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Abstract.
The wave equation with viscoelastic boundary damping and internal or boundary
delay is considered. The memory kernel is assumed to be integrable and
completely monotonic. Under certain conditions on the damping factor, delay
factor and the memory kernel it is shown that the energy of the solutions decay
to zero either asymptotically or exponentially. In the case of internal delay, the
result is obtained through spectral analysis and the Gearhart-Prüss Theorem,
whereas in the case of boundary delay, it is obtained using the energy method.
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1. Introduction

Let Ω ⊂ Rn be an open and bounded set with C2-boundary. Consider the wave
equation with interior delay and viscoelastic boundary damping

utt(t, x)−∆u(t, x) + a0ut(t, x) + a1ut(t− τ, x) = 0, in (0,∞)× Ω,

∂u

∂ν
(t, x) + a ? ut(t, x) = 0, on (0,∞)× ∂Ω,

u(0, x) = u0(x), ut(0, x) = u1(x), in Ω,

ut(t, x) = f(t, x), on (−τ, 0)× Ω,

(1.1)

where τ > 0 is a constant delay parameter, a0 is the damping factor and a1 is the
delay factor. Here, ν is the unit outward vector normal to the boundary ∂Ω of Ω,
and the convolution a ? v is defined by

a ? v(t, ·) =

∫ t

0

a(t− s)v(s, ·) dµ(s), t > 0.

The system (1.1) models the evolution of sound in a compressible fluid within a
viscoelastic surface without accounting for viscoelasticity and the variable u repre-
sents the acoustic pressure, see [18] for example. The energy of a solution of (1.1),
without viscoelasticity and delay, is defined by

Ew(t) =

∫
Ω

|ut(t, x)|2 + |∇u(t, x)|2 dx. (1.2)

Our goal is to prove that Ew(t) decays to zero as t tends to infinity.
It is well known that delay can have a destabilizing effect to systems that are

asymptotically stable in the absence of delay [1, 3, 4, 8, 15, 17]. However, if the
damping factor is larger than the delay factor then one can show exponential stability
for the wave equation. In particular, consider the wave equation with homogeneous
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Dirichlet boundary condition on a part of the boundary
utt(t, x)−∆u(t, x) + a0ut(t, x) + a1ut(t− τ, x) = 0, in (0,∞)× Ω,

∂u

∂ν
(t, x) = 0, on (0,∞)× ΓD,

∂u

∂ν
(t, x) + kut(t, x) = 0, in (0,∞)× ΓN ,

(1.3)

where ΓD 6= ∅, ΓD∪ΓN = ∂Ω, ΓD∩ΓN = ∅ and the domain Ω satisfies some geometric
conditions. If k = 0 and a0 > a1 ≥ 0 then the exponential decay of the energy of the
solutions has been shown by Nicaise and Pignotti [15] using observability estimates
for the wave equation with mixed Dirichlet-Neumann boundary conditions. For
k > 0, a0 = 0 and sufficiently small a1 > 0, it has been shown in [1] that (1.3) is
uniformly exponentially stable. This is achieved by rewriting the initial-boundary
value problem into a pure initial value problem in an extended state space and
using multipliers to derive the necessary decay property. However, in the case k = 0
and a0 = a, there are solutions with constant energies. In other words, the delay
component a1ut(· − τ) cancels the dissipative effect of the damping term a0ut in
(1.3).

In this paper, we consider completely monotonic and integrable kernels for (1.1) as
in [5]. A function a ∈ C∞((0,∞);R) is called completely monotonic if (−1)ja(j)(t) ≥
0, for all t > 0, j = 0, 1, . . . . According to Bernstein Theorem [9, Theorem 2.5], a
is completely monotonic if and if only there exists a locally finite positive measure
µ ∈Mloc((0,∞);R) such that

a(t) =

∫ ∞
0

e−st dµ(s), t > 0.

Furthermore, for a completely monotonic function a, we have a ∈ L1((0,∞);R) if
and only if

µ({0}) = 0 and â(0) =

∫ ∞
0

1

s
dµ(s) <∞.

Let a ∈ L1((0,∞);R) be completely monotonic with corresponding measure µ 6=
0. Then the Laplace transform of a is given by

â(λ) =

∫ ∞
0

1

λ+ s
dµ(s), <λ > 0, (1.4)

and admits a holomorphic extension to C \ (−∞, 0].
In the absence of delay and damping, that is, a0 = a1 = 0, the asymptotic sta-

bility of (1.1) has been shown in [5] using the well-known Arendt-Batty-Lyubic-Vu
Theorem. This is the best we can obtain since it is possible to have eigenvalues
arbitrarily close to the imaginary axis, see for instance [6]. We will show that if
0 < a1 = a0, that is, the damping factor and the delay factor are equal, then the
dissipative effect of the viscoelastic damping is strong enough to preserve the as-
ymptotic stability of the wave equation (1.1). In the case 0 ≤ a1 < a0 we further
have exponential stability. Because the boundary condition in (1.1) do not have a
Dirichlet part, we cannot apply directly the energy method employed in the refer-
ences mentioned above. Instead, we use the frequency-domain approach. Our proof
relies on a generalized Lax-Milgram Lemma and the Gearhart-Prüss Theorem.
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We also consider the case where the delay occurs at the boundary

utt(t, x)−∆u(t, x) = 0, in (0,∞)× Ω,

u(t, x) = 0, on (0,∞)× ΓD,

∂u

∂ν
(t, x) + a ? ut(t− τ, x) + cut(t, x) = 0, on (0,∞)× ΓN ,

u(0, x) = u0(x), ut(0, x) = u1(x), in Ω,

ut(t, x) = f(t, x), on (−τ, 0)× ΓN ,

(1.5)

and show that if â(0) < c and Ω satisfies a suitable geometric condition, then the
energy of the solution decays to zero exponentially. This assumption is natural,
since if â(λ) = k for some constant k then formally the convolution becomes a ?
ut = L −1(L (a)L (ut)) = kut where L denotes the Laplace transform. Then the
condition â(0) < c coincides with the one given in [15].

The difficult task is to modify the energy functional Ew suitable to prove the decay
property. For the delay variable this is standard. In fact, the energy associated with
it is given by

Ed(t) =
c

2

∫ 0

−τ

∫
ΓN

|ut(t+ θ, x)|2 dx dθ.

Aside from this, we also need to add the contribution of viscoelasticity to the energy.
For this, we define the following energy corresponding to the memory term

Em(t) =
1

2

∫ ∞
0

∫
ΓN

∣∣∣∣∫ t

0

e−s(t−r)ut(r − τ, x) dr

∣∣∣∣2dx dµ(s).

The total energy for (1.5) is then defined as

E(t) = Ew(t) + Ed(t) + Em(t), t ≥ 0.

We would like to point out that our stability result for (1.1) is only possible for a
factor space of the state space whereas the stability result for (1.5) is valid for the
whole state space. Other works related to wave equations with memory and delay
can be found in [2, 11, 16] to name a few.

2. Semigroup Well-Posedness

In this section, we will reformulate (1.1) and (1.5) as first order Cauchy problems
on suitable state spaces and prove their well-posedness using semigroup theory.
First let us consider the problem (1.1) with internal delay. Let v(t, x) = ut(t, x),
w(t, x) = ∇u(t, x) and z(t, θ, x) = ut(t + θ, x) = v(t + θ, x) for t > 0, x ∈ Ω and
θ ∈ (−τ, 0). In order to keep track of the memory, we introduce another state
variable ψ : (0,∞)× (0,∞)× ∂Ω→ Cn defined by

ψ(t, s, x) =

∫ t

0

e−s(t−r)v(r, x) dr, t, s > 0, x ∈ ∂Ω.

The convolution in (1.1) can be written in terms of ψ as

a ? v(t, x) =

∫ ∞
0

ψ(t, s, x) dµ(s).

Department of Mathematics and Computer Science, College of Science, University of the Philippines Baguio



G. Peralta 4 / 20

Then (1.1) is equivalent to the linear system

vt(t, x)− divw(t, x) + a0v(t, x) + a1z(t,−τ, x) = 0, in (0,∞)× Ω,

wt(t, x)−∇v(t, x) = 0, in (0,∞)× Ω,

zt(t, θ, x) = zθ(t, θ, x), in (0,∞)× (−τ, 0)× Ω,

ψt(t, s, x) = −sψ(t, s, x) + v(t, x), on (0,∞)× (0,∞)× ∂Ω,

(w · ν)(t, x) +

∫ ∞
0

ψ(t, s, x) dµ(s) = 0, on (0,∞)× ∂Ω,

v(0, x) = u1(x), w(0, x) = ∇u0(x), in Ω,

z(0, θ, x) = f(θ, x), in (−τ, 0)× Ω,

ψ(0, s, x) = 0, on (0,∞)× ∂Ω.

We consider the state space to be complex-valued because we will use some infor-
mation about the spectrum of the generator.

We introduce the abbreviations Lpµ := Lp((0,∞);L2(∂Ω;Cn), dµ) for p ≥ 1 and
L2
τ := L2((−τ, 0);L2(Ω;Cn)). These are the state spaces for the memory and delay

variables, respectively. Let X = L2(Ω;Cn)× L2(Ω;Cn×n)× L2
τ × L2

µ be the Hilbert
space equipped with the inner product

〈(v1, w1, z1, ψ1), (v2, w2, z2, ψ2)〉X =

∫
Ω

(v1(x) · v2(x) + w1(x) · w2(x)) dx

+ κ

∫ 0

−τ

∫
Ω

z1(θ, x) · z2(θ, x) dx dθ +

∫ ∞
0

∫
∂Ω

ψ1(s, x) · ψ2(s, x) dx dµ(s)

where κ = a0 if a0 > 0 and κ = 1 if a0 = 0. The dot represents either the inner
product in Cn or Cn×n where it is applicable. Let L2

div(Ω) = {w ∈ L2(Ω;Cn×n) :
divw ∈ L2(Ω;Cn)}, where div is the distributional divergence. Recall that there
exists a generalized normal trace operator w 7→ w · ν ∈ L(L2

div(Ω), H−
1
2 (∂Ω;Cn))

such that the following generalized Green’s identity∫
Ω

divw(x) · u(x) dx = 〈w · ν,Γu〉
H−

1
2 (∂Ω)×H

1
2 (∂Ω)

−
∫

Ω

w(x) · ∇u(x) dx

holds for all w ∈ L2
div(Ω) and u ∈ H1(Ω;Cn), see [19] for example. Here Γ :

H1(Ω;Cn)→ H
1
2 (∂Ω;Cn) is the usual trace operator.

Define the operator A : D(A) ⊂ X → X by

A


v
w
z
ψ

 =


divw − a0v − a1z(−τ)

∇v
zθ

−sψ + Γv


where its domain is given by

D(A) = {(v, w, z, ψ) ∈ X : v ∈ H1(Ω;Cn), z ∈ H1((−τ, 0);L2(Ω;Cn)),

w ∈ L2
div(Ω), −sψ(s) + Γv ∈ L2

µ, z(0) = v, w · ν +

∫ ∞
0

ψ(s) dµ(s) = 0}.
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Note that −sψ(s) + Γv ∈ L2
µ implies ψ ∈ L1

µ. Indeed, this follows from the equality
ψ(s) = 1

1+s
ψ(s) + 1

1+s
Γv − Γv−sψ(s)

1+s
and the fact that s 7→ 1

1+s
∈ L1

µ ∩ L2
µ. The

problem (1.1) can now be written as a first order evolution equation in X{
U̇(t) = AU(t), t > 0,

U(0) = U0,
(2.1)

where U0 = (u1,∇u0, f, 0).

Theorem 2.1. The operator A generates a C0-semigroup (T (t))t≥0 on X. If 0 ≤
a1 ≤ a0 then the semigroup consists of contractions. In particular, for every U0 ∈ X
(resp. U0 ∈ D(A)) the Cauchy problem (2.1) has a unique solution U ∈ C([0,∞);X)
(resp. U ∈ C1([0,∞);X) ∩ C([0,∞);D(A))).

Proof. Let (v, w, z, ψ) ∈ D(A). Applying the generalized Green’s identity and the
boundary conditions z(0) = v and w · ν = −

∫∞
0
ψ(s) dµ(s) we have

〈A(v, w, z, ψ), (v, w, z, ψ)〉X =

∫
Ω

divw · v dx− a0

∫
Ω

|v|2 dx

− a1

∫
Ω

z(−τ) · v dx+

∫
Ω

∇v · w dx

+ κ

∫ 0

−τ

∫
Ω

zθ(θ) · z(θ) dx dθ −
∫ ∞

0

∫
∂Ω

s|ψ(s)|2 dx dµ(s)

+

∫ ∞
0

∫
∂Ω

Γv(x) · ψ(s) dx dµ(s)

= −
(
a0 −

κ

2

)∫
Ω

|v|2 dx− a1

∫
Ω

z(−τ) · v dx− κ

2

∫
Ω

|z(−τ)|2 dx

−
∫ ∞

0

∫
∂Ω

s|ψ(s)|2 dx dµ(s) + iκ=
∫ 0

−τ

∫
Ω

zθ(θ) · z(θ) dx dθ

+ 2i=
(∫

Ω

∇v · w dx+

∫ ∞
0

∫
∂Ω

Γv · ψ(s) dx dµ(s)

)
.

Taking the real part and using the Cauchy-Schwarz inequality we obtain

<(A(v, w, z, ψ), (v, w, z, ψ))X ≤ −
∫ ∞

0

s‖ψ(s)‖2
L2 dµ(s) + k

∫
Ω

|v|2 dx (2.2)

where k = 1
2
(a2

1 + 1) if a0 = 0 and k = 1
2

(a2
1/a0 − a0) if a0 > 0. The first integral

is finite since s|ψ(s)|2 = Γv · ψ(s) − (−sψ(s) + Γv) · ψ(s) ∈ L1
ν . In particular, if

a0 ≥ a1 > 0 then k ≤ 0 and therefore A is dissipative. In the case a1 > 0 = a0,
we have k > 0, and thus the inequality (2.2) also implies that A− kI is dissipative.
The case where a0 = a1 = 0 was already established in [5].

The next step is to show the range condition R(λI − A) = X for all λ > 0. Let
(f, g, h, φ) ∈ X. The equation (λI − A)(v, w, z, ψ) = (f, g, h, φ) for (v, w, z, ψ) ∈
D(A) is equivalent to the system

λv − divw + a0v + a1z(−τ) = f (2.3)
λw −∇v = g (2.4)
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λz(θ)− zθ(θ) = h(θ) (2.5)
z(0) = v (2.6)

(λ+ s)ψ(s)− Γv = φ(s) (2.7)

w · ν +

∫ ∞
0

ψ(s) dµ(s) = 0. (2.8)

The variation of parameters formula applied to (2.5) and (2.6) gives

z(θ) = eλθv +

∫ 0

θ

eλ(θ−ϑ)h(ϑ) dϑ, θ ∈ (−τ, 0). (2.9)

Solving for w and ψ in (2.4) and (2.7), respectively, we get

w =
1

λ
(g +∇v), (2.10)

ψ(s) =
1

λ+ s
(φ(s) + Γv), s > 0. (2.11)

Taking the inner product in L2(Ω;Cn) of (2.3) with λu for u ∈ H1(Ω;Cn) and using
(2.9) yield

λ(λ+ a0 + a1e
−λτ )

∫
Ω

v · u dx−
∫

Ω

div(λw) · u dx = λ

∫
Ω

fλ · u dx (2.12)

where

fλ := f − a1

∫ 0

−τ
e−λ(τ+ϑ)h(ϑ) dϑ.

Green’s identity together with (2.8), (2.10) and (2.11) yields∫
Ω

div(λw) · u dx = − λ

∫
∂Ω

(∫ ∞
0

φ(s)

λ+ s
dµ(s)

)
· Γu dx

−λâ(λ)

∫
∂Ω

Γv · Γu dx−
∫

Ω

(∇v + g) · ∇u dx.

Plugging the latter equality in (2.12) and rearranging the terms, we obtain the
variational equation

a(v, u) = F (u), for all u ∈ H1(Ω;Cn) (2.13)

where a : H1(Ω;Cn)×H1(Ω;Cn)→ C and F : H1(Ω;Cn)→ C are the sesquilinear
and antilinear forms defined by

a(v, u) = λ(λ+ a0 + a1e
−λτ )

∫
Ω

v · u dx+

∫
Ω

∇v · ∇u dx+ λâ(λ)

∫
∂Ω

Γv · Γu dx

and

F (u) = λ

∫
Ω

fλ · u dx−
∫

Ω

g · ∇u dx− λ
∫
∂Ω

(∫ ∞
0

φ(s)

λ+ s
dµ(s)

)
· Γu dx.

Since a is H1-coercive and a and F are both continuous, it follows from Lax-Milgram
Lemma that there exists a unique v ∈ H1(Ω;Cn) such that (2.13) is satisfied.
Defining z, w and ψ by (2.9), (2.10) and (2.11), respectively, and integrating by
parts we can see that (v, w, z, ψ) ∈ D(A) where v is the solution of (2.13). Thus
R(λI − A) = X for all λ > 0.
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Suppose that a0 = 0 < a1. In this case, we have k > 0 and so
R(λI − (A − kI)) = R((λ + k)I − A) = X for all λ > 0. Thus by the
Lumer-Phillips Theorem, the operator A − kI generates a strongly continuous
semigroup of contractions (S(t))t≥0 and therefore A = (A− kI) + kI generates the
strongly continuous semigroup (ektS(t))t≥0 on X by the perturbation theorem. If
a0 ≥ a1 ≥ 0 then A is dissipative and hence A generates a strongly continuous
semigroup of contractions on X. �

Now let us turn to the problem (1.5) with boundary delay. In this case we assume
that the states are real-valued. Suppose that ΓD 6= ∅, ΓD ∪ ΓN = ∂Ω, ΓD ∩ ΓN = ∅
and there exists a strictly convex m ∈ C2(Ω), that is, there is α > 0 such that
∇2m(x)ξ · ξ ≥ α|ξ|2 for all x ∈ Ω and ξ ∈ Rn, and ∇m(x) · ν(x) ≤ 0 for all x ∈ ΓD.
Here, ∇2m denotes the Hessian of m. The existence of m allows us to apply a
classical observability estimate for the wave equation.

Let v(t, x) = ut(t, x) for (t, x) ∈ (0,∞) × Ω, z(t, θ, x) = ut(t + θ, x) = v(t + θ, x)
for (t, θ, x) ∈ (0,∞)× (−τ, 0)× ΓN and

ψ(t, s, x) =

∫ t

0

e−s(t−r)ut(r − τ, x) dr =

∫ t

0

e−s(t−r)z(r,−τ, x) dr (2.14)

for (t, s, x) ∈ (0,∞)× (0,∞)× ΓN . Then (1.5) is equivalent to the system

ut(t, x)− v(t, x) = 0, in (0,∞)× Ω,

vt(t, x)−∆u(t, x) = 0, in (0,∞)× Ω,

zt(t, θ, x) = zθ(t, θ, x), on (0,∞)× ΓN ,

ψt(t, s, x) = −sψ(t, s, x) + z(t,−τ, x), on (0,∞)× (0,∞)× ΓN ,

u(t, x) = 0, on (0,∞)× ΓD,

∂u

∂ν
(t, x) +

∫ ∞
0

ψ(t, s, x) dµ(s) + cv(t, x) = 0, on (0,∞)× ΓN ,

u(0, x) = u0(x), v(0, x) = u1(x), in Ω,

z(0, θ, x) = f(θ, x), on (−τ, 0)× ΓN , ψ(0, s, x) = 0, on (0,∞)× ΓN .

Due to the homogeneous Dirichlet boundary condition on ΓD, we will pose this
problem in terms of u and ut instead of the formulation in terms of ∇u and ut
used in (1.1). For this reason, we consider the state space X̃ = H1

ΓD
(Ω)× L2(Ω)×

L2((−τ, 0);L2(ΓN)) × L̃2
µ where H1

ΓD
(Ω) = {u ∈ H1(Ω) : Γu = 0 on ΓD} and

L̃2
µ = L2

µ((0,∞);L2(ΓN), dµ). Equipped with the inner product

〈(u1, v1, z1, ψ1), (u2, v2, z2, ψ2)〉X̃ =

∫
Ω

(∇u1(x) · ∇u2(x) + v1(x)v2(x)) dx

+ â(0)

∫ 0

−τ

∫
ΓN

z1(θ, x)z2(θ, x) dx dθ +

∫ ∞
0

∫
ΓN

ψ1(s, x)ψ2(s, x) dµ(s) dx,

X̃ is a Hilbert space. Let E(∆) = {u ∈ H1(Ω) : ∆u ∈ L2(Ω)} be equipped
with the graph norm ‖u‖E(∆) = (‖u‖2

H1(Ω) + ‖∆u‖2
L2(Ω))

1
2 where ∆ denotes the
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distributional Laplacian. Recall that there exists a generalized first order trace
operator u 7→ ∂u

∂ν
∈ L(E(∆);H−

1
2 (ΓN)) such that the following generalized Green’s

identity holds∫
Ω

(∆u)w dx =

〈
∂u

∂ν
,Γw

〉
H−

1
2 (ΓN )×H

1
2 (ΓN )

−
∫

Ω

∇u · ∇w dx (2.15)

for every u ∈ E(∆) and w ∈ H1
ΓD

(Ω), see [10] for example.
Define the operator Ã : D(Ã) ⊂ X̃ → X̃ by

Ã


u
v
z
ψ

 =


v

∆u
zθ

−sψ + z(−τ)


with domain

D(Ã) = {(u, v, z, ψ) ∈ X̃ : u ∈ E(∆), z ∈ H1((−τ, 0);L2(∂Ω)), v ∈ H1
ΓD

(Ω),

− sψ(s) + z(−τ) ∈ L̃2
µ, z(0) = Γv,

∂u

∂ν
+

∫ ∞
0

ψ(s) dµ(s) + cΓv = 0}.

Then (1.5) can be also written as a first order evolution equation in X̃. Using
similar methods as in the proof of the previous theorem, the following well-posedness
theorem can be proved.

Theorem 2.2. If â(0) ≤ c then Ã generates a C0-semigroup of contractions in X̃.

Proof. First, let us prove that Ã is dissipative. Let (u, v, z, ψ) ∈ D(Ã). Then

〈Ã(u, v, z, ψ), (u, v, z, ψ)〉X̃ =

∫
Ω

∇v · ∇u+ (∆u)v dx

+ â(0)

∫ 0

−τ

∫
ΓN

zθz dx dθ +

∫ ∞
0

∫
ΓN

(−sψ(s) + z(−τ))ψ(s) dx dµ(s). (2.16)

Using the generalized Green’s identity (2.15) and the boundary conditions ∂u
∂ν

+∫∞
0
ψ(s) dµ(s) + cΓv = 0 on ΓN and Γu = 0 on ΓD we have∫

Ω

∇v · ∇u+ (∆u)v dx = −
∫ ∞

0

∫
ΓN

ψ(s)Γv dx dµ(s)− c
∫

ΓN

|Γv|2 dx

≤
(
â(0)

2
− c
)∫

ΓN

|Γv|2 dx+
1

2

∫ ∞
0

∫
ΓN

s|ψ(s)|2 dx dµ(s) (2.17)

where we used the Cauchy-Schwarz inequality in the last inequality. Similarly,∫ ∞
0

∫
ΓN

(−sψ(s) + z(−τ))ψ(s) dx dµ(s)

≤ −1

2

∫ ∞
0

∫
ΓN

s|ψ(s)|2 dx dµ(s) +
â(0)

2

∫
ΓN

|z(−τ)|2 dx. (2.18)

On the other hand, from the condition z(0) = Γv on ΓN we have

â(0)

∫ 0

−τ

∫
ΓN

zθz dx dθ =
â(0)

2

∫
ΓN

|Γv|2 − |z(−τ)|2 dx. (2.19)
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Using the estimates (2.17)–(2.19) in (2.16) we obtain

〈Ã(u, v, z, ψ), (u, v, z, ψ)〉X̃ ≤ −(c− â(0))

∫
ΓN

|Γv|2 dx

and this implies that Ã is dissipative since â(0) ≤ c.
Let us prove the range condition R(λI − Ã) = X̃ for every λ > 0. Let λ > 0 and

(f, g, h, φ) ∈ X̃. We need to find (u, v, z, ψ) ∈ D(Ã) such that (λI − Ã)(u, v, z, ψ) =
(f, g, h, φ), which is equivalent to the system

λu− v = f, (2.20)
λv −∆u = g, (2.21)
λz − zθ = h, (2.22)

(λ+ s)ψ(s)− z(−τ) = φ(s), (2.23)

together with the boundary conditions stated in the definition of D(Ã). The varia-
tion of parameters formula applied to (2.22) yields

z(θ) = eλθΓv +

∫ 0

θ

eλ(θ−ϑ)h(ϑ) dϑ, θ ∈ (−τ, 0). (2.24)

Notice that z ∈ H1((−τ, 0);L2(ΓN)). Define v = λu − f and ψ(s) = 1
λ+s

(φ(s) +

z(−τ)). Taking the L2-inner product of both sides of (2.21) with ϕ ∈ H1
ΓD

(Ω),
using equations (2.20) and (2.24) and after rearranging the terms, we obtain the
variational equation∫

Ω

∇u · ∇ϕ+ λ2uϕ dx+ λ(c+ e−λτ â(λ))

∫
ΓN

ΓuΓϕ dx

=

∫
Ω

(λf + g)ϕ dx+ (c+ e−λτ â(λ))

∫
ΓN

Γf Γϕ dx (2.25)

+ e−λτ â(λ)

∫ 0

−τ

∫
ΓN

e−λθh(θ)Γϕ dx dθ −
∫

ΓN

(∫ ∞
0

φ(s)

λ+ s
dµ(s)

)
Γϕ dx.

The left hand side defines a continuous, bilinear and coercive form on H1
ΓD

(Ω)
while the right hand side defines a continuous linear form on H1

ΓD
(Ω). According

to the Lax-Milgram Lemma, (2.25) has a unique solution u ∈ H1
ΓD

(Ω). Choosing
ϕ ∈ C∞0 (Ω) in (2.25) shows that (2.21) is satisfied in the sense of distributions
and ∆u ∈ L2(Ω). Thus u ∈ E(∆), and integrating by parts one can see that
∂u
∂ν

+
∫∞

0
ψ(s) dµ(s)+cΓv = 0 on ΓN . Therefore (u, v, z, ψ) ∈ D(Ã) and consequently

R(λI − Ã) = X̃ for every λ > 0. The conclusion of the theorem follows by applying
the Lumer-Phillips Theorem. �

3. Internal Delay: Spectral Analysis and Stability
The first step is to prove that the spectrum of A not lying on the negative real axis
consists only of eigenvalues.

Lemma 3.1. It holds that σ(A) ∩ (C \ (−∞, 0]) = σp(A) where σ(A) and σp(A)
denote the spectrum and point spectrum of A.
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To prove this, we need the following generalization of the Lax-Milgram Lemma.
The proof of this lemma is contained in the proof of [5, Theorem 3].

Lemma 3.2. Let V and H be Hilbert spaces such that the embedding V ⊂ H is
compact and dense. Suppose that aV : V × V → C and aH : H × H → C are
two bounded sesquilinear forms such that aV is V -coercive and F : V → C is a
continuous conjugate linear form. The equation

aH(v, u) + aV (v, u) = F (u), ∀u ∈ V (3.1)
has either a unique solution v ∈ V for all F ∈ V ′ or has a nontrivial solution for
F = 0.

Proof.[Proof of Lemma 3.1] Using (1.4) it can be seen that λâ(λ) ∈ C \ (−∞, 0]
and infq≥0 |1 + qλâ(λ)| > 0 whenever λ ∈ C \ (−∞, 0], see [5] for details. We split
the sesquilinear form a as a = aH + aV where aV : H1(Ω;Cn)×H1(Ω;Cn)→ C and
aH : L2(Ω;Cn)×L2(Ω;Cn)→ C are the two bounded sesquilinear forms defined by

aV (v, u) =

∫
Ω

(v · u+∇v · ∇u) dx+ λâ(λ)

∫
∂Ω

Γv · Γu dx

and
aH(v, u) = (λ(λ+ a0 + a1e

−λτ )− 1)

∫
Ω

v · u dx

respectively. According to the Lax-Milgram-Fredholm Lemma, the variational equal-
ity

aH(v, u) + aV (v, u) = G(u) for all u ∈ H1(Ω;Cn) (3.2)
has either a unique solution v ∈ H1(Ω;Cn) for all G ∈ [H1(Ω;Cn)]′ or has a nontriv-
ial solution for G = 0. As in the proof of the range condition in Theorem 2.1, it can
be shown that the equation (λI−A)(v, w, z, ψ) = (f, g, h, φ), for (v, w, z, ψ) ∈ D(A)
and for a given (f, g, h, φ) ∈ X and λ ∈ C\(−∞, 0], is equivalent to (3.2). Therefore
λ ∈ C\(−∞, 0] is either in the resolvent set of A or in the point spectrum of A. �

The next step is to prove that under the condition 0 ≤ a1 ≤ a0, the generator A
has no purely imaginary eigenvalues except for the origin.

Lemma 3.3. The kernel of A is given by kerA = {0} × Y × {0} × {0} where
Y = {w ∈ L2

div(Ω) : divw = 0, w · ν = 0}. (3.3)
If 0 ≤ a1 ≤ a0 then the operator A has no purely imaginary eigenvalues, in other
words, σp(A) ∩ iR = {0}.

Proof. Suppose that A(v, w, z, ψ) = 0. Then it follows that z(θ) = v in H1(Ω;Cn)
for all θ ∈ (−τ, 0), ∇v = 0 and ψ(s) = Γv

s
. Thus, v is constant. Applying the

generalized Green’s identity and the boundary conditions

(a0 + a1)

∫
Ω

|v|2 dx =

∫
Ω

divw · v dx

= − 〈
∫ ∞

0

ψ(s) dµ(s),Γv〉
H−

1
2 (∂Ω)×H

1
2 (∂Ω)

−
∫

Ω

w · ∇v dx

= − â(0)

∫
∂Ω

|Γv|2 dx.
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Since the measure µ is positive this implies that Γv = 0 and therefore v = 0.
Consequently, z = 0, ψ = 0 and w ∈ Y . This proves that kerA ⊂ {0}×Y ×{0}×{0}.
The other inclusion is trivial.

Now let us show the second statement. We prove it by contradiction. Suppose that
ir ∈ σp(A) for some r ∈ R \ {0}. Hence there exists a nonzero (v, w, z, ψ) ∈ D(A)
such that

irv − divw + a0v + a1z(−τ) = 0 (3.4)
irw −∇v = 0 (3.5)

irz(θ)− zθ(θ) = 0 (3.6)
(ir + s)ψ(s)− Γv = 0. (3.7)

From (3.6) and the initial condition z(0) = v we have z(θ) = eirθv and plugging this
in (3.4) and using (3.5) we obtain

∆v = ir(ir + a0 + a1e
−irτ )v. (3.8)

The boundary conditions and (3.5) imply
∂v

∂ν
= irw · ν = −ir

∫ ∞
0

ψ(s) dµ(s) = −irâ(ir)Γv. (3.9)

Thus, v ∈ H2(Ω;Cn) from the regularity theory of elliptic equations [10]. Using
Green’s formula and (3.8)

ir(ir + a0 + a1e
−irτ )

∫
Ω

|v|2 dx = −irâ(ir)

∫
∂Ω

|Γv|2 dx−
∫

Ω

|∇v|2 dx. (3.10)

Note that =(irâ(ir)) 6= 0. Indeed,

irâ(ir) = r2

∫ ∞
0

1

r2 + s2
dµ(s) + ir

∫ ∞
0

s

r2 + s2
dµ(s).

Taking the imaginary part of (3.10) we have

r(a0 + a1 cos(rτ))

=(irâ(ir))

∫
Ω

|v|2 +

∫
∂Ω

|Γv|2 = 0. (3.11)

Since a0 ≥ a1 ≥ 0 it holds that

r(a0 + a1 cos(rτ))

=(irâ(ir))
= (a0 + a1 cos(rτ))

(∫ ∞
0

s

r2 + s2
dµ(s)

)−1

≥ 0.

Hence (3.11) implies that Γv = 0 and consequently ∂v
∂ν

= 0 from (3.9). Thus
v ∈ H2

0 (Ω;Cn) and therefore v ∈ H2(Rn;Cn) by extending v by zero outside Ω.
Hence v ∈ H2(Rn;Cn) satisfies (3.8) which is a contradiction to the fact that
the Laplacian ∆ in Rn has an empty point spectrum. Therefore, we must have
ir /∈ σp(A) for any nonzero real number r. This completes the proof of the lemma.

�

The following lemma states that (kerA)⊥ = L2(Ω;Cn)×Y ⊥×L2
τ×L2

µ is invariant
under the resolvent (λI − A)−1 for all positive λ.

Lemma 3.4. For every λ > 0 we have (λI − A)−1((kerA)⊥) ⊂ (kerA)⊥ ∩D(A).
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Proof. According to the Helmholtz orthogonal decomposition [19] we know
that L2(Ω;Cn×n) = Y ⊕ Y ⊥ where Y is defined by (3.3) and its orthogonal
complement is given by Y ⊥ = {∇p ∈ L2(Ω;Cn×n) : p ∈ L2(Ω;Cn)}. Let us
show that if λ > 0, (f, g, h, φ) ∈ (kerA)⊥ and (v, w, z, ψ) ∈ D(A) satisfy
(λI − A)(v, w, z, ψ) = (f, g, h, φ) then w ∈ Y ⊥. Indeed, since g ∈ Y ⊥ we
have g = ∇p for some p ∈ L2(Ω;Cn). Thus, according to (2.10) we have
w = ∇(λ−1(p+ v)) ∈ Y ⊥ since λ−1(p+ v) ∈ L2(Ω;Cn). �

Our stabilization results are based on the following theorems. For their proofs,
we refer to [7, Corollary V.2.22] and [7, Theorem V.1.11], respectively.

Theorem 3.5. Let A be the generator of a bounded strongly continuous semigroup
on a reflexive Banach space X. If

(1) σp(A) ∩ iR = ∅ and
(2) σ(A) ∩ iR is countable

then (eAt)t≥0 is strongly stable, that is, eAtU → 0 in X for all U ∈ X.

Theorem 3.6. Let A be the generator of a bounded strongly continuous semigroup
T (t), t ≥ 0, on a Hilbert space X. Then T (t) is uniformly exponentially stable if
and only if {λ ∈ C : <λ > 0} ⊂ ρ(A) and

sup
<λ>0
‖(λI − A)−1‖L(X) <∞

where L(X) denotes the space of bounded linear operators in X into itself.

From Lemma 3.4 and [20, Proposition 2.4.3], the closed subspace (kerA)⊥ of X
is invariant under the semigroup generated by A. Furthermore, the restricted semi-
group (Tp(t))t>0 defined by Tp(t) = T (t)|(kerA)⊥ is a strongly continuous semigroup
on (kerA)⊥ whose generator is given by the part of A in (kerA)⊥, that is, the op-
erator Ap : D(Ap) → (kerA)⊥ defined by ApU = AU for all U ∈ D(Ap), where
D(Ap) = {U ∈ D(A) ∩ (kerA)⊥ : AU ∈ (kerA)⊥}.

In the following theorem, we denote by Z the space consisting of functions u ∈
L2(Ω;Cn) such that ∇u ∈ Y ⊥ ∩ L2

div(Ω).

Theorem 3.7. Let Π : X → kerA be the orthogonal projection of X onto kerA. If
0 ≤ a1 = a0 then for every U ∈ X we have

lim
t→∞
‖T (t)U −ΠU‖X = 0,

and in particular, E(t)→ 0 as t→∞ for every solution of (1.1) with initial data

(u0, u1, f) ∈ Z ×H1(Ω;Cn)×H1((−τ, 0);L2(Ω;Cn)). (3.12)
If 0 ≤ a1 < a0 then there exist constants M ≥ 1 and α > 0 such that for all t ≥ 0

‖T (t)−Π‖L(X) ≤Me−αt,

in particular, E(t) ≤Me−αtE(0), t ≥ 0, for every solution of (1.1) with initial data
satisfying (3.12).

Proof. Since T (t) = T (t)Π+T (t)(I−Π) = Π+Tp(t)(I−Π), it is enough to prove
that

lim
t→∞
‖Tp(t)U‖X = 0, for all U ∈ (kerA)⊥, (3.13)
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if 0 ≤ a1 ≤ a0 and

‖Tp(t)U‖X ≤Me−αt‖U‖X , for all U ∈ (kerA)⊥, t > 0, (3.14)

in the case 0 ≤ a1 < a0. In both cases we have σ(Ap) ⊂ {λ ∈ C : <λ ≤ 0} since Ap
is dissipative. Using Lemma 3.1 and Lemma 3.3 it can be seen that {λ ∈ C : <λ ≥
0} ⊂ ρ(Ap), where ρ(Ap) is the resolvent set of Ap. The asymptotic stability (3.13)
now follows immediately from Theorem 3.5.

Now let us prove (3.14). Suppose this is not the case so that accord-
ing to Theorem 3.6 we have sup<λ>0 ‖(λI − Ap)

−1‖L(X) = ∞. Hence, by
the uniform boundedness principle, there exists (v, w, z, ψ) ∈ X such that
sup<λ>0 ‖(λI − Ap)−1(v, w, z, ψ)‖X = ∞, and in particular, there exists a sequence
of complex numbers λm = bm + icm such that bm > 0 for every m and

lim
m→∞

‖(λmI − Ap)−1(v, w, z, ψ)‖X =∞. (3.15)

Note that, up to an extraction of a subsequence, we have |λm| → ∞. Indeed, if
there exists M > 0 such that |λm| ≤ M for every m, then from the fact that the
resolvent is holomorphic in the compact set {λ ∈ C : <λ ≥ 0, |λ| ≤ M}, there is
a constant M0 > 0 such that ‖(λmI − Ap)−1(v, w, z, ψ)‖X ≤ M0‖(v, w, z, ψ)‖X for
every m. This is a contradiction to (3.15).

Introduce the following unit vectors in D(Ap)

Ym = (vm, wm, zm, ψm) :=
(λmI − Ap)−1(v, w, z, ψ)

‖(λmI − Ap)−1(v, w, z, ψ)‖X
and define Um = (fm, gm, hm, φm) := ((bm + icm)I − Ap)Ym. It follows from (3.15)
that ‖Um‖X → 0.

The equation Um = ((bm + icm)I − Ap)Ym is equivalent to the system

fm = (bm + icm)vm − divwm + a0vm + a1zm(−τ) (3.16)
gm = (bm + icm)wm −∇vm (3.17)

hm(θ) = (bm + icm)zm(θ)− zmθ(θ) (3.18)
φm(s) = (bm + icm + s)ψm(s)− Γvm (3.19)

with the boundary conditions zm(0) = vm and wm · ν +
∫∞

0
ψm(s) dµ(s) = 0. Ac-

cording to (3.18) we have

zm(θ) = e(bm+icm)θvm +

∫ 0

θ

e(bm+icm)(θ−ϑ)hm(ϑ) dϑ, θ ∈ (−τ, 0). (3.20)

The dissipativity of Ap, see (2.2), implies that

<〈Um, Ym〉X = <((bm + icm)− 〈ApYm, Ym〉X)

≥ bm +

∫ ∞
0

∫
Ω

s|ψm|2 dx dµ(s)− k
∫

Ω

|vm|2 dx (3.21)

where k = 1
2
(a2

1/a0 − a0) < 0. Since |〈Um, Ym〉| ≤ ‖Um‖X → 0 and all the terms in
(3.21) are nonnegative it follows that bm → 0 and

vm → 0 strongly in L2(Ω;Cn). (3.22)
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Because |λm| → ∞, we must have |cm| → ∞ as m → ∞. From (3.20) and the
Cauchy-Schwarz inequality we have∫ 0

−τ

∫
Ω

|zm|2 dx dθ ≤ 2

(∫ 0

−τ
e2bmθ dθ

)∫
Ω

|vm|2 dx

+ 2

(∫ 0

−τ

∫ 0

θ

e2bm(θ−ϑ) dϑ dθ

)∫ 0

−τ

∫
Ω

|hm|2 dx dϑ. (3.23)

Since bm is uniformly bounded in m, (3.22) and (3.23) imply that

zm → 0 strongly in L2
τ . (3.24)

Taking the inner product of (3.16)−(3.19) with vm, wm, zm and ψm in L2(Ω;Cn),
L2(Ω;Cn×n), L2

τ and L2
µ, respectively, we obtain∫

Ω

fm · vm dx = (a0 + bm + icm)

∫
Ω

|vm|2 dx+

∫
Ω

wm · ∇vm dx (3.25)

+

∫ ∞
0

∫
∂Ω

ψm · Γvm dx dµ(s) + a1

∫
Ω

zm(−τ) · vm dx∫
Ω

gm · wm dx = (bm + icm)

∫
Ω

|wm|2 dx−
∫

Ω

∇vm · wm dx (3.26)∫ 0

−τ

∫
Ω

hm · zm dx dθ = (bm + icm)

∫ 0

−τ

∫
Ω

|zm|2 dx dθ (3.27)

−
∫ 0

−τ

∫
Ω

zmθ · zm dx dθ∫ ∞
0

∫
∂Ω

φm · ψm dx dµ(s) = (bm + icm)

∫ ∞
0

∫
∂Ω

|ψm|2 dx dµ(s) (3.28)

+

∫ ∞
0

∫
∂Ω

s|ψm|2 dx dµ(s)−
∫ ∞

0

∫
∂Ω

Γvm · ψm dx dµ(s).

All of these terms tend to 0 as m tends to infinity. Dividing (3.27) by cm, taking
the imaginary part and then passing to the limit we obtain∫ 0

−τ

∫
Ω

|zm|2 dx dθ − 1

cm
=
∫ 0

−τ

∫
Ω

zmθ · zm dx dθ → 0.

Invoking (3.24) we have

1

cm
=
∫ 0

−τ

∫
Ω

zmθ · zm dx dθ → 0. (3.29)

Taking the real part of (3.27) and letting m→∞ we have

bm

∫ 0

−τ

∫
Ω

|zm|2 dx dθ −
∫

Ω

|vm|2 dx+

∫
Ω

|zm(−τ)|2 dx→ 0.

Using (3.22) and (3.24) the latter limit implies that

zm(−τ)→ 0 strongly in L2(Ω;Cn). (3.30)
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Adding (3.26), (3.27) and (3.28) and then subtracting (3.25) we obatin

%m := (bm + icm)

(
1− 2

∫
Ω

|vm|2 dx

)
− a0

∫
Ω

|vm|2 dx− a1

∫
Ω

zm(−τ) · vm dx

+

∫ ∞
0

∫
Ω

s|ψm|2 dx dµ(s)−
∫ 0

−τ

∫
Ω

zmθ · zm dx dθ

− 2<
∫ ∞

0

∫
∂Ω

ψm · Γvm dx dµ(s)− 2<
∫

Ω

wm · ∇vm dx

where %m → 0 as m → ∞. Dividing by cm, taking the imaginary part and passing
to the limit yield

1− 2

∫
Ω

|vm|2 dx− a1

cm
=
∫

Ω

zm(−τ) · vm dx− 1

cm
=
∫ 0

−τ

∫
Ω

zmθ · zm dx dθ → 0.

From this result together with (3.22), (3.29), and (3.30) we obtain the contradiction
1 = 0. Therefore (3.14) must hold. This completes the proof of the theorem. �

4. Boundary Delay: Stability Via the Energy Method
In this section we use the energy method to prove the exponential stability of the
solution of (1.5) under the condition â(0) < c. We refer to [12] for a related problem.
For this purpose, we recall the total energy

E(t) = Ew(t) +
1

2

∫ ∞
0

∫
ΓN

∣∣∣∣∫ t

0

e−s(t−r)ut(r − τ, x) dr

∣∣∣∣2dx dµ(s)

+
c

2

∫ 0

−τ

∫
ΓN

|ut(t+ θ, x)|2 dx dθ.

The first step is to prove the following decay property of the energy.

Theorem 4.1. Suppose that â(0) < c. Every solution of (1.5) with initial data in
D(Ã) has a decreasing energy. More precisely,

d

dt
E(t) ≤ −1

2
(c− â(0))D(t), t > 0, (4.1)

where

D(t) =

∫
ΓN

|ut(t, x)|2 + |ut(t− τ, x)|2 dx.

Proof. Taking the derivative of E and defining ψ by (2.14) we have

d

dt
E(t) =

∫
Ω

(ututt +∇u · ∇ut) dx−
∫ ∞

0

∫
ΓN

s|ψ(t, s, x)|2 dx dµ(s)

+

∫ ∞
0

∫
ΓN

ψ(t, s, x)ut(t− τ, x) dx dµ(s)

+ c

∫ 0

−τ

∫
ΓN

ut(t+ θ, x)utt(t+ θ, x) dx dθ. (4.2)
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Applying Green’s identity and Young’s inequality to the first integral on the right
hand side of (4.2) we obtain the estimate∫

Ω

(ututt +∇u · ∇ut) dx =

∫
ΓN

ut
∂u

∂ν
dx

= −
∫

ΓN

ut(t, x)

(∫ ∞
0

ψ(t, s, x) dµ(s) + cut(t, x)

)
dx

≤ − c
∫

ΓN

|ut(t, x)|2 dx+
1

2

∫
ΓN

∫ ∞
0

(
1

s
|ut(t, x)|2 + s|ψ(t, s, x)|2

)
dµ(s) dx

= −
(
c− â(0)

2

)∫
ΓN

|ut(t, x)|2 dx+
1

2

∫ ∞
0

∫
ΓN

s|ψ(t, s, x)|2 dx dµ(s). (4.3)

On the other hand, we also have∫ ∞
0

∫
ΓN

ψ(t, s, x)ut(t− τ, x) dx dµ(s)

≤ â(0)

2

∫
ΓN

|ut(t− τ, x)|2 dx+
1

2

∫ ∞
0

∫
ΓN

s|ψ(t, s, x)|2 dx dµ(s). (4.4)

Since ut(t+ θ, x) = uθ(t+ θ, x) and utt(t+ θ, x) = uθθ(t+ θ, x) we have, by Fubini’s
Theorem, ∫ 0

−τ

∫
ΓN

ut(t+ θ, x)utt(t+ θ, x) dx dθ

=
1

2

∫
ΓN

(|ut(t, x)|2 − |ut(t− τ, x)|2) dx. (4.5)

Combining (4.2)–(4.5) proves the decay property (4.1). �

Using Theorem 4.1 and a standard density argument, we have the following a
priori trace regularity on ut and ut(· − τ).

Corollary 4.2. The map U0 7→ (ut, ut(· − τ)) : D(Ã) → L2(0, T ;L2(ΓN)2) has a
unique continuous extension to X̃.

The next step is the following inverse observability estimate as in [15].

Theorem 4.3. There exists T ∗ > 0 such that for all T > T ∗ there is a constant
CT > 0 satisfying

E(0) ≤ CT

∫ T

0

D(t) dt. (4.6)

Proof. According to the observability estimate in [13, Proposition 6.3] there is
T̃ > 0 such that for all T > T̃ there exists a constant cT > 0 such that

Ew(0) ≤ cT

∫ T

0

∫
ΓN

( ∣∣∣∣∂u∂ν
∣∣∣∣2+ |ut|2

)
dx dt+ cT‖u‖2

L2(0,T ;H
1
2+ε(Ω))

(4.7)

for any ε > 0. For s ≥ 0, we have the embedding

Hs((0, T )× Ω) = L2(0, T ;Hs(Ω)) ∩Hs(0, T ;L2(Ω)) ⊂ L2(0, T ;Hs(Ω))
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according to [14, Remark 2.2, pp. 6–7] and the classical extension theorems for
Sobolev spaces. Thus, there exists a constant c̃T > 0 independent of u such that

‖u‖
L2(0,T ;H

1
2+ε(Ω))

≤ c̃T‖u‖H 1
2+ε((0,T )×Ω)

. (4.8)

The boundary condition on ΓN implies that∫ T

0

∫
ΓN

∣∣∣∣∂u∂ν
∣∣∣∣2dx dt =

∫ T

0

∫
ΓN

∣∣∣∣ ∫ ∞
0

ψ(t, s, x) dµ(s) + cut(t, x)

∣∣∣∣2dx dt

≤ 2

∫ T

0

∫
ΓN

∣∣∣∣ ∫ ∞
0

ψ(s, t, x) dµ(s)

∣∣∣∣2dx dt+ 2c2

∫ T

0

∫
ΓN

|ut(t, x)|2 dx dt. (4.9)

By Hölder’s inequality it holds that∫ T

0

∫
ΓN

∣∣∣∣ ∫ ∞
0

ψ(s, t, x) dµ(s)

∣∣∣∣2dx dt

≤ â(0)

∫ T

0

∫ ∞
0

∫
ΓN

s|ψ(s, t, x)|2 dx dµ(s) dt. (4.10)

Multiplying the equation ψt(t, s, x) = −sψ(t, s, x) + ut(t − τ, x) by ψ(t, s, x), inte-
grating over (0, T )× (0,∞)× ΓN and using ψ(0, s, x) = 0 we have

1

2

∫ ∞
0

∫
ΓN

|ψ(T, s, x)|2 dx dµ(s) =

∫ T

0

∫ ∞
0

∫
ΓN

ψt(t, s, x)ψ(t, s, x) dx dµ(s) dt

=

∫ T

0

∫ ∞
0

∫
ΓN

(−s|ψ(s, t, x)|2 + ut(t− τ, x)ψ(t, s, x)) dx dµ(s) dt

≤
∫ T

0

∫ ∞
0

∫
ΓN

(
−s

2
|ψ(s, t, x)|2 +

1

2s
|ut(t− τ, x)|2

)
dx dµ(s) dt

= −1

2

∫ T

0

∫ ∞
0

∫
ΓN

s|ψ(s, t, x)|2 dx dµ(s) dt+
â(0)

2

∫ T

0

∫
ΓN

|ut(t− τ, x)|2 dx dt.

Therefore it follows that∫ T

0

∫ ∞
0

∫
ΓN

s|ψ(s, t, x)|2 dx dµ(s) dt ≤ â(0)

∫ T

0

∫
ΓN

|ut(t− τ, x)|2 dx dt. (4.11)

The change of variable t = θ + τ implies that

Ed(0) =
c

2

∫ 0

−τ

∫
ΓN

|ut(θ, x)|2 dx dθ =
c

2

∫ τ

0

∫
ΓN

|ut(t− τ, x)|2 dx dt.

In particular, if T > τ then

Ed(0) ≤ c

2

∫ T

0

∫
ΓN

|ut(t− τ, x)|2 dx dt ≤ c

2

∫ T

0

D(t) dt. (4.12)

Taking T ∗ = max(T̃ , τ) it follows from (4.7)–(4.12) that

E(0) = Ew(0) + Ed(0) ≤ CT

∫ T

0

D(t) dt+ CT‖u‖2

H
1
2+ε((0,T )×Ω)

(4.13)

Department of Mathematics and Computer Science, College of Science, University of the Philippines Baguio



G. Peralta 18 / 20

for all T > T ∗ and for some constant CT > 0. To finish the proof of the theorem,
we use a standard compactness-uniqueness argument as in [15, Proposition 4.2] to
prove that (4.6) holds.

Suppose in the contrary that there is a sequence of initial data U0n =
(u0n, v0n, z0n, 0) ∈ D(Ã) such that

En(0) > n

∫ T

0

Dn(t) dt (4.14)

where En and Dn are the respective energy and dissipation terms of the solution
(un, vn, zn, ψn) with data U0n. By normalization, we can assume that

‖un‖H 1
2+ε((0,T )×Ω)

= 1. (4.15)

for each n. As a consequence, we obtain from (4.13) that

En(0) ≤ CT

∫ T

0

Dn(t) dt+ CT . (4.16)

Combining (4.14) and (4.16) yields∫ T

0

Dn(t) dt <
CT

n− CT
(4.17)

provided that n > CT . On the other hand, using the fact that En is decreasing

‖un‖2
H1((0,T )×Ω) =

∫ T

0

∫
Ω

|unt|2 + |∇un|2 dx dt ≤ TEn(0) ≤ TCT

(
CT

n− cT
+ 1

)
.

The last inequality implies that the sequence (un)n is bounded in H1((0, T )×Ω). By
the compactness of the embedding H1((0, T )×Ω) ⊂ H

1
2

+ε((0, T )×Ω), for ε ∈ (0, 1
2
),

we have up to a subsequence un → u in H
1
2

+ε((0, T )× Ω). Hence, from (4.15)

‖u‖
H

1
2+ε((0,T )×Ω)

= 1. (4.18)

Since En is uniformly bounded on [0, T ], we have un → u and unt → ut weakly-
star in L∞(0, T ;H1

ΓD
(Ω)) and L∞(0, T ;L2(Ω)), respectively. The inequality (4.17)

yields the convergence unt → 0 in L2((0, T ) × ΓN). Because a ? unt(· − τ) =∫∞
0
ψn(s, t, x) dµ(s), we obtain from (4.10), (4.11) and (4.17) that a ? unt(· − τ)→ 0

in L2((0, T ) × ΓN). Thus ∂u
∂ν

= 0 on ΓN , and therefore v = ut is a distributional
solution of the over-determined wave equation

vtt −∆v = 0 in Ω, v = 0 on ∂Ω,
∂u

∂ν
= 0 on ΓN .

By the Holmgren’s uniqueness principle, v must be identically zero. This means
that u must be independent of t and thus it satisfies the elliptic problem

∆u = 0 in Ω, u = 0 on ΓD,
∂u

∂ν
= 0 on ΓN .

whose solution is given by u = 0. This is a contradiction to (4.18). Therefore, (4.6)
must be true and this completes the proof of the theorem. �

From the proof of the previous theorem, one can obtain the following trace regu-
larity.
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Corollary 4.4. The map U0 7→ a ? ut(· − τ) : D(Ã) → L2(0, T ;L2(ΓN)) admits a
unique continuous extension to X̃. As a consequence, the map U0 7→ ∂u

∂ν
: D(Ã) →

L2(0, T ;L2(ΓN)) admits a unique continuous extension to X̃.

Proof. The first statement follows from (4.10), (4.11) and Corollary 4.2. The
second part follows from the first one together with the estimates (4.9)–(4.11). �

Theorem 4.5. Suppose that â(0) < c. Then there exist M ≥ 1 and α > 0 such
that for every solution of (1.5) we have

E(t) ≤Me−αtE(0), t > 0. (4.19)

Proof. Let U0 ∈ D(Ã). Using Theorem 4.1 and Theorem 4.3 one obtains

E(T ) ≤ E(0) ≤ CT

∫ T

0

D(t) dt ≤ 2CT
c− â(0)

(E(0)− E(T ))

for every T > T ∗. Therefore, for T > T ∗ it holds that

E(T ) ≤ 2CT
2CT + c− â(0)

E(0). (4.20)

Since 2CT (2CT + c − â(0))−1 < 1, a standard argument shows that (4.20) implies
(4.19). �
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