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Abstract.
A distributed optimal control problem for the 2D incompressible Navier–Stokes
equation with delay in the convection term is studied. The delay corresponds to
the non-instantaneous effect of the motion of a fluid parcel on the mass transfer,
and can be realized as a regularization or stabilization to the Navier–Stokes
equation. The existence of optimal controls is established, and the corresponding
first-order necessary optimality system is determined. A semi-implicit discontin-
uous Galerkin scheme with respect to time and conforming finite elements for
space is considered. Error analysis for this numerical scheme is discussed and
optimal convergence rates are proved. The fully discrete problem is solved by the
Barzilai–Borwein gradient method. Numerical examples for the velocity-tracking
and vorticity minimization problems based on the Taylor–Hood elements are
presented.
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1. Introduction
Optimal flow control problems remain a very active field of research due to their
wide variety of applications in physics and engineering. These include combustion,
optimal mixing, shape design, kinetic energy regulation, and turbulence minimiza-
tion to name a few. Rigorous mathematical analysis of such problems, as well as
their realization to efficient numerical methods, are among the main themes in the
past decades. The pioneering work of Abergel and Temam [1] served as an impetus
in the study of optimal control problems for time-dependent fluid flows, where first-
order necessary optimality conditions were established. Gradient-based algorithms
approximating the controls were also suggested. Since then, there are numerous
papers extending this work, see for instance [10, 11, 12, 20, 21, 31, 32, 38, 53] and
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the references therein. We also refer to the earlier works of Fursikov [25, 26, 27].
Recent developments also include thermodynamic effects, multi-phase flows, phase
transitions, and the interaction with either elastic or rigid bodies.

The current paper is dedicated to the analysis and numerical approximations to
a distributed optimal control problem for time-dependent incompressible fluid flows
governed by the two-dimensional Navier–Stokes equation with delay in the convec-
tion. A very short account for control problems of partial differential equations with
delay was presented in [40, Section 18.1], and a recent work that dealt with numer-
ical aspects was given in [43]. In both cases the delay appears linear in the state.
In our work, on the other hand, the delayed term is bilinear in nature, for which
the history acts as a convective force for the fluid flow. This leads to different char-
acteristics of the control. For instance, velocity-tracking problems at the terminal
time have controls with limited regularity.

Let us now state the precise formulation of the optimal control problem. Given a
fixed final time T > 0 and an open, bounded, and connected domain Ω ⊂ R2 that is
either of class C2 or convex polygonal with boundary Γ, we consider the following
infinite-dimensional optimization problem:

min
q∈L2(0,T ;L2(Ω)2)

J(u, q) :=
αΩT

2

∫ T

0

∫
Ω

|u− ud|2 dx dt+
αT
2

∫
Ω

|u(T )− uT |2 dx

+
αR
2

∫ T

0

∫
Ω

|∇ × u|2 dx dt+
α

2

∫ T

0

∫
Ω

|q|2 dx dt

subject to the state equation
∂tu− ν∆u+ div(ur ⊗ u) +∇p = f + q in ΩT := (0, T )× Ω,

div u = 0 in (−r, T )× Ω,

u = 0 on ΓT := (0, T )× Γ,

u(0) = u0 in Ω,

u = z in Ωr := (−r, 0)× Ω.
(P)

The unknown state variables u : (0, T )×Ω→ R2 and p : (0, T )×Ω→ R represent
the velocity field and the pressure of the fluid. The given functions f : (0, T )×Ω→
R2, u0 : Ω → R, and z : (−r, 0) × Ω → R2 are the external forces, initial velocity,
and initial history, respectively. A no-slip condition for the velocity on the boundary
is imposed. For the state equation in (P), the constant ν > 0 is the fluid viscosity
and the fluid density has been normalized to 1 for the sake of simplicity. Also,
α > 0 and αΩT , αT , αR ≥ 0 are given constants, where at least one of the latter
three parameters is positive in order to have a nontrivial solution to (P).

We use the customary notation ur(t, x) := u(t − r, x) for the delay of velocity
with respect to time, where 0 < r < T is a fix delay parameter. The convection
term (ur · ∇)u corresponds to the non-instantaneous transfer of momentum on the
fluid bulk. As pointed out in [41], if there is a time delay r in “following the fluid”,
then the material derivative is given by Du

Dt
= ∂tu+ (ur · ∇)u, where the directional

derivative of u is taken with respect to the delayed velocity field ur. Due to the
incompressibility assumption div ur = 0, the convective term (ur ·∇)u coincides with
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div(ur⊗u). Here, the tensor product v⊗w : Ω→ R2×2 of two vector valued functions
v, w : Ω → R2 has the components (v ⊗ w)ij := viwj for i, j = 1, 2. For works on
the Navier–Stokes with delay, we refer the reader to [7, 9, 28, 29, 51, 52]. The delay
in the convective term can be considered as a regularization or stabilization to the
Navier–Stokes equation.

In the cost functional J , the first two integrals correspond to a velocity tracking
problem, where ud and uT are the desired velocity profiles in the space-time domain
and space domain at the terminal time, respectively. These intend to minimize the
kinetic energy, or a fraction of it, of the difference between the optimal state to the
desired target. The third integral aims to minimize the turbulence of the fluid flow,
where ∇× u = ∂x2u1 − ∂x1u2 is the curl of the fluid velocity u = (u1, u2). Finally,
the fourth integral is a Tikhonov regularization term leading to coercivity of J , and
it also measures the cost of the control. The general rule of thumb here is that the
smaller the value of α, the more the controls are going to be expensive.

One of the goals of the paper is to establish the well-posedness and regularity
of the solutions to the state equation and as well as the associated linearized and
adjoint problems. Although the results are analogous to the case without delay,
this has to be done ab initio in order to have a clear understanding on how the
initial history enters in the analysis. In fact, we shall see that the delay impedes
further regularity on the optimal control. To be precise, if αT > 0 then even
for compatible initial datum and initial history in the state equation, the adjoint
state does not enjoy the same compatibility at the terminal time, see Theorem
3.4. Nonetheless, the results here will be useful in the error analysis for the finite-
dimensional approximations. The differentiability properties of the so-called control-
to-state operator will be established from the implicit function theorem, deviating
from those that were presented in [1, 53].

The other goal is to analyze a semi-implicit scheme for (P) based on discontinuous-
in-time Galerkin and finite element methods. It will be shown that in terms of
the space-time L2-norm, the errors between the continuous and discrete optimal
solutions have the order of convergence O((αΩT +α+1)h+αR+αT )h), see Theorem
4.21 and Corollary 4.22. This is with the stability condition τ = O(h2) for the
temporal and spatial step sizes τ and h, respectively, a typical condition for explicit
or semi-implicit schemes to parabolic problems. Note that in the uncontrolled case
of the Navier–Stokes equation without the delay, the condition τ = O(hγ) for some
γ > 0 on the time step and mesh size was imposed in [33, 34, 35, 37, 36, 42] when
explicit and semi-implicit schemes are applied in the convection term. However, the
methods presented in these papers are not applicable to the current problem due
to the limited time-regularity of the controls. If αR = αT = 0, then we obtain the
expected optimal quadratic order of convergence. To establish this convergence rate,
we shall utilize Aubin–Nitsche-type duality arguments. In addition, error estimates
for the control, state, and adjoint variables in terms of the norms of the function
spaces L2(0, T ;H1

0 (Ω)2) and L∞(0, T ;L2(Ω)2) will be proved.
The associated finite-dimensional optimization problem will be solved by the gra-

dient method of Barzilai and Borwein [5]. This particular choice is based on its
simplicity, efficiency, and applicability to large-scale optimization problems. As an
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application, we consider examples on the velocity-tracking and vorticity minimiza-
tion problems with local controls.

This paper is organized as follows: In Section 2, we establish the well-posedness
and regularity of solutions of the state, linearized state, and adjoint equations.
The existence and regularity of the optimal controls will be discussed in Section 3.
Section 4 deals with the proposed numerical scheme for the optimal control problem.
Finally, numerical experiments based on the two commonly utilized finite elements
for the Navier–Stokes equation, the mini-finite and Taylor–Hood elements, will be
presented in Section 5.

2. Analysis of the State, Linearized State, and Adjoint
Equations

The existence and uniqueness of solutions to the state equation in the optimal control
problem (P) can be established through a standard spectral Galerkin method. There
are two possible directions that one may pursue. One such approach is to successively
consider intervals of length equal to the delay and show well-posedness using the
fact that the state equation is an Oseen equation at each subinterval. Alternatively,
one can proceed by following the classical strategy for the nonlinear Navier–Stokes
equation. For the sake of completeness and clarity, especially the required regularity
and compatibility conditions on the initial history, we discuss in detail the latter
approach.

2.1. Preliminaries. Let us introduce the function spaces and notations that
will be used throughout the paper. The dual space of a Banach space Z will be
denoted by Z∗ and 〈z∗, z〉Z∗,Z represents the duality pairing between z∗ ∈ Z∗ and
z ∈ Z. The set of all bounded linear operators from a Banach space U into a Banach
space Z is denoted by L(U,Z) and L(U) := L(U,U). We follow standard notations
for the Lebesgue space Lp(Ω) and Sobolev space Hr(Ω) for 1 ≤ p ≤ ∞ and r ∈ R,
and denote the corresponding norms by ‖·‖Lp and ‖·‖Hr , see [2] for more details. The
closure in Hr(Ω) of the set C∞0 (Ω) consisting of all infinitely differentiable functions
that vanish on a neighborhood of Γ will be denoted by Hr

0(Ω). All throughout the
paper, we use the abbreviations

X := L2(Ω)2, W := H1
0 (Ω)2, M := L2(Ω)/R, Y := H1(Ω) ∩M.

The solenoidal functions with no-slip boundary condition will be denoted by

H := {u ∈ X : div u = 0 in Ω, u · n = 0 on Γ}, V := W ∩H,
where n is the unit outward vector normal to Γ. These are Hilbert spaces with
respect to the inner products in X and W . The embedding V ⊂ H is dense,
continuous, and compact.

Let A : D(A) ⊂ H → H be the Stokes operator defined by Au = −P∆u for
u ∈ D(A), where P : X → H is the Leray projection operator associated with
the Helmholtz decomposition X = H ⊕ ∇L2(Ω). Since Ω ⊂ R2 is either a convex
polygonal domain or of class C2, then D(A) = V ∩H2(Ω)2, see [39] and [49, Lemma
III.2.1]. Equipped with the inner product (u, v)D(A) = (Au,Av)H , D(A) becomes a
Hilbert space. Moreover, the norms ‖ · ‖H2 and ‖ · ‖D(A) are equivalent in D(A).
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It is well-known that A is a self-adjoint positive operator with dense domain and
compact inverse. As a consequence, H has an orthonormal basis {ϕn}∞n=1 consisting
of eigenfunctions of A with an associated sequence of eigenvalues 0 < λ1 ≤ λ2 ≤ · · ·
where λk → ∞ as k → ∞. Each u ∈ H admits the unique Fourier expansion
u =

∑∞
k=1(u, ϕk)Hϕk. The domain and the action of the linear operator A can be

written as follows:

D(A) =

{
u ∈ H :

∞∑
k=1

(1 + λ2
k)|(u, ϕk)H |2 <∞

}
, Au =

∞∑
k=1

λk(u, ϕk)Hϕk.

Let V k be the linear span of {ϕj}kj=1 and PV k : H → H be the orthogonal
projection of H onto V k, that is, PV ku :=

∑k
j=1(u, ϕj)Hϕj. For each k, it holds that

‖PV k‖L(H) ≤ 1 and ‖PV ku−u‖H → u as k →∞ whenever u ∈ H. Given u ∈ D(A),
we have Au ∈ H and so ‖PV ku‖D(A) = ‖APV ku‖H = ‖PV kAu‖H ≤ ‖Au‖H and
‖PV ku− u‖D(A) = ‖PV kAu−Au‖H → 0 as k →∞. In particular, ‖PV k‖L(D(A)) ≤ 1
for every k.

The square root A1/2 of A is well-defined andD(A1/2) = V . The following spectral
representations for the space V and its corresponding norm hold

V =

{
u ∈ H :

∞∑
k=1

λk|(u, ϕk)H |2 <∞
}
, ‖u‖V =

( ∞∑
k=1

λk|(u, ϕk)H |2
)1/2

.

From the orthonormality of the basis, it follows from these representations that
‖PV k‖L(V ) ≤ 1 for every k and each u ∈ V satisfies ‖PV ku− u‖V → 0 as k →∞.

We will work in the Bochner spaces Lp(I, Z) for 1 ≤ p ≤ ∞ from an interval I =
(a, b) into a real Hilbert space Z, and C(Ī , Z) the space of continuous functions from
Ī into Z equipped with their usual norms ‖u‖C(Ī,Z) = supt∈Ī ‖u(t)‖Z , ‖v‖L∞(I,Z) =
ess supt∈I ‖v(t)‖Z , and

‖w‖Lp(I,Z) =

(∫
I

‖w(t)‖pZ dt

)1/p

(1 ≤ p <∞).

The space W k,p(I, Z) is the set of all u ∈ Lp(I, Z) having distributional derivatives
∂jtu ∈ Lp(I, Z) for 0 ≤ j ≤ k, while Ck(Ī , Z) is the space of all functions u : Ī → X
such that ∂jtu ∈ C(Ī , X) for every 0 ≤ j ≤ k. We shall writeHk(I, Z) forW k,2(I, Z).

Consider the Banach space W p(I) := {u ∈ L2(I, V ) : ∂tu ∈ Lp(I, V ∗)} with the
norm

‖u‖W p(I) := ‖u‖L2(I,V ) + ‖∂tu‖Lp(I,V ∗).

Then the embeddings W p(I) ⊂ C(Ī , V ∗) for 1 ≤ p ≤ ∞ and W 2(I) ⊂ C(Ī , H)
are continuous. Moreover, by the well-known Aubin–Lions–Simon Lemma [46],
W p(I) ⊂ Lp(I,H) is compact for 1 < p < ∞. Let V 2(I) := L2(I, V ) ∩ L∞(I,H)
and V 2,1(I) := {w ∈ V 2(I) : ∂tw ∈ V 2(I)} = H1(I, V ) ∩W 1,∞(I,H) be endowed
with the graph norms

‖v‖V 2(I) := ‖v‖L2(I,V ) + ‖v‖L∞(I,H), ‖w‖V 2,1(I) := ‖w‖V 2(I) + ‖∂tw‖V 2(I).

It holds that W 2(I) ⊂ V 2(I) and V 2,1(I) ⊂ V 2(I) continuously. By interpolation
theory, we also have the continuous embedding H2,1(I) := L2(I,D(A))∩H1(I,H) ⊂
C(Ī , V ). Furthermore, H2,1(I) ⊂ L2(I, V ) is compact.
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For the nonlinear convection term, we define the trilinear form b : W×W×W → R
by

b(u, v, w) := ((u · ∇)v, w)X . (2.1)

It follows from the divergence theorem that b(u, v, w) = − b(u,w, v)− ((div u)v, w)X
for each u, v, w ∈ W. In particular, it holds that b(u, v, w) = −b(u,w, v) and
b(u, v, v) = 0 for every u ∈ V and v, w ∈ W . In writing the strong form of the
adjoint equation, the following equation b(u, v, w) = ((∇v)>w, u)X for every u ∈ V
and v, w ∈ W will be utilized.

For u ∈ V and v ∈ V , the distributional divergence div(u ⊗ v) ∈ V ∗ of u ⊗ v is
defined by

〈div(u⊗ v), w〉V ∗,V := −(u⊗ v,∇w) = −b(u,w, v) ∀w ∈ V.
Let us recall in the following lemma the standard estimates for the trilinear form b,
see [24, 49] for instance. In fact, these estimates follow from the Hölder, Gagliardo–
Nirenberg, Agmon, and Poincaré inequalities.

Lemma 2.1. The trilinear form b satisfies the following estimates:
(a) |b(u, v, w)| ≤ c‖u‖1/2

H ‖u‖
1/2
V ‖v‖

1/2
H ‖v‖

1/2
V ‖w‖V for every u, v, w ∈ V ,

(b) |b(u, v, w)| ≤ c‖u‖1/2
H ‖u‖

1/2
V ‖v‖

1/2
V ‖Av‖

1/2
H ‖w‖H for every u ∈ V , v ∈ D(A),

w ∈ H,
(c) |b(u, v, w)| ≤ c‖u‖H‖v‖V ‖Aw‖H for every u ∈ H, v ∈ V , w ∈ D(A),
(d) |b(u, v, w)| ≤ c‖Au‖H‖v‖V ‖w‖H for every u ∈ D(A), v ∈ V , w ∈ H,

for some constant c > 0 independent of u, v, and w.

In what follows, the time, history, and future domains will be denoted by

I := (0, T ), Ir := (−r, 0), Ir := (T, T + r), Jr := (−r, T ), Jr := (0, T + r)
(2.2)

where we take without of loss of generality that r < T . We shall use c > 0 and
c > 0 to denote generic constants and continuous functions, respectively, whose
values may differ on each line. To emphasize the dependence on other quantities,
we will put a subscript on c or c.

2.2. Analysis of the State Equation. In this subsection, we study the
existence and uniqueness of weak solutions to the state equation and provide the
regularity of the solutions under suitable smoothness and compatibility of the initial
data and history.

Given u0 ∈ H, z ∈ V 2(Ir), and f ∈ L2(I, V ∗), a function u ∈ W 2(I) is called a
weak solution of{

∂tu− ν∆u+ div(ur ⊗ u) +∇p = f in ΩT ,

div u = 0 in ΩT , u = 0 on ΓT , u(0) = u0 in Ω, u = z in Ωr,
(2.3)

if the following variational equation holds

〈∂tu(t), ϕ〉V ∗,V + ν(∇u(t),∇ϕ)− b(ur(t), ϕ, u(t)) = 〈f(t), ϕ〉V ∗,V ∀ϕ ∈ V (2.4)

for a.e. t ∈ I, u(0) = u0 in H, and u = z in V 2(Ir).
The point-wise value u(0) is well-defined since W 2(I) ⊂ C(Ī , H). Now, we write

an equivalent and convenient formulation of (2.3) as an abstract evolution equation.
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First, let us extend the definition of the Stokes operator A : L2(I, V ) → L2(I, V ∗)
to the time-dependent case by

〈Av, ϕ〉L2(I,V ∗),L2(I,V ) :=

∫
I

〈Av(t), ϕ(t)〉V ∗,V dt =

∫
I

(∇v(t),∇ϕ(t))X2 dt.

Given z ∈ V 2(Ir), let Bz : W 2(I)→ L2(I, V ∗) be the operator defined by

〈Bz(u), ϕ〉L2(I,V ∗),L2(I,V ) = −
∫ r

0

b(zr(t), ϕ(t), u(t)) dt−
∫ T

r

b(ur(t), ϕ(t), u(t)) dt.

An application of the Hölder inequality and Lemma 2.1(a) yields
‖Bz(u)‖L2(I,V ∗) ≤ c(‖z‖V 2(Ir) + ‖u‖V 2(I))‖u‖L2(I,V ). (2.5)

Then u ∈ W 2(I) is a weak solution of (2.3) if and only if it satisfies the differential
equation {

∂tu+ νAu+Bz(u) = f in L2(I, V ∗),

u(0) = u0 in H.
(2.6)

Take note here that the history was included in the definition of the nonlinear oper-
ator Bz and treated as a coefficient of the evolution equation. With regards to the
existence of weak solutions, we have the following theorem. Here, the regularity of
the initial history is different from the one provided in [51] for the three-dimensional
case.

Theorem 2.2. Given u0 ∈ H, z ∈ V 2(Ir), and f ∈ L2(I, V ∗), the evolution equa-
tion (2.6) has a unique solution u ∈ W 2(I) and there exists a constant c > 0 such
that

‖u‖V 2(I) ≤ c(‖u0‖H + ‖f‖L2(I,V ∗)) (2.7)
‖∂tu‖L2(I,V ∗) ≤ c((1 + ‖z‖V 2(Ir) + ‖u‖V 2(I))‖u‖L2(I,V ) + ‖f‖L2(I,V ∗)). (2.8)

Proof. The proof is based on the spectral Galerkin method, which we provide for
the sake of the reader. Take the approximations u0k := PV ku0 ∈ V k and zk :=
PV kz ∈ L∞(Ir, V

k) for the initial data and initial history. Consider the ansatz
uk(t, x) =

∑k
j=1 αj(t)ϕj(x), where αj ∈ H1(I) for j = 1, . . . , n, to the following

system of nonlinear delay differential equations{
∂tuk + P ∗V k(νAuk +Bzk(uk)) = P ∗V kf in L2(I, V k),

uk(0) = u0k in V k, uk = zk in L∞(Ir, V
k).

(2.9)

Here, we have extended the projection operators PV k into the time-dependent case
in the obvious way so that PV k : L2(I, V k) → L2(I, V ). Thus, for the adjoint
operator, we have P ∗

V k
: L2(I, V ∗) → L2(I, V k), where L2(I, V k)∗ was identified

with L2(I, V k).
According to the classical Cauchy–Lipschitz theory of delay differential equations,

the above system admits a unique solution uk ∈ H1(0, tk;V
k) for some 0 < tk ≤ T .

The a priori estimates below shows that tk = T . Indeed, taking the inner product of
the first equation (2.9) with uk in H and applying the Young inequality, we obtain

1

2

d

dt
‖uk(t)‖2

H + ν‖uk(t)‖2
V ≤

1

2ν
‖f(t)‖2

V ∗ +
ν

2
‖uk(t)‖2

V .
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Integrating over [0, t] for t ∈ (0, tk), we deduce that

‖uk(t)‖2
H + ν

∫ t

0

‖uk(s)‖2
V ds ≤ ‖u0k‖2

H +
1

ν

∫ t

0

‖f(s)‖2
V ∗ ds.

Since ‖u0k‖H ≤ ‖u0‖H , ‖zk‖V 2(Ir) ≤ ‖z‖V 2(Ir), and by the virtue of the Gronwall
Lemma, there exists a constant c > 0 such that

‖uk‖V 2(I) = ‖uk‖L∞(I,H) + ‖uk‖L2(I,V ) ≤ c(‖u0‖H + ‖f‖L2(I,V ∗)). (2.10)

Using a classical continuation argument, this implies that (2.9) has a solution on the
whole interval I. Since ‖P ∗

V k
‖L(L2(I,V ∗)) ≤ 1 for each k, we obtain from (2.5) that

‖∂tuk‖L2(I,V ∗) ≤ c((1 + ‖zk‖V 2(Ir) + ‖uk‖V 2(I))‖uk‖L2(I,V ) + ‖f‖L2(I,V ∗)). (2.11)

From the a priori estimates (2.10) and (2.11), the sequences {uk}∞k=1 and {urk}∞k=1

are bounded in W 2(I) and V 2(Jr), respectively. Therefore, one can take a subse-
quence, denoted by the same indices for simplicity, so that uk ⇀ u in L2(I, V ),
Auk ⇀ Au in L2(I, V ∗), ∂tuk ⇀ ∂tu in L2(I, V ∗), and urk

∗
⇀ ur in L∞(Jr, H) for

some u ∈ W 2(I) ∩ V 2(Jr). By the compactness of W 2(I) ⊂ L2(I,H), a further
subsequence can be extracted in such a way that uk → u in L2(I,H). In particular,
urk → ur in L2(Jr, H) and u = z in L2(Ir, H), since zk → z in L2(Ir, H).

Let us now pass to the limit. Take ϕ ∈ L4(I, V ). From Lemma 2.1(a) and the
Hölder inequality, we obtain, by letting k →∞, that

|〈Bzk(uk)−Bz(u), ϕ〉L2(I,V ∗),L2(I,V )| ≤
∫
I

|(ur ⊗ u− urk ⊗ uk,∇ϕ)X | dt

≤
∫
I

|((ur − urk)⊗ u,∇ϕ)X | dt+

∫
I

|(urk ⊗ (u− uk),∇ϕ)X | dt

≤ c‖urk − ur‖1/2

L2(I,H)‖urk − u‖
1/2

L2(I,V )(‖u‖L2(I,V ) + ‖urk‖L2(I,V ))‖ϕ‖L4(I,V ) → 0.

By the density of L4(I, V ) in L2(I, V ) and the boundedness of {Bzk(uk)}∞k=1 in
L2(I, V ∗), this implies Bzk(uk) ⇀ Bz(u) in L2(I, V ∗). Therefore,

∂tuk + P ∗V k(νAuk +Bzk(uk)− f) ⇀ ∂tu+ νAu+Bz(u)− f in L2(I, V ∗).

By the continuity of the map ϕ 7→ ϕ(0) from W 2(I) to H, we get uk(0) ⇀ u(0) in
H. Since uk(0) = u0k → u0 in H, we obtain that u(0) = u0. Thus u is a solution to
(2.6). The a priori estimates (2.7) and (2.8) follows from taking the limit inferior of
(2.10) and (2.11), respectively, and utilizing the lower semicontinuity of the norm
with respect to weak and weak-star topologies.

For the uniqueness of the solution, it is enough to observe that on the interval
[0, r], (2.6) is a linearized Navier–Stokes equation, whose uniqueness of solution
follows from standard results. We then apply this to the next interval [r, 2r] to
conclude that the solution of (2.6) is unique on the interval [0, 2r]. Continuing this
procedure leads to the uniqueness of solution to (2.6) on the whole time interval I.

�

Under appropriate conditions on the initial history, we recover the same regularity
as in the case of Navier–Stokes equation without delay. This property is reflected
on the existence of strong solutions as shown in the theorem below.
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Theorem 2.3. Suppose that u0 ∈ V , z ∈ L∞(Ir, V ), and f ∈ L2(I,X). Then the
solution of (2.6) satisfies u ∈ H2,1(I) and there exists a unique p ∈ L2(I, Y ) such
that

∂tu+ νAu+Bz(u) +∇p = f in L2(I,X). (2.12)

Furthermore, there exists a continuous function c > 0 such that

‖u‖H2,1(I) + ‖p‖L2(I,Y ) ≤ c(‖u0‖V , ‖z‖L∞(Ir,V ), ‖f‖L2(I,X)). (2.13)

In particular, it holds that u ∈ C(Ī , V ).

Proof. Let us adopt the notations in the proof of Theorem 2.2. Taking the inner
product of (2.9) with Auk in H and invoking the Young inequality, one has

1

2

d

dt
‖uk(t)‖2

V + ν‖Auk(t)‖2
H + b(urk(t), uk(t), Auk(t)) ≤

1

ν
‖f(t)‖2

X +
ν

4
‖Auk(t)‖2

H .

(2.14)

The trilinear term in (2.14) can be estimated according to Lemma 2.1(b) and the
Young inequality as follows

|b(urk(t), uk(t), Auk(t))| ≤
1

ν
‖urk(t)‖2

H‖urk(t)‖2
V ‖uk(t)‖2

V +
ν

4
‖Auk(t)‖2

H .

Using this in (2.14), and integrating over [0, t] in the resulting estimate, we obtain

‖uk(t)‖2
V + ν

∫ t

0

‖Auk(s)‖2
H ds

≤ ‖u0k‖2
V +

∫ t

0

c‖urk(s)‖2
H‖urk(s)‖2

V ‖uk(s)‖2
V +

2

ν
‖f(s)‖2

X ds.

From ‖u0k‖V ≤ ‖u0‖V , ‖zk‖V 2(Ir) ≤ c‖z‖L∞(Ir,V ), the Gronwall Lemma and (2.10),
there exists a continuous function c > 0 such that

‖uk‖L∞(I,V ) + ‖uk‖L2(I,D(A)) ≤ c(‖u0‖V , ‖z‖L∞(Ir,V ), ‖f‖L2(I,X)). (2.15)

Using (2.9), Lemma 2.1(b), ‖P ∗
V k
‖L(L2(I,H)) ≤ 1, and the continuity of the embed-

dings D(A) ⊂ V ⊂ H, we have

‖∂tuk‖L2(I,H) ≤ c((1 + ‖urk‖L∞(I,V ))‖uk‖L2(I,D(A)) + ‖f‖L2(I,X)). (2.16)

Thus, {uk}∞k=1 is bounded in H2,1(I), hence after extraction of an appropriate sub-
sequence, the weak limit of this sequence in H2,1(I) is the solution of (2.6). Passing
to the limit inferior as k →∞ in the a priori estimates (2.15) and (2.16), we deduce
(2.13) but without the pressure term. On the other hand, the existence and unique-
ness of p ∈ L2(I, Y ) satisfying (2.12) follows from de Rham’s Theorem and it holds
that

‖p‖L2(I,Y ) ≤ c(‖∂tu‖L2(I,H) + (1 + ‖ur‖L∞(I,V ))‖u‖L2(I,D(A)) + ‖f‖L2(I,X)).

Therefore, we have (2.13) and this completes the proof of the theorem. �

Department of Mathematics and Computer Science, College of Science, University of the Philippines Baguio



G. Peralta and J.S. Simon 10 / 60

Theorem 2.4. If u0 ∈ D(A) and z ∈ V 2,1(Ir) ∩ L2(Ir, D(A)) satisfy the compat-
ibility condition z(0) = u0 and the source term f ∈ H1(I, V ∗) satisfies f(0) ∈ X,
then the solution of (2.6) satisfies u ∈ V 2,1(Jr) ∩ L2(Jr, D(A)). Moreover, there is
a continuous function c > 0 such that

‖u‖V 2,1(Jr)∩L2(Jr,D(A)) ≤ c(‖u0‖D(A), ‖z‖V 2,1(Ir)∩L2(Ir,D(A)), ‖f‖H1(I,V ∗), ‖f(0)‖X).

In particular, we have u ∈ C(J̄r, V ).

Proof. We follow the notations in the proofs of the previous theorems. First,
let us note that the compatibility condition z(0) = u0 is carried out in the finite
dimensional approximation, that is, zk(0) = PV kz(0) = PV ku0 = u0k for every
k. This compatibility, together with the regularity zk ∈ W 1,∞(Ir, V

k) and f ∈
H1(I, V ∗), implies that uk ∈ H2(I, V k)∩H1(Jr, V

k) according to classical regularity
results for delay differential equations. Therefore, we may differentiate the system
(2.9). Doing so, we see that yk := ∂tuk satisfies the delay differential equation{

∂tyk + P ∗V k(νAyk +Bzk(yk) +Byk(uk)) = P ∗V k∂tf in L2(I, V k),

yk(0) = ∂tuk(0) in V k, yk = ∂tzk in L∞(Ir, V
k).

Taking the inner product of the differential equation with yk in H gives us

1

2

d

dt
‖yk(t)‖2

H + ν‖yk(t)‖2
V − b(yrk(t), yk(t), uk(t)) ≤

1

ν
‖∂tf(t)‖2

V ∗ +
ν

4
‖yk(t)‖2

V .

From Lemma 2.1(a), we have

|b(yrk(t), yk(t), uk(t))| ≤
c

ν
‖yrk(t)‖2

V ‖uk(t)‖2
V +

ν

4
‖yk(t)‖2

V .

Substituting this estimate to the previous one, integrating over [0, t] and then ap-
plying the Gronwall-type Lemma 6.1 with φ(t) = 1

2
‖yk(t)‖2

H , ϕ(t) = ν
2
‖yk(t)‖2

V ,
ψ(t) = 1

ν
‖∂tf(t)‖2

V ∗ , α(t) = β(t) = 0, γ(t) = c
ν
‖uk(t)‖2

V , and a = 1
2
‖yk(0)‖2

H , there
is a continuous function c > 0 such that

‖yk‖V 2(I) ≤ c(‖yk(0)‖H , ‖uk‖L∞(I,V ), ‖∂tzk‖V 2(Ir), ‖∂tf‖L2(I,V ∗)). (2.17)

Note that the sequences {uk}∞k=1 and {zk}∞k=1 are bounded in L∞(I, V ) and
V 2,1(Ir), respectively, and uk

∗
⇀ u in L∞(I, V ) and zk

∗
⇀ z in V 2,1(Ir). Thus, it

remains to estimate ‖yk(0)‖H to establish the boundedness of {yk}∞k=1 in V 2(I). In-
deed, setting t = 0 in (2.9) and then taking the norm of the resulting equation in
X, we obtain that

‖yk(0)‖H ≤ c(‖Au0k‖H + ‖(urk(0) · ∇)u0k‖X + ‖f(0)‖X)

≤ c(‖Au0‖H + ‖z‖H1(Ir,V )‖Au0‖H + ‖f(0)‖X).

As a result, {uk}∞k=1 is bounded in V 2,1(Jr), and for a subsequence uk ⇀ u in
V 2,1(Jr). The a priori estimate in the statement of the theorem follows by taking
the sum of (2.13) with the inequality obtained by passing to the limit inferior in
(2.17) and ‖uk‖V 2,1(Ir)∩L2(Ir,D(A)) ≤ ‖z‖V 2,1(Ir)∩L2(Ir,D(A)). From the compatibility
condition, we have u ∈ H2,1(Jr) ⊂ C(J̄r, V ). �
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2.3. Analysis of the Linearized State Equation. In this subsection,
we study the linearization of the state equation (2.6) at a given element u ∈ W 2(I).
Suppose that z ∈ V 2(Ir). From the quadratic nature of Bz, one can verify im-
mediately that Bz ∈ C∞(W 2(I), L2(I, V ∗)). Moreover, the action of the Fréchet
derivative of Bz at u ∈ W 2(I) in the direction h ∈ W 2(I) is given by

〈B′z(u)h, ϕ〉L2(I,V ∗),L2(I,V ) = −
∫ r

0

b(zr(t), ϕ(t), h(t)) dt

−
∫ T

r

b(ur(t), ϕ(t), h(t)) dt−
∫ T

r

b(hr(t), ϕ(t), u(t)) dt.

Likewise, the action of the second Fréchet derivative of Bz at u in the directions
h1, h2 ∈ W 2(I) is

〈B′′z (u)[h1, h2], ϕ〉L2(I,V ∗),L2(I,V ) = −
∫ T

r

b(hr1(t), ϕ(t), h2(t)) dt

−
∫ T

r

b(hr2(t), ϕ(t), h1(t)) dt.

Take note that B′′z (u) is independent on u, hence the derivatives of Bz beyond order
3 vanish.

Theorem 2.5. Given z ∈ V 2(Ir), u ∈ W 2(I), v0 ∈ H, and f ∈ L2(I, V ∗), the
linearized state equation{

∂tv + νAv +B′z(u)v = f in L2(I, V ∗),

v(0) = v0 in H,
(2.18)

has a unique solution v ∈ W 2(I). Moreover, there exists a continuous function c > 0
such that

‖v‖W 2(I) ≤ c(‖u‖W 2(I), ‖z‖V 2(Ir))(‖v0‖H + ‖f‖L2(I,V ∗)). (2.19)

Proof. The proof is similar to the one provided in Theorem 2.2. For this reason,
the details are omitted to avoid repetition. �

Remark 2.6. The solution of the linearized state equation (2.18) can be regarded
as the weak solution of{

∂tv − ν∆v + div(ur ⊗ v) + div(vr ⊗ u) +∇$ = f in ΩT ,

div v = 0 in ΩT , v = 0 on ΓT , v(0) = v0 in Ω, v = 0 in Ωr,
(2.20)

where u = z in Ωr and $ is the corresponding linearized pressure. Sufficient condi-
tions for the weak solution v to be in H2,1(I) and for the existence of the pressure
$ ∈ L2(I, Y ) are provided in the following theorem.

Theorem 2.7. If z ∈ L∞(Ir, V ), u ∈ H2,1(I), v0 ∈ V , and f ∈ L2(I,X), then the
solution of (2.18) satisfies v ∈ H2,1(I) and there exists a unique $ ∈ L2(I, Y ) such
that

∂tv + νAv +B′z(u)v +∇$ = f in L2(I,X). (2.21)
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Moreover, there is a continuous function c > 0 such that

‖v‖H2,1(I) + ‖$‖L2(I,Y ) ≤ c(‖u‖H2,1(I), ‖z‖L∞(Ir,V ))(‖v0‖V + ‖f‖L2(I,X)). (2.22)

Proof. The proof is similar to the case of the state equations, see Theorem 2.3,
hence we only derive the necessary a priori estimates. Moreover, we drop the indices
k in the associated approximating spectral Galerkin system. Using the test function
Av and the antisymmetry of b, we get

1

2

d

dt
‖v(t)‖2

V + ν‖Av(t)‖2
H + b(ur(t), v(t), Av(t)) + b(vr(t), v(t), Au(t))

≤ 1

2ν
‖f(t)‖2

X +
ν

2
‖Av(t)‖2

H . (2.23)

For the trilinear terms on the left hand side, one can estimate them from above with
the help of Lemma 2.1(b) and the Cauchy–Schwarz inequality as follows

|b(ur(t), v(t), Av(t))| ≤ c‖ur(t)‖2
H‖ur(t)‖2

V ‖v(t)‖2
V +

ν

4
‖Av(t)‖2

H

|b(vr(t), u(t), Av(t))| ≤ c(‖u(t)‖2
V ‖vr(t)‖2

V + ‖Au(t)‖2
H‖vr(t)‖2

V ) +
ν

8
‖Av(t)‖2

H .

Using these estimates in the energy inequality (2.23) and then applying
the Gronwall-type Lemma 6.1 with φ(t) = 1

2
‖v(t)‖2

V , ϕ(t) = ν
8
‖Av(t)‖2

H ,
ψ(t) = 1

2ν
‖f(t)‖2

X , α(t) = c‖ur(t)‖2
H‖ur(t)‖2

V , β(t) = c(‖u(t)‖2
V + ‖Au(t)‖2

H),
γ(t) = 0, and a = 1

2
‖v(0)‖2

V , we obtain

‖v‖L∞(I,V ) + ‖v‖L2(I,D(A)) ≤ c(‖u‖H2,1(I), ‖z‖L∞(Ir,V ))(‖v0‖V + ‖f‖L2(I,X))

for some continuous function c > 0. Hence, the time derivative of v can be estimated
by

‖∂tv‖L2(I,H) ≤ c(‖Av‖L2(I,H) + ‖B′z(u)v‖L2(I,H) + ‖f‖L2(I,X))

≤ c((1 + ‖z‖L∞(Ir,V ) + ‖u‖L∞(I,V ))‖Av‖L2(I,H) + ‖f‖L2(I,X)).

In the second inequality, we used Lemma 2.1(b). The last two inequalities imply
that v ∈ H2,1(I) and (2.3), but without the term involving $. However, the
existence of a unique pressure $ ∈ L2(I, Y ) satisfying (2.21) and (2.22) can be
established as in the proof of Theorem 2.3. �

Define the map Lz : W 2(I)→ L(W 2(I), L2(I, V ∗)) according to

Lz(u)v = ∂tv + νAv +B′z(u)v ∀u, v ∈ W 2(I).

Also, let Nz : W 2(I)→ L(W 2(I), L2(I, V ∗)×H) be given by

Nz(u)v = (Lz(u)v, v(0)).

It follows from Theorem 2.5 that the linear operator Nz(u) ∈ L(W 2(I), L2(I, V ∗)×
H) is an isomorphism for each u ∈ W 2(I). In particular, Lz(u) ∈ L(W 2

0 (I), L2(I, V ∗))
is an isomorphism, where W 2

0 (I) := {v ∈ W 2(I) : v(0) = 0}, and from (2.19) we
obtain that

‖Lz(u)−1‖L(L2(I,V ∗),W 2
0 (I)) ≤ c(‖u‖W 2(I), ‖z‖V 2(Ir)). (2.24)
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If z ∈ L∞(Ir, V ), then Lz : H2,1(I) → L(H2,1
0 (I), L2(I,X)) according to Theorem

2.7, and

‖Lz(u)−1‖L(L2(I,X),H2,1
0 (I)) ≤ c(‖u‖H2,1(I), ‖z‖L∞(Ir,V )) (2.25)

where H2,1
0 (I) := {v ∈ H2,1(I) : v(0) = 0}.

For the rest of the paper, Q := L2(I,X) will denote the space of controls. Given
fixed initial data u0 ∈ H, history z ∈ V 2(Ir), and source term f ∈ L2(I, V ∗), let us
define the nonlinear operator F : W 2(I)×Q→ L2(I, V ∗)×H by

F (u, q) = (∂tu+ νAu+Bz(u)− f − q, u(0)− u0).

If q ∈ Q ⊂ L2(I, V ∗), then there exists a unique u ∈ W 2(I) such that F (u, q) = 0
by Theorem 2.2. Conversely, if F (u, q) = 0 then u is the solution of (2.6) with
f replaced by f + q. In this way, we define the so-called control-to-state operator
S : Q → W 2(I) by S(q) = u if and only if F (u, q) = 0. Note that F , and hence S,
depends on the triple (u0, z, f), however, we shall not explicitly write this dependence
for simplicity of notation.

Theorem 2.8. Let u0 ∈ H, z ∈ V 2(Ir), and f ∈ L2(I, V ∗). Then
S ∈ C∞(Q,W 2(I)). The action of the first and second Fréchet derivatives of
S at q ∈ Q in the directions g ∈ Q and (g1, g2) ∈ Q×Q are given by

S ′(q)g = Lz(S(q))−1g

S ′′(q)[g1, g2] = −Lz(S(q))−1B′′z (u)[S ′(q)g1, S
′(q)g2].

Proof. One can easily see that F ∈ C∞(W 2(I) × Q,L2(I, V ∗) × H). Let q? ∈ Q
and u? := S(q?) ∈ W 2(I), so that F (u?, q?) = 0. We have ∂

∂u
F (u?, q?) = Nz(u

?) ∈
L(W 2(I), L2(I, V ∗)×H), which is an isomorphism according to the above discussion.
Therefore, by the Implicit Function Theorem [54, Section 4.7], there exist open
neighborhoods Oq? ⊂ Q and Ou? ⊂ W 2(I) of q? and u?, respectively, and a map
S̃ ∈ C∞(Oq? , Ou?) such that F (S̃(q), q) = 0 for every q ∈ Oq? . This implies that
S̃ = S in Oq? by the definition of S. Since q? ∈ Q is arbitrary, one obtains that
S ∈ C∞(Q,W 2(I)).

Applying the chain rule to F (S(q), q) = 0, we have that S ′(q)g =
−Lz(S(q))−1 ∂

∂q
F (S(q), q)g = Lz(S(q))−1g. This implies that Lz(S(q))S ′(q)g = g.

Setting g = g1, taking the derivative in the direction of g2, and then invoking the
chain rule once more to the resulting equation, one has

L′z(S(q))[S ′(q)g1, S
′(q)g2] + Lz(S(q))S ′′(q)[g1, g2] = 0.

The result for the second derivative now follows from L′z(u)[v1, v2] = −B′′z (u)[v1, v2]
for u ∈ W 2(I) and v1, v2 ∈ W 2

0 (I). Here, we note that L′z : W 2(I) →
L(W 2(I),L(W 2

0 (I), L2(I, V ∗))), where the latter space is isometrically isomorphic
to L(W 2(I)×W 2

0 (I), L2(I, V ∗)). �

Remark 2.9. If u0 ∈ V , z ∈ L∞(Ir, V ), and f ∈ L2(I,X) then S ∈
C∞(Q,H2,1(I)). This is a consequence of the fact that Nz(u) ∈ L(H2,1(I), Q × V )
is an isomorphism for every u ∈ H2,1(I).
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In terms of the strong formulation, S ′(q)g = v if and only v is the weak solution
of (2.20) with u = S(q), f = g, and v0 = 0. Also, S ′′(q)[g1, g2] = y if and only if y
is the weak solution of

∂ty − ν∆y + div(ur ⊗ y) + div(yr ⊗ u) +∇%
= − div(vr1 ⊗ v2)− div(vr2 ⊗ v1) in ΩT ,

div y = 0 in ΩT , y = 0 on ΓT , y(0) = 0 in Ω, y = 0 in Ωr,

(2.26)

where u = S(q), v1 = S ′(q)g1, v2 = S ′(q)g2, and u = z in Ωr.

Theorem 2.10. If u0 ∈ H, z ∈ V 2(Ir), and f ∈ L2(I, V ∗), then the map S : Q→
W 2(I) is weak-weak continuous, that is, qk ⇀ q in Q implies S(qk) ⇀ S(q) inW 2(I).
Moreover, if u0 ∈ V , z ∈ L∞(Ir, V ), and f ∈ L2(I,X), then S : Q → H2,1(I) is
weak-weak continuous.

Proof. Since Q and W 2(I) are both reflexive and separable, any closed ball in
these spaces is metrizable. Hence, with respect to the weak topologies, continuity
is equivalent to weak sequential continuity [22, page 426]. Suppose that qk ⇀ q in
Q. Then {qk}∞k=1 is bounded in Q and {S(qk)}∞k=1 is bounded in W 2(I) by Theorem
2.2. Therefore, up to a subsequence, S(qk) ⇀ u in W 2(I) for some u ∈ W 2(I).
Following the passage of limit in the proof of Theorem 2.2, it can be deduced that
S(q) = u. Since u is uniquely determined, this implies that the whole sequence
{S(qk)}∞k=1 must converge weakly to u in W 2(I). Indeed, this follows from the fact
that every subsequence of {S(qk)}∞k=1 has a subsequence that converges weakly to
S(q). With the help of Theorem 2.3, the proof of the second statement can be
handled in a similar manner. �

2.4. Analysis of the Adjoint Equation. In this subsection, we study
the adjoint problem corresponding to (2.18). According to the discussions in the
previous subsection, S ′(q) = Lz(S(q))−1 ∈ L(L2(I, V ∗),W 2

0 (I)). In particular,
S ′(q)∗ = Lz(S(q))−∗ ∈ L(W 2

0 (I)∗, L2(I, V )).
The action of the adjoint B′z(u)∗ : L2(I, V ) → C∞0 (I, V )∗ of the linear operator

B′z(u) : C∞0 (I, V )→ L2(I, V ∗), where u ∈ W 2(I) and z ∈ V 2(Ir), is given by

〈B′z(u)∗w,ϕ〉C∞0 (I,V )∗,C∞0 (I,V ) = −
∫ r

0

b(zr(t), w(t), ϕ(t)) dt

−
∫ T

r

b(ur(t), w(t), ϕ(t)) dt−
∫ T−r

0

b(ϕ(t), w−r(t), u−r(t)) dt

for w ∈ L2(I, V ) and ϕ ∈ C∞0 (I, V ). Here, we recall that u−r(t) := u(t + r) and
w−r(t) := w(t+ r). If u ∈ W 2(I) and z ∈ V 2(Ir), then from Lemma 2.1(a) and the
Hölder inequality

|〈B′z(u)∗w,ϕ〉C∞0 (I,V )∗,C∞0 (I,V )| ≤ c(‖z‖V 2(Ir) + ‖u‖W 2(I))‖w‖L2(I,V )‖ϕ‖L4(I,V ).

By density of C∞0 (I, V ) in L4(I, V ), it follows that B′z(u)∗w ∈ L4/3(I, V ∗).
To treat the tracking part at the final time, let us define the linear map eT : H →

W 2
0 (I)∗ by

〈eTv, w〉W 2
0 (I)∗,W 2

0 (I) := (v, w(T ))H , v ∈ H, w ∈ W 2
0 (I).
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This operator is bounded since ‖eTv‖W 2
0 (I)∗ ≤ c‖v‖H for every v ∈ H, where c > 0

is the constant corresponding to the continuous embedding W 2
0 (I) ⊂ C(Ī , H).

Theorem 2.11. Assume that z ∈ V 2(Ir), u ∈ W 2(I), gd ∈ L2(I, V ∗), and wT ∈ H.
Then the function w := Lz(u)−∗(gd + eTwT ) ∈ W 4/3(I) is precisely the unique
solution of {

−∂tw + νAw +B′z(u)∗w = gd in L4/3(I, V ∗),

w(T ) = wT in H,
(2.27)

and there exists a continuous function c > 0 such that

‖w‖W 4/3(I) ≤ c(‖u‖W 2(I), ‖z‖V 2(Ir))(‖wT‖H + ‖gd‖L2(I,V ∗)). (2.28)

Proof. The continuity of the embedding L2(I, V ∗) ⊂ W 2
0 (I)∗ and the bounded-

ness of eT imply that gd + eTwT ∈ W 2
0 (I)∗ and there holds ‖gd + eTwT‖W 2

0 (I)∗ ≤
c(‖gd‖L2(I,V ∗) + ‖wT‖H). Observe that the equation w = Lz(u)−∗(gd + eTwT ) is
equivalent to the variational problem

〈∂tv + νAv +B′z(u)v, w〉L2(I,V ∗),L2(I,V ) = 〈gd, v〉L2(I,V ∗),L2(I,V ) + (v(T ), wT )H (2.29)

for every v ∈ W 2
0 (I). Using (2.24) and

‖Lz(u)−∗‖L(W 2
0 (I)∗,L2(I,V )) = ‖Lz(u)−1‖L(L2(I,V ∗),W 2

0 (I)),

one obtains that

‖w‖L2(I,V ) ≤ c(‖u‖W 2(I), ‖z‖V 2(Ir))(‖wT‖H + ‖gd‖L2(I,V ∗)). (2.30)

Taking v ∈ C∞0 (I, V ) in (2.29), we see that ∂tw = νAw + B′z(u)∗w − gd in
C∞0 (I, V )∗. Since B′z(u)∗w ∈ L4/3(I, V ∗) and νAw − gd ∈ L2(I, V ∗) ⊂ L4/3(I, V ∗),
it follows that ∂tw ∈ L4/3(I, V ∗) and it satisfies the estimate

‖∂tw‖L4/3(I,V ∗) ≤ c((1 + ‖z‖V 2(Ir) + ‖u‖W 2(I))‖w‖L2(I,V ) + ‖gd‖L2(I,V ∗)). (2.31)

Therefore, w ∈ W 4/3(I) and (2.28) is verified by the previous estimates (2.30) and
(2.31).

To demonstrate the terminal condition w(T ) = wT , we shall proceed by a density
argument. Since C1(Ī , V ) is dense inW 4/3(I, V ) [45, Lemma 7.2], there is a sequence
{wk}∞k=1 in C1(Ī , V ) such that wk → w in W 4/3(I, V ). Given ϕ ∈ V and χ ∈ C1(Ī)
such that χ(0) = 0 and χ(T ) = 1, we have χϕ ∈ W 2

0 (I)∩L4(I, V ), and by invoking
the continuity of the map ψ 7→ ψ(T ) from W 4/3(I) into V ∗, we deduce by partial
integration that

〈∂t(χϕ), w〉L2(I,V ∗),L2(I,V ) = lim
k→∞

((ϕ,wk(T ))H − (χϕ, ∂twk)L2(I,X))

= 〈w(T ), ϕ〉V ∗,V − 〈∂tw, χϕ〉L4(I,V ∗),L4(I,V ).

Since ϕ ∈ V is arbitrary, it follows from the first equation in (2.27) and (2.29) with
v = χϕ that w(T ) = wT .

Conversely, if w satisfies (2.27), then (2.29) holds for every v ∈ W 2
0 (I)∩L4(I, V ),

and hence for every v ∈ W 2
0 (I) by density of W 2

0 (I) ∩ L4(I, V ) in W 2
0 (I) as well as

the continuity of Lz(u) : W 2
0 (I) → L2(I, V ∗). Therefore, w = Lz(u)−∗(gd + eTwT )

and the proof of the theorem is now complete. �
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Remark 2.12. The function w = Lz(u)−∗(gd + eTwT ) can be viewed as the unique
weak solution of the backward-in-time linear system with homogeneous future data{

− ∂tw − ν∆w − (ur · ∇)w − (∇w−r)>u−r +∇π = gd in ΩT ,

divw = 0 in ΩT , w = 0 on ΓT , w(T ) = wT in Ω, w = 0 in ΩT+r,

(2.32)
where ΩT+r := (T, T + r) × Ω, u = z in Ωr, and π can be regarded as the associ-
ated adjoint pressure. Since the convection term in the state equation was written
in divergence form, the above dual problem is not the usual form compared to the
one in the literature for the Navier–Stokes equation without delay, specifically, the
term involving − (∇w−r)>u−r. However, in view of the weak formulations, these
representations of the adjoint equation are equivalent for r = 0.

We now show that the weak solution of the adjoint problem (2.27) enjoys ad-
ditional regularity, provided that of course the initial data and initial history also
satisfy appropriate regularity and compatibility conditions.

Corollary 2.13. Suppose that wT ∈ H, z ∈ L∞(Ir, V ), u ∈ H2,1(I), and gd ∈
L2(I, V ∗). Then the solution of (2.27) satisfies w ∈ W 2(I) and for some continuous
function c > 0 it holds that

‖w‖W 2(I) ≤ c(‖u‖H2,1(I), ‖z‖L∞(Ir,V ))(‖wT‖H + ‖gd‖L2(V ∗)). (2.33)

Proof. Using the continuity of H2,1(I) ⊂ L∞(I, V ), we obtain B′z(u)∗w ∈ L2(I, V ∗)
and

‖B′z(u)∗w‖L2(I,V ∗) ≤ c(‖u‖H2,1(I), ‖z‖L∞(Ir,V ))‖w‖L2(I,V ).

Therefore, from the proof of the previous theorem, we deduce that w ∈ W 2(I), and
the estimate (2.33) follows immediately from this estimate along with (2.28). �

Theorem 2.14. If wT ∈ V , z ∈ L∞(Ir, V ), u ∈ H2,1(I), and gd ∈ L2(I,X), then
the solution of (2.27) satisfies w ∈ H2,1(I). There exists a unique π ∈ L2(I, Y ) such
that

−∂tw + νAw +B′z(u)∗w +∇π = gd in L2(I,X) (2.34)

and there is a continuous function c > 0 such that

‖w‖H2,1(I) + ‖π‖L2(I,Y ) ≤ c(‖u‖H2,1(I), ‖z‖L∞(Ir,V ))(‖wT‖V + ‖gd‖L2(I,X)). (2.35)

If in addition, wT = 0, u ∈ V 2,1(I) ∩ L2(I,D(A)), z ∈ V 2,1(Ir) ∩ L2(Ir, D(A)),
z(0) = u0, gd ∈ H1(I, V ∗), and gd(0) ∈ X, then w ∈ V 2,1(Jr) ∩ L2(Jr, D(A)). In
particular, w ∈ C(J̄r, V ).

Proof. By uniqueness, the solution of (2.27) coincides with the one that can be
constructed from the spectral Galerkin method. Therefore, to prove the above
regularity, we can do the same strategy as in the case of linearized state equation.
For this reason, we shall only formally derive the necessary a priori estimates. Let
us set u = z in Ωr and w = 0 in ΩT+r. We apply the test function Aw so that

−1

2

d

dt
‖w(t)‖2

V + ν‖Aw(t)‖2
H − b(ur(t), w(t), Aw(t))
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− b(Aw(t), w−r(t), u−r(t)) ≤ 1

2ν
‖gd(t)‖2

X +
ν

2
‖Aw(t)‖2

H . (2.36)

The trilinear terms is estimated from above using Lemma 2.1(b) and (c) according
to

|b(ur(t), w(t), Aw(t))| ≤ c‖ur(t)‖2
H‖ur(t)‖2

V ‖w(t)‖2
V +

ν

4
‖Aw(t)‖2

H

|b(Aw(t), w−r(t), u−r(t))| ≤ c‖Au−r(t)‖2
H‖w−r(t)‖2

V +
ν

8
‖Aw(t)‖2

H .

Using these estimates in (2.36), integrating over [0, t], and then applying a backward-
in-time version of the Gronwall-type Lemma 6.1 to the resulting inequality, it follows
that

‖w‖L∞(I,V ) + ‖Aw‖L2(I,H) ≤ c(‖u‖H2,1(I), ‖z‖L∞(Ir,V ))(‖wT‖V + ‖gd‖L2(I,X)).

From this, an estimate for the time derivative of w is now available

‖∂tw‖L2(I,H) ≤ ‖Aw‖L2(I,H) + ‖B′z(u)∗w‖L2(I,H) + ‖gd‖L2(I,X)

≤ c((1 + ‖z‖L∞(Ir,V ) + ‖u‖H2,1(I))‖Aw‖L2(I,H) + ‖gd‖L2(I,X)).

Therefore, w ∈ H2,1(I) and the a priori estimate (2.35) without the dual pressure
π is satisfied. Again, the existence of the dual pressure can be reasoned out as
in the proof of Theorem 2.3. For the last statement, thanks to the compati-
bility of the homogenous terminal data and history, we can adapt the proof of
Theorem 2.4 by differentiating the spectral Galerkin system approximating (2.6).
Afterwards, one can utilize sequential compactness arguments to deduce that
w ∈ V 2,1(Jr) ∩ L2(Jr, D(A)). �

Corollary 2.15. Let wT ∈ V , z ∈ L∞(Ir, V ), gd ∈ L2(I,X), and wi =
Lz(ui)

−∗(gd + eTwT ) for i = 1, 2. Then there exists a constant c > 0 depending
continuously on the norms of wT , z, gd, u1, and u2 in their indicated spaces such
that ‖w1 − w2‖H2,1(I) ≤ c‖u1 − u2‖H2,1(I).

Proof. The difference of w1 and w2 satisfies

w1 − w2 = Lz(u1)−∗(B′z(u1)∗w2 −B′z(u2)∗w2) = Lz(u1)−∗B′z(u1 − u2)∗w2.

Thus, Theorem 2.14 gives us

‖w1 − w2‖H2,1(I) ≤ c‖B′z(u1 − u2)∗w2‖L2(I,X)

≤ c‖u1 − u2‖H2,1(I)‖w2‖H2,1(I) ≤ c‖u1 − u2‖H2,1(I)

where c > 0 is a constant as described by the corollary. �

Given ud ∈ L2(I,X) and uT ∈ H, let us define the control-to-adjoint state opera-
tor D : Q→ W 4/3(I) by

D(q) = Lz(S(q))−∗(αΩT (S(q)− ud) + αR∇× (∇× S(q)) + αT eT (S(q)(T )− uT )).
(2.37)
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In other words, w = D(q) if and only if w is the weak solution of solution of{
−∂tw + νAw +B′z(u)∗w = αΩT (u− ud) + αR∇× (∇× u) in L4/3(I, V ∗),

w(T ) = αT (u(T )− uT ) in H,
(2.38)

where u = S(q) and 〈∇ × (∇× u), ϕ〉L2(I,V ∗),L2(I,V ) := (∇× v,∇× ϕ)L2(I,L2(Ω)) for
ϕ ∈ L2(I, V ). The map D is locally bounded by Theorem 2.2 and Theorem 2.11.

Theorem 2.16. The following properties of the control-to-adjoint state operator D
hold:

(a) If u0 ∈ V , z ∈ L∞(Ir, V ), f ∈ L2(I,X), ud ∈ L2(I,X), and wT ∈ H,
then D : Q → W 2(I) is locally bounded. If in addition, wT ∈ V then
D : Q→ H2,1(I) is locally bounded.

(b) If u0 ∈ D(A), z ∈ V 2,1(Ir) ∩ L2(Ir, D(A)), f ∈ H1(I, V ∗), ud ∈ H1(I,X),
f(0) ∈ X, z(0) = z0, and αT = 0, then D : Q→ V 2,1(Jr) ∩ L2(Jr, D(A)) is
locally bounded.

Proof. Part (a) is a direct consequence of Theorem 2.3, Corollary 2.13,
and Theorem 2.14. On the other hand, (b) follows from (a), Theorem 2.4,
∇× (∇× u) ∈ H1(I, V ∗) since u ∈ H1(I, V ), ∇× (∇× u0) ∈ X, and in virtue to
the last statement of Theorem 2.14. �

Corollary 2.17. Let u0 ∈ V , z ∈ L∞(Ir, V ), f ∈ L2(I,X), ud ∈ L2(I,X), and
wT ∈ V . Given q1 ∈ Q and q2 ∈ Q, there exists a constant c > 0 depending
continuously on the norms of u0, z, f , ud, wT , q1, and q2 in their indicated spaces
such that ‖D(q1)−D(q2)‖H2,1(I) ≤ c‖q1 − q2‖Q.
Proof. Let u1 = S(q1), u2 = S(q2), u = u1 − u2, and q = q1 − q2. The difference
D(q1)−D(q2) can be written as

D(q1)−D(q2) = Lz(u1)−∗(αΩTu+ αR∇× (∇× u) + αT eTu(T ))

+ (Lz(u1)−∗ − Lz(u2)−∗)(αΩT (u2 − ud) + αR∇× (∇× u2)

+ αT eT (u2(T )− uT ))).

Let d1 and d2 denote the terms on the right hand side. In the following,
c > 0 will be a constant with the stated dependence on the given data.
By the mean-value theorem and Remark 2.9, ‖u‖H2,1(I) ≤ c‖q‖Q and thus
‖u‖L2(I,X) + ‖∇× (∇×u)‖L2(I,L2(Ω)) + ‖u(T )‖V ≤ c‖q‖Q. This inequality along with
(2.35) yields ‖d1‖H2,1(I) ≤ c‖q‖Q. On the other hand, from the stability estimate
in Corollary 2.15, we obtain that ‖d2‖H2,1(I) ≤ c‖u‖H2,1(I) ≤ c‖q‖Q. The desired
estimate now follows from the triangle inequality. �

3. Analysis of the Optimal Control Problem

In this section, we address the well-posedness of the optimal control problem (P)
and establish the first order necessary and second order sufficient conditions for
local optimality. Let us introduce the reduced cost functional j : Q → R by
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j(q) = J(S(q), q), where S : Q → W 2(I) is the control-to-state operator defined in
Section 2.3. The optimization problem (P) is then equivalent to the unconstrained
formulation

min
q∈Q

j(q). (P)

Theorem 3.1. Let α > 0 and αΩT , αT , αR ≥ 0. Assume that u0 ∈ H, z ∈ V 2(Ir),
f ∈ L2(I, V ∗), ud ∈ L2(I,X), and uT ∈ H. Then (P) has a global solution q? ∈ Q,
that is, j(q?) ≤ j(q) for every q ∈ Q.
Proof. The proof follows a standard weak sequential argument in [40, 50],
which we outline for the sake of convenience. Let {qk}∞k=1 be a minimiz-
ing sequence, that is, j(qk) → j?, where j? is the infimum of j. Thus
α
2
‖qk‖2

Q < j? + 1 for sufficiently large indices k. Hence, {qk}∞k=1 is bounded
in Q, and therefore up to a subsequence, qk ⇀ q? in Q. Let uk = S(qk) and
u? = S(q?). From the weak-weak continuity of S, see Theorem 2.10, it follows
that uk ⇀ u? in W 2(I). The continuity of the map ϕ 7→ ϕ(T ) from W 2(I)
into H implies that uk(T ) ⇀ u?(T ) in H. Also, we have ∇ × uk ⇀ ∇ × u in
L2(I, L2(Ω)). Due to the lower semicontinuity of the norm in the weak topology,
j? ≤ j(q?) = J(u?, q?) ≤ lim infk→∞ J(uk, qk) = lim infn→∞ j(qk) = j?. Thus (P) has
at least one solution q? ∈ Q such that j(q?) ≤ j(q) for every q ∈ Q. �

Since j is a sum of squared-norms and S ∈ C∞(Q,W 2(I)), it follows from the
chain rule that j ∈ C∞(Q,R). Given q ∈ Q and g ∈ Q, if u = S(q), v = S ′(q)g, and
w = D(q) denote the respective solutions of the state, linearized state, and adjoint
equations, then by standard arguments one can deduce the following representations
for the first and second order directional derivatives of j

j′(q)g = (w + αq, g)Q (3.1)

j′′(q)[g, g] = αΩT ‖v‖2
L2(I,H) + αR‖∇ × v‖2

L2(I,L2(Ω)) + αT‖v(T )‖2
H

− 2〈B′′z (u)[v, v], w〉L2(I,V ∗),L2(I,V ) + α‖g‖2
Q. (3.2)

We would like to point out that the regularity of the state is different from the
regularity of the adjoint state if αT > 0. Also, unless u(T ) = uT , which is unlikely
in practice, we do not have the compatibility condition for the terminal data and
dual history in the adjoint equation. Thus, a presence of delay in the state equation
impedes further smoothness with respect to time on the adjoint state, and hence on
the control.

A control q? ∈ Q is said to be a local solution to (P) if there exists δ > 0 such
that j(q?) ≤ j(q) for every q ∈ Q with ‖q− q?‖Q < δ. For the first and second order
necessary condition, the following theorem can be established by classical arguments
of unconstrained optimization in Hilbert spaces, we refer to [38, 53] for the details.
Theorem 3.2. Suppose that the assumptions of the previous theorem are fulfilled
and let q? be a local solution to (P) and u? = S(q?). Then q? = −α−1D(q?) ∈
W 4/3(I). Furthermore, j′′(q?)[g, g] ≥ 0 for every g ∈ Q.

We now formulate a second order sufficient condition with the assumption that
the optimal state is close enough to the desired data. This is typically observed
numerically when the penalty parameter α > 0 is chosen to be sufficiently small.
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Theorem 3.3. Let u0 ∈ H, z ∈ V 2(Ir), and f ∈ L2(I, V ∗). Suppose that q? ∈ Q
satisfies j′(q?)q = 0 for every q ∈ Q. Then there exist constants η > 0 and µ =
µα,η > 0 such that if u? = S(q?) and
√
αΩT ‖u? − ud‖L2(I,X) +

√
αT‖u?(T )− uT‖H +

√
αR‖∇ × u?‖L2(I,X) < η (3.3)

then j′′(q?)[q, q] ≥ µ‖q‖2
Q for every q ∈ Q. In particular, q? is a strict local solution

of (P).

Proof. From the characterization of the second derivative of j in (3.2),
if we let v = S ′(q?)q and w? = D(q?), then for some c1 > 0 we have
j′′(q?)[q, q] ≥ α‖q‖2

Q − c1‖v‖2
W 2

0 (I)
‖w?‖L2(I,V ). Note that ‖v‖2

W 2
0 (I)

≤ c2‖q‖2
Q

where c2 = ‖S ′(q?)‖2
L(Q,W 2

0 (I))
. Assuming that (3.3) holds, then we get from

(2.33) that ‖w?‖L2(I,V ) ≤ c2η for a constant c2 > 0 independent of η. Thus, we
take η > 0 small enough so that µ := α − c1c2c3η > 0. In this case, we obtain
j′′(q?)[q, q] ≥ µ‖q‖2

Q for every q ∈ Q. The fact that q? is a strict local solution
follows from the coercivity of j′′(q?). �

We close this section by stating the improved regularity for the optimal state and
optimal control under additional regularity and compatibility of the initial data and
history.

Theorem 3.4. An optimal triple (q?, u?, w?) for (P), where q? is a local solution,
u? = S(q?) and w? = D(q?), satisfies the following:

(a) If u0 ∈ V , z ∈ L∞(Ir, V ), f ∈ L2(I,X), ud ∈ L2(I,X) and wT ∈ H,
then u? ∈ H2,1(I), and w?, q? ∈ W 2(I). In addition, if wT ∈ V , then w?,
q? ∈ H2,1(I).

(b) If u0 ∈ D(A), z ∈ V 2,1(Ir) ∩ L2(Ir, D(A)), f ∈ H1(I, V ∗), ud ∈ H1(I,X),
f(0) ∈ X, and z(0) = u0, then u? ∈ V 2,1(Jr) ∩ L2(Jr, D(A)). If in addition
αT = 0, then w? ∈ V 2,1(Jr) ∩ L2(Jr, D(A)) and q? ∈ V 2,1(I) ∩ L2(I,D(A)).

Proof. Apply Theorems 2.3, 2.4, and 2.16. �

4. Galerkin Finite Element Discretization
The goal of this section is to present a numerical scheme for the finite-dimensional
approximation of solutions to the control problem (P). In the forthcoming discus-
sion, the following assumption for the regularity and compatibility of the initial
data, history and target data will be imposed:
(A1) u0 ∈ D(A), uT ∈ D(A), z ∈ H2,1(Ir), ud ∈ H2,1(I), f ∈ H2,1(I), and

z(0) = u0.
From the results of the previous section, (A1) implies that u = S(q) ∈ H2,1(Jr),
v = S ′(q)g ∈ H2,1(Jr), and w = D(q) ∈ H2,1(I) for every q ∈ Q and g ∈ Q.

4.1. Finite Element Spaces and Approximation Operators. Let
Kh = {Kh} for h > 0 be a family of triangulations of a convex polygonal do-
main Ω parametrized by the mesh size h, that is, the length of the largest triangle
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edge in the subdivision. Let Wh and Mh be finite dimensional subspaces W and M ,
respectively, and define

Vh := {uh ∈ Wh : (div uh, ph)L2 = 0 ∀ph ∈Mh}.

The following assumptions on these finite-dimensional subspaces will be considered:

(A2) There exist finite element approximation operators Πh : D(A) → Wh and
Γh : Y → Mh such that, for some constant c > 0, we have ‖u − Πhu‖X +
h‖u −Πhu‖W ≤ ch2‖Au‖H and ‖p − Γhp‖M ≤ ch‖p‖Y for every u ∈ D(A)
and p ∈ Y .

(A3) We have the inverse estimate ‖uh‖W ≤ ch−1‖uh‖X for every uh ∈ Wh.
(A4) The pair (Wh,Mh) satisfies the uniform discrete inf-sup condition

inf
uh∈Wh\{0}

sup
ph∈Mh\{0}

(div uh, ph)L2

‖uh‖W‖ph‖M
≥ c > 0.

These assumptions are satisfied for the mini-element [3] and the Taylor–Hood fi-
nite element spaces [30], and if the family of triangulations is shape-regular. The lat-
ter means that there is a constant c > 0 such that, if eKh and δKh denote the respec-
tive largest edge and diameter of the largest ball contained in Kh, then h/eKh ≤ c
and eKh/δKh ≤ c. In other words, the smallest interior angle of each triangle should
not tend to zero as h→ 0.

Let Ph : X → Vh be the L2-projection onto Vh, that is, for u ∈ X let (Phu, vh)X =
(u, vh)X for all vh ∈ Vh. It is well known that the operator Ph satisfies the stability
and error estimates ‖Phw‖X ≤ c‖w‖X , ‖u− Phu‖X + h‖u− Phu‖W ≤ ch‖u‖W , and
‖v − Phv‖X + h‖v − Phv‖W ≤ ch2‖Av‖H whenever w ∈ X, u ∈ W , and v ∈ D(A).
For further details, the reader is referred to [17, 30].

We extend the above projections to the time-dependent case according to Πh :
L2(I,D(A)) → L2(I,Wh), Γh : L2(I, Y ) → L2(I,Mh), and Ph : L2(I,X) →
L2(I, Vh). For instance, (Phu)(t) = Ph(u(t)) for a.e. t ∈ I. Similarly, these op-
erators will be considered in the history interval Ir.

To simplify the exposition, let us assume that T = n0r for some positive integer
n0 and take a uniform temporal step size. Partition the history interval Īr = [−r, 0]
with grid size τ = r/Nr into −r = t−Nr < · · · < t−1 < t0 = 0, where t−j = −jτ
for j = 0, 1, . . . , Nr. Likewise, subdivide the time domain Ī = [0, T ] with grid size
τ into 0 = t0 < t1 < · · · < tNτ = T , where tj = jτ for j = 0, 1, . . . , Nτ and
Nτ = Nrn0. For each j = −Nr, . . . , Nτ , let Ij = (tj−1, tj]. In the case of the
adjoint equation, we likewise partition Īr = [T, T + r] into intervals Ij = (tj−1, tj]
for j = Nτ + 1, · · · , Nτ +Nr. We denote by σ := (τ, h) for the pair of temporal and
spatial mesh sizes. Note that |σ|2 ≤ T 2 + diam(Ω)2, where diam(Ω) is the diameter
of Ω. As mentioned in the introduction, we take the following stability condition:

(A5) There exists c > 0 such that τ ≤ ch2 for every σ = (τ, h).

All throughout this section, the assumptions (A1)-(A5) shall be implicitly imposed.
For the temporal discretization, we consider a discontinuous Galerkin scheme.

This is a variant of the backward Euler method, where time-evaluation is replaced
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by time-averaging. In this direction, we denote

Pτ (I, Z) =

{
vσ ∈ L2(I, Z) : vσ =

Nτ∑
k=1

vkh1Ik , v
k
h ∈ Z, k = 1, . . . , Nτ

}

Pτ (Ir, Z) =

{
zσ ∈ L2(Ir, Z) : zσ =

Nr−1∑
k=0

z−kh 1I−k z−kh ∈ Z, k = 0, . . . , Nr − 1

}
the space of piecewise constant functions on I and Ir with values in a Hilbert space
Z, respectively, corresponding to the above partitions of I and Ir. Here, 1Ik is the
indicator function of the interval Ik. Given vσ ∈ P(I, Z), we write vkh := vσ|Ik
for each k = 1, . . . , Nτ , and similarly for the elements of Pτ (Ir, Z). By definition,
Pτ (I, Z) ⊂ L∞(I, Z) and for every vσ ∈ Pτ (I, Z) there holds

‖vσ‖2
L∞(I,Z) = max

1≤k≤Nτ
‖vkh‖2

Z , ‖vσ‖2
L2(I,Z) =

Nτ∑
k=1

τ‖vkh‖2
Z . (4.1)

Proposition 4.1. Let sk ∈ Ik for each k = 1, . . . , Nτ . For every u ∈ H1(I,X), we
have ( Nτ∑

k=1

∫
Ik

‖u− u(sk)‖2
X dt

)1/2

≤ τ‖∂tu‖L2(I,X),

max
1≤k≤Nτ

‖u− u(sk)‖L∞(Ik,X) ≤
√
τ‖∂tu‖L2(I,X).

Proof. For each t ∈ Ik, let t+k and t−k denote largest and smallest between t and sk,
respectively. By the Cauchy–Schwarz inequality

‖u(t)− u(sk)‖2
X ≤ |sk − t|

∫ t+k

t−k

‖∂tu(s)‖2
X ds ≤ τ

∫
Ik

‖∂tu(s)‖2
X ds. (4.2)

Note that point-wise time evaluation is admissible since H1(I,X) ⊂ C(Ī , X). Inte-
grating (4.2) over the interval Ik and then taking the sum over all k = 1, . . . , Nτ , we
get

Nτ∑
k=1

∫
Ik

‖u(t)− u(sk)‖2
X dt ≤ τ 2‖∂tu‖2

L2(I,X).

Taking square roots yields the first inequality. Getting the supremum over all
t ∈ Ik in (4.2) and then the maximum over all 1 ≤ k ≤ Nτ , one obtains the second
inequality. �

Proposition 4.2. Let sk ∈ Ik for each k = 1, . . . , Nτ . There exists a constant c > 0
such that for every u ∈ H2,1(I), the following error estimates hold:

max
1≤k≤Nτ

‖u− Phu(sk)‖L∞(Ik,X) ≤ c(
√
τ + h)‖u‖H2,1(I)( Nτ∑

k=1

∫
Ik

‖u− Phu(sk)‖2
X dt

)1/2

+ h

( Nτ∑
k=1

∫
Ik

‖∇u−∇Phu(sk)‖2
X dt

)1/2

≤ c(τ + h2)‖u‖H2,1(I).
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Proof. Suppose that u ∈ H2,1(I). On the interval Ik, write u − Phu(sk) = (u −
Phu) + Ph(u− u(sk)). Using the boundedness of Ph : X → X, Proposition 4.1, and
the continuity of H2,1(I) ⊂ C(Ī , V )

‖u− Phu(sk)‖L∞(Ik,X) ≤ ‖u− Phu‖L∞(Ik,X) + ‖Ph(u− u(sk))‖L∞(Ik,X)

≤ c(h‖u‖L∞(I,V ) +
√
τ‖∂tu‖L2(I,H)).

Getting the maximum over all indices 1 ≤ k ≤ Nτ proves the first estimate. On the
other hand,
Nτ∑
k=1

∫
Ik

‖u− Phu(sk)‖2
X dt ≤ 2

Nτ∑
k=1

∫
Ik

‖u− Phu‖2
X dt+ 2

Nτ∑
k=1

∫
Ik

‖Ph(u− u(sk))‖2
X dt

≤ c(h4‖Au‖2
L2(I,H) + τ 2‖∂tu‖2

L2(I,H)).

Applying the inverse estimate (A3), we obtain that

h2

Nτ∑
k=1

∫
Ik

‖∇u−∇Phu(sk)‖2
X dt ≤ c

Nτ∑
k=1

∫
Ik

‖u− Phu(sk)‖2
X dt.

Taking the sum of the last two inequalities and then the square roots prove the
second estimate. �

The special cases where sk = tk−1 or sk = tk will be utilized in our analysis. If
one wishes to use the approximation operator Πh instead of the projection operator
Ph, which is typical in practice, then due to the limited regularity of the initial
history and source term, time-evaluation is not applicable anymore and has to be
replaced by time-averaging. This approach was introduced in [5] for hereditary
control problems with ordinary differential equations. Define the linear operator
Rτ : L2(I,X)→ Pτ (I,X) by

Rτu =
Nτ∑
k=1

(
1

τ

∫
Ik

u(t) dt

)
1Ik

with the obvious modification when I is replaced by Ir. Then, ‖Rτu‖L2(I,X) ≤
‖u‖L2(I,X) and ‖Rτw‖L∞(I,X) ≤ ‖w‖L∞(I,X) for every u ∈ L2(I,X) and
w ∈ L∞(I,X). It can also be shown that there is a constant c > 0 such
that ‖Rτv− v‖L2(I,X) ≤ τ‖v‖H1(I,X) and ‖Rτv− v‖L∞(I,X) ≤

√
τ‖v‖H1(I,X) for every

v ∈ H1(I,X). With these, the following error estimates can be established by
adapting the proof of Proposition 4.2.

Proposition 4.3. Consider the operator ΠhRτ : L2(I,D(A)) → Pτ (I,Wh). Then
there exists a constant c > 0 such that for every u ∈ H2,1(I) there holds

‖ΠhRτu− u‖L∞(I,X) ≤ c(
√
τ + h)‖u‖H2,1(I)

‖ΠhRτu− u‖L2(I,X) + h‖∇ΠhRτu−∇u‖L2(I,X) ≤ c(τ + h2)‖u‖H2,1(I).

These estimates are also valid when ΠhRτ is replaced by PhRτ : L2(I,D(A)) →
Pτ (I, Vh).
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4.2. Fully Discrete Optimal Control Problem. Here, we present the
full space-time discretization of the optimal control problem (P). Given a control
q ∈ Q and discrete initial data (u0h, zσ) ∈ Wh × Pτ (Ir,Wh), consider the following
discrete problem: Find uσ =

∑Nτ
k=1 u

k
h1Ik ∈ Pτ (I, Vh) such that for k = 1, . . . , Nτ

(dτu
k
h, ϕh)X + ν(∇ukh,∇ϕh)X

= b(uk−Nrh , ϕh, u
k−1
h ) +

1

τ

∫
Ik

(fσ(t) + q(t), ϕh)X dt ∀ϕh ∈ Vh,

ujh = zjh for j = 1−Nr, . . . , 0,

(4.3)

where dτu1
h := τ−1(u1

h − u0h) and dτukh := τ−1(ukh − uk−1
h ) for k = 2, . . . , Nτ . Notice

that the initial data u0h is only applied at the first time step, while the history
zσ was utilized in the trilinear form b. This is an implicit-explicit scheme in the
sense that the Laplacian and delay are discretized implicitly, while the convection
term is discretized explicitly. More precisely, on each interval Ik, the following
approximations were adapted:∫

Ik

(∇u(t),∇ϕh) dt ≈ τ(∇u(tk),∇ϕh)∫
Ik

b(ur(t), ϕh, u(t)) dt ≈ τb(ur(tk), ϕh, u(tk−1)).

The scheme (4.3) is one of the simplest possible discretization of the state equation
in (P), where it is possible to prove stability and error estimates. Observe that the
matrices of the corresponding linear system to (4.3) are the same at every time
step. This will also be the case of the discrete adjoint problem below. For gradient-
based optimization algorithms, where one has to solve both the discrete state and
adjoint equations in order to get a directional derivative, this is advantageous. For
instance, one can pre-factorize the matrix before doing the primal and dual solvers
for efficiency.

As with the continuous case, we will set uσ = zσ on Ωr so that uσ ∈ L2(Jr,Wh),
that is,

uσ =
1−Nr∑
k=0

z−kh 1I−k +
Nτ∑
k=1

ukh1Ik . (4.4)

We note that (4.3) is similar to the one presented in [51], the main difference is that
the trilinear term there is b(uk−1−Nr

h , ϕh, u
k−1
h ), that is, the convection is discretized

explicitly. Also, spatial discretization was not considered. The one given in (4.3) is a
natural choice based on (4.4), where the solution and the history of the continuous
problem are evaluated at the right endpoint of the interval Ik for each k = 1 −
Nr, . . . , Nτ . This is also suitable in the case when the initial data and history are
not compatible. Discontinuous Galerkin time-schemes of arbitrary order for the 2D
and 3D Navier–Stokes equation can be found in [16].

With regard to the initial data, history, and source term, we shall take the ap-
proximations u0h = Πhu0 ∈ Wh, zσ = RτΠhz ∈ Pτ (I,Wh), and fσ = RτΠhf ∈
Pτ (Ir,Wh). Thanks to (A1), (A2), (A5), and Proposition 4.3, there is a constant
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c > 0 independent on σ such that

‖u0h − u0‖X + h‖u0h − u0‖W ≤ ch2‖Au0‖H (4.5)

‖zσ − z‖L2(Ir,X) + h(‖zσ − z‖L∞(Ir,X) + ‖zσ − z‖L2(Ir,W )) ≤ ch2‖z‖H2,1(Ir) (4.6)

‖fσ − f‖L2(I,X) + h(‖fσ − f‖L∞(I,X) + ‖fσ − f‖L2(I,W )) ≤ ch2‖f‖H2,1(I). (4.7)

The existence and uniqueness of uσ ∈ Pτ (I, Vh) satisfying (4.3) follows imme-
diately from the Lax-Milgram Lemma and by induction. In fact, it is enough to
observe that the finite-dimensional square system for each k is injective. Let us
define the discrete control-to-state operator Sσ : Q → Pτ (I, Vh) by Sσ(q) = uσ
if and only if uσ is the solution of (4.3). By the discrete inf-sup condition (A4),
(4.3) is equivalent to the problem of finding a pair (uσ, pσ) ∈ Pτ (I,Wh)×Pτ (I,Mh)
satisfying the following system of mixed problems:

(dτu
k
h,ϕh)X + ν(∇ukh,∇ϕh)X − (divϕh, p

k
h)L2 + (div ukh, ρh)L2

= b(uk−Nrh , ϕh, u
k−1
h ) +

1

τ

∫
Ik

(fσ(t) + q(t), ϕh)X dt ∀(ϕh, ρh) ∈ Wh ×Mh,

ujh = zjh for j = 1−Nr, . . . , 0,
(4.8)

for each k = 1, . . . , Nτ , see [8]. The scheme is thus conforming with respect to W
but not with V , since Wh ⊂ W while Vh 6⊂ V . Whereas (4.3) is used in the analysis,
the more practical mixed problem (4.8) is the one that is utilized in the numerical
implementation.

Remark 4.4. The discrete solution operator Sσ is invariant under left composition
by PhRτ , that is, Sσ = SσPhRτ as a map from Q into Pτ (I, Vh).

We shall take Qσ := Pτ (I,Wh) ⊂ Q as the discretization of the control space Q.
The fully discrete optimal control problem is then given by

min
qσ∈Qσ

jσ(qσ) (Pσ)

where jσ : Pτ (I, Vh)→ R is the discrete analogue of j given by

jσ(qσ) =
1

2

∫
I

αΩT ‖uσ − udσ‖2
X + αR‖∇ × uσ‖2

L2 dt+
αT
2
‖uσ(T )− uTh‖2

X +
α

2
‖qσ‖2

Q

=
τ

2

Nτ∑
k=1

(αΩT ‖ukh − ukdh‖2
X + αR‖∇ × ukh‖2

L2) +
αT
2
‖uNτh − uTh‖2

X +
ατ

2

Nτ∑
k=1

‖qkh‖2
X

with uσ = Sσ(qσ) ∈ Pτ (I, Vh), udσ = ΠhRτud ∈ Pτ (I,Wh), and uTh = ΠhuT ∈ Wh.
Again, from (A1), (A2), (A5), and Proposition 4.3, the following error estimates for
the target data hold for some constant c > 0 independent on σ:

‖uTh − uT‖X + h‖uTh − uT‖W ≤ ch2‖AwT‖H (4.9)

‖udσ − ud‖L2(I,X) + h(‖udσ − ud‖L∞(I,X) + ‖udσ − ud‖L2(I,W )) ≤ ch2‖ud‖H2,1(I).
(4.10)

The existence of a global solution to the finite-dimensional optimization problem
(Pσ) is immediate since jσ is continuous and coercive, that is, jσ(qσ) → ∞ as
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‖qσ‖Q →∞. We will see later that replacing Qσ by Pτ (I, Vh) leads to an equivalent
problem, see Remark 4.13 below.

4.3. Error Estimates for the Discrete State Equation. In this sub-
section, we analyze the discrete state equation (4.3) and prove error estimates. First,
let us establish the local boundedness of solutions.

Theorem 4.5. Let q ∈ Q. If uσ = Sσ(q), then there exists a continuous function
c > 0 independent of σ such that

‖uσ‖L∞(I,X) + ‖uσ‖L2(I,W ) ≤ c(‖q‖Q, ‖f‖L2(I,X), ‖u0‖H , ‖z‖L∞(Ir,H)∩L2(Ir,V )).
(4.11)

Proof. Let û0
h := u0h and ûkh := ukh for k = 1, . . . , Nτ so that dτukh = τ−1(ukh− ûk−1

h ).
Taking the test function ϕh = 2τukh in (4.3) and using the equation 2(v − w, v)X =
‖v‖2

X − ‖w‖2
X + ‖v − w‖2

X , we obtain for k = 1, . . . , Nτ that

‖ukh‖2
X − ‖ûk−1

h ‖2
X + ‖ukh − ûk−1

h ‖2
X + 2ντ‖∇ukh‖2

X

≤ 2τb(uk−Nrh , ukh, u
k−1
h ) + 2

∫
Ik

(fσ(t) + q(t), ukh)X dt. (4.12)

We can estimate the second term on right hand side using (A2) and the Young and
Poincaré inequalities according to

2

∫
Ik

(fσ(t) + q(t), ukh)X dt ≤ c

ν

∫
Ik

‖f(t)‖2
X + ‖q(t)‖2

X dt+
ντ

2
‖∇ukh‖2

X . (4.13)

Given ε > 0, by the Hölder, Gagliardo–Nirenberg, and Young inequalities, the
trilinear term is estimated from above as follows:

2τb(uk−Nrh , ukh, u
k−1
h )

≤ ντ

2
‖∇ukh‖2

X + ετ‖uk−Nrh ‖2
X‖∇uk−1

h ‖2
X +

cτ

ε
‖∇uk−Nrh ‖2

X‖uk−1
h ‖2

X . (4.14)

Plugging the estimates (4.13) and (4.14) in (4.12), and then taking the sum over all
k = 1, . . . , j with 1 ≤ j ≤ Nτ , yields the following:

‖ujh‖2
X +

j∑
k=1

ντ‖∇ukh‖2
X ≤ ‖u0h‖2

X + ετ‖z1−Nr
h ‖2

X‖∇z0
h‖2

X +
cτ

ε
‖∇z1−Nr

h ‖2
X‖z0

h‖2
X

+
c

ν

j∑
k=1

∫
Ik

‖f(t)‖2
X dt+

c

ν

j∑
k=1

∫
Ik

‖q(t)‖2
X dt+ ε

j−1∑
k=1

τ‖uk+1−Nr
h ‖2

X‖∇ukh‖2
X

+
c

ε

j−1∑
k=1

τ‖∇uk+1−Nr
h ‖2

X‖ukh‖2
X . (4.15)

From (A2), (4.1) and the boundedness of Rτ : V 2(Ir) → V 2(Ir), there is some
positive constant c independent on σ such that the sum of the first three terms on
the right hand side of (4.15) can be estimated by

‖u0h‖2
X + ετ‖z1−Nr

h ‖2
X‖∇z0

h‖2
X +

cτ

ε
‖∇z1−Nr

h ‖2
X‖z0

h‖2
X
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≤ c

(
‖u0‖2

H +

(
1 +

1

ε2

)
ε‖z‖2

L∞(Ir,H)‖z‖2
L2(Ir,V )

)
. (4.16)

We shall prove by induction that for each ` = 1, . . . , n0, there is a continuous
function c` > 0 such that if

c`(q, f, u0, z) := c`(‖q‖Q, ‖f‖L2(I,X), ‖u0‖H , ‖z‖L∞(Ir,H)∩L2(Ir,V )),

then

max
1≤k≤`Nr

‖ukh‖2
X +

`Nr∑
k=1

ντ

2
‖∇ukh‖2

X ≤ c`(q, f, u0, z). (4.17)

Consider the case ` = 1. From (4.6), we get for some constant c0 > 0 that
‖ukh‖X = ‖zkh‖X ≤ c0‖z‖L∞(Ir,H) for each 1 − Nr ≤ k ≤ 0. Taking ε = ε1 :=
ν/(2c2

0‖z‖2
L∞(Ir,H) + 1), we have

ε

j−1∑
k=1

τ‖uk+1−Nr
h ‖2

X‖∇ukh‖2
X ≤ εc2

0‖z‖2
L∞(Ir,H)

j−1∑
k=1

τ‖∇ukh‖2
X ≤

j−1∑
k=1

ντ

2
‖∇ukh‖2

X

(4.18)

for each 1 ≤ j ≤ Nr. Thus, we obtain from (4.15), (4.16) with ε = ε1, and (4.18)
that

‖ujh‖2
X +

j∑
k=1

ντ

2
‖∇ukh‖2

X ≤ c

(
‖u0‖2

H +

(
1 +

1

ε2
1

)
ν

2c2
0

‖z‖2
L2(Ir,V )

)

+
c

ν

∫
I

‖f(t)‖2
X dt+

c

ν

∫
I

‖q(t)‖2
X dt+

c

ε1

j−1∑
k=1

τ‖∇uk+1−Nr
h ‖2

X‖ukh‖2
X . (4.19)

Let c(ε1, q, f, u0, z) denote the sum of the first three terms on the right hand side.
Applying the discrete Gronwall Lemma 6.2 to the previous inequality, we have

max
1≤k≤Nr

‖ukh‖2
X +

Nr∑
k=1

ντ

2
‖∇ukh‖2

X ≤ eγ1c(ε1, q, f, u0, z),

where

γ1 =
c

ε1

Nr−1∑
k=1

τ‖∇uk+1−Nr
h ‖2

X ≤
c

ε1

‖z‖2
L2(Ir,V ).

The last two inequalities verify (4.17) for ` = 1.
Now, let us assume that (4.17) is satisfied for `. Then by taking

ε = ε`+1 := ν(2 max{c2
0‖z‖2

L∞(Ir,H), c`(q, f, u0, z)}+ 1)−1 < ε1

we obtain (4.18) for every 1 ≤ j ≤ (` + 1)Nr. Thus, adapting the above procedure
leads to

max
1≤k≤(`+1)Nr

‖ukh‖2
X +

(`+1)Nr∑
k=1

ντ

2
‖∇ukh‖2

X ≤ eγ`+1c(ε`+1, q, f, u0, z),
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where c(ε`+1, q, f, u0, z) is the sum of the first three terms on the right hand side
of (4.19), with ε1 replaced by ε`+1. Here, the constant γ`+1 is bounded due to the
induction hypothesis, that is,

γ`+1 =
c

ε`

Nr−1∑
k=1

τ‖∇uk+1−Nr
h ‖2

X +
c

ε`

`Nr−1∑
k=Nr

τ‖∇uk+1−Nr
h ‖2

X

≤ c

ε`

(
‖z‖2

L2(Ir,V ) +
2

ν
c`(q, f, u0, z)

)
.

Hence, (4.17) is also valid when ` is replaced by `+1, completing the induction step.
Therefore, the inequality (4.11) follows from (4.1) and (4.17) with ` = n0 = T/r
since Nτ = n0Nr. �

Remark 4.6. Note that the function c in the previous theorem is not uniform in
terms of the delay parameter r. In fact, according to the proof, c depends on the
ratio T/r, so that in particular c→∞ as r → 0.

We are now in position to prove error estimates for the solutions between the
continuous and discrete state problems. Let us start with the errors in the norms
of L∞(I,X) and L2(I,W ).

Theorem 4.7. Let q ∈ Q, u = S(q), and uσ = Sσ(q). Then there is a constant c > 0
depending continuously on ‖q‖Q, ‖f‖H2,1(I), ‖Au0‖H , and ‖z‖H2,1(Jr) but independent
on σ such that

max
1≤k≤Nτ

‖u(tk)− ukh‖X + ‖u− uσ‖L∞(Jr,X) + ‖u− uσ‖L2(Jr,W ) ≤ ch. (4.20)

Proof. Since u − uσ = z − zσ in Ωr, it is enough to prove (4.20) with Jr replaced
by I according to (4.6). Define ūσ ∈ L2(Jr, Vh) such that ūkh = Phu(tk) for each
k = 1 − Nr, . . . , Nτ and split the error into u − uσ = (u − ūσ) + (ūσ − uσ). From
Proposition 4.2, it holds that

‖u− ūσ‖L∞(I,X) + ‖u− ūσ‖L2(I,W ) ≤ ch. (4.21)

In particular, this estimate implies

max
1≤k≤Nτ

‖u(tk)− ūkh‖X ≤ max
1≤k≤Nτ

‖u− ūσ‖L∞(Ik,X) ≤ ch. (4.22)

Also, by (4.6), Proposition 4.1, and Proposition 4.3

‖zσ − ūσ‖L2(Ir,W ) ≤ ‖zσ − z‖L2(Ir,W ) + ‖u− ūσ‖L2(Ir,W ) ≤ ch. (4.23)

The next step is to derive analogous estimates for the error term eσ := ūσ − uσ.
Taking a test function ϕh ∈ Vh ⊂ W in the equation (2.12) and then integrating
over Ik, we obtain that

(Phu(tk)− Phu(tk−1), ϕh)X +

∫
Ik

ν(∇u(t),∇ϕh)X dt−
∫
Ik

(divϕh, p(t))L2 dt

=

∫
Ik

b(ur(t), ϕh, u(t)) dt+

∫
Ik

(f(t) + q(t), ϕh)X dt
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for every k = 1, . . . , Nτ . Let us rewrite the above variational equation as follows:

(dτ ū
k
h, ϕh)X + ν(∇ūkh,∇ϕh)X = b(ūk−Nrh , ϕh, ū

k−1
h )

+
1

τ

∫
Ik

(fσ(t) + q(t), ϕh) dt+
1

τ
Rk
h(ϕh) ∀ϕh ∈ Vh, (4.24)

where dτ ū1
h = τ−1(ū1

h − Phu0), dτ ūkh = τ−1(ūkh − ūk−1
h ) for k = 2, . . . , Nτ , and the

remainder term Rk
h(ϕh) is given by

Rk
h(ϕh) =

∫
Ik

ν(∇ūkh −∇u(t),∇ϕh)X dt+

∫
Ik

(divϕh, p(t)− Γhp(t))L2 dt

+

∫
Ik

b(ur(t), ϕh, u(t)− ūk−1
h ) dt+

∫
Ik

b(ur(t)− ūk−Nrh , ϕh, ū
k−1
h ) dt

+

∫
Ik

(f(t)− fσ(t), ϕh)X dt.

Here, we used the fact that (divϕh, Γhp)L2(Ik,L2(Ω)) = 0 since ϕh ∈ Vh.
Let ê0

h := Phu0 − u0h and êkh := ekh = ūkh − ukh for k 6= 0. Subtracting (4.3)
from (4.24) and then choosing the test function ϕk = 2τekh, we get the following
recurrence relation for the errors:

‖ekh‖2
X − ‖êk−1

h ‖2
X + ‖ekh − êk−1

h ‖2
X + 2ντ‖∇ekh‖2

X

= 2τb(ek−Nrh , ekh, ū
k−1
h ) + 2τb(uk−Nrh , ekh, e

k−1
h ) + 2Rk

h(e
k
h) (4.25)

for each k = 1, . . . , Nτ . Using the Gagliardo–Nirenberg and Young inequalities, we
can estimate the trilinear terms in (4.25) as follows:

2τb(ek−Nrh , ekh, ū
k−1
h ) ≤ ντ

3
‖∇ekh‖2

X + cτ‖∇ek−Nrh ‖2
X‖∇ūk−1

h ‖2
X (4.26)

2τb(uk−Nrh , ekh, e
k−1
h ) ≤ ντ

3
‖∇ekh‖2

X +
cτ

ε
‖∇uk−Nrh ‖2

X‖ek−1
h ‖2

X + ετ‖uk−Nrh ‖2
X‖∇ek−1

h ‖2
X .

(4.27)

From Theorem 4.5 and (4.6), there is a constant c0 > 0 independent on σ such that
‖uk−Nrh ‖X ≤ c0 for every k = 1, . . . , Nτ . Also, note that ‖∇ūkh‖X = ‖∇Phu(tk)‖X ≤
c‖u‖L∞(Jr,V ) for every k = 1 − Nr, . . . , Nτ . By the Cauchy–Schwarz inequality, the
remainder term 2Rk

h(e
k
h) satisfies

2Rk
h(e

k
h) ≤

ντ

3
‖∇ekh‖2

X + c

∫
Ik

‖∇Phu(tk)−∇u(t)‖2
X dt+ c

∫
Ik

‖p(t)− Γhp(t)‖2
M dt

+ c‖ur‖2
L∞(Ik,V )

∫
Ik

‖∇u(t)−∇Phu(tk−1)‖2
X dt+ c

∫
Ik

‖fσ(t)− f(t)‖2
X dt

+ c‖u‖2
L∞(Ik,V )

∫
Ik

‖∇ur(t)−∇Phur(tk)‖2
X dt =:

ντ

3
‖∇ekh‖2

X +

∫
Ik

ρkh(t) dt.

(4.28)

Taking into account (4.26)-(4.28) in (4.25) and choosing ε = ν/(2c2
0), we have

‖ekh‖2
X − ‖êk−1

h ‖2
X + ντ‖∇ekh‖2

X ≤ cτ‖∇ek−Nrh ‖2
X‖u‖2

L∞(Jr,V )

+
2cc2

0

ν
τ‖∇uk−Nrh ‖2

X‖ek−1
h ‖2

X +
ντ

2
‖∇ek−1

h ‖2
X +

∫
Ik

ρkh(t) dt.

Department of Mathematics and Computer Science, College of Science, University of the Philippines Baguio



G. Peralta and J.S. Simon 30 / 60

Getting the sum of the previous inequality over all k = 1, . . . , j with 1 ≤ j ≤ Nτ ,
we deduce the existence of a constant c > 0 independent on σ such that

‖ejh‖2
X +

ν

2

j∑
k=1

τ‖∇ekh‖2
X ≤ ‖ê0

h‖2
X + cτ‖∇z1−Nr

h ‖2
X‖e0

h‖2
X

+ c

j−1∑
k=1

τ‖∇uk+1−Nr
h ‖2

X‖ekh‖2
X + c

j∑
k=1

τ‖∇ek−Nrh ‖2
X + c

j∑
k=1

∫
Ik

ρkh(t) dt. (4.29)

For the first two terms on the right hand side of (4.29), we have ‖ê0
h‖2

X = ‖Πhu0−
Phu0‖2

X ≤ ch4 by (4.5), and τ‖∇z1−Nr
h ‖2

X‖e0
h‖2

X ≤ c‖z‖2
L∞(Ir,V )‖zσ−ūσ‖2

L2(Ir,X) ≤ ch2

by (4.23). To treat the fifth term, we invoke (A2), (4.7), Proposition 4.1, and
Proposition 4.3, so that for each j = 1, . . . , Nτ

j∑
k=1

∫
Ik

ρkh(t) dt ≤
∫
I

ρkh(t) dt ≤ ch2.

Utilizing these estimates in (4.29) and applying the discrete Gronwall Lemma 6.2,
we get that

max
1≤k≤`Nr

‖ekh‖2
X +

`Nr∑
k=1

ντ‖∇ekh‖2
X ≤ ceγ`

(
h2 +

`Nr∑
k=1

τ‖∇ek−Nrh ‖2
X

)
(4.30)

for every ` = 1, . . . , n0, where the constant γ` is given by

γ` = c
`Nr−1∑
k=1

τ‖∇uk+1−Nr
h ‖2

X = c
Nr−1∑
k=1

τ‖∇zk+1−Nr
h ‖2

X + c
`Nr−1∑
k=Nr

τ‖∇uk+1−Nr
h ‖2

X ≤ c

due to (4.6) and Theorem 4.5.
For ` = 1 in the sum on the right hand side of (4.30), one obtains from (4.23)

that
Nr∑
k=1

τ‖∇ek−Nrh ‖2
X = ‖∇zσ −∇ūσ‖2

L2(Ir,X) ≤ ch2.

Using this estimate along with an induction argument on the inequality (4.30), we
have

max
1≤k≤Nτ

‖ūkh − ukh‖X + ‖eσ‖L∞(I,X) + ‖eσ‖L2(I,W ) ≤ ch. (4.31)

Combining the error estimates (4.21), (4.22), and (4.31) leads to (4.20) with I in
place of Jr. �

Let us now prove an error estimate in terms of the norm in L2(I,X). First, let us
state the following lemma for the error estimate of the temporal shift by τ . Since
the proof follows the ideas in Proposition 4.1, the details are omitted.

Lemma 4.8. There exists a constant c > 0 independent on τ such that for every
u ∈ H2,1(Jr) and w ∈ H2,1(Jr), we have

‖u− uτ‖L2(I,X) +
√
τ‖u− uτ‖L∞(I,X) ≤ cτ‖u‖H2,1(Jr)
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‖w − w−τ‖L2(I,X) +
√
τ‖w − w−τ‖L∞(I,X) ≤ cτ‖w‖H2,1(Jr).

Theorem 4.9. Let q ∈ Q, u = S(q), and uσ = Sσ(q). There exists a constant c > 0
depending continuously on ‖q‖Q, ‖f‖H2,1(I), ‖Au0‖H , and ‖z‖H2,1(Jr) but independent
of σ such that

‖u− uσ‖L2(I,X) ≤ ch2. (4.32)

Proof. We shall proceed by an Aubin–Nitsche-type duality argument. We recall
the reader of our stability condition (A5) that will be frequently used in the proof.
Given g ∈ L2(I,X) such that ‖g‖L2(I,X) ≤ 1, Theorem 2.14 implies the existence of
a unique weak solution (w, π) ∈ H2,1(Jr)× L2(I, Y ) to the following dual problem:{

− ∂tw − ν∆w − (ur · ∇)w − (∇w−r)>u−r +∇π = g in ΩT ,

divw = 0 in ΩT , w = 0 on ΓT , w(T ) = 0 in Ω, w = 0 in ΩT+r.
(4.33)

Furthermore, there is a constant c > 0 independent on g, w, and π such that

‖w(0)‖H + ‖w‖H2,1(Jr) + ‖π‖L2(I,Y ) ≤ c. (4.34)

Let wσ ∈ Pτ (Jr, Vh) be given by wkh = Phw(tk−1) for each k = 1, . . . , Nτ + Nr.
Applying (A2) and Proposition 4.1, one can see that

‖w − wσ‖L2(I,X) + h‖w − wσ‖L2(I,W ) + h‖π − Γhπ‖L2(I,M) ≤ ch2. (4.35)

Moreover, we have ‖∇wσ‖L∞(I,X) ≤ c‖∇w‖L∞(I,X) ≤ c‖w‖H2,1(I) ≤ c by the conti-
nuity of the embedding H2,1(I) ⊂ C(Ī , V ) and boundedness of Ph : L∞(I,W ) →
L∞(I,W ).

Denote the error by eσ := u − uσ ∈ L2(Jr,Wh) ⊂ L2(I,W ). Multiplying (4.33)
with the test function eσ, integrating over ΩT , and applying Green’s identity yield∫
I

(g(t), eσ(t))X dt = −
∫
I

(eσ(t), ∂tw(t))X dt+

∫
I

ν(∇eσ(t),∇w(t))X dt

−
∫
I

b(ur(t), w(t), eσ(t)) dt−
∫
I

b(erσ(t), w(t), u(t)) dt

+

∫
[0,r]

b(erσ(t), w(t), u(t)) dt+

∫
I

(div eσ(t), π(t)− Γhπ(t))L2 dt

:= −J1 + J2 − J3 − J4 + J5 + J6. (4.36)

In the last term we used the fact that

(div eσ(t), Γhπ(t))L2 = −(div uσ(t), Γhπ(t))L2 = 0

for almost every t ∈ I since u ∈ L2(I, V ), uσ ∈ L2(I, Vh), and Γhπ ∈ L2(I,Mh).
The last two terms in (4.36) can be immediately estimated from above by

|J6| ≤ c‖∇eσ‖L2(I,X)‖π − Γhπ‖L2(I,M) ≤ ch2 (4.37)

|J5| ≤ c‖z − zσ‖L2(Ir,X)‖∆w‖L2(I,H)‖∇u‖L∞(I,X) ≤ ch2 (4.38)

thanks to (4.6), (4.20), and (4.35).
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Let us consider the first integral in (4.36). Integrating by parts with respect to
time

− J1 = −
∫
I

(u(t), ∂tw(t))X dt+
Nτ∑
k=1

(ukh, w
k+1
h − wkh)X

= (u0 − u0h, Phw(0))X +

∫
I

(∂tu(t), w(t))X dt−
Nτ∑
k=1

(ukh − ûk−1
h , wkh)X =: J7 + J8,

(4.39)

where ûk−1
h is defined as in the proof of Theorem 4.5. According to (4.5) and

(4.34), it holds that |J7| = |(u0 − u0h, Phw(0))X | ≤ ch2. On the other hand, from
the continuous and discrete state equations satisfied by u and uσ, respectively, we
obtain that

J8 =

∫
I

(f(t)− fσ(t), w(t))X dt+

∫
I

(fσ(t) + q(t), w(t)− wσ(t))X dt

−
∫
I

ν(∇u(t),∇w(t))X dt+

∫
I

b(ur(t), w(t), u(t)) dt

+

∫
I

ν(∇uσ(t),∇wσ(t))X dt−
∫
I

b(urσ(t), wσ(t), uτσ(t)) dt

=: J9 + J10 − J11 + J12 + J13 − J14. (4.40)

Here, we used the fact that uτσ|Ik = uτσ(tk) = uσ(tk−1) = uk−1
h , and similarly urσ|Ik =

uk−Nrh . From (4.7), (4.34), and (4.35), we have |J9| + |J10| ≤ ch2. Collecting what
we have obtained in (4.36)-(4.40) gives us∫

I

(g(t), eσ(t))X dt ≤ ch2 + (J2 − J11 + J13) + (J12 − J14 − J3 − J4). (4.41)

The remaining task is to derive estimates on the terms inside the parentheses.
The first group in (4.41) can be easily done with the aid Green’s identity, (4.20),
and (4.35) so that

J2 − J11 + J13 =

∫
I

ν(∇eσ(t),∇w(t)−∇wσ(t))X dt−
∫
I

ν(∆u(t), w(t)− wσ(t))X dt

≤ c‖∇eσ‖L2(I,X)‖∇w −∇wσ‖L2(I,X) + c‖∆u‖L2(I,X)‖w − wσ‖L2(I,X) ≤ ch2.
(4.42)

Due to the explicit discretization of the convection term, we need to shift by τ
the third argument involving the trilinear terms in J12, J3, and J4. This is to match
the form of the term J14. In this direction, we split J12 as follows

J12 =

∫
I

b(ur(t), w(t), u(t)− uτ (t)) dt

+

∫
I

b(ur(t), w(t)− wσ(t), uτ (t)) dt+

∫
I

b(ur(t), wσ(t), uτ (t)) dt. (4.43)

The first two terms on the right hand side satisfy∫
I

|b(ur(t), w(t), u(t)− uτ (t))| dt ≤ c‖∇ur‖L∞(I,X)‖∆w‖L2(I,H)‖u− uτ‖L2(I,X)
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∫
I

|b(ur(t), w(t)− wσ(t), uτ (t))| dt ≤ c‖∇ur‖L∞(I,X)‖∆uτ‖L2(I,H)‖w − wσ‖L2(I,X).

In the second inequality, we used the anti-symmetry of b with respect to the second
and third arguments. Using these inequalities in (4.43) and applying (4.35), Lemma
4.8, and (A5), we have

J12 ≤ ch2 +

∫
I

b(ur(t), wσ(t), uτ (t)) dt. (4.44)

Next, the trilinear term J3 can be equivalently written as

J3 =

∫
I

b(ur(t)− ur−τ (t), w(t), eσ(t)) dt+

∫
I

b(ur−τ (t), w(t)− w−τ (t), eσ(t)) dt

−
∫
I1

b(ur(t)s, w(t), eτσ(t)) dt+

∫
I

b(ur(t), w(t), eτσ(t)) dt. (4.45)

Employing the Hölder inequality and the properties of the trilinear form b to the
first three terms on the right hand side of (4.45), we deduce that∫

I1

|b(ur(t), w(t), eτσ(t))| dt

≤ c
√
τ‖∇ur‖L∞(I1,X)‖∆w‖L2(I1,X)‖eτσ‖L∞(I1,X)∫

I

|b(ur(t)− ur−τ (t), w(t), eσ(t))| dt

≤ c‖ur − ur−τ‖L∞(I,X)‖∆w‖L2(I,X)‖∇eσ‖L2(I,X)∫
I

|b(ur−τ (t), w(t)− w−τ (t), eσ(t))| dt

≤ c‖∆ur−τ‖L2(I,X)‖w − w−τ‖L∞(I,X)‖∇eσ‖L2(I,X).

Again, we utilized in the third inequality the anti-symmetry of b. Plugging these
estimates in (4.45) and then applying Lemma 4.8, (4.20), (4.35), and (A5), we get

J3 ≥ −ch2 +

∫
I

b(ur(t), w(t), eτσ(t)) dt. (4.46)

Finally, for the term J4 we use Lemma 4.8 and (4.20) once again to deduce that

J4 =

∫
I

b(erσ(t), w(t), u(t)− uτ (t)) dt+

∫
I

b(erσ(t), w(t), uτ (t)) dt

≥ −c‖∇erσ‖L2(I,X)‖∆w‖L2(I,H)‖u− uτ‖L2(I,X) +

∫
I

b(erσ(t), w(t), uτ (t)) dt

≥ −ch2 +

∫
I

b(erσ(t), w(t), uτ (t)) dt. (4.47)

Hence, if one applies the estimates (4.44), (4.46), and (4.47), then after some
rearrangement of the trilinear terms the following estimate holds:

J12 − J14 − J3 − J4 ≤ ch2 +

∫
I

b(erσ(t), wσ(t)− w(t), uτ (t)) dt

+

∫
I

b(ur(t), wσ(t)− w(t), eτσ(t)) dt+

∫
I

b(erσ(t), wσ(t), eτσ(t)) dt. (4.48)

Department of Mathematics and Computer Science, College of Science, University of the Philippines Baguio



G. Peralta and J.S. Simon 34 / 60

In virtue of the Hölder inequality, the terms on the right hand side of (4.48) satisfy∫
I

b(erσ(t), wσ(t), eτσ(t)) dt ≤ c‖∇erσ‖L2(I,X)‖∇wσ‖L∞(I,X)‖∇eτσ‖L2(I,X)∫
I

b(ur(t), wσ(t)− w(t), eτσ(t)) dt ≤ c‖∇ur‖L∞(I,X)‖∇wσ −∇w‖L2(I,X)‖∇eτσ‖L2(I,X)∫
I

b(erσ(t), wσ(t)− w(t), uτ (t)) dt ≤ c‖∇erσ‖L2(I,X)‖∇wσ −∇w‖L2(I,X)‖∇uτ‖L∞(I,X).

Substituting these in (4.48) and then recalling the previous estimates (4.20) and
(4.35), we arrive at J12 − J14 − J3 − J4 ≤ ch2. This inequality, together with
those in (4.41) and (4.42), implies (eσ, g)L2(I,X) ≤ ch2 for every g ∈ L2(I,X) with
‖g‖L2(I,X) ≤ 1. Therefore, (4.32) holds true by duality. The proof of the theorem is
now complete. �

4.4. Error Estimates for the Discrete Linearized State Equa-
tion. In this subsection, we consider the discretization of the linearized state
equation. In fact, the resulting scheme will be obtained by taking the derivative
of the discrete solution operator. It is easy to see that the map Sσ belongs to
C∞(Q,Pτ (I, Vh)). Moreover, given a direction g ∈ Q, we have vσ = S ′σ(q)g ∈
Pτ (I, Vh) if and only if vσ =

∑Nτ
k=1 v

k
h1Ik is the solution of

(d̄τv
k
h, ϕh)X + ν(∇vkh,∇ϕh)X = b(uk−Nrh , ϕh, v

k−1
h )

+ b(vk−Nrh , ϕh, u
k−1
h ) +

1

τ

∫
Ik

(g(t), ϕh)X dt ∀ϕh ∈ Vh,

vjh = 0 for j = 1−Nr, . . . , 0.

(4.49)

for every k = 1, . . . , Nτ , where uσ = Sσ(q) and d̄τvkh := τ−1(vkh − vk−1
h ). Similarly, if

g ∈ Q then yσ = S ′′σ(q)[g, g] ∈ Pτ (I, Vh) if and only if for each k = 1, . . . , Nτ
(d̄τy

k
h, ϕh)X + ν(∇ykh,∇ϕh)X = b(uk−Nrh , ϕh, y

k−1
h )

+ b(yk−Nrh , ϕh, u
k−1
h ) + 2b(vk−Nrh , ϕh, v

k−1
h ) ∀ϕh ∈ Vh,

yjh = 0 for j = 1−Nr, . . . , 0,

(4.50)

where vσ = S ′σ(q)g and uσ = Sσ(q). In the succeeding discussions, we deal with the
error estimates for the solutions of (2.20) and (4.49).

Theorem 4.10. Let q ∈ Q, g ∈ Q, uσ = Sσ(q), and vσ = S ′σ(q)g. Then there exists
a continuous function c > 0 such that for every σ, we have

‖vσ‖L∞(I,X) + ‖vσ‖L2(I,W ) ≤ c(‖uσ‖L∞(Jr,X)∩L2(Jr,W ))‖g‖Q. (4.51)

Proof. Taking the test function ϕh = 2τvkh in (4.49) and using the Young inequality,
we obtain for k = 1, . . . , Nτ that

‖vkh‖2
X − ‖vk−1

h ‖2
X + ‖vkh − vk−1

h ‖2
X + 2ντ‖∇vkh‖2

X

≤ 2τb(uk−Nrh , vkh, v
k−1
h ) + 2τb(vk−Nrh , vkh, u

k−1
h ) +

∫
Ik

(g(t), vkh)X dt
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≤ ντ‖∇vkh‖2
X + ετ‖uk−Nrh ‖2

X‖∇vk−1
h ‖2

X +
cτ

ε
‖∇uk−Nrh ‖2

X‖vk−1
h ‖2

X

+
cτ

ε
‖vk−Nrh ‖2

X‖∇uk−1
h ‖2

X + ετ‖∇vk−Nrh ‖2
X‖uk−1

h ‖2
X +

c

ν

∫
Ik

‖g(t)‖2
X dt.

Let us choose 0 < ε < ν(4‖uσ‖L∞(Jr,X) + 1)−1. Thus, ε‖uk−Nrh ‖2
X ≤ ν/4 and

ε‖uk−1
h ‖2

X ≤ ν/4 for every k = 1, . . . , Nτ . Given 1 ≤ j ≤ Nτ , take the sum of
the above inequality over all k = 1, . . . , j and use v0

h = 0 so that

‖vjh‖2
X +

j∑
k=1

ντ

2
‖∇vkh‖2

X ≤
c

ν

j∑
k=1

∫
Ik

‖g(t)‖2
X dt

+
c

ε

j∑
k=1

τ‖∇uk−Nrh ‖2
X‖vk−1

h ‖2
X +

c

ε

j∑
k=1

τ‖∇uk−1
h ‖2

X‖vk−Nrh ‖2
X .

By the discrete Gronwall Lemma 6.2, recalling that vkh = 0 for every k = 1 −
Nr, . . . , 0, we have

max
1≤k≤Nτ

‖vkh‖2
X +

Nτ∑
k=1

ντ

2
‖∇vkh‖2

X ≤ ceγ‖g‖2
Q, (4.52)

where the constant γ is given by

γ =
c

ε

Nτ∑
k=1

τ‖∇uk−Nrh ‖2
X +

c

ε

Nτ∑
k=1

τ‖∇uk−1
h ‖2

X ≤ c‖uσ‖2
L2(Jr,W ). (4.53)

The inequalities (4.52) and (4.53) imply (4.51). �

Theorem 4.11. Let q ∈ Q, g ∈ Q, v = S ′(q)g, and vσ = S ′σ(q)g. Then there is
a constant c > 0 depending continuously on ‖q‖Q, ‖g‖Q, ‖f‖H2,1(I), ‖Au0‖H , and
‖z‖H2,1(Jr) so that for every σ

max
1≤k≤Nτ

‖v(tk)− vkh‖X + ‖v − vσ‖L∞(Jr,X) + ‖v − vσ‖L∞(Jr,W ) ≤ ch. (4.54)

Furthermore, we also have

‖v − vσ‖L2(I,X) ≤ ch2. (4.55)

Proof. Since both v and vσ vanish on Ir, we only need to prove (4.54) with Jr
replaced by I. Let u = S(q), uσ = Sσ(q), and ūσ ∈ Pτ (Jr,Wh) with ūkh = Phu(tk)
for each k = 1 − Nr, . . . , Nτ . Also, define v̄σ ∈ L2(Jr, Vh) by v̄kh = Phv(tk) for
k = 1−Nr, . . . , Nτ . Split the error according to v − vσ = (v − v̄σ) + (v̄σ − vσ). By
construction of v̄σ, we immediately have

max
1≤k≤Nτ

‖v(tk)− v̄kh‖X + ‖v − v̄σ‖L∞(I,X) + ‖v − v̄σ‖L2(I,W ) ≤ ch. (4.56)

Following the proof of Theorem 4.7, now with the linearized state problem (2.20)
and its discrete version (4.49), one obtains that the error term ησ := v̄σ − vσ ∈
Pτ (I, Vh) satisfies the variational equation

(d̄τη
k
h, ϕh)X + ν(∇ηkh,∇ϕh)X = b(ek−Nrh , ϕh, η

k−1
h ) + b(ηk−Nrh , ϕh, e

k−1
h )
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+ b(ek−Nrh , ϕh, v
k−1
h ) + b(uk−Nrh , ϕh, η

k−1
h ) +

1

τ
Rk
h(ϕh) ∀ϕh ∈ Vh,

(4.57)

where eσ = ūσ − uσ and the remainder term Rk
h(ϕh) is now given by

Rk
h(ϕh) =

∫
Ik

ν(∇Phv(tk)−∇v(t),∇ϕh)X dt+

∫
Ik

d(ϕh, $(t)− Γh$(t)) dt

+

∫
Ik

b(vr(t), ϕh, u(t)− Phu(tk−1)) dt+

∫
Ik

b(vr(t)− Phvr(tk), ϕh, Phu(tk−1)) dt

+

∫
Ik

b(ur(t), ϕh, v(t)− Phv(tk−1)) dt+

∫
Ik

b(ur(t)− Phur(tk), ϕh, Phv(tk−1)) dt.

(4.58)

If we take ϕh = 2τηk in (4.57) and apply the Gagliardo–Nirenberg and Young
inequalities, then

‖ηkh‖2
X − ‖ηk−1

h ‖2
X + 2ντ‖∇ηkh‖2

X ≤ ντ‖∇ηkh‖2
X + ετ‖ek−Nrh ‖2

X‖∇ηk−1
h ‖2

X

+
cτ

ε
‖∇ek−Nrh ‖2

X‖ηk−1
h ‖2

X + cτ‖ηk−Nrh ‖2
X‖∇ek−1

h ‖2
X + cτ‖∇ηk−Nrh ‖2

X‖ek−1
h ‖2

X

+ cτ‖ek−Nrh ‖2
X‖∇vk−1

h ‖2
X + cτ‖∇vk−Nrh ‖2

X‖ek−1
h ‖2

X + ετ‖uk−Nrh ‖2
X‖∇ηk−1

h ‖2
X

+
cτ

ε
‖∇uk−Nrh ‖2

X‖ηk−1
h ‖2

X + c|Rk
h(η

k
h)|.

Choose ε > 0 such that 0 < ε < ν(4‖uσ‖L∞(Jr,X) + 1)−1 and 0 < ε <
ν(4‖eσ‖L∞(Jr,X) + 1)−1. Since vσ and ησ are bounded in L∞(Jr, X)∩L2(Jr,W ) and
‖eσ‖L∞(Jr,X) + ‖eσ‖L2(I,W ) ≤ ch, the above inequality implies that, after taking the
sum over all k = 1, . . . , j,

‖ηjh‖2
X +

Nτ∑
k=1

ντ

2
‖∇ηkh‖2

X ≤ ch2 + c

j∑
k=1

|Rk
h(η

k
h)|

+
c

ε

j∑
k=1

τ(‖∇ek−Nrh ‖2
X + ‖∇uk−Nrh ‖2

X)‖ηk−1
h ‖2

X (4.59)

The term Rk
h(η

k
h) can be treated in the same way as with the one given in proof

of Theorem 4.7, and by doing this process we get

c

j∑
k=1

|Rk
h(η

k
h)| ≤ ch2 +

j∑
k=1

ντ

4
‖∇ηkh‖2

X , j = 1, . . . , Nτ . (4.60)

Plugging (4.60) in (4.59) and then applying the discrete Gronwall Lemma, we have

max
1≤k≤Nτ

‖v̄kh − vkh‖X + ‖ησ‖L∞(I,X) + ‖ησ‖L2(I,W ) ≤ ch. (4.61)

Taking the sum (4.56) and (4.61) proves the desired a priori estimate (4.54).
Finally, (4.55) can be established by a duality argument as in Theorem 4.9 with
the same adjoint problem. �
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4.5. Error Estimates for the Discrete Adjoint Equation. Let
uσ = Sσ(q) be the solution of the discrete state equation (4.3). The fully dis-
cretized adjoint problem that we consider is the following: Find wσ =

∑Nτ
k=1w

k
h1Ik ∈

Pτ (I, Vh) such that for k = Nτ , . . . , 1
(d−τw

k
h, ψh)X + ν(∇ψh,∇wkh)X = b(uk+1−Nr

h , wk+1
h , ψh) + b(ψh, w

k+Nr
h , uk−1+Nr

h )

= αΩT (ukh − ukdh, ψh)X + αR(∇× ukh,∇× ψh)L2 ∀ψh ∈ Vh,
wjh = 0, for j = Nτ + 1, . . . , Nτ +Nr.

(4.62)

where the forward difference operator d−τ is defined by

d−τw
k
h :=

{
τ−1(wNτh − αT (uNτh − uTh)) if k = Nτ ,

τ−1(wkh − wk+1
h ) if k = Nτ − 1, . . . , 1.

The existence and uniqueness of solution to this problem follows immediately since
the corresponding bilinear form is coercive for each k. Let us introduce the discrete
control-to-adjoint state operator Dσ : Q → Pτ (I, Vh) by Dσ(q) = wσ if and only if
wσ is the solution of (4.62). The following lemma is the discrete versions of (3.1)
and (3.2).

Lemma 4.12. The action of the first and second derivatives of jσ : Q→ R at q ∈ Q
in a direction g ∈ Q are given by

j′σ(q)g =

∫
I

(wσ + αq, g)X dt

j′′σ(q)[g, g] =

∫
I

αΩT ‖vσ‖2
X + αR‖∇ × vσ‖2

L2 + 2b(vrσ, wσ, v
τ
σ) dt+ αT‖vσ(T )‖2

X + α‖g‖2
Q

where vσ = S ′σ(q)g and wσ = Dσ(q).

Proof. From the chain rule and the fact that vσ and wσ are constants with respect
to time on each subinterval Ik, it follows that

j′σ(q)g = τ
Nτ∑
k=1

[αΩT (ukh − ukdh, vkh)X + αR(∇× ukh,∇× vkh)L2 ]

+ αT (uNτh − uTh, vNτh )X + α(q, g)Q.

Let Iσ := j′σ(q)g − α(q, g)Q. Taking the test function ψh = τvkh in the discrete
adjoint problem (4.62) and getting the sum over all k = 1, . . . , Nτ , we have

Iσ = (wNτh , vNτh )X +
Nτ−1∑
k=1

(wkh − wk+1
h , vkh)X +

Nτ∑
k=1

ντ(∇vkh,∇wkh)X

−
Nτ∑
k=1

τ [b(uk+1−Nr
h , wk+1

h , vkh) + b(vkh, w
k+Nr
h , uk−1+Nr

h )]

=
Nτ∑
k=1

[(vkh − vk−1
h , wkh)X + ντ(∇vkh,∇wkh)X ]
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−
Nτ∑
k=1

τ [b(uk−Nrh , wkh, v
k−1
h ) + b(vk−Nrh , wkh, u

k−1
h )]

=
Nτ∑
k=1

∫
Ik

(g(t), wkh)X dt =

∫
I

(wσ(t), g(t))X dt

since vkh = 0 for k = 1 − Nτ , . . . , 0 and wkh = 0 for k = Nτ + 1, . . . , Nτ + Nr. This
proves the case of the first directional derivative. The second directional derivative
can be handled in a similar way using (4.50). �

Remark 4.13. If q?σ is a solution to (Pσ), then q?σ = −α−1Dσ(q?σ) ∈ Pτ (I, Vh).
Thus, (Pσ) is equivalent to the minimization problem minqσ∈Pτ (I,Vh) jσ(qσ). Indeed,
for a solution q?σ of (Pσ), it holds that

min
qσ∈Pτ (I,Vh)

jσ(qσ) ≤ jσ(q?σ) = min
qσ∈Pτ (I,Wh)

jσ(qσ).

The reverse inequality follows from the fact that Pτ (I, Vh) ⊂ Pτ (I,Wh).

We have the following local boundedness of the discrete control-to-adjoint oper-
ator Dσ. The proof is omitted since it is similar to the discrete linearized problem
(4.49), see Theorem 4.10.

Theorem 4.14. Let q ∈ Q, uσ = Sσ(q), and wσ = Dσ(q). Then there exists a
continuous function c > 0 such that for every σ > 0 we have

‖wσ‖L∞(I,X) + ‖wσ‖L2(I,W )

≤ c(‖uσ‖L∞(Ir,X)∩L2(I,W ))(‖uσ − udσ‖L2(I,X) + ‖uNτh − uTh‖X + ‖∇ × uσ‖L2(I,L2(Ω))).

In the sequel, we shall derive error estimates by following the procedure already
developed in the previous subsections. Recall that we do not have the compatibility
of the terminal data for the adjoint problem if αT > 0.

Theorem 4.15. Let q ∈ Q, w = D(q), and wσ = Dσ(q). There exists a constant
c > 0 depending continuously on ‖q‖Q, ‖f‖H2,1(I), ‖Au0‖H , ‖z‖H2,1(Jr), ‖AuT‖H ,
and ‖ud‖H2,1(I) such that for every σ, we have the error estimate

max
1≤k≤Nτ

‖w(tk−1)− wkh‖X + ‖w − wσ‖L∞(I,X) + ‖w − wσ‖L2(I,W ) ≤ ch. (4.63)

Proof. Let w̄σ ∈ L2(Jr, Vh) with w̄kh = Phw(tk−1) for k = 1, . . . , Nτ and w̄h,k = 0 for
k = Nτ + 1, . . . , Nτ + Nr. Also, let ūσ ∈ L2(Jr,Wh) be as in the proof of Theorem
4.7. As usual, split the error by w − wσ = (w − w̄σ) + (w̄σ − wσ). By Proposition
4.1, we have

max
1≤k≤Nτ

‖w(tk−1)− w̄kh‖X + ‖w − w̄σ‖L∞(I,X) + ‖w − w̄σ‖L2(I,W ) ≤ ch. (4.64)

Multiplying the continuous adjoint problem (2.38) by the test function ψh ∈ Vh ⊂
W and then integrating over Ik × Ω, we deduce that

(Phw(tk−1)− Phw(tk), ψh)X +

∫
Ik

ν(∇ψh,∇w(t))X dt−
∫
Ik

(divψh, π(t)) dt
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=

∫
Ik

b(ur(t), w(t), ψh) dt+

∫
Ik

b(ψh, w
−r(t), u−r(t)) dt

+

∫
Ik

αΩT (u(t)− ud(t), ψh)X dt+

∫
Ik

αR(∇× u(t),∇× ψh)L2 dt

for each k = Nτ , . . . , 1. This equation can be rewritten as follows:

(d−τ w̄
k
h, ψh)X + ν(∇ψh,∇w̄kh)X

= b(ūk+1−Nr
h , w̄k+1

h , ψh) + b(ψh, w̄
k+Nr
h , ūk−1+Nr

h ) +
1

τ
Rk
h(ψh) (4.65)

where d−τ w̄Nτh := τ−1(w̄Nτh − αT (u(T ) − uT )), d−τ w̄kh := τ−1(w̄kh − w̄k+1
h ) for k =

Nτ − 1, . . . , 1, and the residual term Rk
h is given by

Rk
h(ψh) =

∫
Ik

ν(∇w̄kh −∇w(t),∇ψh)X dt−
∫
Ik

(divψh, π(t)− Γhπ(t)) dt

+

∫
Ik

b(ur(t), w(t), ψh)− b(ūk+1−Nr
h , w̄k+1

h , ψh) dt

+

∫
Ik

b(ψh, w
−r(t), u−r(t))− b(ψh, w̄k+Nr

h , ūk−1+Nr
h ) dt

+

∫
Ik

αΩT ((u(t)− ūkh)− (ud(t)− ukdh), ψh)X dt

+

∫
Ik

αR(∇× (u(t)− ūkh),∇× ψh)L2 dt.

Let eσ := ūσ − uσ and ησ := w̄σ − wσ. Taking the difference of (4.62) and (4.65),
we get

(d−τη
k
h, ψh)X + ν(∇ψh,∇ηkh)X = b(ek+1−Nr

h , ηk+1
h , ψh) + b(ψh, η

k+Nr
h , ek−1+Nr

h )

+ b(uk+1−Nr
h , ηk+1

h , ψh) + b(ψh, w
k+Nr
h , ek−1+Nr

h ) +
1

τ
Rk
h(ψh) (4.66)

where d−τηNτh := τ−1(w̄Nτh − w(T ) − αT [(u(T ) − uNτh ) − (uT − uTh)]) and d−τηkh :=
τ−1(ηkh−ηk+1

h ) for k = Nτ−1, . . . , 1. Observe that (4.66) has the same form as (4.57),
however, the superscripts are now in descending order. Nevertheless, one can adapt
the same methods and use the backward version of the discrete Gronwall Lemma
6.2. For this reason, it suffices to derive an estimate for the term Rk

h(η
k
h). Let Ih,k

and Jh,k denote the third and fourth integrals in Rk
h(η

k
h). By (A2), Proposition 4.2,

and Theorem 4.7, for each ε > 0 we have
Nτ∑
k=1

|Rk
h(η

k
h)− Ih,k − Jh,k| ≤ ε

Nτ∑
k=1

ντ‖∇ηkh‖2
X + cεh

2. (4.67)

We are now going to estimate Ih,k and Jh,k. To this end, let us write these terms
by Ih,k = Iah,k + Ibh,k and Ih,k = Jah,k + J bh,k, where

Iah,k + Ibh,k :=

∫
Ik

b(ur(t)− ūk+1−Nr
h , w(t), ηkh) dt+

∫
Ik

b(ūk+1−Nr
h , w(t)− w̄k+1

h , ηkh) dt
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Jah,k + J bh,k :=

∫
Ik

b(ηkh, w
−r(t)− w̄k+Nr

h , u−r(t)) dt

+

∫
Ik

b(ηkh, w̄
k+Nr
h , ūk−1+Nr

h − u−r(t)) dt.

By the Gagliardo–Nirenberg and Hölder inequalities, Iah,k and Ibh,k satisfy the follow-
ing estimates:

|Iah,k| ≤ εντ‖∇ηkh‖2
X + cε‖∇w‖2

L∞(Ik,X)

∫
Ik

‖∇ur(t)−∇Phur(tk+1)‖2
X dt

|Ibh,k| ≤ εντ‖∇ηkh‖2
X + cε‖∇ur‖2

L∞(Ik,X)

∫
Ik

‖∇w(t)−∇Phw(tk)‖2
X dt,

k = Nτ − 1, . . . , 1,

|Ibh,Nτ | ≤ εντ‖∇ηkh‖2
X + cετ‖∇ur‖2

L∞(Ik,X)‖∇w‖2
L∞(INτ ,X).

On the other hand, Jh,k = 0 if k = Nτ , . . . , Nτ −Nr+1, while for k = Nτ −Nr, . . . , 1
we have

|Jah,k| ≤ εντ‖∇ηkh‖2
X + cε‖∇u−r‖2

L∞(Ik,X)

∫
Ik

‖∇w−r(t)−∇w−r(tk−1)‖2
X dt

|J bh,k| ≤ εντ‖∇ηkh‖2
X + cε‖∇w−r‖2

L∞(Ik,X)

∫
Ik

‖∇u−r(t)−∇u−r(tk−1)‖2
X dt.

Combining the previous estimates, taking the sum over all k = 1, . . . , Nτ and then
using (4.67) lead to the following estimate:

Nτ∑
k=1

|Rk
h(η

k
h)| ≤

Nτ∑
k=1

|Rk
h(η

k
h)− Ih,k − Jh,k|+

Nτ∑
k=1

|Ih,k + Jh,k|

≤ 5ε
Nτ∑
k=1

ντ‖∇ηkh‖2
X + cεh

2. (4.68)

If we take ψh = ηkh in (4.66), follow the remarks mentioned above and then take
ε > 0 small enough so that the first term on the right hand side of (4.68) can be
absorbed to the left, then one would eventually arrive at the inequality

max
1≤k≤Nτ

‖w̄kh − wkh‖X + ‖ησ‖L∞(I,X) + ‖ησ‖L2(I,W ) ≤ ch. (4.69)

Therefore, we can see that (4.63) holds true due to (4.64) and (4.69). �

Theorem 4.16. Under the assumptions of the Theorem 4.15, there exists a constant
c > 0 independent on σ such that

‖w − wσ‖L2(I,X) ≤ c(αΩTh+ αR + αT )h. (4.70)

Proof. We again proceed with a duality argument, but now taking advantage of
the error estimates on the solutions of the state and linearized state equations. Let
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g ∈ L2(I,X) with ‖g‖L2(I,X) ≤ 1. Then, according to (3.1) and Lemma 4.12, we
have ∫

I

(w(t)− wσ(t), g(t))X dt = j′(q)g − j′σ(q)g

= αΩT

∫
I

(u(t)− ud(t), v(t))X − (uσ(t)− udσ(t), vσ(t))X dt

+ αR

∫
I

(∇× u(t),∇× v(t))L2 − (∇× uσ(t),∇× vσ(t))L2 dt

+ αT ((u(T )− uT , v(T ))X − (uσ(T )−ΠhuT , vσ(T ))X),

where v = S ′(q)g and vσ = S ′σ(q)g. From the Cauchy–Schwarz inequality and the
error estimates (4.32) and (4.55), we deduce that∫

I

|(u(t), v(t))X − (uσ(t), vσ(t))X | dt

≤ ‖u− uσ‖L2(I,X)‖v‖L2(I,X) + ‖uσ‖L2(I,X)‖v − vσ‖L2(I,X) ≤ ch2∫
I

|(ud(t), v(t))X − (udσ(t), vσ(t))X | dt

≤ ‖ud − udσ‖L2(I,X)‖v‖L2(I,X) + ‖udσ‖L2(I,X)‖v − vσ‖L2(I,X) ≤ ch2.

Using similar decompositions along with the error estimates (4.20) and (4.54), we
get ∫

I

|(∇× u(t),∇× v(t))L2 − (∇× uσ(t),∇× vσ(t))L2| dt ≤ ch

|(u(T ), v(T ))X − (uσ(T ), vσ(T ))X | ≤ ch.

Also, (A2) and (4.54) imply that |(uT , v(T ))X − (ΠhuT , vσ(T ))X | ≤ c(h2 + h) ≤ ch.
Thus, we obtain that (w−wσ, g)L2(I,X) ≤ c(αΩTh+αR+αT )h for every g ∈ L2(I,X)
such that ‖g‖L2(I,X) ≤ 1, and this results into the desired inequality (4.70) by
duality. �

Theorem 4.17. If qσ → q in Q and gσ ⇀ g in Q as σ → 0, then

lim
σ→0

(j′′σ(qσ)[gσ, gσ]− α‖gσ‖2
Q) = j′′(q)[g, g]− α‖g‖2

Q (4.71)

lim inf
σ→0

j′′σ(qσ)[gσ, gσ] ≥ j′′(q)[g, g]. (4.72)

Proof. Let v = S ′(q)g, w = D(q), vσ = S ′σ(qσ)gσ, and wσ = Dσ(qσ). By assump-
tion, {qσ}σ and {gσ}σ are bounded in Q. This implies that both {vσ}σ and {wσ}σ
are bounded in L∞(I,X) ∩ L2(I,W ) by Theorems 4.5, 4.10, and 4.14.

Let ṽσ = S ′(qσ)gσ and v̂σ = S ′(q)gσ, and consider the decomposition vσ − v =
(vσ − ṽσ) + (ṽσ − v̂σ) + (v̂σ − v). By Theorem 4.11, vσ − ṽσ → 0 in L2(I,W )
and vσ(T ) − ṽσ(T ) → 0 in X. Using the mean value theorem and qσ → q in Q,
we have ṽσ − v̂σ → 0 in H2,1(I). As a particular case, ṽσ − v̂σ → 0 in L2(I,W )
and ṽσ(T ) − v̂σ(T ) → 0 in X up to a subsequence due to the compactness of the
embeddings H2,1(I) ⊂ L2(I,W ) and V ⊂ H. For the third difference, v̂σ− v ⇀ 0 in
H2,1(I) by the continuity of the linear map S ′(q) : Q→ H2,1(I) and gσ ⇀ g in Q .
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By compactness of the said embeddings once more, we get v̂σ − v → 0 in L2(I,W )
and v̂σ(T ) − v(T ) → 0 in H up to a subsequence. Therefore, vσ → v in L2(I,W )
and vσ(T )→ v(T ) in X.

Let w̃σ = D(qσ). We get from Theorem 4.15 that wσ − w̃σ → 0 in L2(I,W ).
On the other hand, the stability estimate in Corollary 2.17 implies that w̃σ → w in
H2,1(I). Hence, wσ → w in L2(I,W ) up to a subsequence. We can now pass to the
limit in the trilinear term in j′′σ(qσ)[gσ, gσ], that is,

lim
σ→0

∫
I

b(vrσ(t), wσ(t), vτσ(t))− b(v(t), w(t), v(t)) dt

= lim
σ→0

∫
I

b(vrσ(t)− vr(t), wσ(t), vτσ(t)) dt+ lim
σ→0

∫
I

b(vr(t), wσ(t)− w(t), vτσ(t)) dt

+ lim
σ→0

∫
I

b(vr(t), w(t), vτσ(t)− vτ (t)) dt+ lim
σ→0

∫
I

b(vr(t), w(t), vτ (t)− v(t)) dt = 0.

This implies the limit (4.71). To obtain the inequality (4.72), we just need to
rewrite j′′σ(qσ)[gσ, gσ] = (j′′σ(qσ)[gσ, gσ] − α‖gσ‖2

Q) + α‖gσ‖2
Q, apply (4.71), take the

limit inferior, and then apply the lower semicontinuity of the norm. �

4.6. Error Estimates for the Discrete Optimal Control Prob-
lem. The goal of this subsection is to derive error estimates between the solutions
of the optimal control problems (P) and (Pσ). Here, we follow the strategy devel-
oped in [11, 12]. Let us start with the following lemma with a sequence of controls
that converges weakly.

Lemma 4.18. Let {qσ}σ ⊂ Qσ and q ∈ Q be such that qσ ⇀ q in Q as σ → 0. If
u = S(q) and uσ = Sσ(qσ), then

lim
σ→0

(‖u− uσ‖L2(I,W ) + ‖u(T )− uσ(T )‖X) = 0.

Proof. Let ūσ = S(qσ) and consider u−uσ = (u−ūσ)+(ūσ−uσ). Since qσ is bounded
in Q, it follows from Theorem 4.7 that ‖ūσ − uσ‖L2(I,W ) + ‖ūσ(T )− uσ(T )‖X → 0.
Recall from Theorem 2.10 that S : Q → H2,1(I) is weak-weak continuous, hence
ūσ ⇀ u in H2,1(I). By compactness arguments, one can show up to a subsequence
that ‖u − ūσ‖L2(I,W ) + ‖u(T ) − ūσ(T )‖X → 0, and the conclusion follows from the
triangle inequality. �

Theorem 4.19. For each σ = (τ, h) satisfying (A5), let q?σ be a global solution of
(Pσ). Then {q?σ}σ is bounded in Q. Any weak limit point q̄ ∈ Q of {q?σ}σ as σ → 0
is a solution to (P), and it satisfies q?σ → q̄ in Q and jσ(q?σ)→ j(q̄).

Proof. Suppose that q̂ ∈ Q is a solution of (P) and let qσ = RτPhq̂. Since
q̂ ∈ H2,1(I), it follows from Proposition 4.3 that ‖qσ − q̂ ‖Q → 0. From the previous
lemma, if uσ = Sσ(uσ) and û = S(q̂), then uσ → û in L2(I,W ) and uσ(T ) → û(T )
in X. By construction, udσ → ud in L2(I,X) and uTh → uT in X. These imply
that jσ(qσ) → j(q̂). According to the optimality of q?σ with respect to jσ, we have
‖q?σ‖2

Q ≤ 2
α
jσ(q?σ) ≤ 2

α
jσ(qσ), where the right hand side is bounded for σ > 0. Hence,

{q?σ}σ has a weak limit point in Q.
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Let q̄ ∈ Q be any such weak limit point. Again, invoking the previous lemma and
using the same argument as above, it follows that jσ(q?σ) → j(q̄), and if ū = S(q̄)
then u?σ → ū in L2(I,W ) and u?σ(T ) → ū(T ) in X. From the definitions of j and
jσ, these imply that ‖q?σ‖Q → ‖q̄‖Q, and therefore q?σ → q̄ in Q. Moreover, by the
optimality of q?σ with respect to jσ once more, one has

j(q̄) = lim
σ→0

jσ(q?σ) ≤ lim
σ→0

jσ(qσ) = j(q̂),

and this shows that q̄ is a solution of (P). �

Corollary 4.20. If q? ∈ Q is a strict local solution of (P), then there exists a
sequence {q?σ}σ ⊂ Qσ of solutions to (Pσ) such that q?σ → q? in Q and jσ(q?σ)→ j(q?).

Proof. By assumption, there is δ > 0 such that q? is the only minimizer of j in
Bδ(q

?) := {q ∈ Q : ‖q − q?‖Q < δ}. From the proof of the previous theorem with
q̂ = q?, there is a sequence {q?σ}σ ⊂ Qσ of solutions to (Pσ) in Br(q

?) such that
q?σ → q̄ and jσ(q?σ)→ j(q̄) for some q̄ ∈ Br(q

?). Since q? is the only solution of j in
Br(q

?), it follows that q̄ = q?. �

Let us now prove error estimates for strict local minimizers having coercive second
derivatives.

Theorem 4.21. Suppose that j′(q?)g = 0 for every g ∈ Q and there is a constant
µ > 0 such that j′′(q?)[q, q] ≥ µ‖q‖2

Q for every q ∈ Q, so that q? is a strict local
solution of (P). For each σ = (τ, h) satisfying (A5), let q?σ ∈ Qσ be a solution to
(Pσ) with q?σ → q? in Q. Then for some constant c > 0 independent on σ, we have

‖q? − q?σ‖Q ≤ c[(αΩT + α + 1)h+ αT + αR]h. (4.73)

Proof. The existence of the sequence {q?σ}σ ⊂ Qσ is guaranteed by the previous
corollary. Let q̄?σ := RτPhq

? ∈ Qσ. Since q? = −α−1D(q?) ∈ H2,1(I), we have
‖q?σ− q̄?σ‖Q ≤ ch2 by Proposition 4.3. Let eσ := q̄?σ− q?σ ∈ Qσ and gσ := eσ/‖eσ‖. Up
to a subsequence, gσ ⇀ g in Q for some g ∈ Q. From the mean-value theorem and
the local optimality of q?σ, there is a λσ ∈ (0, 1) such that if qσ := λσ q̄

?
σ + (1− λσ)q?σ,

then

j′σ(q̄?σ)eσ = j′σ(q̄?σ)eσ − j′σ(q?σ)eσ = j′′σ(qσ)[eσ, eσ].

Since qσ → q? in Q, gσ ⇀ g in Q, ‖gσ‖Q = 1, and ‖g‖Q ≤ 1, (4.71) gives us

lim
σ→0

(j′′σ(qσ)[gσ, gσ]− α) = j′′(q?)[g, g]− α‖g‖2
Q ≥ µ− α.

Hence, there exists σ0 > 0 such that j′′σ(qσ)[eσ, eσ] ≥ µ
2
‖eσ‖2

Q whenever |σ| < σ0. By
the local optimality of q? and Qσ ⊂ Q, we have

µ

2
‖eσ‖2

Q ≤ j′σ(q̄?σ)eσ = (j′σ(q̄?σ)eσ − j′σ(q?)eσ) + (j′σ(q?)eσ − j′(q?)eσ). (4.74)

Note that j′σ(q̄?σ)eσ − j′σ(q?)eσ = (Dσ(q̄?σ) − Dσ(q?), eσ)L2(I,X) + α(q̄?σ − q?, eσ)Q
by Lemma 4.12. From the invariance property mentioned in Remark 4.4, one has
Sσ(q?) = Sσ(RτPhq

?) = Sσ(q̄?σ), and consequently Dσ(q̄?σ) = Dσ(q?). Thus,

|j′σ(q̄?σ)eσ − j′σ(q?)eσ| ≤ α‖q̄?σ − q?‖Q‖eσ‖Q. (4.75)
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Similarly, from j′σ(q?)eσ − j′(q?)eσ = (Dσ(q?)−D(q?), eσ)L2(I,X), we obtain

|j′σ(q?)eσ − j′(q?)eσ| ≤ ‖Dσ(q?)−D(q?)‖L2(I,X)‖eσ‖Q. (4.76)

Invoking (4.75) and (4.76) in (4.74) yields

‖q? − q?σ‖Q ≤ ‖q? − q̄?σ‖Q + ‖eσ‖Q

≤ ‖q̄?σ − q?‖Q +
2

µ
(α‖q̄?σ − q?‖Q + ‖Dσ(q?)−D(q?)‖L2(I,X)).

Utilizing ‖q?σ − q̄?σ‖Q ≤ ch2 and Theorem 4.16, we finally obtain (4.73). �

Corollary 4.22. Consider the framework of Theorem 4.21. If u? = S(q?), u?σ =
Sσ(q?σ), w? = D(q?), and w?σ = Dσ(q?σ) are the optimal states and adjoint states
corresponding to q? and q?σ, then there exists c > 0 such that for each σ, we have

‖u? − u?σ‖L2(I,X) + ‖w? − w?σ‖L2(I,X) ≤ c[(αΩT + α + 1)h+ αT + αR]h.

Furthermore, there is a constant c > 0 not depending on σ such that

‖q? − q?σ‖L∞(I,X)∩L2(I,W ) + ‖u? − u?σ‖L∞(I,X)∩L2(I,W )

+ ‖w? − w?σ‖L∞(I,X)∩L2(I,W ) ≤ ch.

Proof. From the mean value theorem, (4.73) and Theorem 4.9, we have

‖u? − u?σ‖L2(I,X) ≤ ‖S(q?)− S(q?σ)‖L2(I,X) + ‖S(q?σ)− Sσ(q?σ)‖L2(I,X)

≤ c‖q? − q?σ‖Q + ch2 ≤ c[(αΩT + α + 1)h+ αT + αR]h.

For the adjoint states, we just need to apply Theorem 4.16, Corollary 2.17 and (4.73)
so that

‖w? − w?σ‖L2(I,X) ≤ ‖D(q?)−D(q?σ)‖L2(I,X) + ‖D(q?σ)−Dσ(q?σ)‖L2(I,X)

≤ c[(αΩT + α + 1)h+ αT + αR]h.

These prove the first error estimate.
The proof of the second error estimate will be carried out with the help of Theorem

4.7 and Theorem 4.15. In the case of the state variables, using the continuity of
the embedding H2,1(I) ⊂ L∞(I,X)∩L2(I,W ) and S ∈ C∞(Q,H2,1(I)) one obtains
that

‖u? − u?σ‖L∞(I,X)∩L2(I,W ) ≤ ‖S(q?)− S(q?σ)‖H2,1(I) + ‖S(q?σ)− Sσ(q?σ)‖L∞(I,X)∩L2(I,W )

≤ c‖q? − q?σ‖Q + ch ≤ ch.

The case of the adjoint variables can be handled in a similar fashion thanks to
Corollary 2.17. Finally, for the controls, we use q?− q?σ = −α−1(w?−w?σ) and apply
the error estimate for the adjoint states. �
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5. Approximation of the Optimal Control Problem
This section deals with the specific aspects of computing numerically a solution to
the fully discrete optimal control problem (Pσ). We shall focus the discussion in
the case of the triangular Taylor–Hood element, however, the adaptation to the
mini-finite element can be carried out in a similar fashion. The resulting finite-
dimensional optimization problem will be an approximation of (Pσ). This is due
to the variational crimes committed from the use of numerical quadrature and the
addition of an artificial compressibility penalty term for the elimination of the pres-
sure. The analysis of additional errors due to these processes is beyond the scope
of the current paper. Nevertheless, artificial compressibility penalizations to the
uncontrolled Navier–Stokes equation without delay has been examined in the series
of papers [13, 14, 15]. There are several available softwares for the implementation
of the finite element method, however, we shall do our own assembly of the finite
element matrices.

5.1. Penalized Finite-Dimensional Approximation. Let Kh = {Kh}
be a shape-regular triangulation of a convex polygonal domain Ω, {xh,s}nphs=1 be the
corresponding set of nodes, and {xh,i}nhi=nph+1

be the set of edge midpoints of the
triangles. Denote by Pk(Kh) the space of all polynomials on Kh with degree at most
k. Consider the finite-dimensional spaces

Mh := {ρh ∈ C(Ω̄) : ρh|Kh ∈ P1(Kh) ∀Kh ∈ Kh}
Yh := {φh ∈ C(Ω̄) : φh|Kh ∈ P2(Kh) ∀Kh ∈ Kh}

and set Wh := Yh × Yh. Let {φh,i}nhi=1 be the Lagrange nodal basis for Yh such that
φh,i(xhj) = δij for every i, j = 1, . . . , nh, where δij is the Kronecker delta symbol.
Similarly, let {ρh,s}nphs=1 be the Lagrange nodal basis for Mh with ρh,s(xh,`) = δs`
for each s, ` = 1, . . . , nph. For i = 1, . . . , nh, let us define ϕh,i := [φh,i, 0]> and
ϕh,nh+i := [0, φh,i]

>, so that {ϕh,i}2nh
i=1 forms a basis for Wh.

Given Kh ∈ Kh, let TKhξ = AKhξ + bKh , where AKh ∈ R2×2 and bKh ∈ R2, be
the affine transformation from the reference triangle Kref , having vertices at (0, 0),
(1, 0) and (0, 1), to the physical triangle Kh. Suppose that {ξ`}g`=1 and {ω`}g`=1

are Gaussian quadrature nodes and weights on Kref . To simplify the formulas, let
ωKh,` := ω`| detAKh|, ρKh,s := ρh,s ◦ TKh , φKh,i := φh,i ◦ TKh , and ϕKh,i := ϕh,i ◦ TKh .

In evaluating the integrals for the contributions of the basis functions in the finite
element matrices, we shall apply the transformation formula from Kh to Kref and
then use Gaussian quadrature. The entries of the mass matrix Ñh ∈ Rnh×nh and
stiffness matrix Ãh ∈ Rnh×nh can be calculated as follows:∫

Ω

φh,iφh,j dx ≈
g∑
`=1

∑
Kh∈Kh

ωKh,`φKh,i(ξ`)φKh,j(ξ`) =: [Ñh]i,j

∫
Ω

∇φh,i · ∇φh,j dx ≈
g∑
`=1

∑
Kh∈Kh

ωKh,`A
−>
Kh
∇ξφKh,i(ξ`) · A−>Kh∇ξφKh,j(ξ`) =: [Ãh]i,j
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for i, j = 1, . . . , nh. These correspond to a component of the velocity field. The
full mass and stiffness matrices are given by Nh := Ñh ⊗ I2 and Ah := Ãh ⊗ I2,
respectively. Here, ⊗ is the tensor product and I2 is the 2× 2 identity matrix.

Write the first and second components of the differential operator A−>Kh∇ξ by
(A−>Kh∇ξ)

x1 and (A−>Kh∇ξ)
x2 , respectively. From this, the entries of the discrete di-

vergence matrix Bh = [Bx1
h Bx2

h ] ∈ Rnph×2nh are computed, for i = 1, . . . , nh and
s = 1, . . . , nph, according to∫

Ω

(∂xaφh,i)ρh,s dx ≈
g∑
`=1

∑
Kh∈Kh

ωKh,`(A
−>
Kh
∇ξ)

xaφKh,i(ξ`)ρKh,s(ξ`) =: [Bxa
h ]s,i, a = 1, 2.

Given an approximation uh =
∑2nh

m=1 uh,mϕh,m ∈ Wh of u ∈ W , where uh,m ∈
R, the entries of the associated convection matrix Ch(uh) ∈ R2nh×2nh and dual
convection matrix Dh(uh) ∈ R2nh×2nh will be determined as follows:∫

Ω

(u · ∇)ϕh,j · ϕh,i dx

≈
g∑
`=1

∑
Kh∈Kh

2nh∑
m=1

ωKh,`uh,m(ϕKh,m(ξ`) · A−>Kh∇ξ)ϕKh,j(ξ`) · ϕKh,i(ξ`) =: [Ch(uh)]i,j∫
Ω

(∇u)>ϕh,i · ϕh,j dx

≈
g∑
`=1

∑
Kh∈Kh

2nh∑
m=1

ωKh,`uh,m(A−>Kh∇ξϕKh,m(ξ`))
>ϕKh,i(ξ`) · ϕKh,j(ξ`) =: [Dh(uh)]i,j

for each i, j = 1, . . . , 2nh. Finally, the matrix Rh ∈ R2Nh×2Nh corresponding to
vorticity has the following entries for each i, j = 1, . . . , 2nh∫

Ω

(∇× ϕh,i)(∇× ϕh,j) dx

≈
g∑
`=1

∑
Kh∈Kh

ωKh,`(A
−>
Kh
∇ξ × ϕKh,i(ξ`))(A−>Kh∇ξ × ϕKh,j(ξ`)) =: [Rh]i,j.

In what follows, a Gaussian quadrature of order 6 having g = 12 nodes on the
reference element will be applied. This is sufficient since this order is the highest
possible degree of a polynomial that can appear in the above integrals with quadratic
basis functions, in particular, for the matrices Ch(uh) and Dh(uh). Further practical
aspects in matrix assembly can be found in [23, 44].

We shall identify Pτ (I,Wh) to RNτ×2nh and Pτ (Ir,Wh) to RNr×2nh . Moreover,
we set qσ = {qkh}Nτk=1 where qkh ∈ R2nh , and similar representation for the elements
of Pτ (Ir,Wh). The discrete state equation we consider is the following: Given
qσ = {qkh}Nτk=1 ∈ RNτ×2nh , u0h ∈ R2nh and zσ = {zjh}1−Nr

j=0 ∈ RNr×2nh , seek uσ =

{ukh}Nτk=1 ∈ RNτ×2nh such that uσ|Γ = 0 and for each k = 1, . . . , Nτ{
(νAh + τ−1Nh + ε−1

p B>h Bh)u
k
h = Ch(u

k−Nr
h )uk−1

h + τ−1Nhû
k−1
h +Nhf

k
h +Nhq

k
h

ujh = zjh j = 1−Nr, . . . , 0,
(5.1)
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where û0
h = u0h and ûk−1

h = uk−1
h for k > 1. Here, the discrete incompressibility

condition Bhuh = 0 has been replaced by Bhuh+εpp
k
h = 0. Note that the additional

error induced from this penalization is of orderO(εp), see [8, Section 4.3] for instance.
In the numerical experiments below, we take the penalty parameter εp = 10−10.

As long as the spatial mesh size h is sufficiently small, the matrix νAh + τ−1Nh +
ε−1
p B>h Bh is symmetric and positive definite, hence the solvability of the linear sys-
tem (5.1) at each time step is guaranteed. For details regarding this matter, we refer
to [48] and [17, Theorem 4.1.2].

For the discrete adjoint equation, we consider the following discretization: Seek
wσ = {wkh}Nτk=1 ∈ RNτ×2nh such that wσ|Γ = 0 and for each k = Nτ , . . . , 1

(νAh + τ−1Nh + ε−1
p B>h Bh)w

k
h = Ch(u

k+1−Nr
h )>wk+1

h +Dh(w
k+Nr
h )uk−1+Nr

h

+ τ−1Nhŵ
k+1
h + αΩT (Nhu

k
h −Nhu

k
dh) + αRRhu

k
h

wjh = 0 j = Nτ + 1, . . . , Nτ +Nr,
(5.2)

where ŵNτ+1
h = αT (uNτh − uTh) and ŵk+1

h = wk+1
h for k < Nτ . Note that (5.1) and

(5.2) are the respective perturbed versions of the mixed problems (4.8) and the one
corresponding to (4.62). The convection matrix Ch(uk−Nrh ) has to be assembled at
each time step in (5.1). We do not store these matrices for (5.2), but instead re-
assemble them in addition to that of Dh(w

k+Nr
h ). Therefore, efficient schemes are

necessary in the construction of these matrices.
In terms of the above finite element matrices, the discrete cost functional can be

computed using the box-rule as follow:

jσ,εp(qσ) :=
αΩT τ

2

Nτ∑
k=1

(ukh − ukdh)>Nh(u
k
h − ukdh) +

αT
2

(uNτh − uTh)>Nh(u
Nτ
h − uTh)

+
αRτ

2

Nτ∑
k=1

uk>h Rhu
k
h +

ατ

2

Nτ∑
k=1

qk>h Nhq
k
h,

where uσ = {ukh}Nτk=1 ∈ RNτ×2nh is the solution of (5.1). One can now formulate the
penalization for (Pσ) as the finite-dimensional optimization problem:

min
qσ∈Pτ (I,Wh)

jσ,εp(qσ). (Pσ,εp)

To seek for a solution to (Pσ,εp), the gradient method of Barzilai and Borwein
(BB) in [5] will be utilized. The algorithm is terminated once there is no significant
change in the cost values and that the derivative is close to zero. More precisely, if
the relative error of the successive cost values and the gradient norm is less than a
prescribed tolerance 0 < εtol � 1, that is, if the condition

max

{
|jσ,εp(q(`)

σ )− jσ,εp(q(`−1)
σ )|

jσ,εp(q
(`)
σ )

, ‖αq(`)
σ + w(`)

σ ‖L2(I,X)

}
< εtol (5.3)

is satisfied, where q(`)
σ and w(`)

σ are the control and adjoint state at the `th iteration.
In each of the experiments below, the control will be initialized to zero and the
second point of the gradient method will be determined by steepest descent. In such
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a case, we look for solutions in a neighborhood of the null control. The analysis of
the Barzilai–Borwein gradient method has been extended recently to the infinite-
dimensional setting in [4] for strictly convex quadratic problems.

5.2. Experimental Order of Convergence. In this subsection, we verify
numerically the orders of convergence presented in the previous section. Following
the procedure in [43], we shall manufacture a reference numerical solution to the
optimal control problem (Pσ,εp).

For the computational domain, we take the unit square Ω = (0, 1)×(0, 1) and put
T = 1, r = 0.5, ν = 1, αΩT = αT = αR = 1, and α = 10−1. Consider the functions

p(t, x1, x2) = sin(πt)(cos(2πx2)− cos(2πx1))

u(t, x1, x2) = cos(πt)[(1− cos(2πx1)) sin(2πx2), sin(2πx1)(cos(2πx2)− 1)]>. (5.4)

We regard u?ref,σ :=
∑Nτ

k=1Πhu(tk)1Ik as our reference optimal state, with p?ref,σ :=∑Nτ
k=1Πhp(tk)1Ik as the associated pressure. Here, Πh is the nodal Lagrange inter-

polation operator. For the history, we put z = u in Ir × Ω and is discretized by
time-averaging and nodal Lagrange interpolation in space, see Section 4.2.

EOC with Mini-Finite (P1-bubble/P1) Element
k ‖u?ref,σk

− u?σk
‖L2(I,X) eock ‖w?ref,σk

− w?σk
‖L2(I,X) eock ‖q?ref,σk

− q?σk
‖L2(I,X) eock

0 5.509948 · 10−2 — 4.568061 · 10−2 — 3.816914 · 10−1 —
1 1.420196 · 10−2 1.956 1.081773 · 10−2 2.078 1.032727 · 10−1 1.886
2 3.570072 · 10−3 1.992 2.663922 · 10−3 2.022 2.633360 · 10−2 1.971
3 8.924269 · 10−4 2.000 6.625920 · 10−4 2.007 6.606980 · 10−3 1.995

k ‖u?ref,σk
− u?σk

‖L2(I,W ) eock ‖w?ref,σk
− w?σk

‖L2(I,W ) eock ‖q?ref,σk
− q?σk

‖L2(I,W ) eock

0 1.815098 · 100 — 1.098782 · 100 — 7.395482 · 100 —
1 9.192071 · 10−1 0.982 4.094915 · 10−1 1.424 3.541439 · 100 1.062
2 4.610771 · 10−1 0.995 1.819815 · 10−1 1.170 1.745271 · 100 1.021
3 2.307294 · 10−1 0.999 8.783346 · 10−2 1.051 8.688125 · 10−1 1.006

k ‖u?ref,σk
− u?σk

‖L∞(I,X) eock ‖w?ref,σk
− w?σk

‖L∞(I,X) eock ‖q?ref,σk
− q?σk

‖L∞(I,X) eock

0 7.936219 · 10−2 — 7.936217 · 10−2 — 5.777529 · 10−1 —
1 2.036783 · 10−2 1.962 2.036772 · 10−2 1.962 1.661747 · 10−1 1.798
2 5.114179 · 10−3 1.994 5.090099 · 10−3 2.001 4.575560 · 10−2 1.861
3 1.277605 · 10−3 2.001 1.268801 · 10−3 2.004 1.201757 · 10−2 1.929

We consider udσ = −u?ref,σ and uTh = −u?ref,σ(T ) as the desired velocities. From
these, the solution w?ref,σ of (5.2) is computed and then q?ref,σ = −α−1w?ref,σ is taken
as the reference optimal control. In order for (u?ref,σ, w

?
ref,σ, q

?
ref,σ) to be a solution

of (Pσ,εp), we set the forcing function fσ = {fkh}Nτk=1 ∈ RNτ×2nh in such a way that
u?ref,σ and q?ref,σ satisfy the discrete state equation (5.1). To investigate the order of
convergence, the step sizes σk = (τk, hk) = (2−2k ·10−1, 21/2−k ·10−1) for k = 0, 1, 2, 3
will be utilized. For these pairs of time steps and mesh sizes, we have τk = 5h2

k, so
that the stability condition (A5) is satisfied.

The mesh generation, matrix assemblies, sparse linear solvers, and visualizations
were done in Python 3.7.6 (Python Software Foundation, https://www.python.org/)
on a 2.3 GHz Intel Core i5 with 8GB RAM. The repository containing
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EOC with Taylor–Hood (P2/P1) Element
k ‖u?ref,σk

− u?σk
‖L2(I,X) eock ‖w?ref,σk

− w?σk
‖L2(I,X) eock ‖q?ref,σk

− q?σk
‖L2(I,X) eock

0 7.163321 · 10−3 — 7.933576 · 10−3 — 7.231624 · 10−2 —
1 1.698009 · 10−3 2.077 1.779201 · 10−3 2.156 1.735902 · 10−2 2.059
2 4.188071 · 10−4 2.019 4.326775 · 10−4 2.040 4.300022 · 10−3 2.013
3 1.043778 · 10−4 2.004 1.074448 · 10−4 2.010 1.072851 · 10−3 2.003

k ‖u?ref,σk
− u?σk

‖L2(I,W ) eock ‖w?ref,σk
− w?σk

‖L2(I,W ) eock ‖q?ref,σk
− q?σk

‖L2(I,W ) eock

0 5.932207 · 10−2 — 6.148310 · 10−2 — 5.529714 · 10−1 —
1 1.307225 · 10−2 2.182 1.334016 · 10−2 2.204 1.299808 · 10−1 2.089
2 3.130027 · 10−3 2.062 3.208756 · 10−3 2.056 3.188526 · 10−2 2.027
3 7.733619 · 10−4 2.017 7.944229 · 10−4 2.014 7.932280 · 10−3 2.007

k ‖u?ref,σk
− u?σk

‖L∞(I,X) eock ‖w?ref,σk
− w?σk

‖L∞(I,X) eock ‖q?ref,σk
− q?σk

‖L∞(I,X) eock

0 1.031764 · 10−2 — 1.045768 · 10−2 — 1.045769 · 10−1 —
1 2.467746 · 10−3 2.064 2.493781 · 10−3 2.068 2.493852 · 10−2 2.068
2 6.088774 · 10−4 2.019 6.149193 · 10−4 2.020 6.148528 · 10−3 2.020
3 1.517279 · 10−4 2.005 1.531064 · 10−4 2.006 1.531007 · 10−3 2.006

Table 1. Experimental order of convergence (EOC) for the errors be-
tween the optimal solutions with reference to the norms of L2(I, L2(Ω)2),
L2(I,H1

0 (Ω)2), and L∞(I, L2(Ω)2) using the triangular mini-finite and
Taylor–Hood elements.

the source codes as well as the iteration histories can be downloaded at
https://github.com/grperalta/nsedelay. An LU factorization of the sys-
tem matrix was obtained via the built-in-function splu in the SciPy package. In the
factorization, a column permutation for sparsity preservation through a minimum
degree ordering on the symmetric structure of the system matrix was used. The
linear systems were solved using the SuperLU option.

The orders of convergence are presented in Table 1. For instance, in the case of
the controls, we compute

eock :=
ln(‖q?ref,σk−1

− q?σk−1
‖L2(I,X)/‖q?ref,σk − q?σk‖L2(I,X))

ln(hk−1/hk)
, k = 1, 2, 3. (5.5)

In the stopping criterion (5.3), we used εtol = 10−6.
As to be expected, the Taylor–Hood finite element performs better than the mini-

element, however, at the expense of additional computing time. In the case of the
mini-element, one can observe more or less a quadratic reduction with respect to the
norms of L2(I, L2(Ω)2) and L∞(I, L2(Ω)2), while a linear reduction in L2(I,H1

0 (Ω)2).
For the Taylor–Hood element, we have a quadratic order in these spaces, which is
better than the one predicted in Corollary 4.22, at least for this example. We
also observe the mesh-independence of the gradient method, that is, the number of
gradient iterations is independent on the considered spatial mesh sizes and temporal
step sizes.

Let us discuss the order of convergence as the Tikhonov regularization parameter
α decreases. For this example, we shall employ the Taylor–Hood finite element with
the step size σ3 = (τ3, h3) = (2−6 · 10−1, 21/2−3 · 10−1). Denote by u?ref,αk , w

?
ref,αk ,
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and q?ref,αk the reference optimal state, adjoint state, and control associated with the
parameter αk = 10−k for k = 0, 1, 2, 3. The results are summarized in Table 2. Here,
the required number of gradient iterations to reach the desired tolerance are given
by 3, 6, 12, and 36. Observe that the reduction rate of the errors in the optimal state
and optimal adjoint state are nearly the same. However, the errors for the optimal
controls are increasing and we have ‖q?ref,αk − q?αk‖ ≈ α−1

k ‖w?ref,αk − w?αk‖ under
the norms considered above. Nevertheless, the latter approximation is consistent
with the optimality condition αq? + w? = 0 relating the optimal control and the
optimal adjoint, see Theorem 3.2. Further investigation is needed to obtain a precise
representation of the order of convergence, or at least a suitable bound, for the
optimal control as α→ 0.

EOC with Taylor–Hood (P2/P1) Element for Decreasing Tikhonov Regularization
k ‖u?ref,αk

− u?αk
‖L2(I,X) eock ‖w?ref,αk

− w?αk
‖L2(I,X) eock ‖q?ref,αk

− q?αk
‖L2(I,X) eock

0 1.218162 · 10−4 — 1.254202 · 10−4 — 1.252901 · 10−4 —
1 1.043778 · 10−4 0.067 1.074447 · 10−4 0.067 1.072851 · 10−3 —
2 4.377482 · 10−5 0.377 4.424767 · 10−5 0.385 4.421008 · 10−3 —
3 6.696397 · 10−6 0.815 6.721729 · 10−6 0.818 6.788698 · 10−3 —

k ‖u?ref,αk
− u?αk

‖L2(I,W ) eock ‖w?ref,αk
− w?αk

‖L2(I,W ) eock ‖q?ref,αk
− q?αk

‖L2(I,W ) eock

0 8.978485 · 10−4 — 9.230519 · 10−4 — 9.220613 · 10−4 —
1 7.733619 · 10−4 0.065 7.944229 · 10−4 0.065 7.932280 · 10−3 —
2 3.437169 · 10−4 0.352 3.442176 · 10−4 0.363 3.438689 · 10−2 —
3 8.627997 · 10−5 0.600 7.176810 · 10−5 0.681 7.214384 · 10−2 —

k ‖u?ref,αk
− u?αk

‖L∞(I,X) eock ‖w?ref,αk
− w?αk

‖L∞(I,X) eock ‖q?ref,αk
− q?αk

‖L∞(I,X) eock

0 1.772242 · 10−4 — 1.791175 · 10−4 — 1.791386 · 10−4 —
1 1.517279 · 10−4 0.067 1.531064 · 10−4 0.068 1.531007 · 10−3 —
2 6.408268 · 10−5 0.374 6.301082 · 10−5 0.386 6.308845 · 10−3 —
3 1.935223 · 10−5 0.520 1.021446 · 10−5 0.790 1.620508 · 10−2 —

Table 2. Experimental order of convergence for the errors between the
optimal solutions with decreasing Tikhonov regularization parameters αk =
10−k for k = 0, 1, 2, 3.

5.3. Velocity Tracking with Local Control. Let us consider the do-
main Ω = (0, 3)× (0, 1) with the control region ω = (0.5, 2.5)× (0.25, 0.75). In this
situation, the control space is given by L2(I, L2(ω)2) and the optimal control and
adjoint state are related by q? = −α−1w?1ω, where 1ω is the indicator function on
ω. For the parameters in the optimal control problem (P), we take T = 1, r = 0.5,
ν = 0.01, αΩT = αT = 1, αR = 0, and α = 10−3. A uniform triangulation of Ω
with 5124 nodes and 9922 triangles will be employed, with the corresponding mesh
size h ≈ 0.034779. Here, the Taylor–Hood finite element is implemented. For the
temporal grid, the chosen step size is τ = 0.01. With these discretizations, the
degrees of freedom for the velocity field is 4033800 ≈ O(106).

The solution of the steady Stokes equation with artificial compressibility and
a random source is taken as the initial data. More precisely, we take u0h =
(νAh + ε−1

p B>h Bh)
−1Nhfh, where u0h|Γ = 0 and −10 ≤ fh ≤ 10 in (5.1), for which
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‖u0h‖L∞ ≈ 0.775. Also, z = 0.5u is the initial history, where u is the function
defined by (5.4). The solution of the uncontrolled Navier–Stokes equation with-
out the delay in the convection term will be the chosen target state. To facilitate
better performance, an alternating steplength selection strategy was employed in
the BB gradient algorithm, see [4, 19] for instance. For the sake of the reader,
the specific method utilized here is presented below. The gradient method con-
verges, under the stopping criterion (5.3) with εtol = 10−5, after 123 iterations with
jσ,εp(q

?
σ) ≈ 3.646 · 10−3 and ‖αq?σ +w?σ‖L2(I×ω)2 ≈ 6.580 · 10−6. One can observe from

Figure 2(b) the non-monotone property of the BB gradient method. We observe
a fast convergence initially, followed by little changes in the cost values, while the
norm of the derivative still oscillates until it reached the required tolerance, see (b)
and (d) of Figure 2. This is a typical characteristic of gradient methods.

Algorithm: Barzilai–Borwein Gradient Method with Alternating Step Size
Selection

1 Set q(0)
σ ← 0 and compute g(0)

σ ← αq
(0)
σ + w

(0)
σ 1ω.

2 Put q(1)
σ ← q

(0)
σ − g(0)

σ , calculate g(1)
σ ← αq

(1)
σ + w

(1)
σ 1ω and set `← 1.

3 while max{|jσ,εp(q(`)
σ )− jσ,εp(q(`−1)

σ )|/jσ,εp(q(`)
σ ), ‖g(`)

σ ‖L2(I×ω)2} ≥ εtol do
4 Choose step size

s` ←
{

(q
(`)
σ − q(`−1)

σ )>(g
(`)
σ − g(`−1)

σ )/|g(`)
σ − g(`−1)

σ |2 if ` is odd,
|q(`)
σ − q(`−1)

σ |2/(q(`)
σ − q(`−1)

σ )>(g
(`)
σ − g(`−1)

σ ) if ` is even.

5 Update the control q(`+1)
σ ← q

(`)
σ − s`g(`)

σ .
6 Update the gradient g(`+1)

σ ← αq
(`+1)
σ + w

(`+1)
σ 1ω.

7 `← `+ 1

The optimal solution at t = 0.1, 0.5, 1.0 are given in Figure 1. A quadric inter-
polation was rendered on the image data for better visualization. The magnitudes
of the velocity field for the Navier–Stokes flow without delay, which is the target
state, and with delay are depicted in parts (a) and (b) of Figure 1, respectively. At
t = 0.1, we somewhat have a turbulent flow from the random force for the Stokes
flow, which is then stabilized due to viscosity. The formation of vortices at t = 0.5
and t = 1.0 in Figure 1(c) is due to the profile of the initial history that acts as a
convective force on the fluid.

Comparing (a) and (c) in Figure 1, one can see that the optimal velocity nearly
matches the target on the region where the control is applied. This is a common
feature for tracking-type problems with local controls, for which the influence of
the control is more significant on the region where it is applied or at least near to
it. From Figure 2(a), we can see that from the start up to approximately before
t = 0.5, the space-time L2-error between the optimal and target velocities increases.
We can also observe from Figure 2(c) that during this period the control is exerted
in an increasing magnitude, which shows a very different control implementation
as compared to the results in [32], where the authors considered the Navier–Stokes
flow without delay.
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Figure 1. Magnitudes of the target velocity (a), uncontrolled velocity
(b), optimal velocity (c), and optimal control (d) at t = 0.1, t = 0.5, and
t = 1.0 in the velocity-tracking problem. Bounding boxes represent the
location of the control region ω.
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‖αq(ℓ)σ + w
(ℓ)
σ ‖L2(I×ω)2

Figure 2. The norms between the difference of the computed optimal
and desired velocities in Ω and ω (a), and the computed optimal control
(c) as functions of time. Parts (b) and (d) show the behavior of the cost
values and gradient norms as functions of the number of iterations in the
BB method.

After the time delay, the residual norm in the control region decreases, and the
rate is faster near the final time. This trend can also be observed for the optimal
control, see Figure 2(c), with the exception that there is an increase due to the
tracking term at the final time in the objective functional. In this scenario, the flow
is dominated by diffusion and convection has little effect. The magnitude of the
control is relatively larger on the edges of ω, which is very natural if one wishes to
steer the flow to a desired target that is outside of ω.

The results discussed above can be improved by choosing a smaller regularization
parameter α. Larger magnitudes for the optimal control will be expected for this
process. In general, this would require more gradient iterations. A higher resolution
of the temporal and spatial mesh will also lead to better results, especially the
tracking part outside of ω.

5.4. Vorticity Minimization with Local Control. Let us consider
the problem of minimizing the vorticity of the fluid flow. The set-up in the previous
subsection will be used, but with the following modifications: αΩT = αT = 0,
αR = 0.1, and εtol = 10−4. For this problem, the BB method terminated after 173
iterations for which jσ,εp(q?σ) ≈ 2.4911 · 10−1 and ‖αq?σ +w?σ‖L2(I×ω)2 ≈ 9.2342 · 10−5.
Further information is provided in Figure 3. Again, we have the non-monotonic
property of the BB gradient algorithm. Notice also that the cost values and gradient
norms in (b) and (d) behave analogously as in the previous subsection.

In Figure 3(c), one can see that the time-evolution for the norms of the optimal
control share similar characteristics as in the velocity-tracking problem, that is,
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more effort is required for t < r. The behavior at t = r can be attributed to the
non-compatibility of the initial data and history.

Snapshots at t = 0.1, 0.5, 1.0 of the magnitudes of the computed optimal state
and control are given in Figure 4. At the early stages, the control forces the flow
inside ω to stabilize, while creating vortices surrounding it. Most of the activity of
the flow is then outside of the control region. In order to minimize the vorticity, the
control needs to exert more work near the boundary of ω until the flow outside is
dissipated.
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(ℓ)
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Figure 3. The norm of the curl of computed optimal state in Ω and ω
as functions of time (a) in the vorticity minimization problem. Here, (b),
(c), and (d) have the same descriptions as in Figure 2.

6. Appendix
In the following, an extension of the Gronwall Lemma that is needed in the analysis
of the state and linearized state equations is presented. The reader is reminded on
the notation of various time intervals in (2.2).

Lemma 6.1. Suppose that a ≥ 0, φ ∈ L∞(Jr), ϕ ∈ L1(Jr), α, β, ψ ∈ L1(I), and
γ ∈ L∞(I) are nonnegative and for a.e. t ∈ I it holds that

φ(t) +

∫ t

0

ϕ(s) ds ≤ a+

∫ t

0

α(s)φ(s) + β(s)φr(s) + γ(s)ϕr(s) + ψ(s) ds. (6.1)

Then there exists a continuous function c > 0 such that

‖φ‖L∞(I) + ‖ϕ‖L1(I) ≤ cT,r,α,β,γ(a+ ‖φ‖L∞(Ir) + ‖ϕ‖L1(Ir) + ‖ψ‖L1(I))

where cT,r,α,β,γ := c(T, r, ‖α‖L1(I), ‖β‖L1(I), ‖γ‖L∞(I)).
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Figure 4. Magnitudes of the optimal velocity (a) and optimal control
(b) at t = 0.1, t = 0.5 and t = 1.0 in the vorticity minimization problem.
Bounding boxes represent the location of the control region ω.

Proof. Let N be the largest positive integer such that (N − 1)r < T ≤ Nr, and set
In := [0, nr] for n = 1, . . . , N . For each n, we shall demonstrate by induction that

‖φ‖L∞(In) + ‖ϕ‖L1(In) ≤ cT,r,α,β,γ(a+ ‖φ‖L∞(Ir) + ‖ϕ‖L1(Ir) + ‖ψ‖L1(In)). (6.2)

Let us verify this for n = 1. Using the assumption (6.1) restricted to t ∈ I1, we can
apply the usual Gronwall Lemma so that

‖φ‖L∞(I1) ≤ (a+ ‖β‖L1(I)‖φ‖L∞(Ir) + ‖γ‖L∞(I)‖ϕ‖L1(Ir) + ‖ψ‖L1(I1))e
‖α‖L1(I) . (6.3)

On the other hand, (6.1) also yields the following estimate

‖ϕ‖L1(I1) ≤ a+ ‖α‖L1(I)‖φ‖L∞(I1) + ‖β‖L1(I)‖φ‖L∞(Ir)

+ ‖γ‖L∞(I)‖ϕ‖L1(Ir) + ‖ψ‖L1(I1). (6.4)

Substituting (6.3) in the second term of the right hand side in (6.4) and then adding
the resulting inequality with (6.3) prove (6.2) for n = 1.

Now, suppose that (6.2) holds for n = k. For t ∈ Ik+1, we obtain from (6.1) that

φ(t) +

∫ t

0

ϕ(s) ds ≤ a+ ‖β‖L1(I) max{‖φ‖L∞(Ik), ‖φ‖L∞(Ir)}

+ ‖γ‖L∞(I)(‖ϕ‖L1(Ik) + ‖ϕ‖L1(Ir)) +

∫ t

0

α(s)φ(s) + ψ(s) ds.
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Thus, applying the Gronwall Lemma once more, one has the estimate

‖φ‖L∞(Ik+1) ≤ (a+ ‖β‖L1(I) max{‖φ‖L∞(Ik), ‖φ‖L∞(Ir)}
+ ‖γ‖L∞(I)(‖ϕ‖L1(Ik) + ‖ϕ‖L1(Ir)) + ‖ψ‖L1(Ik+1))e

‖α‖L1(I)

and as a consequence it follows that

‖ϕ‖L1(Ik+1) ≤ a+ ‖β‖L1(I) max{‖φ‖L∞(Ik), ‖φ‖L∞(Ir)}
+ ‖γ‖L∞(I)(‖ϕ‖L1(Ik) + ‖ϕ‖L1(Ir)) + ‖α‖L1(I)‖φ‖L∞(Ik+1) + ‖ψ‖L1(Ik+1).

The last two inequalities along with the induction hypothesis imply (6.2) for
n = k + 1. This completes the proof of the induction step. �

Next, we recall the following discrete version of the Gronwall Lemma, see [34] for
instance. This is utilized in the error analysis of the fully-discrete optimal control
problem.

Lemma 6.2. Let n ∈ N, a ≥ 0, {ak}nk=1, {bk}nk=1, and {ck}n−1
k=1 be nonnegative

sequences with

aj +

j∑
k=1

bk ≤ a+

j−1∑
k=1

ckak for all j = 1, . . . , n.

Then it holds that

max
1≤k≤l

ak +
l∑

k=1

bk ≤ a exp
( l−1∑
k=1

ck

)
for all l = 1, . . . , n.

7. Conclusion
We showed the existence and regularity of solutions to a distributed optimal control
problem for the 2D Navier–Stokes equation with delay in the convection. A full
discretization of the control problem based on the discontinuous Galerkin method
and mixed finite elements has been studied, and optimal convergence rates were
established using duality arguments. Finally, numerical examples were provided
to validate the order of convergence and to demonstrate the effectiveness of the
theoretical results.

Further analysis is needed to understand the behavior of the optimal solutions as
the Tikhonov regularization parameter α→ 0. Mixed methods based on quadrilat-
eral finite elements and/or higher-order time advancing schemes through multi-step
methods are possible extensions of the numerical scheme proposed in this paper.
Under suitable regularity conditions on the domain, initial data, and initial history,
together with an appropriate stability condition for the spatial and temporal mesh
sizes analogous to (A5), higher convergence rates may be obtained. For instance,
the biquadratic-linear (Q2/P1) velocity-pressure element in [30, 47] could lead to an
optimal convergence rate O(h3) with respect to the space-time L2-norm.
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