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Abstract.
In this paper, we consider the wave equation on a bounded domain with mixed
Dirichlet-impedance type boundary conditions coupled with oscillators on the
Neumann boundary. The system has either a delay in the pressure term of the
wave component or the velocity of the oscillator component. Using the velocity
as a boundary feedback it is shown that if the delay factor is less than that of the
damping factor then the energy of the solutions decay to zero exponentially. The
results are based on the energy method, a compactness-uniqueness argument and
an appropriate weighted trace estimate. In the critical case where the damping
and delay factors are equal, it is shown using variational methods that the energy
decay to zero asymptotically.
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1. Introduction

Consider an elastic body occupying a bounded domain Ωs ⊂ Rd, where d = 2 or
d = 3, and it is immersed in a fluid that is contained in a vessel. Suppose that
the boundary Γf of the vessel is made of a solid wall. We denote by Ωf ⊂ Rd

the region where the fluid is occupied and Γs the interface between the solid and
the fluid. All throughout this paper, we assume that Γs and Γf are sufficiently
smooth and that Γs ∩ Γf = ∅. Let u : (0,∞)× Ωf → Rd, p : (0,∞)× Ωf → R and
w : (0,∞) × Ωs → Rd represent the velocity field of the fluid, the pressure in the
fluid and the displacement of the structure, respectively. A linear model describing
the interaction of the fluid and the structure is given by the coupled linearized
incompressible Navier-Stokes-wave system

ut(t, x)−∆u(t, x) +∇p(t, x) = 0, in (0,∞)× Ωf ,

divu(t, x) = 0, in (0,∞)× Ωf ,

u(t, x) = 0, on (0,∞)× Γf ,

u(t, x) = wt(t, x), on (0,∞)× Γs,

wtt(t, x)−∆w(t, x) = F (t, x), in (0,∞)× Ωs,
∂w

∂ν
(t, x) =

∂u

∂ν
(t, x)− p(t, x)ν(x), on (0,∞)× Γs,

u(0, x) = u0(x), in Ωf ,

w(0, x) = w0(x), wt(0, x) = w1(x), in Ωs.

(1.1)

Here, F can be viewed as a source or control on the structure. The unit vector
ν is outward normal to the fluid domain Ωf and hence it will be inward to the
structure domain Ωs. In this model, the boundary of the solid is stationary and
as mentioned in [8], this assumption is suitable under small and rapid oscillations,
that is, when the displacement of the solid is small compared to its velocity. The
boundary conditions on the interface Γs represent the continuity of the velocities
and stresses for the fluid and solid components. On the other hand, on Γf we have
the no-slip boundary condition.

In this paper, we study the system (1.1) using the velocity of the structure as the
feedback law

F (t, x) = −k0wt(t− τ, x)− k1wt(t, x), in (0,∞)× Ωs, (1.2)
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where k1 > 0 is the damping factor, k0 > 0 is the delay factor and τ > 0 is a
constant delay. Physically, this means that a fraction of the feedback will be felt by
the system after some time and the constant τ signifies the extent of the delay. The
constants k1 and k0 quantify the strengths of damping and delay in the feedback,
respectively. The initial history for the velocity of the structure is denoted by

wt(θ, x) = g(θ, x), in (−τ, 0)× Ωs. (1.3)

Recent interests in fluid-structure models include numerical and experimental
studies and lately there are works that lean towards rigorous mathematical anal-
ysis. The model (1.1) is based on the the works of Avalos and Trigianni [3, 6].
Their system is similar to the one considered earlier by Du et. al [14]. Nonlinear
versions have been also considered by Barbu et. al [8, 9], Lasiecka and Lu [17, 18]
and Lu [22, 23]. Without any external force F and with transversal elastic force in
the wave component, i.e. with the wave equation wtt −∆w + w = 0, it was shown
in [3] using semigroup methods that the solutions of (1.1) are strongly asymptot-
ically stable. The result holds for every initial data in the state space excluding
those that lie in the kernel of the associated generator and also under additional
conditions, which is related to the geometry of the structure. It relies on whether
a certain over-determined boundary value problem has a solution. This hypothesis,
named condition (H) below, will be also utilize in this study. Later, the authors
studied the same model in [6] but with internal damping in the structure. This
additional dissipative mechanism allows the energy of the solution to decay to zero
exponentially.

Systems that are stable may turn into an unstable one if there is delay, see for
example the classical works of Datko et. al [11] and Datko [10]. This is because delay
induces a transport phenomena in the system that generate oscillations which may
lead into instability. Since then, several authors studied the effect of delay in various
multidimensional wave equations and as well in heat and Schrödinger equations. In
the absence of the fluid and with homogeneous Dirichlet condition on a part of
the boundary, the stability and instability properties of the wave equation with the
feedback law (1.2) was considered by Nicaise and Pignotti [24]. It is shown in their
work that if the damping factor is larger than the delay factor, then the energy of the
system decays to zero exponentially. On the other hand, if these coefficients are equal
it was established that there is a sequence of delays that yield solutions with constant
energies. Even when the damping and delay factors are equal, the presence of other
dissipative mechanisms such as viscoelasticity can provide asymptotic stability for
the wave equation, see for example the work of Kirane and Said-Houari [16]. We
would like to extend the study to the fluid-structure model (1.1)–(1.3) and analyze
for the influence of the fluid on the wave equation using the framework and methods
in [3].

Due to the absence of the displacement term, the wave equation will be formulated
as a first order system in terms of the velocity wt and stress ∇w, in contrast to the
formulation in terms of the displacement and velocity in [3]. The same first-order
formulation has been used for wave equations with viscoelasticity by Desch et. al [12]
and for fluid-structure models in [17, 18, 22, 23], where the works [22, 23] were based
on the earlier paper by Lasiecka and Seidman [19] that deals with the stabilization
of a structural acoustics model. Moreover, this is also a familiar way of writing
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the multidimensional wave equation in the entire space as a first-order symmetric
hyperbolic system. The basis for this particular set-up stems from the fact that the
energy contains only the L2-norm of the gradient of the structure’s displacement.
Nevertheless, the displacement can be recovered by integrating the velocity with
respect to time.

The said formulation requires a different state space representation of the inter-
action model and leads to a different structure on the kernel of the corresponding
generator, the space of steady states, and different analysis and tools will come in
place. The construction of the semigroup and the well-posedness for (1.1)–(1.3) will
be discussed in Section 2. It will be shown in Section 3 that under the condition
k1 > k0, the energy of the solutions decay to zero exponentially (Theorem 3.5) using
the frequency domain method. Under the case k1 = k0, together with an additional
geometric condition or except possibly for a countably infinite number of delays
which is related to the spectrum of the Dirichlet Laplacian on Ωs, the energy de-
cays asymptotically to zero (Theorem 3.4). This will be done using a generalized
Lax-Milgram method as in [12] and applying the classical Tauberian-type theorems
for the stability of semigroups [1, 21]. Thus, under certain circumstances, the dis-
sipative effect of the fluid due to diffusion is strong enough to stabilize the coupled
system even when the damping and delay factors are the same.

Our asymptotic stability result Theorem 3.4, under the condition (H) stated be-
low, has been already shown for both linear [3, 5] and nonlinear [17, 23] problems in
the case where there is no damping (k1 = 0) and no delay (k0 = 0). In fact, rational
or polynomial decay rates has been provided for a heat-structure model by Avalos
and Trigianni [5] and for a fluid-structure model by Avalos and Bucci [2]. On the
other hand, the exponential stability Theorem 3.5 has been established for system
(1.1)–(1.2) with linear damping in [6] and with nonlinear damping in [23], however,
without the delay term. In these references, the treatment for linear problems re-
lies on spectral analysis while for nonlinear problems they are obtained through the
multiplier method. In the current work, we will also use spectral analysis to prove
our results.

2. Semigroup Construction and Well-Posedness

The first step in writing the system (1.1)–(1.3) into an abstract evolution equation
is to eliminate the pressure term p. In accordance to the non-homogeneous Neu-
mann boundary condition on the interface Γs, the typical Leray-projection method
used in eliminating the pressure in the Navier-Stokes equation with no-slip bound-
ary condition can not be applied. A novel approach, introduced and successfully
applied in [3], of eliminating the pressure is to write it in terms of the fluid velocity
and normal stress of the structure. This is done thanks to the realization that p
satisfies an elliptic problem with Neumann condition on Γf and Dirichlet condition
on Γs. The same idea has been used, at least at the formal level, in the numeri-
cal approximations of the solutions for the linear Stokes problem through pressure
matrix methods, see for instance [26, Section 9.6.1].

The above strategy leads to a non-standard formulation of the definition for the
semigroup generator including its domain, which implicitly incorporates the pres-
sure term. In the present paper, we shall also use this strategy for the coupled
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system (1.1)–(1.3) with the first-order formulation of the wave component. Broadly
speaking, we will follow the theoretical framework and methods presented in [3].
Accordingly, the first step is to write p in terms of u and ∇w. To do this, we first
recall the notations in [3]. Define the Dirichlet map Ds : H

1
2 (Γs)→ H1(Ωf ) and the

Neumann map Nf : H
3
2 (Γf ) → H1(Ωf ) as follows. Given g ∈ H 1

2 (Γs), let h = Dsg
be the weak solution of the elliptic problem

∆h = 0, in Ωf ,
∂h

∂ν
= 0, on Γf ,

h = g, on Γs.

Given h ∈ H 3
2 (Γf ), let g = Nfh be the weak solution of

∆g = 0, in Ωf ,
∂g

∂ν
= h, on Γf ,

g = 0, on Γs.

From the classical elliptic regularity in [20], we can see thatDs ∈ L(Hr(Γs), H
r+ 1

2 (Ωf ))

and Nf ∈ L(Hr(Γf ), H
r+ 3

2 (Ωf )) for every real number r. If the pressure term p,
along with u and w satisfies (1.1), then taking the divergence of the first equation
in (1.1) and using the boundary conditions yield

∆p = 0, in (0,∞)× Ωf ,

∂p

∂ν
= ∆u · ν, on (0,∞)× Γf ,

p =
∂u

∂ν
· ν − (∇w · ν) · ν, on (0,∞)× Γs.

In terms of the Dirichlet and Neumann maps defined above, the pressure can be
written in terms of ∇w and u as

p = −Ds((∇w · ν) · ν) +Ds

(
∂u

∂ν
· ν
)

+Nf (∆u · ν).

Let v(t, x) = wt(t, x), σ(t, x) = ∇w(t, x) for (t, x) ∈ (0, T ) × Ωs and z(θ, t, x) =
wt(t + θ, x) for (θ, t, x) ∈ (−τ, 0) × (0, T ) × Ωs. The fluid-structure system will be
posed in the state space

H := L2(Ωs)
d × L2(Ωs)

d×d × L2(−τ, 0;L2(Ωs)
d)×Hf

where Hf := {u ∈ L2(Ωf )
d : div u = 0 in Ωf , u · ν = 0 on Γf}. The space H is

equipped with the inner product

((v1, σ1, z1, u1), (v2, σ2, z2, u2))H

:=

∫
Ωs

(v1 · v2 + σ1 · σ2) dx+ k0

∫ 0

−τ

∫
Ωs

z1 · z2 dx dθ +

∫
Ωf

u1 · u2 dx

with the dot representing the inner product in Cd or Cd×d where it is applicable.
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Let L2
div(Ωs)

d×d = {σ ∈ L2(Ωs)
d×d : div σ ∈ L2(Ωs)

d}, where div denotes the
distributional divergence, and is endowed with the graph norm. There is a gener-
alized normal trace operator σ 7→ σ · ν which is continuous from L2

div(Ωs)
d×d into

H−
1
2 (Γs)

d. Moreover, the following generalized Green’s identity∫
Ωs

divσ · u dx = −〈σ · ν, u〉
H− 1

2 (Γs)d×H
1
2 (Γs)d

−
∫

Ωs

σ · ∇u dx

holds for all σ ∈ L2
div(Ωs)

d×d and u ∈ H1(Ωs)
d. Recall that ν is inward to Γs. The

space
Y (Ωs) := {σ ∈ L2(Ωs)

d×d : divσ = 0 in Ωs, σ · ν = 0 on Γs}
is a closed subspace of L2(Ωs)

d×d and there holds the Helmholtz orthogonal decom-
position

L2(Ωs)
d×d = Y (Ωs)⊕G(Ωs)

where
G(Ωs) = {σ ∈ L2(Ωs)

d×d : σ = ∇% for some % ∈ H1(Ωs)
d},

see for example [27].
Consider the operators L1 : L2

div(Ωs)
d×d → L2(Ωf )

d and L2 : H1(Ωf )
d ∩ {u ∈ Hf :

∂u
∂ν
∈ H− 1

2 (Γs)
d, ∆u · ν ∈ H− 3

2 (Γf )} → L2(Ωf )
d defined as follows

L1σ = −Ds((σ · ν) · ν),

L2u = Ds

(
∂u

∂ν
· ν
)

+Nf (∆u · ν).

These operators are well-defined from the elliptic regularity stated above. Define
the linear operator A : D(A) ⊂ H → H by

A =


−k1I div −k0γ|θ=−τ 0
∇ 0 0 0
0 0 ∂θ 0
0 −∇L1 0 ∆−∇L2


with domain D(A) comprising of all elements (v, σ, z, u) ∈ H such that v ∈ H1(Ωs)

d,
σ ∈ L2

div(Ωs)
d×d, z ∈ H1(−τ, 0;L2(Ωs)

d), u ∈ H1(Ωf )
d ∩Hf , u = 0 on Γf , u = v on

Γs, z(0) = v in Ωs, ∂u∂ν−σ·ν = πν inH−
1
2 (Γs)

d, ∆u·ν ∈ H− 3
2 (Γf ), and ∆u−∇π ∈ Hf

where π = L1σ + L2u. Here, γ|θ=−τ is the trace operator. The system (1.1)–(1.3)
can now be phrased as a first order evolution equation in H{

Ẋ(t) = AX(t) for t > 0,

X(0) = X0,
(2.1)

where X0 = (w1,∇w0, g, u0).
In characterizing the kernel N(A) of A, we need the following result.

Proposition 2.1. For every f = (f1, . . . , fd) ∈ L2(Ωs)
d and φ ∈ H− 1

2 (Γs)
d satisfy-

ing the compatibility condition∫
Ωs

fj dx+ 〈φ, ej〉H− 1
2 (Γs)d×H

1
2 (Γs)d

= 0, for j = 1, . . . , d,
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where ej is the canonical unit vector in Rd, the boundary value problem{
divσ = f, in Ωs,

σ · ν = φ, on Γs,
(2.2)

admits a unique solution σ ∈ L2
div(Ωs)

d×d∩G(Ωs). This solution is given by σ = ∇ψ
where ψ ∈ H1(Ωs)

d is a solution of the Neumann problem∆ψ = f, in Ωs,
∂ψ

∂ν
= φ, on Γs.

(2.3)

Moreover, σ satisfies the estimate

‖σ‖L2
div(Ωs)d×d ≤ C(‖f‖L2(Ωs)d + ‖φ‖

H− 1
2 (Γs)d

). (2.4)

In particular, all solutions of (2.2) take the form σ = ∇ψ + ρ for some ρ ∈ Y (Ωs).

Proof. With the above compatibility condition, problem (2.3) admits a solution
ψ ∈ H1(Ωs)

d unique up to an additive constant vector and it satisfies the stability
estimate

‖ψ‖H1(Ωs)d/Rd ≤ C(‖f‖L2(Ωs)d + ‖φ‖
H− 1

2 (Γs)d
). (2.5)

Clearly, σ = ∇ψ lies in L2
div(Ωs)

d×d ∩ G(Ωs) and it satisfies (2.2). The estimate
(2.4) follows from (2.5) and the fact that divσ = f . If σ̃ ∈ L2

div(Ωs)
d×d ∩ G(Ωs) is

also a solution of (2.2) then σ − σ̃ ∈ G(Ωs) ∩ Y (Ωs) = {0} and hence the solution
is unique in L2

div(Ωs)
d×d ∩G(Ωs). �

Theorem 2.2. Assume that k1 ≥ 0 and k0 > 0. Let Id be the d× d identity matrix
and 〈Id〉 = {cId : c ∈ C}. Then

N(A) = {0} × (〈Id〉 ⊕ Y (Ωs))× {0} × {0} (2.6)

and in particular

N(A)⊥ = L2(Ωs)
d × (G(Ωs)/〈Id〉)× L2(−τ, 0;L2(Ωs)

d)×Hf (2.7)

where G(Ωs)/〈Id〉 denotes the orthogonal complement of 〈Id〉 in G(Ωs) and it is given
by

G(Ωs)/〈Id〉 = {σ ∈ G(Ωs) :

∫
Ωs

Tr(σ) dx = 0}.

Here, Tr denotes the trace of a matrix.

Proof. Denote by N0 the set on the right hand side of (2.6). Assume that σ ∈
〈Id〉⊕Y (Ωs). To prove that (0, σ, 0, 0) ∈ D(A), we only need to show that σ·ν = −πν
on Γs and ∇π ∈ Hf where π = L1σ. By assumption, σ = cId + ρ for some constant
c and ρ ∈ Y (Ωs). Thus, on Γs

σ · ν = (cId + ρ) · ν = cν

since ρ · ν = 0 on Γs. However, we have π = −(σ · ν) · ν = c on Γs and thus
πν = −σ · ν. The equation π = c on Γs and the fact that π = L1σ imply that π is
constant and hence ∇π = 0 ∈ Hf . It is obvious that A(0, σ, 0, 0) = 0, and therefore
N0 ⊂ N(A).
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Conversely, suppose that (v, σ, z, u) ∈ N(A). From the definition of A we immedi-
ately see that z(θ) = v for every θ ∈ (−τ, 0), v is constant, σ satisfies the boundary
value problem  divσ = (k0 + k1)v, in Ωs,

σ · ν =
∂u

∂ν
− πν, on Γs,

(2.8)

and u satisfies the Stokes equation
∆u−∇π = 0, in Ωf ,

divu = 0, in Ωf ,

u = 0, on Γf ,

u = v, on Γs.

(2.9)

Taking the inner product of the differential equation in (2.8) with v, applying the
divergence theorem and using the boundary condition u = v on Γs yield

(k0 + k1)

∫
Ωs

|v|2 dx = −
〈
∂u

∂ν
− πν, u

〉
H− 1

2 (Γs)d×H
1
2 (Γs)d

. (2.10)

Recall that ν is inward to Ωs. Multiplying the Stokes equation by u, integrating
over Ωf and then using Green’s identity one can see that (2.10) becomes

(k0 + k1)

∫
Ωs

|v|2 dx+

∫
Ωf

|∇u|2 dx = 0.

Since k0 + k1 is nonnegative, it follows that u is constant, and according to the
boundary condition on Γf in (2.9), this constant must be zero. As a consequence,
the boundary condition on Γs of the same system implies that v must be also zero,
and so is z.

We can see that σ satisfies the problem (2.2) with f = 0 and φ = −πν. From
the divergence theorem,

∫
Γs
νj ds = 0 for j = 1, . . . , d, and so the pair (0,−πν) is

compatible. According to Proposition 2.1, all solutions to this problem are of the
form σ = −πId + ρ where ρ ∈ Y (Ωs), which is an element of 〈Id〉 ⊕ Y (Ωs). This
proves the other inclusion N(A) ⊂ N0. Therefore N(A) = N0, and since Id ∈ G(Ωs)
we have indeed a direct sum in the second component of N(A).

If G(Ωs)/〈Id〉 is the orthogonal complement of 〈Id〉 in G(Ωs) then one can easily
see that

(〈Id〉 ⊕ Y (Ωs))
⊥ = G(Ωs)/〈Id〉 (2.11)

where the left hand side is taken with respect to L2(Ωs)
d×d. Indeed, given σ ∈

G(Ωs)/〈Id〉 and κ ∈ 〈Id〉 ⊕ Y (Ωs), so that κ = cId + ρ for some constant c and
ρ ∈ Y (Ωs), we have∫

Ωs

κ · σ dx = c

∫
Ωs

Id · σ dx+

∫
Ωs

ρ · σ dx = 0

since Id is orthogonal to σ and G(Ωs) is orthogonal to Y (Ωs). Thus,
σ ∈ (〈Id〉 ⊕ Y (Ωs))

⊥ and we have one inclusion. For the reverse inclusion,
note that if κ ∈ (〈Id〉 ⊕ Y (Ωs))

⊥ and ρ ∈ 〈Id〉 ⊂ 〈Id〉 ⊕ Y (Ωs) then κ lies in G(Ωs)
and it is orthogonal to ρ, which means that κ ∈ G(Ωs)/〈Id〉. This completes the
proof of (2.11), and hence (2.7). The characterization of G(Ωs)/〈Id〉 is a direct

Department of Mathematics and Computer Science, College of Science, University of the Philippines Baguio



G. Peralta 8 / 23

consequence of the fact that σ · Id is the trace of σ. �

The notation G(Ωs)/〈Id〉 for the orthogonal complement of 〈Id〉 in G(Ωs) is mo-
tivated from the fact that the latter space is isomorphic to the former when viewed
as a factor space. Now we prove the invariance of N(A)⊥ under A. This space will
be the state space for our stability problem.

Theorem 2.3. The space N(A)⊥ is invariant under A, i.e. A(D(A) ∩ N(A)⊥) ⊂
N(A)⊥.

Proof. Let (v, σ, z, u) ∈ D(A) ∩ N(A)⊥. In order for A(v, σ, z, u) ∈ N(A)⊥, the
component v must satisfy∫

Ωs

div v dx =

∫
Ωs

Tr(∇v) dx = 0,

or equivalently, by the divergence theorem∫
Γs

v · ν ds = 0. (2.12)

Since u is divergence free in Ωf and it vanishes on Γf we have∫
Γs

u · ν ds =

∫
Ωf

divu dx = 0

and hence (2.12) holds because u = v on Γs. �

Define Ã to be the part of A in N(A)⊥, i.e. the operator Ã : D(A) ∩ N(A)⊥ →
N(A)⊥ given by ÃX = AX for X ∈ N(A)⊥. This operator is well-defined according
to Theorem 2.3.

Theorem 2.4. Suppose that k1 ≥ k0 > 0. The linear operator Ã is dissipative and
generates a strongly continuous semigroup of contractions on N(A)⊥.

The corresponding result in the case where k1 = k0 = 0 and k0 = 0 have been
established in [3] and [6], respectively. In order to prove the theorem, we need to
solve certain Stokes equations. For this, we recall the following classical result whose
proof can be found in [28].

Proposition 2.5. Let m ≥ −1 be an integer and Ω ⊂ Rd be a bounded Cr-domain,
where d = 2, 3 and r = max(2,m+ 2). For every f ∈ Hm(Ω)d and φ ∈ Hm+ 3

2 (∂Ω)d

such that
∫
∂Ω
φ · ν ds = 0, where ν is the unit normal outward to Ω, the system

∆u−∇p = f, in Ω,

div u = 0, in Ω,

u = φ, on ∂Ω,

(2.13)

has a unique solution (u, p) ∈ Hm+2(Ω)d × (Hm+1(Ω)/R) satisfying the estimate

‖u‖Hm+2(Ω)d + ‖p‖Hm+1(Ω)/R ≤ C(‖f‖Hm(Ω)d + ‖φ‖
Hm+3

2 (∂Ω)d
)

for some C > 0 independent of u, p, f and φ.
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Proof.[Proof of Theorem 2.4] The first step is to show that Ã is dissipative. Let
X = (v, σ, z, u) be an arbitrary element ofD(A) and π = L1σ+L2u be the associated
pressure. Using Green’s identity and the divergence theorem we have

Re
∫

Ωf

(∆u−∇π) · u dx = −
∫

Ωf

|∇u|2 dx+ Re
〈
∂u

∂ν
− πν, u

〉
H− 1

2 (Γs)d×H
1
2 (Γs)d

.

(2.14)
Here, we used the fact that u is divergence-free and u = 0 on Γf . On the other
hand, applying the divergence theorem with respect to the domain Ωs we obtain

Re
∫

Ωs

(divσ − k1v − k0z(−τ)) · v +∇v · σ dx

= −Re〈σ · ν, v〉
H− 1

2 (Γs)d×H
1
2 (Γs)d

− k1

∫
Ωs

|v|2 dx− Re k0

∫
Ωs

z(−τ) · v dx.(2.15)

For the delay variable, we integrate by parts, use the condition z|θ=0 = v and take
the real part to get

Re k0

∫ 0

−τ

∫
Ωs

∂θz · z dx dθ =
k0

2

∫
Ωs

|v|2 dx− k0

2

∫
Ωs

|z(−τ)|2 dx. (2.16)

Taking the sum of (2.14)–(2.16), using the boundary conditions σ · ν = ∂u
∂ν
−πν and

u = v on Γs so that the boundary terms will be cancelled, and then applying the
Cauchy-Schwarz inequality and then the elementary inequality |ab| ≤ 1

2
(a2 + b2) to

the last term on the right hand side of (2.15) we obtain

Re(AX,X)H ≤ −
∫

Ωf

|∇u|2 dx− (k1 − k0)

∫
Ωs

|v|2 dx. (2.17)

This means that A and Ã are dissipative whenever k1 ≥ k0.
The next step is to prove the invertibility of Ã. It is clear that Ã is injective. Let

us show that Ã is surjective, first for sufficiently large k1. Given (η, κ, ζ, ϕ) ∈ H, the
equation Ã(v, σ, z, u) = (η, κ, ζ, ϕ) with unknown (v, σ, z, u) ∈ D(Ã) is equivalent to
the system where v satisfies

∇v = κ, in Ωs, (2.18)
u is the solution of the Stokes equation

∆u−∇π = ϕ, in Ωf ,

divu = 0, in Ωf ,

u = 0, on Γf ,

u = v, on Γs,

(2.19)

and σ ∈ G(Ωs)/〈Id〉 satisfies the boundary value problem divσ = k0z(−τ) + k1v + η, in Ωs,

σ · ν =
∂u

∂ν
− πν, in Γs,

(2.20)

where the delay variable z is given by

z(θ) = v −
∫ 0

θ

ζ(ϑ) dϑ, in L2(Ωs)
d. (2.21)
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Recall that π is the solution of the elliptic problem
∆π = 0, in Ωf ,

π =
∂u

∂ν
· ν − (σ · ν) · ν, on Γs,

∂π

∂ν
= ∆u · ν, on Γf .

(2.22)

From (2.21) it is clear that z ∈ H1(−τ, 0;L2(Ωs)
d). On the other hand, since

κ ∈ G(Ωs)/〈Id〉 ⊂ G(Ωs), it follows that (κ, ρ)L2(Ωs)d = 0 for every divergence-free
vector field ρ ∈ C∞0 (Ωs)

d. By a classical result, there exists ṽ ∈ H1(Ωs)
d, which is

unique up to an additive constant vector, that satisfies (2.18), see [27, Lemma 2.2.2]
for example. Applying the divergence theorem we obtain∫

Γs

ṽ · ν ds = −
∫

Ωs

div ṽ dx = −
∫

Ωs

Tr(κ) dx = 0. (2.23)

As been said, v = ṽ + v∗, where v∗ is a constant vector, also satisfies (2.18) and
hence (2.23) where ṽ is replaced by v. The vector v∗ will be chosen so that the data
in (2.20) are compatible.

Taking m = −1 in Proposition 2.5, the Stokes equation (2.19) admits a solution
pair (u, π̃) ∈ (H1(Ωf )

d ∩Hf )× L2(Ωf ). The function π̃ is harmonic since

∆π̃ = div(ϕ−∆u) = ∆(divu) = 0.

Therefore, π̃ has the following traces π̃|Γs ∈ H−
1
2 (Γs) and ∂π̃

∂ν
|Γf
∈ H− 3

2 (Γf ) while
u satisfies ∂u

∂ν
|Γs ∈ H−

1
2 (Γs)

d and ∆u · ν in H−
3
2 (Γf ), refer to [4, Lemma 3.1]. For

every constant π∗, (u, π) with π = π̃ + π∗ is also a solution pair for (2.19). The
constant π∗ will be determined below by imposing the condition σ ∈ G(Ωs)/〈Id〉
where σ solves (2.20).

Consider the decomposition u = ũ +
∑d

j=1 v
∗
jwj and π = π̃0 +

∑d
j=1 v

∗
j%j, where

v∗ = (v∗1, . . . , v
∗
d) ∈ Cd and the pairs (ũ, π̃0), (wj, %j) ∈ (H1(Ωf )

d ∩ Hf ) × L2(Ωf )
satisfy the following Stokes equations

∆ũ−∇π̃0 = ϕ, in Ωf ,

div ũ = 0, in Ωf ,

ũ = 0, on Γf ,

ũ = ṽ, on Γs,

(2.24)

and 
∆wj −∇%j = 0, in Ωf ,

divwj = 0, in Ωf ,

wj = 0, on Γf ,

wj = ej, on Γs,

(2.25)

respectively. The boundary data in (2.24) and (2.25) are admissible according to
(2.23) and

∫
Γs
ν · ej ds =

∫
Γs
νj ds = 0, respectively. The compatibility condition for

(2.20) is given by, for l = 1, . . . , d

0 = (k0 + k1)

∫
Ωs

(ṽl + v∗l ) dx− k0

∫ 0

−τ

∫
Ωs

ζl(ϑ) dϑ+

∫
Ωs

ηl dx
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+

〈
∂u

∂ν
− π̃ν, el

〉
H− 1

2 (Γs)d×H
1
2 (Γs)d

, (2.26)

where we used π∗
∫

Γs
ν · el ds = 0. Using the above decomposition and Green’s

identity, the last term in the above equation can be written as∫
Ωf

( d∑
j=1

v∗j∇wj · ∇wl +∇ũ · ∇wl + ϕ · wl
)

dx =

〈
∂u

∂ν
− π̃ν, el

〉
H− 1

2 (Γs)d×H
1
2 (Γs)d

.(2.27)

Equations (2.26) and (2.27) provide us a d× d system of equations

Mv∗ = F (2.28)

for some vector F = F (η, κ, ζ, ϕ) independent of v∗ and the matrixM has the entries

Mjl =

{
(k0 + k1)|Ωs|+ ‖∇wj‖2

L2(Ωf )d×d , if l = j,

(∇wl,∇wj)L2(Ωf )d×d , if l 6= j,

for j = 1, . . . , d. Here, |Ωs| denotes the Lebesgue measure of Ωs. For sufficiently
large k1, the matrix M is strictly diagonally dominant, that is, Mjj >

∑
l 6=jMjl for

every j = 1, . . . , d. To see this, we first apply Proposition 2.5 with m = −1 to (2.25)
in order to obtain the estimate

‖wj‖H1(Ωf )d ≤ C‖ej‖H−1(Ωf )d ≤ C‖ej‖L2(Ωf )d ≤ C|Ωf |
1
2 (2.29)

for every j. Then one may take for example k1 > (d − 1)C2|Ωf ||Ωs|−1, where C is
the positive constant in (2.29). Indeed, by applying the Cauchy-Schwarz inequality
we have ∑

l 6=j

Mjl ≤
∑
l 6=j

‖∇wj‖L2(Ωf )d‖∇wl‖L2(Ωf )d

= (d− 1)C2|Ωf | < k1|Ωs| ≤Mjj

for every j = 1, . . . , d. Therefore, for sufficiently large k1 the matrix M is invertible
according to the well-known Levy-Desplanques Theorem, see [15] for instance. Thus
we can solve for v∗ in the linear system (2.28).

Let f ∗ ∈ L2(Ωs)
d denote the right hand side of (2.20), i.e.

f ∗ = (k0 + k1)v − k0

∫ 0

θ

ζ(ϑ) dϑ+ η.

From Proposition 2.1, the function σ = ∇ψ − π∗Id ∈ L2
div(Ωs)

d×d ∩G(Ωs), where ψ
satisfies the Neumann problem (2.3) with f = f ∗ and φ = ∂u

∂ν
− π̃ν, is a solution of

(2.20). In order for σ to be an element of G(Ωs)/〈Id〉 we must have∫
Ωs

Tr(∇ψ) dx− dπ∗|Ωs| =
∫

Ωs

Tr(∇ψ − π∗Id) dx = 0.

Choosing π∗ = −(d|Ωs|)−1
∫

Ωs
ψ · ν ds yields σ ∈ G(Ωs)/〈Id〉.

It remains to show that π satisfies (2.22), i.e. π = L1σ + L2u. We already know
that π is harmonic. The second line in (2.22) holds in H−

1
2 (Ωs) by taking the inner

product, in the sense of traces, of the second line in (2.20) with ν. Also, ϕ ∈ Hf
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and the first equation of (2.22) imply that ∂π
∂ν

= ∇π · ν = ∆u · ν in H−
3
2 (Γf ). Hence

π = L1v + L2σ and therefore (v, σ, z, u) ∈ D(Ã) satisfies Ã(v, σ, z, u) = (η, κ, ζ, ϕ).
The operator Ã is therefore bijective and by the closed graph theorem, 0 lies in

the resolvent set of Ã. By the Lumer-Phillips Theorem, Ã generates a strongly
continuous semigroup of contractions on N(A)⊥. This completes the proof of
the theorem in the case where k1 is sufficiently large. However, by the bounded
perturbation theorem for semigroups, this implies that the conclusion of the
theorem also holds for every k1 ≥ k0. �

Corollary 2.6. Suppose that k1 ≥ k0 > 0. The operators A and A∗ generate
strongly continuous semigroups of contractions on H. In particular, the Cauchy
problem (2.1) admits a unique weak solution X ∈ C([0,∞);H) for every initial data
X0 ∈ H.

Proof. It is enough to prove the range conditions R(I−A) = H = R(I−A∗). Given
Y ∈ H, write Y = Y1 + Y2 where Y1 ∈ N(A)⊥ and Y2 ∈ N(A). From Theorem 2.4,
it follows that there exists X1 ∈ D(Ã) such that (I − Ã)X1 = Y1. If X = X1 + Y2

then X ∈ D(A) and
(I − A)X = (I − Ã)X1 + Y2 = Y.

Therefore I − A is surjective. The case of A∗ is analogous. �

As in [3], it can be shown that p ∈ C([0,∞);L2(Ωf )) where p = L1σ + L2u and
(v, σ, z, u) = etAX0 for a given data X0 ∈ D(A). To close this section, we determine
the adjoint of the closed operator A.

Theorem 2.7. The adjoint A∗ : D(A∗)→ H of A is given by

A∗ =


−k1I −div k0γ|θ=0 0
−∇ 0 0 0

0 0 −∂θ 0
0 ∇L1 0 ∆−∇L2

 . (2.30)

The domain D(A∗) of A∗ is the set of all elements in H such that

(η, κ, ζ, ϕ) ∈ H1(Ωs)
d × L2

div(Ωs)
d×d ×H1(−τ, 0;L2(Ωs)

d)× (H1(Ωf )
d ∩Hf )

with the properties ϕ = 0 on Γf , ϕ = η on Γs, ζ(−τ) = −η in Ωs, ∂ϕ
∂ν

+κ · ν = pν in
H−

1
2 (Γs)

d, ∆ϕ ·ν ∈ H− 3
2 (Γf ) and ∆ϕ−∇p ∈ Hf where p = −L1κ+L2ϕ. Moreover,

the kernels of A and A∗ coincide.

Proof. Define the operator B : D(B) → H by the right hand side of (2.30)
where the domain D(B) is the set in the description of D(A∗). With the isometric
isomorphism J : H → H defined by

J(v, σ, z(θ), u) = (−v, σ, z(−θ − τ),−u),

which satisfies J−1 = J , the operators A and B are similar, that is, JAJ = B
and D(JAJ) = D(B). This implies that B is m-dissipative and N(A) = N(B).
We show that A∗ is an extension of B and since A∗ is the adjoint of a generator
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of a strongly continuous semigroup of contractions, A∗ does not contain a strict
m-dissipative operator and so we must have A∗ = B.

We show that
(AX, Y )H = (X,BY )H (2.31)

holds whenever X = (v, σ, z, u) ∈ D(A) and Y = (η, κ, ζ, ϕ) ∈ D(B), so that
Y ∈ D(A∗) and consequently A∗ is an extension of B. By definition, we have

(AX, Y )H = −
∫

Ωs

(k1v − div σ + k0z(−τ)) · η dx+

∫
Ωs

∇v · κ dx (2.32)

+ k0

∫ 0

−τ

∫
Ωs

∂θz(θ) · ζ(θ) dx dθ +

∫
Ωf

(∆u−∇π) · ϕ dx.

Integrating by parts, using Green’s identities, the divergence theorem and ζ(−τ) =
−η we obtain∫

Ωs

div σ · η dx = −〈σ · ν, η〉
H− 1

2 (Γs)d×H
1
2 (Γs)d

−
∫

Ωs

σ · ∇η dx∫
Ωs

∇v · κ dx = −〈κ · ν, v〉
H− 1

2 (Γs)d×H
1
2 (Γs)d

−
∫

Ωs

v · div κ dx∫ 0

−τ

∫
Ωs

∂θz(θ) · ζ(θ) dx dθ =

∫
Ωs

(v · ζ(0) + z(−τ) · η) dx

−
∫ 0

−τ

∫
Ωs

z(θ) · ∂θζ(θ) dx dθ∫
Ωf

(∆u−∇π) · ϕ dx =

〈
∂u

∂ν
− πν, ϕ

〉
H− 1

2 (Γs)d×H
1
2 (Γs)d

−
〈
∂ϕ

∂ν
− pν, u

〉
H− 1

2 (Γs)d×H
1
2 (Γs)d

+

∫
Ωf

u · (∆ϕ−∇p) dx.

Using these equations in (2.32) together with the boundary conditions u = v on Γs,
ϕ = η on Γs, ∂ϕ

∂ν
+ κ · ν = pν in H−

1
2 (Γs)

d and ∂u
∂ν
− σ · ν = πν in H−

1
2 (Γs)

d, it can
be seen that (2.31) is satisfied. �

3. Spectral Properties and Stability

In the absence of delay, it was shown in [3] the partial compactness of the resolvents
of the operator A. More precisely, the projection of a resolvent onto the state
space corresponding to the velocity fields for the fluid and structure components
is compact. Here, we will show that even though the operator A does not have
compact resolvents, the spectrum comprises of only eigenvalues except possibly on
the negative real axis. This will be established in a more straightforward manner
through a variational method, deviating from the methods provided in [3]. To this
end, we introduce the following Hilbert spaces

H0 := L2(Ωs)
d ×Hf ,

H1 := {(v, u) ∈ H1(Ωs)
d × (H1(Ωf )

d ∩Hf ) : u = 0 on Γf and v = u on Γs},
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equipped with the inner products

((v, u), (w,ψ))H0 :=

∫
Ωs

v · w dx+

∫
Ωf

u · ψ dx

((v, u), (w,ψ))H1 :=

∫
Ωs

(v · w +∇v · ∇w) dx+

∫
Ωf

∇u · ∇ψ dx,

respectively. The embedding H1 ⊂ H0 is continuous, dense and compact.
For each nonzero complex number λ, define the sesquilinear form aλ : H1×H1 → C

by

aλ((v, u), (w,ψ)) := q(λ)

∫
Ωs

v · w dx+
1

λ

∫
Ωs

∇v · ∇w dx

+ λ

∫
Ωf

u · ψ dx+

∫
Ωf

∇u · ∇ψ dx

where q(λ) = λ + k1 + k0e
−λτ . For a given Y = (η, κ, ζ, ϕ) ∈ H and λ ∈ C \ {0},

define the anti-linear form FY,λ : H1 ×H1 → C by

FY,λ(w,ψ) :=

∫
Ωs

(
η · w − 1

λ
κ · ∇w

)
dx− k0

∫ 0

−τ

∫
Ωs

e−λ(τ+θ)ζ(θ) · w dx dθ

+

∫
Ωf

ϕ · ψ dx.

In the sequel, ρ(A), σ(A) and σp(A) denote the resolvent set, spectrum and point
spectrum of a closed operator A, respectively.

Theorem 3.1. The spectrum of A in C \ (−∞, 0] consists of only eigenvalues, that
is, σ(A) ∩ (C \ (−∞, 0]) = σp(A). The same property holds for A∗.

The proof of this theorem is based on the following result whose proof can be
found in [12, Theorem 3] or [25, Lemma 2.1].

Lemma 3.2. Let H1 and H0 be Hilbert spaces such that the embedding H1 ⊂ H0

is compact and dense. Suppose that a1 : H1 ×H1 → C and a2 : H0 ×H0 → C are
two bounded sesquilinear forms such that a1 is H1-coercive and F : H1 → C is a
continuous conjugate linear form. The variational equation

a1(u, v) + a2(u, v) = F (v), ∀v ∈ H1,

has either a unique solution u ∈ H1 for all F ∈ H ′1 or has a nontrivial solution for
F = 0.

Proof.[Proof of Theorem 3.1] The fact that A and A∗ are generators of strongly
continuous semigroups of contractions implies that {λ ∈ C : Reλ > 0} lies in their
respective resolvent sets. Let λ 6= 0 with Reλ ≤ 0. The equation

(λI − A)(v, σ, z, u) = (η, κ, ζ, ϕ) (3.1)

for (v, σ, z, u) ∈ D(A) and Y := (η, κ, ζ, ϕ) ∈ H is equivalent to the system of
differential equations

(λ+ k1)v − divσ + k0z(−τ) = η, (3.2)
λσ −∇v = κ, (3.3)
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λz(θ)− ∂θz(θ) = ζ(θ), (3.4)
λu−∆u+∇π = ϕ, (3.5)

and supplied with the boundary conditions listed in the definition ofD(A). Applying
the variation of parameters formula to (3.4) yields the following equation in L2(Ωs)

d

z(θ) = eλθv +

∫ 0

θ

eλ(θ−ϑ)ζ(ϑ) dϑ, θ ∈ (−τ, 0). (3.6)

Let w ∈ H1(Ωs)
d. Multiplying (3.2) by w, integrating over Ωs, applying the

divergence theorem, and then rearranging the terms give us

q(λ)

∫
Ωs

v · w dx+

∫
Ωs

σ · ∇w dx+ 〈σ · ν, w〉
H− 1

2 (Γs)d×H
1
2 (Γs)d

=

∫
Ωs

η · w dx− k0

∫ 0

−τ

∫
Ωs

e−λ(τ+θ)ζ(θ) · w dx dθ. (3.7)

Taking the inner product of (3.3) with ∇w yields

λ

∫
Ωs

σ · ∇w dx−
∫

Ωs

∇v · ∇w dx =

∫
Ωs

κ · ∇w dx. (3.8)

Suppose that ψ ∈ H1(Ωf )
d ∩Hf and ψ = 0 on Γf . Taking the inner product of

(3.5) with ψ and using the divergence theorem we have

λ

∫
Ωf

u · ψ dx+

∫
Ωf

∇u · ∇ψ dx−
〈
∂u

∂ν
− πν, ψ

〉
H− 1

2 (Γs)d×H
1
2 (Γs)d

=

∫
Ωf

ϕ · ψ dx.(3.9)

If ψ = w on Γs, then dividing (3.8) by −λ and then adding the result to (3.7) and
(3.9), it can be seen that the boundary terms cancel, which leads to the variational
equation

aλ((v, u), (w,ψ)) = FY,λ(w,ψ), (3.10)
where aλ and FY,λ are the forms stated preceding the theorem. We have shown that
if (3.1) holds then (3.10) is satisfied for every (w,ψ) ∈ H1.

Let us verify the other direction. Assume that there exists (u, v) ∈ H1 such that
(3.10) is true for all (w,ψ) ∈ H1. Taking w = 0 and ψ ∈ H1

0 (Ωf )
d ∩Hf leads to the

equation (3.9) without the duality pairing. This implies that u ∈ Hf satisfies (3.5)
for some π̃ ∈ L2(Ωf )

d. For every constant π∗, the pair (u, π) where π = π̃ + π∗ also
satisfies (3.5). As in the proof of Theorem 2.4, ∂u

∂ν
− πν ∈ H− 1

2 (Γs)
d.

Define z ∈ H1(−τ, 0;L2(Ωs)
d) by (3.6) and σ ∈ L2(Ωs)

d×d by

σ =
1

λ
(κ+∇v).

By construction σ and z satisfies (3.3) and (3.4), respectively. Setting ψ = 0 and
w ∈ H1

0 (Ω) in (3.10) and rearranging the terms∫
Ωs

σ · ∇w dx =

∫
Ωs

(η − (λ+ k1)v − k0z(−τ)) · w dx.

This implies that (3.2) is satisfied in H−1(Ωs)
d, and a posteriori in L2(Ωs)

d since
the right hand side lies in L2(Ωs)

d. As a result σ ∈ L2
div(Ωs)

d×d. Now we choose the
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constant π∗ according to

π∗ =
1

|Γs|

〈
∂u

∂ν
− π̃ν − σ · ν, ν

〉
H− 1

2 (Γs)d×H
1
2 (Γs)d

and from this choice we have〈
∂u

∂ν
− πν − σ · ν, ν

〉
H− 1

2 (Γs)d×H
1
2 (Γs)d

= 0. (3.11)

Given φ ∈ H 1
2 (Γs)

d, let ϕ = φ− φν ∈ H 1
2 (Γs)

d where φ is the average of φ · ν on
Γs, i.e.

φ =
1

|Γs|

∫
Γs

φ · ν ds.

By construction, it holds that
∫

Γs
ϕ ·ν ds = 0. We know from trace theory that there

exists w ∈ H1(Ωs)
d such that w = ϕ on Γs. On the other hand, from Proposition

2.5, the Stokes equation 
−∆ψ +∇% = 0, in Ωf ,

divψ = 0, in Ωf ,

ψ = 0, on Γf ,

ψ = ϕ, on Γs.

admits a solution (ψ, %) ∈ (H1(Ωf )
d∩Hf )×L2(Ωf ). Choosing the pair (w,ψ) ∈ H1

in (3.10) and then using Green’s identity and the divergence theorem, we have〈
∂u

∂ν
− πν − σ · ν, ϕ

〉
H− 1

2 (Γs)d×H
1
2 (Γs)d

= 0.

From (3.11) and the equation φ = ϕ + φν, we can see that this equality is also
true if we replace the function ϕ by φ. Since φ ∈ H 1

2 (Γs)
d is arbitrary, we obtain

∂u
∂ν
−πν−σ ·ν = 0 in H−

1
2 (Γs)

d. Using the same argument as in the proof of Theorem
2.4, it can be shown that π = L1σ + L2u. Combining the above observations shows
that (v, σ, z, u) ∈ D(A) and (3.1) holds.

Decompose aλ into aλ = a1
λ + a2

λ where the sesquilinear forms a1
λ : H1 ×H1 → C

and a2
λ : H0 ×H0 → C are defined by

a1
λ((v, u), (w,ψ)) :=

∫
Ωs

v · w dx+
1

λ

∫
Ωs

∇v · ∇w dx+

∫
Ωf

∇u · ∇ψ dx,

a2
λ((v, u), (w,ψ)) := (q(λ)− 1)

∫
Ωs

v · w dx+ λ

∫
Ωf

u · ψ dx.

Notice that the form a2
λ is bounded. On the other hand, for every nonzero element

of (v, u) in H1 there holds

|a1
λ((v, u), (v, u))|
‖(v, u)‖2

H1

=

∣∣∣∣ 1 +

(
1

λ
− 1

)∫
Ωs

|∇v|2

‖(v, u)‖2
H1

dx

∣∣∣∣.
Thus, a1

λ is H1-coercive if infε≥0 |1 + ( 1
λ
− 1)ε| > 0 holds. This inequality is satisfied

provided that Imλ 6= 0. From the compactness of the embedding H1 ⊂ H0, it
follows from Lemma 3.2 that λ 6= 0 with Reλ ≤ 0 is either in the resolvent set or an
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eigenvalue of A. Combined with the earlier remark that the right-half part of the
complex plane lies in ρ(A), this is equivalent to what the theorem stated.

For the operator A∗, notice that it is almost the same with A except for a change
of signs on its definition as well as on its domain. These differences of signs will
not affect the applicability of the analysis presented above. �

We would like to note that the method and results presented in the previous
theorem can be adapted to the original fluid-structure system presented in [3, 6],
with or without delay.

The spectrum of the generator A on the imaginary axis and the stability of the cor-
responding semigroup is connected to the solvability of the over-determined bound-
ary value problem on the structure domain

−∆ϕ = µϕ, in Ωs,

ϕ = 0, on Γs,

∂ϕ

∂ν
= kν, on Γs,

(3.12)

where µ ∈ σ(−∆D), k ∈ R and −∆D : H2(Ωs)
d∩H1

0 (Ωs)
d → L2(Ωs)

d is the Dirichlet
Laplacian. The spectrum of −∆D consists of only a countable number of positive
eigenvalues, and we let σ(−∆D) = {µn}∞n=1 arranged in increasing order so that
µn → ∞. If k = 0 then the unique continuation condition for elliptic operators in
[29, Corollary 15.2.2] implies that ϕ = 0. We consider the following hypothesis.

(H) The over-determined problem (3.12) has the trivial solution ϕ = 0 and hence
k = 0.

Condition (H) imposed on the over-determined problem (3.12) is not new and it
was first introduced in [3], and later in [6, 18, 22], in the context of the stabilization
of certain fluid-structure interaction models without delay. This condition depends
on the geometry of the structure domain and it has been studied also in [6] under
certain domains. In fact they considered the over-determined problem where the
Neumann boundary condition appears only on a subset of the boundary. Condition
(H) is satisfied for certain partially flat domains, however, this is not the case for
spherical domains.

Theorem 3.3. Let τ > 0 be fixed.

(1) If k1 > k0 then A and A∗ have no purely imaginary eigenvalues, that is,

σ(A) ∩ iR = σ(A∗) ∩ iR = {0}. (3.13)

(2) Suppose that k1 = k0. If condition (H) holds then (3.13) is satisfied.
(3) Assume that k1 = k0 and (3.12) has nontrivial solutions ϕnj

, j = 1, . . . , J
where possibly J = ∞. Let M be the set of all m ∈ N such that µm =
π2

τ2
(2n+ 1)2 for some nonnegative integer n. Then

σ(A) ∩ iR = σ(A∗) ∩ iR = {±i√µm}m∈M . (3.14)
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Eigenfunctions of A corresponding to ±i√µm for m ∈M are

Xm,j =


ϕnj

(±i√µm)−1∇ϕnj

e±iθ
√
µmϕnj

0

 , j = 1, . . . , J. (3.15)

Similarly, eigenfunctions of A∗ associated with ±i√µm for m ∈M are

X∗m,j =


−ϕnj

(±i√µm)−1∇ϕnj

e∓i(θ+τ)
√
µmϕnj

0

 , j = 1, . . . , J. (3.16)

Proof. Let us determine the nonzero purely imaginary eigenvalues, if there are any.
Take X = (v, σ, z, u) ∈ D(A) with AX = irX where r 6= 0 is a real number. Then
(AX,X)H = ir‖X‖2

H and from (2.13) we have∫
Ωf

|∇u|2 dx+ (k1 − k0)

∫
Ωs

|v|2 dx ≤ −Re(AX,X)H = 0.

It follows that u is constant and from the boundary condition on Γf this constant
must be zero. If k1 > k0 then the latter inequality implies that v is zero. Conse-
quently, σ = (ir)−1∇v = 0 and z(θ) = 0 for every θ ∈ (−τ, 0). This proves the first
part.

The equation AX = irX is equivalent the system (3.2)–(3.5) with λ = ir together
with the boundary conditions stated in the domain of A, which is in turn equivalent
to the variational equality (3.10), where the right hand side is equal to zero. Using
these, it is not hard to see that ϕ = − v

ir
satisfies the over-determined problem

−∆ϕ = −ir(ir + k1 + k0e
−irτ )ϕ, in Ωs,

ϕ = 0, in Γs,

∂ϕ

∂ν
= πν, in Γs.

(3.17)

Suppose that k1 = k0. Let λ = −ir(ir + k1 + k0e
−irτ ). If λ /∈ σ(−∆D) then the

first two equations in (3.17) can be written as (λI − ∆D)ϕ = 0 and hence ϕ = 0.
Therfore v = 0, σ = 0 and z = 0 and we established the second part.

Finally, suppose that k1 = k0 and λ = µm for some integer m. For this to
hold then necessarily we must have cos rτ = −1 and r2 = µm. These imply that
rτ = (2n+1)π and hence π2

τ2
(2n+1)2 ∈ σ(−∆D). This proves (3.14) in the case of A.

The representation of the eigenfunctions in (3.15) can be obtained from (3.2)–(3.5).
According to the isomorphism J given in the proof of Theorem 2.7, the eigenvectors
for A∗ are given by (3.16). Indeed, we have

A∗X∗m,j = A∗JXm,j = JAXm,j = J(±i√µmXm,j) = ±i√µmX∗m,j.

This proves the last part of the theorem. �
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We can see from the above theorem that in the case where the damping and delay
factors coincide and (3.12) has nontrivial solutions, there are sequences of delays
converging to zero or at infinity for which the corresponding energy is constant.
For example, if τm,n = π√

µm
(2n + 1) then τm,n → ∞ as n → ∞ and m fixed, while

τm,n → 0 as m→∞ and n fixed. From the previous theorem and the classical result
of Arendt-Batty [1] and Lyubich-Phong [21] we have the following strong stability
result.

Theorem 3.4. Suppose that k1 = k0 > 0 and τ > 0. The semigroup generated by
Ã is strongly stable, that is, etÃX0 → 0 in H as t → ∞ for every X0 ∈ N(A)⊥, if
one of the following properties is satisfied.

(1) The condition (H) holds.
(2) It holds that τ 6= π√

µ
(2n+ 1) for every integer n ≥ 0 and µ ∈ σ(−∆D).

Moreover, if Π is the orthogonal projection of H onto N(A) then etAX0 → ΠX0 in
H as t→∞ for every X0 ∈ H.

This means that even though (H) is not satisfied, the system is still stable except
for a countable number of delays. We would like to point out that in the case where
k1 = k0 = 0, this stability property has been already proved in [22] for the nonlinear
case and in [3, 6] for the linear case with the displacement term in the wave equation.
For decay rates in the non-delayed case we refer to [2, 5].

If k1 > k0 then we expect to have exponential stability. This is the content of the
following theorem whose proof is based on the frequency domain method. Again, we
mention that this has been already established in the non-delayed case, see [6, 22].
The method in [6] is to show the uniform boundedness of the resolvents on the
imaginary axis. The proof we provide below uses the Gearhart-Prüss Theorem.

Theorem 3.5. If k1 > k0 then the semigroup generated by Ã is uniformly exponen-
tially stable, that is, there are constants M ≥ 1 and α > 0 such that ‖etÃX0‖H ≤
Me−αt‖X0‖H for every X0 ∈ N(A)⊥ and t ≥ 0. In particular, for each t ≥ 0 and
X0 ∈ H we have ‖etAX0 −ΠX0‖H ≤Me−αt‖X0‖H .

Proof. Assume on the contrary that the semigroup generated by Ã is not exponen-
tially stable. According to the Gearhart-Prüss Theorem, see [13, Theorem V.1.11],
we have sup{‖(λI − Ã)−1‖L(H) : Reλ > 0} = ∞. By the Banach-Steinhaus Theo-
rem and the uniform boundedness of the resolvents on compact sets, there exists a
sequence of complex numbers (λn)n with Reλn > 0 such that |λn| → ∞ and a se-
quence of unit vectors Xn := (vn, σn, zn, un) ∈ D(Ã) such that ‖(λnI−Ã)Xn‖H → 0.
Let Yn := (ηn, κn, ζn, ϕn) = (λnI − Ã)Xn. The latter equation is equivalent to the
system (3.2)–(3.5) with λ, (v, σ, z, u) and (η, κ, ζ, ϕ) replaced by λn, (vn, σn, zn, un)
and (ηn, κn, ζn, ϕn), respectively.

From the dissipativity of the operator Ã we have

Re(Yn, Xn) = Re(λn − (ÃXn, Xn)H)

≥ Reλn +

∫
Ωf

|∇un|2 dx+ (k1 − k0)

∫
Ωs

|vn|2 dx.
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Since Reλn > 0 and k1 > k0 we have Reλn → 0,

vn → 0 strongly in L2(Ωs)
d, (3.18)

un → 0 strongly in H1(Ωf )
d, (3.19)

where the second limit is due to the Poincaré inequality. Consequently, |Imλn| → ∞.
The delay variable zn satisfies the estimate∫ 0

−τ

∫
Ωs

|zn(θ)|2 dx dθ ≤ Cτ

(∫ 0

−τ

∫
Ωs

|ζn(θ)|2 dx dθ +

∫
Ωs

|vn|2 dx

)
(3.20)

for some constant Cτ > 0. Using (3.18) and the fact that ζn → 0 in
L2(−τ, 0;L2(Ωs)

d) we obtain

zn → 0 strongly in L2(−τ, 0;L2(Ωs)
d). (3.21)

Taking the inner product in H both sides of Yn = (λnI − Ã)Xn with Xn yields the
following set of equations∫

Ωs

ηn · vn dx = (λn + k1)

∫
Ωs

|vn|2 dx+

∫
Ωs

σn · ∇vn dx (3.22)

+ 〈σn · ν, vn〉H− 1
2 (Γs)d×H

1
2 (Γs)d

+ k0

∫
Ωs

zn(−τ) · vn dx∫
Ωs

κn · σn dx = λn

∫
Ωs

|σn|2 dx−
∫

Ωs

∇vn · σn dx (3.23)

∫ 0

−τ

∫
Ωs

ζn(θ) · zn(θ) dx dθ = λn

∫ 0

−τ

∫
Ωs

|zn(θ)|2 dx dθ (3.24)

−
∫ 0

−τ

∫
Ωs

znθ(θ) · zn(θ) dx dθ∫
Ωf

ϕn · un dx = λn

∫
Ωf

|un|2 dx+

∫
Ωf

|∇un|2 dx (3.25)

−
〈
∂un
∂ν
− πnν, un

〉
H− 1

2 (Γs)d×H
1
2 (Γs)d

.

Since Xn is bounded and Yn → 0 in H, each of these terms tend to 0 as n→∞.
Dividing (3.25) by Imλn, taking the imaginary part and applying (3.19) yield

1

Imλn
Im
〈
∂un
∂ν
− πnν, un

〉
H− 1

2 (Γs)d×H
1
2 (Γs)d

→ 0. (3.26)

Similarly, if we divide (3.24) by Imλn, take the imaginary part and use (3.21) then
we obtain

1

Imλn

∫ 0

−τ

∫
Ωs

Im(znθ(θ) · zn(θ)) dx dθ → 0. (3.27)

On the other hand, if we take the real part of (3.24) and pass to the limit then we
get

Reλn
∫ 0

−τ

∫
Ωs

|zn(θ)|2 dx dθ − 1

2

∫
Ωs

(|vn|2 − |zn(−τ)|2) dx→ 0
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and by applying (3.18) and (3.21) we have

zn(−τ)→ 0 strongly in L2(Ωs)
d. (3.28)

Now, if we take the sum of (3.23)–(3.25), subtract the result from (3.22) and use
the equations vn = un on Γs and σn · ν = ∂un

∂ν
− πnν in H−

1
2 (Γs)

d then we have

λn

(
1− 2

∫
Ωs

|vn|2 dx

)
− k1

∫
Ωs

|vn|2 dx− 2

∫
Ωs

Re(∇vn · σn) dx

− k0

∫
Ωs

zn(−τ) · vn dx−
∫ 0

−τ

∫
Ωs

znθ(θ) · zn(θ) dx dθ +

∫
Ωf

|∇un|2 dx

− 2

〈
∂un
∂ν
− πnν, un

〉
H− 1

2 (Γs)d×H
1
2 (Γs)d

→ 0.

Dividing by Imλn, taking the imaginary part and using (3.18), (3.26)–(3.28) give
us ‖vn‖2

L2(Ωs)d
→ 1

2
, which is a contradiction to (3.18). Therefore the semigroup

generated by Ã must be exponentially stable. This completes the proof of the
theorem. �
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