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Abstract.
We provide the well-posedness for a partially dissipative viscous system of balance
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equation with damping for nonlinear wave acoustic propagation. Existence of
global solutions for small data and their asymptotic stability are established.

2020 Mathematics Subject Classification.
35L65, 35A01, 35B40

Keywords.
Parabolic-hyperbolic systems, Kuznetsov–Westervelt equation, asymptotic
stability, energy method.

Citation.
G. Peralta, Partially dissipative viscous system of balance laws and application to
Kuznetsov–Westervelt equation, Acta Applicandae Mathematicae, 193, Paper No.
8, 34 p., 2024.
DOI: https://doi.org/10.1007/s10440-024-00686-7

Department of Mathematics and Computer Science, University of the Philippines Baguio,
Governor Pack Road, Baguio, 2600 Philippines. Email: grperalta@up.edu.ph.

Disclaimer. This is the preprint version of the submitted manuscript. The contents may
have changed during the peer-review and editorial process. However, the final published version
is almost identical to this preprint. This preprint is provided for copyright purposes only. For
proper citation, please refer to the published manuscript, which can be found at the given link.

https://doi.org/10.1007/s10440-024-00686-7


Partially Dissipative Viscous System of Balance Laws 1 / 35

Table of Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Linear Hyperbolic and Parabolic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
A Priori Estimates for Coupled Linear Hyperbolic-Parabolic Systems . . . . . . . . . 6
Well-Posedness for Linear Hyperbolic-Parabolic Systems . . . . . . . . . . . . . . . . . . . . 10
Local Well-Posedness for Nonlinear Hyperbolic-Parabolic Systems . . . . . . . . . . . 17
The Kuznetsov–Westervelt Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Local Existence and Regularity of Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Energy Identities for the Linearized System . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
Energy Estimates for Nonlinear Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Moser and Commutator Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Mollifiers and Cut-Off Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1. Introduction
Partial viscous systems of conservation laws can be used to describe many physical
phenomena. These are coupled systems of partial differential equations consisting
of first-order hyperbolic equations and second-order parabolic equations. The hy-
perbolic part describes the evolution of the conservative quantities in the system,
while the parabolic part constitutes those that posses dissipative mechanisms, for
instance, viscosity and thermal conductivity. Several equations in fluid dynamics,
magnetohydrodynamics, viscoelasticity, thermoelasticity, heat conduction with fi-
nite speed propagation, and nonlinear acoustics can be written in the form of such
systems.

In this paper, we study the well-posedness of a partially dissipative viscous system
of conservation laws with source terms that depend on the states. In this situation,
the systems are called balance laws instead of conservation laws. More precisely, we
consider the following coupled quasilinear hyperbolic-parabolic system of balance
laws in non-divergence form

A0(w, z)∂tw +
d∑
j=1

Aj(w, z)∂jw = f(w, z,∇z) in (0,∞)× Rd,

B0(w, z)∂tz −
d∑

j,k=1

Bjk(w, z)∂k∂jz = g(w, z,∇w,∇z) in (0,∞)× Rd,

w|t=0 = w0, z|t=0 = z0 in Rd.

(1.1)
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The unknown state variables are w : (0,∞)×Rd → Rp and z : (0,∞)×Rd → Rn−p.
Here, n is a positive integer representing the size of the system, 0 ≤ p ≤ n is an
integer representing the size of the hyperbolic part, while w0 and z0 denote the
given initial data for the hyperbolic and parabolic components, respectively. The
case p = 0 corresponds to a purely parabolic system, while in the case p = n we
have a plain hyperbolic system. Here, the functions Aj, Bjk, f , and g encode the
type of the physics modelled by the system (1.1). Precise regularity assumptions
and other conditions for the coefficient matrices and on the inhomogeneities will be
given below.

The coupled system (1.1) has been studied by Kawashima in his seminal work
[25]. For general data in the Sobolev space Hm(Rd), where m > d

2
+ 2 is an integer,

local-in-time existence and uniqueness of solutions has been established and energy
estimates for the solutions in terms of the initial data have been provided. In
addition, existence of global-in-time solutions for small amplitude data and their
asymptotic stability has been proved as long as m > d

2
+3 and the so-called Shizuta–

Kawashima (SK) condition is satisfied.
Local existence and uniqueness of solutions for the corresponding system of con-

servation laws, that is when f and g vanish, has been improved by Serre tom > d
2
+1

in [33]. However, energy estimates were not explicitly stated. This result means that
the well-posedness theory for the viscid case is valid under the same assumptions
as those in the inviscid case, for example those provided by Majda [27], Benzoni–
Gavage and Serre [2], Rauch [32], and Metiviér [29]. The methodology presented
in [33] is classical, one linearizes the system and then proceed with an iteration
scheme. With regards to the linear system with smooth coefficients, the existence
and uniqueness of solutions to the Cauchy problem for smooth data is obtained
through a vanishing viscosity method, that is, by adding artificial viscosity to the
whole system and passing to the limit as the artificial viscosity parameter tends to
zero. For the iteration scheme, a priori estimates through nonlinear Moser-type in-
equalities for Sobolev spaces is the main ingredient. These a priori estimates provide
a high-norm boundedness and low-norm contraction of the iterates, thereby provid-
ing existence of solutions for nonlinear systems. We would like to point out that
in [25], the extra additional regularity is needed in the application of commutator
estimates in Matsumura [28] and Mizohata [30].

The paper [33] has been extended by the author in the study of singular limits
for a family of viscous conservation laws in [35]. Under certain stability criterion on
the diffusion tensors, the uniform boundedness and convergence of solutions for the
associated Cauchy problems have been established.

Our aim is to prove that the result in [33] is also valid in the non-homogenous
case for m > d

2
+ 1, that is, for the system (1.1) originally considered in [25]. The

new feature of the paper in comparison to the references mentioned above is the
derivation of an a priori estimate for coupled hyperbolic-parabolic systems with
limited regularity as well as the well-posedness of such systems, which in some sense
are in the same spirit as in the inviscid case. We recall that for linear systems, a
priori estimates provided in [25] involve only purely hyperbolic or purely parabolic
cases (see [25, Proposition 2.7]). For uniqueness of solutions, we shall follow the
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method of Kawashima using mollifiers combined with Friedrichs regularization and
Moser-type estimates to bypass the additional needed regularity.

Let us mention some of the previous works related to this manuscript. In [36],
Vol’pert and Hudjaev considered a coupled nonlinear hyperbolic-parabolic system
with initial data in Hm(Rd), where m > d

2
+ 3 in the general case and m > d

2
+ 2

in the quasilinear case. Using mollifiers, an auxiliary PDE system was studied
and the local-in-time existence of solutions were established through the Schauder’s
fixed point theorem. The results were applied to a model for viscous compressible
non-isothermal fluids.

Exploiting the result of [36] and using an entropy functional for symmetrization,
Giovangigli and Massot applied the abstract result to multicomponent reactive flows
for dilute polyatomic gas mixtures in [11]. Using the results and methods in [25], the
corresponding asymptotic stability to constant equilibrium states was established in
[12] under the condition m ≥ [d

2
] + 2, where [·] denotes the integral part of a real

number. Moreover, the global-in-time existence and asymptotic stability for general
systems were demonstrated in [13] when m ≥ [d

2
] + 3. The full vibrational non-

equilibrium scenario was considered under a stronger assumption, m > d
2

+ 3, again
using [36].

Regarding applications to ambipolar ionized gas mixtures where electric and mag-
netic fields were ignored, Giovangigli and Graille [10] considered entropic variables
to symmetrize the system. Global-in-time existence for small data were proved when
m ≥ [d

2
]+2 and rational decay estimates were shown when m ≥ [d

2
]+3 and an addi-

tional integrability of the deviation between the solutions and the steady states is sat-
isfied. The extension to magnetized gas mixtures using partial symmetrization tech-
niques and [36] were considered in [16]. Also, applications of hyperbolic-parabolic
systems to compressible non-isothermal diffuse interface fluids can be found in [9].

Giovangigli and Yong studied the asymptotic stability with respect to the
Chapman–Enskog expansions in [17] for coupled hyperbolic-parabolic systems.
Asymptotic stability analysis of multicomponent reactive fluids under fast chemistry
was proved by the same authors in [18] when m ≥ [d

2
] + 2. Second-order accurate

reduced systems with respect to the relaxation parameter for small diffusion and
stiff terms were studied in [15].

Common to most of the papers mentioned above are the decoupling of the par-
abolic and hyperbolic components of the system via linearization, application of
Friedrichs regularization, a range condition for the initial data, demonstration of
high-norm boundedness using commutator estimates, and the convergence of suc-
cessive approximates (Picard iteration). These are also the same techniques uti-
lized in this paper, however, as alluded earlier, the main difference is the condition
m > d

2
+ 1, which was adapted in the unforced case as in the works of Serre in

[33, 34, 35]. Besides, the application we have in mind deals with a nonlinear wave
equation acoustic propagation model.

Recently, Crin-Barat and Danchin considered quasilinear hyperbolic systems that
are symmetrizable and with partial dissipation in hybrid Besov-type spaces in [6] for
the one-dimensional case and in [5] for the multi-dimensional case. Here, the SK
condition is utilized, and Paley–Littlewood decompositions were used in the analysis
of low and high frequencies with respect to the Fourier variables. Extension to the
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case where the solutions possess Lp-type boundedness for the low frequencies, where
p > 2, is given in [7]. These were applied to isentropic compressible Euler systems
with velocity damping (friction term) or with relaxation. The results of the current
paper may be improved if one decouples the hyperbolic and parabolic parts and
proceeds as in the analysis given in the purely hyperbolic case. Such adaptation is
not covered in this paper, as it is outside of the scope.

All throughout this work, we shall consider the following assumptions as in [25].
The phase space O is assumed to be an open and convex subset of Rn, and up to
translation, we may take without restriction that it contains the origin. We use the
notation QT = [0, T ] × Rd for the time-space domain, while Mm×n(R) denotes the
set of matrices with real entries and size m× n.
(A1) The functions A0 ∈ C∞(O;Mp×p(R)) and B0 ∈ C∞(O;M(n−p)×(n−p)(R)) are

symmetric and uniformly positive-definite on compact subsets of O, that is,
for every compact subset K of O there exists %K > 0 such that A0(u)w ·w ≥
%K |w|2 and B0(u)z · z ≥ %K |z|2 for every u ∈ K, w ∈ Rp and z ∈ Rn−p.

(A2) For every j = 1, . . . , d, Aj ∈ C∞(O;Mp×p(R)) is symmetric.
(A3) The functions Bjk ∈ C∞(O;M(n−p)×(n−p)(R)) are symmetric and satisfies

Bjk = Bkj for every j, k = 1, . . . , d. Moreover, for every compact subset K
of O there exists ζK > 0 such that

d∑
j,k=1

Bjk(u)zjzk ≥ ζK |z|2 (1.2)

for every u ∈ K and z = (z1, . . . , zd) ∈ Rd.
(A4) We have f ∈ C∞(O×Rd×(n−p);Rp), g ∈ C∞(O×Rd×n;Rn−p), f(0) = 0, and

g(0) = 0.
Notice that the coefficient matrices A0, B0, and Bjk are only locally uniformly

positive-definite in the phase space. We limit ourselves to the case where the hy-
perbolic part is symmetric. Almost every model, if not all, in continuum physics
can be put in a symmetric form. For example, systems that admit strongly con-
vex entropies for which there is an available symmetrizer for the system. Also, the
assumption that the diffusion tensors are symmetric is reasonable after a possible
change of coordinates. This symmetric property is an example of the reciprocity
relations of Onsager [31]. For more details, we refer the reader to [33, 34].

Various examples of physical models that can be written in the form of (1.1) can
be found in [25]. Another example is the quasilinear strongly damped wave equation
arising in nonlinear acoustics

(1− 2κu)∂ttu− c2∆u− b∆∂tu
= 2κ(∂tu)2 + σ(|∇u|2 + I∇u · ∇∂tu) in (0,∞)× Rd (1.3)

where I is the integral operator

(Iv)(t, x) =

∫ t

0

v(τ, x) dτ. (1.4)

This model is called the Kuznetsov–Westervelt equation, where u : (0, T )×Rd → R
represents the acoustic pressure fluctuation, c > 0 is the speed of sound, b > 0 is
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the diffusivity of sound, and κ and σ are certain constants. By introducing the
state variables w = (u, Iu,∇u) and z = ∂tu, one can easily check that (1.3) can be
recasted in the form of (1.1). Further information will be given in Section 6.

The plan of this paper is as follows. In Section 2, we briefly recall the theory for
purely hyperbolic and purely parabolic problems. Derivation of a priori estimates
for the coupled linearized system having frozen coefficients with limited regularity
will be the focus of Section 3. The well-posedness of linear and nonlinear systems
will be given in Section 4 and Section 5, respectively. Section 6 deals with a modi-
fied version of the Kuznetsov–Westervelt equation incorporating additional damping
terms. Finally, we recall in the Appendix the Friedrichs regularization and classical
commutator and Moser-type estimates, which play important roles in the derivation
of the a priori estimates.

2. Linear Hyperbolic and Parabolic Systems

The well-posedness of the hyperbolic-parabolic system (1.1) will be developed based
on the results of Kawashima [25] for hyperbolic and parabolic systems with variable
coefficients. For this purpose, consider the hyperbolic systemA0(v)∂tw +

d∑
j=1

Aj(v)∂jw = f in (0, T )× Rd,

w|t=0 = w0 in Rd,

(2.1)

with the unknown w : (0, T )× Rd → Rp and the parabolic system
B0(v)∂tz −

d∑
j,k=1

Bjk(v)∂k∂jw = g in (0, T )× Rd,

z|t=0 = z0 in Rd,

(2.2)

with the unknown z : (0, T ) × Rd → Rn−p. The frozen coefficient v : (0, T ) ×
Rd → Rn, initial data w0 : Rd → Rp and z0 : Rd → Rn−p, and source terms
f : (0, T ) × Rd → Rp and g : (0, T ) × Rd → Rn−p are given functions. In the
succeeding discussions, it will be useful to decompose the vector-valued function v
as [wv zv]

> where wv and zv have p and (n − p) components, respectively, and the
superscript > denotes transposition. Likewise, we write u = [w z]>.

We shall abbreviate the notation for the Sobolev space Hm(Rd) and Lebesgue
space Lp(Rd) into Hm and Lp, respectively.

Theorem 2.1. [25, Proposition 2.7] Suppose that the assumptions (A1)–(A4) are
satisfied and let m > d

2
+ 1 be an integer. Assume that v ∈ C(0, T ;Hm+1), wv ∈

C1(0, T ;Hm), and zv ∈ C1(0, T ;Hm−1) ∩H1(0, T ;Hm).
(a) Let 1 ≤ ` ≤ m + 1 be an integer. If f ∈ C(0, T ;H`−1) ∩ L2(0, T ;H`) and

w0 ∈ H`, then the hyperbolic system (2.1) has a unique solution

w ∈ C(0, T ;H`) ∩ C1(0, T ;H`−1).
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(b) Let 2 ≤ ` ≤ m+ 1 be an integer. If g ∈ C(0, T ;H`−1) and z0 ∈ H`, then the
parabolic system (2.2) has a unique solution

z ∈ C(0, T ;H`) ∩ C1(0, T ;H`−2) ∩ L2(0, T ;H`+1).

Energy estimates for the solutions are also available, however, they will not be
utilized and hence we omit them in this paper. The proof of Theorem 2.1 is based
on a priori estimates and Kato’s theory for evolution equations.

For the hyperbolic PDE (2.1), there are other formulation of existence and unique-
ness of solutions depending on the regularity of v and f . In the Sobolev space setting,
we mention [2, 27, 29, 32] for such alternative formulations. On the other hand, for
the parabolic PDE (2.2) with infinitely differentiable v and g = 0, the result in [33]
is applicable.

3. A Priori Estimates for Coupled Linear Hyperbolic-
Parabolic Systems

In this section, we will derive a priori estimates for coupled linear hyperbolic-
parabolic systems. We consider the diffusion term in non-conservative form and
include lower-order terms both in the hyperbolic and parabolic components. Define
the following linear operators with variable coefficients

Lh[v](w, z) := A0(v)∂tw +
d∑
j=1

(Aj(v)∂jw + Cj(v)∂jz) +D1(v)w +D2(v)z

(3.1)

Lp[v](w, z) := B0(v)∂tz −
d∑

j,k=1

Bjk(v)∂j∂kz +
d∑
j=1

(Ej(v)∂jw + Fj(v)∂jz)

+G1(v)w +G2(v)z, (3.2)

where v ∈ L∞(0, T ;Hm)∩H1(0, T ;Hm−1) is given and m > d
2

+ 1 is a fixed integer.
With regards to the coefficients for the lower-order terms, we consider the follow-

ing hypothesis.
(A5) It holds that Cj, D2 ∈ C∞(O;Mp×(n−p)(R)), Ej, G1 ∈ C∞(O;M(n−p)×p(R)),

Fj, G2 ∈ C∞(O;M(n−p)×(n−p)(R)), and D1 ∈ C∞(O;Mp×p(R)) for every j =
1, . . . , d.

In certain situations, it is convenient to rewrite the two operators in (3.1) and
(3.2) as a single operator. To do this, we introduce the block matrix-valued functions

S0 :=

[
A0 0
0 B0

]
, Sj :=

[
Aj Cj
Ej Fj

]
,

R :=

[
D1 D2

G1 G2

]
, Zjk :=

[
0 0
0 Bjk

]
.

Define the following linear differential operator with variable coefficients

L[v]u := S0(v)∂tu+
d∑
j=1

Sj(v)∂ju−
d∑

j,k=1

Zjk(v)∂j∂ku+R(v)u.
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Then, it is easy to see that we have

L[v]u = [Lh(v)w Lp(v)z]>.

Later, we will use the decomposition of Sj = S1
j + S2

j where

S1
j :=

[
Aj 0
0 0

]
, S2

j :=

[
0 Cj
Ej Fj

]
, (3.3)

and notice that S1
j is symmetric. Alternatively, one can write Sj as a sum of its

symmetric and anti-symmetric parts, however, the above decomposition is sufficient
for our purposes.

Let L̃ be the operator corresponding to the conservative form of L in the second-
order terms. More precisely, L̃ is given by

L̃[v] := S0(v)∂t +
d∑
j=1

Sj(v)∂j −
d∑

j,k=1

∂j(Zjk(v)∂k) +R(v).

Theorem 3.1. Suppose that v ∈ L∞(0, T ;Hm) ∩ H1(0, T ;Hm−1) and m > d
2

+ 1
is an integer. Assume that the range of v is contained in a compact subset K0 of
O and it contains the origin. Let K be another compact subset in O whose interior
contains K0. Then, for every u = [w z]> ∈ H1(0, T ;Hm) ∩ L2(0, T ;Hm+1), there
exists a constant C > 0 that depends only on d, m, K and the coefficients of L[v]
such that for every ν ∈ (0, 1), we have

sup
t∈[0,T ]

‖u(t)‖2Hm +

∫ T

0

‖∇z(t)‖2Hm dt

≤ CeCp2(T,v)

(
‖u(0)‖2Hm +

∫ T

0

{T ν‖Lh[v]u(t)‖2Hm + ‖Lp[v]u(t)‖2Hm−1} dt

)
(3.4)

where p2(T, v) := (1+T−ν){Tp1(‖v‖L∞(0,T ;Hm))+
√
T‖∂tv‖L2(0,T ;Hm−1)} and p1(r) :=

1 + r + r2 + r4.

Proof. By a standard density argument, we may assume without loss of generality
that u is infinitely differentiable and vanishes outside a compact subset of Rd. Let
α be a multi-index with length at most m. Taking the αth derivative of S−10 L[v]u,
multiplying by S0, taking the inner product with ∂αu and then rearranging the
terms yield

L̃[v]∂αu · ∂αu = S0[∂
α, S−10 ]L[v]u · ∂αu+ ∂αL[v]u · ∂αu

−
d∑
j=1

S0[∂
α, S−10 Sj∂j]u · ∂αu− S0[∂

α, S−10 R]u · ∂αu (3.5)

+
d∑

j,k=1

{B0[∂
α, B−10 Bjk]∂j∂kz − dBjk[∂jv]∂k∂

αz} · ∂αz

where [L1, L2] := L1L2−L2L1 is the commutator between two operators L1 and L2.
The double sum in (3.5) involves only the component z due to the structure of the
diffusion matrices Zjk. Here and below, we do not explicitly write the dependence of
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the coefficient matrices on the frozen coefficient v. Also, dA denotes the first-order
differential of A viewed as a linear form.

The first step is to bound from below the L1-norm of the left-hand side of (3.5).
To do this, we rewrite the said term as follows

L̃[v]∂αu · ∂αu =
1

2

d

dt
(S0∂

αu · ∂αu)− 1

2
dS0[∂tv]∂αu · ∂αu

+
1

2

d∑
j=1

{∂j(S1
j ∂

αu · ∂αu)− dS1
j [∂jv]∂αu · ∂αu+ 2S2

j ∂j∂
αu · ∂αu}

+
d∑

j,k=1

{Bjk∂k∂
αz · ∂j∂αz − ∂j(Bjk∂k∂

αz · ∂αz)}+R∂αu · ∂αu. (3.6)

Here, we used the symmetry of S0 and S1
j for j = 1, . . . , d. We integrate both sides

of this equation over Rd. Notice that the integral of the first term in the single sum
and the second term in the double sum both vanish according to the divergence
theorem and the fact that u vanishes at infinity. In the following estimates, C will
denote generic positive constants that depend only on m, d, K, and the coefficients
appearing in the operator L[v].

Applying Hölder’s inequality and the Sobolev embedding Hm−1 ⊂ L∞ to the
second term on the right-hand side of (3.6), we obtain the estimate

‖dS0[∂tv]∂αu · ∂αu‖L1 ≤ ‖ dS0‖L∞‖∂tv‖L∞‖∂αu‖2L2

≤ C‖∂tv‖Hm−1‖∂αu‖2L2 . (3.7)

A similar process yields the inequality

‖dS1
j [∂jv]∂αu · ∂αu‖L1 + ‖R∂αu · ∂αu‖L1 ≤ C(1 + ‖v‖Hm)‖∂αu‖2L2 . (3.8)

Next, we estimate the last term in the single sum of (3.6). By using the definition
of S2

j in (3.3) and then integrating by parts, see Proposition 7.6, we obtain∫
Rd
S2
j ∂j∂

αu · ∂αu dx =

∫
Rd
{Cj∂j∂αz · ∂αw + Fj∂j∂

αz · ∂αz + ET
j ∂

αz · ∂j∂αw} dx

=

∫
Rd

(Cj − ET
j )∂j∂

αz · ∂αw dx−
∫
Rd

dET
j [∂jv]∂αz · ∂αw dx

+

∫
Rd
Fj∂j∂

αz · ∂αz dx. (3.9)

Applying Young’s inequality to the first integral in (3.9), we have

‖(Cj − ET
j )∂j∂

αz · ∂αw‖L1 ≤ Cη‖(CT
j − Ej)∂αw‖2L2 + η‖∂j∂αz‖2L2

≤ Cη‖∂αw‖2L2 + η‖∂j∂αz‖2L2

≤ Cη‖∂αu‖2L2 + η‖∂j∂αz‖2L2 (3.10)

where η > 0 is a positive constant to be chosen later. In a similar manner, we obtain

‖Fj∂j∂αz · ∂αz‖L1 ≤ Cη‖∂αz‖2L2 + η‖∂j∂αz‖2L2

≤ Cη‖∂αu‖2L2 + η‖∂j∂αz‖2L2 . (3.11)
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On the other hand, the second term in (3.9) can be estimated from above in the
same way as in (3.7) to obtain

‖ dET
j [∂jv]∂αz · ∂αw‖L1 ≤ C‖v‖Hm‖∂αz‖L2‖∂αw‖L2 (3.12)

≤ C‖v‖Hm‖∂αu‖2L2 . (3.13)

Combining the inequalities (3.10)–(3.13) yields

‖S2
j ∂j∂

αu · ∂αu‖L1 ≤ Cη(1 + ‖v‖Hm)‖∂αu‖2L2 + 2η‖∂j∂αz‖2L2 . (3.14)

With regards to the first term in the double sum of (3.6), assumption (1.2) pro-
vides us the following estimate from below

d∑
j,k=1

∫
Rd
Bjk∂k∂

αz · ∂j∂αz dx ≥ ζK‖∇∂αz‖2L2 . (3.15)

By utilizing (3.7), (3.8), (3.14), and (3.15), we achieve the following estimate∫
Rd
L̃[v]∂αu · ∂αu dx ≥ 1

2

d

dt

∫
Rd
S0∂

αu · ∂αu dx+ (ζK − 2η)‖∇∂αz‖2L2

− Cη(1 + ‖v‖Hm + ‖∂tv‖Hm−1)‖∂αu‖2L2 . (3.16)

The next step is to integrate each term on the right-hand side of (3.5) and de-
rive estimates from above. First, notice that u(t), Sj(v(t)) ∈ Hm for almost every
t ∈ [0, T ] and for every j. From the Cauchy–Schwarz inequality, the commutator
estimate (7.5) of Proposition 7.2, and Proposition 7.3, we get

‖S0[∂
α, S−10 Sj∂j]u · ∂αu‖L1 ≤ C‖S0‖L∞‖S−10 Sj‖Hm‖u‖Hm‖∂αu‖L2

≤ C(‖v‖L∞)‖v‖Hm‖u‖2Hm . (3.17)

If |α| = 0 then the commutators in (3.5) vanishes. Now, suppose that |α| ≥ 1 so
that by Leibniz rule

[∂α, S−10 R]u =
∑

β+γ=α, |β|≥1

dβγ∂
β−µβ(∂µβ(S−10 R))∂γu (3.18)

where dβγ are constants and µβ is a multi-index of length one and β−µβ is a nonnega-
tive multi-index. Since |β−µβ|+|γ| = |α|−1 ≤ m−1 and ∂µβ(S−10 R)(t), u(t) ∈ Hm−1

for almost every t ∈ [0, T ], we can apply (7.3) to obtain

‖∂β−µβ(∂µβ(S−10 R))∂γu‖L2 ≤ C‖∂µβ(S−10 R)‖Hm−1‖u‖Hm−1

≤ C(‖v‖L∞)‖v‖2Hm‖u‖Hm−1 . (3.19)

Thus, using the Cauchy–Schwarz inequality in (3.18) and then summing up yields

‖[∂α, S−10 R]u · ∂αu‖L1 ≤ C(‖v‖L∞)‖v‖2Hm‖u‖2Hm . (3.20)

According to Young’s inequality, for each j and k there holds

‖ dBjk[∂jv]∂k∂
αz · ∂αz‖L1 ≤ η‖∂k∂αz‖2L2 + Cη(‖v‖L∞)‖v‖2Hm‖∂αz‖2L2 . (3.21)

Also, we expand the commutator [∂α, B−10 Bjk]z in virtue of the Leibniz rule so that

[∂α, B−10 Bjk]z =
∑

β+γ=α, |β|≥1

dβγ∂
β−µβ(∂µβ(B−10 Bjk))∂

γ∂j∂kz.
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Employing Young’s inequality together with the same procedure as in the derivation
of the estimate (3.19), we get

‖[∂α, B−10 Bjk]z · ∂αz‖L1 ≤ η‖∂kz‖2Hm + Cη(‖v‖L∞)‖v‖4Hm‖∂αz‖2L2 . (3.22)

Recall that ∂αL[v]u · ∂αu = ∂αLh[v]u · ∂αw + ∂αLp[v]u · ∂αz. For the first term on
the right-hand side, we utilize Young’s inequality. With regards to the second term,
we integrate by parts to pass one derivative of Lp[v]u to ∂αz. Through these, we
obtain the following estimate for each ν > 0

‖∂αL[v]u · ∂αu‖L1 ≤ T ν‖∂αLh[v]u‖2L2 + CT−ν‖∂αw‖2L2

+ Cη‖Lp[v]u‖2Hm−1 + η‖∇∂αz‖2L2 (3.23)

By Leibniz rule and using the same argument as in (3.19) and (3.20), the first
commutator on the right-hand side of (3.5) can be estimated according to

‖S0[∂
α, S−10 ]L[v]u · ∂αu‖L1 (3.24)

≤ C(‖v‖L∞)‖v‖Hm‖L[v]u‖Hm−1‖∂αu‖L2

≤ T ν‖Lh[v]u‖2Hm−1 + ‖Lp[v]u‖2Hm−1 + C(‖v‖L∞)(1 + T−ν)‖v‖2Hm‖u‖2Hm .

Combining the estimates (3.7), (3.8), (3.14), (3.16), (3.17), (3.20), and (3.22)–(3.24),
and then taking the sum over all d-tuples α with length at most m, we obtain that

d

dt
‖u‖2S0,m

+ (ζK − cdη)‖∇z‖2Hm

≤ Cη(‖v‖L∞)(1 + T−ν)(p1(‖v‖Hm) + ‖∂tv‖Hm−1)‖u‖2Hm

+ C(‖v‖L∞)T ν‖Lh[v]u‖2Hm + Cη(‖v‖L∞)‖Lp[v]u‖2Hm−1 (3.25)

where

‖u‖2S0,m
:=

∑
|α|≤m

∫
Rd
S0∂

αu · ∂αu dx, (3.26)

cd is a constant independent of η and p1(r) := 1 + r + r2 + r4.
Recall that the range of v lies in K and so ‖v‖L∞(QT ) ≤ diam(K), hence we can

replace the constant C(‖v‖L∞(QT )) by a constant C depending on K. Moreover, ‖ ·
‖S0,m is equivalent to theHm-norm. More precisely, there exist constants c1,K , c2,K >
0 such that for every u ∈ Hm

c1,K‖u‖Hm ≤ ‖u‖S0,m ≤ c2,K‖u‖Hm .

Choosing 0 < η < ζK
cd

and then using Gronwall’s inequality in (3.25), we obtain the
estimate (3.4) of the theorem. �

4. Well-Posedness for Linear Hyperbolic-Parabolic
Systems

The current section is devoted to the existence and uniqueness of solutions for cou-
pled parabolic-hyperbolic systems with limited regularity that is analogous to The-
orem 2.1. However, our results are valid only for integers m > d

2
+ 1. This stems
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from the use of the energy estimate in Theorem 3.1. Nevertheless, such results are
similar to the inviscid case.

Introduce the Banach spaces
Xm
T := L∞(0, T ;Hm) ∩H1(0, T ;Hm−1)

Y m
T := {u ∈ C(0, T ;Hm) : z ∈ L2(0, T ;Hm+1)}

equipped with the norms

‖u‖Xm
T

:= (‖u‖2L∞(0,T ;Hm) + ‖∂tu‖2L2(0,T ;Hm−1))
1
2

‖u‖YmT := (‖u‖2C(0,T ;Hm) + ‖∇z‖2L2(0,T ;Hm))
1
2 .

Recall that u = [w z]> where w and z have p and n− p components, respectively.
First, we establish the following lower-order estimates that will be utilize in the

case of nonlinear systems.

Lemma 4.1. Suppose that m > d
2

+ 1 is an integer and v1, v2 ∈ Xm
T satisfy a range

condition as in Theorem 3.1. Let uj = [wj zj]
> ∈ Xm

T with zj ∈ L2(0, T ;Hm+1) for
j = 1, 2. Assume that fj ∈ L2(0, T ;Hm), gj ∈ L2(0, T ;Hm−1) and let Fj = [fj gj]

>

for j = 1, 2. If u1 and u2 satisfy the linear systems L[v1]u1 = F1 and L[v2]u2 = F2,
respectively, and

max
j=1,2
{‖vj‖Xm

T
, ‖uj‖Xm

T
, ‖zj‖L2(0,T ;Hm+1)} ≤M,

then there exists a constant C = C(d,m,K,M) > 0, depending continuously on its
arguments, such that for every ν ∈ (0, 1) we have

sup
t∈[0,T ]

‖u(t)‖2L2 +

∫ T

0

‖∇z(t)‖2L2 dt

≤ Cep3(T )
(
‖u(0)‖2L2 +

∫ T

0

{T ν‖f(t)‖2L2 + ‖g(t)‖2L2 + ‖v(t)‖2L2} dt

)
(4.1)

where u := u1 − u2, z := z1 − z2, v := v1 − v2, f := f1 − f2, g := g1 − g2, and
p3(T ) := CT (1 + T + T−ν).

Proof. Let u := u2 − u1, v := v2 − v1, and F := F2 − F1. Taking the inner product
of the equation L[v1]u1 − L[v2]u2 = F with u and then rearranging the terms we
have

L̃[v1]u · u+
d∑

j,k=1

dBjk(v1)[∂jv1]∂kz · z

= F · u+ {S0(v1)− S0(v2)}∂tu2 · u+ {R(v1)−R(v2)}u2 · u

+
d∑
j=1

{Sj(v1)− Sj(v2)}∂ju2 · u+
d∑

j,k=1

{Bjk(v1)−Bjk(v2)}∂kz2 · ∂jz.

Let us denote the right-hand side by Q1 +Q2 where Q2 represents the double sum.
On one hand, by the same process as in the proof of the inequality (3.16), we have∫

Rd
L̃[v1]u · u+

d∑
j,k=1

dBjk(v1)[∂jv1]∂kz · z dx (4.2)
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≥ 1

2

d

dt
‖u‖2S0,0

+
ζK
2
‖∇z‖2L2 − C(1 + ‖v‖Hm + ‖∂tv‖Hm−1)‖u‖2L2

for some constant C = C(d,m,K,M) > 0, where ‖ · ‖S0,0 is given by (3.26).
On the other hand, using a first-order Taylor expansion and Hölder’s inequality,

we have the following estimate for Q1∫
Rd
Q1 dx ≤ ‖F‖L2‖u‖L2 + C(‖∂tu2‖L∞ + ‖∇u2‖L∞)‖u‖L2‖v‖L2

≤ C(M)(T ν‖f‖2L2 + ‖g‖2L2 + ‖v‖2L2 + (1 + T−ν + ‖∂tu2‖2Hm−1)‖u‖2L2). (4.3)

For the second term Q2, we apply the same argument together with the embedding
Hm−1 ⊂ L∞ to obtain∫

Rd
Q2 dx ≤ C‖∇z2‖L∞‖v‖L2‖∇z‖L2

≤ ζK
4
‖∇z‖2L2 + C‖∇z2‖2Hm‖v‖2L2 . (4.4)

Combining (4.2)–(4.4) and then applying Gronwall’s Lemma, we obtain (4.1). �

The succeeding lemma is similar to the regularity result in [25, Lemma 2.6].

Lemma 4.2. Assume that m > d
2

+ 1 is an integer and v ∈ Xm
T satisfy a range

condition as in Theorem 3.1. Let u = [w z]> ∈ Xm
T be such that z ∈ L2(0, T ;Hm+1).

Suppose that u0 ∈ Hm, f ∈ L2(0, T ;Hm), g ∈ L2(0, T ;Hm−1), and let F = [f g]>.
If u satisfies the linear hyperbolic-parabolic system

L[v]u = F, u|t=0 = u0 (4.5)

then u ∈ C(0, T ;Hm).

Proof. The main idea is to take the convolution of the equation with a Friedrichs
mollifier. Let α be a multi-index with |α| ≤ m. Taking the αth derivative of
S−10 L[v]u and then applying S0Rε, where Rε is the regularization operator defined
in the Appendix, we obtain

L̃[v]∂αuε = ∂αFε + S0RεG
α + Jαε +

d∑
j,k=1

dZjk[∂jv]∂k∂
αuε

where uε := Rεu, Fε := RεF ,

Gα := −
d∑
j=1

[∂α, S−10 Sj]u+
d∑

j,k=1

[∂α, S−10 Zjk]∂j∂ku− [∂α, S−10 R]u+ [∂α, S−10 ]F,

Jαε := S0[Rε, S
−1
0 ]∂αF −

d∑
j=1

S0[Rε, S
−1
0 Sj]∂j∂

αu+
d∑

j,k=1

S0[Rε, S
−1
0 Zjk]∂j∂k∂

αu

− S0[Rε, S
−1
0 R]∂αu.

We have uε ∈ H1(0, T ;H∞) ⊂ C(0, T ;H∞). Also, uε → u in L2(0, T ;Hm), zε → z
in L2(0, T ;Hm+1), fε → f in L2(0, T ;Hm), and gε → g in L2(0, T ;Hm−1) according
to Proposition 7.5 and the Lebesgue dominated convergence theorem.
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Since ∂αu ∈ L2(0, T ;L2) and ∂αF, ∂j∂k∂αz, ∂j∂αu ∈ L2(0, T ;H−1), it follows from
Corollary 7.8 and the Lebesgue dominated convergence theorem once more that
Jαε → 0 in L2(0, T ;L2). Because the commutators in Gα are of order at most m− 1,
we can see that Gα ∈ L2(0, T ;L2). Therefore, S0RεG

α → S0G
α in L2(0, T ;L2) by

Proposition 7.5. Using the same argument as in (3.16), we have∫
Rd
L̃[v]∂α(uε − uδ) · ∂α(uε − uδ) dx

≥ 1

2

d

dt

∫
Rd
S0∂

α(uε − uδ) · ∂α(uε − uδ) dx+ (ζK − cdη)‖∇∂α(zε − zδ)‖2L2

− Cη(1 + ‖v‖Hm + ‖∂tv‖Hm−1)‖∂α(uε − uδ)‖2L2 . (4.6)

Similarly, for some constant Cη depending only on η > 0, the compact set K and
the norm of v in L∞(0, T ;Hm) ∩H1(0, T ;Hm−1), we have the following estimates∫

Rd
∂α(Fε − Fδ) · ∂α(uε − uδ) dx (4.7)

≤ 1

2
‖fε − fδ‖2Hm +

1

2
‖uε − uδ‖2Hm + Cη‖gε − gδ‖2Hm−1 + η‖∇(zε − zδ)‖2Hm∫

Rd
{S0RεG

α − S0RδG
α + Jαε − Jαδ } · ∂α(uε − uδ) dx (4.8)

≤ 1

2
‖S0RεG

α − S0RδG
α‖2L2 +

1

2
‖Jαε − Jαδ ‖2L2 + ‖uε − uδ‖2Hm∫

Rd
dZjk[∂jv]∂k∂

α(uε − uδ) · ∂α(uε − uδ) dx (4.9)

≤ η‖∇(zε − zδ)‖2Hm + Cη‖zε − zδ‖2Hm .

Combining (4.6)–(4.9), taking the sum over all multi-indices α of length at most
m, choosing η > 0 small enough, and then applying Gronwall’s inequality yield

‖uε − uδ‖2C(0,T ;Hm) +

∫ T

0

‖∇zε(t)−∇zδ(t)‖2Hm dt

≤ C

(
‖uε(0)− uδ(0)‖2Hm +

∫ T

0

‖fε(t)− fδ(t)‖2Hm + ‖gε(t)− gδ(t)‖2Hm−1 dt

+
∑
|α|≤m

∫ T

0

‖S0RεG
α(t)− S0RδG

α(t)‖2L2 + ‖Jαε (t)− Jαδ (t)‖2L2 dt

)
where C depends only on v and T . Note that for each ε > 0 we have uε(0) = Rεu0
and hence uε(0) → u0 in Hm. Therefore, (uε)ε and (zε)ε are Cauchy sequences in
C(0, T ;Hm) and L2(0, T ;Hm+1), respectively. By uniqueness of limits, these se-
quences converge to u and z respectively, thereby obtaining the desired regularities
u ∈ C(0, T ;Hm) and z ∈ L2(0, T ;Hm+1). �

We now establish the well-posedness of the linear system (4.5).

Theorem 4.3. Let m > d
2

+ 1 be an integer and v ∈ Xm
T ∩ C1(0, T ;L2) satisfies

a range condition as in Theorem 3.1. Suppose that u0 ∈ Hm, f ∈ C(0, T ;L2) ∩
L2(0, T ;Hm), and g ∈ C(0, T ;L2) ∩ L2(0, T ;Hm−1). The linear system (4.5) has a
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unique solution u ∈ C(0, T ;Hm) ∩H1(0, T ;Hm−1) with z ∈ L2(0, T ;Hm+1). More-
over, there exists a constant C = C(d,m,K,M) > 0 such that for every ν ∈ (0, 1),
there holds

sup
t∈[0,T ]

‖u(t)‖2Hm +

∫ T

0

‖∇z(t)‖2Hm dt

≤ CeCp2(T,v)

(
‖u0‖2Hm +

∫ T

0

T ν‖f(t)‖2Hm + ‖g(t)‖2Hm−1 dt

)
(4.10)

where p2(T, v) is of the form given by Theorem 3.1.

Proof. Step 1. First, we consider the simple case where D1, D2, Ej, Cj, Fj, G1, G2

vanish and follow the methods in [25]. In this case, the hyperbolic and parabolic
systems are uncoupled. We mollify the initial data, the frozen coefficient and the
right-hand sides, that is, let u0ε := Rεu0, vε := Rεv, and Fε := RεF . It follows that
u0ε ∈ H∞, Fε ∈ L2(0, T ;H∞) ∩ C(0, T ;H∞) and vε ∈ C(0, T ;H∞) ∩ C1(0, T ;H∞),
and moreover, we have u0ε → u0 in Hm, fε → f in L2(0, T ;Hm), gε → g in
L2(0, T ;Hm−1), and vε → v in L2(0, T ;Hm) ∩H1(0, T ;Hm−1).

Consider the approximate linear hyperbolic system

Lh[vε]u
ε = fε, wε|t=0 = w0ε, (4.11)

and the approximate linear parabolic system

Lp[vε]u
ε = gε, zε|t=0 = z0ε. (4.12)

Theorem 2.1 implies that the Cauchy problems (4.11) and (4.12) admit solutions
such that wε, zε ∈ C(0, T ;H∞) ∩ C1(0, T ;H∞). Therefore, we can apply Theorem
3.1 and have the energy estimate

sup
t∈[0,T ]

‖uε(t)‖2Hm +

∫ T

0

‖∇zε(t)‖2Hm dt

≤ CeCp2(T,vε)

(
‖u0ε‖2Hm +

∫ T

0

T ν‖fε(t)‖2Hm + ‖gε(t)‖2Hm−1 dt

)
. (4.13)

From Proposition 7.5, the right-hand side of this estimate can be bounded above
by the same term where (u0ε, vε, fε, gε) is replaced by (u0, v, f, g). This implies
that (uε)ε and (zε)ε are bounded in L∞(0, T ;Hm) and L2(0, T ;Hm+1), respectively.
Therefore, uε converges weakly-star to u in L∞(0, T ;Hm) and zε converges weakly
in L2(0, T ;Hm+1) to the component z of u. Moreover, by the lower semi-continuity
of the norm with respect to the weak and weak-star topologies, we have

lim inf
ε→0

‖uε‖L∞(0,T ;Hm) ≤ ‖u‖L∞(0,T ;Hm)

lim inf
ε→0

‖∇zε‖L2(0,T ;Hm) ≤ ‖∇z‖L2(0,T ;Hm).

Let uε,δ := uε − uδ and adapt similar definitions for vε,δ, fε,δ and gε,δ. Note that

∂tu
ε = S0(vε)

−1
{
−

d∑
j=1

Sj(vε)∂ju
ε +

d∑
j,k=1

Zjk(vε)∂j∂ku
ε + Fε

}

Department of Mathematics and Computer Science, College of Science, University of the Philippines Baguio



Partially Dissipative Viscous System of Balance Laws 15 / 35

and from this, we can see that ∂tuε is uniformly bounded in L2(0, T ;Hm−1), and
hence converges weakly necessarily to ∂tu in this space. From Lemma 4.1, there
exists a constant CT > 0 independent of ε and δ such that

sup
t∈[0,T ]

‖uε,δ(t)‖2L2 +

∫ T

0

‖∇zε,δ(t)‖2L2 dt

≤ CT

(
‖uε0 − uδ0‖2L2 +

∫ T

0

{‖fε,δ(t)‖2L2 + ‖gε,δ(t)‖2L2 + ‖vε,δ(t)‖2L2} dt

)
.

As a result, (uε)ε and (zε)ε are Cauchy sequences in C(0, T ;L2) and L2(0, T ;H1),
and they converge to u and z, respectively.

By interpolation, uε → u in C(0, T ;Hs) and zε → z in L2(0, T ;Hs+1) for every real
number s < m. Choose s such that d

2
+ 1 < s < m. The Sobolev space Hs−1 ⊂ L∞

is a Banach algebra, and in particular, vε → v almost everywhere on [0, T ] × Rd.
Passing to the limit on the approximate systems (4.11) and (4.12) in L2(0, T ;Hs−1)
yields that u satisfies the linear system (4.5), and hence, ∂tu ∈ L2(0, T ;Hm−1).
Moreover, we have the regularity u ∈ C(0, T ;Hm) according to Lemma 4.2. The
energy estimate (4.10) can be obtained by passing to the limit inferior in the estimate
(4.13) for uε.

Step 2. Now we consider the general case where the coefficient matrices associated
with the lower-order terms in the operators Lh and Lp do not vanish. This will be
done through a standard fixed point argument. In this direction, we consider the
map Fu = ũ defined as follows: Given a sufficiently smooth u = [w z]>, let ũ = [w̃ z̃]>

be the solution of the uncoupled linear system

A0(v)∂tw̃ +
d∑
j=1

Aj(v)∂jw̃ = Jh[v]u+ f,

B0(v)∂tz̃ −
d∑

j,k=1

Bjk(v)∂j∂kz̃ = Jp[v]u+ g,

w̃|t=0 = w0, z̃|t=0 = z0,

(4.14)

where Jh[v] and Jp[v] are the linear operators

Jh[v]u := −
d∑
j=1

Cj(v)∂jz −D1(v)w −D2(v)z,

Jp[v]u := −
d∑
j=1

{Ej(v)∂jw + Fj(v)∂jz} −G1(v)w −G2(v)z.

If u ∈ Y m
T , then Jh[v]u ∈ C(0, T ;Hm−1)∩L2(0, T ;Hm) and Jp[v]u ∈ C(0, T ;Hm−1).

From what we have shown in Step 1, the linear system (4.14) has a unique solution
ũ ∈ Y m

T . This means that the linear map F : Y m
T → Y m

T given by Fu = w̃ is
well-defined. For simplicity, we denote the z component of Fku by Fkz for positive
integers k, where Fk denotes the composition of k-copies of F.
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According to the energy estimates in Step 1, for every u1, u2 ∈ Y m
T and τ ∈ (0, T ],

if u := u1 − u2, then

sup
t∈[0,τ ]

‖Fu(t)‖2Hm +

∫ τ

0

‖∇Fz(t)‖2Hm dt

≤ CeCp2(T,v)

(∫ τ

0

τ ν‖Jh[v]u(t)‖2Hm + ‖Jp[v](t)‖2Hm−1 dt

)
≤ CeCp2(T,v)(1 + τ)ν

(∫ τ

0

‖Jh[v]u(t)‖2Hm + ‖Jp[v](t)‖2Hm−1 dt

)
.

Applying Propositions 7.1–7.3, it is not hard to see that∫ τ

0

‖Jh[v]u(t)‖2Hm + ‖Jp[v]u(t)‖2Hm−1 dt

≤ C1(1 + T )

(
sup
t∈[0,τ ]

‖u(t)‖2Hm +

∫ τ

0

‖∇z(t)‖2Hm dt

)
for some constant C1 > 0 depending only on d, m, K and v. Therefore, it holds
that

sup
t∈[0,τ ]

‖Fu(t)‖2Hm +

∫ τ

0

‖∇Fz(t)‖2Hm dt

≤ κ(1 + τ)ν

(
sup
t∈[0,τ ]

‖u(t)‖2Hm +

∫ τ

0

‖∇z(t)‖2Hm dt

)
where κ := CC1e

Cp2(T,v)(1 + T ).
An induction argument shows that for every positive integer k and τ ∈ (0, T ],

sup
t∈[0,τ ]

‖Fku(t)‖2Hm +

∫ τ

0

‖∇Fkz(t)‖2Hm dt

≤ κk

(k − 1)!
(1 + τ)ν+k−1

(
sup
t∈[0,τ ]

‖u(t)‖2Hm +

∫ τ

0

‖∇z(t)‖2Hm dt

)
.

Choosing τ = T and noting that 0 < ν < 1, we have

‖Fku‖2YmT ≤
(κ(1 + T ))k

(k − 1)!
‖u‖2YmT .

For sufficiently large k the constant on the right-hand side becomes arbitrary small.
Hence, Fk will be a contraction and in virtue of the Banach Fixed Point Theorem,
F has a fixed point which corresponds to a solution of the linear system (4.5).

To prove that the energy estimate (4.10) holds as well, we proceed as in the
previous step by approximating the frozen coefficient and the initial data using
mollifiers. Hence, the a priori estimate in Theorem 3.1 is applicable. The approxi-
mated solution converges to the solution of the original problem and passing to the
limit inferior for the energy estimates of the approximations, we obtain the energy
estimate (4.10) for the solution of the general linear system (4.5). �
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5. Local Well-Posedness for Nonlinear Hyperbolic-
Parabolic Systems

We are now in position to prove the local-in-time well-posedness of the nonlinear
hyperbolic-parabolic system (1.1).

Theorem 5.1. Suppose that m > d
2

+ 1 is an integer and u0 = [w0 z0]
> ∈ Hm

with range in a compact and convex subset K0 of O containing the origin. Let K be
another compact and convex subset of O whose interior contains K0 and ‖u0‖Hm <
M0. Then, the nonlinear system (1.1) has a unique solution such that u = [w z]> ∈
C(0, T ;Hm) with w ∈ C1(0, T ;Hm−1) and z ∈ C1(0, T ;Hm−2) ∩ L2(0, T ;Hm+1) for
some T = T (d,m,K,M0) > 0. Moreover, there is a constant C = C(d,m,K,M0) >
0 such that

sup
t∈[0,T ]

‖u(t)‖2Hm +

∫ T

0

‖∇z(t)‖2Hm dt ≤ C‖u0‖2Hm . (5.1)

Proof. Given constants M1 > M0, M2 > M0 and T > 0, define the following space

Wm
T := {u ∈ Xm

T ∩ Y m
T : ‖u‖YmT ≤M1, ‖∂tu‖L2(0,T ;Hm−1) ≤M2,Ranu ⊂ K}.

For a given un−1 = [wn−1 zn−1]> ∈ Wm
T consider the uncoupled linearized system

for un = [wn zn]> ∈ Wm
T

A0(u
n−1)∂tw

n +
d∑
j=1

Aj(u
n−1)∂jw

n = f(wn−1, zn−1,∇zn−1)

B0(u
n−1)∂tz

n −
d∑

j,k=1

Bjk(u
n−1)∂k∂jz

n = g(wn−1, zn−1,∇wn−1,∇zn−1)

wn|t=0 = w0, zn|t=0 = z0

(5.2)

with initial iterate u0 := [w0 z0]
>. From the hypotheses of the theorem, u0 ∈

Wm
T . In the following argument, we will reduce T so that we have un ∈ Wm

T

for every n. If un−1 ∈ Wm
T , then f(un−1,∇zn−1) ∈ C(0, T ;Hm−1) ∩ L2(0, T ;Hm)

and g(un−1,∇un−1) ∈ C(0, T ;Hm−1). According to Theorem 4.3, the system (5.2)
has a unique solution un ∈ C(0, T ;Hm), and moreover, wn ∈ C1(0, T ;Hm−1) and
zn ∈ C1(0, T ;Hm−2) ∩ L2(0, T ;Hm+1).

Range Condition. Let Kρ be a ρ-neighborhood of K0 that is contained in K, that
is, Kρ = {x ∈ Rn : dist(x,K0) < ρ} ⊂ K. If u ∈ Wm

T , then

|un(t, x)− u0(x)| ≤ %d,m−1

∫ t

0

‖∂tun(s)‖Hm−1 ds ≤ %d,m−1M2T
1
2

for every (t, x) ∈ [0, T ] × Rd, where %d,m−1 is the constant from the embedding
Hm−1 ⊂ L∞. Therefore, we have Ranu ⊂ Kρ provided that T > 0 satisfies
%d,m−1M2T

1
2 < ρ.

High-Norm Boundedness. If un−1 ∈ Wm
T , then from the energy estimate for the

solution of the linear system (5.2), we have

‖un‖2C(0,T ;Hm) +

∫ T

0

‖∇zn(t)‖2Hm dt (5.3)
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≤ C̃(T )

(
M2

0 +

∫ T

0

T ν‖fn−1(t)‖2Hm + ‖gn−1(t)‖2Hm−1 dt

)
where we have set C̃(T ) := CeC(1+T−ν)(Tp1(M1)+

√
TM2), fn−1 := f(wn−1, zn−1,∇zn−1),

and gn−1 := g(wn−1, zn−1,∇zn−1,∇zn−1). Here, we can take C ≥ 1 without loss of
generality. Applying Proposition 7.3,∫ T

0

‖fn−1(t)‖2Hm dt ≤ C

∫ T

0

‖un−1(t)‖2Hm + ‖∇zn−1(t)‖2Hm dt ≤ C(1 + T )M2
1

(5.4)∫ T

0

‖gn−1(t)‖2Hm−1 dt ≤ C

∫ T

0

‖un−1(t)‖2Hm dt ≤ CTM2
1 . (5.5)

Combining (5.3)–(5.5) provides us the estimate

‖un‖2C(0,T ;Hm) +

∫ T

0

‖∇zn(t)‖2Hm dt ≤ C̃(T ){M2
0 + T ν(1 + T )M2

1 + TM2
1}.

Let us choose M1 > 1 so that M2
1 > CM2

0 . For a fix ν ∈ (0, 1
2
), we can take T > 0

small enough so that C̃(T ){M2
0 +T ν(1+T )M2

1 +TM2
1} < M2

1 . From the differential
equation

∂tu
n = S0(u

n−1)−1
{
−

d∑
j=1

Sj(u
n−1)∂ju

n +
d∑

j,k=1

Zjk(u
n−1)∂j∂ku

n + Fn−1

}
where Fn−1 := [fn−1 gn−1]

>, we have the estimate

‖∂tun‖Hm−1 ≤ CM2
1 (M1 + ‖∇zn‖Hm+1).

Squaring this inequality and integrating with respect to time, we obtain
‖∂tun‖2L2(0,T ;Hm−1) ≤ C(1 + T )M6

1 .

By taking M2 so that M2
2 > CM6

1 and then by making T small enough, we can now
conclude that un ∈ Wm

T whenever un−1 ∈ Wm
T .

Low-Norm Contraction. Let us define vn := un+1 − un, ζn := zn+1 − zn, fn :=
fn−fn−1, and gn := gn−gn−1. Modifying the proof of Lemma 4.1, it can be deduced
that

En := ‖vn‖2C(0,T ;L2) +

∫ T

0

‖ζn(t)‖2H1 dt

≤ Cep3(T )
∫ T

0

{T ν‖fn(t)‖2L2 + ‖gn(t)‖2H−1 + ‖vn−1(t)‖2L2} dt. (5.6)

Let us estimate the terms on the right-hand side. By the mean-value theorem∫ T

0

‖fn(t)‖2L2 dt ≤ CT‖vn−1‖2C(0,T ;L2) +

∫ T

0

‖ζn−1(t)‖2H1 dt. (5.7)

Theorem 7.4 with s = m− 1 and t = r = −1 is applicable since m ≥ 2, hence

‖gn‖H−1 ≤
∫ 1

0

‖ dg(unθ ,∇unθ )[vn−1 ∇vn−1]>‖H−1 dθ

≤ C‖ dg(unθ ,∇unθ )‖Hm−1(‖vn−1‖H−1 + ‖∇vn−1‖H−1) ≤ C‖vn−1‖L2 ,
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where unθ = θun + (1− θ)un−1 and θ ∈ [0, 1]. As a consequence, we have∫ T

0

‖gn(t)‖2H−1 dt ≤ CT‖vn−1‖2C(0,T ;L2). (5.8)

Plugging (5.7) and (5.8) in (5.6), we obtain that

En ≤ Cep3(T )(T + T ν + T ν+1)En−1.

Observe that p3 is bounded on the compact interval [0, T ] since ν ∈ (0, 1
2
). Let

T > 0 be sufficiently small so that 0 < Cep3(T )(T + T ν + T ν+1) < 1. Then, (un)n
and (zn)n are Cauchy sequences in C(0, T ;L2) and L2(0, T ;H1), respectively.

By interpolation one can obtain a solution of the nonlinear system by doing the
same arguments as those that were provided in the linear case. The energy estimate
for the solution of the nonlinear system follows from the estimate on the linear
system where the frozen coefficient is equal to the solution u and by reducing T > 0
if necessary. The uniqueness of solutions for the nonlinear system follows from a
similar argument as in the low-norm contraction part. Finally, w ∈ C1(0, T ;Hm−1)
and z ∈ C1(0, T ;Hm−2) ∩ L2(0, T ;Hm+1) follows from the differential equations
and Proposition 7.4. �

6. The Kuznetsov–Westervelt Equation
As an application of the local existence theorem in the previous section, we consider
a quasilinear strongly damped wave equation arising in nonlinear acoustics. The
problem will be posed in the entire space and the main result of this section is
the global-in-time existence and asymptotic stability of solutions. The Kuznetsov
equation, which is a second order approximation for viscous, thermally conducting,
inert fluids, and its simplified form known as the Westervelt equation, are the two
most frequently used models in nonlinear acoustic wave propagation. Medical and
industrial applications of these models include high-intensity focused ultrasound,
such as, lithotripsy, sonochemistry, thermotherapy, and ultrasound cleaning, see
[24].

An outline for the derivation of the model is presented for the sake of the reader.
Starting from the continuity and the Navier–Stokes equations and assuming that
the acoustic velocity is irrotational, one can derive the following model

utt − c2∆u− b∆ut =
1

%0c2
B

2A
(u2)tt + %0(v · v)tt, (6.1)

called the Kuznetsov equation. Here, u = u(t, x) is the acoustic pressure fluctuation
at time t and position x, while v = v(t, x) is the acoustic particle velocity and it
satisfies the continuity equation

%0vt +∇u = 0 (6.2)

where %0 is the constant mass density. The positive constants c, b, and B/A represent
the speed of sound, diffusivity of sound, and the parameter of nonlinearity.
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A simplified model is obtained by ignoring local nonlinear effects. In this way,
the term u2 − (%0c)

2v · v is assumed to be small, and as a result (6.1) turns into

utt − c2∆u− b∆ut =
1

%0c2

(
1 +

B

2A

)
(u2)tt, (6.3)

known as the Westervelt equation. This model describes the propagation of plane
waves and is appropriate when the distance of propagation exceeds that of the
wavelength. However, this approximate model is not suitable for standing waves,
we refer to [24] for more details.

Using (6.2), both equations (6.1) and (6.3) can be written in the form of

(1− 2κu)utt − c2∆u− b∆ut = 2κu2t + σ(|∇u|2 + I∇u · ∇ut), (6.4)

where I is defined by (1.4). For the Kuznetsov equation we have κ = B/(2A%0c
2)

and σ = 0 while κ = (1+B/2A)%0c
2 and σ = 2/%0 in the case of the Westervelt equa-

tion. We consider a slightly modified model that includes friction and transversal
acoustic pressure terms, namely,

(1− 2κu)utt − c2∆u− b∆ut + eut + du = 2κu2t + σ(|∇u|2 + I∇u · ∇ut), (6.5)

where e and d are positive constants.
Both the Kuznetsov and Westervelt equations have been studied in bounded do-

mains under various boundary conditions. For example, Dirichlet boundary con-
ditions has been considered in [21] for the homogeneous case and in [23] for the
non-homogenous case, see also [22]. The common feature of these works are the
local existence, global existence, and exponential stability of either strong or weak
solutions. One of the main tools is semigroup theory for strongly damped wave equa-
tions. In fact, the evolution of the linearized system is described by an analytic semi-
group. Appropriate energy estimates for the non-autonomous and non-homogeneous
linearized systems are obtained using the variation of parameters formula and a fixed
point argument. The case of non-homogeneous Dirichlet boundary condition is more
delicate and an appropriate lifting of the boundary data into the interior is needed in
the analysis. Exponential stability for the nonlinear models were obtained through
barrier’s method. For bounded domains having fractal boundaries, we refer the
reader to the recent work [8].

Finite time horizon optimal control problems have been considered for the West-
ervelt and Kuznetsov equations in [4]. The boundary conditions are of mixed type
where a Neumann condition is imposed on a part of the boundary where the con-
trol is applied and an absorbing boundary condition on the remaining part of the
boundary. The purpose of such absorbing conditions is to avoid reflections on the
artificial boundary of the computational domain. Functionals of tracking type were
treated and first-order necessary conditions were derived.

The paper [20] focuses on a Westervelt-type model in bounded domains of spatial
dimension at most 3 that takes the form

f ′(ut)utt −∆u = 0 (6.6)

where f is sufficiently smooth satisfying f(0) = 0 and f ′(0) > 0. For Dirichlet
boundary conditions, the local existence and uniqueness of solutions for the non-
linear wave equation (6.6) was established while global existence and exponential
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decay was obtained for absorbing boundary conditions. The latter is possible thanks
to the presence of boundary dissipation, for which observability estimates can be
derived.

6.1. Local Existence and Regularity of Solutions. In what follows,
we shall rewrite the following quasilinear strongly damped wave equation{

(1− 2κu)utt − c2∆u− b∆ut + eut + du = 2κu2t + σ(|∇u|2 + I∇u · ∇ut),
u|t=0 = u0, ut|t=0 = u1,

(6.7)
in (0, T )×Rd, where I is the nonlocal-in-time operator given in (1.4) and d ≥ 2. We
assume that the coefficients are constants, and moreover, c, b > 0 and e, d, κ, σ ∈ R.
Notice that if κ is nonzero, then (6.7) has a potential degeneracy in the sense that
the second order time derivative of u may vanish. Our goal is to prove the existence
of solutions for initial data (u0, u1) ∈ Hs+1 × Hs with integer s > d

2
+ 1 and u0

taking values in the open ball

Rκ := {x ∈ R : |x| < ρκ} (6.8)

where ρk = 1
2|κ| for κ 6= 0 and ρκ =∞ if κ = 0. For global existence of solutions, we

shall impose the condition e, d > 0 and the smallness of the initial data.
The equation (6.7) can be formulated as a coupled hyperbolic-parabolic system,

and thus, we can apply the local existence theory in Section 5. For this direction,
we introduce the state variables w := (w1, w2, w3)

> := (∇u, u, Iu)> and z := ut.
Then we have w3t = u = w2 and so wt = (∇z, z, w2)

>. As a consequence, the
time-derivative of z is given by

(1− 2κw2)zt − b∆z = c2∇ · w1 − dw2 − ez + 2κz2 + σ(|w1|2 +∇w3 · ∇z).

For each (w, z) ∈ Rd+2 ×R, let A0(w, z) be the (d+ 2)× (d+ 2) identity matrix,
Aj(w, z) be the (d+2)× (d+2) zero matrix for j = 1, 2, . . . , d, B0(w, z) = 1−2κw2,
and Bjk(w, z) = bδjk for j, k = 1, 2, . . . , d, where δjk is the Kronecker delta symbol.
Likewise, for (w, z, y) ∈ Rd+2 × R × Rd and ω ∈ R(d+2)×d, we define the following
functions

f(w, z, y) := (y, z, w2)
>

g(w, z, ω, y) := c2Trω1 − dw2 − ez + 2κz2 + σ(|w1|2 + ω3 · y)

where we decomposed ω = (ω1, ω2, ω3)
>, with ω1 having size d× d, while ω2 and ω3

both have size d× 1. Here, Tr denotes the trace of a matrix. With these functions,
(6.7) can now be written in the form of (1.1) with w0 = (∇u0, u0, 0) and z0 = u1.

Let Oκ := {(w, z) ∈ Rd+2 × R : w2 ∈ Rκ} where Rκ is given by (6.8). According
to the local existence theorem in Section 5, given δ0 > 0 and integer s > d

2
+ 1,

for every initial data (w0, z0) ∈ Hs ×Hs whose range lies compactly inside Oκ and
satisfying ‖w0‖2Hs +‖z0‖2Hs ≤ δ0, the system (1.1) admits a unique solution on [0, T0]
for some T0 = T0(s, δ0) > 0 such that the range of (w, z) lies in Oκ and

w ∈ C(0, T0;H
s) ∩ C1(0, T0;H

s−1)

z ∈ C(0, T0;H
s) ∩ C1(0, T0;H

s−2) ∩ L2(0, T ;Hs+1).
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Moreover, there exists a constant C = C(δ0, s) > 0 such that

sup
0≤t≤T0

(‖w(t)‖2Hs + ‖z(t)‖2Hs) +

∫ T0

0

‖∇z(t)‖2Hs dt ≤ C(‖w0‖2Hs + ‖z0‖2Hs).

Translating these results to the Kuznetsov–Westervelt equation (6.7), we obtain
a local existence theorem. Due to the structure of the nonlinear terms in (6.7), one
can obtain additional regularity for the higher-order time derivatives of the solution.
We remark that these additional regularity will play a crucial role in determining
the appropriate energy and dissipation functionals that will be utilized in deriving
a priori estimates for the nonlinear system. In order to prove this further regularity,
we shall use the following classical Moser-type estimate for the product of suitable
Sobolev functions in [26, Proposition B.4]. The information about the constant can
be seen in the proof of the said proposition.

Theorem 6.1. Let s1 > d
2
, s2 ≥ −s1, and c > 0. Suppose that f ∈ Hs2, g ∈

Hs1 ∩Hs2, and 1 + g(x) ≥ c for every x ∈ Rd. Then, (1 + g)−1f ∈ Hs1 and there
exists a constant C > 0 which is increasing with respect to the second argument such
that ∥∥(1 + g)−1f

∥∥
Hs2
≤ C(c−1, ‖g‖Hs1 )N(f, g)

where

N(f, g) =

{
‖f‖Hs2 , s2 ≤ s1
‖f‖Hs2 + ‖f‖Hs1‖g‖Hs1 , s2 > s1.

A consequence of this result for space-time dependent functions is given below.

Corollary 6.2. Suppose that s1 > d
2
, |s2| ≤ s1, c ∈ (0, 1), and 1 ≤ p ≤ ∞. If

u ∈ Lp(0, T ;Hs1) and v ∈ L∞(0, T ;Hs1) with ‖v‖L∞((0,T )×Rd) ≤ c, then (1 + v)−1u ∈
Lp(0, T ;Hs2) and there exists C > 0 such that∥∥(1 + v)−1u

∥∥
Lp(0,T ;Hs2 )

≤ C((1− c)−1, ‖v‖L∞(0,T ;Hs1 ))‖u‖Lp(0,T ;Hs1 ).

For each real number s and 0 < T <∞, define the following space

Xs,2(0, T ) := C(0, T ;Hs+1) ∩ C1(0, T ;Hs) ∩ C2(0, T ;Hs−2).

Theorem 6.3. Let s > d
2

+ 1 be an integer and δ0 > 0. For every initial data
u0 ∈ Hs+1 and u1 ∈ Hs such that the range of u0 lies on a compact set of Rκ

and ‖u0‖2Hs+1 + ‖u1‖2Hs ≤ δ0, the equation (6.7) has a unique solution u such that
u(t, x) ∈ Rκ of every (t, x) ∈ [0, T0]× Rd and

u ∈ Xs,2(0, T0), ut ∈ L2(0, T0;H
s+1).

The solution u satisfies the energy estimate

sup
0≤t≤T0

(‖u(t)‖2Hs+1 + ‖ut(t)‖2Hs + ‖(Iu)(t)‖2Hs)

+

∫ T0

0

‖∇ut(t)‖2Hs dt ≤ C(‖u0‖2Hs+1 + ‖u1‖2Hs) (6.9)

for some constant C = C(δ0, s) > 0, and moreover, we have

utt ∈ L2(0, T0;H
s−1), uttt ∈ L2(0, T0;H

s−3). (6.10)
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Proof. The local existence of solutions including its stated regularity, range prop-
erty and stability estimate (6.9) is a consequence of the discussion presented above.
To see that the solution satisfies (6.10), we introduce the following operators

Pu := c2∆u+ b∆ut − eut − du (6.11)

S(u) := 2κu2t + σ(|∇u|2 + (∇Iu) · ∇ut) (6.12)

so that we have
utt = (1− 2κu)−1(Pu+ S(u)). (6.13)

First, observe that Pu ∈ L2(0, T0;H
s−1). Since the range of u lies on a compact set

in Rκ, there exists 0 < ρ̃κ < ρκ such that |u(t, x)| ≤ ρ̃κ for every (t, x) ≤ [0, T0]×Rd.
From the regularity u ∈ C(0, T0;H

s+1) and taking s1 = s + 1 and s2 = s − 1
in Corollary 6.2, we have (1 − 2κu)−1Pu ∈ L2(0, T0;H

s−1). On the other hand,
since ut,∇u,∇Iu ∈ C(0, T0;H

s), we have S(u) ∈ C(0, T0;H
s−1) and it follows that

(1− 2κu)−1S(u) ∈ L2(0, T0;H
s−1). As a result, we have utt ∈ L2(0, T0;H

s−1).
The product and chain rules applied to (6.13) give us the following equation

uttt = (1− 2κu)−1(Put + S(u)t) + 2κ(1− 2κu)−2ut(Pu+ S(u)).

In virtue of Put ∈ L2(0, T0;H
s−3), taking s1 = s + 1 and s2 = s − 3 in Corollary

6.2, we get (1− 2κu)Put ∈ L2(0, T0;H
s−3). Because (Iu)t = u, we have

S(u)t = 4κututt + 3σ∇u · ∇ut + σ∇Iu · ∇utt. (6.14)

Taking s1 = s, s2 = s3 = s − 2 in Theorem 7.4, we can see that S(u)t ∈
L2(0, T0;H

s−2). Also, it is not difficult to see that (1 − 2κu)−2ut(Pu + S(u)) ∈
L2(0, T0;H

s−1), and therefore, we have uttt ∈ L2(0, T0;H
s−3). This completes the

proof of (6.10). �

For κ 6= 0, the range condition for u0 stated in the previous theorem is satisfied as
soon as δ0 < (ρκ/%d,s−1)

2 where %d,s−1 is the constant of the embedding Hs−1 ⊂ L∞.
Indeed, for x ∈ Rd, one has

|u0(x)| ≤ %d,s−1‖u0‖Hs−1 ≤ %d,s−1
√
δ0 < ρκ.

For each real number s and 0 < T <∞, we define the space

Y s(0, T ) := {u ∈ Xs,2(0, T ) : ut ∈ L2(0, T ;Hs+1),

utt ∈ L2(0, T ;Hs−1), uttt ∈ L2(0, T ;Hs−3)}.

6.2. Energy Identities for the Linearized System. The goal of this
subsection is to provide energy identities for the linearized equation corresponding
to (6.7). To be precise, we shall derive energy identities for the linear differential
operator

Lu := utt − c2∆u− b∆ut + eut + du = utt − Pu (6.15)
for a fix T > 0 and sufficiently smooth u, where P is the operator defined by (6.11).
The energy identities will be utilized in the proof of global existence of solutions.
All throughout this section, s ≥ 2 is an integer. If u ∈ Y s(0, T ), then one can easily
check that we have Lu ∈ L2(0, T ;Hs−1) and Lut ∈ L2(0, T ;Hs−3). For simplicity,
let

v := Iu
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so that vt = u.
For an integer ς > 0, we define for t ∈ [0, T ]

Fς(w, z)(t) :=

∫ t

0

(w(τ), z(τ))Hς−1 dτ +
∑
|α|=ς

∫ t

0

〈∂αw(τ), ∂αz(τ)〉 dτ,

for w ∈ L2(0, T ;Hς−1) and z ∈ L2(0, T ;Hς+1). Here, the brackets denote duality
pairing between H−1 and H1. Note that if in addition w ∈ L2(0, T ;Hς), then using
the Fourier transform this duality pairing can be replaced by the inner product in
L2. Likewise, for w ∈ L2(0, T ;H−1) and z ∈ L2(0, T ;H1), we set

F0(w, z)(t) :=

∫ t

0

〈w(τ), z(τ)〉 dτ for t ∈ [0, T ].

Lemma 6.4. Suppose that s ≥ 2 is an integer and u ∈ Y s(0, T ). For t ∈ [0, T ], let

F1(t) := Fs(Lu, ut)(t)

F2(t) := Fs−2(Lut, utt)(t).

Then for k = 1, 2 and t ∈ [0, T ] we have

Ek(t) + 2Dk(t) = Ek(0) + 2Fk(t)

where

E1(t) := ‖ut(t)‖2Hs + c2‖∇u(t)‖2Hs + d‖u(t)‖Hs

D1(t) :=

∫ t

0

(b‖∇ut(τ)‖2Hs + e‖ut(τ)‖2Hs) dτ

E2(t) := ‖utt(t)‖2Hs−2 + c2‖∇ut(t)‖2Hs−2 + d‖ut(t)‖2Hs−1

D2(t) :=

∫ t

0

(b‖∇utt(τ)‖2Hs−2 + e‖utt(τ)‖2Hs−2) dτ.

Proof. Using a standard density argument, it is enough to consider the case where
u ∈ C∞0 ([0, T ]× Rd), that is, u is infinitely differentiable and has compact support
in [0, T ]× Rd. Consequently, Lu ∈ C∞0 ([0, T ]× Rd). Given w ∈ C∞0 ([0, T ]× Rd), a
direct calculation gives us the equation

(Lw)wt =
1

2

d

dt
(|wt|2 + c2|∇w|2 + d|w|2)− div(c2wt∆u+ bwt∆wt)

+ b|∇wt|2 + e|wt|2. (6.16)

Since ∂αu ∈ C∞0 ([0, T ] × Rd) for every multi-index α, taking w = ∂αu in (6.16),
integrating over [0, T ] × Rd and then getting the sum of the resulting terms over
all |α| = s, we obtain E1(t) + 2D1(t) = E1(0) + 2F1(t). The case k = 2 can be
obtained in a similar way by replacing u by ut and s by s− 2. �

Lemma 6.5. Let s ≥ 2 be integer and u ∈ Y s(0, T ). For t ∈ [0, T ], let

F3(t) := Fs(Lu, u)(t)

F4(t) := Fs−1(Lu, v)(t).
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Then for k = 3, 4 and t ∈ [0, T ] there holds

Ek(t) + 2Dk(t) = Ek(0) + 2Fk(t)

where

E3(t) := 2(ut(t), u(t))Hs + b‖∇u(t)‖2Hs + e‖u(t)‖2Hs

D3(t) :=

∫ t

0

(d‖u(τ)‖2Hs + c2‖∇u(τ)‖2Hs − ‖ut(τ)‖2Hs) dτ

E4(t) := 2(ut(t), v(t))Hs−1 − ‖u(t)‖2Hs−1 + c2‖∇v(t)‖2Hs−1 + d‖v(t)‖2Hs−1

+ b(∇u(t),∇v(t))Hs−1 + e(u(t), v(t))Hs

D4(t) := −
∫ t

0

(b‖∇u(τ)‖2Hs−1 + e‖u(τ)‖2Hs−1) dτ.

Proof. The energy identities can be deduced as in the proof of the previous lemma
thanks to the following equations

(Lw)w =
1

2

d

dt
(2wtw + b|∇w|2 + e|w|2)− div(bw∇wt + c2w∇w)

− |wt|2 + c2|∇w|2 + d|w|2

(Lw)Iw =
1

2

d

dt
(2wt(Iw)− |w|2 + c2|∇Iw|2 + d|Iw|2 + b∇w · ∇Iw + ewIw)

− (b|∇w|2 + e|w|2)

which can be easily verified for w ∈ C∞0 ([0, T ]× Rd). �

6.3. Energy Estimates for Nonlinear Terms. With the operator S
defined in (6.12) and the linear wave operator L given by (6.15), the Kuznetsov–
Westervelt equation (6.7) can be rewritten as

Lu = 2κuutt + S(u). (6.17)

In what follows, we shall use this equation to derive estimates for the functionals Fk
for k = 1, 2, 3, 4 defined in Lemmas 6.4 and 6.5. We introduce the following energy
and dissipation functionals for t ≥ 0

E(t)2 := sup
0≤τ≤t

(‖u(τ)‖2Hs + ‖∇u(τ)‖2Hs + ‖ut(t)‖2Hs + ‖utt(t)‖2Hs−2 + ‖v(τ)‖2Hs)

D(t)2 :=

∫ t

0

(‖u(τ)‖2Hs+1 + ‖ut(τ)‖2Hs+1 + ‖utt(τ)‖2Hs−1) dτ

where we recall that v = Iu. Moreover, we define the total energy functional

N(t)2 := E(t)2 +D(t)2,

for t ≥ 0. Notice that E, D, and N are increasing functions of time and D(0) = 0.
We need to transform the energy estimates for the local solution in terms of N .

In the situation of Theorem 6.3, one can easily see that there exists a constant
Cδ0,T0 > 0 such that

N(t)2 ≤ Cδ0,T0N(0)2
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for every t ∈ [0, T0]. Indeed, let Ẽ and D̃ be the functionals E and D without the
terms involving utt, respectively. One can easily check from (6.9) that for some
Cδ0,T0 > 0, we have

Ẽ(T0)
2 + D̃(T0)

2 ≤ Cδ0,T0N(0)2. (6.18)
Thus, it remains to verify the estimate for the term involving utt. This follows from
(6.13), for which we have the estimate

sup
0≤t≤T0

‖utt(t)‖2Hs−2 +

∫ T0

0

‖utt(t)‖2Hs−1 dt ≤ C(θδ0 , Ẽ(T0))Ẽ(T0)
2D̃(T0)

2

where θδ0 = (1− 2|κ|%d,s−1
√
δ0)
−1, and then applying (6.18).

To obtain bounds for the nonlinear terms, the following auxiliary Moser-type
trilinear estimate will be useful.

Lemma 6.6. Let s > d
2

+ 1, 0 ≤ ς ≤ s, and m ≥ 0 be integers. If µ ∈
L∞(0, T ;Hs−1)m, ν ∈ L2(0, T ;Hς∗)m, and λ ∈ L2(0, T ;Hς+1), where ς∗ = min(0, ς−
1), then there exists a constant C > 0 independent of µ, ν, λ, and T such that

|Fς(µ · ν, λ)(T )| ≤ C‖µ‖L∞(0,T ;Hs−1)m

∫ T

0

(‖ν(t)‖2(Hς∗ )m + ‖λ(t)‖2Hς+1) dt.

Proof. By considering each component, we may take without loss of generality that
m = 1. Suppose ς = 0. In this case, the duality pairing becomes an inner product
in L2, and thus, we have

F0(µν, λ)(T ) =

∫ T

0

∫
Rd

(µ(t)ν(t))λ(t) dt.

By Hölder’s inequality and the embedding Hs−1 ⊂ L∞, we obtain

|F0(µν, λ)(T )| ≤ %d,s−1‖µ‖L∞(0,T ;Hs−1)

∫ T

0

(‖ν(t)‖2L2 + ‖λ(t)‖2L2) dt. (6.19)

Suppose 1 ≤ ς ≤ s and let α be a multi-index such that |α| ≤ ς. We can rewrite
Fς(µν, λ) as follows

Fς(µν, λ)(T ) = F0(µν, λ)(T ) +
∑

1≤|α|≤ς

∫ T

0

∫
Rd
∂α(µ(t)ν(t))∂αλ(t) dx dt.

Of course, in this representation, if |α| = ς then the integral is viewed as a duality
pairing between H−1 and H1. The first term on the right-hand side has been already
estimated in (6.19). Suppose 1 ≤ |α| ≤ ς. Decompose α as α = α0 + α1 where
|α1| = 1. Integrating by parts yields∫ T

0

∫
Rd
∂α(µ(t)ν(t))∂αλ(t) dx dt = −

∫ T

0

∫
Rd
∂α0(µ(t)ν(t))∂α+α1λ(t) dx dt

By definition, we have |α0| ≤ ς − 1 ≤ s− 1 and |α+α1| ≤ ς + 1. Applying Theorem
7.4 with s1 = s − 1 and s2 = s3 = ς − 1 and the Cauchy-Schwartz inequality, we
obtain∣∣∣∣∫ T

0

∫
Rd
∂α(µ(t)ν(t))∂αλ(t) dx dt

∣∣∣∣ ≤ ∫ T

0

∫
Rd
|∂α0(µ(t)ν(t))∂α+α1λ(t)| dx dt
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≤ C

∫ T

0

‖µ(t)‖Hs−1‖ν(t)‖Hς−1‖λ(t)‖Hς+1 dt

≤ C‖µ‖L∞(0,T ;Hs−1)

∫ T

0

(‖ν(t)‖2Hς−1 + ‖λ(t)‖2Hς+1) dt.

Taking the sum proves the desired estimate since ς∗ = ς − 1. �

A similar procedure proves the following estimate.

Lemma 6.7. Let s > d
2

+ 1, 0 ≤ ς ≤ s, and m ≥ 0 be integers. If µ, ν ∈
L∞(0, T ;Hs−1)m and λ ∈ L∞(0, T ;Hς+1), then

|Fς(µ · ν, λ)(T )| ≤ C‖λ‖L∞(0,T ;Hς+1)m

∫ T

0

(‖µ(t)‖2(Hs−1)m + ‖ν(t)‖2(Hs−1)m) dt.

Now we are ready to prove the estimates for the functionals Fk introduced in
Lemmas 6.4 and 6.5. First, we consider the case where k = 1, 3, 4.

Lemma 6.8. Let s > d
2

+ 1 be an integer, T > 0, and u ∈ Y s(0, T ) satisfy (6.17).
There exists a constant C > 0 independent of u and T such that for each k = 1, 3, 4
there holds

|Fk(T )| ≤ CE(T )D(T )2. (6.20)

Proof. First, let us consider the case where k = 1. Let µ := (2κu, 2κut, σ∇u, σ∇v)>,
ν := (utt, κut,∇u,∇ut)>, and λ := ut. It follows from (6.17) that Lu = µ · ν.
Because u ∈ Y s(0, T ), we have µ ∈ C(0, T ;Hs)2d+2, ν ∈ L2(0, T ;Hs−1)2d+2, and
λ ∈ L2(0, T ;Hs+1). Moreover, the norms of µ and ν can be estimated as follows

sup
0≤t≤T

‖µ(t)‖(Hs−1)2d+2 ≤ C sup
0≤t≤T

(‖ut(t)‖Hs−1 + ‖u(t)‖Hs + ‖v(t)‖Hs) ≤ CE(T )∫ T

0

‖ν(t)‖2(Hs−1)2d+2 dt ≤ C

∫ T

0

(‖ut(t)‖2Hs + ‖utt(t)‖2Hs−1 + ‖u(t)‖2Hs) dt ≤ CD(T )2∫ T

0

‖λ(t)‖2Hs dt =

∫ T

0

‖ut(t)‖2Hs dt ≤ CD(T )2.

Hence, (6.20) in the case of k = 1 follows from these estimates along with the
trilinear estimate in Lemma 6.6 with ς = s.

The proof of (6.20) for k = 3 can be done in the same way by choosing µ
and ν as above and λ := u. For k = 4, we again choose µ and ν as above, take
λ := v ∈ L∞(0, T ;Hs) and apply Lemma 6.7 with ς = s− 1. �

Lemma 6.9. Let T > 0, s > d
2
+1 be an integer, and u ∈ Y s(0, T ) satisfy (6.17) and

‖u‖L∞([0,T ]×Rd) ≤ γ for some γ ∈ (0, ρκ). There exists a constant C > 0 depending
continuously on its arguments such that

|F2(T )| ≤ C(ϑγ, E(T ))E(T )(1 + E(T )2)D(T )2

where ϑγ := (1− 2|κ|γ)−1.
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Proof. First, let us recall that F2(T ) = Fs−2(Lut, utt)(T ). We shall use the repre-
sentation (6.13) so that

Lu = utt − Pu = 2κ(1− 2κu)−1uPu+ (1− 2κu)−1S(u)

and by the rules of differentiation, we have

Lut = 2κ(1− 2κu)−1utPu+ 2κ(1− 2κu)−2ut(2κuPu+ S(u))

+ (1− 2κu)−1(2κuPut + S(u)t).

Here, we shall use the equation (6.14) for S(u)t.
Since d ≥ 2, we have s ≥ 3. Note that we can write F2(T ) = Fs−2(µ · ν, λ), where

λ := utt

µ := (1− 2κu)−1(2κut, 2κutu, 2κut, 2κu, 4κut, 3σ∇u, σ∇v)>,

ν :=
(
Pu, (1− 2κu)−12κPu, (1− 2κu)−1S(u), Put, utt,∇ut,∇utt

)>
.

We have that µ ∈ C(0, T ;Hs−1)2d+5, ν ∈ L2(0, T ;Hs−3)2d+5, and λ ∈ L2(0, T ;Hs−2)
with ∫ T

0

‖λ(t)‖2Hs−2 dt ≤ CD(T )2.

By using Corollary 6.2 and Hs−1 being a Banach algebra, the norm of µ can be
estimated from above as follows

‖µ‖L∞(0,T ;Hs−1)2d+5

≤ C(ϑγ, ‖u‖L∞(0,T ;Hs−1))(‖ut‖L∞(0,T ;Hs−1) + ‖u‖L∞(0,T ;Hs) + ‖v‖L∞(0,T ;Hs))

≤ C(ϑγ, E(T ))E(T ).

Using the same corollary with s1 = s− 1 and s2 = s− 3, we have∥∥(1− 2κu)−1(Pu, S(u))
∥∥2
L2(0,T ;Hs−3)2

≤ C(ϑγ, ‖u‖L∞(0,T ;Hs−1))(‖Pu‖2L2(0,T ;Hs−3) + ‖S(u)‖2L2(0,T ;Hs−3))

where the norms of Pu and S(u) can be bounded from above as follows

‖Pu‖2L2(0,T ;Hs−3) ≤ C(‖ut‖2L2(0,T ;Hs−1) + ‖u‖2L2(0,T ;Hs−1)) ≤ CD(T )2

‖S(u)‖2L2(0,T ;Hs−3) ≤ C(‖u2t‖2L2(0,T ;Hs−1) + ‖|∇u|2‖2L2(0,T ;Hs−1) + ‖∇v · ∇ut‖2L2(0,T ;Hs−1)).

Here, we utilized the continuous embedding Hs−3 ↪→ Hs−1 in the case of S(u).
Using the fact that Hs−1 is a Banach algebra and applying an L∞-L2 Hölder-type

estimate with respect to time, we obtain

‖u2t‖2L2(0,T ;Hs−1) ≤ C‖ut‖2L∞(0,T ;Hs−1)‖ut‖2L2(0,T ;Hs−1) ≤ CE(T )2D(T )2

‖|∇u|2‖2L2(0,T ;Hs−1) ≤ C‖u‖2L∞(0,T ;Hs)‖u‖2L2(0,T ;Hs) ≤ CE(T )2D(T )2

‖∇v · ∇ut‖2L2(0,T ;Hs−1) ≤ C‖v‖2L∞(0,T ;Hs)‖ut‖2L2(0,T ;Hs) ≤ CE(T )2D(T )2.

The remaining terms in ν can be estimated as

‖(Put, utt,∇ut,∇utt)‖2L2(0,T ;Hs−3)2d+2 ≤ C(‖utt‖2L2(0,T ;Hs−1)+‖ut‖2L2(0,T ;Hs−1)) ≤ CD(T )2.
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Combining the above estimates, we deduce that∫ T

0

‖ν(t)‖2(Hs−3)2d+5 dt ≤ C(ϑγ, E(T ))(1 + E(T )2)D(T )2

Applying the trilinear Moser-type estimate Lemma 6.6 with ς = s − 2 ≥ 1 and
looking at the definitions of E and D, we obtain the desired estimate for F2(T ). �

Now, we are in position to prove an a priori estimate independent of T , for which
global existence of solutions and its asymptotic stability will follow.

Lemma 6.10. Suppose that u ∈ Y s(0, T ) satisfies the Kuznetsov–Westervelt equa-
tion (6.7). Then, there exists δ1 > 0 and a constant Cδ1 > 0 independent of T such
that if N(T )2 ≤ δ1, then

N(t)2 ≤ Cδ1N(0)2 (6.21)
for every t ∈ [0, T ].

Proof. For ε > 0, we define E(t) := E1(t) + E2(t) + ε(E3(t) + E4(t)) and D(t) :=
D1(t) +D2(t) + ε(D3(t) +D4(t)), see Lemma 6.4 and Lemma 6.5 for the definitions
of Ek and Dk for k = 1, 2, 3, 4. By the Cauchy–Schwarz inequality

E3(t) ≥ b‖∇u(t)‖2Hs + (e− 1)‖u(t)‖2Hs − ‖ut(t)‖2Hs

and for every η > 0 there exists Cη > 0 such that

E4(t) ≥ (c2 − η)‖∇v(t)‖2Hs−1 + (d− η)‖v(t)‖2Hs−1 − Cη(‖ut(t)‖2Hs−1 + ‖u(t)‖2Hs).

Choosing η small enough and then ε small enough, we can see that E is equivalent
to E and D is equivalent to D. In other words, there exist positive constants c1 =
c1(η, ε) and c2 = c2(η, ε) both independent of t such that c1E(t) ≤ E(t) ≤ c2E(t)
and c1D(t) ≤ D(t) ≤ c2D(t). Therefore, we have

E(T )2 +D(T )2 ≤ CN(0)2 + C(|F1(T )|+ |F2(T )|+ |F3(T )|+ |F4(T )|).
Using the estimates on Fk and the fact that E(T ) ≤ N(T ), it follows from Lemma

6.8 and Lemma 6.9 that

E(T )2 +D(T )2 ≤ CN(0)2 + C(ϑλ, N(T ))N(T )(1 +N(T )2)D(T )2

where λ is a positive constant such that |u(t, x)| ≤ λ for every (t, x) ∈ [0, T ] × Rd.
Fix a positive number δ∗ < (%d,s−1/ρκ)

2 and let 0 < δ1 < δ∗. If N(T )2 ≤ δ1, then

E(T )2 + {1− C(ϑδ∗ ,
√
δ∗)δ1(1 + δ21)}D(T )2 ≤ CN(0)2

where ϑδ∗ := (1 − 2|κ|%d,s−1
√
δ∗)
−1. Hence, we choose δ1 small enough so that the

coefficient of D(T )2 is positive. The conclusion now follows from the fact that N is
monotonically increasing. �

Theorem 6.11. There exists δ2 > 0 such that if N(0)2 < δ2 then (6.7) has a unique
global solution u ∈ Y s(0,∞), and for some constant Cδ2 > 0 independent of T , we
have

sup
0≤t≤T

(‖u(t)‖2Hs + ‖∇u(t)‖2Hs + ‖ut(t)‖2Hs + ‖(Iu)(t)‖2Hs) (6.22)
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+

∫ T

0

(‖u(t)‖2Hs+1 + ‖ut(t)‖2Hs+1 + ‖utt(t)‖2Hs−1) dt ≤ Cδ2(‖u0‖2Hs+1 + ‖u1‖2Hs)

for every T > 0. Moreover, it holds that ‖u(t)‖W 2,∞ + ‖ut(t)‖L∞ → 0 as t→∞.

Proof. Taking δ0 = δ1/2 in Theorem 6.3, there exists T0 = T (δ1) > 0 such that
equation (6.7) has a unique solution u ∈ Y s(0, T0) and we have N(T0)

2 ≤ C̃δ1N(0)2

for some constant C̃δ1 > 0. Choose

δ2 := min{δ1/2, δ1/C̃δ1 , δ1/(2Cδ1), δ1/(C̃δ1Cδ1)}

where Cδ1 is the constant in Lemma 6.10. If N(0)2 < δ2, then we have a solution u
on [0, T0], and moreover,

N(T0)
2 ≤ C̃δ1N(0)2 < C̃δ1δ2 ≤ δ1.

According to the a priori estimate of Lemma 6.10 with T = T0, we have

N(t)2 ≤ Cδ1N(0)2 < Cδ1δ2 < δ1/2

for every t ∈ [0, T0]. Thus, we can use t = T0 as the initial time and apply the local
existence once more to have a solution on [T0, 2T0]. Then, we have

N(t)2 ≤ C̃δ1N(T0)
2 < C̃δ1Cδ1δ2 ≤ δ1

for every t ∈ [T0, 2T0]. Therefore, it follows that N(t)2 ≤ δ1 for every t ∈ [0, 2T0],
and consequently by Lemma 6.10, we have N(t)2 ≤ Cδ1N(0)2 for all t ∈ [0, 2T0].
By induction, we have a solution u ∈ Y s(0, nT0) for every positive integer n and
N(t) ≤ Cδ1N(0)2 for every t ∈ [0, nT0]. This proves the existence of a global
solution and the energy estimate. The asymptotic stability follows from the
fact that |u|2 ∈ W 1,1(0,∞;Hs+1), |ut|2 ∈ W 1,1(0,∞;Hs−1), and the embeddings
Hs+1 ⊂ W 2,∞ and Hs−1 ⊂ L∞. �

7. Appendix

7.1. Moser and Commutator Estimates. Here, we recall some standard
estimates involving Sobolev spaces. For the proofs of the following propositions, we
refer the reader to [1, 2, 19] for example.

Proposition 7.1. Let s ≥ 0 and u, v ∈ L∞ ∩ Hs. Then, there exists a constant
C > 0 that depends only on s and d such that

‖uv‖Hs ≤ C(‖u‖L∞‖v‖Hs + ‖v‖L∞‖u‖Hs) (7.1)

and for every d-tuples α and β such that |α|+ |β| = s, we have

‖(∂αu)(∂βv)‖L2 ≤ C(‖u‖L∞‖v‖Hs + ‖v‖L∞‖u‖Hs). (7.2)

If s > d
2
then the above proposition and the embedding Hs ⊂ L∞ imply that Hs

is a Banach algebra and we have ‖uv‖Hs ≤ C‖u‖Hs‖v‖Hs for every u, v ∈ Hs. In
addition, if |α|+ |β| ≤ s, then from (7.2) we obtain an alternative estimate

‖(∂αu)(∂βv)‖L2 ≤ C‖u‖Hs‖v‖Hs . (7.3)
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Proposition 7.2. Let s > 1 and u, v ∈ Hs with ∇u,∇v ∈ L∞. There is a constant
C > 0 depending only on s and d such that for every d-tuple α with |α| ≤ s we have

‖[∂α, v∇]u‖L2 ≤ C(‖∇u‖L∞‖v‖Hs + ‖∇v‖L∞‖u‖Hs). (7.4)

In particular, if s > d
2

+ 1 then for every u, v ∈ Hs and |α| ≤ s, we have

‖[∂α, v∇]u‖L2 ≤ C‖u‖Hs‖v‖Hs . (7.5)

Proposition 7.3. Let s > d
2
, u ∈ Hs and F ∈ C∞(R) satisfies F (0) = 0.

Then, F (u) ∈ Hs and there are continuous functions C : (0,∞) → (0,∞) and
C̃ : (0,∞)→ (0,∞) depending on F , s, and d as parameters such that

‖F (u)‖Hs ≤ C(‖u‖L∞)‖u‖Hs (7.6)

and for every u, v ∈ Hs, there holds

‖F (u)− F (v)‖Hs ≤ C̃(max{‖u‖L∞ , ‖v‖L∞})‖u− v‖Hs . (7.7)

Another useful fact is the following multiplication property for Sobolev functions.

Theorem 7.4. Let s1, s2, s3 ∈ R be such that s1 + s2 ≥ 0, s3 ≤ s1, s3 ≤ s2, and
s3 + d

2
< s1 + s2. If f ∈ Hs1 and g ∈ Hs2, then fg ∈ Hs3 and there exists a constant

C = Cs1,s2,s3,d > 0 such that

‖fg‖Hs3 ≤ C‖f‖Hs1‖g‖Hs2 .

7.2. Mollifiers and Cut-Off Functions. Let ρ ∈ C∞0 (Rd) be a nonneg-
ative function such that

∫
Rd ρ(x) dx = 1. For each ε > 0, let ρε(x) := ε−dρ(x/ε)

and define the convolution operator Rε by Rεu := ρε ∗ u. It is well-known that
Rεu ∈ H∞ for every u ∈ Hr, r ∈ R, and ε > 0. Note that if ρ(−x) = ρ(x) then Rε

is self-adjoint in L2.
Define also the smooth cut-off function χ ∈ C∞0 (Rd) which is identically 1 on a

neighborhood of the origin and for each ε > 0 let χε(x) := χ(εx). The proof of the
following proposition can be seen for example in [3].

Proposition 7.5. Let s ∈ R. There exists a constant C > 0 depending only on s,
ρ and χ such that for every ε ∈ (0, 1) and u ∈ Hs we have

‖Rεu‖Hs ≤ C‖u‖Hs and ‖χεu‖Hs ≤ C‖u‖Hs . (7.8)

Moreover, we have Rεu→ u and χεu→ u in Hs.

As a consequence, we have the following integration by parts formula.

Proposition 7.6. Suppose that A ∈ W 1,∞ and u, v ∈ H1. Then,∫
Rd
A∂ju · v dx = −

∫
Rd

(∂jA)u · v dx−
∫
Rd
Au · ∂jv dx.

Proof. Note that χεu → u and χεv → v in H1 according to Proposition 7.5.
Because χε has a compact support, we can integrate by parts to obtain∫

Rd
A∂ju · u dx = lim

ε→0

∫
Rd
∂j(χεu) · AT (χεv) dx

= − lim
ε→0

∫
Rd
{(χεu) · (∂jAT )(χεv) + (χεu) · AT∂j(χεv)} dx

Department of Mathematics and Computer Science, College of Science, University of the Philippines Baguio



G. Peralta 32 / 35

= −
∫
Rd

(∂jA)u · v dx−
∫
Rd
Au · ∂jv dx

and the proposition is proved. �

Proposition 7.7. Let a ∈ W 1,∞ and u ∈ L2. There exists C > 0 independent of u,
a and ε ∈ (0, 1) such that for every j = 1, . . . , d we have

‖[Rε, a∂j]u‖L2 ≤ C‖a‖W 1,∞‖u‖L2 .

Furthermore, [Rε, a∂j]u→ 0 in L2 as ε→ 0

Corollary 7.8. Let a ∈ W 1,∞ and u ∈ H−1. Then there exists C > 0 independent
of u, a, and ε ∈ (0, 1) such that

‖[Rε, a]u‖L2 ≤ C‖a‖W 1,∞‖u‖H−1 .

Moreover, [Rε, a]u→ 0 in L2 as ε→ 0.

Proof. According to a well-known result, there exist uj ∈ L2 for j = 0, 1, . . . , d
such that u = u0 + ∂1u1 + · · · + ∂dud. From Proposition 7.5, it is easy to see that
‖[Rε, a]u0‖L2 ≤ C‖a‖L∞‖u0‖L2 and [Rε, a]u0 → 0 in L2. On the other hand, for
each j the commutator [Rε, a]∂juj can be written as

[Rε, a]∂juj = [Rε, a∂j]uj − a[Rε, ∂j]uj.

From Proposition 7.7 we have ‖[Rε, a]∂juj‖L2 ≤ C‖a‖W 1,∞‖uj‖L2 and as ε→ 0, we
obtain [Rε, a]∂juj → 0 in L2. Taking the sum proves that [Rε, a]u → 0 in L2 as
ε → 0, and then taking the infimum both sides over all possible representations of
u as sums of the derivatives of L2-functions, we obtain the desired estimate. �

Corollary 7.9. Suppose that a ∈ W 1,∞ and u ∈ L2. Then, for some constant
C > 0 independent of a, u, and ε ∈ (0, 1), we have

‖[Rε, a]u‖H1 ≤ C‖a‖W 1,∞‖u‖L2 .

Moreover, [Rε, a]u→ 0 in H1 as ε→ 0.

Proof. From Corollary 7.8, we only need to consider the term ∂j[Rε, a]u. We can
rewrite this term as follows

∂j[Rε, a]u = Rε((∂ja)u)− (∂ja)Rεu+ [Rε, a∂j]u→ 0

as ε → 0 in L2. The estimate of the corollary follows from Propositions 7.5 and
7.7. �
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