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Abstract.
In this paper, we consider the wave equation on a bounded domain with mixed
Dirichlet-impedance type boundary conditions coupled with oscillators on the
Neumann boundary. The system has either a delay in the pressure term of the
wave component or the velocity of the oscillator component. Using the velocity
as a boundary feedback it is shown that if the delay factor is less than that of the
damping factor then the energy of the solutions decay to zero exponentially. The
results are based on the energy method, a compactness-uniqueness argument and
an appropriate weighted trace estimate. In the critical case where the damping
and delay factors are equal, it is shown using variational methods that the energy
decay to zero asymptotically.

2010 Mathematics Subject Classification.
35L20, 47D06, 93D15

Keywords.
Wave equations, acoustic boundary conditions, feedback delays, stabilization,
energy method.

Citation.
G. Peralta, Stabilization of the wave equation with acoustic and delay boundary
conditions, Semigroup Forum 96 (2), pp. 357-376, 2018.
DOI: https://doi.org/10.1007/s00233-018-9930-9

The author would like to thank Georg Propst for his helpful comments
and suggestions. This research is partially supported by the Austrian Science
Fund (FWF) under SFB grant Mathematical Optimization and Applications in
Biomedical Sciences.

Department of Mathematics and Computer Science, University of the Philippines Baguio,
Governor Pack Road, Baguio, 2600 Philippines. Email: grperalta@up.edu.ph.

Disclaimer. This is the preprint version of the submitted manuscript. The contents may
have changed during the peer-review and editorial process. However, the final published version
is almost identical to this preprint. This preprint is provided for copyright purposes only. For
proper citation, please refer to the published manuscript, which can be found at the given link.

https://doi.org/10.1007/s00233-018-9930-9


Table of Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Well-Posedness Through Semigroup Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Stability for the System with Delay in the Wave Component . . . . . . . . . . . . . . . . . 7
Stability for the System with Delay in the Oscillator Component . . . . . . . . . . . . 14
The Cases k = a and D = D0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1. Introduction

Consider an open and bounded domain Ω ⊂ Rn with C2-boundary. This regular-
ity condition on the boundary of Ω is assumed so that classical theory for elliptic
boundary value problems is applicable. Suppose that ∂Ω is the disjoint union of ΓD
and ΓN , that is, ΓD ∪ ΓN = ∂Ω and ΓN ∩ ΓD = ∅, and ΓD,ΓN are nonempty. Also,
assume that there exists a strictly convex function m ∈ C2(Ω) such that ∇m · ν ≤ 0
on ΓN . We analyze the well-posedness and stability property of the wave equation
with acoustic boundary conditions and boundary delay

utt(t, x)−∆u(t, x) = 0, in (0,∞)× Ω,

u(t, x) = 0, on (0,∞)× ΓD,

∂u

∂ν
(t, x)− δt(t, x) = −aut(t− τ, x)− kut(t, x), on (0,∞)× ΓN ,

Mδtt(t, x) +Dδt(t, x) +Kδ(t, x) + ut(t, x) = 0, on (0,∞)× ΓN ,

u(0, x) = u0(x), ut(0, x) = u1(x), in Ω,

ut(t, x) = f(t, x), in (−τ, 0)× ΓN ,

δ(0, x) = δ0(x), δt(0, x) = δ1(x), on ΓN .

(1.1)

Here, τ > 0 is a constant delay parameter and a, k ≥ 0. All throughout this paper,
we assume that M,D,K > 0. For simplicity of exposition we assume that M,D
and K are constants. The case where they depend on x and uniformly bounded
away from zero can be done in a similar manner as in the case when they are
constants. The system (1.1) models the evolution of the velocity potential u of a
fluid contained in the domain Ω where the speed of sound and fluid density are
normalized to one. The boundary of the domain is not rigid, however, each point
reacts like a harmonic oscillator. Assuming that the surface is locally reacting, the
normal displacement δ of the boundary into the domain satisfies the above second
order differential equation. For the wave motion on the boundary ΓN , we assume
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an impedance-type boundary condition with a delay in the pressure term ut. For
more details in the absence of delay we refer to [2].

We can think of the term −kut−aut(·− τ) as a boundary feedback law where the
second term represents delay. Our goal is to prove the exponential stability of the
system when a < k. For the critical case k = a, it is shown that the energy of the
solutions decay asymptotically to zero. This means that the mechanical dissipation
in the oscillator component is strong enough to stabilize the system (1.1). In the
absence of oscillators, stability and instability properties of this model was analyzed
by Nicaise and Pignotti [13]. If there is no delay, the well-posedness of (1.1) using
semigroup theory and the spectral properties of the generator has been studied in
[2]. Works related to the stability or instability properties of wave equations with
interior or boundary delay can be found in [1, 3, 4, 5, 8, 14, 15, 18].

We will also consider the case where the delay occurs at the oscillator and the
feedback law is given by −Dδt in the oscillator equation

utt(t, x)−∆u(t, x) = 0, in (0,∞)× Ω,

u(t, x) = 0, on (0,∞)× ΓD,

∂u

∂ν
(t, x) + ut(t, x)− δt(t, x) = 0, on (0,∞)× ΓN ,

Mδtt(t, x) +D0δt(t− τ, x) +Kδ(t, x)

+ ut(t, x) = −Dδt(t, x), on (0,∞)× ΓN ,

u(0, x) = u0(x), ut(0, x) = u1(x), in Ω,

δ(0, x) = δ0(x), δt(0, x) = δ1(x), on ΓN ,

δt(t, x) = g(t, x), in (−τ, 0)× ΓN .

(1.2)

If D0 > D then we show that the energy of the solution decays to zero exponentially.
In the case D0 = D, the solutions have an asymptotically decaying energy. This is
due to the mechanical dissipation that is present on the Neumann boundary of the
wave motion.

The classical energy of the solutions of (1.1) and (1.2) is defined by
E0(t) = Ew(t) + Eb(t) (1.3)

where
Ew(t) =

1

2

∫
Ω

(|ut(t, x)|2 + |∇u(t, x)|2) dx

represents the kinetic and potential energies of the wave motion while

Eb(t) =
1

2

∫
ΓN

(K|δ(t, x)|2 +M |δt(t, x)|2) dx

are the potential and kinetic energies of the boundary motion. Under the assumption
k > a for (1.1) or D > D0 in the case of (1.2), it is shown that the the energy of
the solutions decay exponentially. The main difficulty in our problem is to have an
observability estimate regarding the initial data for the oscillators, that is,∫

ΓN

(|δ0(x)|2 + |δ1(x)|2) dx ≤ CE(0).

Department of Mathematics and Computer Science, College of Science, University of the Philippines Baguio
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for some C > 0, where E represents the total energy of the system (1.1) or (1.2).
Refer to Section 4 and Section 5 for the exact formulation of the energy E in each of
these cases. This observability estimate is proved thanks to an appropriate weighted
trace estimate, see Lemma 3.3 below.

2. Well-Posedness Through Semigroup Theory

In this section, we prove the existence and uniqueness of solutions of (1.1) and (1.2)
using semigroup theory for bounded linear operators. First let us consider the case
of (1.1). Let H1

ΓD
(Ω) = {u ∈ H1(Ω) : u|ΓD

= 0} be equipped with the inner product

(u1, u2)H1
ΓD

(Ω) =

∫
Ω

∇u1 · ∇u2 dx.

With the Poincaré inequality, the norm corresponding to this inner product is equiv-
alent to the full Sobolev H1-norm.

Define the graph space E(∆) = {u ∈ H1(Ω) : ∆u ∈ L2(Ω)} where ∆ represents
the distributional Laplacian. Equipped with the inner product

(v1, v2)E(∆) =

∫
Ω

(v1v2 +∇v1 · ∇v2 + ∆v1 ∆v2) dx,

E(∆) becomes a Hilbert space. From [9, Section 1.5] there is a generalized trace
operator u 7→ ∂u

∂ν
∈ L(E(∆);H−

1
2 (ΓN)) and we have the following Green’s identity〈

∂u

∂ν
, w

〉
H−

1
2 (ΓN )×H

1
2 (ΓN )

=

∫
Ω

(∆u)w dx+

∫
Ω

∇u · ∇w dx, ∀w ∈ H1
ΓD

(Ω),

where 〈·, ·〉 represents the duality pairing between H−
1
2 (ΓN) and H

1
2 (ΓN).

Define v(t, x) = ut(t, x) for (t, x) ∈ (0,∞)×Ω, z(t, θ, x) = ut(t+θ, x) for (t, θ, x) ∈
(0,∞) × (−τ, 0) × ΓN and σ(t, x) = δt(t, x) for (t, x) ∈ (0,∞) × ΓN . Then (1.1) is
equivalent to the system

ut(t, x)− v(t, x) = 0, in (0,∞)× Ω,

vt(t, x)−∆u(t, x) = 0, in (0,∞)× Ω,

zt(t, θ, x)− zθ(t, θ, x) = 0, in (0,∞)× (−τ, 0)× ΓN ,

u(t, x) = 0, on (0,∞)× ΓD,

∂u

∂ν
(t, x)− σ(t, x) = −az(t,−τ, x)− kv(t, x), on (0,∞)× ΓN ,

δt(t, x)− σ(t, x) = 0, on (0,∞)× ΓN ,

Mσt(t, x) +Dσ(t, x) +Kδ(t, x) + v(t, x) = 0, on (0,∞)× ΓN ,

u(0, x) = u0(x), v(0, x) = u1(x), in Ω,

z(0, θ, x) = f(θ, x), in (−τ, 0)× ΓN ,

δ(0, x) = δ0(x), σ(0, x) = δ1(x), on ΓN .

(2.1)

Department of Mathematics and Computer Science, College of Science, University of the Philippines Baguio
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The system (2.1) is posed in the space of data with finite energies including the
delay term. In this respect, we consider the Hilbert space

X = H1
ΓD

(Ω)× L2(Ω)× L2((−τ, 0)× ΓN)× L2(ΓN)× L2(ΓN)

with the inner product

((u1, v1, z1, δ1, σ1), (u2, v2, z2, δ2, σ2))X =

∫
Ω

(∇u1(x) · ∇u2(x) + v1(x)v2(x)) dx

+

∫ 0

−τ

∫
ΓN

z1(θ, x)z2(θ, x) dx dθ +

∫
ΓN

(Kδ1(x)δ2(x) +Mσ1(x)σ2(x)) dx.

as the state space. Define the linear operator A : D(A) ⊂ X → X by

A


u
v
z
δ
σ

 =


v

∆u
zθ
σ

−M−1(Dσ +Kδ + v)


where

D(A) = {(u, v, z, δ, σ) ∈ X : u ∈ E(∆), v ∈ H1
ΓD

(Ω), z ∈ H1((−τ, 0);L2(ΓN))

∂u

∂ν
= −kv − az(−τ) + σ on ΓN , z(0) = v}.

Then (1.1) can now be phrased as a first order evolution equation in X{
U ′(t) = AU(t), t > 0,

U(0) = (u0, u1, f, δ0, δ1).
(2.2)

Theorem 2.1. The operator A generates a strongly continuous semigroup on X.
For every U0 ∈ D(A) the Cauchy problem (2.2) admits a unique solution

U ∈ C([0,∞);D(A)) ∩ C1([0,∞);X)

where D(A) is equipped with the graph norm.

Proof. To prove the theorem, we use the Lumer-Phillips Theorem in reflexive
Banach spaces, see [7] for example. Let U = (u, v, z, δ, σ) ∈ D(A). Using Green’s
identity and the boundary conditions

(AU,U)X =

∫
Ω

(∇v · ∇u+ (∆u)v) dx+

∫ 0

−τ

∫
ΓN

zθz dx dθ

+

∫
ΓN

Kσδ dx−
∫

ΓN

(Dσ +Kδ + v)σ dx

= − k

∫
ΓN

|v|2 dx− a
∫

ΓN

z(−τ)v +
1

2

∫
ΓN

|v|2 dx

− 1

2

∫
ΓN

|z(−τ)|2 dx−D
∫

ΓN

|σ|2 dx.

Department of Mathematics and Computer Science, College of Science, University of the Philippines Baguio
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Applying Cauchy-Schwarz inequality we obtain

(AU,U)X ≤ κ

∫
ΓN

|v|2 dx−D
∫

ΓN

|σ|2 dx

where κ = −k + a2

2
+ 1

2
. Thus A− κI is dissipative.

The next step is to show the range condition R(λI − A) = X for λ > 0. Fix
(f, g, h, ϕ, φ) ∈ X and λ > 0. The equation (λI −A)(u, v, z, δ, σ) = (f, g, h, ϕ, φ) for
(u, v, z, δ, σ) ∈ D(A) is equivalent to the system

λu− v = f (2.3)
λv −∆u = g (2.4)

λz(θ)− zθ(θ) = h(θ) (2.5)
λδ − σ = ϕ (2.6)

λσ +M−1(Dσ +Kδ + v) = φ (2.7)

together with the conditions z(0) = v and ∂u
∂ν

= −kv − az(−τ) + σ. Using (2.5) we
obtain immediately from the variation of parameters formula that

z(θ) = eλθv +

∫ 0

θ

eλ(θ−ϑ)h(ϑ) dϑ. (2.8)

From (2.3) we also have

u =
1

λ
(v + f). (2.9)

Multiplying (2.7) by M and using σ = λδ + ϕ, which follows from (2.6), and then
solving for δ we arrive at

δ =
M

p(λ)
φ− Mλ+D

p(λ)
ϕ− 1

p(λ)
v (2.10)

where p(λ) = Mλ2 +Dλ+K > 0 for λ > 0. Thus

σ =
Mλ

p(λ)
φ−

(
(Mλ+D)λ

p(λ)
− 1

)
ϕ− λ

p(λ)
v. (2.11)

Taking the inner product of (2.4) with λw in L2(Ω), where w ∈ H1
ΓD

(Ω), yields

λ2

∫
Ω

vw dx− λ
∫

Ω

(∆u)w dx = λ

∫
Ω

gw dx. (2.12)

Using Green’s identity, the boundary condition ∂u
∂ν

= −kv − az(−τ) + σ, the
equations (2.8) and (2.11), and then rearranging the terms we obtain the variational
equation

λ2

∫
Ω

vw dx+

∫
Ω

∇v · ∇w dx+ q(λ)

∫
ΓN

vw dx

=

∫
Ω

(λgw −∇f · ∇w) dx+

∫
ΓN

Fw dx, ∀w ∈ H1
ΓD

(Ω), (2.13)

where

q(λ) = λ

(
k + ae−λτ +

λ

p(λ)

)

Department of Mathematics and Computer Science, College of Science, University of the Philippines Baguio
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F = − aλ

∫ 0

−τ
e−λ(τ+ϑ)h(ϑ) dϑ− λ

(
(Mλ+D)λ

p(λ)
− 1

)
ϕ+

Mλ2

p(λ)
φ.

Since q(λ) > 0 and F ∈ L2(ΓN), Lax-Milgram Lemma implies that there exists a
unique v ∈ H1

ΓD
(Ω) satisfying (2.13). With this v in hand, we define z, u, δ and σ by

(2.8), (2.9), (2.10) and (2.11), respectively. It is clear that z ∈ H1((−τ, 0);L2(ΓN))
and z(0) = v. Choosing w ∈ D(Ω) in (2.13), it follows that

∆u = −λ2u+ λf + g

in the sense of distributions and therefore u ∈ E(∆) ∩ H1
ΓD

(Ω). Applying Green’s
identity and by reversing the passage from (2.12) to (2.13) we have〈

∂u

∂ν
, w

〉
H−

1
2 (ΓN )×H

1
2 (ΓN )

=

∫
ΓN

(−kv − az(−τ) + σ)w dx

for every w ∈ H1
ΓD

(Ω). Because the trace operator maps H1
ΓD

(Ω) onto H
1
2 (ΓN), it

follows that ∂u
∂ν

= −kv − az(−τ) + σ in H−
1
2 (ΓN). Hence (u, v, z, δ, σ) ∈ D(A).

Therefore R(λI − A) = X for all λ > 0 so that R(λI − (A − κI)) =
R((λ+ κ)I −A) = X for all λ > max(0, κ). Thus, by the Lumer-Philipps Theorem
A − κI generates a strongly semigroup of contractions in X, and consequently A
generates a strongly continuous semigroup by the perturbation theorem. �

We turn to the well-posedness of (1.2). Let ζ(t, θ, x) = δt(t + θ, x) for (t, θ, x) ∈
(0,∞) × (−τ, 0) × ΓN so that ζt(t, θ, x) = ζθ(t, θ, x). Define the operator A0 :
D(A0) ⊂ X → X by

A0


u
v
ζ
δ
σ

 =


v

∆u
ζθ
σ

−M−1(D0ζ(−τ) +Kδ + v +Dσ)


where

D(A0) = {(u, v, z, δ, σ) ∈ X : u ∈ E(∆), v ∈ H1(Ω), ζ ∈ H1((−τ, 0);L2(ΓN))

∂u

∂ν
= −v + σ on ΓN , ζ(0) = σ}.

Then (1.2) can be written as a first order Cauchy problem in X{
U ′(t) = A0U(t), t > 0,

U(0) = U0 := (u0, u1, f, δ0, δ1).
(2.14)

Furthermore, we have the following theorem whose proof follows the same steps as
in the proof of the previous theorem, and so the details are omitted.

Theorem 2.2. The operator A0 generates a strongly continuous semigroup on X.
In particular, for every U0 ∈ D(A0) the Cauchy problem (2.14) admits a unique
solution U ∈ C([0,∞);D(A0)) ∩ C1([0,∞);X).

Department of Mathematics and Computer Science, College of Science, University of the Philippines Baguio
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3. Stability for the System with Delay in the Wave
Component

We will use the observability result in Lasiecka, Triggiani and Yao [12] for wave
equations with mixed Dirichlet-Neumann boundary conditions and a uniqueness-
compactness argument to prove the exponential decay of the energy of the solutions
of (1.1) and (1.2). Again, let us first consider (1.1) and introduce the total energy

E(t) = E0(t) +
a

2

∫ 0

−τ

∫
ΓN

|ut(t+ θ, x)|2 dx dθ =: E0(t) + Ed(t).

For convenience, we introduce the shorthand f(t) = f(t, ·).

Theorem 3.1. Suppose that k > a. Then there exists a constant C > 0 independent
of t such that for every data in D(A) it holds that

E ′(t) ≤ −CD(t), t > 0, (3.1)
where

D(t) =

∫
ΓN

(|ut(t, x)|2 + |ut(t− τ, x)|2 + |δt(t, x)|2) dx.

The map U0 = (u0, u1, δ0, δ1, f0) 7→ (ut, ut(· − τ)) from D(A) to L2(0, T ;L2(ΓN)2)
admits a unique extension to X.

Proof. Taking the derivative of the energy, applying Green’s identity, the boundary
conditions and the differential equation for δ we have

E ′(t) =

∫
Ω

(ut(t)utt(t) +∇u(t) · ∇ut(t)) dx+

∫
ΓN

Kδ(t)δt(t) dx

+

∫
ΓN

Mδt(t)δtt(t) dx+ a

∫ 0

−τ

∫
ΓN

ut(t+ θ)utt(t+ θ) dx dθ

=

∫
ΓN

ut(t)(δt(t)− kut(t)− aut(t− τ)) dx+

∫
ΓN

Kδ(t)δt(t) dx

+

∫
ΓN

δt(t)(−Dδt(t)−Kδ(t)− ut(t)) dx

+ a

∫ 0

−τ

∫
ΓN

uθ(t+ θ)uθθ(t+ θ) dx dθ.

The last integral can be simplified, using Fubini’s Theorem, to∫ 0

−τ

∫
ΓN

uθ(t+ θ)uθθ(t+ θ) dx dθ =
1

2

∫
ΓN

∫ 0

−τ

d

dθ
|uθ(t+ θ)|2 dθ dx

=
1

2

∫
ΓN

(|uθ(t)|2 − |uθ(t− τ)|2) dx =
1

2

∫
ΓN

(|ut(t)|2 − |ut(t− τ)|2) dx.

Therefore from Cauchy-Schwarz inequality we obtain

E ′(t) ≤ −1

2
(k − a)

∫
ΓN

|ut(t)|2 dx− a

2k
(k − a)

∫
ΓN

|ut(t− τ)|2 dx

− D

∫
ΓN

|δt(t)|2 dx

Department of Mathematics and Computer Science, College of Science, University of the Philippines Baguio



G. Peralta 8 / 18

and the result follows since k > a.
The rest of the theorem is a direct consequence of the estimate∫ T

0

∫
ΓN

(|ut(t, x)|2 + |ut(t− τ, x)|2) dx dt ≤ −C−1(E(T )− E(0)) ≤ C−1E(0),

obtained by integrating (3.1), and the fact that E(0) is equivalent to ‖U0‖2
H . �

Corollary 3.2. The map U0 7→ ∂u
∂ν

: D(A) → L2(0, T ;L2(ΓN)) admits a unique
extension to X.

Proof. If U0 ∈ D(A) then U(t) := etAU0 ∈ C([0, T ];D(A)) ∩ C1([0, T ];X). In
particular, for each t ∈ [0, T ] we have ∂

∂ν
u(t) = −ut(t)−kut(t− τ)− δt(t) in L2(ΓN).

The corollary follows immediately from the previous theorem. �

The following lemma plays a crucial role in the proof of the observability estimate
for the oscillator component. The proof is based on the multiplier method.

Lemma 3.3. For every T > 0, ϑ > 0 and w ∈ H1((0, T );L2(ΓN)) we have∫
ΓN

|w(0, x)|2 dx+

∫
ΓN

|w(T, x)|2 dx

≤ ϑ

∫ T

0

∫
ΓN

|wt(t, x)|2 dx dt+

(
2

T
+

1

ϑ

)∫ T

0

∫
ΓN

|w(t, x)|2 dx dt. (3.2)

Proof. Note that the left hand side of (3.2) makes sense due to the embedding
H1((0, T );L2(ΓN)) ↪→ C([0, T ];L2(ΓN)). By a standard density argument, we may
take without loss of generality that w ∈ C1([0, T ] × ΓN). Define the multiplier
χ : [0, T ]→ [−1, 1] by

χ(t) =
2t

T
− 1.

By Young’s inequality ab ≤ ϑ
2
a2 + 1

2ϑ
b2 for a, b ≥ 0 and ϑ > 0, and the fact that

‖χ‖L∞[0,T ] = 1 we have

|w(T, x)|2 + |w(0, x)|2 =

∫ T

0

d

dt
(χ(t)|w(t, x)|2) dt

=

∫ T

0

(
2

T
|w(t, x)|2 + 2χ(t)wt(t, x)w(t, x)) dt

≤
(

2

T
+

1

ϑ

)∫ T

0

|w(t, x)|2 dt+ ϑ

∫ T

0

|wt(t, x)|2 dt.

Integrating over ΓN proves the desired estimate. �

Theorem 3.4. There exists T ∗ > 0 depending only onM,D and K such that for all
T > T ∗ there is a constant C > 0 independent of T such that every regular solution
of

Mδtt +Dδt +Kδ = f in (0,∞)× ΓN (3.3)

Department of Mathematics and Computer Science, College of Science, University of the Philippines Baguio
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with f ∈ L2((0, T )× ΓN) satisfies the estimate∫
ΓN

(|δ(0)|2 + |δt(0)|2) dx+

∫ T

0

∫
ΓN

|δ(t)|2 dt

≤ C

∫ T

0

∫
ΓN

(|δt(t)|2 + |f(t)|2) dx dt. (3.4)

Proof. In this proof, C will denote a generic positive constant depending only
on M , D and K. Multiplying the equation (3.3) by δ and then integrating over
(0, T )× ΓN we have

M

∫
ΓN

(δt(T )δ(T )− δt(0)δ(0)) dx−M
∫ T

0

∫
ΓN

|δt(t)|2 dx dt

+
D

2

∫
ΓN

(|δ(T )|2 − |δ(0)|2) dx+K

∫ T

0

∫
ΓN

|δ(t)|2 dx dt =

∫ T

0

∫
ΓN

f(t)δ(t) dx dt.

Using Young’s inequality we have∫ T

0

∫
ΓN

|δ(t)|2 dx dt ≤ C

∫
ΓN

(|δt(T )|2 + |δt(0)|2 + |δ(T )|2 + |δ(0)|2) dx

+ C

∫ T

0

∫
ΓN

(|δt(t)|2 + |f(t)|2) dx dt. (3.5)

According to Lemma 3.3, for all ϑ0 > 0 and ϑ1 > 0 it holds that∫
ΓN

|δ(0)|2 dx+

∫
ΓN

|δ(T )|2 dx ≤ ϑ0

∫ T

0

∫
ΓN

|δt(t)|2 dx dt

+

(
2

T
+

1

ϑ0

)∫ T

0

∫
ΓN

|δ(t)|2 dx dt (3.6)

and∫
ΓN

|δt(0)|2 dx+

∫
ΓN

|δt(T )|2 dx ≤ ϑ1

∫ T

0

∫
ΓN

|δtt(t)|2 dx dt

+

(
2

T
+

1

ϑ1

)∫ T

0

∫
ΓN

|δt(t)|2 dx dt. (3.7)

Using (3.6) and (3.7) in (3.5) yields∫ T

0

∫
ΓN

|δ(t)|2 dx dt ≤
(

2C

T
+
C

ϑ0

)∫ T

0

∫
ΓN

|δ(t)|2 dx dt (3.8)

+ Cϑ1

∫ T

0

∫
ΓN

|δtt(t)|2 dx dt

+ C

(
1 + ϑ0 +

2

T
+

1

ϑ1

)∫ T

0

∫
ΓN

(|δt(t)|2 + |f(t)|2) dx dt.
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The second term on the right hand side of (3.8) can be absorbed by the other two
terms. Indeed, from the equation (3.3) once more we have∫ T

0

∫
ΓN

|δtt(t)|2 dx dt ≤ C

∫ T

0

∫
ΓN

|δ(t)|2 dx dt

+ C

∫ T

0

∫
ΓN

(|δt(t)|2 + |f(t)|2) dx dt (3.9)

and therefore∫ T

0

∫
ΓN

|δ(t)|2 dx dt ≤
(

2C

T
+
C

ϑ0

+ Cϑ1

)∫ T

0

∫
ΓN

|δ(t)|2 dx dt (3.10)

+ C

(
1 + ϑ0 + ϑ1 +

2

T
+

1

ϑ1

)∫ T

0

∫
ΓN

(|δt(t)|2 + |f(t)|2) dx dt.

Choosing T ∗ = 8C, ϑ1 = 1
4C

and ϑ0 = 4C we obtain from (3.10) that∫ T

0

∫
ΓN

|δ(t)|2 dt ≤ C

∫ T

0

∫
ΓN

(|δt(t)|2 + |f(t)|2) dx dt

for all T > T ∗. Consequently, (3.4) follows from this estimate together with (3.6),
(3.7) and (3.9). �

Before we proceed, we recall the following compactness result in [16].

Theorem 3.5. Let X,B and Y be Banach spaces such that the embeddings X ⊂
B ⊂ Y are continuous and the embedding X ⊂ B is compact. If (fn)n is bounded
in L∞(0, T ;X) and (f ′n)n is bounded in Lr(0, T ;Y ) for some r > 1 then (fn)n is
relatively compact in C(0, T ;B).

Theorem 3.6. There exists T ∗ > 0 such that for every T > T ∗, there is a constant
CT > 0 so that every solution of (1.1) with initial data in D(A) satisfies

E(0) ≤ CT

∫ T

0

D(t) dt.

Proof. From the observability estimate in [12], there exists T̃ > 0 such that for
every T > T̃ there is a constant cT > 0 with

Ew(0) ≤ cT

∫ T

0

∫
ΓN

(∣∣∣∣∂u∂ν
∣∣∣∣2 + |ut|2

)
dx dt+ cT‖u‖H 1

2 +ε((0,T )×Ω)

whenever ε > 0. Using the boundary condition on ΓN we have

Ew(0) ≤ cT

∫ T

0

D(t) dt+ cT‖u‖H 1
2 +ε((0,T )×Ω)

, ∀T > T̃ .

From Theorem 3.4 with f = −ut, we can see that there exists a constant T ∗0 > 0
such that

Eb(0) ≤ C

∫ T

0

∫
ΓN

(|ut(t)|2 + |δt(t)|2) dx dt.
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for all T > T ∗0 . The change of variable t = θ + τ implies that

Ed(0) =
a

2

∫ 0

−τ

∫
ΓN

|ut(θ)|2 dx dθ =
a

2

∫ τ

0

∫
ΓN

|ut(t− τ)|2 dx dt.

Therefore for all T > T ∗ := max(T̃ , T ∗0 , τ) we have

E(0) = Ew(0) + Eb(0) + Ed(0)

≤ CT

∫ T

0

D(t) dt+ CT‖u‖H 1
2 +ε((0,T )×Ω)

. (3.11)

The second term can be absorbed by the first term using a compactness-
uniqueness argument, for example see [13]. Indeed, by contradiction, suppose that
there exists a sequence (U0n)n ⊂ D(A) such that

E(n)(0) > n

∫ T

0

D(n)(t) dt, (3.12)

where E(n) and D(n) represents the total energy and dissipation term of the system
corresponding to the solution (un(t), unt(t), unt(t−τ), δn(t), δnt(t)) = Un(t) = etAU0n.
By normalizing un, we can assume without loss of generality that

‖un‖H 1
2 +ε((0,T )×Ω)

= 1. (3.13)

Using (3.11) we have

E(n)(0) ≤ CT

∫ T

0

D(n)(t) dt+ CT . (3.14)

From (3.12) and (3.14) we can see that∫ T

0

D(n)(t) dt <
CT

n− CT
(3.15)

for all n > CT .
Since the energy is decreasing one can see from (3.14) that

‖un‖2
H1((0,T )×Ω) =

∫ T

0

(‖unt(t)‖2
L2(Ω) + ‖∇un(t)‖2

[L2(Ω)]n) dt

≤
∫ T

0

E(n)(t) dt ≤
∫ T

0

E(n)(0) dt

≤ TC2
T

n− CT
+ TCT .

Thus, (un)n is bounded in H1((0, T ) × Ω). By the compactness of the embedding
H

1
2

+ε((0, T )× Ω) ⊂ H1((0, T )× Ω), with 0 < ε < 1
2
, we have

un → u strongly in H
1
2

+ε((0, T )× Ω) (3.16)

after extracting an appropriate subsequence. Thus, un → u in L2(0, T ;L2(Ω)).
The sequence (U0n)n is bounded in X according to (3.14), and hence up to a

subsequence, U0n converges weakly to some element U0 in X. Let Ũ(t) = etAU0.
Then

Un → Ũ weakly-star in L∞(0, T ;X). (3.17)
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Indeed, for v ∈ L1(0, T ;X) we have∣∣∣∣∫ T

0

(Un(t)− Ũ(t), v(t))X dt

∣∣∣∣ ≤ ∫ T

0

|(U0n − U0, (e
tA)∗v(t))X | dt→ 0

by the dominated convergence theorem and the uniform boundedness of t 7→ etA on
compact intervals. The limit (3.17) implies that

un → u weakly-star in L∞(0, T ;H1(Ω)),

unt → ut weakly-star in L∞(0, T ;L2(Ω)).

Consequently,
‖un‖L∞(0,T ;H1(Ω)) + ‖unt‖L∞(0,T ;L2(Ω)) ≤ CT .

for some constant CT > 0 independent of n.
Since the embedding H1(Ω) ⊂ H1−ε(Ω) is compact and H1(Ω) ⊂ H1−ε(Ω) ⊂

L2(Ω) are continuous, we can apply the Theorem 3.5 to get that, after taking a
subsequence,

un → u strongly in L∞(0, T ;H1−ε(Ω)).

By trace theory, 0 = un|ΓD
→ u|ΓD

in L∞(0, T ;L2(ΓD)) so that u = 0 on ΓD.
From (3.15) one can see that (unt, δnt, unt(· − τ))→ 0 in L2(0, T ;L2(ΓN)3) and thus
∂un
∂ν
→ 0 in L2(0, T ;L2(ΓN)).

According to Corollary 3.2, ∂un
∂ν
→ ∂u

∂ν
weakly in L2(0, T ;L2(ΓN)), which implies

that ∂u
∂ν

= 0 on (0, T )× ΓN by uniqueness of weak limits.
Let v = ut. In the following, we show that v is the very weak solution of the wave

equation 
vtt −∆v = 0, in (0, T )× Ω,

v = 0, on (0, T )× ∂Ω,
∂v

∂ν
= 0, on (0, T )× ΓN ,

v(0) = u1 ∈ L2(Ω), vt(0) = ∆u0 ∈ H1
ΓD

(Ω)′

(3.18)

where

〈∆u0, w〉H1
ΓD

(Ω)′×H1
ΓD

(Ω) = −
∫

Ω

∇u0 · ∇w dx, ∀w ∈ H1
ΓD

(Ω).

Given f ∈ L2(0, T ;L2(Ω)), let ϕ ∈ C1([0, T ];L2(Ω))∩C([0, T ];H1(Ωs)) be the weak
solution of the wave equation

ϕtt −∆ϕ = f, in (0, T )× Ω,

ϕ = 0, on (0, T )× ΓD,
∂ϕ

∂ν
= 0, on (0, T )× ΓN ,

ϕ(T ) = ϕ(T ) = 0, in Ω.

Integrating by parts in time and using Green’s identity in space we have

0 =

∫ T

0

∫
Ω

(untt −∆un)ϕt dx dt

= −
∫

Ω

un1ϕt(0) dx−
∫ T

0

∫
ΓN

∂un
∂ν

ϕt dx dt−
∫ T

0

∫
Ω

(untϕtt −∇un · ∇ϕt) dx dt
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= −
∫

Ω

un1ϕt(0) dx−
∫

Ω

∇un0 · ∇ϕ(0) dx−
∫ T

0

∫
ΓN

∂un
∂ν

ϕt dx dt

−
∫ T

0

∫
Ω

untf dx dt.

Taking the limit as n → ∞ and invoking the facts that unt → ut weakly in
L2(0, T ;L2(Ω)), un0 → u0 weakly inH1

ΓD
(Ω), un1 → u1 weakly in L2(Ω) and ∂un

∂ν
→ 0

strongly in L2(0, T ;L2(ΓN)) we obtain∫ T

0

∫
Ω

vf dx dt = −
∫

Ω

u1ϕt(0) dx−
∫

Ω

∇u0 · ∇ϕ(0) dx. (3.19)

Using an analogous argument, it can be shown that∫ T

0

∫
Ω

vf dx dt = −
∫

Ω

u1φt(0) dx−
∫

Ω

∇u0 · ∇φ(0) dx, (3.20)

where φ ∈ C1([0, T ];L2(Ω)) ∩ C([0, T ];H1(Ωs)) is the weak solution of the wave
equation 

φtt −∆φ = f, in (0, T )× Ω,

φ = 0, on (0, T )× ∂Ω,

φ(T ) = φ(T ) = 0, in Ω.

According to (3.19) and (3.20), we conclude that v is indeed the very weak solution
to (3.18).

By Holmgren’s uniqueness principle we must have v ≡ 0 in (0, T )×Ω and therefore
u must be independent of t. Thus, u satisfies the elliptic boundary value problem

∆u = 0, in Ω,

u = 0, on ΓD,
∂u

∂ν
= 0, on ΓN ,

in the distributional sense, and thus u ≡ 0 in Ω. This is a contradiction to (3.13)
and (3.16). This completes the proof of the theorem. �

Now we are ready to prove our stabilization result for (1.1).

Theorem 3.7. Suppose that k > a. Then there exist constants M ≥ 1 and α > 0
such that the energy of the solutions of (1.1) satisfies

E(t) ≤Me−αtE(0), ∀ t ≥ 0.

Proof. Combining the previous results, it can be seen that there is a constant
T ∗ > 0 such that

E(T ) ≤ E(0) ≤ CT

∫ T

0

D(t) dt ≤ CT (E(0)− E(T ))

for every T > T ∗, and therefore

E(T ) ≤ CT
CT + 1

E(0) =: C̃E(0), ∀T > T ∗.
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Since C̃ < 1, the result follows from standard semigroup theory. �

4. Stability for the System with Delay in the Oscilla-
tor Component

In the case of (1.2), the total energy is defined by

E1(t) = E0(t) +
D0

2

∫ 0

−τ

∫
ΓN

|δt(t+ θ, x)|2 dx dθ.

The results of the previous section can be adapted to the present case. Indeed, we
have the following theorem.

Theorem 4.1. Suppose that D > D0. There is a constant C > 0 independent of t
such that for every initial data in D(A0) we have

E ′1(t) ≤ −CD1(t), t > 0.

Furthermore, there exists T ∗ > 0 such that for every T > 0

E1(0) ≤ CT

∫ T

0

D1(t) dt.

for some CT > 0 where

D1(t) =

∫
ΓN

(|ut(t, x)|2 + |δt(t− τ, x)|2 + |δt(t, x)|2) dx.

Therefore, for some constants M1 ≥ 1 and α1 > 0 we have

E1(t) ≤M1e
−α1tE(0), t ≥ 0.

Proof. The proof is similar as in the previous section, now using Theorem 3.4 with
f(t, x) = −ut(t, x)−D0δt(t− τ, x). The details are left to the reader. �

5. The Cases k = a and D = D0

In this section, we will study the stability properties of systems (1.1) and (1.2) in
the case where k = a and D = D0, respectively. We start with the wave equation
(1.1).

Lemma 5.1. Suppose that a = k ≥ 0 and let

q(λ) := aλ(1 + e−λτ ) +
λ2

Mλ2 +Dλ+K
, λ ∈ C \ {λ±},

where λ± are the complex roots of the quadratic equation Mλ2 +Dλ+K = 0. Then

{λ ∈ C \ {λ±} : =q(λ) 6= 0} ∩ σ(A) = σp(A). (5.1)

In particular, σp(A) ∩ iR = ∅.
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Proof. With the same reasoning as in the proof of Theorem 2.1, it can be shown
that the equation (λI−A)(u, v, z, δ, σ) = (f, g, h, ϕ, φ), where λ 6= λ±, (u, v, z, δ, σ) ∈
D(A) and (f, g, h, ϕ, φ) ∈ X, is equivalent to the variational equation (2.13). We
can write (2.13) as

a1(v, w) + a2(v, w) = f0(w), ∀w ∈ H1
ΓD

(Ω), (5.2)

where a1 : H1
ΓD

(Ω)×H1
ΓD

(Ω) → C, a2 : L2(Ω)× L2(Ω) → C and f0 : H1
ΓD

(Ω) → C
are defined by

a1(v, w) =

∫
Ω

(vw +∇v · ∇w) dx+ q(λ)

∫
ΓN

uw dx

a2(v, w) = (λ2 − 1)

∫
Ω

vw dx

f0(w) =

∫
Ω

(λgw −∇f · ∇w) dx+

∫
ΓN

Fw dx.

If the inequality
inf
ε≥0
|1 + εq(λ)| > 0 (5.3)

holds then the generalized Lax-Milgram method in [6] applied to the variational
equation (5.2) yields either λ ∈ ρ(A) or λ ∈ σp(A), and this implies (5.1). It is not
hard to see that =q(λ) 6= 0 implies (5.3).

Now let us show that A does not have purely imaginary eigenvalues. A direct
calculation shows that

q(ib) = b

(
a sin bτ − b(K −Mb2)

(K −Mb2)2 +D2b2

)
+ ib

(
a+ a cos bτ +

Db2

(K −Mb2)2 +D2b2

)
and thus =q(ib) 6= 0 for b ∈ R \ {0}. This means that ib ∈ ρ(A) or ib ∈ σp(A). We
show that the second case does not hold. The eigenvalue problem A(u, v, z, δ, σ) =
ib(u, v, z, δ, σ) is equivalent to the following elliptic problem with mixed Dirichlet-
Neumann boundary conditions

∆u = b2u, in Ω,

u = 0, on ΓD,
∂u

∂ν
= − q(ib)u, on ΓN ,

(5.4)

Multiplying the first equation of (5.4) by u and using Green’s identity we have

−b2

∫
Ω

|u|2 dx =

∫
Ω

|∇u|2 dx+ q(ib)

∫
ΓN

|u|2 dx.

Taking the imaginary part and invoking the fact that =q(ib) 6= 0, one can see
that u = 0 on ΓN and hence u = 0 on ∂Ω and ∂u

∂ν
= 0 on ΓN . Using this in

(2.8)–(2.11) yields v = 0 on ΓN , δ = σ = 0 on ΓN and z = 0 on (−τ, 0) × ΓN .
By standard elliptic regularity theory, the function u lies in H2(Ω) ∩ H1

0 (Ω) and
satisfies −∆u + b2u = 0 in Ω and ∂u

∂ν
= 0 on ΓN . Applying a unique contin-

uation theorem for elliptic operators, see [17, Corollary 15.2.2] for instance, we
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have u = 0 in Ω. Therefore ib is not an eigenvalue of A for every nonzero real
number b. It can be checked directly that 0 /∈ σp(A). Therefore σp(A)∩iR = ∅. �

Theorem 5.2. If k = a then the energy E(t) associated with (1.1) decays to zero
asymptotically as t→∞.

Proof. The result is a direct consequence of Lemma 5.1 and the Arendt-Batty-
Lyubic-Vu Theorem [7, Corollary V.2.22]. �

Now let us turn our attention to the system (1.2).

Theorem 5.3. If D = D0 then the solution of (1.2) is asymptotically stable.

Proof. The existence of a nontrivial solution (u, v, ζ, δ, σ) ∈ D(A0) of the equation

A0(u, v, ζ, δ, σ) = λ(u, v, ζ, δ, σ)

is equivalent to the existence of a nontrivial solution u ∈ H1
ΓD

(Ω) of the elliptic
problem with mixed Dirichlet-Neumann boundary condition

∆u = λ2u, in Ω

u = 0, on ΓD
∂u

∂ν
= − q0(λ)u, on ΓN .

(5.5)

where

q0(λ) = λ+
λ2

Mλ2 + λDe−λτ +K + λD
,

as long as the denominator does not vanish.
The same argument as in Lemma 5.1 shows that

{λ ∈ C \ {λ±} : =q0(λ) 6= 0} ∩ σ(A0) = σp(A0). (5.6)

If λ = ib for some nonzero real number b then

q0(ib) = − b2(K −Mb2 +Db sin bτ)

(K −Mb2 +Db sin bτ)2 + b2D2(1 + cos bτ)2

+ ib
(

1 +
b2D(1 + cos bτ)

(K −Mb2 +Db sin bτ)2 + b2D2(1 + cos bτ)2

)
.

Because D > 0, it follows that =q(ib) 6= 0 for every real number b 6= 0. With this
information, we may now proceed as in the proofs of Lemma 5.1 and Theorem 5.2
to establish the theorem. �
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