · ∇φk, φk)L2 = 0 in Ik due to
∇·vk = 0 in ΩT and integration-by-parts, getting the sum of the resulting equations,
and noting that F ≥ 0 from (A1)3, we have

1

2

d

dt

(∫
Ω

|φk|2 dx+ α

∫
Ω

|∇φk|2 dx+ 2

∫
Ω

|F (φk)| dx
)

+

∫
Ω

mk|∇µk|2 dx+

∫
Ω

mk∇µk · ∇φk dx

=

∫
Ω

foµk dx+

∫
Ω

foφk dx−
∫
Ω

(vk · ∇φk)µk dx. (3.13)

Let us estimate the first two integrals on the right-hand side and the last integral on
the left-hand side. We deduce from the Cauchy–Schwarz, Poincaré–Wirtinger (2.2),
and Young inequalities that∫

Ω

|foφk| dx ≤
1

2
‖fo‖2

L2 +
1

2
‖φk‖2

L2 (3.14)∫
Ω

|foµk| dx ≤
∫
Ω

|fo(µk − 〈µk〉)| dx+

∫
Ω

|fo〈µk〉| dx

≤ m0

8
‖∇µk‖2

L2 + c‖fo‖2
L2 + |Ω|1/2‖fo‖L2|〈µk〉| (3.15)
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∫
Ω

|mk∇µk · ∇φk| dx ≤
m0

8
‖∇µk‖2

L2 + c‖∇φk‖2
L2 . (3.16)

Let K := ‖fo‖L2 + 1 ∈ L2(I) ⊂ L1(I). From (3.15), we need an estimate for
the average of the approximation of the chemical potential. For this, we apply
|F ′| ≤ cF (|F |+ 1) from (A1)3, 〈∆φk〉 = 0 in Ik, and Hölder inequality to the second
equation in (3.12) so that

|〈µk〉| ≤ |Ω|−1‖F ′(φk)‖L1 ≤ c(‖F (φk)‖L1 + 1). (3.17)

Applying the test function m0∆φk to the second equation of (3.12), taking note
that −F ′′ ≤ cF from (A1)3, and using PΦk∆φk = ∆φk, we obtain

m0α‖∆φk‖2
L2 = m0

∫
Ω

(∇µk − F ′′(φk)∇φk) · ∇φk dx

≤ m0

2
‖∇µk‖2

L2 +
m0

2
(2cF + 1)‖∇φk‖2

L2 . (3.18)

Using (3.14)–(3.17) in (3.13), taking the sum of the resulting inequality with (3.18),
and applying mk ≥ m0, we deduce that

1

2

d

dt

(
‖φk‖2

L2 + α‖∇φk‖2
L2 + 2‖F (φk)‖L1

)
+m0α‖∆φk‖2

L2 +
m0

4
‖∇µk‖2

L2

≤ −
∫
Ω

(vk · ∇φk)µk dx+ cK(‖φk‖2
L2 + ‖∇φk‖2

L2 + ‖F (φk)‖L1)

+ c(‖fo‖L2 + ‖fo‖2
L2). (3.19)

We use the test function σ
κ
θk to the third equation in (3.12) and apply (v ·

∇θk, θk)L2 = 0 in Ik, to obtain
σ

2κ

d

dt

∫
Ω

(|θk|2 + τ |∇θk|2) dx+
σ

κ

∫
Ω

(χk|∇θk|2 + b|∆θk|2) dx

=
σ

κ

∫
Ω

a0g · vkθk dx+
σ

κ

∫
Ω

θkSk : Dvk dx+
σ

κ

∫
Ω

fhθk dx. (3.20)

The assumption χk ≥ χ0 and the Cauchy–Schwarz inequality applied to the first
and last terms on the right-hand side in (3.20) lead to the estimate

σ

2κ

d

dt
(‖θk‖2

L2 + τ‖∇θk‖2
L2) +

σχ0

κ
‖∇θk‖2

L2 +
σb

κ
‖∆θk‖2

L2

≤ σ

κ

∫
Ω

θkSk : Dvk dx+ c(‖θk‖2
L2 + ‖vk‖2

L2
σ

+ ‖fh‖2
L2). (3.21)

Taking the test function 1
κ
vk to the fourth equation in (3.12), applying ((vk ·

∇)vk,vk)L2 = 0 in Ik, integrating by parts, and recalling the definition of M in
(1.10), we get

1

2κ

d

dt

∫
Ω

|vk|2 dx+
1

κ

∫
Ω

2νk|Dvk|2 dx = − σ0a

κ

∫
Ω

S2
k : ∇vk dx

+
σ0a

κ

∫
Ω

Sk : ∇vk dx− σ

κ

∫
Ω

θkSk : ∇vk dx− a

κ

∫
Ω

Tr(Sk)Sk : ∇vk dx

+

∫
Ω

µk∇φk · vk dx+
1

κ

∫
Ω

ρ(φk, θk)g · vk dx+
1

κ

∫
Ω

(fv + u) · vk dx. (3.22)
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By Korn inequality and the condition νk ≥ ν0, one has
1

κ

∫
Ω

2νk|Dvk|2 dx ≥ ν0

κ
‖∇vk‖2

L2 . (3.23)

With Young inequality, the second, sixth, and seventh integrals on the right-hand
side of (3.22) can be estimated from above according to

σ0a

κ

∫
Ω

|Sk : ∇vk| dx+
1

κ

∫
Ω

|ρ(φk, θk)g · vk| dx+
1

κ

∫
Ω

|(fv + u) · vk| dx

≤ ν0

2κ
‖∇vk‖2

L2 + c(‖Sk‖2
L2
s

+ ‖vk‖2
L2
σ

+ ‖φk‖2
L2 + ‖θk‖2

L2)

+ c(‖fv‖2
L2 + ‖u‖2

L2 + |g|2). (3.24)

Then, by plugging the inequalities (3.23) and (3.24) in (3.22), we have
1

2κ

d

dt
‖vk‖2

L2
σ

+
ν0

2κ
‖∇vk‖2

L2 ≤ −
σ0a

κ

∫
Ω

S2
k : ∇vk dx

− σ

κ

∫
Ω

θkSk : Dvk dx− a

κ

∫
Ω

Tr(Sk)Sk : ∇vk dx+

∫
Ω

µk∇φk · vk dx

+ c(‖φk‖2
L2 + ‖θk‖2

L2 + ‖vk‖2
L2
σ

+ ‖Sk‖2
L2
s

+ ‖fv‖2
L2 + ‖u‖2

L2 + |g|2). (3.25)

Thanks to Lemma 2.1, we have [Sk,Wvk] : Sk = ∇vk : [Sk,Sk] = 0 and {Sk,Dvk} :
Sk = ∇vk : {Sk,Sk} = 2∇vk : S2

k. Utilizing the test function σ0
2κ
Sk to the fifth

equation in (3.12), using the previous equations for the commutator and anti-
commutator, and ((vk · ∇)Sk,Sk)L2

s
= 0 in Ik, one has

σ0

4κ

d

dt

∫
Ω

|Sk|2 dx+
σ0

2κ

∫
Ω

εk|∇Sk|2 dx+
σ0β

2κ

∫
Ω

|Tr(Sk)Sk|2 dx

=
σ0a

κ

∫
Ω

∇vk : S2
k dx− σ0`

2κ

∫
Ω

|Sk|2 dx+
σ0β

2κ

∫
Ω

|Tr(Sk)|2 dx

+
σ0

2κ

∫
Ω

(λDvk + Fs) : Sk dx. (3.26)

Here, we recall (1.13) and (1.14) for the definitions of J and P. In virtue of the
Young and Hölder inequalities, the last integral in (3.26) can be estimated by

σ0

2κ

∫
Ω

|(λDvk + Fs) : Sk| dx ≤
ν0

4κ
‖∇vk‖2

L2 + c[(λ2 + 1)‖Sk‖2
L2
s

+ ‖Fs‖2
L2
s
]. (3.27)

Substituting (3.27) in (3.26) and noting that εk ≥ ε0, we obtain
σ0

4κ

d

dt
‖Sk‖2

L2
s

+
σ0ε0

2κ
‖∇Sk‖2

(L2
s )2 −

ν0

4κ
‖∇vk‖2

L2 +
σ0β

2κ
‖Tr(Sk)Sk‖2

L2
s

≤ σ0a

κ

∫
Ω

∇vk : S2
k dx+ c(‖Sk‖2

L2
s

+ ‖Tr(Sk)‖2
L2 + ‖Fs‖2

L2
s
). (3.28)

Finally, in order to remove the integral term involving Tr(Sk) in (3.25), we consider
the test function 1

2κ
Tr(Sk)I in the fifth equation of (3.12). From Lemma 2.1, we have

[Sk,Wvk] : Tr(Sk)I = Tr(Sk)∇vk : [Sk, I] = 0 and {Sk,Dvk} : Tr(Sk)I = Tr(Sk)∇vk :
{Sk, I} = 2∇vk : Tr(Sk)Sk. Moreover, it holds that∫

Ω

(vk · ∇)Sk : Tr(Sk)I dx =

∫
Ω

(vk · ∇)d(Sk) · d(Sk) dx = 0,
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where d(Sk) is the vector with the diagonal of Sk as the entries, and ∇Sk ∴
∇(Tr(Sk)I) = |∇(Tr(Sk))|2. Thus, we have

1

4κ

d

dt

∫
Ω

|Tr(Sk)|2 dx+
1

2κ

∫
Ω

ε|∇(Tr(Sk))|2 dx+
β

2κ

∫
Ω

|Tr(Sk)|4 dx

=
1

2κ
(2β − `)

∫
Ω

|Tr(Sk)|2 dx+
a

κ

∫
Ω

Tr(Sk)Sk : ∇vk dx

+
1

2κ

∫
Ω

Fs : Tr(Sk)I dx. (3.29)

Here, we used the fact that λDvk : Tr(Sk)I = λTr(Sk)∇ · vk = 0. Therefore, this
leads us to

1

4κ

d

dt
‖Tr(Sk)‖2

L2 +
ε0

2κ
‖∇(Tr(Sk))‖2

L2 +
β

2κ
‖Tr(Sk)‖4

L4

≤ a

κ

∫
Ω

Tr(Sk)Sk : ∇vk dx+ c(‖Tr(Sk)‖2
L2 + ‖Fs‖2

L2
s
). (3.30)

Taking the sum of the estimates (3.19), (3.21), (3.25), (3.28), and (3.30), we see
that the remaining integral terms cancel, and as a consequence, this leads to the
differential inequality

1

2

d

dt
Ek +Dk ≤ c(S +KEk) in Ik, (3.31)

where Ek, Dk : Ik → [0,∞) and S : I → [0,∞) are given by

Ek := ‖φk‖2
L2 + α‖∇φk‖2

L2 + 2‖F (φk)‖L1 +
σ

κ
‖θk‖2

L2

+
στ

κ
‖∇θk‖2

L2 +
1

κ
‖vk‖2

L2
σ

+
σ0

2κ
‖Sk‖2

L2
s

+
1

2κ
‖Tr(Sk)‖2

L2

Dk := m0α‖∆φk‖2
L2 +

m0

4
‖∇µk‖2

L2 +
σχ0

κ
‖∇θk‖2

L2 +
σb

κ
‖∆θk‖2

L2 +
ν0

4κ
‖∇vk‖2

L2

+
σ0ε0

2κ
‖∇Sk‖2

(L2
s )2 +

σ0β

2κ
‖Tr(Sk)Sk‖2

L2
s

+
ε0

2κ
‖∇(Tr(Sk))‖2

L2 +
β

2κ
‖Tr(Sk)‖4

L4

S := ‖fo‖L2 + ‖fo‖2
L2 + ‖fh‖2

L2 + ‖fv‖2
L2 + ‖Fs‖2

L2
s

+ ‖u‖2
L2 + |g|2.

Recall that K ∈ L1(I) and observe that S ∈ L1(I) from the assumptions on the
source functions. Integrating (3.31) over [0, t] ⊂ [0, tk) yields

Ek(t) ≤ Ek(t) + 2

∫ t

0

Dk(s) ds

≤ Ek(0) + 2c

∫ t

0

(S(s) +K(s)Ek(s)) ds for t ∈ Ik. (3.32)

From the uniform boundedness of the orthogonal projectors PΦk , P V k
, and PSk , we

have

Ek(0) ≤ c(‖φ0‖2
W 1,2 + ‖F (φ0)‖L1 + ‖θ0‖2

W 1,2 + ‖v0‖2
L2
σ

+ ‖S0‖2
L2
s
). (3.33)

Note that ‖F (φ0)‖L1 ≤ c(‖φ0‖q+3
W 1,2 +1) by (2.15) with s = 3 and k = 0. Applying the

Grönwall Lemma to (3.32) and using (3.33), we conclude that there is a continuous
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function C : [0,∞)→ [0,∞) as described by the theorem such that

‖φk‖L∞(W 1,2) + ‖F (φk)‖L∞(L1) + ‖θk‖L∞(W 1,2)

+ ‖vk‖L∞(L2
σ) + ‖Sk‖L∞(L2

s ) ≤ c‖Ek‖L∞(Ik) ≤ C0,u (3.34)

where
C0,u := C(‖(φ0, θ0,v0,S0)‖W 1,2×W 1,2×L2

σ×L2
s

+ ‖u‖U ).

We point out that the function C may differ in each appearance below. As a conse-
quence of (3.32)–(3.34), we have the following estimate

‖∆φk‖L2(L2) + ‖∇µk‖L2(L2) + ‖∆θk‖L2(L2) + ‖∇vk‖L2(L2) + ‖∇Sk‖L2((L2
s )2)

≤ c‖Dk‖L1(Ik) ≤ Ek(0) + c(‖S‖L1(I) + ‖K‖L1(I)‖Ek‖L∞(Ik)) ≤ C0,u. (3.35)

From (3.17), (3.34), (3.35), and the Poincaré–Wirtinger inequality (2.2), we obtain

‖µk‖L2(W 1,2) ≤ c(‖〈µ〉‖L2(Ik) + ‖∇µk‖L2(L2)) ≤ C0,u. (3.36)

Step 2. Additional estimates on spatial derivatives. This step focuses in deriving
a priori estimates on higher-order spatial derivatives of the approximations.
L∞(L2), L2(L2), and L2(L2) estimates for ∆φk, ∆2φk, and ∆µk. First, let us con-

sider the Cahn–Hilliard equation. Take the test function ∆2φk to the first equation
in (3.12) and distribute the divergence operator so that

1

2

d

dt

∫
Ω

|∆φk|2 dx+

∫
Ω

vk · ∇φk∆2φk dx−
∫
Ω

mkφ∇φk · ∇µk∆2φk dx

−
∫
Ω

mkθ∇θk · ∇µk∆2φk dx−
∫
Ω

mk∆µk∆
2φk dx =

∫
Ω

fo∆2φk dx, (3.37)

where mkφ := mφ(φk, θk) and mkθ := mθ(φk, θk). Without further notice, we also
follow this kind of notation for the other state-dependent coefficients χ, ν, and ε.

By the Hölder and Young inequalities, the Sobolev embeddingW 1,2(Ω) ↪→ L4(Ω),
and (2.3), we have the following estimates for the second and last integrals in equa-
tion (3.37): ∫

Ω

|fo∆2φk| dx ≤ δ‖∆2φk‖2
L2 + cδ‖fo‖2

L2 (3.38)∫
Ω

|(vk · ∇φk)∆2φk| dx ≤ ‖vk‖L4‖∇φk‖L4‖∆2φk‖L2

≤ δ‖∆2φk‖2
L2 + cδ‖∇vk‖2

L2‖∆φk‖2
L2 . (3.39)

Taking the Laplacian of µk in the second equation of (3.12) and using ∆PΦkF
′(φk)

= PΦk∆F
′(φk), which can be easily shown by using the expansion of PΦk in terms of

the eigenfunctions of the Neumann Laplacian and by integrating by parts, we have

∆µk = −α∆2φk + PΦk∆F
′(φk). (3.40)

Thus, the fifth integral in (3.37) can be bounded from below as

−
∫
Ω

mk∆µk∆
2φk dx ≥ αm0

2
‖∆2φk‖2

L2 − c|m|2∞‖∆F ′(φk)‖2
L2 . (3.41)
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Note that ∆F ′(φk) = ∇ · (F ′′(φk)∇φk) = F ′′(φk)∆φk + F ′′′(φk)|∇φk|2. Thus,
applying the Hölder inequality, the estimate (2.15), the Agmon inequality (2.10),
and (2.6), we get

‖F ′′(φk)∆φk‖2
L2 ≤ ‖F ′′(φk)‖2

L2‖∆φk‖2
L∞

≤ c(‖φk‖2(q+1)

W 1,2 + 1)‖∆φk‖L2‖∆2φk‖L2

≤ δ‖∆2φk‖2
L2 + cδ(‖φk‖4(q+1)

W 1,2 + 1)‖∆φk‖2
L2 . (3.42)

Similarly, by the Hölder inequality, (2.15), the embedding W 1,2(Ω) ↪→ L6(Ω), and
(2.3), we have

‖F ′′′(φk)|∇φk|2‖2
L2 ≤ c‖F ′′′(φk)‖2

L6‖∇φk‖4
L6

≤ c(‖φk‖2q
W 1,2 + 1)‖∆φk‖4

L2 . (3.43)

Set K1k := ‖φk‖4(q+1)

W 1,2 + ‖φk‖2q
W 1,2 + 1, so that K1k ∈ L∞(Ik) by (3.34). Thus, we

deduce from (3.42) and (3.43) that

‖∆F ′(φk)‖2
L2 ≤ 2‖F ′′(φk)∆φk‖2

L2 + 2‖F ′′′(φk)|∇φk|2‖2
L2

≤ 2δ‖∆2φk‖2
L2 + cδK1k(‖∆φk‖2

L2 + ‖∆φk‖4
L2). (3.44)

Furthermore, according to (3.40) and (3.44) with δ = 1, one has

‖∆µk‖2
L2 − c‖∆2φk‖2

L2 ≤ cK1k(‖∆φk‖2
L2 + ‖∆φk‖4

L2). (3.45)

Now, let us estimate the remaining integrals in (3.37) that involve the derivatives
of m. Using the Gagliardo–Nirenberg inequality (2.9) and (2.3), we deduce that∫

Ω

|mkφ∇φk · ∇µk∆2φk| dx ≤ c|mφ|∞‖∇φk‖L4‖∇µk‖L4‖∆2φk‖L2

≤ c|mφ|∞‖∇φk‖1/2

L2 ‖∆φk‖1/2

L2 ‖∇µk‖1/2

L2 ‖∆µk‖1/2

L2 ‖∆2φk‖L2

≤ δ‖∆2φk‖2
L2 + δ‖∆µk‖2

L2 + cδ|mφ|4∞‖∇µk‖2
L2‖∇φk‖2

L2‖∆φk‖2
L2 . (3.46)

Replacing mkφ and ∇φk by mkθ and ∇θk respectively in this estimate leads to∫
Ω

|mkθ∇θk · ∇µk∆2φk| dx ≤ δ‖∆2φk‖2
L2 + δ‖∆µk‖2

L2

+ cδ|mθ|4∞‖∇µk‖2
L2‖∇θk‖2

L2‖∆θk‖2
L2 . (3.47)

Using the estimates (3.38), (3.39), (3.44), (3.46), and (3.47) in (3.37), and then
taking the sum of the resulting inequality with (3.45) multiplied by 2δ0 > 0, we
deduce that

1

2

d

dt
‖∆φk‖2

L2 +
(αm0

2
− 4δ − 2cδ|m|2∞ − 2cδ0

)
‖∆2φk‖2

L2 + 2(δ0 − δ)‖∆µk‖2
L2

≤ cδ,δ0 [K2k(‖∆φk‖2
L2 + ‖∆θk‖2

L2) + ‖fo‖2
L2 ] (3.48)

where

K2k := K1k{‖∆φk‖2
L2 + |mφ|4∞‖∇µk‖2

L2‖∇φk‖2
L2

+ |mθ|4∞‖∇µk‖2
L2‖∇θk‖2

L2 + ‖∇vk‖2
L2 + 1}.
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Notice that K2k ∈ L1(Ik) according to (3.34) and (3.35). If we choose 0 < δ < δ0 <
αm0/(8 + 4c|m|2∞ + 4c) in (3.48), then it follows that there is c > 0 such that

1

2

d

dt
‖∆φk‖2

L2 +
1

c
‖∆2φk‖2

L2 +
1

c
‖∆µk‖2

L2

≤ c[K2k(‖∆φk‖2
L2 + ‖∆θk‖2

L2) + ‖fo‖2
L2 ]. (3.49)

L∞(W 1,2) and L2(L2) estimates for ∆θk and ∆2θk. Now, we consider the regular-
ized convection-diffusion equation. The test function ∆2θk applied to third equation
in (3.12) along with the same procedure presented above for the Cahn–Hilliard sys-
tem give us

1

2

d

dt

∫
Ω

(|∆θk|2 + τ |∇∆θk|2) dx+

∫
Ω

vk · ∇θk∆2θk dx

−
∫
Ω

χkφ∇φk · ∇θk∆2θk dx−
∫
Ω

χkθ|∇θk|2∆2θk dx

−
∫
Ω

χk∆θk∆
2θk dx+

∫
Ω

b|∆2θk|2 dx

=

∫
Ω

a0g · vk∆2θk dx+

∫
Ω

Sk : Dvk∆2θk dx+

∫
Ω

fh∆2θk dx. (3.50)

We can estimate the fifth integral by Young inequality and the term involving the
heat source function and the convection term as in (3.38) and (3.39) as follows:∫

Ω

|χk∆θk∆2θk| dx ≤ δ‖∆2θk‖2
L2 + cδ|χ|2∞‖∆θk‖2

L2 (3.51)∫
Ω

|a0g · vk∆2θk| dx ≤ δ‖∆2θk‖2
L2 + cδ|a0|2|g|2‖∇vk‖2

L2 (3.52)∫
Ω

|fh∆2θk| dx ≤ δ‖∆2θk‖2
L2 + cδ‖fh‖2

L2 (3.53)∫
Ω

|(vk · ∇θk)∆2θk| dx ≤ δ‖∆2θk‖2
L2 + cδ‖∇vk‖2

L2‖∆θk‖2
L2 . (3.54)

From the Hölder inequality, the embedding W 1,2(Ω) ↪→ L4(Ω), and (2.3), it holds
that ∫

Ω

|χkφ∇φk · ∇θk∆2θk| dx ≤ c|χφ|∞‖∇φk‖L4‖∇θk‖L4‖∆2θk‖L2

≤ δ‖∆2θk‖2
L2 + cδ|χφ|2∞‖∆φk‖2

L2‖∆θk‖2
L2 . (3.55)

By a similar argument, it holds that∫
Ω

χkθ|∇θk|2∆2θk dx ≤ δ‖∆2θk‖2
L2 + cδ|χθ|2∞‖∆θk‖4

L2 . (3.56)

For the remaining term in (3.50) involving the velocity and viscoelastic tensor,
we have ∫

Ω

|Sk : Dvk∆2θk| dx ≤ c‖Sk‖L4‖Dvk‖L4‖∆2θk‖L2

≤ c‖Sk‖L4‖∇vk‖1/2

L2 ‖∆vk‖1/2

L2 ‖∆2θk‖L2
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≤ δ‖∆2θk‖L2 +
ν0

8
‖∆vk‖2

L2 + cδ‖Sk‖4
L4
s
‖∇vk‖2

L2 . (3.57)

Utilizing the estimates (3.51)–(3.57) in the equation (3.50), and then taking 0 <
δ < b

7
, one can see that there is a c > 0 such that

1

2

d

dt
(‖∆θk‖2

L2 + τ‖∇∆θk‖2
L2) +

1

c
‖∆2θk‖L2 − ν0

8
‖∆vk‖2

L2

≤ c[K3k(‖∆θk‖2
L2 + ‖∇vk‖2

L2) + ‖fh‖2
L2 ] (3.58)

where

K3k := |χ|2∞ + |a0|2|g|2 + ‖∇vk‖2
L2

+ |χφ|2∞‖∆φk‖2
L2 + |χθ|2∞‖∆θk‖2

L2 + ‖Sk‖4
L4
s

+ 1.

Note that K3k ∈ L1(Ik) thanks to (3.35) and ‖Sk‖4
L4
s (Ω) ∈ L1(Ik) due to following

embedding

L∞(I;L2(Ω)) ∩ L2(I;W 1,2(Ω)) ↪→ L4(I;L4(Ω)). (3.59)

L∞(L2) and L2(L2
σ) estimates for ∇vk and ∆vk. Next, we deal with the approx-

imate Navier–Stokes equation. With the test function ASvk = −P σ∆vk = −∆vk
applied to the fourth equation in (3.12), we get

1

2

d

dt

∫
Ω

|∇vk|2 dx−
∫
Ω

(vk · ∇)vk ·∆vk dx

+

∫
Ω

2νkφ(Dvk∇φk) ·∆vk dx+

∫
Ω

2νkθ(Dvk∇θk) ·∆vk dx+

∫
Ω

νk|∆vk|2 dx

= −
∫
Ω

(σ0a∇ · (S2
k)) ·∆vk dx+

∫
Ω

(σ0a∇ · Sk) ·∆vk dx

−
∫
Ω

(∇ · (σθkSk)) ·∆vk dx−
∫
Ω

(a∇ · (Tr(Sk)Sk)) ·∆vk dx

−
∫
Ω

(κµk∇φk + ρ(φk, θk)g + fv + u) ·∆vk dx. (3.60)

In the fifth integral, we used the fact that ∇ · (2Dvk) = ∆vk + ∇∇ · vk =
∆vk since ∇ · vk = 0 in ΩT . For the convection and surface tension terms, we
apply the Hölder, Gagliardo–Nirenberg, and Young inequalities, and the embedding
W 1,2(Ω) ↪→ L4(Ω), so that∫

Ω

|(vk · ∇)vk ·∆vk| dx ≤ ‖vk‖L4‖∇vk‖L4‖∆vk‖L2

≤ c‖vk‖L4
σ
‖∇vk‖1/2

L2 ‖∆vk‖3/2

L2 ≤ δ‖∆vk‖2
L2 + cδ‖vk‖4

L4
σ
‖∇vk‖2

L2 (3.61)∫
Ω

|κµk∇φk ·∆vk| dx ≤ c‖µk‖L4‖∇φk‖L4‖∆vk‖L2

≤ δ‖∆vk‖2
L2 + cδ‖µk‖2

W 1,2‖∆φk‖2
L2 (3.62)∫

Ω

|ρ(φk, θk)g ·∆vk| dx ≤ δ‖∆vk‖2
L2 + cδ(‖φk‖2

L2 + ‖θk‖2
L2 + |g|2). (3.63)
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Concerning the integrals involving the derivatives of the viscosity coefficient ν in
(3.60), we have∫

Ω

|2νkφ(Dvk∇φk) ·∆vk| dx ≤ c|νφ|∞‖Dvk‖L4‖∇φk‖L4‖∆vk‖L2

≤ c|νφ|∞‖∇φk‖L4‖∇vk‖1/2

L2 ‖∆vk‖3/2

L2

≤ δ‖∆vk‖2
L2 + cδ|νφ|4∞‖∇φk‖4

L4‖∇vk‖2
L2 (3.64)∫

Ω

|2νkθ(Dvk∇θk) ·∆vk| dx ≤ δ‖∆vk‖2
L2 + cδ|νθ|4∞‖∇θk‖4

L4‖∇vk‖2
L2 . (3.65)

Next, let us deal with the integrals in (3.60) that include the sources and viscoelas-
tic tensor. Performing the divergence operator and applying Hölder inequality, we
obtain∫

Ω

|(σ0a∇ · (S2
k)) ·∆vk| dx ≤ c‖Sk‖L4

s
‖∇Sk‖(L4

s )2‖∆vk‖L2

≤ c‖Sk‖L4
s
‖∇Sk‖1/2

(L2
s )2‖∆Sk‖1/2

L2
s
‖∆vk‖L2

≤ δ‖∆vk‖2
L2 +

ε0

12
‖∆Sk‖2

L2
s

+ cδ‖Sk‖4
L4
s
‖∇Sk‖2

(L2
s )2 (3.66)∫

Ω

|σ0a(∇ · Sk) ·∆vk| dx ≤ δ‖∆vk‖2
L2 + cδ‖∇Sk‖2

(L2
s )2 (3.67)∫

Ω

|σ(∇ · (θkSk)) ·∆vk| dx ≤ c(‖θk‖L4‖∇Sk‖(L4
s )2 + ‖∇θk‖L4‖Sk‖L4

s
)‖∆vk‖L2

≤ δ‖∆vk‖2
L2 +

ε0

12
‖∆Sk‖2

L2
s

+ cδ‖θk‖4
L4‖∇Sk‖2

(L2
s )2

+ cδ‖Sk‖2
L4
s
‖∆θk‖2

L2 (3.68)∫
Ω

|a(∇ · (Tr(Sk)Sk)) ·∆vk| dx ≤ δ‖∆vk‖2
L2 +

ε0

12
‖∆Sk‖2

L2
s

+ cδ‖Sk‖4
L4
s
‖∇Sk‖2

(L2
s )2 (3.69)∫

Ω

|(fv + u) ·∆vk| dx ≤ δ‖∆vk‖2
L2 + cδ(‖fv‖2

L2 + ‖u‖2
L2). (3.70)

Thus, if we apply the estimates (3.61)–(3.70) in the equation (3.60) and choosing
0 < δ < ν0

20
, it follows that there exists a constant c > 0 for which

1

2

d

dt
‖∇vk‖2

L2 +
ν0

2
‖∆vk‖2

L2 −
ε0

4
‖∆Sk‖2

L2
s
≤ cK4k(‖∆φk‖2

L2 + ‖∆θk‖2
L2)

+ cK4k(‖φk‖2
L2 + ‖θk‖2

L2 + ‖∇vk‖2
L2 + ‖∇Sk‖2

(L2
s )2)

+ c(‖fv‖2
L2 + ‖u‖2

L2 + |g|2) (3.71)

where

K4k := ‖vk‖4
L4
σ

+ ‖µk‖2
W 1,2 + |νφ|4∞‖∇φk‖4

L4 + |νθ|4∞‖∇θk‖4
L4

+ ‖Sk‖4
L4
s

+ ‖Sk‖2
L4
s

+ ‖θk‖4
L4 + 1.

From the embedding (3.59) it follows that ‖θk‖4
L4 , ‖vk‖4

L4
σ
, ‖Sk‖4

L4
s
∈ L1(Ik), and

in particular, ‖Sk‖2
L4
s
∈ L2(Ik) ⊂ L1(Ik). Analogously, one has ‖∇φk‖4

L4 , ‖∇θk‖4
L4 ∈
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L1(Ik) due to

L∞(I;W 1,2(Ω)) ∩ L2(I;W 2,2(Ω)) ↪→ L4(I;W 1,4(Ω)). (3.72)

These observations together with (3.35) and (3.36) imply that K4k ∈ L1(Ik).
L∞((L2

s )2) and L2(L2
s ) estimates for ∇Sk and ∆Sk. For the last part of this step,

we apply the test function −∆Sk to the fifth equation of (3.12) in order to obtain
the following:

1

2

d

dt

∫
Ω

|∇Sk|2 dx−
∫
Ω

(vk · ∇)Sk : ∆Sk dx−
∫
Ω

J(vk,Sk) : ∆Sk dx

+

∫
Ω

εkφ∇Sk �∇φk : ∆Sk dx+

∫
Ω

εkθ∇Sk �∇θk : ∆Sk dx

+

∫
Ω

εk|∆Sk|2 dx = −
∫
Ω

P(Sk) : ∆Sk dx−
∫
Ω

(λDv + Fs) : ∆Sk dx, (3.73)

where T � w := w1T1 + w2T2 for T = [T1 T2]t ∈ R4×2 and w = [w1 w2]t ∈ R2.
Similar to (3.61), (3.64), and (3.65), it can be deduced that∫

Ω

|(vk · ∇)Sk : ∆Sk| dx ≤ δ‖∆Sk‖2
L2
s

+ c‖vk‖4
L4
σ
‖∇Sk‖2

(L2
s )2 (3.74)∫

Ω

|εkφ∇Sk �∇φk : ∆Sk| dx ≤ δ‖∆Sk‖2
L2
s

+ cδ|εφ|4∞‖∇φk‖4
L4‖∇Sk‖2

(L2
s )2 (3.75)∫

Ω

|εkθ∇Sk �∇θk : ∆Sk| dx ≤ δ‖∆Sk‖2
L2
s

+ cδ|εθ|4∞‖∇θk‖4
L4‖∇Sk‖2

(L2
s )2 . (3.76)

Finally, for the integrals involving the commutator, anti-commutator, trace oper-
ator, and those on the right-hand sides in (3.73), we apply the Gagliardo–Nirenberg
and Young inequalities so that∫

Ω

|J(vk,Sk) : ∆Sk| dx ≤ δ‖∆Sk‖2
L2
s

+
ν0

8
‖∆vk‖2

L2 + cδ‖Sk‖4
L4
s
‖∇vk‖2

L2 (3.77)∫
Ω

|(λDvk + Fs) : ∆Sk| dx ≤ δ‖∆Sk‖2
L2
s

+ cδ(λ
2‖∇vk‖2

L2 + ‖Fs‖2
L2
s
) (3.78)∫

Ω

|P(Sk) : ∆Sk| dx ≤ δ‖∆Sk‖2
L2
s

+ cδ(‖Sk‖2
L2
s

+ ‖Sk‖6
L6
s
). (3.79)

Using the general version of the Gagliardo–Nirenberg inequality (2.11), we obtain

‖Sk‖6
L6
s
≤ c(‖Sk‖L2

s
+ ‖Sk‖1/3

L2
s
‖∇Sk‖2/3

(L2
s )2)

6

≤ c(‖Sk‖6
L2
s

+ ‖Sk‖2
L2
s
‖∇Sk‖4

(L2
s )2). (3.80)

Hence, invoking the estimates (3.74)–(3.80) in the equation (3.73) and choosing
0 < δ < ε0

12
, we deduce the existence of c > 0 such that

1

2

d

dt
‖∇Sk‖2

(L2
s )2 +

ε0

2
‖∆Sk‖2

L2
s
− ν0

8
‖∆vk‖2

L2

≤ c[K5k(‖∇vk‖2
L2 + ‖Sk‖2

L2
s

+ ‖∇Sk‖2
(L2

s )2) + ‖Fs‖2
L2
s
] (3.81)

where

K5k := ‖vk‖4
L4
σ

+ ‖Sk‖4
L4
s

+ |εφ|4∞‖∇φk‖4
L4 + |εθ|4∞‖∇θk‖4

L4
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+ ‖Sk‖4
L2
s

+ ‖Sk‖2
L2
s
‖∇Sk‖2

(L2
s )2 + 1.

By arguing as above, it can be shown that K5k ∈ L1(I).
Getting the sum of the a priori estimates (3.49), (3.58), (3.71), and (3.81) leads

to the inequality
1

2

d

dt
Ẽk + D̃k ≤ c[S̃k + K̃k(‖φk‖2

L2 + ‖θk‖2
L2 + ‖Sk‖2

L2
s

+ Ẽk)] in Ik, (3.82)

where K̃k := K1k + K2k + · · · + K5k ∈ L1(Ik) and the functions Ẽk, D̃k, S̃k : Ik →
[0,∞) are given as follows:

Ẽk := ‖∆φk‖2
L2 + ‖∆θk‖2

L2 + τ‖∇∆θk‖2
L2 + ‖∇vk‖2

L2 + ‖∇Sk‖2
(L2

s )2

D̃k :=
1

c
(‖∆2φk‖2

L2 + ‖∆µk‖2
L2 + ‖∆2θk‖2

L2) +
ν0

4
‖∆vk‖2

L2 +
ε0

4
‖∆Sk‖2

L2
s

S̃k := ‖fo‖2
L2 + ‖fh‖2

L2 + ‖fv‖2
L2 + ‖Fs‖2

L2
s

+ ‖u‖2
L2 + |g|2.

Note that ‖φk‖2
L2 , ‖θk‖2

L2 , ‖Sk‖2
L2
s
∈ L∞(Ik), see (3.34), and from our assumptions

on the source functions, we have S̃k ∈ L1(Ik). Applying the Grönwall Lemma to
(3.82), it can be deduced that

‖∆φk‖L∞(L2) + ‖∇∆θk‖L∞(L2) + ‖∇vk‖L∞(L2) + ‖∇Sk‖L∞((L2
s )2) + ‖∆2φk‖L2(L2)

+ ‖∆µk‖L2(L2) + ‖∆2θk‖L2(L2) + ‖∆vk‖L2(L2) + ‖∆Sk‖L2(L2
s ) ≤ C̃0,u (3.83)

where C̃0,u = C(‖(φ0, θ0,v0,S0)‖D2 + ‖u‖U ) with C : R → [0,∞) a continuous and
monotone increasing function depending continuously on the norms of the given
source functions.

Step 3. Estimates on temporal derivatives. The previous step provides bounds
for the time derivatives. For the order parameter, we have

‖∂tφk‖L2(L2) ≤ c[‖vk‖L∞(W 1,2
0,σ)‖∆φk‖L2(L2) + ‖fo‖L2(L2)

+ (|mφ|∞‖∆φk‖L∞(L2) + |mθ|∞‖∆θk‖L∞(L2) + |m|∞)‖∆µk‖L2(L2)]. (3.84)

Applying the operator (I − τ∆)−1 : L2(Ω) → W 2,2
n (Ω) to the third equation in

(3.12), we have

‖∂tθk‖L2(W 2,2
n ) ≤ cτ [‖vk‖L∞(W 1,2

0,σ)‖∆θk‖L2(L2) + |g|‖v‖L2(L2
σ)

+ (|χφ|∞‖∆φk‖L∞(L2) + |χθ|∞‖∆θk‖L∞(L2) + |χ|∞)‖∆θk‖L2(L2)

+ b‖∆2θk‖L2(L2) + ‖Sk‖L∞(W1,2
s )‖∆vk‖L2(L2) + ‖fh‖L2(L2)]. (3.85)

Concerning the velocity, we have the following estimate for the time-derivative

‖∂tvk‖L2(L2
σ) ≤ c[‖vk‖L∞(W 1,2

0,σ)‖∆vk‖L2(L2)

+ (|νφ|∞‖∆φk‖L∞(L2) + |νθ|∞‖∆θk‖L∞(L2) + |ν|∞)‖∆vk‖L2(L2)

+ |a|(σ0 + 1)‖Sk‖L∞(W1,2
s )‖∆Sk‖L2(L2

s ) + σ0|a|‖Sk‖L2(W1,2
s )

+ σ‖Sk‖L∞(W1,2
s )‖θk‖L2(W 2,2

n ) + κ‖µk‖L2(W 1,2)‖∆φk‖L∞(L2)

+ (1 + ‖φk‖L2(L2) + ‖θk‖L2(L2))|g|+ ‖fv‖L2(L2) + ‖u‖L2(L2)]. (3.86)

Department of Mathematics and Computer Science, College of Science, University of the Philippines Baguio



Optimal control for non-isothermal viscoelastic flows 27 / 85

Finally, the time-derivative of the viscoelastic stress tensor can be bounded from
above according to

‖∂tSk‖L2(L2
s ) ≤ c[‖vk‖L∞(W 1,2

0,σ)‖∆Sk‖L2(L2
s ) + ‖Fs‖L2

s
+ λ‖vk‖L2(W 1,2

0,σ)

+ (`+ β)‖Sk‖L2(L2
s ) + β‖Sk‖3

L6(W1,2
s )

+ (1 + |a|)‖Sk‖L∞(W1,2
s )‖∆vk‖L2(L2)

+ (|εφ|∞‖∆φk‖L∞(L2) + |εθ|∞‖∆θk‖L∞(L2) + |ε|∞)‖∆Sk‖L2(L2
s )]. (3.87)

Using the following relation for the chemical potential

∂tµk = −α∆∂tφk + PΦkF
′′(φk)∂tφk

obtained by differentiating the second equation of (3.12) with respect to time, we
have

‖∂tµk‖L2(W−2,2
n ) ≤ c(α + ‖F ′′(φk)‖L∞(L∞))‖∂tφk‖L2(L2), (3.88)

where ‖F ′′(φk)‖L∞(L∞) ≤ c(‖φk‖q+1

L∞(W 2,2
n )

+1) thanks to (2.16) with s = 3 and k = 2.
The above uniform-in-time a priori estimates imply that the solutions to the Faedo–
Galerkin approximations persist in the whole time interval I.

Step 4. Passage to limit. According to the Banach–Alaoglu–Bourbaki Theorem,
there are subsequences (not relabelled) such that

φk
∗
⇀ φ in L∞(I;W 2,2

n (Ω)), φk ⇀ φ in L2(I;W 4,2
n (Ω)),

∂tφk ⇀ ∂tφ in L2(I;L2(Ω)), θk
∗
⇀ θ in L∞(I;W 3,2

n (Ω)),

θk ⇀ θ in L2(I;W 4,2
n (Ω)), ∂tθk ⇀ ∂tθ in L2(I;W 2,2

n (Ω)),

µk
∗
⇀ µ in L∞(I;L2(Ω)), µk ⇀ µ in L2(I;W 2,2

n (Ω)),

∂tµk ⇀ ∂tµ in L2(I;W−2,2
n (Ω)), vk

∗
⇀ v in L∞(I;W 1,2

0,σ(Ω)),

vk ⇀ v in L2(I;W 2,2
0,σ(Ω)), ∂tvk ⇀ ∂tv in L2(I;L2

σ(Ω)),

Sk
∗
⇀ S in L∞(I;W1,2

s (Ω)), Sk ⇀ S in L2(I;W2,2
n,s(Ω)),

∂tSk ⇀ ∂tS in L2(I;L2
s (Ω)).

By further extraction of a subsequence, we have φk → φ and θk → θ almost ev-
erywhere in ΩT and one can obtain from the Aubin–Lions–Simon Lemma [64] the
strong convergence φk → φ in L2(I;W 3,2

n (Ω)), µk → µ in L2(I;W 1,2(Ω)), θk → θ in
L2(I;W 3,2

n (Ω)), vk → v in L2(I;W 1,2
0,σ(Ω)), and Sk → S in L2(I;W1,2

s (Ω)).
With the above convergence, we now pass to the limit to the first five equations

in the approximate system (3.12). First, let us consider the convection terms. This
is standard, however, we provide briefly the details. Indeed, note that for each
w ∈ L2(I;W 1,2

0,σ(Ω)), we have by the triangle inequality and the Hölder inequality∫
ΩT

|(vk · ∇)vk ·w − (v · ∇)v ·w| dx

≤ (‖vk − v‖L2(L4)‖∇vk‖L∞(L2) + ‖vk‖L∞(L4)‖∇vk −∇v‖L2(L2))‖w‖L2(L4)

≤ c‖vk‖L∞(W 1,2
0,σ)‖vk − v‖L2(W 1,2

0,σ)‖w‖L2(W 1,2
0,σ) → 0.
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Hence, (vk · ∇)vk ⇀ (v · ∇)v in L2(I;W−1,2
0,σ (Ω)). The other convection terms

vk · ∇φk, vk · ∇θk, and (vk · ∇)Sk can be treated similarly. Also, the bilinear terms
µk∇φk, [Sk,Wv], {Sk,Dv}, ∇· (S2

k), ∇· (θkSk), ∇· (Tr(Sk)Sk), and Sk : Dvk, as well
as the trilinear term Tr(Sk)(I− Tr(Sk)Sk) can be considered analogously.

Let ϕ ∈ L2(I;W 1,2(Ω)). By continuity of m, we have mk = m(φk, θk)→ m(φ, θ)
almost everywhere in ΩT . Thus, by the Lebesgue dominated convergence theorem,
we have ∫

ΩT

|m(φk, θk)∇ϕ−m(φ, θ)∇ϕ|2 dx dt

≤
∫
ΩT

|m(φk, θk)−m(φ, θ)|2|∇ϕ|2 dx dt→ 0,

that is, m(φk, θk)∇ϕ→ m(φ, θ)∇ϕ in L2(I;L2(Ω)). Due to the convergence ∇µk →
∇µ in L2(I;L2(Ω)), one has∫

ΩT

m(φk, θk)∇µk · ∇ϕ dx dt→
∫
ΩT

m(φ, θ)∇µ · ∇ϕ dx dt.

As a result,∇·(m(φk, θk)∇µk) ⇀ ∇·(m(φ, θ)∇µ) in L2(I;W−1,2(Ω)). The treatment
for the terms ∇ · (χ(φk, θk)∇θk), ∇ · (ν(φk, θk)Dvk), and ∇ · (ε(φk, θk)∇Sk) are
completely the same.

Observe that there exists a constant M = M(C̃0,u) > 0 such that ‖φk‖C(Ω̄T ) +
‖φ‖C(Ω̄T ) ≤ M for each positive integer k, thanks to the continuous embeddings
W 1,2,2(I;W 4,2

n (Ω), L2(Ω)) ↪→ C(Ī;W 2,2
n (Ω)) ↪→ C(Ī;C(Ω̄)) = C(Ω̄T ). Hence, by

the mean-value theorem∫
ΩT

|F ′(φk)− F ′(φ)|2 dx dt ≤ max
|ψ|≤M

|F ′′(ψ)|2
∫
ΩT

|φk − φ|2 dx dt→ 0,

so that F ′(φk)→ F ′(φ) in L2(I;L2(Ω)).
For the remaining linear terms, we have ρ(θk, φk) → ρ(θ, φ) in L2(I;L2(Ω)),

∆φk ⇀ ∆φ in L2(I;W 2,2
n (Ω)), ∆2θk ⇀ ∆2θ in L2(I;L2(Ω)), and ∇ · Sk → ∇ · S

in L2(I;L2
s (Ω)). These convergence, along with those presented above for the

time-derivatives, imply that the first five equations in (3.12) converge to the
corresponding equations in the system (1.15) with respect to the weak topolo-
gies of L2(I;W−1,2(Ω)), L2(I;L2(Ω)), L2(I;W−1,2(Ω)), L2(I;W−1,2

0,σ (Ω)), and
L2(I;W−1,2

s (Ω)).
Now, let us pass to the limit of the initial conditions in (3.12). For the order

parameter, note that the map ψ 7→ ψ(0) : W 1,2,2(I;W 4,2
n (Ω), L2(Ω)) → W 2,2

n (Ω) is
continuous, hence, weakly continuous. Thus, φk(0) ⇀ φ(0) inW 2,2

n (Ω) since φk ⇀ φ
in W 1,2,2(I;W 4,2

n (Ω), L2(Ω)). From φk0 → φ0 in W 2,2
n (Ω), it follows that φ(0) = φ0

by uniqueness of weak limits. In a similar manner, it can be shown that θ(0) = θ0,
v(0) = v0, and S(0) = S0. Therefore, the existence of a strong solution has been
established.

Step 5. Uniqueness of solution and a priori estimate. The proof that the solution
constructed above is unique is very similar to the well-posedness of the linearized
system, and thus, we remove the details and refer the reader to the succeeding
section and the Appendix A. Alternatively, one may adapt the proof of uniqueness
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for strong solutions in the two-dimensional isothermal case provided in [18, Section
5]. Although the proof given there deals only with diffusion coefficients depending
on φ, the arguments can be extended for coefficients depending also on θ as θ has
better regularity than φ. Also, the dependence of ε on (φ, θ) appearing in the
evolution equation for S will not pose an issue as one can derive the corresponding a
priori estimates similar to those of the Navier–Stokes part. Finally, for the evolution
equation for θ, one may proceed as in the Cahn–Hilliard part.

The a priori estimate (3.11) without the pressure, that is,
‖(φ, µ, θ,v,S)‖W2 ≤ C(‖(φ0, θ0,v0,S0)‖D2 + ‖u‖U ), (3.89)

follows by combining the estimates (3.34)–(3.36) and (3.83)–(3.88), passing to the
limit inferior to the resulting inequality, and invoking the lower semicontinuity of
the norm with respect to weak and weak* topologies. Finally, the existence and
uniqueness of a pressure p ∈ L2(I;W 1,2(Ω)/R) is a consequence of the classical de
Rham Theorem and the a priori estimate for the pressure can be obtained from the
Navier–Stokes equation in (1.15) and (3.89). �

Conditions for initial data and source functions leading to strong solutions with
additional regularity will be presented in the Appendix A (see Theorem A.4). For
the meantime, we end this section by stating the following energy identity satisfied
by strong solutions.

Remark 3.2. Taking the sum of the starting integral identities in the above proof,
namely, (3.13), (3.20), (3.22), (3.26), and (3.29), but only using the test function µk
and not φk + µk in the case of (3.13), and passing to the limit k → ∞, it follows
that the strong solution satisfies the following basic energy identity:

1

2

∫
Ω

E(t) dx+

∫
Ω

D(t) dx =
1

2

∫
Ω

E(0) dx+

∫
Ω

S(t) dx t ∈ I,

where the energy, dissipation, and source terms as functions of time are given by

E := α|∇φ|2 + 2|F (φ)|+ σ

κ
|θ|2 +

στ

κ
|∆θ|2 +

1

κ
|v|2 +

σ0

2κ
|S|2 +

1

2κ
|Tr(S)|2

D := m(φ, θ)|∇µ|2 +
σχ(φ, θ)

κ
|∇θ|2 +

σb

κ
|∆θ|2 +

2ν(φ, θ)

κ
|Dv|2

+
σ0ε(φ, θ)

2κ
|∇S|2 +

σ0β

2κ
|Tr(S)S|2 +

σ0`

2κ
|S|2 +

ε(φ, θ)

2κ
|∇(Tr(S))|2

+
β

2κ
|Tr(S)|4 +

1

2κ
(`− σ0β − 2β)|Tr(S)|2 − σ0

κ

(
a+

λ

2

)
Dv : S

S := foµ+
σ

κ
fhθ +

1

κ
(σa0θg + ρ(φ, θ)g + fv + u) · v +

1

2κ
Fs : (σ0S + Tr(S)I).

Here, the term energy is in a purely mathematical sense. For a more physically
relevant elastic energy incorporating a logarithmic term that ensures the positive-
definiteness of the conformation tensor, we refer to [8].

Observe that ν0 ≥ σ0
4

(|a| + λ
2
) and ` ≥ max{|a| + λ

2
, (σ0 + 2)β} imply the non-

negativity of D. This can be easily verified from the Cauchy–Schwarz inequality. In
this case, D can be thought as the total energy dissipation and S as the contribution
of the sources to the energy. These can be utilized in the study of attractors and
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asymptotic behavior of solutions to the system (1.15), see for instance [33] in the
case of isothermal two-phase flows without stress diffusion.

4. The Linearized System and Control-to-State Oper-
ator

The directional derivatives of the operator that maps a control to a strong solution of
(1.15) can be represented in terms of the linearization around a fixed solution of the
PDE system. Moreover, by duality principle, the regularity of the adjoint variables,
and hence the optimal control, depends on the type of solutions for the linearized
system. Note that the nature of the cost functional dictates what formulation for
the linearized system is needed.

We will consider the strong, weak, and very weak formulations to the linearized
problem. For the sake of brevity of this section, definitions and proofs of existence
and uniqueness concerning such solutions are presented in the Appendix A. Here,
we focus on the continuity with respect to the weak topologies and the second-order
differentiability under the strong topologies of the control-to-state operator. These
are established by applying a sequential compactness argument and the implicit
function theorem, respectively.

4.1. Well-posedness of the Linearized System. Let us setW 0,2
n (Ω) :=

L2(Ω), W 1,2
n (Ω) := W 1,2(Ω), W0,2

n,s(Ω) := L2
s (Ω), and W1,2

n,s(Ω) := W1,2
s (Ω). We

introduce the following function spaces concerned with the strong, weak, and very
weak solutions to the linearized system:

Vk(ΩT ) := W 1,2,2(I;W k+2,2
n (Ω),W k−2,2

n (Ω))× L2(I;W k,2
n (Ω))

×W 1,2,2(I;W k+2,2
n (Ω),W k,2

n (Ω))×W 1,2,2(I;W k,2
0,σ(Ω),W k−2,2

0,σ (Ω))

×W 1,2,2(I;Wk,2
n,s(Ω),Wk−2,2

n,s (Ω)), k = 2, 1, 0.

Roughly speaking, the spatial regularity reduces by one from strong to weak and
from weak to very weak. Also, take note that the second factor (pertaining to the
linearized chemical potential) of the function spaces V2(ΩT ) and W2(ΩT ) differ.
However, it is also possible to take W2(ΩT ) as the space of strong solutions for the
linearized system. In line with this, we also set

Wk(ΩT ) := W 1,2,2(I;W k+2,2
n (Ω),W k−2,2

n (Ω))×W 1,2,2(I;W k,2
n (Ω),W k−4,2

n (Ω))

×W 1,2,2(I;W k+2,2
n (Ω),W k,2

n (Ω))×W 1,2,2(I;W k,2
0,σ(Ω),W k−2,2

0,σ (Ω))

×W 1,2,2(I;Wk,2
n,s(Ω),Wk−2,2

n,s (Ω)), k = 1, 0.

Thus, Wk(ΩT ) ↪→ Vk(ΩT ) for k = 0, 1, 2. Also, observe that V2(ΩT ) ↪→ V1(ΩT ) ↪→
V0(ΩT ) and W2(ΩT ) ↪→W1(ΩT ) ↪→W0(ΩT ).

Associated to the above function spaces for the solutions are the spaces for the
initial data D2(Ω) as defined in Section 3 in the case of strong solutions, and

Dk(Ω) := W k,2
n (Ω)×W k+1,2

n (Ω)×W k−1,2
0,σ (Ω)×Wk−1,2

n,s (Ω), k = 1, 0,

in the case of weak and very weak solutions. Likewise, the sources in the linearized
system will be elements of the dual of the following:

Uk(ΩT ) := L2(I;W k,2
n (Ω))× L2(I;W k−2,2

n (Ω))× L2(I;W k,2
n (Ω))
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× L2(I;W k,2
0,σ(Ω))× L2(I;Wk,2

n,s(Ω)), k = 0, 1, 2.

We define the function spaces Yk(ΩT ) to be Uk(ΩT ) but with the second factor
replaced by the dual of the second factor in W2−k(ΩT ), that is,

Yk(ΩT ) := L2(I;W k,2
n (Ω))×W 1,2,2(I;W 2−k,2

n (Ω),W−2−k,2
n (Ω))∗

× L2(I;W k,2
n (Ω))× L2(I;W k,2

0,σ(Ω))× L2(I;Wk,2
n,s(Ω)), k = 0, 1, 2.

Hence, Uk(ΩT ) ↪→ Yk(ΩT ). Also, note that U2(ΩT ) ↪→ U1(ΩT ) ↪→ U0(ΩT ),
Y2(ΩT ) ↪→ Y1(ΩT ) ↪→ Y0(ΩT ), and D2(Ω) ↪→ D1(Ω) ↪→ D0(Ω). For the func-
tion spaces we have discussed, the associated product norms will be denoted by
‖ · ‖Uk , ‖ · ‖Yk , ‖ · ‖Wk , ‖ · ‖Vk , and ‖ · ‖Dk .

Given fixed source functions (fo, fh,fv,Fs) and initial data (φ0, θ0,v0,S0) as in
Theorem 3.1, we introduce the nonlinear operator

N = (N1,N0) :W2(ΩT )×U → U0(ΩT )∗ ×D2(Ω)

as follows: (i) the first coordinate function N1 is obtained by subtracting both sides
of the first five equations in (1.15) by the corresponding terms on the right, with
the Leray–Helmholtz orthogonal projector P σ applied to the fourth equation, and
(ii) the second coordinate function N0 is obtained by adapting the same process as
in (i) to the initial data. In short, we make the right-hand sides of the differential
equations and initial data to be zero. Note that the application of P σ to the Navier–
Stokes equation eliminates the pressure p.

In virtue of Theorem 3.1, given a control u ∈ U , there is a unique (φ, µ, θ,v,S) ∈
W2(ΩT ) such that

N (φ, µ, θ,v,S,u) = 0. (4.1)

Define the control-to-state operator T : U →W2(ΩT ) by

T (u) = (φ, µ, θ,v,S)

if and only if (4.1) holds. From the definition of N , notice that T (P σu) = T (u)
for every u ∈ U . This means that the divergence-free part of the control is the one
that matters in the operator T . In particular, T is not injective.

Using a sequential compactness argument, we establish the following weak conti-
nuity of the control-to-state operator.

Theorem 4.1. The nonlinear operator T : U →W2(ΩT ) is continuous with respect
to weak topologies, that is, if uk ⇀ u in U , then T (uk) ⇀ T (u) in W2(ΩT ).

Proof. We follow the proof in [56, Lemma 2]. First, note that continuity and
sequential continuity with respect to the weak topologies in U and in W2(ΩT ) are
equivalent since both are reflexive separable spaces. Suppose that uk ⇀ u in U
and let (φk, µk, θk,vk,Sk) := T (uk) for each k ∈ N. Then, {uk}∞k=1 is bounded
in U and so {T (uk)}∞k=1 is bounded in W2(ΩT ) according to Theorem 3.1. Thus,
there is a subsequence such that T (ukj) ⇀ (φ, µ, θ,v,S) in W2(ΩT ). Applying the
Aubin–Lions–Lemma, we deduce that T (ukj) → (φ, µ, θ,v, S) in L2(I;W 3,2

n (Ω) ×
W 1,2(Ω)×W 3,2

n (Ω)×W 1,2
0,σ(Ω)×W1,2

s (Ω)). Following Step 4 in the proof of Theorem
3.1, passing kj → ∞ to the equation N1(φkj , µkj , θkj ,vkj , Skj ,ukj) = 0, we obtain
N1(φ, µ, θ,v,S,u) = 0.
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Next, we claim that N0(φ, µ, θ,v,S,u) = 0. Observe that the linear operator
(φ, θ,v,S) 7→ (φ(0), θ(0),v(0),S(0)) is continuous from

W 1,2,2(I;W 4,2
n (Ω), L2(Ω))×W 1,2,2(I;W 4,2

n (Ω),W 2,2
n (Ω))

×W 1,2,2(I;W 2,2
0,σ(Ω),L2

σ(Ω))×W 1,2,2(I;W2,2
n,s(Ω),L2

s (Ω))

into D2(Ω) thanks to the continuous embeddings (3.1)–(3.4). As a result, we
have (φ0, θ0,v0,S0) = (φkj(0), θkj(0),vkj(0), Skj(0)) ⇀ (φ(0), θ(0),v(0),S(0))
in D2(Ω), and this proves the claim. Hence, N (φ, µ, θ,v,S,u) = 0, that is,
T (u) = (φ, µ, θ,v,S). Since (φ, µ, θ,v,S) is uniquely determined by u, we obtain
that the whole sequence {T (uk)}∞k=1 converges weakly to T (u) in U . �

To study the differentiability properties of T , we will consider the linearized sys-
tem

∂tψ +w · ∇φ+ v · ∇ψ
−∇ · (m′(φ, θ)(ψ, η)∇µ+m(φ, θ)∇ξ) = ho in ΩT ,

ξ + α∆ψ − F ′′(φ)ψ = hc in ΩT ,

∂t(η − τ∆η) +w · ∇θ + v · ∇η
−∇ · (χ′(φ, θ)(ψ, η)∇θ + χ(φ, θ)∇η)

+ b∆2η − T : Dv − S : Dw − a0g ·w = hh in ΩT ,

∂tw + (w · ∇)v + (v · ∇)w

−∇ · (2ν ′(φ, θ)(ψ, η)Dv + 2ν(φ, θ)Dw) +∇q

−∇ · (σηS + MS(θ, S)T)− κ(ξ∇φ+ µ∇ψ)

− (boψ + bhη)g = hv in ΩT ,

∂tT + (w · ∇)S + (v · ∇)T + J(w,S) + J(v,T)

−∇ · (ε′(φ, θ)(ψ, η)∇S + ε(φ, θ)∇T)− λDw − P′(S)T = Hs in ΩT ,

∇ ·w = 0 in ΩT ,

∂nψ = ∂nξ = 0, ∂nη = ∂n∆η = 0, w = 0, ∂nT = O on ΓT ,
ψ(0) = ψ0, η(0) = η0, w(0) = w0, T(0) = T0 in Ω,

(4.2)

where m′, χ′, ν ′, and ε′ are defined as in (2.17) and

MS(θ, S)T := 2σ0aST− σ0aT + σθT + aTr(T)S + aTr(S)T (4.3)

P′(S)T := −`T + β(Tr(T)I− 2Tr(S)Tr(T)S− Tr(S)2T). (4.4)

By introducing the linear operator-valued mapping

A = (A1,A0) :W2(ΩT )→ L(V1(ΩT ),U1(ΩT )∗ ×D1(Ω))

' L(V1(ΩT ),U1(ΩT )∗)× L(V1(ΩT ),D1(Ω))

having the components in such a way that for given tuples X := (φ, µ, θ,v,S) ∈
W2(ΩT ) and Y := (ψ, ξ, η,w,T) ∈ V1(ΩT ), the actions A1(X)Y and A0(X)Y
correspond to the first five equations on the left-hand side and the initial data in
(4.2), respectively. Once again, the projector P σ is applied to the linearized Navier–
Stokes equation. With this, we can write the linear system (4.2) in a concise form
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as follows:

A(φ, µ, θ,v,S)(ψ, ξ, η,w,T) = ((ho, hc, hh,hv,Hs), (ψ0, η0,w0,T0)).

The nonlinear map A is well-defined. Indeed, this follows from Theorem 4.2 below.
We are now in position to state one of the main results of this section.

Theorem 4.2. Let k = 0, 1, 2. Suppose that (A1)3 and (A2)1 hold if k = 0, 1 or
(A1)4 and (A2)2 hold if k = 2. Then, we have

A :W2(ΩT )→ Liso(Vk(ΩT ),U2−k(ΩT )∗ ×Dk(Ω))

∩ Liso(Wk(ΩT ),Y2−k(ΩT )∗ ×Dk(Ω)).

Proof. This is a consequence of Theorems A.1, A.2, and A.3 in Appendix A. �

In other words, this theorem states that under suitable conditions on the sources
and initial data, the system (4.2) admits either a strong, weak, or very weak solution.

Remark 4.3. In the linear system (4.2), if hv lies in L2(I;L2(Ω)), L2(I;W−1,2
0 (Ω))

or L2(I;W−2,2
0 (Ω)), then it follows that there exists a unique associated pressure q

that belongs to either of the function spaces L2(I;W 1,2(Ω)/R), W−1,2
0,0 (I;L2(Ω)/R)

or W−1,2
0,0 (I;W−1,2

0 (Ω)/R), respectively, in virtue of de Rham’s theorem. The first is
classical, while the second and third cases follow from the following generalization,
whose proof can be obtained from the closed range theorem.

Theorem 4.4. (De Rham) Let k be a positive integer. Given

L ∈ W−1,2
0,0 (I;W−k,2

0 (Ω)),

we have

〈L,w〉W−1,2
0,0 (W−k,2

0 ),W 1,2
0,0 (W k,2

0 ) = 0 ∀w ∈ W 1,2
0,0 (I;W k,2

0 (Ω) ∩L2
σ(Ω))

if and only if there is a unique p ∈ W−1,2
0,0 (I;W 1−k,2

0 (Ω)/R) such that ∇p = L in the
sense of distributions:

〈L,v〉W−1,2
0,0 (W−k,2

0 ),W 1,2
0,0 (W k,2

0 )

= −〈p,∇ · v〉W−1,2
0,0 (W 1−k,2

0 /R),W 1,2
0,0 (Wk−1,2

0 /R) ∀v ∈ W 1,2
0,0 (I;W k,2

0 (Ω)).

In addition, there is a constant c > 0 such that

‖p‖W−1,2
0,0 (W 1−k,2

0 /R) ≤ c‖L‖W−1,2
0,0 (W−k,2

0 ).

4.2. Differentiability of the Control-to-State Operators. Be-
fore establishing that the control-to-state operator T defined in the previous sub-
section is twice differentiable, we prepare with two lemmas.

Lemma 4.5. If (A1)6 holds, then the map pF : φ 7→ F ′(φ) satisfies

pF ∈ C2(W 1,2,2(I;W 4,2
n (Ω), L2(Ω)),W 1,2,2(I;W 2,2

n (Ω), L2(Ω))).

Moreover, for every φ, ψ1, ψ2 ∈ W 1,2,2(I;W 4,2
n (Ω), L2(Ω)), we have

p′F (φ)ψ1 = F ′′(φ)ψ1, p′F (φ)(ψ1, ψ2) = F ′′′(φ)ψ1ψ2.
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Proof. Let us first derive point-wise identities in the time-space domain ΩT . For an
integer j, the variable sj ∈ [0, 1] appearing below depends on (t, x) ∈ ΩT . Consider
φ, ψ1, ψ2 ∈ W 1,2,2(I;W 4,2

n (Ω), L2(Ω)), and by scaling, we can assume without loss
of generality that we have ‖ψk‖W 1,2,2(W 4,2

n ,L2) ≤ 1 for k = 1, 2.
Let r1 := F ′(φ + ψ1) − F ′(φ) − F ′′(φ)ψ1. From the classical differentiation rules

and Taylor’s Theorem, it can be deduced that

r1 = F (3)(φ+ s1ψ1)ψ2
1

∂tr1 = [F ′′(φ+ ψ1)− F ′′(φ)− F ′′′(φ)ψ1]∂tφ+ [F ′′(φ+ ψ1)− F ′′(φ)]∂tψ1

= F (4)(φ+ s2ψ1)ψ2
1∂tφ+ F ′′′(φ+ s3ψ1)ψ1∂tψ1.

Similarly, the gradient of r1 can be expressed as

∇r1 = [F ′′(φ+ ψ1)− F ′′(φ)− F ′′′(φ)ψ1]∇φ+ [F ′′(φ+ ψ1)− F ′′(φ)]∇ψ1

= F (4)(φ+ s2ψ1)ψ2
1∇φ+ F ′′′(φ+ s3ψ1)ψ1∇ψ1.

Thus, ∂nr1 = 0 on ΓT since ∂nφ = ∂nψ1 = 0 on ΓT . Finally, the Laplacian of r1 can
be written as

∆r1 = ∇ · ∇r1 = [F ′′′(φ+ ψ1)− F ′′′(φ)− F (4)(φ)ψ1]|∇φ|2

+ [F ′′(φ+ ψ1)− F ′′(φ)− F ′′′(φ)ψ1]∆φ+ 2[F ′′′(φ+ ψ1)− F ′′′(φ)]∇φ · ∇ψ1

+ [F ′′(φ+ ψ1)− F ′′(φ)]∆ψ1 + F ′′′(φ+ ψ1)|∇ψ1|2

= F (5)(φ+ s4ψ1)ψ2
1|∇φ|2 + F (4)(φ+ s5ψ1)ψ2

1∆φ+ 2F (4)(φ+ s6ψ1)ψ1∇φ · ∇ψ1

+ F ′′′(φ+ s3ψ1)ψ1∆ψ1 + F ′′′(φ+ ψ1)|∇ψ1|2.

From the Hölder inequality, there is cφ = c(‖φ‖W 1,2,2(W 4,2
n ,L2)) > 0 independent of

ψ1 such that

‖r1‖W 1,2(L2) ≤ cφ(‖ψ1‖2
L4(L4) + ‖ψ1‖2

L∞(L∞)‖∂tφ‖L2(L2))

+ cφ(‖ψ1‖L∞(L∞)‖∂tψ‖L2(L2))

‖∇r1‖L2(L2) ≤ cφ(‖ψ1‖2
L∞(L∞)‖∇φ‖L2(L2) + ‖ψ1‖L∞(L∞)‖∇ψ‖L2(L2))

‖∆r1‖L2(L2) ≤ cφ‖ψ1‖2
L∞(L∞)(‖∇φ‖2

L4(L4) + ‖∆φ‖L2(L2))

+ cφ(‖ψ1‖L∞(L∞)‖∇φ‖L4(L4)‖∇ψ1‖L4(L4) + ‖∇ψ1‖2
L4(L4)).

Hence, we deduce from these estimates and the continuous embeddings W 1,2,2(I;
W 4,2

n (Ω), L2(Ω)) ↪→ L∞(I;W 1,4(Ω)) ↪→ L∞(I;L∞(Ω)) that

‖r1‖L∞(L∞) ≤ c‖r1‖L∞(W 1,4) ≤ c‖r1‖W 1,2,2(W 2,2
n ,L2) ≤ cφ‖ψ1‖2

W 1,2,2(W 4,2
n ,L2)

. (4.5)

The last inequality along with the local Lipschitz continuity of F ′′′ imply that pF is
continuously differentiable and p′F (φ)ψ1 = F ′′(φ)ψ1.

Let r2 := r̃2ψ1, where r̃2 := F ′′(φ + ψ2) − F ′′(φ) − F ′′′(φ)ψ2. Then, ∂tr2 =
ψ1∂tr̃2 + r̃2∂tψ1, ∇r2 = ψ1∇r̃2 + r̃2∇ψ1, and ∆r2 = ψ1∆r̃2 + 2∇r̃2 · ∇ψ1 + r̃2∆ψ1.
The expansions of ∂tr̃2, ∇r̃2, and ∆r̃2 can be handled in the same manner as those
presented above for r1, however, the order of derivatives of F appearing on the
right-hand sides are increased by 1. In particular, ∂nr2 = 0 on ΓT . Hence, (4.5)
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holds with r1 and ψ1 replaced by r̃2 and ψ2, respectively. Moreover,
‖r2‖W 1,2(L2) ≤ cφ(‖ψ1‖L∞(L∞)‖r̃2‖W 1,2(L2) + ‖r̃2‖L∞(L∞)‖∂tψ1‖L2(L2))

‖∇r2‖L2(L2) ≤ cφ(‖ψ1‖L∞(L∞)‖∇r̃2‖L2(L2) + ‖r̃2‖L∞(L∞)‖∇ψ1‖L2(L2))

‖∆r2‖L2(L2) ≤ cφ(‖ψ1‖L∞(L∞)‖∆r̃2‖L2(L2) + ‖∇r̃2‖L2(L4)‖∇ψ1‖L∞(L4))

+ cφ(‖r̃2‖L∞(L∞)‖∆ψ1‖L2(L2)).

As a consequence of the previous estimates for r2 and (4.5) for r̃2, one can obtain

‖r2‖W 1,2,2(W 2,2
n ,L2) ≤ cφ‖ψ2‖2

W 1,2,2(W 4,2
n ,L2)

,

for some cφ > 0 independent of ψ1 and ψ2. Therefore, pF is continuously differen-
tiable and p′′F (φ)(ψ1, ψ2) = F ′′(φ)ψ1ψ2, thanks to the local Lipschitz continuity of
F (4). �

Remark 4.6. It follows immediately from Lemma 4.5 that
pF ∈ C2(W 1,2,2(I;W 4,2

n (Ω), L2(Ω)), X(ΩT )),

whenever W 1,2,2(I;W 2,2
n (Ω), L2(Ω)) ↪→ X(ΩT ).

Lemma 4.7. If f ∈ C5(R2) and df : (φ, θ, µ) 7→ ∇ · (f(φ, θ)∇µ), then

df ∈ C2([W 1,2,2(I;W 4,2
n (Ω), L2(Ω))]2 × L2(I;W 2,2

n (Ω)), L2(I;L2(Ω))).

Furthermore, the action of the first and second derivatives are given by

d′f (φ, θ, µ)(ψ1, η1, ξ1) = ∇ · (f ′(φ, θ)(ψ1, η1)∇µ+ f(φ, θ)∇ξ1) (4.6)
d′′f (φ, θ, µ)(ψ1, η1, ξ1)(ψ2, η2, ξ2) = ∇ · (f ′(φ, θ)(ψ1, η1)∇ξ2 + f ′(φ, θ)(ψ2, η2)∇ξ1)

+∇ · (f ′′(φ, θ)(ψ1, η1)(ψ2, η2)∇µ) (4.7)

for (φ, θ, µ), (ψ1, η1, ξ1), (ψ2, η2, ξ2) ∈ [W 1,2,2(I;W 4,2
n (Ω), L2(Ω))]2 × L2(I;W 2,2

n (Ω)),
where

f ′′(φ, θ)(ψ1, η1)(ψ2, η2) := ψ2f
′
φ(φ, θ)(ψ1, η1) + η2f

′
θ(φ, θ)(ψ1, η1).

Proof. Let us denote the right-hand sides of (4.6) and (4.7) by δ1 and δ2. Again,
by scaling, we may assume without loss of generality that

‖(ψk, ηk, ξk)‖[W 1,2,2(W 4,2
n ,L2)]2×L2(W 2,2

n ) ≤ 1

for k = 1, 2. Setting rj := f(φ + ψj, θ + ηj) − f(φ, η) − f ′(φ, θ)(ψj, ηj) for j = 1, 2
and s1 := f(φ+ ψ1, θ + η1)− f(φ, θ), we can write

df,1 := df (φ+ ψ1, θ + η1, µ+ ξ1)− df (φ, θ, µ)− δ1

= ∇ · (r1∇µ+ s1∇ξ1) = ∇r1 · ∇µ+ r1∆µ+∇s1 · ∇ξ1 + s1∆ξ1.

As in the proof of Lemma 4.5, it can be shown that there exists a constant
cf,φ,θ,µ > 0 independent of ψ1 and ψ2 such that

‖r1‖W 1,2,2(W 4,2
n ,L2) + ‖s1‖2

W 1,2,2(W 4,2
n ,L2)

≤ cf,φ,θ,µ‖(ψ1, η1)‖2
[W 1,2,2(W 4,2

n ,L2)]2
.

This estimate implies that
‖df,1‖L2(L2) ≤ ‖∇r1‖L∞(L4)‖∇µ‖L2(L4) + ‖r1‖L∞(L∞)‖∆µ‖L2(L2)

+ ‖∇s1‖L∞(L4)‖∇ξ1‖L2(L4) + ‖s1‖L∞(L∞)‖∆ξ1‖L2(L2)

Department of Mathematics and Computer Science, College of Science, University of the Philippines Baguio



G. Peralta 36 / 85

≤ cf,φ,θ,µ‖(ψ1, η1, ξ1)‖2
[W 1,2,2(W 4,2

n ,L2)]2×L2(W 2,2
n )
.

For the action of the second-order derivative, by setting q2 := f ′(φ +
ψ2, θ + η2)(ψ1, η1) − f ′(φ, θ)(ψ1, ψ2) − f ′′(φ, θ)(ψ1, η1)(ψ2, η2) and s2 :=
f ′(φ+ ψ2, θ + η2)(ψ1, η1)− f ′(φ, θ)(ψ1, η1), we deduce that

df,2 := d′f (φ+ ψ2, θ + η2, µ+ ξ2)(ψ1, η1, ξ1)− d′f (φ, θ, µ)(ψ1, η1, ξ1)− δ2

= ∇ · (q2∇µ+ r2∇ξ1 + s2∇ξ2)

= ∇q2 · ∇µ+ q2∆µ+∇r2 · ∇ξ1 + r2∆ξ1 +∇s2 · ∇ξ2 + s2∆ξ2.

A similar argument as above leads to

‖r2‖W 1,2,2(W 4,2
n ,L2) + ‖q2‖W 1,2,2(W 4,2

n ,L2) + ‖s2‖2
W 1,2,2(W 4,2

n ,L2)

≤ cf,φ,θ,µ‖(ψ2, η2)‖2
[W 1,2,2(W 4,2

n ,L2)]2
,

and as a result,

‖df,2‖L2(L2) ≤ cf,φ,θ,µ‖(ψ2, η2, ξ2)‖2
[W 1,2,2(W 4,2

n ,L2)]2×L2(W 2,2
n )
.

From these, we obtain (4.6) and (4.7), and due to the local Lipschitz continuity of
f ′′′, we deduce that df is twice continuously differentiable. �

Remark 4.8. Theorem 4.7 holds as well when the function space L2(I;W 2,2
n (Ω))

pertaining to the variable µ is replaced by W 1,2,2(I;W 2,2
n (Ω),W−2,2

n (Ω)). This is
due to the fact that the latter space is embedded in the former space.

We are now in position to prove the main result of this subsection.

Theorem 4.9. Let (A1)6 and (A2)5 be satisfied. Then, T ∈ C2(U ,W2(ΩT )) ∩
C2(U ,V2(ΩT )). Moreover, if P : U → U0(ΩT )∗ is given by Pu := (0, 0,P σu,O)t,
then the action of the first-order and second-order derivatives of T are given by

T ′(u)h = [A1(T (u))]−1Ph ∀h ∈ U ,
T ′′(u)(h1,h2), = −[A1(T (u))]−1[A1(T (u))]′(T ′(u)h1, T ′(u)h2) ∀h1,h2 ∈ U .

Proof. It suffices to show that

N ∈ C2(W2(ΩT )×U ,U0(ΩT )∗ ×D2(Ω))

∩ C2(W2(ΩT )×U ,Y0(ΩT )∗ ×D2(Ω)). (4.8)

Indeed, if this is the case, then given u∗ ∈ U , there exists a unique (φ∗, µ∗, θ∗,v∗,S∗)
∈ W2(ΩT ) such that N (φ∗, µ∗, θ∗,v∗,S∗,u∗) = 0, and from Theorem A.3, we have

∂N (φ∗, µ∗, θ∗,v∗,S∗,u∗)
∂(φ, µ, θ,v,S)

= A(φ∗, µ∗, θ∗,v∗,S∗)

∈ Liso(W2(ΩT ),Y0(ΩT )∗ ×D2(Ω)) ∩ Liso(V2(ΩT ),U0(ΩT )∗ ×D2(Ω)).

From the implicit function theorem for Banach spaces, see [72, Section 4.7] for
instance, it will follow that T ∈ C2(U ,W2(ΩT )) ∩ C2(U ,V2(ΩT )). To show that
(4.8) is satisfied, we only need to establish the twice continuous differentiability
of the diffusion terms and the derivative F ′ of the Cahn–Hilliard potential since
the other expressions in (1.15) are either bounded linear, bilinear, or trilinear
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forms. However, these were already done in Lemma 4.7 and Remark 4.6 with
X(ΩT ) = W 1,2,2(I;W 2,2

n (Ω),W−2,2
n (Ω)) in the case of the pair (W2(ΩT ),Y0(ΩT )∗)

or X(ΩT ) = L2(I;W 2,2
n (Ω)) for the pair (V2(ΩT ),U0(ΩT )∗). The representations

of the actions of the derivatives of T presented above can be deduced by implicit
differentiation. �

The action of the first-order derivative T ′(u) stated in Theorem 4.9 is nothing
but the solution of the system linearized about T (u) in the direction of a control
h. Likewise, the action of the second-order derivative T ′′(u) corresponds to the
solution of the linearized system, but with right-hand sides that correspond to the
actions of the second-order derivatives of the nonlinear terms in the state system
(1.15) at (h1,h2). Take note that the second-order actions of the bilinear and
trilinear terms can be easily calculated. Thus, in principle, the linear system can be
written explicitly with the help of Lemma 4.5 and Lemma 4.7. However, this PDE
system is a bit tedious and messy to write, and for this reason we leave the task
to the interested reader. Nonetheless, the above representation of the second-order
derivative allows the study of second-order necessary and sufficient and conditions
for local optimality. We do not also pursue this issue here and refer to [56] for the
case with control constraints.

5. The Adjoint System
For this section, we study the dual problem to the linearized system. Similar to
Theorem 4.2 for the linearized system, we aim to analyze solutions of the adjoint
system with varying order of regularity. However, unlike the linearized system, the
Faedo–Galerkin method will not be used, with the exception of Theorems 5.9 and
5.12.

We begin with the dual result to Theorem 4.2 (see Theorem 5.1 below for the
precise formulation). This theorem establishes solutions to the adjoint problem in
the spaces U2−k(ΩT ) or Y2−k(ΩT ) for k = 0, 1, 2. Since these function spaces do not
involve time-derivatives, we need to determine the regularity of the time-derivatives
of the adjoint states and deduce the corresponding stability estimates. This will be
done by separately examining the evolution equations for each adjoint variable.

The dependence of the diffusion coefficients on (φ, θ) introduces gradient terms
with coefficients involving the gradients of the state variables. The meticulous esti-
mation of these terms is important in determining the appropriate function spaces
for the time-derivatives of the adjoint states. Additionally, to account for the inclu-
sion of time-derivatives of the states in the cost functional, we will employ function
spaces for the source terms in the adjoint problem that can handle such functionals.

Let Wk
0 (ΩT ) := {(φ, µ, θ,v,S) ∈ Wk(ΩT ) : φ(0) = θ(0) = 0, w(0) = 0, S(0) =

O}, treated as a closed subspace of Wk(ΩT ). We define the subspace Vk0 (ΩT ) of
Vk(ΩT ) in a similar fashion. Then, notice that

A1(T (u)) ∈ Liso(Vk0 (ΩT ),U2−k(ΩT )∗) ∩ Liso(Wk
0 (ΩT ),Y2−k(ΩT )∗)

for k = 0, 1, 2 in virtue of Theorem 4.2. Hence, for the inverse of the adjoint operator,
it holds that

[A1(T (u))]−∗ := ([A1(T (u))]∗)−1
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∈ Liso(Vk0 (ΩT )∗,U2−k(ΩT )) ∩ Liso(Wk
0 (ΩT )∗,Y2−k(ΩT )). (5.1)

This observation will be the foundation of the analysis for the adjoint system.
The variational formulation for the dual problem to the linearized system is ex-

pressed as follows: Given (go, gc, gh, gv,Gs) ∈ Vk0 (ΩT )∗ (Wk
0 (ΩT )∗, respectively),

determine (ϕ, ζ, ϑ,y,Y) ∈ U2−k(ΩT ) (Y2−k(ΩT ), respectively) such that the varia-
tional equation

〈A1(T (u))∗(ϕ, ζ, ϑ,y,Y), (ψ, ξ, η,w,T)〉(Vk0 )∗,Vk0

= 〈(go, gc, gh, gv,Gs), (ψ, ξ, η,w,T)〉(Vk0 )∗,Vk0 ∀(ψ, ξ, η,w,T) ∈ Vk0 (ΩT ) (5.2)

holds, with appropriate modifications in the case of Wk
0 (ΩT )∗ and Y2−k(ΩT ). The

analysis on the linearized system, in particular (5.1), immediately leads us to the
following well-posedness theorem for this problem.

Theorem 5.1. Let k = 0, 1, 2. Suppose that (A1)3 and (A2)1 are satisfied when
k = 0, 1 or (A1)4 and (A2)2 are satisfied when k = 2. For each (go, gc, gh, gv,Gs) ∈
Vk0 (ΩT )∗ (Wk

0 (ΩT )∗, respectively), there exists a unique variational solution (ϕ, ζ, ϑ,
y,Y) ∈ U2−k(ΩT ) (Y2−k(ΩT ), respectively) to the adjoint problem (5.2). Further-
more, for ck := ‖[A1(T (u))]−∗‖L((Vk0 )∗,U2−k) we have

‖(ϕ, ζ, ϑ,y,Y)‖U2−k ≤ ck‖(go, gc, gh, gv,Gs)‖(Vk0 )∗ (5.3)

and a similar estimate holds in the case of the function spaces Y2−k(ΩT ) and
Wk

0 (ΩT )∗.

For (φ, µ, θ,v,S) ∈ W2(ΩT ), γ = φ, θ, and suitable (ϕ, ϑ,y,Y), we introduce the
notation

dγ(φ, µ, θ,v,S)(ϕ, ϑ,y,Y) := mγ(φ, θ)∇µ · ∇ϕ
+ χγ(φ, θ)∇θ · ∇ϑ+ 2νγ(φ, θ)Dv : Dy + εγ(φ, θ)∇S ∴∇Y. (5.4)

Note that such terms arise due to the dependence of the diffusion coefficients to the
order parameter and temperature, which are obviously not present in the constant-
coefficient case. The regularity of dγ(φ, µ, θ,v, S)(ϕ, ϑ,y,Y) depends on the nature
of the solution to the adjoint system. We shall look at this in the succeeding dis-
cussions.

Let us calculate formally the actions for the dual operators of MS(θ, S) and P′(S)
as defined in (4.3) and (4.4). For smooth enough X and Y, we have∫
Ω

MS(θ, S)T : X dx =

∫
Ω

[2σ0aTr((ST)tX)− T : (σ0aX)] dx

+

∫
Ω

[T : (σθX) + a(T : I)(S : X) + T : (aTr(S)X)] dx

=

∫
Ω

T : {σ0a(2S− I)X + σθX + a[(S : X)I + Tr(S)X]} dx∫
Ω

P′(S)T : Y dx =

∫
Ω

T : (−`Y) + β(T : I)(I : Y) dx

−
∫
Ω

β[2(T : I)(Tr(S)S : Y)− T : (Tr(S)2Y)] dx
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=

∫
Ω

T : {−`Y + βTr(Y)I− β[2(Tr(S)S : Y)I− Tr(S)2Y]} dx.

These imply that we have

MS(θ, S)∗X = σ0a(2S− I)X + σθX + a[(S : X)I + Tr(S)X] (5.5)

P′(S)∗Y = −`Y + β[Tr(Y)I− 2(Tr(S)S : Y)I− Tr(S)2Y]. (5.6)

With these, we will see in the proof of the succeeding theorem that the strong
formulation of the variational equation (5.2) with (go, gc, gh, gv,Gs) given by (5.8)
below, is the linear system

− ∂tϕ− v · ∇ϕ+ dφ(φ, µ, θ,v,S)(ϕ, ϑ,y,Y) + α∆ζ

−F ′′(φ)ζ + κy · ∇µ− bog · y = go in ΩT ,

ζ −∇ · (m(φ, θ)∇ϕ)− κy · ∇φ = gc in ΩT ,

− ∂t(ϑ− τ∆ϑ)− v · ∇ϑ−∇ · (χ(φ, θ)∇ϑ) + b∆2ϑ

+ dθ(φ, µ, θ,v,S)(ϕ, ϑ,y,Y) + σS : Dy − bhg · y = gh in ΩT ,

− ∂ty − (v · ∇)y + (∇v)y −∇ · (2ν(φ, θ)Dy)

−∇ · ([S,Y]− a{S,Y} − λY− ϑS)

+ϕ∇φ+ ϑ∇θ +∇S� Y− a0ϑg +∇s = gv in ΩT ,

− ∂tY− (v · ∇)Y + 2WvY− 2aDvY−∇ · (ε(φ, θ)∇Y)

−P′(S)∗Y + MS(θ, S)∗Dy − ϑDv = Gs in ΩT ,

∇ · y = 0 in ΩT ,

∂nϕ = ∂n∆ϕ = 0, ∂nϑ = ∂n∆ϑ = 0, y = 0, ∂nY = O on ΓT ,
ϕ(T ) = ϕT , ϑ(T )− τ∆ϑ(T ) = ϑT , y(T ) = yT , Y(T ) = YT in Ω,

(5.7)

where∇S�Y = [∂jS : Y]2j=1. Here, the given functions are the coefficients and strong
solution (φ, µ, θ,v,S) of (1.15), the source term (go, gc, gh, gv,Gs), and the terminal
data (ϕT , ϑT ,yT ,YT ), while the unknown adjoint state is (ϕ, ζ, ϑ,y,Y). As usual,
for low regular adjoint variables, the spatial and temporal derivatives appearing
above are to be understood at least in the sense of distributions (refer to the proof
of Theorem 5.2 below for the precise definitions). Owing to the regularity of the
state variables, these terms are not general distributions per se, but are elements of
suitable Lebesgue–Bochner spaces or negative-index Sobolev spaces with respect to
time.

Assuming additional regularity on the data in the adjoint system, one can estab-
lish additional smoothness of the dual variables. In this direction, we shall consider
the following decomposition for the data appearing in the adjoint system:

(go, gc, gh, gv,Gs) = (gdo, gc, gdh, gdv,Gds) + eT (ϕT , ϑT ,yT ,YT ), (5.8)

where eT : Dk(Ω)∗ → Vk0 (ΩT )∗ is defined by

〈eT (ϕT , ϑT ,yT ,YT ), (ψ, ξ, η,w,T)〉(Vk0 )∗,Vk0
:= 〈(ϕT , ϑT ,yT ,YT ), (ψ(T ), η(T ),w(T ),T(T ))〉(Dk)∗,Dk .

Note that if (ψ, ξ, η,w,T) ∈ Vk0 (ΩT ), then (ψ, η,w,T) ∈ C(Ī;Dk(Ω)). Thus, we
can easily see that eT ∈ L(Dk(Ω)∗,Vk0 (ΩT )∗). Observe that eT is independent with
respect to the variable ξ. In concrete terms, the first tuple on the right-hand side
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of the decomposition (5.8) corresponds to terms arising from the cost functional
integrated over the time-space domain ΩT , while the second tuple is designated for
terms arising from integration over Ω at the terminal time T .

The precise regularity conditions for the first tuple on the right-hand side of (5.8)
will be presented below. In general, this tuple will be taken in the dual of a Hilbert
space X k(ΩT ), for which

Vk0 (ΩT ) ↪→ X k(ΩT ) := Xk
o (ΩT )× L2(I;W k,2

n (Ω))

×Xk
h(ΩT )×Xk

v(ΩT )× Xk
s (ΩT ), (5.9)

for k = 0, 1, 2. All throughout, we assume that C∞(Ī;C∞(Ω̄)∩W 4,2
n (Ω)) is dense in

Xk
o (ΩT ) and Xk

h(ΩT ), C∞(Ī;C∞0 (Ω)2) is dense in Xk
v(ΩT ), and C∞(Ī;C∞(Ω̄)2×2 ∩

L2
s (Ω)) is dense in Xk

s (ΩT ). Furthermore, it is assumed that

BN = I + τAN ∈ Liso(Xk
h(ΩT ), BNX

k
h(ΩT )), k = 0, 1, 2. (5.10)

We note that the function space X k(ΩT ) appears, for instance, when the cost func-
tional in the optimal control problem involves time-derivatives (see Section 6).

Recall that given a finite collection {(Xk, ‖ · ‖Xk)}nk=1 of Banach spaces that are
continuously embedded in some Hausdorff topological vector space, the sum X1 +
· · · + Xn := {x1 + · · · + xk : x1 ∈ X1, . . . , xn ∈ Xn} is again a Banach space when
equipped with the norm

‖x‖X1+···+Xn := inf
x=x1+···+xn

x1∈X1,...,xn∈Xn

n∑
k=1

‖xk‖Xk . (5.11)

The following theorem is concerned with the time-regularity of the very weak
solutions to the adjoint system.

Theorem 5.2. Let (A1)4 and (A2)2 hold. Suppose that we have source functions
(gdo, gc, gdh, gdv,Gds) ∈ X 2(ΩT )∗ and initial data (ϕT , ϑT ,yT ,YT ) ∈ D2(Ω)∗. Then,
the adjoint system (5.7) admits a unique solution (ϕ, ζ, ϑ,y,Y) ∈ U0(ΩT ) such that

‖(ϕ, ζ, ϑ,y,Y)‖U0 + ‖∂tϕ‖L2(W−4,2
n )+L1(W−2,2

n )+(X2
o )∗

+ ‖∂tϑ‖L2(W−2,2
n )+L1(L2)+(BNX

2
h)∗ + ‖∂ty‖L2(W−2,2

0,σ )+(X2
v)∗

+ ‖∂tY‖L2(W−2,2
n,s )+(X2

s )∗ ≤ c‖(gdo, gc, gdh, gdv,Gds)‖(X 2)∗

+ c‖(ϕT , ϑT ,yT ,YT )‖(D2)∗

for some c = c(‖(φ, µ, θ,v,S)‖W2) > 0.

Proof. We shall denote the space-time variable by ω = (t, x) ∈ ΩT . By assumption,
it follows that the tuple defined in (5.8) lies in V2

0 (ΩT )∗. Hence, Theorem 5.1 tells
us that (5.2) has a unique solution (ϕ, ζ, ϑ,y,Y) ∈ U0(ΩT ). Moreover, we obtain
from (5.3) that

‖(ϕ, ζ, ϑ,y,Y)‖U0

≤ c̃0 := c[‖(gdo, gc, gdh, gdv,Gds)‖(X 2)∗ + cT‖(ϕT , ϑT ,yT ,YT )‖(D2)∗ ], (5.12)
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where cT := ‖eT‖L((D2)∗,(V2
0 )∗), thanks to X 2(ΩT )∗ ↪→ V2

0 (ΩT )∗ from the assumption
(5.9). The time-regularity of the state variables will be established by duality ar-
guments. The main idea is to take a test function in V2

0 (ΩT ) where all components
vanish except one.

Let us start by determining the regularity of ∂tϕ. Taking test functions ψ ∈
W 1,2,2

0 (I;W 4,2
n (Ω), L2(Ω)) ↪→ X2

o (ΩT ), ξ = η = 0, w = 0, and T = O in (5.2) leads
to the equation∫

ΩT

(∂tψ)ϕ dω +

∫
ΩT

(v · ∇ψ)ϕ dω −
∫
ΩT

∇ · (mφ(φ, θ)ψ∇µ)ϕ dω (5.13)

+ 〈ζ, α∆ψ − F ′′(φ)ψ〉L2(W−2,2
n ),L2(W 2,2

n ) −
∫
ΩT

∇ · (χφ(φ, θ)ψ∇θ)ϑ dω

−
∫
ΩT

∇ · (2νφ(φ, θ)ψDv) · y dω −
∫
ΩT

κµ∇ψ · y dω −
∫
ΩT

boψg · y dω

−
∫
ΩT

∇ · (εφ(φ, θ)ψ∇S) : Y dω = 〈gdo, ψ〉(X2
o )∗,X2

o
+ 〈ϕT , ψ(T )〉W−2,2

n ×W 2,2
n
.

Alternatively, one can take the sum of the very weak formulation (A.2)–(A.5) of the
linearized system and the one obtained by testing the equation for ξ by ζ, and then
apply a tuple of test functions where all components vanish except for ψ.

Suppose that ψ ∈ C∞0 (I;W 4,2
n (Ω)) ⊂ W 1,2,2

0 (I;W 4,2
n (Ω), L2(Ω)). Using the anti-

symmetry of the trilinear term with respect to the second and third arguments
induced by the convective derivative, we have v · ∇ϕ ∈ L2(I;W−2,2

n (Ω)) since

〈v · ∇ϕ, ψ〉L2(W−2,2
n ),L2(W 2,2

n ) := −
∫
ΩT

(v · ∇ψ)ϕ dω

≤ c‖v‖L∞(W 1,2
0,σ)‖ϕ‖L2(L2)‖ψ‖L2(W 2,2

n )

and C∞0 (I;W 4,2
n (Ω)) is dense in L2(I;W 2,2

n (Ω)). Performing the divergence operator,
we obtain

∇ · (mφ(φ, θ)ψ∇µ) = (mφφ(φ, θ)ψ∇φ+mφθ(φ, θ)ψ∇θ +mφ(φ, θ)∇ψ) · ∇µ
+mφ(φ, θ)ψ∆µ.

In virtue of the embeddings W 2,2
n (Ω) ↪→ W 1,4(Ω) ↪→ L∞(Ω) and the previous

equation, one has

〈mφ(φ, θ)∇µ · ∇ϕ, ψ〉L1(W−2,2
n ),L∞(W 2,2

n ) := −
∫
ΩT

∇ · (mφ(φ, θ)ψ∇µ)ϕ dω

≤ c(‖φ‖L∞(W 1,4) + ‖θ‖L∞(W 1,4) + 1)‖µ‖L2(W 2,2
n )‖ϕ‖L2(L2)‖ψ‖L∞(W 2,2

n ). (5.14)

Thus, we deduce that mφ(φ, θ)∇µ · ∇ϕ ∈ L1(I;W−2,2
n (Ω)). By following a similar

process, it can be shown that χφ(φ, θ)∇θ ·∇ϑ, 2νφ(φ, θ)Dv : Dy, εφ(φ, θ)∇S ∴ ∇Y ∈
L1(I;W−2,2

n (Ω)) with bounds analogous to the one given by (5.14).
Performing the estimation as in (A.24), we obtain

〈F ′′(φ)ζ, ψ〉L2(W−2,2
n ),L2(W 2,2

n ) := 〈ζ, F ′′(φ)ψ〉L2(W−2,2
n ),L2(W 2,2

n )

≤ cφ‖ζ‖L2(W−2,2
n )‖ψ‖L2(W 2,2

n )
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so that F ′′(φ)ζ ∈ L2(I;W−2,2
n (Ω)). Likewise, we have α∆ζ ∈ L2(I;W−4,2

n (Ω))
according to

〈α∆ζ, ψ〉L2(W−4,2
n ),L2(W 4,2

n ) := 〈ζ, α∆ψ〉L2(W−2,2
n ),L2(W 2,2

n )

≤ c‖ζ‖L2(W−2,2
n )‖ψ‖L2(I;W 4,2

n ).

We have κy · ∇µ ∈ L4/3(I;W−2,2
n (Ω)) ↪→ L1(I;W−2,2

n (Ω)) thanks to the following
inequality

〈κy · ∇µ, ψ〉L4/3(W−2,2
n ),L4(W 2,2

n ) := −
∫
ΩT

κµ∇ψ · y dω

≤ c‖µ‖L4(W 1,2)‖y‖L2(L2
σ)‖ψ‖L4(W 2,2

n ).

Finally, it can be easily seen that bog · y ∈ L2(I;L2(Ω)) and ‖bog · y‖L2(L2) ≤
c‖y‖L2(L2

σ).
Therefore, from the above inequalities and gdo ∈ X2

o (ΩT )∗, we obtain that ∂tϕ ∈
L2(I;W−4,2

n (Ω)) +L1(I;W−2,2
n (Ω)) +X2

o (ΩT )∗, and thanks to (5.11) and (5.12), we
have

‖∂tϕ‖L2(W−4,2
n )+L1(W−2,2

n )+(X2
o )∗ ≤ c̃0, (5.15)

In addition, the first equation in (5.7) holds in this sum of function spaces. For
brevity, we shall adopt the above argument to the other state variables without
further comments.

Next, we estimate the norm of ζ. By taking the test functions ψ = η = 0,
ξ ∈ L2(I;W 2,2

n (Ω)), v = 0, and S = O in (5.2), we get

〈ζ, ξ〉L2(W−2,2
n ),L2(W 2,2

n ) −
∫
ΩT

∇ · (m(φ, θ)∇ξ)ϕ dω

−
∫
ΩT

κξ∇φ · y dω = 〈gc, ξ〉L2(W−2,2
n ),L2(W 2,2

n ).

Note that κy · ∇φ ∈ L2(I;W−1,2(Ω)) and ∇ · (m(φ, θ)∇ϕ) ∈ L2(I;W−2,2
n (Ω)) since

〈κy · ∇φ, ξ〉L2(W−1,2),L2(W 1,2) := −
∫
ΩT

κξ∇φ · y dω

≤ c‖y‖L2(L2
σ)‖φ‖L∞(W 1,4)‖ξ‖L2(W 1,2)

〈∇ · (m(φ, θ)∇ϕ), ξ〉L2(W−2,2
n ),L2(W 2,2

n ) :=

∫
ΩT

∇ · (m(φ, θ)∇ξ)ϕ dω

≤ c(‖φ‖L∞(W 1,4) + ‖θ‖L∞(W 1,4) + 1)‖ϕ‖L2(L2)‖ξ‖L2(W 2,2
n ).

As a consequence of these inequalities and (5.12), ζ enjoys the estimate

‖ζ‖L2(W−2,2
n ) ≤ c(‖y‖L2(L2

σ) + ‖ϕ‖L2(L2) + ‖gc‖L2(W−2,2
n )) ≤ c̃0. (5.16)

Now, we consider the regularity of ∂tϑ. Let γ ∈ W 1,2,2
0 (I;W 2,2

n (Ω), L2(Ω)). Using
ψ = ξ = 0, η = B−1

N γ ∈ W 1,2,2
0 (I;W 4,2

n (Ω),W 2,2
n (Ω)) ↪→ X2

h(ΩT ), v = 0, and T = O
in (5.2) yield the equation∫

ΩT

(∂tγ)ϑ dω +

∫
ΩT

(v · ∇B−1
N γ)ϑ dω
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−
∫
ΩT

∇ · (χθ(φ, θ)B−1
N γ∇θ + χ(φ, θ)∇B−1

N γ)ϑ dω

+

∫
ΩT

(b∆2B−1
N γ)ϑ dω −

∫
ΩT

∇ · (mθ(φ, θ)B
−1
N γ∇µ)ϕ dω

−
∫
ΩT

∇ · (2νθ(φ, θ)B−1
N γDv) · y dω −

∫
ΩT

∇ · (σB−1
N γS) · y dω

−
∫
ΩT

bhB
−1
N γg · y dω −

∫
ΩT

∇ · (εθ(φ, θ)B−1
N γ∇S) : Y dω

= 〈gdh, B
−1
N γ〉(X2

h)∗,X2
h

+ 〈ϑT , B−1
N γ(T )〉W−3,2

n ,W 3,2
n
. (5.17)

Suppose that γ ∈ C∞0 (I;W 2,2
n (Ω)) ⊂ W 1,2,2

0 (I;W 2,2
n (Ω), L2(Ω)). Since B−∗N :=

(B−1
N )∗ : W−2,2

n (Ω) → L2(Ω) is continuous, we have B−∗N (v · ∇ϑ) ∈ L2(I;L2(Ω))
by duality due to

(B−∗N (v · ∇ϑ), γ)L2(L2) := −
∫
ΩT

(v · ∇B−1
N γ)ϑ dω

≤ c‖v‖L∞(W 1,2
0,σ)‖ϑ‖L2(L2)‖γ‖L2(L2).

As in the previous discussion, we have B−∗N (χθ(φ, θ)∇θ · ∇ϑ), B−∗N (mθ(φ, θ)∇µ ·
∇ϕ), B−∗N (2νθ(φ, θ)Dv : Dy), B−∗N (εθ(φ, θ)∇S ∴ ∇Y) ∈ L1(I;L2(Ω)) and B−∗N ∇ ·
(χ(φ, θ)∇ϑ) ∈ L2(I;L2(Ω)). Moreover, the norms can be estimated following (5.14).

Observe that ∇ · (B−1
N γS) = S∇B−1

N γ + B−1
N γ∇ · S. Hence, B−∗N (σS : Dy) ∈

L2(I;L2(Ω)) and B−∗N (b∆2ϑ) ∈ L2(I;W−2,2
n (Ω)) since

(B−∗N (σS : Dy), γ)L2(L2) := −
∫
ΩT

σ(∇ · (B−1
N γS)) · y dω

≤ c‖S‖L∞(W1,2
s )‖y‖L2(L2

σ)‖γ‖L2(L2)

〈B−∗N (b∆2ϑ), γ〉L2(W−2,2
n ),L2(W 2,2

n ) :=

∫
ΩT

b(∆2B−1
N γ)ϑ dω

≤ c‖ϑ‖L2(L2)‖γ‖L2(W 2,2
n ).

Next, B−∗N (bhg·y) ∈ L2(I;W 2,2
n (Ω)) by the boundedness of B−∗N : L2(Ω)→ W 2,2

n (Ω),
and we have

‖B−∗N (bhg · y)‖L2(W 2,2
n ) ≤ c‖y‖L2(L2

σ).

Finally, B−∗N gdh ∈ (BNX
2
h(ΩT ))∗ according to (5.10) and

〈B−∗N gdh, γ〉(BNX2
h)∗,BNX

2
h

:= 〈gdh, B
−1
N γ〉(X2

h)∗,X2
h

≤ ‖gdh‖(X2
h)∗‖B−1

N ‖L(BNX
2
h ,X

2
h)‖γ‖BNX2

h
. (5.18)

Thus, it follows that ∂tϑ ∈ L2(I;W−2,2
n (Ω)) + L1(I;L2(Ω)) + (BNX

2
h(ΩT ))∗ and

the third equation in (5.7) is satisfied in this space. Moreover, upon combining the
above estimates along with that of (5.12) and using (5.11), we get

‖∂tϑ‖L2(W−2,2
n )+L1(L2)+(BNX

2
h)∗ ≤ c̃0. (5.19)
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Now, we consider the case of ∂ty. For this, we take the test functions w ∈
W 1,2,2

0 (I;W 2,2
0,σ(Ω),L2

σ(Ω)) ↪→X2
v(ΩT ), ψ = ξ = η = 0, and T = O in (5.2) so that∫

ΩT

(∂tw) · y dω +

∫
ΩT

[(v · ∇) ·w] · y dω +

∫
ΩT

w · (∇v)y dω

−
∫
ΩT

∇ · (2ν(φ, θ)Dw) · y dω +

∫
ΩT

(w · ∇φ)ϕ dω +

∫
ΩT

(w · ∇θ)ϑ dω

−
∫
ΩT

S : Dwϑ dω −
∫
ΩT

a0ϑg ·w dω +

∫
ΩT

(w · ∇)S : Y dω

+

∫
ΩT

J(w, S) : Y dω −
∫
ΩT

λDw : Y dω

= 〈gdv,w〉(X2
v)∗,X2

v
+ 〈yT ,w(T )〉W−1,2

0,σ ,W 1,2
0,σ
. (5.20)

Let w ∈ C∞0 (I;W 2,2
0,σ(Ω)) ⊂ W 1,2,2

0 (I;W 2,2
0,σ(Ω),L2

σ(Ω)). As before, it can be
shown that −(v · ∇)y, (∇v)y, −∇ · (2ν(φ, θ)Dy), and ∇ · (ϑS), with definitions
as in the second, third, fourth, and seventh integrals in (5.20), are elements of
L2(I;W−2,2

0,σ (Ω)). Likewise, ϕ∇φ, λ∇ · Y ∈ L2(I;W−1,2
0,σ (Ω)), and these correspond

to the fifth and eleventh term in (5.20). For the sixth and eighth integrals, it holds
that ϑ∇θ, a0ϑg ∈ L2(I;L2(Ω)).

It remains to consider the ninth and tenth integrals in (5.20). First, observe that
for sufficiently smooth w, S, and Y, one has∫

ΩT

(w · ∇)S : Y dω =

∫
ΩT

w · (∇S� Y) dω∫
ΩT

J(w,S) : Y dω =

∫
ΩT

([S,Ww] : Y− a{S,Dw} : Y) dω

=

∫
ΩT

∇w : ([S,Y]− a{S,Y}) dω = −
∫
ΩT

w · (∇ · ([S,Y]− a{S,Y})) dω.

Here, we utilized Lemma 2.1 for the terms involving the commutator and anti-
commutator. With these, we define ∇S � Y and −∇ · ([S,Y] − a{S,Y}) by
the left-hand sides of these equations, and take note that both of these lie in
L2(I;W−2,2

0,σ (Ω)). Hence, we obtain ∂ty ∈ L2(I;W−2,2
0,σ (Ω)) + X2

v(ΩT )∗ and the
fourth equation of (5.7) holds with respect to this function space. From the
estimates that can be derived from the norms of the previous terms along with
(5.12), we deduce from (5.11) that

‖∂ty‖L2(W−2,2
0,σ )+(X2

v)∗ ≤ c̃0. (5.21)

To finish the proof of the theorem, we now consider ∂tY. We take the test functions
ψ = ξ = η = 0, w = 0, and T ∈ W 1,2,2

0 (I;W2,2
n,s(Ω),L2

s (Ω)) ↪→ X2
s (Ω) in (5.2) to

obtain ∫
ΩT

∂tT : Y dω +

∫
ΩT

(v · ∇)T : Y dω +

∫
ΩT

J(v,T) : Y dω

−
∫
ΩT

∇ · (ε(φ, θ)∇T) : Y dω −
∫
ΩT

P′(S)T : Y dω
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−
∫
ΩT

∇ · (MS(θ, S)T) · y dω −
∫
ΩT

T : Dvϑ dω

= 〈Gds,T〉(X2
s )∗,X2

s
+ 〈YT ,T(T )〉W−1,2

s ,W1,2
s
. (5.22)

Let T ∈ C∞0 (I;W2,2
n,s(Ω)) ⊂ W 1,2,2

0 (I;W2,2
n,s(Ω),L2

s (Ω)). In the above integrals, ex-
cept for the third, we can deduce that (v · ∇)Y, ∇ · (ε(φ, θ)∇Y), MS(θ, S)∗Dy,
ϑDv ∈ L2(I;W−2,2

n,s (Ω)) and P′(S)∗Y ∈ L2(I;W−1,2
s (Ω)), see (5.5) and (5.6).

Consider the third integral in (5.22). Notice that TWv : Y = (TWv)t : Yt =
−WvT : Y by the anti-symmetry of Wv and the symmetry of T and Y. Thus,

[T,Wv] : Y = −2Y : WvT = −2Tr(YWvT) = 2Tr((WvY)tT) = 2WvY : T.

In a similar way, {T,Wv} : Y = 2DvY : T. Hence,∫
ΩT

J(v,T) : Y dω =

∫
ΩT

(2WvY− 2aDvY) : T dω

and 2WvY− 2aDvY ∈ L2(I;W−2,2
n,s (Ω)).

The above observations imply that ∂tY ∈ L2(I;W−2,2
n,s (Ω)) +X2

s (ΩT )∗, so that the
fifth equation of (5.7) holds, and it can be established from (5.11) that

‖∂tY‖L2(W−2,2
n,s )+(X2

s )∗ ≤ c̃0. (5.23)

Taking the sum of the estimates (5.15), (5.16), (5.19), (5.21), and (5.23) leads to
the desired estimate for the very weak solution as stated by the theorem. �

Remark 5.3. If we have the continuous embeddings X2
o (ΩT )∗ ↪→ L1(I;W−4,2

n (Ω)),
(BNX

2
h(ΩT ))∗ ↪→ L1(I;W−2,2

n (Ω)), X2
v(ΩT )∗ ↪→ L2(I;W−2,2

0,σ (Ω)), and X2
s (ΩT )∗

↪→ L2(I;W−2,2
n,s (Ω)) in Theorem 5.2, then the variational solution to (5.7) satisfies

ϕ ∈ W 1,2,1(I;L2(Ω),W−4,2
n (Ω)), ϑ ∈ W 1,2,1(I;L2(Ω),W−2,2

n (Ω)),

y ∈ W 1,2,2(I;L2
σ(Ω),W−2,2

0,σ (Ω)), Y ∈ W 1,2,2(I;L2
s (Ω),W−2,2

n,s (Ω)).

The integrability of the time-derivatives of ϕ and ϑ will be improved to 4
3
in the

case of weak solutions, see Remark 5.5 below.

Let us discuss the existence and regularity of the associated pressure s in the fourth
equation of the adjoint system (5.7). In addition to the conditions stated in Remark
5.3, suppose that we have gdv ∈ L2(I;W−2,2

0 (Ω)) andX2
v(ΩT )∗ ↪→ L2(I;W−2,2

0 (Ω)).
Note that ∂ty ∈ W−1,2

0,0 (I;L2(Ω)) ↪→ W−1,2
0,0 (I;W−2,2

0 (Ω)) in the distributional sense
due to y ∈ L2(I;L2(Ω)). Revisiting the proof of Theorem 5.2, we can see that
all terms on the left-hand side of the differential equation for y, except for the
time-derivate, are elements of L2(I;W−2,2

0 (Ω)) ↪→ W−1,2
0,0 (I;W−2,2

0 (Ω)). Therefore,
according to Theorem 4.4, there is an associated pressure s ∈ W−1,2

0,0 (I;W−1,2
0 (Ω)/R).

Furthermore, from the a priori estimate in Theorem 5.2, we have

‖s‖W−1,2
0,0 (W−1,2

0 /R) ≤ c(‖(gdo, gc, gdh,Gds)‖(X2
o )∗×L2(W−2,2

n )×(X2
h)∗×(X2

s )∗

+ ‖gdv‖L2(W−2,2
0 ) + ‖(ϕT , ϑT ,yT ,YT )‖(D2)∗).

Next, we consider the time-regularity of the weak solutions to the adjoint system.
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Theorem 5.4. Let (A1)3 and (A2)1 be satisfied. Consider source functions and ini-
tial data for which (gdo, gc, gdh, gdv,Gds) ∈ X 1(ΩT )∗ and (ϕT , ϑT ,yT ,YT ) ∈ D1(Ω)∗.
Then, the adjoint system (5.7) possesses a unique solution (ϕ, ζ, ϑ,y,Y) ∈ U1(ΩT )
such that

‖(ϕ, ζ, ϑ,y,Y)‖U1 + ‖∂tϕ‖L2(W−3,2
n )+L4/3(W−2,2

n )+(X1
o )∗

+ ‖∂tϑ‖L2(W−1,2)+L4/3(L2)+(BNX
1
h)∗ + ‖∂ty‖L2(W−1,2

0,σ )+(X1
v)∗

+ ‖∂tY‖L2(W−1,2
s )+(X1

s )∗ ≤ c‖(gdo, gc, gdh, gdv,Gds)‖(X 1)∗

+ c‖(ϕT , ϑT ,yT ,YT )‖(D1)∗

for a constant c = c(‖(φ, µ, θ,v, S)‖W2) > 0.

Proof. From Theorem 5.1, (5.2) admits a unique solution such that
‖(ϕ, ζ, ϑ,y,Y)‖U1

≤ c̃1 := c[‖(gdo, gc, gdh, gdv,Gds)‖(X 1)∗ + cT‖(ϕT , ϑT ,yT ,YT )‖(D1)∗ ], (5.24)

where cT := ‖eT‖L((D1)∗,(V1
0 )∗). In what follows, we establish the regularity of each

term appearing in the adjoint system (5.7) and apply (5.11) in deriving the a priori
estimates for the time-derivatives.

First, we deal with ∂tϕ. Note that v · ∇ϕ ∈ L2(I;W−1,2(Ω)) since∫
ΩT

(v · ∇ϕ)ψ dω ≤ ‖v‖L∞(W 1,2
0,σ)‖ϕ‖L2(W 1,2)‖ψ‖L2(W 1,2).

Likewise, we have mφ(φ, θ)∇µ · ∇ϕ ∈ L4/3(I;W−2,2
n (Ω)) and 2νφ(φ, θ)Dv : Dy ∈

L2(I;W−2,2
n (Ω)) due to∫

ΩT

mφ(φ, θ)ψ∇µ · ∇ϕ dω ≤ c‖µ‖L4(W 1,2)‖ϕ‖L2(W 1,2)‖ψ‖L4(W 2,2
n )∫

ΩT

2νφ(φ, θ)ψDv : Dy dω ≤ c‖v‖L∞(W 1,2
0,σ)‖y‖L2(W 1,2

0,σ)‖ψ‖L2(W 2,2
n ).

Similarly, χφ(φ, θ)∇θ · ∇ϑ, εφ(φ, θ)∇S ∴∇Y ∈ L2(I;W−2,2
n (Ω)). From the following

estimates for the duality pairings
〈ζ, α∆ψ〉L2(W−1,2),L2(W 1,2) ≤ c‖ζ‖L2(W−1,2)‖ψ‖L2(W 3,2

n )

〈ζ, F ′′(φ)ψ〉L2(W−1,2),L2(W 1,2) ≤ cφ‖ζ‖L2(W−1,2)‖ψ‖L2(W 1,2)

we obtain α∆ζ ∈ L2(I;W−3,2
n (Ω)) and F ′′(φ)ζ ∈ L2(I;W−1,2(Ω)). Thanks to the

estimate ∫
ΩT

κψ∇µ · y dω ≤ c‖µ‖L4(W 1,2)‖y‖L2(W 1,2
0,σ)‖ψ‖L4(W 1,2)

we have κy · ∇µ ∈ L4/3(I;W−1,2(Ω)). Finally, bog · y ∈ L2(I;W 1,2(Ω)). These
information show that ∂tϕ ∈ L2(I;W−3,2

n (Ω)) + L4/3(I;W−2,2
n (Ω)) + X1

o (ΩT )∗, and
from the above estimates along with that of (5.24), one has

‖∂tϕ‖L2(W−3,2
n )+L4/3(W−2,2

n )+(X1
o )∗ ≤ c̃1. (5.25)

Since κy · ∇φ ∈ L2(I;L2(Ω)) and ∇ · (m∇ϕ) ∈ L2(I;W−1,2(Ω)), we obtain
‖ζ‖L2(W−1,2) ≤ c(‖y‖L2(W 1,2

0,σ) + ‖ϕ‖L2(W 1,2) + ‖gc‖L2(W−1,2)) ≤ c̃1. (5.26)
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With regard to ∂tϑ, we shall utilize the continuity of B−∗N : W s,2
n (Ω)→ W s+2,2

n (Ω)
for s = −2,−1, 0, 1. Hence, B−∗N (v · ∇ϑ) ∈ L2(I;W 1,2(Ω)). On the other
hand, using the analysis presented in the previous paragraph, it can be
shown that B−∗N (mθ(φ, θ)∇µ · ∇ϕ) ∈ L4/3(I;L2(Ω)), B−∗N (χθ(φ, θ)∇θ · ∇ϑ),
B−∗N (2νθ(φ, θ)Dv : Dy), B−∗N (εθ(φ, θ)∇S ∴ ∇Y) ∈ L2(I;L2(Ω)), and also, B−∗N ∇ ·
(χ(φ, θ)∇ϑ) ∈ L2(I;W 1,2(Ω)). Moreover, we have B−∗N (b∆2ϑ) ∈ L2(I;W−1,2(Ω)),
B−∗N (σS : Dy) ∈ L2(I;W 1,2(Ω)), and B−∗N (bhg · y) ∈ L2(I;W 3,2

n (Ω)). As a
consequence, ∂tϑ ∈ L2(I;W−1,2(Ω)) + L4/3(I;L2(Ω)) + (BNX

1
h(ΩT ))∗ and

‖∂tϑ‖L2(W−1,2)+L4/3(L2)+(BNX
1
h)∗ ≤ c̃1 (5.27)

by following a similar argument as in (5.18) and (5.19).
Thanks to the additional spatial regularity of the adjoint variables, the spatial

regularity for each term appearing on the equation involving ∂ty in (5.7) is increased
by 1 compared to the one given by Theorem 5.2. More precisely, one can show that
(v · ∇)y, (∇v)y, ∇ · (2ν(φ, θ)Dy), ∇ · (ϑS), ∇S � Y, ∇ · ([S,Y] − a{S,Y}) ∈
L2(I;W−1,2

0,σ (Ω)), ϕ∇φ, λ∇ · Y ∈ L2(I;L2(Ω)), and ϑ∇θ, a0ϑg ∈ L2(I;W 1,2(Ω)).
Therefore, we obtain ∂ty ∈ L2(I;W−1,2

0,σ (Ω)) +X1
v(ΩT )∗ and

‖∂ty‖L2(W−1,2
0,σ )+(X1

v)∗ ≤ c̃1. (5.28)

With the same reasoning, it can be deduced that (v · ∇)Y, ∇ · (ε(φ, θ)∇Y),
2WvY−2aDvY,MS(θ, S)∗Dy, ϑDv ∈ L2(I;W−1,2

s (Ω)), and P′(S)∗Y ∈ L2(I;L2
s (Ω)).

These imply that ∂tY ∈ L2(I;W−1,2
s (Ω)) + X1

s (ΩT )∗, and moreover,

‖∂tY‖L2(W−1,2
s )+(X1

s )∗ ≤ c̃1. (5.29)

Therefore, the a priori estimate as stated by the theorem for the time-derivatives
of the adjoint variables follows from (5.25)–(5.29). �

Remark 5.5. If we have the continuous embeddingsX1
o (ΩT )∗ ↪→ L4/3(I;W−3,2

n (Ω)),
(BNX

1
h(ΩT ))∗ ↪→ L4/3(I;W−1,2(Ω)), X1

v(ΩT )∗ ↪→ L2(I;W−1,2
0,σ (Ω)), and X1

s (ΩT )∗

↪→ L2(I;W−1,2
s (Ω)), then the variational solution given in Theorem 5.4 satisfies

ϕ ∈ W 1,2,4/3(I;W 1,2(Ω),W−3,2
n (Ω)), ϑ ∈ W 1,2,4/3(I;W 1,2(Ω),W−1,2(Ω)),

y ∈ W 1,2,2(I;W 1,2
0,σ(Ω),W−1,2

0,σ (Ω)), Y ∈ W 1,2,2(I;W1,2
s (Ω),W−1,2

s (Ω)).

By a density argument, it can be shown that the terminal conditions in (5.7) are
satisfied. More precisely, ϕ(T ) = ϕT inW−1,2(Ω), ϑ(T )−τ∆ϑ(T ) = ϑT inW−2,2

n (Ω),
y(T ) = yT in L2

σ(Ω), and Y(T ) = YT in L2
s (Ω). We refer the reader to [56] or [69]

for the details. We point out that the integrability of the time-derivatives of ϕ and
ϑ will be improved to 2 in the case of strong solutions, refer to Remark 5.7 below.

Arguing as in the discussion succeeding Remark 5.3, if the conditions of Remark
5.5 hold and we have gdv ∈ L2(I;W−1,2

0 (Ω)) and X1
v(ΩT )∗ ↪→ L2(I;W−1,2

0 (Ω)),
then Theorem 4.4 implies that the associated pressure satisfies the regularity s ∈
W−1,2

0,0 (I;L2(Ω)/R) and

‖s‖W−1,2
0,0 (L2/R) ≤ c(‖(gdo, gc, gdh,Gds)‖(X1

o )∗×L2(W−1,2)×(X1
h)∗×(X1

s )∗

+ ‖gdv‖L2(W−1,2
0 ) + ‖(ϕT , ϑT ,yT ,YT )‖(D1)∗).
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For the next theorem, we shall improve the time-regularity presented in Theorem
5.4 under additional conditions on the sources and the data.

Theorem 5.6. Suppose that (A1)3 and (A2)2 hold. Assume that (gdo, gc, gdh, gdv,
Gds) ∈ X 0(ΩT )∗ and (ϕT , ϑT ,yT ,YT ) ∈ D0(Ω)∗. The adjoint system (5.7) has a
unique solution (ϕ, ζ, ϑ,y,Y) ∈ U2(ΩT ) satisfying

‖(ϕ, ζ, ϑ,y,Y)‖U2 + ‖∂tϕ‖L2(W−2,2
n )+(X0

o )∗

+ ‖∂tϑ‖L2(L2)+(BNX
0
h)∗ + ‖∂ty‖L2(L2

σ)+(X0
v)∗ + ‖∂tY‖L2(L2

s )+(X0
s )∗

≤ c(‖(gdo, gc, gdh, gdv,Gds)‖(X 0)∗ + ‖(ϕT , ϑT ,yT ,YT )‖(D0)∗)

for some c = c(‖(φ, µ, θ,v,S)‖W2) > 0.

Proof. As usual, we start with Theorem 5.1 to obtain a solution to (5.2) satisfying

‖(ϕ, ζ, ϑ,y,Y)‖U0

≤ c̃2 := c[‖(gdo, gc, gdh, gdv,Gds)‖(X 0)∗ + cT‖(ϕT , ϑT ,yT ,YT )‖(D0)∗ ], (5.30)

with cT := ‖eT‖L((D0)∗,(V0
0 )∗). As in the previous theorems, we shall apply (5.11) to

obtain the estimates for the time-derivatives.
Let us estimate ∂tϕ. First, we have v · ∇ϕ, F ′′(φ)ζ ∈ L2(I;L2(Ω)), and α∆ζ ∈

L2(I;W−2,2
n (Ω)). On the other hand, mφ(φ, θ)∇µ · ∇ϕ ∈ L2(I;W−2,2

n (Ω)) since∫
ΩT

mφ(φ, θ)ψ∇µ · ∇ϕψ dω = −
∫
ΩT

µmφ(φ, θ)ψ∆ϕ dω

−
∫
ΩT

µ[(mφφ(φ, θ)ψ∇φ+mφθ(φ, θ)ψ∇θ +mφ(φ, θ)∇ψ) · ∇ϕ] dω

≤ c‖µ‖L∞(L2)(‖φ‖L∞(W 1,4) + ‖θ‖L∞(W 1,4) + 1)‖ϕ‖L2(W 2,2
n )‖ψ‖L2(W 2,2

n ).

Likewise, one has 2νφ(φ, θ)Dv : Dy, χφ(φ, θ)∇θ · ∇ϑ, εφ(φ, θ)∇S ∴ ∇Y
∈ L2(I;W−1,2(Ω)) since∫

ΩT

2νφ(φ, θ)ψDv : Dy dω ≤ c‖v‖L∞(W 1,2
0,σ)‖y‖L2(W 2,2

0,σ)‖ψ‖L2(W 1,2)

and by analogous estimates in the cases of the temperature and the tensors. Also,
we have bog · y ∈ L2(I;W 2,2(Ω)) and κy · ∇µ ∈ L2(I;W−1,2(Ω)) due to∫

ΩT

κµ∇ψ · y dω ≤ c‖µ‖L∞(L2)‖y‖L2(W 2,2
0,σ)‖ψ‖L2(W 1,2).

These imply that ∂tϕ ∈ L2(I;W−2,2
n (Ω)) +X0

o (ΩT )∗ and

‖∂tϕ‖L2(W−2,2
n )+(X0

o )∗ ≤ c̃2. (5.31)

For the estimate of ζ, note that κy · ∇φ ∈ L2(I;W 1,2(Ω)). Indeed, this follows
from κy · ∇φ ∈ L2(I;L2(Ω)) and ∇(y · ∇φ) = ∇y∇φ+∇2φy so that

‖∇(y · ∇φ)‖L2(L2) ≤ c‖y‖L2(W 2,2
0,σ)‖φ‖L∞(W 2,2

n ).

Also, ∇ · (m(φ, θ)∇ϕ) ∈ L2(I;L2(Ω)) since

‖∇ · (m(φ, θ)∇ϕ)‖L2(L2) ≤ c(‖φ‖L∞(W 1,4) + ‖θ‖L∞(W 1,4) + 1)‖ϕ‖L2(W 2,2
n ).
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Hence, we obtain

‖ζ‖L2(L2) ≤ c(‖y‖L2(W 2,2
0,σ) + ‖ϕ‖L2(W 2,2

n ) + ‖gc‖L2(L2)) ≤ c̃2. (5.32)

Concerning ∂tϑ, let us observe the following: B−∗N (v · ∇ϑ), B−∗N ∇ · (χ(φ, θ)∇ϑ),
B−∗N (σS : Dy), B−∗N (bhg · y) ∈ L2(I;W 2,2

n (Ω)), B−∗N (mθ(φ, θ)∇µ · ∇ϕ), B−∗N (b∆2ϑ) ∈
L2(I;L2(Ω)), and B−∗N (χθ(φ, θ)∇θ · ∇ϑ), B−∗N (2νθ(φ, θ)Dv : Dy), B−∗N (εθ(φ, θ)∇S ∴
∇Y) ∈ L2(I;W 1,2(Ω)). Thus, with the same reasoning as above, it follows that
∂tϑ ∈ L2(I;L2(Ω)) + (BNX

0
h(ΩT ))∗ and

‖∂tϑ‖L2(L2)+(BNX
0
h)∗ ≤ c̃2. (5.33)

Revisiting the proof of Theorem 5.4 in the case of ∂ty, it is enough to recognize
that (v · ∇)y, (∇v)y, ∇ · (2ν(φ, θ)Dy), ∇ · (ϑS), ∇S � Y, ∇ · ([S,Y] − a{S,Y}) ∈
L2(I;L2(Ω)), in order to conclude that ∂ty ∈ L2(I;L2

σ(Ω))+X0
v(ΩT )∗. In addition,

‖∂ty‖L2(L2
σ)+(X0

v)∗ ≤ c̃2. (5.34)

Similarly, since (v · ∇)Y, ∇ · (ε(φ, θ)∇Y), 2WvY − 2aDvY, MS(θ, S)∗Dy, ϑDv ∈
L2(I;L2

s (Ω)), we have ∂tY ∈ L2(I;L2
s (Ω)) + X0

s (ΩT )∗ and

‖∂tY‖L2(L2
s )+(X0

s )∗ ≤ c̃2. (5.35)

Taking the sum of (5.31)–(5.35) completes the proof of the theorem. �

Remark 5.7. If X0
o (ΩT )∗ ↪→ L2(I;W−2,2

n (Ω)), (BNX
0
h(ΩT ))∗ ↪→ L2(I;L2(Ω)),

X0
v(ΩT )∗ ↪→ L2(I;L2(Ω)), and X0

s (ΩT )∗ ↪→ L2(I;L2
s (Ω)) in the previous theorem,

then the variational solution to (5.7) enjoys the following regularity:

ϕ ∈ W 1,2,2(I;W 2,2
n (Ω),W−2,2

n (Ω)), ϑ ∈ W 1,2,2(I;W 2,2
n (Ω), L2(Ω)),

y ∈ W 1,2,2(I;W 2,2
0,σ(Ω),L2

σ(Ω)), Y ∈ W 1,2,2(I;W2,2
n,s(Ω),L2

s (Ω)).

If gdv ∈ L2(I;L2(Ω)), then the classical de Rham’s Theorem gives us an associated
pressure such that s ∈ L2(I;W 1,2(Ω)/R) with

‖s‖L2(W 1,2/R) ≤ c(‖(gdo, gc, gdh,Gds)‖(X0
o )∗×L2(L2)×(X0

h)∗×(X0
s )∗

+ ‖gdv‖L2(L2) + ‖(ϕT , ϑT ,yT ,YT )‖(D0)∗).

Our next set of results deals on the additional regularity of the components with
respect to the dual of the non-isothermal Cahn–Hilliard part of the adjoint system.
We start with the following auxiliary lemma.

Lemma 5.8. Suppose that we have φ, θ ∈ W 1,2,2(I;W 4,2
n (Ω), L2(Ω)) and µ ∈

W 1,2,2(I;W 2,2
n (Ω),W−2,2

n (Ω)). Consider the backward-in-time linear system − ∂tϕ̃+mφ(φ, θ)∇µ · ∇ϕ̃+ α∆ζ̃ = g̃o in ΩT ,

ζ̃ −∇ · (m(φ, θ)∇ϕ̃) = g̃c in ΩT ,

∂nϕ̃ = ∂n∆ϕ̃ = 0 on ΓT , ϕ̃(T ) = ϕ̃T in Ω.
(5.36)

Let k = 0, 1. If g̃o ∈ L2(I;W k−1,2(Ω)), g̃c ∈ L2(I;W k+1,2(Ω)), and ϕ̃T ∈ W k+1,2
n (Ω),

then

ϕ̃ ∈ W 1,2,2(I;W k+3,2
n (Ω),W k−1,2(Ω)), ζ̃ ∈ L2(I;W k+1,2(Ω)) (5.37)
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and there exists c > 0 depending on the norms of (φ, θ, µ), but not on the solution,
the sources, and the terminal data, such that

‖ϕ̃‖W 1,2,2(Wk+3,2
n ,Wk−1,2) + ‖ζ̃‖L2(Wk+1,2)

≤ c(‖g̃c‖L2(Wk−1,2) + ‖g̃h‖L2(Wk+1,2) + ‖ϕ̃T‖Wk+1,2
n

).

Proof. We only provide the derivation of the a priori estimates needed for the
Faedo–Galerkin method. By testing the first equation of (5.36) with ϕ̃ − ∆ϕ̃ and
integrating by parts, we have

− 1

2

d

dt

∫
Ω

|ϕ̃|2 + |∇ϕ̃|2 dx+

∫
Ω

mφ(φ, θ)∇µ · ∇ϕ̃(ϕ̃−∆ϕ̃) dx

+

∫
Ω

α∇ζ̃ · ∇(∆ϕ̃− ϕ̃) dx = 〈g̃o, ϕ̃−∆ϕ̃〉W−1,2,W 1,2 . (5.38)

For the right-hand side and the second integral, we get

|〈g̃o, ϕ̃−∆ϕ̃〉W−1,2,W 1,2|
≤ δ‖∇∆ϕ̃‖2

L2 + cδ(‖ϕ̃‖2
L2 + ‖∇ϕ̃‖2

L2 + ‖g̃o‖2
W−1,2) (5.39)∫

Ω

|mφ(φ, θ)∇µ · ∇ϕ̃(ϕ̃−∆ϕ̃)| dx

≤ δ‖∇∆ϕ̃‖2
L2 + c‖∆µ‖2

L2(‖ϕ̃‖2
L2 + ‖∇ϕ̃‖2

L2). (5.40)

Let us write ∇ζ̃ = πφ + πθ + π, where πγ := ∇(mγ(φ, θ)∇γ · ∇ϕ̃) for γ = φ, θ and
π = ∆ϕ̃(mφ(φ, θ)∇φ+mθ(φ, θ)∇θ) +m(φ, θ)∇∆ϕ̃+∇g̃c. Then,∫

Ω

απ · ∇(∆ϕ̃− ϕ̃) dx ≥ αm0

2
‖∇∆ϕ̃‖2

L2

− c[(‖∇φ‖2
L∞ + ‖∇θ‖2

L∞)‖∆ϕ̃‖2
L2 + ‖∇ϕ̃‖2

L2 + ‖∇g̃c‖2
L2 ]. (5.41)

Performing the gradient in πγ, we obtain the expression

πγ = mγφ(φ, θ)(∇γ ·∇φ)∇ϕ̃+mγθ(φ, θ)(∇γ ·∇θ)∇ϕ̃+mγ(φ, θ)(∇2γ∇ϕ̃+∇2ϕ̃∇γ).

So, for each γ = φ, θ, one has∫
Ω

|απγ · ∇(∆ϕ̃− ϕ̃)| dx

≤ δ‖∇∆ϕ̃‖2
L2 + cδ‖∇γ‖2

L∞(‖∇φ‖2
L∞ + ‖∇θ‖2

L∞)‖∇ϕ̃‖2
L2

+ cδ(‖∇2γ‖2
L4 + ‖∇γ‖2

L∞ + 1)(‖ϕ̃‖2
L2 + ‖∇ϕ̃‖2

L2 + ‖∆ϕ̃‖2
L2). (5.42)

Note that ‖∆ϕ̃‖2
L2 ≤ ‖∇∆ϕ̃‖L2‖∇ϕ̃‖L2 by Green identity and the Cauchy–Schwarz

inequality. Thus,

c(‖∇φ‖2
L∞ + ‖∇θ‖2

L∞)‖∆ϕ̃‖2
L2

≤ δ‖∇∆ϕ̃‖2
L2 + cδ(‖∇φ‖4

L∞ + ‖∇θ‖4
L∞)‖∇ϕ̃‖2

L2 (5.43)

cδ(‖∇2γ‖2
L4 + ‖∇γ‖2

L∞ + 1)‖∆ϕ̃‖2
L2

≤ δ‖∇∆ϕ̃‖2
L2 + cδ(‖∇2γ‖4

L4 + ‖∇γ‖4
L∞ + 1)‖∇ϕ̃‖2

L2 . (5.44)

Utilizing (5.39)–(5.44) in the equation (5.38), as well as (see (3.1) and (3.6))

φ, θ ∈ L2(I;W 4,2
n (Ω)) ∩ L4(I;W 2,∞(Ω) ∩W 3,2

n (Ω)) ∩ L∞(I;W 2,2
n (Ω)),
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µ ∈ L2(I;W 2,2
n (Ω)), (5.45)

we obtain a K ∈ L1(I) satisfying (A.6) and

− 1

2

d

dt
‖ϕ̃‖2

W 1,2 +
(αm0

2
− 5δ

)
‖∇∆ϕ̃‖2

L2

≤ cδ(K‖ϕ̃‖2
W 1,2 + ‖g̃o‖2

W−1,2 + ‖g̃c‖2
W 1,2) (5.46)

‖ζ̃‖2
W 1,2 ≤ c‖∇∆ϕ̃‖2

L2 + c(K‖ϕ̃‖2
W 1,2 + ‖g̃c‖2

W 1,2). (5.47)

Choosing 0 < δ < αm0

10
, invoking Grönwall Lemma to (5.46), and applying the result

to (5.47), the obtained estimates and the one that can be derived for ‖∂tϕ̃‖L2(W−1,2)

will lead to (5.37) for k = 0 in the Faedo–Galerkin method.
Next, we show (5.37) for k = 1. Using the test function ∆2ϕ̃ in (5.36), we have

− 1

2

d

dt

∫
Ω

|∆ϕ̃|2 dx+

∫
Ω

mφ(φ, θ)∇µ · ∇ϕ̃∆2ϕ̃ dx

+

∫
Ω

α∆ζ̃∆2ϕ̃ dx =

∫
Ω

g̃o∆2ϕ̃ dx. (5.48)

The second and fourth integrals can be estimated as follows:∫
Ω

|mφ(φ, θ)∇µ · ∇ϕ̃∆2ϕ̃| dx ≤ δ‖∆2ϕ̃‖2
L2 + cδ‖∆µ‖2

L2‖∆ϕ̃‖2
L2 (5.49)∫

Ω

|g̃o∆2ϕ̃| dx ≤ δ‖∆2ϕ̃‖2
L2 + cδ‖g̃o‖2

L2 . (5.50)

For the third integral, let us note that ∆ζ̃ = ∆∇ · (m(φ, θ)∇ϕ̃) + ∆g̃c. Utilizing the
classical differentiation rules, the expansion of ∆∇ · (m(φ, θ)∇ϕ̃) is given by

∆∇ · (m(φ, θ)∇ϕ̃) =
∑
γ1=φ,θ

∆(mγ1(φ, θ)∇ϕ̃ · ∇γ1) + ∆(m(φ, θ)∆ϕ̃) (5.51)

=
∑

γ1,γ2=φ,θ

∇ · [mγ1γ2(φ, θ)(∇γ1 · ∇ϕ̃)∇γ2]

+
∑
γ1=φ,θ

∇ · [mγ1(φ, θ)(∇2ϕ̃∇γ1 +∇2γ1∇ϕ̃+ ∆ϕ̃∇γ1)] +∇ · (m(φ, θ)∇∆ϕ̃)

=
∑

γ1,γ2,γ3=φ,θ

mγ1γ2γ3(φ, θ)(∇γ1 · ∇ϕ̃)(∇γ2 · ∇γ3)

+
∑

γ1,γ2=φ,θ

mγ1γ2(φ, θ)[2(∇2γ1∇ϕ̃) · ∇γ2 + 2(∇2ϕ̃∇γ1) · ∇γ2

+ (∇γ1 · ∇ϕ̃)∆γ2 + ∆ϕ̃∇γ1 · ∇γ2]

+
∑
γ1=φ,θ

mγ1(φ, θ)(∇∆γ1 · ∇ϕ̃+ 2∇2ϕ̃ : ∇2γ1 + 3∇∆ϕ̃ · ∇γ1 + ∆ϕ̃∆γ1)

+m(φ, θ)∆2ϕ̃.

Here, we used ∇ · ∇2γ = ∆∇γ = ∇∆γ in the weak sense. Let us write ∆∇ ·
(m(φ, θ)∇ϕ̃) =: π̃+m(φ, θ)∆2ϕ̃, where π̃ are the terms involving the sums in (5.51).
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Thus, ∫
Ω

α∆ζ̃∆2ϕ̃ dx ≥ m0α

2
‖∆2ϕ̃‖2

L2 − c(‖π̃‖2
L2 + ‖∆g̃c‖2

L2). (5.52)

Our next task is to estimate each term appearing in the sums of π̃. For these, we
apply Hölder inequality so that for γ1, γ2, γ3 = φ, θ, we have the following:∫

Ω

|mγ1(φ, θ)∇∆γ1 · ∇ϕ̃|2 dx ≤ c‖∆2γ1‖2
L2‖∆ϕ̃‖2

L2 (5.53)∫
Ω

|mγ1(φ, θ)∇∆ϕ̃ · ∇γ1|2 dx ≤ c‖∇γ1‖2
L∞‖∇∆ϕ̃‖2

L2

≤ δ‖∆2ϕ̃‖2
L2 + cδ‖∇γ1‖4

L∞‖∆ϕ̃‖2
L2 (5.54)∫

Ω

|mγ1γ2(φ, θ)(∇2γ1∇ϕ̃) · ∇γ2|2 dx ≤ c‖∇2γ1‖2
L∞s ‖∆γ2‖2

L2‖∆ϕ̃‖2
L2 (5.55)∫

Ω

|mγ1γ2(φ, θ)(∇γ1 · ∇ϕ̃)∆γ2|2 dx ≤ c‖∆γ1‖2
L2‖∇∆γ2‖2

L2‖∆ϕ̃‖2
L2 (5.56)∫

Ω

|mγ1γ2γ3(φ, θ)(∇γ1 · ∇ϕ̃)(∇γ2 · ∇γ3)|2 dx

≤ c‖∆γ1‖2
L2‖∆γ2‖2

L2‖∆γ3‖2
L2‖∆ϕ̃‖2

L2 (5.57)∫
Ω

|mγ1(φ, θ)∇2ϕ̃ : ∇2γ1|2 + |mγ1(φ, θ)∆ϕ̃∆γ1|2 dx

≤ c‖∇2γ1‖2
L∞s (‖ϕ̃‖2

L2 + ‖∆ϕ̃‖2
L2) (5.58)∫

Ω

|mγ1γ2(φ, θ)(∇2ϕ̃∇γ1) · ∇γ2|2 + |mγ1γ2(φ, θ)∆ϕ̃∇γ1 · ∇γ2|2 dx

≤ c(‖∇γ1‖4
L∞ + ‖∇γ2‖4

L∞)(‖ϕ̃‖2
L2 + ‖∆ϕ̃‖2

L2). (5.59)

Here, we utilized (2.13) in (5.54). Using (5.53)–(5.59) in (5.51), π̃ can be estimated
as follows

‖π̃‖2
L2 ≤ δ‖∆2ϕ̃‖2

L2 + cδK‖ϕ̃‖2
W 2,2

n
(5.60)

for some K ∈ L1(I) satisfying (A.6) due to (5.45).
Plugging (5.60) in (5.52), and using the resulting inequality together with (5.49)

and (5.50) in (5.48), we deduce for some c > 0 that

− 1

2

d

dt
‖∆ϕ̃‖2

L2 +
(αm0

2
− cδ

)
‖∆2ϕ̃‖2

L2

≤ cδ(K‖ϕ̃‖2
W 2,2

n
+ ‖g̃o‖2

L2 + ‖∆g̃c‖2
L2) (5.61)

‖∆ζ̃‖2
L2 ≤ c‖∆2ϕ̃‖2

L2 + c(K‖ϕ̃‖2
W 2,2

n
+ ‖∆g̃c‖2

L2), (5.62)

after suitably modifying K ∈ L1(I) that still satisfies (A.6). As above, the estimates
(5.61) and (5.62) imply that ϕ̃ satisfies (5.37) for k = 1 and ∆ζ̃ ∈ L2(I;L2(Ω)).
With this regularity of ϕ̃ and expanding as in (5.51) but with ∇2 instead of ∆, it
can be shown that (5.37) with k = 1 holds for ζ̃. This completes the proof of the
lemma. �
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Theorem 5.9. Consider the frameworks of Theorem 5.6 and Remark 5.7, and let
k = 0, 1. If gdo ∈ L2(I;W k−1,2(Ω)), gc ∈ L2(I;W k+1,2(Ω)), and ϕT ∈ W k+1,2

n (Ω),
then ϕ and ζ satisfies (5.37), provided that φ ∈ L∞(I;W 1,∞(Ω)) if k = 1.

Proof. We apply Lemma 5.8 with g̃c := gc + κy · ∇φ and

g̃o = gdo + v · ∇ϕ− χφ(φ, θ)∇θ · ∇ϑ− 2νφ(φ, θ)Dv : Dy
− εφ(φ, θ)∇S ∴∇Y + F ′′(φ)ζ − κy · ∇µ+ bog · y.

Suppose that k = 0. The proof of Theorem 5.6 shows that g̃o ∈ L2(I;W−1,2(Ω))
and g̃c ∈ L2(I;W 1,2(Ω)). Hence, (5.37) with k = 0 hold for ϕ and ζ. In particular,
ϕ ∈ L∞(I;W 1,2(Ω)) ∩ L2(I;W 1,∞(Ω)).

Consider the case k = 1. Note that y ∈ L2(I;W 2,2
0,σ(Ω)) ∩ L∞(I;W 1,2

0,σ(Ω)) from
Remark 5.7. Thus, we have y · ∇µ ∈ L2(I;L2(Ω)) due to

‖y · ∇µ‖L2(L2) ≤ c‖y‖L∞(L4)‖∇µ‖L2(L4) ≤ c‖y‖L∞(W 1,2
0,σ)‖µ‖L2(W 2,2

n ).

In the same manner, one has v · ∇ϕ ∈ L2(I;L2(Ω)). Also, χφ(φ, θ)∇θ · ∇ϑ ∈
L2(I;L2(Ω)) since

‖χφ(φ, θ)∇θ · ∇ϑ‖L2(L2) ≤ c‖∇θ‖L4(L4)‖∇ϑ‖L4(L4)

≤ c‖θ‖W 1,2,2(W 2,2
n ,L2)‖ϑ‖W 1,2,2(W 2,2

n ,L2).

Similarly, we have 2νφ(φ, θ)Dv : Dy, εφ(φ, θ)∇S ∴∇Y ∈ L2(I;L2(Ω)). Finally, the
remaining terms F ′′(φ)ζ and bog · y also lie in L2(I;L2(Ω)) based on the proof of
Theorem 5.6. These result into g̃o ∈ L2(I;L2(Ω)).

We claim that y · ∇φ ∈ L2(I;W 2,2(Ω)). Indeed, using the following equation

∇2(y · ∇φ) =
∑
j=1,2

[yj∇2∂jφ+ (∇yj)(∇∂jφ)t + (∇∂jφ)t∇yj + ∂jφ∇2yj]

we obtain that

‖∇2(y · ∇φ)‖L2(L2
s ) ≤ c(‖y‖L∞(L4)‖∇3φ‖L2((L4

s )2)

+ ‖∇y‖L∞(L2)‖∇2φ‖L2(L∞s ) + ‖∇φ‖L∞(L∞)‖∇2y‖L2((L2)2))

≤ c‖y‖L2(W 2,2
0,σ)∩L∞(W 1,2

0,σ)‖φ‖L2(W 4,2
n )∩L∞(W 1,∞).

Consequently, g̃c ∈ L2(I;W 2,2(Ω)). Therefore, ϕ and ζ satisfy (5.37) with k = 1
due to Lemma 5.8. �

Corollary 5.10. If the conditions of Theorem 5.9 hold for k = 1 and ∂tgc ∈
W 1,2,2(I;W 2,2(Ω),W−2,2

n (Ω)), then ζ ∈ W 1,2,2(I;W 2,2(Ω),W−2,2
n (Ω)).

Proof. We already know from Theorem 5.9 that ζ ∈ L2(I;W 2,2(Ω)). Observe that
we have

∂tζ = ∇ · (m′(φ, θ)(∂tφ, ∂tθ)∇ϕ) +∇ · (m(φ, θ)∇∂tϕ) + κ∂ty · ∇φ+ κy · ∇∂tφ+ ∂tgc

in the sense of distributions. Let us recall from the previous theorem that ∂tϕ ∈
L2(I;L2(Ω)). Thus, we have ∇· (m(φ, θ)∇∂tϕ), κy ·∇∂tφ ∈ L2(I;W−2,2

n (Ω)) due to

〈∇ · (m(φ, θ)∇∂tϕ), ψ〉L2(W−2,2
n ),L2(W 2,2

n ) =

∫
ΩT

∂tϕ∇ · (m(φ, θ)∇ψ) dω
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≤ cφ,θ‖∂tϕ‖L2(L2)‖ψ‖L2(W 2,2
n )

〈κy · ∇∂tφ, ψ〉L2(W−2,2
n ),L2(W 2,2

n ) = −
∫
ΩT

κ∂tφy · ∇ψ dω

≤ c‖∂tφ‖L2(L2)‖y‖L∞(W 1,2
0,σ)‖ψ‖L2(W 2,2

n )

for each ψ ∈ L2(I;W 2,2
n (Ω)). Furthermore, we have ∇ · (m′(φ, θ)(∂tφ, ∂tθ)∇ϕ) ∈

L2(I;W−2,2
n (Ω)) and κ∂ty · ∇φ ∈ L2(I;W−1,2(Ω)) since∫

ΩT

|m′(φ, θ)(∂tφ, ∂tθ)∇ϕ · ∇ψ| dω

≤ c(‖∂tφ‖L2(L2) + ‖∂tθ‖L2(L2))‖ϕ‖L∞(W 2,2
n )‖ψ‖L2(W 2,2

n )∫
ΩT

|(κ∂ty · ∇φ)ψ| dω ≤ c‖∂ty‖L2(L2
σ)‖φ‖L∞(W 2,2)‖ψ‖L2(W 1,2).

Since ∂tgc ∈ L2(I;W−2,2
n (Ω)), we conclude that ∂tζ ∈ L2(I;W−2,2

n (Ω)). �

The next auxiliary lemma is concerned with the regularity of solutions to a linear
backward-in-time biharmonic problem with Voigt-type damping.

Lemma 5.11. Consider the initial-boundary value problem[
−∂t(ϑ̃− τ∆ϑ̃) + b∆2ϑ̃ = g̃h in ΩT ,

∂nϑ̃ = ∂n∆ϑ̃ = 0 on ΓT , ϑ̃(T )− τ∆ϑ̃(T ) = ϑ̃T in Ω.

Let k = 0, 1. If g̃h ∈ L2(I;W k−1,2(Ω)) and ϑ̃T ∈ W k,2(Ω), then

ϑ̃ ∈ W 1,2,2(I;W k+3,2
n (Ω),W k+1,2

n (Ω))

and we have

‖ϑ̃‖W 1,2,2(Wk+3,2
n ,Wk+1,2

n ) ≤ c(‖g̃h‖L2(Wk−1,2) + ‖ϑ̃T‖Wk,2).

Proof. Taking the test function ϑ̃− τ∆ϑ̃ and applying Young’s inequality, one has
the a priori estimate

− 1

2

d

dt

∫
Ω

|ϑ̃|2 + 2τ |∇ϑ̃|2 + τ 2|∆ϑ̃|2 dx

+
b

2
(‖∆ϑ̃‖2

L2 + τ‖∇∆ϑ̃‖2
L2) ≤ c(‖ϑ̃‖2

W 1,2 + ‖g̃h‖2
W−1,2)

for some constant c > 0. On the other hand, if we choose the test function ∆2ϑ̃,
then we have

−1

2

d

dt

∫
Ω

|∆ϑ̃|2 + τ |∇∆ϑ̃|2 dx+
b

2
‖∆2ϑ̃‖2

L2 ≤ c‖g̃h‖2
L2 .

We can write the terminal condition as ϑ̃(T ) = B−1
N ϑ̃T , and hence, we have the

estimate ‖ϑ̃(T )‖Wk+2,2
n

≤ ‖B−1
N ‖L(Wk,2,Wk+2,2

n )‖ϑ̃T‖Wk,2 for k = 0, 1. Utilizing a
standard Faedo–Galerkin approach, the above a priori estimates will lead to the
conclusion of the lemma. �
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Theorem 5.12. Let k = 0, 1 and suppose that the conditions of Theorem 5.6,
Remark 5.7, and Theorem 5.9 hold. If gdh ∈ L2(I;W k−1,2(Ω)) and ϑT ∈ W k,2(Ω),
then ϑ ∈ W 1,2,2(I;W k+3,2

n (Ω),W k+1,2
n (Ω)).

Proof. The theorem follows from Lemma 5.11 with ϑ̃T = ϑT and

g̃h = gh + v · ∇ϑ+∇ · (χ(φ, θ)∇ϑ)− dθ(φ, µ, θ,v,S)(ϕ, ϑ,y,Y)− σS : Dy + bhg · y.

To see this, it is enough to show that g̃h ∈ L2(I;W k−1,2(Ω)). Indeed, it is obvious
that bhg ·y ∈ L2(I;W 2,2(Ω)). Also, v ·∇ϑ, σS : Dy, ∇· (χ(φ, θ)∇ϑ) ∈ L2(I;L2(Ω))
thanks to Remark 5.7 and the estimates

‖v · ∇ϑ‖L2(L2) ≤ c‖v‖L∞(W 1,2
0,σ)‖∆ϑ‖L2(L2)

‖σS : Dy‖L2(L2) ≤ c‖S‖L∞(W1,2
s )‖y‖L2(W 2,2

0,σ)

‖∇ · (χ(φ, θ)∇ϑ)‖L2(L2) ≤ c(‖φ‖L∞(W 1,4) + ‖θ‖L∞(W 1,4) + 1)‖∆ϑ‖L2(L2).

Here, the last inequality was obtained by distributing the divergence and invoking
the Hölder inequality.

To determine the regularity of dθ(φ, µ, θ,v,S)(ϕ, ϑ,y,Y), we first consider the
case where k = 0. Then, mθ(φ, θ)∇µ · ∇ϕ ∈ L2(I;L4/3(Ω)) ↪→ L2(I;W−1,2(Ω))
since ϕ ∈ L∞(I;W 1,2(Ω)) by Theorem 5.9 and

‖mθ(φ, θ)∇µ · ∇ϕ‖L2(L4/3) ≤ c‖∇µ‖L2(L4)‖∇ϕ‖L∞(L2) ≤ c‖µ‖L2(W 2,2
n )‖ϕ‖L∞(W 1,2).

Recall from the proof of Theorem 5.6 that χθ(φ, θ)∇θ · ∇ϑ, 2νθ(φ, θ)Dv : Dy,
εθ(φ, θ)∇S ∴ ∇Y ∈ L2(I;W−1,2(Ω)). Consequently, we established that g̃h ∈
L2(I;W−1,2(Ω)) when k = 0.

Now, assume k = 1. Since ϕ ∈ W 1,2,2(I;W 4,2
n (Ω), L2(Ω)), we apply (3.1) along

with the estimate

‖mθ(φ, θ)∇µ · ∇ϕ‖L2(L2) ≤ c‖∇µ‖L2(L4)‖∇ϕ‖L∞(L4) ≤ c‖µ‖L2(W 2,2
n )‖ϕ‖L∞(W 2,2

n )

to get mθ(φ, θ)∇µ · ∇ϕ ∈ L2(I;L2(Ω)). The rest of the terms appearing in
dθ(φ, µ, θ,v,S)(ϕ, ϑ,y,Y) lie in L2(I;L2(Ω)) by utilizing the same argument as
in Theorem 5.9. Therefore, we have verified that g̃h ∈ L2(I;L2(Ω)) when k = 1. �

6. Applications to Optimal Control Problems

For the cost functional in the control problem (1.16), we shall consider quadratic
tracking-type costs with the allowable regularity for the state components. Thanks
to the square-integrability of the time-derivatives of the strong solution, we can
include them in the cost functionals.

6.1. Cost Functionals with Time Derivatives and High Spatial
Derivatives. First, we consider cost functionals involving the temporal deriva-
tives, the biharmonic operator for the order parameter and the temperature, and the
Laplacian of the chemical potential, velocity, and viscoelastic stress on the space-
time domain. In particular, we define

Jo,ΩT (φ) :=
1

2

∫
ΩT

λdo,4|∆2φ− φ4|2 + λdo,5|∂tφ− φ5|2 dω,
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Jc,ΩT (µ) :=
1

2

∫
ΩT

λdc,2|∆µ− µ2|2 dω

Jh,ΩT (θ) :=
1

2

∫
ΩT

λdh,4|∆2θ − θ4|2 + λdh,5|∂tθ − θ5|2 dω

+
1

2

∫
ΩT

λdh,6|∇∂tθ − θ6|2 + λdh,7|∆∂tθ − θ7|2 dω

Jv,ΩT (v) :=
1

2

∫
ΩT

λdv,2|∆v − v2|2 + λdv,3|∂tv − v3|2 dω

Js,ΩT (S) :=
1

2

∫
ΩT

λds,2|∆S− S2|2 +
1

2

∫
ΩT

λds,3|∂tS− S3|2 dω.

With regard to the tracking-type functionals at the terminal time, we consider the
following:

Jo,Ω(φ) :=
1

2

∫
Ω

λTo,2|∆φ(T )− φT,2|2 dx

Jc,Ω(µ) :=
1

2

∫
Ω

λT c,0|µ(T )− µT |2 dx

Jh,Ω(θ) :=
1

2

∫
Ω

λTh,3|∇∆θ(T )− θT,3|2 dx

Jv,Ω(v) :=
1

2

∫
Ω

λTv,1|∇v(T )− VT,1|2 dx

Js,Ω(S) :=
1

2

∫
Ω

λT s,1|∇S(T )−ST,1|2 dx.

The above λ parameters are assumed to be positive, unless stated otherwise. In
practice, some of the parameters are set to zero depending on the goal of a particular
problem. We suppose that the desired states are at least square-integrable either in
ΩT or Ω. For instance, with regard to the term involving the parameters λdo,4 and
λTo,2, we have φ4 ∈ L2(I;L2(Ω)) and φT,2 ∈ L2(Ω). With these, the cost functionals
are well-defined thanks to (ϕ, µ, θ,v,S) ∈ W2(ΩT ).

Let us write the reduced cost functional by

J (u) := G(ϕ(u), µ(u), θ(u),v(u),S(u)) +
λq
2

∫
ΩT

|u|2 dω

:= Jo(φ(u)) + Jc(µ(u)) + Jh(θ(u)) + Jv(v(u)) + Js(S(u)) +
λq
2

∫
ΩT

|u|2 dω

where (ϕ(u), µ(u), θ(u),v(u), S(u)) = T (u) and Jk := Jk,ΩT + Jk,Ω for
k = o, c, h, v, s. An element u ∈ U is called a global minimizer of J if
J (u) ≤ J (z) for all z ∈ U .

Using classical sequential compactness argument, the following existence of opti-
mal controls can be established. In particular, utilizing the weak-weak continuity
of the control-to-state operator T : U →W2(ΩT ) as presented in Theorem 4.1, the
following theorem can be shown. As this is now standard in the field, we do not
provide the details here and refer the reader to [66] on how to establish this theorem.
Here, we are mainly interested in the regularity of the optimal solutions.
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Theorem 6.1. The optimal control problem (1.16) has a solution, that is, there is
at least one global minimizer u ∈ U of J . Moreover, we have u = −λ−1

q y almost
everywhere in ΩT .

Given s ≥ 0, we define ∂t : L2(I;W−s,2(Ω)) → W−1,2
0 (I;W−s,2(Ω)) by duality,

that is,

〈∂th, g〉W−1,2
0 (W−s,2),W 1,2

0 (W s,2) := −
∫
I

〈h, ∂tg〉W−s,2,W s,2 dt,

for (h, g) ∈ L2(I;W−s,2(Ω))×W 1,2
0 (I;W s,2(Ω)). By abuse of notation, we also use

the same notation for the distributional time-derivative when W s,2(Ω) is replaced
by W s,2

n (Ω), W s,2
0,σ(Ω), or Ws,2

n,s(Ω).
With respect to the reduced cost functional J defined above, the right-hand sides

of the adjoint problem (5.7) are given by

gdo = λdo,4(∆4φ−∆2φ4)− λdo,5∂t(∂tφ− φ5)

gc = λdc,2(∆2µ−∆µ2)

gdh = λdh,4(∆4θ −∆2θ4)− λdh,5∂t(∂tθ − θ5)

+ λdh,6∂t(∆∂tθ −∇ · θ6)− λdh,7∂t(∆
2∂tθ −∆θ7)

gdv = λdv,2(∆2v −∆v2)− λdv,3∂t(∂tv − v3)

Gds = λds,2(∆2S−∆S2)− λds,3∂t(∂tS− S3).

On the other hand, the terminal data for (5.7) are given by

ϕT = λTo,2(∆2φ(T )−∆φT,2)

+ λT c,0[F ′′(φ(T ))(µ(T )− µT )− α(∆µ(T )−∆µT )]

ϑT = −λTh,3(∆4θ(T ) − ∆∇ · θT,3), yT = −λTv,1(∆v(T ) − ∇ · VT,1), and YT =
−λT s,1(∆S(T )−∇·ST,1). Here, the second term in ϕT is due to ξ = −α∆ψ+F ′′(φ)ψ
and the following computation:∫

ΩT

λT c,0(µ(T )− µT )ξ(T ) dω

=

∫
ΩT

λT c,0(µ(T )− µT )(−α∆ψ(T ) + F ′′(φ(T ))ψ(T )) dω

=

∫
ΩT

λT c,0F
′′(φ(T ))(µ(T )− µT )ψ(T ) dω

− 〈λT c,0α(∆µ(T )−∆µT ), ψ(T )〉W−2,2
n ,W 2,2

n
.

In particular, by the chain rule, we have

G ′(φ, µ, θ,v,S)(ψ, ξ, η,w,T) = 〈(gdo, gc, gdh, gdv,Gds), (ψ, ξ, η,w,T)〉(V2
0 )∗,V2

0

+ 〈(ϕT , ϑT ,yT ,YT ), (ψ(T ), η(T ),w(T ),T(T ))〉(D2)∗,D2 .

Thanks to the regularity of the solution to the state equation (see Theorem 3.1),
we have gdo ∈ L2(I;W−4,2

n (Ω)) + W−1,2
0 (I;L2(Ω)), gc ∈ L2(I;W−2,2

n (Ω)), gdv ∈
L2(I;W−2,2

0,σ (Ω)) +W−1,2
0 (I;L2

σ(Ω)), and Gds ∈ L2(I;W−2,2
n,s (Ω)) +W−1,2

0 (I;L2
s (Ω)).
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Likewise, we have gdh ∈ L2(I;W−4,2
n (Ω)) +W−1,2

0 (I;W `,2
n (Ω)), where

` :=



−2 if λdh,7 > 0,

−1 if λdh,7 = 0, λdh,6 > 0,

0 if λdh,7 = 0, λdh,6 > 0,∇ · θ6 ∈ L2(I;L2(Ω))

or λdh,7 = λdh,6 = 0, λdh,5 > 0,

1 if λdh,7 = λdh,6 = 0, λdh,5 > 0, θ5 ∈ L2(I;W 1,2(Ω)),

2 if λdh,7 = λdh,6 = 0, λdh,5 > 0, θ5 ∈ L2(I;W 2,2
n (Ω)).

For the terminal data, we have (ϕT , ϑT ,yT ,YT ) ∈ D2(Ω)∗. Thus, it follows
that the variational solution to the adjoint problem (5.7) satisfies the conclusion of
Theorem 5.2, with the following function spaces:

X2
o (ΩT ) = L2(I;W 4,2

n (Ω)) ∩W 1,2
0 (I;L2(Ω))

X2
h(ΩT ) = L2(I;W 4,2

n (Ω)) ∩W 1,2
0 (I;W−`,2

n (Ω))

X2
v(ΩT ) = L2(I;W 2,2

0,σ(Ω)) ∩W 1,2
0 (I;L2

σ(Ω))

X2
s (ΩT ) = L2(I;W2,2

n,s(Ω)) ∩W 1,2
0 (I;L2

s (Ω)).

In particular, it holds that V2
0 (ΩT ) ↪→ X 2(ΩT ) from (5.9) and

(BNX
2
h(ΩT ))∗ = L2(I;W−2,2

n (Ω)) +W−1,2
0 (I;W `+2,2

n (Ω)).

If the coefficients involving the time derivatives vanish, that is, λdo,5 = λdh,5 =
λdh,6 = λdh,7 = λdv,3 = λds,3 = 0, then Remark 5.3 applies. As a result, we have
u ∈ W 1,2,2(I;L2

σ(Ω),W−2,2
0,σ (Ω)) ↪→ C(Ī;W−1,2

0,σ (Ω)) by Theorem 6.1. Thus, the
required time-regularity and initial-value of the control u given in Theorem A.4 for
k = 0 holds. If the other conditions for the sources and initial conditions for the
state system are satisfied as well for k = 0 in Theorem A.4, then (A.145) for k = 0
is attained by the optimal state. In particular, φ ∈ W 1,2,2(I;W 4,2(Ω),W 2,2(Ω)) ↪→
L∞(I;W 3,2(Ω)) ↪→ L∞(I;W 1,∞(Ω)). Recall that this is the additional regularity for
φ needed in the proof of Theorem 5.9.

6.2. Cost Functionals with Low Spatial Derivatives. Now, let us
consider the following cost functionals without the temporal derivatives and with
lower spatial derivatives for the states:

Jo,ΩT (φ) :=
1

2

∫
ΩT

λdo,0|φ− φ0|2 + λdo,1|∇φ− φ1|2 dω

+
1

2

∫
ΩT

λdo,2|∆φ− φ2|2 + λdo,3|∇∆φ− φ3|2 dω

Jc,ΩT (µ) :=
1

2

∫
ΩT

λdc,0|µ− µ0|2 + λdc,1|∇µ− µ1|2 dω

Jh,ΩT (θ) :=
1

2

∫
ΩT

λdh,0|θ − θ0|2 + λdh,1|∇θ − θ1|2 dω

+
1

2

∫
ΩT

λdh,2|∆θ − θ2|2 + λdh,3|∇∆θ − θ3|2 dω
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Jv,ΩT (v) :=
1

2

∫
ΩT

λdv,0|v − v0|2 + λdv,1|∇v − V1|2 dω

Js,ΩT (S) :=
1

2

∫
ΩT

λds,0|S− S0|2 + λds,1|∇S−S1|2 dω.

At the terminal time, we set Jc,Ω(µ) := 0 and

Jo,Ω(φ) :=
1

2

∫
Ω

λTo,0|φ(T )− φT,0|2 + λTo,1|∇φ(T )− φT,1|2 dx

Jh,Ω(θ) :=
1

2

∫
Ω

λTh,0|θ(T )− θT,0|2 + λTh,1|∇θ(T )− θT,1|2 dx

+
1

2

∫
Ω

λTh,2|∆θ(T )− θT,2|2 dx

Jv,Ω(v) :=
1

2

∫
Ω

λTv,0|v(T )− vT,0|2 dx

Js,Ω(S) :=
1

2

∫
Ω

λT s,0|S(T )− ST,0|2 dx.

Once again, the λ parameters are assumed to be positive and the target states are at
least square integrable, unless stated otherwise. The discussion below can be easily
adjusted to the case where time-derivatives appear in the cost functionals as in the
previous subsection.

Theorem 6.1 also holds in the case of the above cost functionals. Here, the right-
hand sides of the adjoint system (5.7) are given by

gdo = λdo,0(φ− φ0)− λdo,1(∆φ−∇ · φ1)

+ λdo,2(∆2φ−∆φ2)− λdo,3(∆3φ−∆∇ · φ3)

gc = λdc,0(µ− µ0)− λdc,1(∆µ−∇ · µ1)

gdh = λdh,0(θ − θ0)− λdh,1(∆θ −∇ · θ1)

+ λdh,2(∆2θ −∆θ2)− λdh,3(∆3θ −∆∇ · θ3)

gdv = λdv,0(v − v0)− λdv,1(∆v −∇ · V1)

Gds = λds,0(S− S0)− λds,1(∆S−∇ ·S1)

while the terminal data are as follows:

ϕT = λTo,0(φ(T )− φT,0)− λTo,1(∆φ(T )−∇ · φT,1)

ϑT = λTh,0(θ(T )− θT,0)− λTh,1(∆θ(T )−∇ · θT,1) + λTh,2(∆2θ(T )−∆θT,2)

yT = λTv,0(v(T )− vT,0), YT = λT s,0(S(T )− ST,0).

It holds that (ϕT , ϑT ,yT ,YT ) ∈ D1(Ω)∗, so that the conclusion of Remark
5.5 is satisfied where we have X1

o (ΩT )∗ = L2(I;W−3,2
n (Ω)), (BNX

1
h(ΩT ))∗ =

L2(I;W−1,2(Ω)), X1
v(ΩT )∗ = L2(I;W−1,2

0,σ (Ω)), and X1
s (ΩT )∗ = L2(I;W−1,2

s (Ω)).
Thus, for the optimal control, one has u ∈ W 1,2,2(I;W 1,2

0,σ(Ω),W−1,2
0,σ (Ω))

↪→ C(Ī;L2
σ(Ω)). The time-regularity and initial-value of the control u required

by Theorem A.4 is verified for k = 1. As a result, (A.145) also holds for k = 1,
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provided that all assumptions on the sources and the initial data in the state system
are also achieved.

If ∇ · φ3,∇ · µ1, ∇ · θ3 ∈ L2(I;L2(Ω)), v0,∇ · V1 ∈ L2(I;L2(Ω)), S0,∇ · G1 ∈
L2(I;L2

s (Ω)), ∇ · φT,1 ∈ L2(Ω), ∆θT,2 ∈ W−1,2(Ω), vT,0 ∈ W 1,2
0,σ(Ω), and ST,0 ∈

W1,2
s (Ω), then (ϕT , ϑT ,yT ,YT ) ∈ D0(Ω)∗. Hence, Remark 5.7 applies to the so-

lution of the adjoint system. Here, X0
o (ΩT )∗ = L2(I;W−2,2

n (Ω)), (BNX
0
h(ΩT ))∗ =

L2(I;L2(Ω)), X0
v(ΩT )∗ = L2(I;L2(Ω)), and X0

s (ΩT )∗ = L2(I;L2
s (Ω)). Therefore,

u ∈ W 1,2,2(I;W 2,2
0,σ(Ω),L2(Ω)) ↪→ C(Ī;W 1,2

0,σ(Ω)). Once again, (A.145) also holds
for k = 2 as long as the conditions for the sources and the initial data in the state
system are fulfilled.

Suppose that λdo,3 = λdc,1 = λTo,1 = 0, ∇ · φ1,∆φ2 ∈ L2(I;W k−1,2(Ω)), µ0 ∈
L2(I;W k+1,2(Ω)), and φT,0 ∈ W k+1,2

n (Ω) for k = 0, 1. Then, Theorem 5.9 is valid; see
also the last statement of the previous subsection. If, in addition, λdh,3 = λTh,2 = 0,
∇ · θ1,∆θ2 ∈ L2(I;W k−1(Ω)), and θT,0,∇ · θT,1 ∈ W k,2(Ω) for k = 0, 1, then the
result of Theorem 5.12 is attained. Finally, if µ0 ∈ W 1,2,2(I;W 2,2(Ω),W−2,2

n (Ω)),
then Corollary 5.10 applies.

Remark 6.2. Let us mention the cases where the control is present in either of
the evolution equation governing the concentration φ or the temperature θ. If fo is
replaced by fo + u in (1.15) with u = 0 and u ∈ L2(ΩT ), then the optimal control
is given by u = −λ−1

q ϕ. Similarly, in the case where fh is replaced by fh + u, the
optimal control satisfies u = −λ−1

q ϑ. In either case, the regularity of the control is
the same as that of the dual of the order parameter or the dual temperature.

A. Solutions to the Linearized System
We give a comprehensive proof of Theorem 4.2 on the existence, uniqueness, and
stability of weak solutions (Appendix A.1), very weak solutions (Appendix A.2),
and strong solutions (Appendix A.3) to the linearized system (4.2). The type of
solutions depends on the regularity of the source terms and initial data in (4.2). We
then apply Theorem 4.2 to deduce solutions with higher time-differentiability for the
nonlinear system (1.15) under suitable smoothness conditions on the source terms
and initial data in Appendix A.4. To establish Theorem 4.2, we will first address
weak solutions, followed by very weak solutions using a density argument. The case
of strong solutions follows a similar approach as for the nonlinear system (1.15).

A.1. Weak Solutions to the Linearized System. Given source func-
tions and initial data

(ho, hc, hh,hv,Hs) ∈ U1(ΩT )∗, (ψ0, η0,w0,T0) ∈ D1(Ω), (A.1)

a quintuple (ψ, ξ, η,w,T) ∈ V1(ΩT ) is called a weak solution to (4.2) if the following
variational equations are satisfied

〈∂tψ, ϕ〉W−1,2,W 1,2 +

∫
Ω

(w · ∇φ+ v · ∇ψ)ϕ dx

+

∫
Ω

[m′(φ, θ)(ψ, η)∇µ+m(φ, θ)∇ξ] · ∇ϕ dx = 〈ho, ϕ〉W−1,2,W 1,2 (A.2)
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∫
Ω

(∂tη)ϑ+ τ∇∂tη · ∇ϑ dx+

∫
Ω

(w · ∇θ + v · ∇η)ϑ dx

+

∫
Ω

[χ′(φ, θ)(ψ, η)∇θ + χ(φ, θ)∇η] · ∇ϑ dx−
∫
Ω

b∇∆η · ∇ϑ dx

−
∫
Ω

(T : Dv + S : Dw)ϑ dx−
∫
Ω

a0g ·wϑ dx = 〈hh, ϑ〉W−1,2,W 1,2 (A.3)

〈∂tw,y〉W−1,2
0,σ ,W 1,2

0,σ
+

∫
Ω

[(w · ∇)v + (v · ∇)w] · y dx

+

∫
Ω

[2ν ′(φ, θ)(ψ, η)Dv + 2ν(φ, θ)Dw] : Dy dx

+

∫
Ω

(σηS + MS(θ, S)T) : Dy dx−
∫
Ω

κ(ξ∇φ+ µ∇ψ) · y dx

−
∫
Ω

(boψ + bhη)g · y dx = 〈hv,y〉W−1,2
0,σ ,W 1,2

0,σ
(A.4)

〈∂tT,Y〉W−1,2
s ,W1,2

s
+

∫
Ω

[(w · ∇)S + (v · ∇)T] : Y dx

+

∫
Ω

[ε′(φ, θ)(ψ, η)∇S + ε(φ, θ)∇T] ∴ ∇Y dx

+

∫
Ω

[J(w,S) + J(v,T)] : Y dx−
∫
Ω

[λDw + P′(S)T] : Y dx

= 〈Hs,Y〉W−1,2
s ,W1,2

s
(A.5)

almost everywhere in I for every test function (ϕ, ϑ,y,Y) ∈ W 1,2(Ω) ×W 1,2(Ω) ×
W 1,2

0,σ(Ω)×W1,2(Ω), the equation ξ+α∆ψ−F ′′(φ)ψ = hc holds in L2(I;W 1,2(Ω)),
and the initial conditions in (4.2) are satisfied in D1(Ω).

The existence of solutions will follow once we derive a priori estimates for the
Faedo–Galerkin approximations. Hence, it suffices to formally derive the a priori
estimates necessary for weak sequential arguments. We split the derivation in several
steps. We proceed in such a way that some of the steps can be carried out in the
very weak formulation of the linearized system. To simplify the final estimates in
each step, we denote by Kj : I → [0,∞) a generic function depending on the spatial
norms of a strong solution (φ, µ, θ,v,S) such that Kj = Kj(φ, µ, θ,v,S) ∈ L1(I) and

‖Kj‖L1(I) ≤ C(‖(φ, µ, θ,v,S)‖W2). (A.6)

In each appearance of Kj below, this integrability condition can be verified with the
help of the continuous embeddings (3.1)–(3.10).

Let us now derive the a priori estimates needed for the existence of weak solutions.

Estimates for ψ in L∞(L2)∩L2(W 2,2
n ) and ξ in L2(L2). Testing (A.2) with ϕ = ψ

yields
1

2

d

dt

∫
Ω

|ψ|2 dx+

∫
Ω

(w · ∇φ)ψ dx+

∫
Ω

m′(φ, θ)(ψ, η)∇µ · ∇ψ dx

+

∫
Ω

m(φ, θ)∇ξ · ∇ψ dx = 〈ho, ψ〉W−1,2,W 1,2 . (A.7)
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Utilizing the Hölder and Young inequalities to the second and third integrals, the
Cauchy–Schwarz inequality to the right-hand side, and using the estimate (2.3), one
has

|〈ho, ψ〉W−1,2,W 1,2| ≤ c(‖ho‖2
W−1,2 + ‖ψ‖2

W 1,2) (A.8)∫
Ω

|(w · ∇φ)ψ| dx ≤ δ0‖w‖2
L2
σ

+ cδ0‖∇φ‖2
L∞‖ψ‖2

L2 (A.9)∫
Ω

|m′(φ, θ)(ψ, η)∇µ · ∇ψ| dx ≤ (|mφ|∞‖ψ‖L2 + |mθ|∞‖η‖L2)‖∇µ‖L4‖∇ψ‖L4

≤ δ‖∆ψ‖2
L2 + cδ‖∇µ‖2

L4(‖ψ‖2
L2 + ‖η‖2

L2). (A.10)

Integrating by parts and using the equation for ξ in (4.2), the fourth integral in
(A.7) can be written as∫

Ω

m(φ, θ)∇ξ · ∇ψ dx = −
∫
Ω

ξ∇ · (m(φ, θ)∇ψ) dx

= −
∫
Ω

ξ[(mφ(φ, θ)∇φ+mθ(φ, θ)∇θ) · ∇ψ +m∆ψ] dx

= −
∫
Ω

ξ(mφ(φ, θ)∇φ+mθ(φ, θ)∇θ) · ∇ψ dx

+

∫
Ω

m(φ, θ)(α∆ψ − F ′′(φ)ψ − hc)∆ψ dx. (A.11)

We have the following estimates for the terms arising from the second integral on
the right-hand side∫

Ω

αm(φ, θ)∆ψ∆ψ dx ≥ αm0‖∆ψ‖2
L2 (A.12)∫

Ω

|m(φ, θ)hc∆ψ| dx ≤ δ‖∆ψ‖2
L2 + cδ|m|2∞‖hc‖2

L2 (A.13)∫
Ω

|m(φ, θ)F ′′(φ)ψ∆ψ| dx ≤ δ‖∆ψ‖2
L2 + cδ|m|2∞‖F ′′(φ)‖2

L∞‖ψ‖2
L2 . (A.14)

From (2.16) and φ ∈ L∞(I;W 2,2
n (Ω)), it follows that F ′′(φ) ∈ L∞(I;L∞(Ω)).

Applying the Hölder inequality and (2.12), we have∫
Ω

|ξ(mφ(φ, θ)∇φ+mθ(φ, θ)∇θ) · ∇ψ| dx

≤ ‖ξ‖L2(|mφ|∞‖∇φ‖L4 + |mθ|∞‖∇θ‖L4)‖ψ‖1/2

L2 ‖∆ψ‖1/2

L2

≤ δ2‖ξ‖2
L2 + δ2‖∆ψ‖2

L2 + cδ(‖∇φ‖4
L4 + ‖∇θ‖4

L4)‖ψ‖2
L2 . (A.15)

Finally, the equation for the linearized chemical potential ξ gives us

δ‖ξ‖2
L2 − 2α2δ‖∆ψ‖2

L2 ≤ cδ(‖F ′′(φ)‖2
L∞‖ψ‖2

L2 + ‖hc‖2
L2). (A.16)

We use the estimates (A.12)–(A.15) in (A.11), apply the obtained inequality along
with (A.8)–(A.10) to (A.7), and take the sum with (A.16). Choosing 0 < δ < 1
small enough in such a way that αm0 − (3 + 2α2)δ − δ2 > 0, we can see that for
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some constant c = cδ,m0,α > 0 and K1 = K1(φ, µ, θ,v,S) ∈ L1(I),

1

2

d

dt
‖ψ‖2

L2 +
1

c
‖∆ψ‖2

L2 +
1

c
‖ξ‖2

L2

≤ δ0‖w‖2
L2
σ

+ cδ0 [K1(‖ψ‖2
W 1,2 + ‖η‖2

L2) + ‖ho‖2
W−1,2 + ‖hc‖2

L2 ]. (A.17)

Estimates for ψ in L∞(W 1,2) ∩ L2(W 3,2
n ) and ξ in L2(W 1,2). Taking the test

function ϕ = −∆ψ in (A.2) yields the equation

1

2

d

dt

∫
Ω

|∇ψ|2 dx−
∫
Ω

(w · ∇φ)∆ψ dx−
∫
Ω

(v · ∇ψ)∆ψ dx

−
∫
Ω

m′(φ, θ)(ψ, η)∇µ · ∇∆ψ dx−
∫
Ω

m(φ, θ)∇ξ · ∇∆ψ dx

= −〈ho,∆ψ〉W−1,2,W 1,2 . (A.18)

By Hölder and Young inequalities, the embedding W 1,2(Ω) ↪→ L4(Ω), and (2.5), we
obtain the following estimates for the right-hand side and the second, third, and
fourth integrals on the left-hand side

|〈ho,∆ψ〉W−1,2,W 1,2| ≤ δ‖∇∆ψ‖2
L2 + cδ(‖ho‖2

W−1,2 + ‖ψ‖2
L2) (A.19)∫

Ω

|(w · ∇φ)∆ψ| dx ≤ δ‖∇∆ψ‖2
L2 + cδ‖∇φ‖2

L4‖w‖2
L2
σ

(A.20)∫
Ω

|(v · ∇ψ)∆ψ| dx ≤ δ‖∇∆ψ‖2
L2 + cδ‖v‖2

L4
σ
‖∇ψ‖2

L2 (A.21)∫
Ω

|m′(φ, θ)(ψ, η)∇µ · ∇∆ψ| dx

≤ δ‖∇∆ψ‖2
L2 + cδ‖∇µ‖2

L4(|mφ|2∞‖ψ‖2
W 1,2 + |mθ|2∞‖η‖2

W 1,2). (A.22)

The fifth integral in (A.18) can be bounded from below as follows:

−
∫
Ω

m(φ, θ)∇ξ · ∇∆ψ dx

=

∫
Ω

m(φ, θ)[α∇∆ψ −∇(F ′′(φ)ψ)−∇hc] · ∇∆ψ dx

≥ m0α

2
‖∇∆ψ‖2

L2 − c|m|2∞(‖∇(F ′′(φ)ψ)‖2
L2 + ‖∇hc‖2

L2). (A.23)

From the chain rule, we obtain ∇(F ′′(φ)ψ) = F ′′′(φ)ψ∇φ+ F ′′(φ)∇ψ, and hence,

‖∇(F ′′(φ)ψ)‖2
L2 ≤ c(‖F ′′′(φ)‖2

L∞‖∇φ‖2
L4‖ψ‖2

L4 + ‖F ′′(φ)‖2
L∞‖∇ψ‖2

L2)

≤ c(‖F ′′′(φ)‖2
L∞‖∇φ‖2

L4 + ‖F ′′(φ)‖2
L∞)‖ψ‖2

W 1,2 . (A.24)

The gradient of the linearized potential is given by ∇ξ = −α∇∆ψ+∇(F ′′(φ)ψ)+
∇hc. Thus, by the triangle inequality, we obtain after rearrangement the following:

δ‖∇ξ‖2
L2 − 2α2δ‖∇∆ψ‖2

L2 ≤ cδ(‖∇(F ′′(φ)ψ)‖2
L2 + ‖∇hc‖2

L2). (A.25)

Plugging the estimates (A.19)–(A.23), taking the sum with (A.25), applying (A.24),
and then taking δ > 0 sufficiently small so that m0α

2
− (4 + 2α2)δ > 0, we obtain a
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constant c = cδ,m0,α > 0 and K2 = K2(φ, µ, θ,v,S) ∈ L1(I) such that

1

2

d

dt
‖∇ψ‖2

L2 +
1

c
‖∇∆ψ‖2

L2 +
1

c
‖∇ξ‖2

L2

≤ c[K2(‖ψ‖2
W 1,2 + ‖η‖2

W 1,2 + ‖w‖2
L2
σ
) + ‖ho‖2

W−1,2 + ‖∇hc‖2
L2 ]. (A.26)

Estimate for η in L∞(W 1,2) ∩ L2(W 2,2
n ). Using the test function ϑ = η in (A.3)

and then integrating by parts, one has

1

2

d

dt

∫
Ω

|η|2 + τ |∇η|2 dx+

∫
Ω

(w · ∇θ)η dx+

∫
Ω

χ′(φ, θ)(ψ, η)∇θ · ∇η dx

+

∫
Ω

χ(φ, θ)∇η · ∇η dx+

∫
Ω

b|∆η|2 dx−
∫
Ω

T : Dvη dx

−
∫
Ω

S : Dwη dx−
∫
Ω

a0g ·wη dx = 〈hh, η〉W−1,2,W 1,2 . (A.27)

The integral terms except for the seventh integral on the left-hand side can be
bounded from above as follows:

|〈hh, η〉W−1,2,W 1,2| ≤ c(‖hh‖2
W−1,2 + ‖η‖2

W 1,2) (A.28)∫
Ω

|(w · ∇θ)η| dx ≤ δ0

3
‖w‖2

L2
σ

+ cδ0‖∇θ‖2
L∞‖η‖2

L2 (A.29)∫
Ω

|χ′(φ, θ)(ψ, η)∇θ · ∇η| dx

≤ c‖∇η‖2
L2 + c‖∇θ‖2

L∞(|χφ|2∞‖ψ‖2
L2 + |χθ|2∞‖η‖2

L2) (A.30)∫
Ω

|χ(φ, θ)∇η · ∇η| dx ≤ |χ|∞‖∇η‖2
L2 (A.31)∫

Ω

|T : Dvη| dx ≤ δ0‖T‖2
L2
s

+ cδ0‖∇v‖2
L4‖η‖2

W 1,2 (A.32)∫
Ω

|a0g ·wη| dx ≤
δ0

3
‖w‖2

L2
σ

+ cδ0|a0g|2‖η‖2
L2 . (A.33)

Using S : Dw = S : ∇w, ∇ · (ηS) = S∇η + η∇ · S, and by-parts integration, we
obtain ∫

Ω

S : Dwη dx = −
∫
Ω

w · (S∇η + η∇ · S) dx

≤ δ0

3
‖w‖2

L2
σ

+ cδ0(‖S‖2
L∞s ‖∇η‖

2
L2 + ‖∇S‖2

(L4
s )2‖η‖2

W 1,2). (A.34)

Utilizing the inequalities (A.28)–(A.34) in (A.27), we get for some K3 =
K3(φ, µ, θ,v, S) ∈ L1(I) that

1

2

d

dt
(‖η‖2

L2 + τ‖∇η‖2
L2) + b‖∆η‖2

L2 − δ0‖w‖2
L2
σ
− δ0‖T‖2

L2
s

≤ cδ0 [K3(‖ψ‖2
L2 + ‖η‖2

W 1,2) + ‖hh‖2
W−1,2 ]. (A.35)

Department of Mathematics and Computer Science, College of Science, University of the Philippines Baguio



Optimal control for non-isothermal viscoelastic flows 65 / 85

Estimate for η in L∞(W 2,2
n )∩L2(W 3,2

n ). With the test function ϑ = −∆η in (A.3),
we obtain

1

2

d

dt

∫
Ω

|∇η|2 + τ |∆η|2 dx−
∫
Ω

(w · ∇θ)∆η dx−
∫
Ω

(v · ∇η)∆η dx

−
∫
Ω

χ′(φ, θ)(ψ, η)∇θ · ∇∆η dx−
∫
Ω

χ(φ, θ)∇η · ∇∆η dx

+

∫
Ω

b|∇∆η|2 dx+

∫
Ω

T : Dv∆η dx+

∫
Ω

S : Dw∆η dx

+

∫
Ω

a0g ·w∆η dx = −〈hh,∆η〉W−1,2,W 1,2 . (A.36)

Similar to the case for the linearized order parameter ψ, the succeeding estimates
can be derived

|〈hh,∆η〉W−1,2,W 1,2| ≤ δ‖∇∆η‖2
L2 + cδ(‖hh‖2

W−1,2 + ‖η‖2
L2) (A.37)∫

Ω

|(w · ∇θ)∆η| dx ≤ δ‖∇∆η‖2
L2 + cδ‖∇θ‖2

L4‖w‖2
L2
σ

(A.38)∫
Ω

|(v · ∇η)∆η| dx ≤ δ‖∇∆η‖2
L2 + cδ‖v‖2

L4
σ
‖∇η‖2

L2 (A.39)∫
Ω

|χ′(φ, θ)(ψ, η)∇θ · ∇∆η| dx

≤ δ‖∇∆η‖2
L2 + cδ‖∇θ‖2

L4(|χφ|2∞‖ψ‖2
W 1,2 + |χθ|2∞‖η‖2

W 1,2) (A.40)∫
Ω

|χ(φ, θ)∇η · ∇∆η| dx ≤ δ‖∇∆η‖2
L2 + cδ|χ|2∞‖∇η‖2

L2 . (A.41)

In addition to these, the remaining integrals in (A.36) satisfy the following inequal-
ities: ∫

Ω

|T : Dv∆η| dx ≤ δ‖∇∆η‖2
L2 + cδ‖∇v‖2

L4‖T‖2
L2
s

(A.42)∫
Ω

|S : Dw∆η| dx ≤ δ0‖∇w‖2
L2 + cδ0‖S‖2

L∞s ‖∆η‖
2
L2 (A.43)∫

Ω

|a0g ·w∆η| dx ≤ c(‖∆η‖2
L2 + ‖w‖2

L2
σ
). (A.44)

Invoking the estimates (A.37)–(A.44) in the energy identity (A.36) and then
choosing 0 < δ < b

6
, one can obtain a constant c = cδ,b > 0 and a function

K4 = K4(φ, µ, θ,v,S) ∈ L1(I) such that
1

2

d

dt
(‖∇η‖2

L2 + τ‖∆η‖2
L2) +

1

c
‖∇∆η‖2

L2 − δ0‖∇w‖2
L2

≤ cδ0 [K4(‖ψ‖2
W 1,2 + ‖η‖2

W 2,2
n

+ ‖w‖2
L2
σ

+ ‖T‖2
L2
s
) + ‖hh‖2

W−1,2 ]. (A.45)

Estimate for w in L∞(L2
σ) ∩ L2(W 1,2

0,σ). Let us deal with the linearized Navier–
Stokes equation. Applying the test function y = w in (A.4), we obtain

1

2

d

dt

∫
Ω

|w|2 dx+

∫
Ω

(w · ∇)v ·w dx
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+

∫
Ω

2ν ′(φ, θ)(ψ, η)Dv : Dw dx+

∫
Ω

2ν(φ, θ)Dw : Dw dx

+

∫
Ω

σηS : ∇w dx+

∫
Ω

MS(θ, S)T : ∇w dx−
∫
Ω

κξ∇φ ·w dx

−
∫
Ω

κµ∇ψ ·w dx−
∫
Ω

(boψ + bhη)g ·w dx = 〈hv,w〉W−1,2
0,σ ,W 1,2

0,σ
. (A.46)

The Korn, Gagliardo–Nirenberg, Hölder, and Young inequalities provide us the fol-
lowing estimates for each integral terms, except for the third one,

|〈hv,w〉W−1,2
0,σ ,W 1,2

0,σ
| ≤ δ‖∇w‖2

L2 + cδ‖hv‖2
W−1,2

0,σ
(A.47)∫

Ω

2ν(φ, θ)Dw : Dw dx ≥ ν0‖∇w‖2
L2 (A.48)∫

Ω

|(w · ∇)v ·w| dx ≤ δ‖∇w‖2
L2 + cδ‖∇v‖2

L4‖w‖2
L2
σ

(A.49)∫
Ω

|σηS : ∇w| dx ≤ δ‖∇w‖2
L2 + cδ‖S‖2

L∞s ‖η‖
2
L2 (A.50)∫

Ω

|MS(θ, S)T : ∇w| dx ≤ δ‖∇w‖2
L2 + cδ(‖θ‖2

L∞ + ‖S‖2
L∞s + 1)‖T‖2

L2
s

(A.51)∫
Ω

|κξ∇φ ·w| dx ≤ δ0‖ξ‖2
L2 + cδ0‖∇φ‖2

L∞‖w‖2
L2
σ

(A.52)∫
Ω

|κµ∇ψ ·w| dx ≤ δ‖∇w‖2
L2 + cδ‖µ‖2

L4‖∇ψ‖2
L2 (A.53)∫

Ω

|(boψ + bhη)g ·w| dx ≤ c[(‖ψ‖2
L2 + ‖η‖2

L2)|g|2 + ‖w‖2
L2
σ
]. (A.54)

For the third integral in (A.46), thanks to the Young inequality, we have∫
Ω

|2ν ′(φ, θ)(ψ, η)Dv : Dw| dx

≤ c(|νφ|∞‖ψ‖L4 + |νθ|∞‖η‖L4)‖∇v‖L4‖∇w‖L2

≤ δ‖∇w‖2
L2 + cδ‖∇v‖2

L4(|νφ|2∞‖ψ‖2
W 1,2 + |νθ|2∞‖η‖2

W 1,2). (A.55)

Using the estimates (A.47)–(A.55) in the equation (A.46) and then choosing 0 <
δ < ν0

6
leads to, for some c = cδ,ν0 > 0 and K5 = K5(φ, µ, θ,v,S) ∈ L1(I),

1

2

d

dt
‖w‖2

L2
σ

+
1

c
‖∇w‖2

L2 − δ0‖ξ‖2
L2

≤ cδ0 [K5(‖ψ‖2
W 1,2 + ‖η‖2

W 1,2 + ‖w‖2
L2
σ

+ ‖T‖2
L2
s
) + ‖hv‖2

W−1,2
0,σ

]. (A.56)

Estimate for T in L∞(L2
s ) ∩ L2(W1,2

s ). Our last estimate is concerned with the
linearized viscoelastic stress tensor. Applying the test function Y = T in (A.5)
yields

1

2

d

dt

∫
Ω

|T|2 dx+

∫
Ω

(w · ∇)S : T dx+

∫
Ω

J(w,S) : T dx+

∫
Ω

J(v,T) : T dx
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+

∫
Ω

ε′(φ, θ)(ψ, η)∇S ∴ ∇T dx+

∫
Ω

ε(φ, θ)∇T ∴ ∇T dx−
∫
Ω

P′(S)T : T dx

−
∫
Ω

λDw : T dx = 〈Hs,T〉W−1,2
s ,W1,2

s
. (A.57)

With regard to the source, convection, commutator, and anti-commutator terms
in the latter equation, we apply the Hölder and Young inequalities to deduce the
following:

|〈Hs,T〉W−1,2
s ,W1,2

s
| ≤ δ‖∇T‖2

(L2
s )2 + cδ(‖Hs‖2

W−1,2
s

+ ‖T‖2
L2
s
) (A.58)∫

Ω

|(w · ∇)S : T| dx ≤ δ‖∇T‖2
(L2

s )2 + cδ‖S‖2
L∞s ‖w‖

2
L2
σ

(A.59)∫
Ω

|J(w,S) : T| dx ≤ δ0‖∇w‖2
L2 + cδ0‖S‖2

L∞s ‖T‖
2
L2
s

(A.60)∫
Ω

|J(v,T) : T| dx ≤ δ‖∇T‖2
(L2

s )2 + cδ(‖∇v‖2
L2 + 1)‖T‖2

L2
s
. (A.61)

In (A.59), we utilized the anti-symmetry of the trilinear form corresponding to the
left-hand side with respect to the second and third arguments. With regard to the
terms involving stress diffusion, we get∫

Ω

ε(φ, θ)∇T ∴ ∇T dx ≥ ε0‖∇T‖2
(L2

s )2 (A.62)∫
Ω

|ε′(φ, θ)(ψ, η)∇S ∴ ∇T| dx

≤ δ‖∇T‖2
(L2

s )2 + cδ‖∇S‖2
(L4

s )2(|εφ|2∞‖ψ‖2
W 1,2 + |εθ|2∞‖η‖2

W 1,2). (A.63)

Finally, we have the following estimates:∫
Ω

|λDw : T| dx ≤ δ0‖∇w‖2
L2 + cδ0‖T‖2

L2
s

(A.64)∫
Ω

|P′(S)T : T| dx ≤ δ‖∇T‖2
(L2

s )2 + cδ(‖S‖4
L4
s

+ 1)‖T‖2
L2
s
. (A.65)

Therefore, by utilizing (A.58)–(A.65) in (A.57) and taking 0 < δ < ε0
5
, it can be

seen that there exist c = cδ,ε0 > 0 and K6 = K6(φ, µ, θ,v,S) ∈ L1(I) such that

1

2

d

dt
‖T‖2

L2
s

+
1

c
‖∇T‖2

(L2
s )2 − 2δ0‖∇w‖2

L2

≤ cδ0 [K6(‖ψ‖2
W 1,2 + ‖η‖2

W 1,2 + ‖w‖2
L2
σ

+ ‖T‖2
L2
s
) + ‖Hs‖2

W−1,2
s

]. (A.66)

Let us now combine the a priori estimates obtained from (A.17) and (A.26) for ψ
and ξ, (A.35) and (A.45) for η, (A.56) for w, and (A.66) for T. Taking the sum of
these and choosing δ0 > 0 small enough so that all coefficients on the left-hand side
of the resulting inequality are positive, we deduce the following energy inequality:

1

2

d

dt
E +

1

c
D ≤ c(S +KE) in I, (A.67)
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where c > 0, K = K(φ, µ, θ,v,S) := K1 +K2 + · · ·+K6 ∈ L1(I), and E,D, S : I →
[0,∞) are given as follows:

S := ‖(ho, hc, hh,hv,Hs)‖2
(U1)∗

E := ‖ψ‖2
W 1,2 + ‖η‖2

W 1,2 + τ(‖∇η‖2
L2 + ‖∆η‖2

L2) + ‖w‖2
L2
σ

+ ‖T‖2
L2
s

D := ‖∇∆ψ‖2
L2 + ‖∇ξ‖2

L2 + ‖∇∆η‖2
L2 + ‖∇w‖2

L2 + ‖∇T‖2
(L2

s )2 .

Applying Grönwall Lemma to (A.67) and adapting the same process for the es-
timation of the time derivatives as in the fourth step of the proof of Theorem 3.1,
we can conclude that there exists a continuous function C = C(‖(φ, µ, θ,v, S)‖W2) :
[0,∞)→ [0,∞) such that

‖(ψ, ξ, η,w,T)‖V1 ≤ C[‖(ho, hc, hh,hv,Hs)‖(U1)∗ + ‖(ψ0, η0,w0,T0)‖D1 ]. (A.68)

With a standard Faedo–Galerkin method, this estimate implies the following theo-
rem.

Theorem A.1. Let (A1)3 and (A2)1 be satisfied. Given sources and initial data as
in (A.1), the linearized system (4.2) admits a unique weak solution satisfying the
a priori estimate (A.68). If in addition, hc ∈ W 1,2,2(I;W 1,2(Ω),W−3,2

n (Ω)), then
(ψ, ξ, η,w,T) ∈ W1(ΩT ) and (A.68) holds with V1(ΩT ) and U1(ΩT )∗ replaced by
W1(ΩT ) and Y1(ΩT )∗, respectively.

Proof. Based on what have been discussed above, we only need to prove the second
statement. For this, let us note the following equation in the sense of distributions:

∂tξ = −α∆∂tψ + F ′′′(φ)ψ∂tφ+ F ′′(φ)∂tψ + ∂thc. (A.69)

We have ∆∂tψ, ∂thc ∈ L2(I;W−3,2
n (Ω)) since ‖∆∂tψ‖L2(W−3,2

n ) ≤ ‖∂tψ‖L2(W−1,2) and
‖∂thc‖L2(W−3,2

n ) ≤ ‖hc‖W 1,2,2(W 1,2,W−3,2
n ). For each ϕ ∈ L2(I;W 1,2(Ω)), it holds that∫

I

∫
Ω

|ϕF ′′′(φ)ψ∂tφ| dx dt ≤ ‖F ′′′(φ)‖L∞(L∞)‖ψ‖L∞(L4)‖∂tφ‖L2(L2)‖ϕ‖L2(L4)

≤ cφ‖ψ‖L∞(W 1,2)‖ϕ‖L2(W 1,2)

for some generic constant cφ = c(‖φ‖W 1,2,2(W 4,2
n ,L2)) > 0. Thus, we have F ′′′(φ)ψ∂tφ

∈ L2(I;W−1,2(Ω)) and

‖F ′′′(φ)ψ∂tφ‖L2(W−1,2) ≤ cφ‖ψ‖L∞(W 1,2) ≤ cφ‖ψ‖W 1,2,2(W 3,2
n ,W−1,2).

Analogous to (A.24), we obtain F ′′′(φ)ϕ ∈ L∞(I;W 1,2(Ω)) and

‖F ′′′(φ)ϕ‖L2(W 1,2) ≤ c(‖F ′′(φ)‖L∞(L∞)‖ϕ‖L2(W 1,2)

+ ‖F ′′(φ)‖L∞(L∞)‖ϕ‖L2(L4)‖∇φ‖L∞(L4)) ≤ cφ‖ϕ‖L2(W 1,2).

By duality, we deduce that F ′′(φ)∂tψ ∈ L2(I;W−1,2(Ω)) and ‖F ′′(φ)∂tψ‖L2(W−1,2)

≤ cφ‖∂tψ‖L2(W−1,2). Since L2(I;W−1,2(Ω)) ↪→ L2(I;W−3,2
n (Ω)), we have

∂tξ ∈ L2(I;W−3,2
n (Ω)). The estimate for ∂tξ can be deduce from the above

inequalities and (A.68). �
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A.2. Very Weak Solutions to the Linearized System. In this sub-
section, we consider source functions and initial data

(ho, hc, hh,hv,Hs) ∈ U2(ΩT )∗, (ψ0, η0,w0,T0) ∈ D0(Ω). (A.70)

We shall say that (ψ, ξ, η,w,T) ∈ V0(ΩT ) is a very weak solution to (4.2) if for every
test function (ϕ, ϑ,y,Y) ∈ W 2,2

n (Ω)×W 2,2
n (Ω)×W 2,2

0,σ(Ω)×W2,2
n,s(Ω) the following

variational equations are satisfied:

〈∂tψ, ϕ〉W−2,2
n ,W 2,2

n
+

∫
Ω

(w · ∇φ+ v · ∇ψ)ϕ dx

+

∫
Ω

[m′(φ, θ)(ψ, η)∇µ · ∇ϕ− ξ∇ · (m(φ, θ)∇ϕ)] dx

= 〈ho, ϕ〉W−2,2
n ,W 2,2

n
(A.71)∫

Ω

∂tη(ϑ− τ∆ϑ) dx+

∫
Ω

(w · ∇θ + v · ∇η)ϑ dx

+

∫
Ω

[χ′(φ, θ)(ψ, η)∇θ + χ(φ, θ)∇η] · ∇ϑ dx+

∫
Ω

b∆η∆ϑ dx

−
∫
Ω

T : Dvϑ dx+

∫
Ω

w · (∇ · (ϑS)) dx−
∫
Ω

a0g ·wϑ dx

= 〈hh, ϑ〉W−2,2
n ,W 2,2

n
(A.72)

〈∂tw,y〉W−2,2
0,σ ,W 2,2

0,σ
+

∫
Ω

[((w · ∇)v) · y − ((v · ∇)y) ·w] dx

+

∫
Ω

[2ν ′(φ, θ)(ψ, η)Dv : Dy − 2w · (∇ · (ν(φ, θ)Dy))] dx

+

∫
Ω

(σηS + MS(θ, S)T) : Dy dx−
∫
Ω

κ(ξ∇φ+ µ∇ψ) · y dx

−
∫
Ω

(boψ + bhη)g · y dx = 〈hv,y〉W−2,2
0,σ ,W 2,2

0,σ
(A.73)

〈∂tT,Y〉W−2,2
n,s ,W2,2

n,s
+

∫
Ω

[((w · ∇)S) : Y− ((v · ∇)Y) : T] dx

−
∫
Ω

w · (∇ · ([S,Y]− a{S,Y})) dx+

∫
Ω

J(v,T) : Y dx

+

∫
Ω

[ε′(φ, θ)(ψ, η)∇S ∴ ∇Y− T : ∇ · (ε(φ, θ)∇Y) +w · (∇ · (λY))] dx

−
∫
Ω

P′(S)T : Y dx = 〈Hs,Y〉W−2,2
n,s ,W2,2

n,s
(A.74)

almost everywhere in I, the equation ξ+α∆ψ−F ′′(φ)ψ = hc holds in L2(I;L2(Ω)),
and the initial condition is satisfied in D0(Ω). In what follows, we obtain the a
priori estimates required for the existence of very weak solutions.

Estimates for ψ in L∞(L2) ∩ L2(W 2,2
n ) and for ξ in L2(L2). We test (A.71) with

ϕ = ψ and adapt the same strategy as in the case of weak solutions. Now, instead
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of (A.8), we estimate ho according to

|〈ho, ψ〉W−2,2
n ,W 2,2

n
| ≤ δ‖∆ψ‖2

L2 + cδ(‖ho‖2
W−2,2

n
+ ‖ψ‖2

L2).

Thus, instead of (A.17) we have the following
1

2

d

dt
‖ψ‖2

L2 +
1

c
‖∆ψ‖2

L2 +
1

c
‖ξ‖2

L2 − δ0‖w‖2
L2
σ

≤ cδ0 [K1(‖ψ‖2
L2 + ‖η‖2

L2) + ‖ho‖2
W−2,2

n
+ ‖hc‖2

L2 ]. (A.75)

Estimate for η in L∞(W 1,2) ∩ L2(W 2,2
n ). Using the test function ϑ = η in (A.72)

and with a similar procedure as above, but now applied to hh, the estimate (A.35)
turns into

1

2

d

dt
(‖η‖2

L2 + τ‖∇η‖2
L2) +

1

c
‖∆η‖2

L2 − δ0‖w‖2
L2
σ
− δ0‖T‖2

L2
s

≤ cδ0 [K3(‖ψ‖2
L2 + ‖η‖2

W 1,2) + ‖hh‖2
W−2,2

n
]. (A.76)

Estimate for w in L∞(W−1,2
0,σ ) ∩ L2(L2

σ). We apply the test function y = A−1
S w

in the variational equation (A.73) and estimate the integral terms. First, recall
that under appropriate scaling of the usual norm of W 2,2

0,σ(Ω), the Stokes operator
AS : W 2,2

0,σ(Ω) → L2
σ(Ω) is a unitary operator and admits a unique extension

AS : W 1,2
0,σ(Ω) →W−1,2

0,σ (Ω) that is also an unitary, see for instance, [65, Theorem
III.2.1.1] and [68, Proposition 3.4.5]. Hence,

‖A−1
S y‖W 2,2

0,σ
= ‖y‖L2

σ
, ‖A−1

S z‖W 1,2
0,σ

= ‖z‖W−1,2
0,σ

(A.77)

for all (y, z) ∈ L2
σ(Ω)×W−1,2

0,σ (Ω). Thus, for the term involving the source we have

|〈hv,A
−1
S w〉W−2,2

0,σ ,W 2,2
0,σ
| ≤ δ‖w‖2

L2
σ

+ cδ‖hv‖2
W−2,2

0,σ
. (A.78)

Next, for the terms involving diffusion we apply 2∇ · D = −AS, the Hölder and
Young inequalities, and (A.77) to deduce the following estimates:

−
∫
Ω

2w · (∇ · (ν(φ, θ)DA−1
S w)) dx

=

∫
Ω

ν(φ, θ)|w|2 dx−
∫
Ω

2w · DA−1
S w(νφ(φ, θ)∇φ+ νθ(φ, θ)∇θ) dx

≥ ν0

2
‖w‖2

L2
σ
− c(|νφ|2∞‖∇φ‖2

L∞ + |νθ|2∞‖∇θ‖2
L∞)‖w‖2

W−1,2
0,σ

(A.79)∫
Ω

|2ν ′(φ, θ)(ψ, η)Dv : DA−1
S w| dx

≤ δ‖w‖2
L2
σ

+ cδ‖∇v‖2
L4(|νφ|2∞‖ψ‖2

L2 + |νθ|2∞‖η‖2
L2). (A.80)

The terms arising from convection and viscoelastic stress are bounded from above
according to∫

Ω

|((w · ∇)v) ·A−1
S w| dx ≤ δ‖w‖2

L2
σ

+ cδ‖∇v‖2
L4‖w‖2

W−1,2
0,σ

(A.81)∫
Ω

|((v · ∇)A−1
S w) ·w| dx ≤ δ‖w‖2

L2
σ

+ cδ‖v‖2
L∞‖w‖2

W−1,2
0,σ

(A.82)
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∫
Ω

|σηS : DA−1
S w| dx ≤ c(‖S‖2

L∞s ‖η‖
2
L2 + ‖w‖2

W−1,2
0,σ

) (A.83)∫
Ω

|MS(θ, S)T : DA−1
S w| dx

≤ δ0‖T‖2
L2
s

+ cδ0(‖θ‖2
L∞ + ‖S‖2

L∞s + 1)‖w‖2
W−1,2

0,σ
. (A.84)

Finally, for the integrals arising from surface tension and gravity, we obtain∫
Ω

|κξ∇φ ·A−1
S w| dx ≤ δ0‖ξ‖2

L2 + cδ0‖∇φ‖2
L4‖w‖2

W−1,2
0,σ

(A.85)∫
Ω

|κµ∇ψ ·A−1
S w| dx ≤ δ0‖∆ψ‖2

L2 + cδ0‖µ‖2
L2‖w‖2

W−1,2
0,σ

(A.86)∫
Ω

|(boψ + bhη)g ·A−1
S w| dx ≤ c[(‖ψ‖2

L2 + ‖η‖2
L2)|g|2 + ‖w‖2

W−1,2
0,σ

]. (A.87)

Applying the estimates (A.78)–(A.87) to the variational equation (A.73) with
y = A−1

S w and choosing 0 < δ < ν0
8
, we obtain a constant c = cδ,ν0 > 0 and

K6 = K6(φ, µ, θ,v,S) ∈ L1(I) so that
1

2

d

dt
‖w‖2

W−1,2
0,σ

+
1

c
‖w‖2

L2
σ
− δ0‖∆ψ‖2

L2 − δ0‖ξ‖2
L2 − δ0‖T‖2

L2
s

≤ cδ0 [K6(‖ψ‖2
L2 + ‖η‖2

L2 + ‖w‖2
W−1,2

0,σ
) + ‖hv‖2

W−2,2
0,σ

]. (A.88)

Estimate for T in L∞(W−1,2
s )∩L2(L2

s ). The linear map BN := I+AN : W2,2
n,s(Ω)→

L2
s (Ω) is unitary and admits a unique extension as a map from W1,2

s (Ω) onto
W−1,2

s (Ω) that is also unitary. Similar to (A.77), one has

‖B−1
N Y‖W2,2

n,s
= ‖Y‖L2

s
, ‖B−1

N X‖W1,2
s

= ‖X‖W−1,2
s

(A.89)

for all (Y,X) ∈ L2
s (Ω)×W−1,2

s (Ω). Let us use the test function Y = B−1
N T in (A.74)

and derive estimates for the resulting terms. By (A.89) and Hölder and Young
inequalities,

|〈Hs,B−1
N T〉W−2,2

n,s ,W2,2
n,s
| ≤ δ‖T‖2

L2
s

+ cδ‖Hs‖2
W−2,2

n,s
(A.90)∫

Ω

|((w · ∇)S) : B−1
N T| dx ≤ δ0‖w‖2

L2
σ

+ cδ0‖∇S‖2
(L4

s )2‖T‖2
W−1,2

s
(A.91)∫

Ω

|((v · ∇)B−1
N T) : T| dx ≤ δ‖T‖2

L2
s

+ cδ‖v‖2
L∞‖T‖2

W−1,2
s

(A.92)∫
Ω

|P′(S)T : B−1
N T| dx ≤ δ‖T‖2

L2
s

+ cδ(1 + ‖S‖4
L8
s
)‖T‖2

W−1,2
s

. (A.93)

With regard to the commutator and anti-commutator terms, we have∫
Ω

|w · (∇ · ([S,B−1
N T]− a{S,B−1

N T}))| dx

≤ δ0‖w‖2
L2
σ

+ cδ0(‖∇S‖2
(L4

s )2 + ‖S‖2
L∞s )‖T‖2

W−1,2
s

(A.94)∫
Ω

|J(v,T) : B−1
N T| dx ≤ δ‖T‖2

L2
s

+ cδ‖∇v‖2
L4‖T‖2

W−1,2
s

. (A.95)
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For the stress diffusion terms, by performing similar procedure as in the case of the
velocity, we obtain∫

Ω

|ε′(φ, θ)(ψ, η)∇S ∴ ∇B−1
N T| dx

≤ δ‖T‖2
L2
s

+ cδ‖∇S‖2
(L4

s )2(|εφ|2∞‖ψ‖2
L2 + |εθ|2∞‖η‖2

L2) (A.96)∫
Ω

|T : ∇ · (ε(φ, θ)∇B−1
N T)| dx

≥ ε0

2
‖T‖2

L2
s
− c(|εφ|2∞‖∇φ‖2

L∞ + |εθ|2∞‖∇θ‖2
L∞)‖T‖2

W−1,2
s

. (A.97)

Finally, by performing the divergence operator∫
Ω

|w · (∇ · (λB−1
N T))| dx ≤ δ0‖w‖2

L2
σ

+ cδ0λ
2‖T‖2

W−1,2
s

. (A.98)

Thus, upon plugging the estimates (A.90)–(A.98) in the equation (A.74) with Y =
B−1
N T and taking 0 < δ < ε0

10
, we obtain a constant c = cδ,ε0 > 0 and K7 =

K7(φ, µ, θ,v,S) ∈ L1(I) such that
1

2

d

dt
‖T‖2

W−1,2
s

+
1

c
‖T‖2

L2
s
− 3δ0‖w‖2

L2
σ

≤ cδ0 [K7(‖ψ‖2
L2 + ‖η‖2

L2 + ‖T‖2
W−1,2

s
) + ‖Hs‖2

W−2,2
n,s

]. (A.99)

Now, we take the sum of (A.75), (A.76), (A.88), and (A.99) and choose δ0 > 0
small enough to obtain the a priori estimate (A.67) with K := K1 +K3 +K6 +K7 ∈
L1(I) and E,D, S : I → [0,∞) are given by

S := ‖(ho, hc, hh,hv,Hs)‖2
(U2)∗

E := ‖ψ‖2
L2 + ‖η‖2

L2 + τ‖∇η‖2
L2 + ‖w‖2

W−1,2
0,σ

+ ‖T‖2
W−1,2

s

D := ‖∆ψ‖2
L2 + ‖ξ‖2

L2 + ‖∆η‖2
L2 + ‖w‖2

L2
σ

+ ‖T‖2
L2
s
.

Applying the Grönwall inequality to the differential inequality and estimating the
time derivatives will lead to the inequality
‖(ψ, ξ, η,w,T)‖V0 ≤ C[‖(ho, hc, hh,hv,Hs)‖(U2)∗ + ‖(ψ0, η0,w0,T0)‖D0 ] (A.100)

for some continuous function C = C(‖(φ, µ, θ,v,S)‖W2) : [0,∞)→ [0,∞).

Theorem A.2. Suppose that (A1)3 and (A2)1 hold. Consider sources and initial
data as in (A.70). Then, the linearized system (4.2) has a unique very weak solution
satisfying the a priori estimate (A.100). Also, if hc ∈ W 1,2,2(I;L2(Ω),W−4,2

n (Ω)),
then (ψ, ξ, η,w,T) ∈ W0(ΩT ) and the estimate (A.100) is valid but with V0(ΩT )
and U2(ΩT )∗ replaced by W0(ΩT ) and Y2(ΩT )∗, respectively.

Proof. The estimate (A.100) along with a density argument applied to the weak for-
mulation will establish the existence, uniqueness, and stability of very weak solutions
to the linearized system. More precisely, given initial data (ψ0, η0,w0,T0) ∈ D0(Ω)
and source functions (ho, hc, hh,hv,Hs) ∈ U2(ΩT )∗, we shall take approximation
sequences {(ψ0,k, η0,k,w0,k,T0,k)}∞k=1 ⊂ D1(Ω) for the data and {(ho,k, hc,k, hh,k,
hv,k,Hs,k)}∞k=1 ⊂ U1(ΩT )∗ for the sources such that

(ψ0,k, η0,k,w0,k,T0,k)→ (ψ0, η0,w0,T0) in D0(Ω)
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(ho,k, hc,k, hh,k,hv,k,Hs,k)→ (ho, hc, hh,hv,Hs) in U2(ΩT )∗

as k → ∞. By Theorem A.1, there exists a unique (ψk, ξk, ηk,wk,Tk) ∈ V1(ΩT )
such that

A(φ, µ, θ,v,S)(ψk, ξk, ηk,wk,Tk)
= ((ho,k, hc,k, hh,k,hv,k,Hs,k), (ψ0,k, η0,k,w0,k,T0,k)) (A.101)

and (A.100) holds with indices k. Take note that the function C > 0 in this inequality
is independent of k.

Thanks to linearity, we deduce that {(ψk, ξk, ηk,wk,Tk)}∞k=1 is Cauchy in V0(ΩT ).
Let us denote by (ψ, ξ, η,w,T) ∈ V0(ΩT ) the limit of this sequence. We claim that
this is the very weak solution of (4.2). Indeed, recall that (A.101) is equivalent to the
variational equations (A.2)–(A.5). Taking test functions (ϕ, ϑ,y,Y) ∈ W 2,2

n (Ω) ×
W 2,2

n (Ω)×W 2,2
0,σ(Ω)×W2,2

n,s(Ω) in these equations, integrating by parts, and passing
to the limit k →∞, we obtain (A.71)–(A.74). Also, it is not difficult to verify that
ξ + α∆ψ − F ′′(φ)ψ = hc in L2(I;L2(Ω)) and that the initial condition holds in
D0(Ω). Finally, the a priori estimate (A.100) follows by passing to the limit to the
one satisfied by the approximating sequences. Uniqueness of the very weak solution
follows from standard arguments.

The second statement of the theorem can be shown using the same argument
as in Theorem A.1. Indeed, observe that ∆∂tψ, ∂thc ∈ L2(I;W−4,2

n (Ω)). For each
ϕ ∈ L2(I;W 2,2

n (Ω)), one has∫
I

∫
Ω

|ϕF ′′′(φ)ψ∂tφ| dx dt ≤ ‖F ′′′(φ)‖L∞(L∞)‖ψ‖L∞(L2)‖∂tφ‖L2(L2)‖ϕ‖L2(L∞)

≤ cφ‖ψ‖L∞(L2)‖ϕ‖L2(W 2,2
n ).

This estimate implies that F ′′′(φ)ψ∂tφ ∈ L2(I;W−2,2
n (Ω)). Now, using ∂n(F ′′(φ)ϕ)

= F ′′′(φ)ϕ∂nφ+F ′′(φ)∂nϕ = 0 on ΓT and (A.111) in the next subsection, we deduce
that

‖F ′′(φ)ϕ‖L2(W 2,2
n ) ≤ cφ(‖ϕ‖L2(L2) + ‖∇φ‖2

L∞(L4)‖ϕ‖L2(L∞)

+ ‖∇φ‖L∞(L4)‖∇ϕ‖L2(L4) + ‖∆φ‖L∞(L2)‖ϕ‖L2(L∞) + ‖∆ϕ‖L2(L2))

≤ cφ‖ϕ‖L2(W 2,2
n ).

By duality, this yields F ′′(φ)ϕ ∈ L2(I;W−2,2
n (Ω)). Therefore, we have

∂tξ ∈ L2(I;W−4,2
n (Ω)) �

A.3. Strong Solutions to the Linearized System. A weak solution
to (4.2) satisfying (ψ, ξ, η,w,T) ∈ V2(ΩT ) will be called a strong solution. For this,
we consider sources and initial data satisfying

(ho, hc, hh,hv,Hs) ∈ U0(ΩT )∗, (ψ0, η0,w0,T0) ∈ D2(Ω). (A.102)

Since D2(Ω) ⊂ D1(Ω) and U0(ΩT )∗ ⊂ U1(ΩT )∗, Theorem A.1 gives as the a pri-
ori regularity (ψ, ξ, η,w,T) ∈ V1(ΩT ). In the succeeding computations, we again
formally derive the necessary a priori estimates, and for this reason, we shall use
directly the strong formulation (4.2) of the linearized system.
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Estimates for ψ in L∞(W 2,2
n ) ∩ L2(W 4,2

n ) and ξ in L2(W 2,2
n ). We apply the test

function ∆2ψ in the first equation of (4.2) and estimate each term in the resulting
equation. For the right-hand side and the convection terms, we obtain∫

Ω

|ho∆2ψ| dx ≤ δ‖∆2ψ‖2
L2 + cδ‖ho‖2

L2 (A.103)∫
Ω

|(w · ∇φ)∆2ψ| dx ≤ δ‖∆2ψ‖2
L2 + cδ‖∇φ‖2

L∞‖w‖2
L2
σ

(A.104)∫
Ω

|(v · ∇ψ)∆2ψ| dx ≤ δ‖∆2ψ‖2
L2 + cδ‖v‖2

L4‖∆ψ‖2
L2 . (A.105)

Performing the divergence in the mobility term, we have

−
∫
Ω

∇ · (m′(φ, θ)(ψ, η)∇µ)∆2ψ dx = −
∫
Ω

m′(φ, θ)(ψ, η)∆µ∆2ψ dx

−
∫
Ω

(mφ(φ, θ)∇ψ +mθ(φ, θ)∇η) · ∇µ∆2ψ dx

−
∫
Ω

[m′φ(φ, θ)(ψ, η)∇φ+m′θ(φ, θ)(ψ, η)∇θ] · ∇µ∆2ψ dx.

In what follows, unlike in the previous discussions, we will not emphasize the norms
of the coefficient functions and their derivatives for brevity. With this convention,
it follows that∫

Ω

|m′(φ, θ)(ψ, η)∆µ∆2ψ| dx

≤ δ‖∆2ψ‖2
L2 + cδ‖∆µ‖2

L2(‖ψ‖2
W 2,2

n
+ ‖η‖2

W 2,2
n

) (A.106)∫
Ω

|(mφ(φ, θ)∇ψ +mθ(φ, θ)∇η) · ∇µ∆2ψ| dx

≤ δ‖∆2ψ‖2
L2 + cδ‖∇µ‖2

L4(‖∆ψ‖2
L2 + ‖∆η‖2

L2) (A.107)∫
Ω

|[m′φ(φ, θ)(ψ, η)∇φ+m′θ(ψ, η)∇θ] · ∇µ∆2ψ| dx

≤ δ‖∆2ψ‖2
L2 + cδJφ,θ‖∇µ‖2

L4(‖ψ‖2
W 2,2

n
+ ‖η‖2

W 2,2
n

) (A.108)

where Jφ,θ := ‖∇φ‖2
L4 + ‖∇θ‖2

L4 ∈ L∞(I). Also, note that

−
∫
Ω

∇ · (m(φ, θ)∇ξ)∆2ψ dx = −
∫
Ω

m(φ, θ)∆ξ∆2ψ dx

−
∫
Ω

(mφ(φ, θ)∇φ+mθ(φ, θ)∇θ) · ∇ξ∆2ψ dx.

The right-hand sides can be bounded from above using the Gagliardo–Nirenberg
inequality as follows:∫

Ω

|(mφ(φ, θ)∇φ+mθ(φ, θ)∇θ) · ∇ξ∆2ψ| dx

≤ δ‖∆2ψ‖2
L2 + δ2‖∆ξ‖2

L2 + cδJ
2
φ,θ‖∇ξ‖2

L2 (A.109)

−
∫
Ω

m(φ, θ)∆ξ∆2ψ dx =

∫
Ω

m(φ, θ)(α∆2ψ −∆(F ′′(φ)ψ)−∆hc)∆
2ψ dx
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≥ m0α

2
‖∆2ψ‖2

L2 − c(‖∆(F ′′(φ)ψ)‖2
L2 + ‖∆hc‖2

L2). (A.110)

From ∆(F ′′(φ)ψ) = F (4)(φ)|∇φ|2ψ + 2F ′′′(φ)∇φ · ∇ψ + F ′′′(φ)ψ∆φ+ F ′′(φ)∆ψ, we
have

‖∆(F ′′(φ)ψ)‖2
L2 ≤ c[‖F (4)(φ)‖2

L∞‖∇φ‖4
L4‖ψ‖2

L∞ + ‖F ′′′(φ)‖2
L∞‖∇φ‖2

L4‖∇ψ‖2
L4

+ ‖F ′′′(φ)‖2
L∞‖∆φ‖2

L2‖ψ‖2
L∞ + ‖F ′′(φ)‖2

L∞‖∆ψ‖2
L2 ]. (A.111)

Finally, the Laplacian of ξ satisfies

δ‖∆ξ‖2
L2 − 2α2δ‖∆2ψ‖2

L2 ≤ cδ(‖∆(F ′′(φ)ψ)‖2
L2 + ‖∆hc‖2

L2). (A.112)

Applying (A.111) in (A.110) and (A.112), using these together with (A.103)–
(A.109) and taking 0 < δ < 1 small enough so that m0α

2
− 7δ − 2α2δ > 0, we obtain

for some constant c > 0 and K8 = K8(φ, µ, θ,v,S) ∈ L1(I) the following
1

2

d

dt
‖∆ψ‖2

L2 +
1

c
‖∆2ψ‖2

L2 +
1

c
‖∆ξ‖2

L2 ≤ c[K8(‖ψ‖2
W 2,2

n
+ ‖η‖2

W 2,2
n

+ ‖w‖2
L2
σ
)

+ ‖ho‖2
L2 + ‖hc‖2

W 2,2
n

+ J2
φ,θ‖∇ξ‖2

L2 ]. (A.113)

Estimate for η in L∞(W 3,2
n ) ∩ L2(W 4,2

n ). We shall apply the test function ∆2η to
the third equation in (4.2). Similar to (A.103)–(A.105) we have∫

Ω

|hh∆2η| dx ≤ δ‖∆2η‖2
L2 + cδ‖hh‖2

L2 (A.114)∫
Ω

|(w · ∇θ)∆2η| dx ≤ δ‖∆2η‖2
L2 + cδ‖∇θ‖2

L∞‖w‖2
L2
σ

(A.115)∫
Ω

|(v · ∇η)∆2η| dx ≤ δ‖∆2η‖2
L2 + cδ‖v‖2

L4‖∆η‖2
L2 . (A.116)

Similar to (A.106)–(A.110), we deduce the following∫
Ω

|∇ · (χ′(φ, θ)(ψ, η)∇θ)∆2η| dx

≤ δ‖∆2η‖2
L2 + cδ(Jφ,θ + 1)‖∆θ‖2

L2(‖ψ‖2
W 2,2

n
+ ‖η‖2

W 2,2
n

) (A.117)∫
Ω

|∇ · (χ(φ, θ)∇η)∆2η| dx ≤ δ‖∆2η‖2
L2 + cδ‖∆η‖2

L2 + cδJ
2
φ,θ‖∇η‖2

L2 . (A.118)

For the terms involving the gravity and viscoelastic stress, one has∫
Ω

|a0g ·w∆2η| dx ≤ δ‖∆2η‖2
L2 + cδ|a0g|2‖w‖2

L2
σ

(A.119)∫
Ω

|T : Dv∆2η| dx ≤ δ‖∆2η‖2
L2 + cδ‖∇v‖2

L4‖T‖2
W1,2

s
(A.120)∫

Ω

|S : Dw∆2η| dx ≤ δ‖∆2η‖2
L2 + cδ‖S‖2

L∞s ‖∇w‖
2
L2 . (A.121)

Therefore, by choosing 0 < δ < b
8
, we see that there exist c > 0 and K9 =

K9(φ, µ, θ,v,S) ∈ L1(I) for which
1

2

d

dt
(‖∆η‖2

L2 + τ‖∇∆η‖2
L2) +

1

c
‖∆2η‖2

L2 ≤ c[K9(‖ψ‖2
W 2,2

n
+ ‖η‖2

W 2,2
n
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+ ‖∇w‖2
L2 + ‖T‖2

W1,2
s

) + ‖hh‖2
L2 + J2

φ,θ‖∇η‖2
L2 ]. (A.122)

Estimate for w in L∞(W 1,2
0,σ) ∩ L2(W 2,2

0,σ). We take the test function −∆w for
the linearized Navier–Stokes equation in (4.2) and estimate each terms. First, we
have ∫

Ω

|hv ·∆w| dx ≤ δ‖∆w‖2
L2 + cδ‖hv‖2

L2
σ

(A.123)∫
Ω

|(boψ + bhη)g ·∆w| dx ≤ δ‖∆w‖2
L2 + cδ(‖ψ‖2

L2 + ‖η‖2
L2)|g|2 (A.124)∫

Ω

|(w · ∇)v ·∆w| dx ≤ δ‖∆w‖2
L2 + cδ‖∇v‖2

L4‖∇w‖2
L2 (A.125)∫

Ω

|(v · ∇)w ·∆w| dx ≤ δ‖∆w‖2
L2 + cδ‖v‖2

L4‖∇w‖2
L2 . (A.126)

For the viscosity term, the following bounds can be shown as before:∫
Ω

|∇ · (2ν ′(φ, θ)(ψ, η)Dv) ·∆w| dx

≤ δ‖∆w‖2
L2 + cδ(Jφ,θ + 1)‖∆v‖2

L2(‖ψ‖2
W 2,2

n
+ ‖η‖2

W 2,2
n

) (A.127)∫
Ω

|∇ · (2ν(φ, θ)Dw) ·∆w| dx

≥ ν0

2
‖∆w‖2

L2 − cδ(‖∇φ‖2
L∞ + ‖∇θ‖2

L∞)‖∇w‖2
L2 . (A.128)

Furthermore, we have∫
Ω

|∇ · (σηS) ·∆w| dx ≤ δ‖∆w‖2
L2 + cδ‖S‖2

W2,2
n,s
‖η‖2

W 1,2 (A.129)∫
Ω

|∇ · (MS(θ, S)T) ·∆w| dx

≤ δ‖∆w‖2
L2 + cδ(‖θ‖2

W 2,2
n

+ ‖S‖2
W2,2

n,s
+ 1)‖T‖2

W1,2
s

(A.130)∫
Ω

|κξ∇φ ·∆w| dx ≤ δ‖∆w‖2
L2 + cδ‖∇φ‖2

L4‖ξ‖2
L4 (A.131)∫

Ω

|κµ∇ψ ·∆w| dx ≤ δ‖∆w‖2
L2 + cδ‖µ‖2

L4‖ψ‖2
W 2,2

n
. (A.132)

Applying (A.123)–(A.132) to the equation obtained by testing the fourth equation
of (4.2) with −∆w and choosing 0 < δ < ν0

18
, one obtains

1

2

d

dt
‖∇w‖2

L2 +
1

c
‖∆w‖2

L2 ≤ cK10(‖ψ‖2
W 2,2

n
+ ‖η‖2

W 2,2
n

+ ‖∇w‖2
L2 + ‖T‖2

W1,2
s

)

+ c(‖hv‖2
L2
σ

+ Jφ,θ‖ξ‖2
W 1,2) (A.133)

for some c > 0 and K10 = K10(φ, µ, θ,v,S) ∈ L1(I).
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Estimate for T in L∞(W1,2
s ) ∩ L2(W2,2

n,s). We apply the test function −∆T to the
fifth equation in (4.2). As usual, we obtain the following∫

Ω

|Hs : ∆T| dx ≤ δ‖∆T‖2
L2
s

+ cδ‖Hs‖2
L2
s

(A.134)∫
Ω

|(w · ∇)S : ∆T| dx ≤ δ‖∆T‖2
L2
s

+ cδ‖∇S‖2
(L4

s )2‖∇w‖2
L2 (A.135)∫

Ω

|(v · ∇)T : ∆T| dx ≤ δ‖∆T‖2
L2
s

+ cδ‖v‖2
L∞‖∇T‖2

(L2
s )2 . (A.136)

With regard to the commutator and anti-commutator terms, we get∫
Ω

|J(w, S) : ∆T| dx ≤ δ‖∆T‖2
L2
s

+ cδ‖S‖2
L∞s ‖∇w‖

2
L2 (A.137)∫

Ω

|J(v,T) : ∆T| dx ≤ δ‖∆T‖2
L2
s

+ cδ‖∇v‖2
L4‖T‖2

W1,2
s
. (A.138)

For the diffusion terms, similar to (A.127) and (A.128), we have∫
Ω

|∇ · (ε′(φ, θ)(ψ, η)∇S) : ∆T| dx

≤ δ‖∆T‖2
L2
s

+ cδ(Jφ,θ + 1)‖∆S‖2
L2
s
(‖ψ‖2

W 2,2
n

+ ‖η‖2
W 2,2

n
) (A.139)∫

Ω

|∇ · (ε(φ, θ)∇T) ∴ ∆T| dx

≥ ε0

2
‖∆T‖2

L2
s
− cδ(‖∇φ‖2

L∞ + ‖∇θ‖2
L∞)‖T‖2

W1,2
s
. (A.140)

Finally, we have the following inequalities∫
Ω

|λDw : ∆T| dx ≤ δ‖∆T‖2
L2
s

+ cδ‖∇w‖2
L2 (A.141)∫

Ω

|P′(S)T : ∆T| dx ≤ δ‖∆T‖2
L2
s

+ cδ(1 + ‖S‖4
L8
s
)‖T‖2

W1,2
s
. (A.142)

Choosing 0 < δ < ε0
16
, the estimates (A.134)–(A.142) when applied to the equation

derived by testing the fifth equation of (4.2) with −∆T show
1

2

d

dt
‖∇T‖2

(L2
s )2 +

1

c
‖∆T‖2

L2
s

≤ c[K11(‖ψ‖2
W 2,2

n
+ ‖η‖2

W 2,2
n

+ ‖∇w‖2
L2 + ‖T‖2

W1,2
s

) + ‖Hs‖2
L2
s
] (A.143)

for some c > 0 and K11 = K11(φ, µ, θ,v,S) ∈ L1(I).
Therefore, we have the energy estimate (A.67) with K := K8 +K9 +K10 +K11 ∈

L1(I) and E,D, S : I → [0,∞) are given by

S := ‖(ho, hc, hh,hv,Hs)‖2
(U0)∗ + (J2

φ,θ + Jφ,θ)‖ξ‖2
W 1,2 + J2

φ,θ‖η‖2
W 1,2

E := ‖∆ψ‖2
L2 + ‖∆η‖2

L2 + τ‖∇∆η‖2
L2 + ‖∇w‖2

L2 + ‖∇T‖2
(L2

s )2

D := ‖∆2ψ‖2
L2 + ‖∆ξ‖2

L2 + ‖∆2η‖2
L2 + ‖∆w‖2

L2 + ‖∆T‖2
L2
s
.

Combining the above a priori estimates, as well as those that can be derived for the
time-derivatives, we obtain for some continuous function C = C(‖(φ, µ, θ,v,S)‖W2) :
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[0,∞)→ [0,∞) the estimate

‖(ψ, ξ, η,w,T)‖V2 ≤ C[‖(ho, hc, hh,hv,Hs)‖(U0)∗ + ‖(ψ0, η0,w0,T0)‖D2 ]. (A.144)

This leads to the following theorem.

Theorem A.3. Let (A1)4 and (A2)2 be satisfied. Given sources and initial data as
in (A.102), the linearized system (4.2) admits a unique strong solution satisfying the
a priori estimate (A.144). If in addition, hc ∈ W 1,2,2(I;W 2,2

n (Ω),W−2,2
n (Ω)), then

(ψ, ξ, η,w,T) ∈ W2(ΩT ) and (A.144) holds with V2(ΩT ) and U0(ΩT )∗ replaced by
W2(ΩT ) and Y0(ΩT )∗, respectively.

Proof. The a priori estimate (A.144) is the crucial ingredient in the Faedo–Galerkin
method for showing that the weak solution lies in V2(ΩT ). Take note that for
the second statement, it is enough to observe that ∆∂tψ, ∂thc ∈ L2(I;W−2,2

n (Ω)),
F ′′′(φ)ψ∂tφ, F

′′(φ)∂tψ ∈ L2(I;L2(Ω)), and follow the same argument as in the
proof of Theorem A.1. �

A.4. Time-Regular Solutions of the State System. In this subsec-
tion, we provide strong solutions with additional time-regularity under smooth
enough initial data and source functions in the state system (1.15). By bootstrap-
ping, such results will lead to additional smoothness of the optimal solution to the
control problem (see Section 6).

Theorem A.4. Let k = 0, 1, 2 and suppose that (A1)3+k and (A2)1+k hold. In
addition to the assumptions stated in Theorem 3.1, let us suppose that (∂tfo, 0, ∂tfh,
∂tfv +∂tu, ∂tFs) ∈ Y2−k(ΩT )∗, fo(0) ∈ W k,2

n (Ω), fh(0) ∈ W k−1,2(Ω), fv(0)+u(0) ∈
W k−1,2

0,σ (Ω), Fs(0) ∈Wk−1,2
s (Ω), φ0 ∈ W k+4,2

n (Ω), θ0 ∈ W k+3,2
n (Ω), v0 ∈W k+1,2

0,σ (Ω),
and S0 ∈Wk+1,2

n,s (Ω). Then, the strong solution of (1.15) satisfies

(∂tφ, ∂tµ, ∂tθ, ∂tv, ∂tS) ∈ Wk(ΩT ) (A.145)

and there is a monotone increasing and continuous function C : [0,∞)→ [0,∞) for
which

‖(∂tφ, ∂tµ, ∂tθ, ∂tv, ∂tS)‖Wk ≤ C(‖(∂tfo, 0, ∂tfh, ∂tfv + ∂tu, ∂tFs)‖(Y2−k)∗

+ ‖(fo(0), fh(0),fv(0) + u(0),Fs(0))‖Wk,2
n ×Wk−1,2×W k−1,2

0,σ ×Wk−1,2
s

+ ‖(φ0, θ0,v0,S0)‖Wk+4,2
n ×Wk+3,2

n ×W k+1,2
0,σ ×Wk+1,2

n,s
). (A.146)

Proof. Taking formally the time derivatives of the first five equations in (1.15), we
obtain the linearized system

A(φ, µ, θ,v, S)(∂tφ, ∂tµ, ∂tθ, ∂tv, ∂tS)

= ((∂tfo, 0, ∂tfh, ∂tfv + ∂tu, ∂tFs), (∂tφ(0), ∂tθ(0), ∂tv(0), ∂tS(0))).

Hence, according to Theorem 4.2, it is enough to show that (∂tφ(0), ∂tθ(0), ∂tv(0),
∂tS(0)) ∈ Dk(Ω) for k = 0, 1, 2. Although the following arguments utilize the strong
formulation of the differentiated system, these can be made rigorous by a classical
Faedo–Galerkin approach.
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Estimates for ∂tφ(0) and µ0 := µ(0). We evaluate at t = 0 the first and second
equations in (1.15) to obtain

∂tφ(0) + v0 · ∇φ0 −∇ · (m(φ0, θ0)∇µ0) = fo(0),

µ0 = −α∆φ0 + F ′(φ0).

Using the Hölder inequality and the Sobolev embedding theorem, we obtain

‖v0 · ∇φ0‖Wk,2 ≤ c‖v0‖W k+1,2
0,σ
‖φ0‖Wk+2,2

n
.

The initial diffusive mobility term can be written as

∇ · (m(φ0, θ0)∇µ0) = (mφ(φ0, θ0)∇φ0 +mθ(φ0, θ0)∇θ0) · ∇µ0 +m(φ0, θ0)∆µ0.

Thus, it follows that

‖∇ · (m(φ0, θ0)∇µ0)‖Wk,2 ≤ C(‖φ0‖Wk+2,2
n

+ ‖θ0‖Wk+2,2
n

)‖µ0‖Wk+2,2 ,

where C : [0,∞) → [0,∞) denotes a generic continuous function that is monoton-
ically increasing. Following the proof of Lemma 2.3, it is not difficult to see that
F ′(φ0) ∈ W k+2,2(Ω) whenever φ0 ∈ W k+2,2

n (Ω) and

‖F ′(φ0)‖Wk+2,2 ≤ C(‖φ0‖Wk+2,2
n

).

Thus, by taking t = 0 in the second equation of (1.15), the initial chemical potential
can be estimated by

‖µ0‖Wk+2,2 ≤ c[‖φ0‖Wk+4,2
n

+ C(‖φ0‖Wk+2,2
n

)].

When applied with the Faedo–Galerkin method, the above estimates will lead to
∂tφ(0) ∈ W k,2

n (Ω). Note that ∂n∂tφ(0) = 0 on Γ if k = 0, 1 and ∂n∆∂tφ(0) = 0
on Γ if k = 2 are consequences of the fact that we have these properties at the
level of Faedo-Galerkin approximations. This observation will be applied as well to
∂n∂tθ(0) and ∂n∂tS(0) below.

Estimate for ∂tθ(0). We apply B−1
N := (I + τAN)−1 ∈ L(W k−1,2(Ω),W k+1,2(Ω))

to third equation of (1.15) and evaluate at t = 0 to obtain

∂tθ(0)+B−1
N [v0 ·∇θ0−∇· (χ(φ0, θ0)∇θ0)+b∆2θ0] = B−1

N [a0g ·v0 +S0 : Dv0 +fh(0)].

First, the convection and diffusion terms can be estimated as follows:

‖B−1
N (v0 · ∇θ0)‖Wk+1,2 ≤ c‖v0 · ∇θ0‖Wk−1,2 ≤ c‖v0‖W k+1,2

0,σ
‖θ0‖Wk+1,2

n
,

‖B−1
N ∇ · (χ(φ0, θ0)∇θ0)‖Wk+1,2 ≤ C(‖φ0‖Wk+2,2

n
+ ‖θ0‖Wk+2,2

n
)‖θ0‖Wk+1,2

n
.

For the bi-Laplacian term, one has

‖B−1
N (b∆2θ0)‖Wk+1,2 ≤ c‖∆2θ0‖Wk−1,2 ≤ c‖θ0‖Wk+3,2

n
.

Moreover, we have the following estimates appearing on the right-hand sides

‖B−1
N (a0g · v0)‖Wk+1,2 ≤ c‖v0‖W k−1,2

0,σ

‖B−1
N (S0 : Dv0)‖Wk+1,2 ≤ c‖S0 : Dv0‖Wk−1,2 ≤ c‖v0‖W k+1,2

0,σ
‖S0‖Wk+1,2

n,s
.

Therefore, from these inequalities, we can see that ∂tθ(0) ∈ W k+1,2
n (Ω).
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Estimate for ∂tv(0). Let us evaluate the extended Navier–Stokes equation in
(1.15) at t = 0 to get

∂tv(0) + P σ[(v0 · ∇)v0 −∇ · (2ν(φ0, θ0)Dv0)]

= P σ[∇ ·M(θ0,S0) + κµ0∇φ0 + ρ(φ0, θ0)g + fv(0) + u(0)].

Analogous to the situation above, we have

‖(v0 · ∇)v0‖W k−1,2 ≤ c‖v0‖2

W k+1,2
0,σ

‖∇ · (2ν(φ0, θ0)Dv0)‖W k−1,2 ≤ C(‖φ0‖Wk+2,2
n

+ ‖θ0‖Wk+2,2
n

)‖v0‖W k+1,2
0,σ

.

Also, the terms appearing on the right-hand side can be bounded from above ac-
cording to

‖µ0∇φ0‖W k−1,2 ≤ c‖µ0‖Wk+1,2‖φ0‖Wk+1,2
n

‖∇ ·M(θ0,S0)‖W k−1,2 ≤ c(‖S0‖Wk+1,2
n,s

+ ‖θ0‖Wk+1,2
n

+ 1)‖S0‖Wk+1,2
n,s

‖ρ(φ0, θ0)g‖W k−1,2 ≤ c(1 + ‖φ0‖Wk−1,2
n

+ ‖θ0‖Wk−1,2
n

).

These will imply ∂tv(0) ∈ W k−1,2
0,σ (Ω) after applying the Faedo–Galerkin method.

Again, we note that ∂tv(0) = 0 on Γ when k = 2 by using the same reasoning
mentioned above for ∂tφ(0).

Estimate for ∂tS(0). Finally, we take t = 0 in the fifth equation of (1.15) so that

∂tS(0) + (v0 · ∇)S0 + J(v0,S0)−∇ · (ε(φ0, θ0)∇S0) = λDv0 + P(S0) + Fs(0).

By utilizing the following estimates

‖(v0 · ∇)S0 + J(v0,S0)‖Wk−1,2 ≤ c‖v0‖W k+1,2
0,σ
‖S0‖Wk+1,2

n,s

‖∇ · (ε(φ0, θ0)∇S0)‖Wk−1,2 ≤ C(‖φ0‖Wk+2,2
n

+ ‖θ0‖Wk+2,2
n

)‖S0‖Wk+1,2
n,s

‖λDv0 + P(S0)‖Wk−1,2 ≤ c‖v0‖W k,2
0,σ

+ C(‖S0‖Wk+1,2
n,s

)

it can be deduced that ∂tS(0) ∈Wk−1,2
n,s (Ω).

Hence, the above estimates imply that (∂tφ(0), ∂tθ(0), ∂tv(0), ∂tS(0)) ∈ Dk(Ω)
for k = 0, 1, 2 whenever the sources and initial data satisfy the conditions as stated
by the theorem. Therefore, (A.146) holds thanks to Theorem 4.2. �
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