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Abstract.
We consider first order hyperbolic systems on an interval with dynamic boundary
conditions. These systems occur when the ODE dynamics on the boundary
interact with the waves in the interior. The well-posedness for linear systems is
established using an abstract Friedrichs Theorem. Due to the limited regularity
of the coefficients we need to introduce the appropriate space of test functions
for the weak formulation. It is shown that the weak solutions exhibit a hidden
regularity at the boundary as well as at interior points. As a consequence,
the dynamics of the boundary components satisfy an additional regularity, and
both can not be achieved from standard semigroup methods. Nevertheless, we
show that our weak solutions and the semigroup solutions coincide. For il-
lustration, we give three particular physical examples that fit into our framework.
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1. Introduction
Hyperbolic partial differential equations are recognized mathematical models in ar-
eas such as fluid dynamics, acoustics, electromagnetics, scattering theory and the
general theory of relativity. Because information travels along characteristic curves,
discontinuities and oscillations propagate through time and space. Therefore, in
general, one might expect the same regularity for the initial data and the solution.
But what happens when a hyperbolic system has a dynamic boundary condition?
There is an emerging interest in coupled hyperbolic systems with dynamic boundary
conditions due to their applications in multiscale blood flow modelling and valveless
pumping, see [4, 5, 6, 11, 21, 27, 29, 30] and the references therein.

In this paper, we consider general linear hyperbolic systems with variable coeffi-
cients coupled with linear ordinary differential equations at the boundary

[∂t + A(v(t, x))∂x +R(t, x)]u(t, x) = f(t, x), 0 < t < T, 0 < x < 1,

B0u(t, 0) = g0(t) +Q0(t)h(t), 0 < t < T,

B1u(t, 1) = g1(t) +Q1(t)h(t), 0 < t < T,

h′(t) = H(t)h(t) +G0(t)u(t, 0) +G1(t)u(t, 1) + S(t), 0 < t < T,

u(0, x) = u0(x), 0 < x < 1,

h(0) = h0

(1.1)

for some appropriate matrices A, R, Bi, Qi, H, Gi and Si. Here, v is a Lipschitz
function and it can be thought of as a frozen coefficient in an otherwise nonlinear
system, see [23]. The present article is the first work (to the best of our knowledge)
to deal with the well-posedness of general hyperbolic PDE-ODE systems, although
specific cases have been studied separately, e.g. the wave equation with acoustic
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boundary conditions [2, 14] and flow in an elastic tube connected to tanks [24].
Here, our goal is to unify and improve these results.

The L2-well-posedness of (1.1) is based on energy estimates. It is well-known
that hyperbolic systems admit hidden boundary trace regularity. This is due to the
fact that information travels along characteristics, and thus the boundary regularity
of solutions is influenced by the regularity of the boundary and initial data. We
would like to extend this phenomenon to the coupled system (1.1). It will be shown
that u satisfies a hidden regularity property, i.e., it has L2-trace at the boundary.
This property implies that the ODE component h does not lie only in L2 but in
H1. Thanks to this boundary trace regularity, we can also deduce an interior-point
trace regularity for solutions using the multiplier method. Thus, the ODE have a
smoothing effect not only at the boundary. We would like to point out that trace
regularity plays an important role in the boundary controllability of hyperbolic
systems. If one computes the optimal control via the HUM (Hilbert Uniqueness
Method) then the cost functional contains traces of solutions of the adjoint problem.

One difficulty in deriving the weak form of (1.1) is to eliminate the traces u|x=0

and u|x=1 in the ODE part. If there are some structural conditions on Gi and Bi

for i = 0, 1 then this would be an easier task. However, we will not impose any
relationship between these matrices.

The weak solutions in L2 satisfiy a variational equation that takes the form

(u,Λw)X = (f, w)X + (g,Ψw)Z for all w ∈ W, (1.2)

for suitable function spaces X, W , Z and operators Λ, Ψ. This equation is obtained
by multiplying the differential equation by appropriate test functions, integrating by
parts and using the boundary and initial conditions. Due to the limited regularity
of the coefficients, particularly on G0 and G1 which we assumed to be L∞ only, we
need to introduce a non-standard space of test functions for the weak formulation.
In fact, they will be chosen to lie on a graph space. With an abstract a priori
estimate, the variational equation (1.2) has a solution u ∈ X (Section 2). Its proof
is based on the Hahn-Banach and Riesz Representation Theorems. The idea of
the proof can be traced back to the work of Friedrichs [12] for symmetric systems.
Therefore, proving an a priori estimate is the first step in proving the existence of
weak solutions. Our method is to consider the ODE part (Section 3) and PDE part
(Section 5) separately.

How does the weak solution satisfy the initial-boundary value problem? To answer
this, we need to consider the space of functions u ∈ L2(QT ) with Lu := ∂tu+A∂xu ∈
L2(QT ), whereA is at least Lipschitz andQT = (0, T )×(0, 1). This space is similar to
the space of L2-functions with L2-distributional divergence which is used in studying
the Navier-Stokes equation and the wave equation. These spaces are called graph
spaces. The usual trace operator in H1 can be extended to define a generalized trace
operator for the graph space {u ∈ L2(QT ) : Lu ∈ L2(QT )}, but the traces are now in
H−

1
2 (∂QT ). To treat initial-boundary value problems, we will also restrict the trace

to the edges of the time-space domain (Section 4). With these considerations, it will
be seen that weak solutions satisfy the partial differential equation in the sense of
distributions and the boundary conditions and initial condition are satisfied in the
sense of (generalized) traces.
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In the constant coefficient case, our well-posedness result implies that the weak
solution generates a C0-semigroup (Section 7). As a reassuring result, the weak
solution is the same as the solution given by the semigroup approach.

Notation. Lp(O) and W s,p(O) denote the usual Lebesgue and Sobolev spaces on
a nonempty open set O ⊂ Rd and we set Hk(O) := W k,2(O). The usual notation
for the space of continuous functions C k(O), k ∈ N0 ∪ {∞}, will be used. The
space of smooth functions with compact support in O is denoted by D(O). For each
nonnegative integer k we let CHk(QT ) :=

⋂k
j=0C

j([0, T ], Hk−j(0, 1)).
If X is a Hilbert space consisting of functions depending on the variable t, we

define the weighted space eγtX = {eγtu : u ∈ X}, where γ ∈ R, equipped with the
inner product (u, v)eγtX := (e−γtu, e−γtv)X . Given n ∈ N, Xn denotes the product
of n copies of X. However, if the context is clear we shall simply write X for Xn.

2. A Generalized Friedrichs Theorem
In this section we prove the existence and uniqueness of solutions of a variational
problem. This general framework will be used in Section 6 to a coupled PDE-ODE
systems with variable coefficients. Let X and Z be real Hilbert spaces and Y be
a subspace of X. Suppose that Λ : Y → X, Ψ : Y → Z and Φ : Y → Z are
linear operators. LetW = ker Φ. We assume thatW and Λ(W ) are both nontrivial.
Given F ∈ X and G ∈ Z we consider the variational problem:

Find u ∈ X such that
(u,Λw)X = (F,w)X + (G,Ψw)Z , ∀ w ∈ W. (2.1)

For the differential equations we consider, Ψ is a trace operator while Λ and Φ are
the differential and trace operators associated with the adjoint problem. We note
that the space of test functions W need not be dense with respect to the topology
of the space X. For the examples in the succeeding sections, X will be the dual of
the solution space.

Theorem 2.1. Suppose that there exist γ > 0 and C > 0 such that

γ‖w‖2
X + ‖Ψw‖2

Z ≤ C

(
1

γ
‖Λw‖2

X + ‖Φw‖2
Z

)
, ∀ w ∈ Y. (2.2)

Then the variational equation (2.1) has a solution u ∈ X satisfying

γ‖u‖2
X ≤ C

(
1

γ
‖F‖2

X + ‖G‖2
Z

)
. (2.3)

In addition, the solution is unique if and only if Λ(W ) is dense in X.

Proof. By assumption, the restriction Λ : W → X of Λ to W is injective, and
therefore it has a left inverse Λ−1 : Λ(W ) ⊂ X → W . According to (2.2)

γ‖Λ−1ϕ‖2
X + ‖ΨΛ−1ϕ‖2

Z ≤
C

γ
‖ϕ‖2

X , ∀ ϕ ∈ Λ(W ). (2.4)

Define the linear map ` : Λ(W )→ R by

`ϕ = (F,Λ−1ϕ)X + (G,ΨΛ−1ϕ)Z ,
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for ϕ ∈ Λ(W ). We equipped Λ(W ) with the norm ‖ · ‖X . The Cauchy-Schwarz
inequality and (2.4) imply that

|`ϕ|2 ≤ 2‖F‖2
X‖Λ−1ϕ‖2

X + 2‖G‖2
Z‖ΨΛ−1ϕ‖2

Z

≤ 2

(
1

γ
‖F‖2

X + ‖G‖2
Z

)
(γ‖Λ−1ϕ‖2

X + ‖ΨΛ−1ϕ‖2
Z)

≤ C

γ

(
1

γ
‖F‖2

X + ‖G‖2
Z

)
‖ϕ‖2

X

for all ϕ ∈ Λ(W ). Thus ` ∈ [Λ(W )]′ and

γ‖`‖2
[Λ(W )]′ ≤ C

(
1

γ
‖F‖2

X + ‖G‖2
Z

)
.

According to the Hahn-Banach Theorem, ` admits an extension ˜̀∈ X ′ such that
‖˜̀‖X′ = ‖`‖[Λ(W )]′ . From the Riesz Representation Theorem there is a unique u ∈ X
such that ‖u‖X = ‖˜̀‖X′ and (u, v)X = ˜̀v for all v ∈ X. In particular, for every
w ∈ W

(u,Λw)X = ˜̀Λw = `Λw = (F,w)X + (G,Ψw)Z .

Thus u is a solution of the variational equation (2.1) and it satisfies the estimate
(2.3). Suppose that u1 and u2 solve (2.1). Then (u1−u2,Λw) = 0 for every w ∈ W .
If Λ(W ) is dense in X then u1 − u2 = 0 and thus the solution of (2.1) is unique.

Conversely, suppose that (v,Λw)X = 0 for some v ∈ X \ {0} and for all w ∈ W .
If u is a solution of (2.1) then u+ v is also a solution and hence the solution is not
unique. �

The idea of the proof of Theorem 2.1 can be traced back to the work of Friedrichs
[12]. The same idea has been used in [3, 7, 15]. The constant γ is introduced because
the a priori estimates will be derived in weighted Lebesgue spaces. This parameter
is useful as well for the absorption arguments.

In the context of differential equations, the variational equation (2.1) can be
derived by multiplying the differential equation by appropriate test functions and
formally integrate by parts. To prove the existence of solutions of the variational
equation (2.1), one has to prove the abstract a priori estimate (2.2). For hyperbolic
systems, the a priori estimates can be obtained with the help of symmetrizers, see
[3, 7, 8, 17, 20]. Before dealing with partial differential equations, we will first
illustrate how Theorem 2.1 can be used to prove well-posedness of a system of
ordinary differential equations. This will be done in the succeeding section.

To prove uniqueness, a sufficient condition is to show that for each v ∈ X there
exists w ∈ Y with Λw = v and Φw = 0. This corresponds to a homogeneous dual
problem. In most cases, the well-posedness of the dual problem follows from the
primal problem after time reversal. However, the criterion that the solution lies in
the space Y is not known a priori. In the context of PDEs a different approach in
proving uniqueness is taken, namely the weak equals strong argument.
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3. Linear Ordinary Differential Equations
Consider the ordinary differential equation{

h′(t) = H(t)h(t) + f(t), t ∈ (0, T ),

h(0) = h0

(3.1)

where T > 0, h : (0, T ) → Rm, h0 ∈ Rm, H ∈ L∞((0, T );Rm×m) and f ∈
L2((0, T );Rm). A function h ∈ L2(0, T ) is called a weak solution of (3.1) if the
variational equation

(h, η′ +H>η)L2(0,T ) = −h0 · η(0)− (f, η)L2(0,T ) (3.2)

holds for every η ∈ H1(0, T ) such that η(T ) = 0. If h is a weak solution of (3.1)
then necessarily h ∈ H1(0, T ) and h′ = Hh+ f in the weak sense. This can be seen
immediately from (3.2) by taking η ∈ D(0, T ). In addition, integrating by parts we
obtain h(0) = h0. As a result, the variational equation (3.2) is equivalent to the
ordinary differential equation (3.1).

The existence and uniqueness of weak solutions to (3.1) is well-known and estab-
lished. However, we would like to apply Theorem 2.1 to prove its well-posedness
and to use the corresponding results in studying the coupled system (1.1). The ap-
plication of Theorem 2.1 to (3.1) relies on an a priori estimate that will be derived
using the following proposition. For the proof we refer to [3, p. 283].

Proposition 3.1. For each η ∈ eγtH1(−∞, T ) and γ ≥ 1 we have∫ T

−∞
e−2γt|η(t)|2 dt ≤ 1

γ2

∫ T

−∞
e−2γt|η′(t)|2 dt.

As a consequence we have the following estimate.

Corollary 3.2. For each γ ≥ 1 and η ∈ H1(0, T ) such that η(T ) = 0 we have∫ T

0

e2γt|η(t)|2 dt ≤ 1

γ2

∫ T

0

e2γt|η′(t)|2 dt. (3.3)

Proof. Extending η by zero for t > T we have η ∈ H1(0,∞). Define the function
ζ ∈ eγtH1(−∞, T ) by ζ(t) = η(T − t). Proposition 3.1 and the change of variable
s = T − t imply ∫ T

0

e2γt|η(t)|2 dt =

∫ T

−∞
e−2γ(s−T )|ζ(s)|2 ds

≤ 1

γ2

∫ T

−∞
e−2γ(s−T )|ζ ′(s)|2 ds. (3.4)

Using ζ ′(s) = −η′(T − s) and the change of variable t = T − s we have∫ T

−∞
e−2γ(s−T )|ζ ′(s)|2 ds =

∫ T

−∞
e−2γ(s−T )|η′(T − s)|2 ds

=

∫ T

0

e2γt|η′(t)|2 dt. (3.5)
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The estimate (3.3) now follows from (3.4) and (3.5). �

With the estimate (3.3), it is now possible to derive an a priori estimate needed
in the well-posedness of (3.2). This a priori estimate, which can be thought of a
Poincaré-type inequality, will be also used in the PDE-ODE systems of Section 6.

Theorem 3.3. Let A ∈ L∞((0, T );Rm×m). There exist constants C > 0 and γ0 ≥ 1
depending only on ‖A‖L∞(0,T ) such that for all η ∈ H1(0, T ) and for all γ ≥ γ0 we
have

|η(0)|2 + γ‖eγtη‖2
L2(0,T ) ≤

C

γ
‖eγt(η′ + Aη)‖2

L2(0,T ) + Ce2γT |η(T )|2. (3.6)

Proof. First, suppose that η ∈ H1(0, T ) satisfies η(T ) = 0. According to Corollary
3.2 and the triangle inequality we have

γ‖eγtη‖2
L2(0,T ) ≤

2

γ
‖eγt(η′ + Aη)‖2

L2(0,T ) +
2

γ
‖A‖2

L∞(0,T )‖eγtη‖2
L2(0,T ). (3.7)

For sufficiently large γ, the second term on the right hand side of (3.7) can be
absorbed by the term on the left hand side. Thus there are constants C > 0 and
γ0 ≥ 1 both depending only on the L∞-norm of A such that for all γ ≥ γ0

γ‖eγtη‖2
L2(0,T ) ≤

C

γ
‖eγt(η′ + Aη)‖2

L2(0,T ). (3.8)

Define η(t) = 0 for t > T and w(t) = eγ(T−t)η(T − t) for −∞ < t < T . Then
w ∈ H1(−∞, T ) and therefore it satisfies the weighted Sobolev estimate

‖w‖2
L∞(−∞,T ) ≤ γ‖w‖2

L2(−∞,T ) +
1

γ
‖w′‖2

L2(−∞,T ) (3.9)

for all γ > 0. Since w′(t) = −γeγ(T−t)η(T − t)− eγ(T−t)η′(T − t) the above estimate
implies that for some C > 0 there holds

e2γ(T−t)|η(T − t)|2 ≤ C

(
γ‖eγtη‖2

L2(0,T ) +
1

γ
‖eγtη′‖2

L2(0,T )

)
(3.10)

for all t ∈ [0, T ]. Choosing t = T in (3.10), writing η′ = (η′ + Aη) − Aη and using
the same argument as before we obtain, by increasing γ0 if necessary, that for all
γ ≥ γ0

|η(0)|2 ≤ C

(
γ‖eγtη‖2

L2(0,T ) +
1

γ
‖eγt(η′ + Aη)‖2

L2(0,T )

)
(3.11)

for some C > 0. The estimate

|η(0)|2 + γ‖eγtη‖2
L2(0,T ) ≤

C

γ
‖eγt(η′ + Aη)‖2

L2(0,T ) (3.12)

follows from (3.8) and (3.11).
Now suppose that η ∈ H1(0, T ). Define ζ ∈ H1(0, T ) by ζ(t) = η(t) − η(T ) for

0 < t < T . Applying (3.12) to ζ, using the triangle inequality and the fact that
2γ‖eγt‖2

L2(0,T ) = e2γT − 1 we obtain (3.6). �

We are now in a position to use Theorem 2.1 in proving that (3.2) is well-posed.
We take X = e−γtL2(0, T ), Y = H1(0, T ) and Z = Rm. The operators Λ, Ψ and Φ
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are given by Λη = η′ + H>η, Ψη = η(0) and Φη = η(T ) for all η ∈ Y , respectively.
Thus the variational equation (3.2) can be written in the form

(e−2γth,Λη)X = (−e−2γtf, η)X + (−h0,Ψη)Z , ∀ η ∈ W (3.13)

where W = {η ∈ Y : η(T ) = 0}. Note that the set X coincides with L2(0, T ).

Theorem 3.4. Let h0 ∈ Rm, H ∈ L∞(0, T ) and f ∈ L2(0, T ). Then (3.1) has a
unique weak solution h ∈ L2(0, T ). Furthermore, h ∈ H1(0, T ) and it satisfies the
energy estimates

γ‖e−γth‖2
L2(0,T ) ≤ C

(
1

γ
‖e−γtf‖2

L2(0,T ) + |h0|2
)

(3.14)

and
‖e−γth′‖2

L2(0,T ) ≤ C(‖e−γtf‖2
L2(0,T ) + |h0|2) (3.15)

for all γ ≥ γ0 for some C > 0 and γ0 ≥ 1 both depending only on ‖H‖L∞(0,T ).

Proof. Using the notations of the paragraph preceding the theorem, the a priori
estimate (2.3) follows directly from Theorem 3.3. Hence Theorem 2.1 implies the
existence of g ∈ X such that

(g,Λη)X = (−e−2γtf, η)X + (−h0,Ψη)Z , ∀ η ∈ W,
and it satisfies

γ‖g‖2
X ≤ C

(
1

γ
‖e−2γtf‖2

X + |h0|2
)
. (3.16)

Then h = e2γtg ∈ L2(0, T ) is a weak solution of (3.1) and it satisfies (3.14) due to
(3.16). From the discussion at the beginning of this section, we already know that
the weak solution h lies in H1(0, T ) and it satisfies h′ = Hh + f in L2(0, T ). The
estimate (3.15) follows from the differential equation h′ = Hh+f and (3.14). Given
f ∈ X, the dual problem η′ + H>η = f , η(T ) = 0 admits a solution η ∈ H1(0, T ),
which was just shown for the forward problem. Hence Λ(W ) = X and therefore
the weak solution is unique by Theorem 2.1. �

4. Graph Spaces and their Traces

Let O be a non-empty open subset of R2, A ∈ W 1,∞(O) and R ∈ L∞(O). Consider
the linear operator L : H1(O)→ L2(O) defined by

Lu = ∂tu+ A∂xu+Ru.

By duality, we can extend the definition of L for u ∈ L1
loc(O) in the sense of distri-

butions. Define L : L1
loc(O)→ D(O)′ by

Lu(ϕ) = (Lu, ϕ)D(O)′×D(O) =

∫
O
u · L∗ϕ dx dt, ∀ ϕ ∈ D(O)

where L∗ denotes the formal adjoint of L given by

L∗ϕ = − ∂tϕ− A>∂xϕ− (∂xA)>ϕ+R>ϕ. (4.1)

By the definition of distributional derivatives, it can be seen that

Lu = ∂tu+ ∂x(Au)− (∂xA)u+Ru
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for all u ∈ L1
loc(O) in the sense of distributions. It is clear from the definition that

L ∈ L(L2(O);H−1(O)).
Given u ∈ L2(O), suppose that there exists C > 0 such that

|Lu(ϕ)| ≤ C‖ϕ‖L2(O), ∀ ϕ ∈ D(O). (4.2)

From the Riesz Representation Theorem, there exists a unique f ∈ L2(O) such that
Lu(ϕ) = (f, ϕ)L2(O) for all ϕ ∈ L2(O) whenever (4.2) holds. Identifying L2(O) with
its dual, we write Lu = f . Thus, Lu = f for some f ∈ L2(O), with u ∈ L2(O), is
equivalent to

(u, L∗ϕ)L2(O) = (f, ϕ)L2(O), ∀ ϕ ∈ D(O).

If u ∈ H1(O) then Lu = ∂tu + A∂xu + Ru in the weak sense. In other words,
the operator L defined in the sense of distributions and the differential operator
∂t + A∂x +R coincide in H1(O).

For θ ∈ C∞(O;R) the distribution θLu ∈ D(O)′ is defined by

θLu(ϕ) = Lu(θϕ) = (u, L∗(θϕ))L2(O), ∀ϕ ∈ D(O).

The product rule for smooth functions implies that θLu = L(θu)− (∂tθ+ (∂xθ)A)u
in the sense of distributions.

Consider the following subspace of L2(O)

E(O) = {u ∈ L2(O) : Lu ∈ L2(O)}.

Induced by the graph norm

‖u‖E(O) = (‖u‖2
L2(O) + ‖Lu‖2

L2(O))
1
2

E(O) becomes a Hilbert space, called a graph space. Furthermore, the zero order
terms of L are immaterial in the definition of E(O), that is,

E(O) = {u ∈ L2(O) : ∂tu+ ∂x(Au) ∈ L2(O)}.

The space E(O) is closed under multiplication with functions in C∞b (O;R) and if
uj → u in E(O) then θuj → θu in E(O) for every θ ∈ C∞b (O;R).

We need traces of functions in E(QT ), where QT = (0, T ) × (0, 1), which will
be used for initial-boundary value problems. This has been done in [1] for general
Lipschitz domains and in [15] for general graph spaces. It is shown in [1] that
D(QT ) is dense in E(QT ). This information allows us to extend the trace operator
Γ : H1(QT ) → H

1
2 (∂QT ) to functions in E(QT ). Given u ∈ E(QT ) define Γgu :

H
1
2 (∂QT )→ R by

Γgu(ϕ) = lim
j→∞

(Γuj, A∂ϕ)L2(∂QT ), ϕ ∈ H
1
2 (QT ),

where
A∂ = −1{x=0} + 1{x=1} − A−>1{t=0} + A−>1{t=T}, in ∂QT

and (uj)j ⊂ H1(QT ) and uj → u in E(QT ). Here, 1S denotes the indicator function
of a set S. Using the same arguments as in [1] we have Γgu ∈ H−

1
2 (∂QT ) and Γg ∈

L(E(QT );H−
1
2 (∂QT )). Moreover, if u ∈ H1(Q) then Γgu = A>∂ Γu and Γg(θu) =

θ|∂QTΓgu for every θ ∈ C∞(QT ;R) and u ∈ E(QT ).
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The next step is to localize the trace defined in the previous discussion. Given a
nonempty Σ ⊂ ∂QT we define

V(Σ) = {ϕ ∈ H
1
2 (∂QT ) : supp ϕ ⊂ Σ}. (4.3)

It is known that V(Σ) is dense in L2(Σ), see [31, Theorem 13.6.10]. Denote by V (Σ)

the completion of V(Σ) with respect to the norm of H
1
2 (∂QT ). Thus we have the

Gelfand triple
V (Σ) ⊂ L2(Σ) ⊂ V (Σ)′. (4.4)

If ϕ ∈ V (Σ) then there exists a sequence (ϕj)j ⊂ V(Σ) such that ‖ϕj−ϕ‖H 1
2 (∂QT )

→
0. If a ∈ W 1,∞(Σ) then a>ϕj ∈ V(Σ) and ‖a>ϕj − a>ϕ‖

H
1
2 (∂QT )

→ 0. Hence
a>ϕ ∈ V (Σ). As a result, we can define the product au ∈ V (Σ)′ where u ∈ V (Σ)′

and a ∈ W 1,∞(Σ) by

〈au, ϕ〉V (Σ)′×V (Σ) = 〈u, a>ϕ〉V (Σ)′×V (Σ), ϕ ∈ V (Σ).

Let us denote Σ0 = {0} × (0, 1), Σ1 = (0, T ) × {0}, Σ2 = (0, T ) × {1} and Σ3 =
{T} × (0, 1). Given u ∈ E(QT ) we define the generalized trace u|Σ1 : V (Σ1)→ R of
u on Σ1 by

u|Σ1(ϕ) = − lim
j→∞
〈Γgu, ϕj〉H− 1

2 (∂QT )×H
1
2 (∂QT )

, ϕ ∈ V (Σ1), (4.5)

where (ϕj)j ⊂ V(Σ1) and ‖ϕj − ϕ‖H 1
2 (∂QT )

→ 0. By definition, we have

|u|Σ1(ϕ)| ≤ ‖Γgu‖H− 1
2 (∂QT )

‖ϕ‖
H

1
2 (∂QT )

.

Thus u|Σ1 ∈ V (Σ1)′ and ‖u|Σ1‖V (Σ1)′ ≤ ‖Γgu‖H− 1
2 (∂QT )

. In particular, u 7→ u|Σ1 ∈
L(E(QT );V (Σ1)′) because Γg is bounded. It follows from the definition that

〈u|Σ1 , ϕ〉V (Σ1)′×V (Σ1) = −〈Γgu, ϕ〉H− 1
2 (∂QT )×H

1
2 (∂QT )

(4.6)

for all u ∈ E(QT ) and ϕ ∈ V(Σ1). Also,

u|Σ1 = (Γu)|Σ1 , ∀ u ∈ H1(QT ). (4.7)

The other trace operators are defined as follows

〈u|Σ2 , ϕ2〉V (Σ2)′×V (Σ2) = lim
j→∞
〈Γgu, ϕ2j〉H− 1

2 (∂QT )×H
1
2 (∂QT )

〈u|Σ0 , ϕ0〉V (Σ0)′×V (Σ0) = − lim
j→∞
〈Γgu,A(0, ·)>ϕ0j〉H− 1

2 (∂QT )×H
1
2 (∂QT )

〈u|Σ3 , ϕ3〉V (Σ3)′×V (Σ3) = lim
j→∞
〈Γgu,A(T, ·)>ϕ3j〉H− 1

2 (∂QT )×H
1
2 (∂QT )

where ϕi ∈ V (Σi), ϕij ∈ V(Σi) and ‖ϕij − ϕi‖H 1
2 (∂QT )

→ 0 for i = 0, 2, 3. The
properties of the trace u|Σ1 are carried by these traces as well. We note that the
localization process we introduced above is different from the one mentioned in [7].

Using a standard density argument, we can show that∫ T

0

∫ 1

0

Lu · ϕ dx dt =

∫ T

0

∫ 1

0

u · L∗ϕ dx dt+ 〈AΓgu,Γϕ〉V (Σ1)′×V (Σ1) (4.8)
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for every u ∈ E(QT ) and ϕ ∈ H1(QT ) such that Γϕ ∈ V(Σ1). Similarly, we have∫ T

0

∫ 1

0

Lu · ϕ dx dt =

∫ T

0

∫ 1

0

u · L∗ϕ dx dt− 〈Γgu,Γϕ〉V (Σ0)′×V (Σ0) (4.9)

for every u ∈ E(QT ) and ϕ ∈ H1(QT ) satisfying Γϕ ∈ V(Σ0).
Let us simplify the notation for the traces we have introduced in this section. For

functions u ∈ E(QT ) we shall also use the notations u|x=0, u|x=1, u|t=0 and u|t=T for
u|Σ1 , u|Σ2 , u|Σ0 , and u|Σ3 , respectively.

5. Weak and Strong Solutions for Linear Hyperbolic
Systems

The present section is devoted to hyperbolic systems on an interval in the absence of
ODE boundary conditions. We shall recall the notion of weak and strong solutions
for such systems. Most of the results stated here are without proofs. We refer to
[3, Chapter 9] for more details on the multidimensional case and to [25, Chapter
4] in the case of one-space dimension. For the sake of completeness and clarity, we
review these results and in a form (e.g. Theorem 5.7) which will be used later. All
throughout this section, we assume the following hypotheses, similar to those given
in [3], see also [23].
(FS) Friedrichs Symmetrizability. Let U ⊂ Rn be open and convex. The differen-

tial operator
Lw = ∂t + A(w)∂x

is Friedrichs symmetrizable for all w ∈ U , i.e., there exists a symmet-
ric positive-definite matrix-valued function S ∈ C∞(U ;Rn×n), called the
Friedrichs symmetrizer, that is bounded as well as its derivatives, S(w)A(w)
is symmetric for all w ∈ U , and there exists α > 0 such that S(w) ≥ αIn for
all w ∈ U .

(D) Diagonalizability. It holds that A ∈ C∞(U ;Rn×n) and for each w ∈ U , A(w)
is diagonalizable with p positive eigenvalues and n− p negative eigenvalues.
In particular, A(w) is invertible and has n independent eigenvectors.

(UKL) Uniform Kreiss-Lopatinskĭı Condition. The matrices B0 ∈ C∞(U ;Rp×n) and
B1 ∈ C∞(U ;R(n−p)×n) are of full rank and there exists C > 0 such that for
all w ∈ U

|V | ≤ C|B0(w)V |, for all V ∈ Eu(A(w))

and
|V | ≤ C|B1(w)V |, for all V ∈ Es(A(w))

where Eu(A) and Es(A) denote the unstable and stable subspaces of a matrix
A, respectively.

Using the full-rank assumptions on B0 and B1, one can prove the following de-
composition of the flux matrix in terms of the boundary matrices B0 and B1. A
proof can be found in [3, Lemma 9.4]. This decomposition is important in deriving
the weak form of (1.1).
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Lemma 5.1. Assume that (D) holds and suppose that the boundary matrices B0 ∈
C∞(U ;Rp×n) and B1 ∈ C∞(U ;R(n−p)×n) have full ranks at each point of U . Then
there exist matrix-valued maps N0, C0,M1 ∈ C∞(U ;R(n−p)×n) and N1, C1,M0 ∈
C∞(U ;Rp×n) such that

A(w) = Mx(w)>Bx(w) + Cx(w)>Nx(w), ∀ (w, x) ∈ U × {0, 1}. (5.1)

In fact, N0 is chosen so that
(
B0

N0

)
∈ C∞(U ;Rn×n) is invertible with inverse (Y0 D0)

where Y0 ∈ C∞(U ;Rn×p) and D0 ∈ C∞(U ;Rn×(n−p)). Thus we can take

M0 = (AY0)> and C0 = (AD0)>. (5.2)

Consider the initial-boundary value problem (IBVP)
∂tu+ A∂xu+Ru = f, 0 < t < T, 0 < x < 1

B0u|x=0 = g0, 0 < t < T,

B1u|x=1 = g1, 0 < t < T,

u|t=0 = u0, 0 < x < 1,

(5.3)

where A = A(v), B0 = B0(v), B1 = B1(v), v ∈ W 1,∞(QT ) and R ∈ L∞(QT ;Rn×n).
All throughout this paper, we suppose that the range of v lies in a compact subset
K of U , ‖v‖W 1,∞(QT ) ≤ K and ‖R‖L∞(QT ) ≤ %. Here, K > 0 and % > 0 are fixed.

Definition 5.2. Let f ∈ L2(QT ), g0, g1 ∈ L2(0, T ) and u0 ∈ L2(0, 1). A function
u ∈ L2(QT ) is called a weak solution of the initial-boundary value problem (5.3) if∫ T

0

∫ 1

0

u · L∗ϕ dx dt =

∫ T

0

∫ 1

0

f · ϕ dx dt−
∫ T

0

g1 ·M1ϕ|x=1 dt

+

∫ T

0

g0 ·M0ϕ|x=0 dt+

∫ 1

0

u0 · ϕ|t=0 dx (5.4)

holds for all ϕ ∈ H1(QT ) such that C0ϕ|x=0 = 0, C1ϕ|x=1 = 0 and ϕ|t=T = 0.

It is clear that the space of test functions in Definition 5.2 is dense in the solution
space L2(QT ). The following theorem states how the weak solution satisfies the
IBVP (5.3) in some sense.

Theorem 5.3. If u ∈ L2(QT ) is a weak solution of (5.3) then u ∈ E(QT ). The
equation Lu = f holds in L2(QT ) in the sense of distributions and the boundary and
initial conditions are satisfied in the following sense

B0u|x=0 = g0 in V (Σ1)′, (5.5)
B1u|x=1 = g1 in V (Σ2)′, (5.6)

u|t=0 = u0 in V (Σ0)′. (5.7)

Proof. By taking ϕ ∈ D(QT ) in the definition, the equation Lu = f holds in the
sense of distributions and hence u ∈ E(QT ). By Green’s identity (4.8), (5.1) and
(5.4) we have

〈B0u|Σ1 ,M0ϕ|x=0〉V (Σ1)′×V (Σ1) =

∫ T

0

g0 ·M0ϕ|x=0 dt (5.8)

Department of Mathematics and Computer Science, College of Science, University of the Philippines Baguio



G. Peralta and G. Propst 12 / 32

for every ϕ ∈ H1(QT ) such that Γϕ ∈ V(Σ1) and C0ϕ|x=0 = 0. Given ψ ∈ V(Σ1),
let φ ∈ H1(QT )p be such that Γφ = ψ and define ϕ ∈ H1(QT ) by

ϕ(t, x) = A(t, x)−>
(
Y0(t, x)>

D0(t, x)>

)−1(
φ(t, x)

O(n−p)×1

)
.

It is clear that Γϕ ∈ V(Σ1) and C0ϕ|x=0 = D>0 A
>ϕ|x=0 = 0. Also, M0ϕ|x=0 =

Y >0 A
>ϕ|x=0 = φ|x=0 = ψ. With this ϕ in (5.8) we have

〈B0u|Σ1 , ψ〉V (Σ1)′×V (Σ1) =

∫ T

0

g0 · ψ dt.

By the density of V(Σ1) in V (Σ1) this means that (5.5) holds. A similar argument
shows that (5.6) holds as well.

Let us prove (5.7). For ψ ∈ V(Σ0) we let ϕ ∈ H1(QT ) be such that Γϕ = ψ. Then
C0ϕ|x=0 = 0, C1ϕ|x=1 = 0, ϕ|t=T = 0 and so

〈u|Σ0 , ψ〉V (Σ0)′×V (Σ0) =

∫ 1

0

u0 · ψ dx

from (4.9) and (5.4). Thus u|Σ0 = u0 in V (Σ0)′. �

We can also introduce a stronger notion of solution for the IBVP (5.3).

Definition 5.4. A function u ∈ L2(QT ) is called a strong solution of (5.3) if there
exist sequences (uj)j ⊂ H1(QT ), (fj)j ⊂ L2(QT ), (g0j)j ⊂ H

1
2 (0, T ), (g1j)j ⊂

H
1
2 (0, T ) and (u0j)j ⊂ H

1
2 (0, 1) such that
Luj = fj, 0 < t < T, 0 < x < 1,

B0uj|x=0 = g0j, 0 < t < T,

B1uj|x=1 = g1j, 0 < t < T,

uj|t=0 = u0j, 0 < x < 1,

with uj → u and fj → f in L2(QT ), g0j → g0 in L2(0, T ), g1j → g1 in L2(0, T ) and
u0j → u0 in L2(0, 1).

It can be easily seen that every strong solution of (5.3) is also a weak solution.
The convergence of the sequence approximating a strong solution can be improved
to E(QT ). The proof of the following theorem can be deduced immediately from
the definition of strong solutions and the continuity of the trace operators.

Theorem 5.5. If u is a strong solution of (5.3) and (uj)j ⊂ H1(QT ) is a cor-
responding approximating sequence of u then uj → u in E(QT ). In particular,
uj|Σi → u|Σi in V (Σi)

′ for i = 1, 2, 3, 4.

We let E(QT ) be the space of all functions ϕ ∈ E(QT ) such that ϕ|∂QT ∈ L2(∂QT )
and there exists a sequence (ϕj)j ⊂ H1(QT ) with the property that

lim
j→∞
‖uj − u‖E(QT ) + ‖uj|∂QT − u|∂QT ‖L2(∂QT ) = 0. (5.9)
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Obviously, we have H1(QT ) ⊂ E(QT ). One can check that E(QT ) is the completion
of H1(QT ) with respect to the norm

‖u‖E(QT ) := (‖u‖2
E(QT ) + ‖u|∂QT ‖2

L2(∂QT ))
1
2 . (5.10)

The space E∗(QT ) is also defined in a similar manner where L is replaced by L∗.
We can extend Green’s identity to functions in E(QT ) and E∗(QT ).

Theorem 5.6. For every u ∈ E(QT ) and ϕ ∈ E∗(QT ) we have∫ T

0

∫ 1

0

u · L∗ϕ dx dt =

∫ T

0

∫ 1

0

Lu · ϕ dx dt−
∫ T

0

A(t, 1)u(t, 1) · ϕ(t, 1) dt

+

∫ T

0

A(t, 0)u(t, 0) · ϕ(t, 0) dt−
∫ 1

0

u(T, x) · ϕ(T, x) dx

+

∫ 1

0

u(0, x) · ϕ(0, x) dx. (5.11)

Proof. Using integration by parts, (5.11) holds for all u, v ∈ D(QT ) and hence
for all u, v ∈ H1(QT ). The conclusion now follows from the density of H1(QT ) in
E(QT ) and E∗(QT ). �

Theorem 5.7. Suppose that (FS), (D) and (UKL) hold. Then there exist C =
C(%,K,K) > 0 and γ0 = γ0(%,K,K) ≥ 1 such that the a priori estimate

‖u|t=0‖2
L2(0,1) + γ‖eγtu‖2

L2(QT ) + ‖eγtu|x=0‖2
L2(0,T ) + ‖eγtu|x=1‖2

L2(0,T )

≤ C

(
e2γT‖u|t=T‖2

L2(0,1) +
1

γ
‖eγtL∗vu‖2

L2(QT )

+ ‖eγtC0(v)u|x=0‖2
L2(0,T ) + ‖eγtC1(v)u|x=1‖2

L2(0,T )

)
(5.12)

holds for all u ∈ E∗(QT ) and γ ≥ γ0.

The proof of this theorem can be found in [3, Chapter 9] in the case where
u ∈ H1(QT ). The fact that it holds for all u ∈ E∗(QT ) follows immediately from
the definition of the space E∗(QT ). The proof of (5.12) is obtained by successively
deriving various a priori estimates. These are the a priori estimates for (i) pure
boundary value problems using symmetrizers, (ii) initial-boundary value problems
with homogeneous initial data with the help of a causality principle and (iii) general
initial-boundary value problems using duality.

Now with the help of the a priori estimate (5.12), the well-posedness of (5.3) can
be obtained from Theorem 2.1, see [3, Chapter 9] and [25, Chapter 4] for the details.

Theorem 5.8. In the situation of Theorem 5.7, the hyperbolic system (5.3) has a
unique weak solution u such that u ∈ C([0, T ], L2(0, 1)) ∩ E(QT ). The weak solu-
tion u is strong and there exists a sequence (uj)j ⊂ H1(QT ) such that uj → u in
C([0, T ], L2(0, 1))∩E(QT ) and uj|x=y → u|x=y in L2(0, T ) for y = 0, 1. Furthermore,
there exist γ0 = γ0(%,K,K) ≥ 1 and C = C(%,K,K) > 0 such that u satisfies the
energy estimate

e−2γT‖u‖2
C([0,T ],L2(0,1)) + γ‖e−γtu‖2

L2(QT ) + ‖e−γtu|x=0‖2
L2(0,T )
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+ ‖e−γtu|x=1‖2
L2(0,T ) ≤ C

(
‖u0‖2

L2(0,1) +
1

γ
‖e−γtf‖2

L2(QT )

+ ‖e−γtg0‖2
L2(0,T ) + ‖e−γtg1‖2

L2(0,T )

)
(5.13)

for every γ ≥ γ0.

Remark 5.9. According to Green’s identity (5.11) and Theorem 5.8, the weak
solution u of the IBVP (5.3) satisfies∫ T

0

∫ 1

0

u · L∗vϕ dx dt =

∫ T

0

∫ 1

0

f · ϕ dx dt−
∫ T

0

A(v(t, 1))u(t, 1) · ϕ(t, 1) dt

+

∫ T

0

A(v(t, 0))u(t, 0) · ϕ(t, 0) dt

−
∫ 1

0

u(T, x) · ϕ(T, x) dx+

∫ 1

0

u0(x) · ϕ(0, x) dx.

for every ϕ ∈ E∗(QT ). In particular, (5.4) holds for every ϕ ∈ E∗(QT ) with the
properties

C0ϕ|x=0 = 0, C1ϕ|x=1 = 0, ϕ|t=T = 0. (5.14)

On the other hand, if u satisfies (5.4) for every ϕ ∈ E∗(QT ) such that (5.14) hold
then u must be the unique weak solution of (5.4).

To close this section, we state the following regularity result which will be needed
in Section 7. In this theorem, we limit ourselves to the case where A, B0, B1 and R
are constant matrices.

Theorem 5.10. Let k ∈ N. If f ∈ Hk(QT ), g0, g1 ∈ Hk(0, T ) and u0 ∈ Hk(0, 1)
satisfy an appropriate compatibility condition up to order k − 1 (e.g. (7.4) below)
then the weak solution of

Lu = f, B0u|x=0 = g0, B1u|x=1 = g1, u|t=0 = u0 (5.15)

satisfies u ∈ CHk(QT ) and u|x=0, u|x=1 ∈ Hk(0, T ). There is a sequence (uj)j ⊂
Hk+1(QT ) with the properties uj → u in CHk(QT ), Luj → Lu in Hk(QT ) and
uj|x=y → u|x=y in Hk(0, T ) for y = 0, 1. Moreoever, u satisfies the energy estimate

e−γT
∑
|α|≤k

γ2(k−|α|) sup
τ∈[0,T ]

‖∂αu(τ)‖2
L2(0,1) + γ‖e−γtu‖2

Hk
γ (QT )

+ ‖e−γtu|x=0‖2
Hk
γ (0,T ) + ‖e−γtu|x=1‖2

Hk
γ (0,T ) ≤ Ck

( k∑
j=0

‖uj‖2
Hk−j(0,1)

+
1

γ
‖e−γtf‖2

Hk
γ (QT ) + ‖e−γtg0‖2

Hk
γ (0,T ) + ‖e−γtg1‖2

Hk
γ (0,T )

)
(5.16)

for all γ ≥ γk and for some Ck > 0 and γk ≥ 1.

Proof. See [25, 28] for example. �
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6. Linear Hyperbolic PDE-ODE Systems
In this section we prove the existence, uniqueness and regularity of weak solutions to
a linear hyperbolic system of partial differential equations coupled with a differential
equation at the boundary. We are interested in the L2-well-posedness of the following
system

Lvu(t, x) = f(t, x), 0 < t < T, 0 < x < 1,

B0u(t, 0) = g0(t) +Q0(t)h(t), 0 < t < T,

B1u(t, 1) = g1(t) +Q1(t)h(t), 0 < t < T,

h′(t) = H(t)h(t) +G0(t)u(t, 0) +G1(t)u(t, 1) + S(t), 0 < t < T,

u(0, x) = u0(x), 0 < x < 1,

h(0) = h0

(6.1)

where
Lvu(t, x) = ∂tu(t, x) + A(v(t, x))∂xu(x) +R(t, x)u(t, x)

and v ∈ W 1,∞(QT ;Rn) satisfies the conditions stated in the previous section. All
throughout this section we assume that B0 ∈ Rp×n and B1 ∈ R(n−p)×p have full
ranks, R ∈ L∞(QT ;Rn×n), Q0 ∈ L∞((0, T );Rp×m), Q1 ∈ L∞((0, T );R(n−p)×m), H ∈
L∞((0, T );Rm×m), G0, G1 ∈ L∞((0, T );Rm×n), S ∈ L2((0, T );Rm). Furthermore, we
suppose that (FS), (D), and (UKL) hold.

Definition 6.1. Given f ∈ L2(QT ), g0 ∈ L2(0, T ), g1 ∈ L2(0, T ), S ∈ L2(0, T ),
u0 ∈ L2(0, 1) and h0 ∈ Rm, a pair of functions (u, h) ∈ L2(QT ) × L2(0, T ) is called
a weak solution of the system (6.1) if the variational equality∫ T

0

∫ 1

0

u(t, x) · L∗vϕ(t, x) dx dt

+

∫ T

0

h(t) · (η′(t) + H̃(t)η(t) +Q1(t)>M1(t)ϕ(t, 1)−Q0(t)>M0(t)ϕ(t, 0)) dt

=

∫ T

0

∫ 1

0

f(t, x) · ϕ(t, x) dx dt−
∫ T

0

g1(t) · (M1(t)ϕ(t, 1) + (G1(t)Y1)>η(t)) dt

+

∫ T

0

g0(t) · (M0(t)ϕ(t, 0)− (G0(t)Y0)>η(t)) dt−
∫ T

0

S(t) · η(t) dt

+

∫ 1

0

u0(x) · ϕ(0, x) dx− h0 · η(0) (6.2)

where
H̃ = (H +G1Y1Q1 +G0Y0Q0)>,

holds for all ϕ ∈ E∗(QT ) and for all η ∈ H1(0, T ) such that ϕ(T, ·) = 0, η(T ) = 0,
C1ϕ|x=1 = −(G1D1)>η and C0ϕ|x=0 = (G0D0)>η.

In Definition 6.1, the matrices Mi, Yi and Di are those given in Lemma 5.1.
The definition of a weak solution is obtained by multiplying the system (6.1) with
appropriate test functions and integrating by parts. The space of test functions in
the above definition is denoted by

W = {(ϕ, η) ∈ E∗(QT )×H1(0, T ) : η|t=T = 0, ϕ|t=T = 0,
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C1ϕ|x=1 = −(G1D1)>η, C0ϕ|x=0 = (G0D0)>η}.

Because G0 and G1 are in L∞, the functions (G1D1)>η and (G0D0)>η may be
only in L2(0, T ) even for η ∈ H1(0, T ). In order for the compatibility conditions
C1ϕ|x=1 = −(G1D1)>η and C0ϕ|x=0 = (G0D0)>η to be meaningful, we take the
space E∗(QT ) to be the space for the first component instead of the space H1(QT )
which was used in Definition 5.2.

Theorem 6.2. The space W is dense in L2(QT )× L2(0, T ).

Proof. Take (u, h) ∈ L2(QT )× L2(0, T ) and ε > 0. Let η ∈ H1(0, T ) be such that
η(T ) = 0 and ‖η − h‖L2(0,T ) < ε. Take w ∈ H1

0 (QT ) satisfying ‖u − w‖L2(QT ) < ε.
Consider the IBVP

L∗vψ = 0, C0ψ|x=0 = (G0D0)>η, C1ψ|x=1 = −(G1D1)>η, ψ|t=T = 0. (6.3)

This IBVP has a unique solution ψ ∈ L2(QT ) and furthermore ψ ∈ E∗(QT ) according
to the dual version of Theorem 5.8.

By the absolute continuity of the Lebesgue integral, there exists δ = δ(ε) > 0 such
that if O ⊂ QT has Lebesgue measure less than or equal to δ then ‖u−ψ‖L2(O) < ε.
Without loss of generality, we can assume that δ < 4T . Let θ ∈ D [0, 1] be such that
0 ≤ θ ≤ 1 on [0, 1], θ = 1 on (0, δ/4T )∪ (1− δ/4T, 1) and θ = 0 on (δ/2T, 1− δ/2T ).
Define ϕ = θψ+ (1− θ)w. Since E∗(QT ) is closed under addition and multiplication
with smooth functions it holds that ϕ ∈ E∗(QT ). From (6.3) and the definition of θ
we have (ϕ, η) ∈ W . Furthermore,

‖u− ϕ‖L2(QT ) ≤ ‖θ‖L∞(QT )‖u− ψ‖L2(Rδ,T ) + ‖1− θ‖L∞(QT )‖u− w‖L2(QT ) < 2ε

where Rδ,T = (0, T )× ((0, δ/2T ) ∪ (1− δ/2T, 1)). Therefore

‖(u, h)− (ϕ, η)‖L2(QT )×L2(0,T ) <
√

5ε

and consequently W is dense in L2(QT )× L2(0, T ). �

We would like to apply Theorem 2.1 to prove the well-posedness of (6.1). There-
fore the crucial step is to prove an a priori estimate. But first we need to rewrite
(6.2) in the form (2.1). For this purpose, we set X = e−γtL2(QT ) × e−γtL2(0, T ),
Y = E∗(QT )×H1(0, T ) and Z = e−γtL2(0, T )×e−γtL2(0, T )×L2(0, 1)×Rm. Define
Λ : Y → X, Ψ : Y → Z and Φ : Y → Z as follows

Λ

(
ϕ

η

)
=

(
L∗vϕ

η′ + H̃η +Q>1 M1ϕ|x=1 −Q>0 M0ϕ|x=0

)

Φ

(
ϕ

η

)
=


C0ϕ|x=0 − (G0D0)>η
C1ϕ|x=1 + (G1D1)>η

ϕ|t=T
η(T )



Ψ

(
ϕ

η

)
=


M0ϕ|x=0 − (G0Y0)>η
−(M1ϕ|x=1 + (G1Y1)>η)

ϕ|t=0

−η(0).


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for every (ϕ, η) ∈ Y . With these notations, the variational equation (6.2) can be
rewritten as(

e−2γt

(
u

h

)
,Λ

(
ϕ

η

))
X

=

(
e−2γt

(
f

−S

)
,

(
ϕ

η

))
X

+

(
(e−2γtg0, e

−2γtg1, u0, h0)>,Ψ

(
ϕ

η

))
Z

(6.4)

for all (ϕ, η) ∈ W = ker Φ.

Theorem 6.3. In the notation of the previous paragraph, there exist γ0 ≥ 1 and
C > 0 such that

γ‖(ϕ, η)‖2
X + ‖Ψ(ϕ, η)‖2

Z ≤ C

(
1

γ
‖Λ(ϕ, η)‖2

X + ‖Φ(ϕ, η)‖2
Z

)
holds for all (ϕ, η) ∈ Y and γ ≥ γ0.

Proof. Let (ϕ, η) ∈ Y . From the priori estimate (5.12) and the triangle inequality
it follows that there is a constant C > 0 such that

‖ϕ|t=0‖2
L2(0,1) + γ‖eγtϕ‖2

L2(QT ) + ‖eγtϕ|x=0‖2
L2(0,T ) + ‖eγtϕ|x=1‖2

L2(0,T )

+ ‖eγt(M0ϕ|x=0 − (G0Y0)>η)‖2
L2(0,T ) + ‖eγt(M1ϕ|x=1 + (G1Y1)>η)‖2

L2(0,T )

≤ C

(
1

γ
‖eγtL∗vϕ‖2

L2(QT ) + ‖eγt(C0ϕ|x=0 − (G0D0)>η)‖2
L2(0,T ) (6.5)

+ ‖eγt(C1ϕ|x=1 + (G1D1)>η)‖2
L2(0,T ) + ‖eγtη‖2

L2(0,T ) + e2γT‖ϕ|t=T‖2
L2(0,1)

)
for all γ ≥ γ0 where γ0 is the constant in Theorem 5.7. From the a priori estimate
(3.6) in Theorem 3.3 and the triangle inequality we obtain

|η(0)|2 + γ‖eγtη‖2
L2(0,T )

≤ C

γ
‖eγt(η′ + H̃η +Q>1 M1ϕ|x=1 −Q>0 M0ϕ|x=0)‖2

L2(0,T )

+
C

γ
‖eγtϕ|x=0‖2

L2(0,T ) +
C

γ
‖eγtϕ|x=1‖2

L2(0,T ) + Ce2γT |η(T )|2. (6.6)

From (6.5) and (6.6) and upon choosing γ0 large enough, the estimate in the
theorem follows after absorbing the terms ‖eγtϕ|x=0‖2

L2(0,T ) and ‖eγtϕ|x=1‖2
L2(0,T ).

�

It is now possible to prove the existence and uniqueness of weak solutions of the
system (6.1).

Theorem 6.4. Let f ∈ L2(QT ), g0 ∈ L2(0, T ), g1 ∈ L2(0, T ), S ∈ L2(0, T ), u0 ∈
L2(0, 1) and h0 ∈ Rm. With the assumptions in the beginning of this section, the
system (6.1) has a unique weak solution (u, h) ∈ L2(QT ) × L2(0, T ). Furthermore,
(u, h) ∈ [C([0, T ], L2(0, 1)) ∩ E(QT )] × H1(0, T ) and in particular u|x=0, u|x=1 ∈
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L2(0, T ). The function u is the weak solution of the IBVP
Lvu(t, x) = f(t, x), 0 < t < T, 0 < x < 1,

B0u(t, 0) = g0(t) +Q0(t)h(t), 0 < t < T,

B1u(t, 1) = g1(t) +Q1(t)h(t), 0 < t < T,

u(0, x) = u0(x), 0 < x < 1,

(6.7)

and h is the solution of the ODE{
h′(t) = H(t)h(t) +G0(t)u(t, 0) +G1(t)u(t, 1) + S(t), 0 < t < T,

h(0) = h0.
(6.8)

The weak solution (u, h) satisfies the energy estimate

e−2γT‖u‖2
C([0,T ],L2(0,1)) + γ‖e−γtu‖2

L2(QT ) + ‖e−γtu|x=0‖2
L2(0,T )

+ ‖e−γtu|x=1‖2
L2(0,T ) + γ‖e−γth‖2

L2(0,T ) ≤ C

(
‖u0‖2

L2(0,1) + |h0|2

+
1

γ
‖e−γtf‖2

L2(QT ) + ‖e−γtg0‖2
L2(0,T ) + ‖e−γtg1‖2

L2(0,T ) +
1

γ
‖e−γtS‖2

L2(0,T )

)
for all γ ≥ γ0 for some C > 0 and γ0 ≥ 1.

Proof. The existence of a weak solution is a direct consequence of Theorem 2.1
and Theorem 6.3. The next step is to show that if (u, h) is any weak solution of
(6.1) then u is the weak solution of (6.7) and h is the solution of (6.8). Suppose
that (u, h) is a weak solution of (6.1). Taking η = 0 and ϕ ∈ H1(QT ) satisfying
(5.14) we have (ϕ, η) ∈ W . With this (ϕ, η) in (6.2) we can see that u is the weak
solution of (6.7). Therefore from Theorem 5.8, u ∈ C([0, T ], L2(0, 1)) ∩ E(QT ) and
in particular u|x=0, u|x=1 ∈ L2(0, T ). Moreover, from Remark 5.9 and Lemma 5.1 u
satisfies the variational equation∫ T

0

∫ 1

0

u(t, x) · L∗vϕ(t, x) dx dt

=

∫ T

0

∫ 1

0

f(t, x) · ϕ(t, x) dx dt−
∫ T

0

(g1(t) +Q1(t)h(t)) ·M1(t)ϕ(t, 1) dt

+

∫ T

0

(g0(t) +Q0(t)h0(t)) ·M0(t)ϕ(t, 0) dt−
∫ T

0

N1u(t, 1) · C1(t)ϕ(t, 1) dt

+

∫ T

0

N0u(t, 0) · C0(t)ϕ(t, 0) dt−
∫ 1

0

u(T, x) · ϕ(T, x) dx

+

∫ 1

0

u0(x) · ϕ(0, x) dx (6.9)

for all ϕ ∈ E∗(QT ).
Given η ∈ H1(0, T ) with η(T ) = 0 consider the IBVP

L∗vϕ = 0, C0ϕ|x=0 = (G0D0)>η, C1ϕ|x=1 = −(G1D1)>η, ϕ|t=T = 0. (6.10)

The dual version of Theorem 5.8 implies that (6.10) has a unique weak solution
ϕ ∈ L2(QT ) such that ϕ ∈ E∗(QT ). Thus (ϕ, η) ∈ W . From the identity (see the
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remark following Lemma 5.1)

YyBy +DyNy = In, y = 0, 1,

(5.1), (6.2) and (6.9) we can see that∫ T

0

h(t) · (η′(t) +H(t)>η(t)) dt

= −h0 · η(0)−
∫ T

0

(G0(t)u(t, 0) +G1(t)u(t, 1) + S(t)) · η(t) dt. (6.11)

According to (6.11) and Theorem 3.4, h is the solution of the ordinary differential
equation (6.8) and h ∈ H1(0, T ).

The energy estimate in the statement of the theorem follows from the energy
estimate (5.13) for u, the energy estimate (3.14) for h and an absorption argument.
Thus, any weak solution of (6.1) satisfies the energy estimate. Consequently, (6.1)
has a unique weak solution. �

In particular, if (u, h) is the weak solution of (6.1) then Theorem 5.8 and Theorem
6.4 imply that the PDE is satisfied in the sense of distributions, the boundary con-
ditions and the ODE are satisfied in L2(0, T ) and the initial conditions are satisfied
in L2(0, 1) × Rm. Due to the L2-trace boundary regularity we have the following
interior-point trace regularity.

Theorem 6.5. If (u, h) is the unique weak solution of (6.1) then u|x=ξ ∈ L2(0, T )
for every ξ ∈ (0, 1).

Proof. From the diagonalizability assumption (D), there exists an invertible matrix
T ∈ C∞(U ;Rn×n) such that T−1AT = Λ where Λ = diag(λ1, . . . , λn) consists of the
eigenvalues of A. Introduce the new variables ũ = T−1u. Because T (ũ), T (ũ)−1 ∈
W 1,∞(QT ) we have ũ|x=ξ ∈ L2(0, T ) if and only if u|x=ξ ∈ L2(0, T ).

Given w ∈ H1((0, T ) × (0, ξ)), λ ∈ W 1,∞((0, T ) × (0, ξ)) and m ∈ W 1,∞(0, ξ) we
have the identity

1

2

∫ T

0

λ(t, ξ)m(ξ)|w(t, ξ)|2 dt =
1

2

∫ T

0

λ(t, 0)m(ξ)|w(t, 0)|2 dt

− 1

2

∫ ξ

0

m(x)|w(t, x)|2 dx

∣∣∣∣t=T
t=0

+
1

2

∫ T

0

∫ ξ

0

(λ(t, x)m(x))x|w(t, x)|2 dx dt

+

∫ T

0

∫ ξ

0

(wt(t, x) + λ(t, x)wx(t, x))m(x)w(t, x) dx dt. (6.12)

This can be obtained by multiplying the expression wt + λwx by mw, integrating
by parts and rearranging the terms. Suppose that λ is uniformly bounded away
from zero. Choose m such that λ(t, ξ)m(ξ) > 0 for every t ∈ [0, T ]. From (6.12) we
get the estimate, by choosing appropriate multipliers for each eigenvalue of A and
taking the sum of the components

‖ũ|x=ξ‖2
L2(0,T ) ≤ C(‖ũ‖2

C([0,T ],L2(0,1)) + ‖ũt + Λũx‖2
L2(QT )

+ ‖ũ‖2
L2(QT ) + ‖ũ|x=0‖2

L2(0,1)) (6.13)
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for some C = C(‖Λ‖W 1,∞ , ‖m‖W 1,∞) > 0 independent of ũ and ξ, whenever ũ ∈
H1(QT ).

According to Theorem 5.8 and Theorem 6.4 the solution ũ can be approxi-
mated by a sequence of functions (ũj)j ⊂ H1(QT ). We can apply the estimate
(6.13) to each ũj and then pass to the limit thanks to convergence ũj → ũ in
C([0, T ], L2(0, 1)), ũjt + Λũjx → ũt + Λũx in L2(QT ) and ũj|x=0 → ũ|x=0 in L2(0, T )

due to Theorem 5.8. Thus ũ|x=ξ ∈ L2(0, T ) and consequently u|x=ξ ∈ L2(0, T ). �

7. Constant Coefficient Hyperbolic PDE-ODE Sys-
tems

The goal of the present section is to show that in the case where the coefficients
in (6.1) are constant, the weak solution defined in the previous section coincides
with the one given by semigroup theory. Consider the weak solution (u, h) ∈
C([0,∞);L2(0, 1)× Rm) of the system

∂tu(t, x) + A∂xu(t, x) +Ru(t, x) = 0, t > 0, 0 < x < 1,

B0u(t, 0) = Q0h(t), t > 0,

B1u(t, 1) = Q1h(t), t > 0,

h′(t) = Hh(t) +G0u(t, 0) +G1u(t, 1), t > 0,

u(0, x) = u0(x), 0 < x < 1,

h(0) = h0.

(7.1)

The boundary conditions for u and the ODE for h can be viewed as a nonlocal
boundary condition for u

Bxu(t, x) = Qxe
tHh0 +

∫ t

0

Qxe
(t−s)H(G0u(s, 0) +G1u(s, 1)) ds, x = 0, 1.

This can be derived by using the variation of parameters formula for the differential
equation for h and substituting it to the boundary conditions for u. However, we
will not treat the boundary conditions in this way.

Let k be a positive integer. For each u0 ∈ Hk(0, 1) we define

ui = −A∂xui−1 −Rui−1, i = 1, . . . , k. (7.2)

The data (u0, h0) ∈ Hk(0, 1)× Rm is said to be compatible up to order k − 1 if

Byui(y) = Qyhi, i = 0, . . . , k − 1 and y = 0, 1, (7.3)

where
hi = Hhi−1 +G0ui−1(0) +G1ui−1(1), i = 1, . . . , k. (7.4)

Theorem 7.1. Let k ∈ N. If the data (u0, h0) ∈ Hk(0, 1) × Rm is compatible up
to order k − 1 then the weak solution (u, h) of (7.1) satisfies (u, h) ∈ CHk(QT ) ×
Hk+1(0, T ) and u|x=0, u|x=1 ∈ Hk(0, T ).
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Proof. From Theorem 6.4, h ∈ H1(0, T ) and u is the weak solution of the system
∂tu(t, x) + A∂xu(t, x) +Ru(t, x) = 0, t > 0, 0 < x < 1,

B0u(t, 0) = Q0h(t), t > 0,

B1u(t, 1) = Q1h(t), t > 0,

u(0, x) = u0(x), 0 < x < 1.

(7.5)

From (7.3) it can be seen that the data (u0, 0, Q0h,Q1h) is compatible up to or-
der 0 for the system (7.5). Thus Theorem 5.10 implies that u ∈ CH1(QT ) and
u|x=0, u|x=1 ∈ H1(0, T ). On the other hand, h satisfies the ODE{

h′(t) = Hh(t) +G0u(t, 0) +G1u(t, 1), t > 0,

h(0) = h0

(7.6)

still from Theorem 6.4. Since u|x=0, u|x=1 ∈ H1(0, T ), it follows from (7.6) that
h ∈ H2(0, T ). Consequently, Theorem 5.10 and (7.3) imply that u ∈ CH2(QT )
and u|x=0, u|x=1 ∈ H2(0, T ). Repeating this process, one eventually arrives at
u ∈ CHk(QT ), u|x=0, u|x=1 ∈ Hk(0, T ) and h ∈ Hk+1(0, T ). �

Next we present the following theorem stating that compatible data can be ap-
proximated by a sequence of smoother data that are still compatible. This theorem
can be viewed as a generalization of Theorem 6.2. A proof is given in the Appendix.

Theorem 7.2. Let k ∈ N. If (u0, h0) ∈ Hk(0, 1) × Rm is compatible up to order
k−1, then there exists a sequence (uν0)ν ⊂ Hk+1(0, 1) such that (uν0, h0) is compatible
up to order k for each ν and ‖uν0 − u0‖Hk(0,1) → 0.

Using a diagonalization argument, the following result can be shown.

Corollary 7.3. For every (u0, h0) ∈ L2(0, 1)×Rm and k ∈ N, there exists a sequence
(uν0)ν ⊂ Hk(0, 1) such that (uν0, h0) is compatible up to order k − 1 and ‖uν0 −
u0‖L2(0,1) → 0.

For each t ≥ 0, define the operator T (t) : L2(0, 1)× Rm → L2(0, 1)× Rm by

T (t)(u0, h0) = (u(t, ·), h(t)), t ≥ 0, (u0, h0) ∈ L2(0, 1)× Rm,

where (u, h) is the unique weak solution of the system (7.1). The linearity of T (t)
follows from the linearity of the system (7.1) and the uniqueness of weak solutions.
The boundedness follows from the energy estimate in Theorem 6.4. Also, T (0) =
I and (T (t))t≥0 is strongly continuous since (u, h) ∈ C([0, T ];L2(0, 1) × Rm) for
any T > 0. Finally, since the system (7.1) is autonomous, (T (t))t≥0 satisfies the
semigroup property.

The goal is to determine the generator of the C0-semigroup (T (t))t≥0, which we
denote by A. A candidate generator is given by the linear operator Ã : D(Ã) →
L2(0, 1)× Rm defined by

Ã
(
u

h

)
=

(
−Aux −Ru

Hh+G0u(0) +G1u(1)

)
(7.7)

where
D(Ã) = {(u, h) ∈ H1(0, 1)× Rm : B0u(0) = Q0h,B1u(1) = Q1h}.
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To prove that A = Ã we proceed using the method in [9] applied to delay equations.
This requires the following three steps: (1) characterize the resolvent R(λ,A), (2)
show that λI − Ã is injective and (3) the resolvent of A and Ã at λ coincide. It is
sufficient to prove these three steps for large enough λ.

Step 1. Suppose that (u0, h0) ∈ H1(0, 1)×Rm satisfies the compatibility condition
up to order 0, in other words, (u0, h0) ∈ D(Ã). Then u ∈ CH1(QT ) and h ∈ H2(0, T )
from Theorem 7.1. For λ > ω0, where ω0 is the growth bound of T (t), the resolvent
of A at λ is given by the Laplace transform of the semigroup T (t), i.e.,

R(λ,A)(u0, h0) =

∫ ∞
0

e−λtT (t)(u0, h0) dt =

∫ ∞
0

e−λt(u(t, ·), h(t)) dt,

see [22] for example.
Define w : (0, 1)→ Rn and g ∈ Rm by

w(x) =

∫ ∞
0

e−λtu(t, x) dt

g =

∫ ∞
0

e−λth(t) dt

so that R(λ,A)(u0, h0) = (w, g).
Because ∂x : H1(0, 1)→ L2(0, 1) is a closed operator, u ∈ C([0, T ];H1(0, 1)) and

t 7→ e−λtux(t, ·) is integrable for λ > γ1 according to (5.16), (3.14) and (3.15), we
can interchange differentiation and integration to obtain

w′(x) =

∫ ∞
0

e−λtux(t, x) dt,

see [13, Theorem 3.7.12] and [10, Chap. II, Theorem 6]. Thus we take λ >
max(ω0, γ0, γ1). Integrating by parts

λw(x) = − e−λtu(t, x)
∣∣∣t=∞
t=0

+

∫ ∞
0

e−λtut(t, x) dt

= u0(x)−
∫ ∞

0

e−λt(Aux(t, x) +Ru(t, x)) dt

= u0(x)− Aw′(x)−Rw(x). (7.8)

Because we already know that w ∈ L2(0, 1), (7.8) implies that w ∈ H1(0, 1). Fur-
thermore, for y = 0, 1 we have

Byw(y) =

∫ ∞
0

e−λtByu(t, y) dt =

∫ ∞
0

e−λtQyh(t) dt = Qyg.

Similarly,

λg = Hg + h0 +G0w(0) +G1w(1).

Department of Mathematics and Computer Science, College of Science, University of the Philippines Baguio



Linear Hyperbolic Systems with Dynamic Boundary Conditions 23 / 32

Therefore the resolvent of A at λ > max(ω0, γ0, γ1) is given by R(λ)(u0, h0) =
(w, g), for (u0, h0) ∈ D(Ã), where w and g satisfy the system

Aw′(x) + (λIn +R)w(x) = u0(x)

B0w(0) = Q0g

B1w(1) = Q1g

(λIm −H)g = h0 +G0w(0) +G1w(1)

(7.9)

and in particular (w, g) ∈ D(Ã).
Step 2. In this step we wish to show that λI − Ã is injective for sufficiently

large λ. However, we only consider the case where R = 0 and H = 0 in this
step. Let us denote the operator Ã by A0 when R = 0 and H = 0. We even
prove the stronger property that λI − A0 is bijective for λ large enough. Given
(u0, h0) ∈ L2(0, 1) × Rm we show that there exists a unique (w, g) ∈ D(A0) such
that (λI −A0)(w, g) = (u0, h0). This is equivalent to the system

Aw′(x) + λw(x) = u0(x)

B0w(0) = Q0g

B1w(1) = Q1g

λg = h0 +G0w(0) +G1w(1).

(7.10)

Thus w satisfies the two-point boundary value problem
Aw′(x) + λw(x) = u0(x)

λB0w(0) = Q0(h0 +G0w(0) +G1w(1))

λB1w(1) = Q1(h0 +G0w(0) +G1w(1)).

(7.11)

Therefore to show that there exists a unique (w, g) satisfying (7.10) it is enough to
prove that the two-point boundary value problem (7.11) has a unique solution.

Due to the assumption on the matrix A, there exists an invertible matrix T such
that T−1AT = Λ where Λ = diag(λ1, . . . , λn). By rearranging the columns of T we
can assume without loss of generality that λ1 ≤ · · · ≤ λn−p < 0 < λn−p+1 ≤ · · ·λn.
Let v = T−1w, v0 = T−1u0 and B̃y = ByT for y = 0, 1. Then (7.11) is equivalent to

λv + Λvx = v0

λB̃0v(0) = Q0h0 +Q0G0Tv(0) +Q0G1Tv(1)

λB̃1v(1) = Q1h0 +Q0G0Tv(0) +Q1G1Tv(1).

(7.12)

Note that (Λ, B̃0, B̃1) still satisfies the uniform Lopatinskii condition. Thus B̃0 is
injective on the unstable subspace of Λ which is {0}n−p ⊕ Rp, while B̃1 is injective
on the stable subspace of Λ which is Rn−p ⊕ {0}p. We will decompose a vector v
in Rn by v =

(
v−

v+

)
where v− ∈ Rn−p and v+ ∈ Rp. Partitioning B̃0 = (B̃−0 B̃+

0 ) we
have

B̃0v(0) = B̃−0 v
−(0) + B̃+

0 v
+(0). (7.13)

where B̃+
0 ∈ Rp×p and B̃−0 ∈ Rp×(n−p). The matrix B̃+

0 is invertible and so from
(7.13) the boundary condition at x = 0 in (7.12) can be written as

(λIp +R1)v+(0) = (λR2 +R3)v−(0) +R4v
−(1) +R5v

+(1) +R6h0 (7.14)
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for some matrices Ri. Similarly, the boundary condition at x = 1 is equivalent to

(λIn−p + S1)v−(1) = (λS2 + S3)v+(1) + S4v
−(0) + S5v

+(0) + S6h0 (7.15)

for some matrices Si.
By the variation of parameters formula, the function v in (7.12) is given by

v(x) = e−xλΛ−1

(
c−

c+

)
+

∫ x

0

e−(x−y)λΛ−1

Λ−1v0(y) dy (7.16)

and from (7.14) and (7.15) the vectors c− and c+ satisfy the equations
(λIp +R1)c+ = (λR2 +R3)c− +R4(e−λ(Λ−)−1

c− + d−)

+ R5(e−λ(Λ+)−1
c+ + d+) +R6h0

(λIn−p + S1)(e−λ(Λ−)−1
c− + d−) = (λS2 + S3)(e−λ(Λ+)−1

c+ + d+)

+ S4c
− + S5c

+ + S6h0

(7.17)

where Λ− = diag(λ1, . . . , λn−p), Λ+ = diag(λn−p+1, . . . , λn) and

d =

∫ 1

0

e−(1−y)λΛ−1

Λ−1v0(y) dy. (7.18)

The system (7.17) can be written in matrix form as(
R5e

−λ(Λ+)−1 −R1 − λIp λR2 +R3 +R4e
−λ(Λ−)−1

(λS2 + S3)e−λ(Λ+)−1
+ S5 S4 − (λIn−p + S1)e−λ(Λ−)−1

)(
c+

c−

)
=

(
−R6h0 +R7d
−S6h0 + S7(λ)d

)
. (7.19)

Therefore to show that (7.12) has a unique solution, we must prove that the 2 × 2
matrix on the left hand side of (7.19) is invertible. To prove this, we need the
following result in linear algebra.

Lemma 7.4. Let A, B, C and D be m × m, m × (n − m), (n − m) × m and
(n−m)× (n−m) matrices, respectively. If A and D − CA−1B are invertible then
the block matrix (

A B
C D

)
(7.20)

is invertible.

For sufficiently large λ > 0, the matrix

Ξλ := λ−1(R5e
−λ(Λ+)−1 −R1)− Ip

is invertible and so λΞλ is invertible. Consider the matrix

Σλ := S4 − (λIn−p + S1)e−λ(Λ−)−1

− [(λS2 + S3)e−λ(Λ+)−1

+ S5]λ−1Ξ−1
λ [λR2 +R3 +R4e

−λ(Λ−)−1

].

It can be seen that the matrix

λ−1Σλe
λ(Λ−)−1

= λ−1(S4e
λ(Λ−)−1 − S1)− In−p

− [(S2 + λ−1S3)e−λ(Λ+)−1

+ λ−1S5]Ξ−1
λ [R2e

λ(Λ−)−1

+ λ−1R3e
λ(Λ−)−1

+ λ−1R4]
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is invertible for large λ > 0. Consequently, Σλ is invertible for sufficiently large
λ > 0. Therefore from Lemma 7.4, the system (7.19) has a unique solution (c+ c−)
and so (7.12) has a unique solution v. As a result, (7.9) has a unique solution (w, g).

From (7.16), (7.18) and (7.19) there exists a constant Cλ > 0 such that

‖w‖L2(0,1) = ‖Tv‖L2(0,1) ≤ Cλ(‖u0‖L2(0,1) + |h0|).
The last equation in (7.10) together with (7.16), (7.18) and (7.19) imply that

|g| ≤ Cλ(‖u0‖L2(0,1) + |h0|)
for some Cλ > 0. Therefore R(λ,A0) ∈ L(L2(0, 1)×Rm) so that A0 has a nonempty
resolvent. Hence A0 is closed.

Step 3. In this step we show that the resolvents of A (with R = 0 and H = 0)
and A0 at λ are the same for sufficiently large λ. Let (u0, h0) ∈ D(A0). From (7.9)
and (7.10) we have

(λI −A0)R(λ,A)(u0, h0) = (λI −A0)(w, g) = (u0, h0).

Thus (λI − A0)R(λ,A) = I in D(A0). Since R(λ,A) ∈ L(L2(0, 1) × Rm), A0 is
closed and D(A0) is dense in L2(0, 1) × Rm according to Corollary 7.3, we have
(λI −A0)R(λ,A) = I in L2(0, 1)× Rm.

Let z ∈ D(A0) and y = R(λ,A)(λI − A0)z. Then (λI − A0)y = (λI − A0)z.
Since λI −A0 is injective for sufficiently large λ > 0 it follows that y = z and hence
R(λ,A)(λI − A0)z = z for all z ∈ D(A0). Therefore R(λ,A0) = R(λ,A) and also
the domain of A is D(A0). Since

λI −A = (λI −A0)R(λ,A0)(λI −A)

= (λI −A0)R(λ,A)(λI −A) = λI −A0

we conclude that A = A0.
Now let us turn to the general case where R and H are not necessarily zero. We

can write the operator Ã defined by (7.7) as Ã = A0 + B where A0 : D(Ã) →
L2(0, 1)× Rm and B : L2(0, 1)× Rm → L2(0, 1)× Rm are given by

A0

(
u

h

)
=

(
−Aux

G0u(0) +G1u(1)

)
B
(
u

h

)
=

(
−Ru
Hh

)
.

Since A0 is closed and B is bounded, Ã is closed. We know from above that A0

generates a C0-semigroup on L2(0, 1)×Rm. It follows from the bounded perturbation
theorem of semigroups that Ã generates a C0-semigroup on L2(0, 1)×Rm. Therefore
λI−Ã is invertible for sufficiently large λ > 0. Similar arguments as in Step 3 show
that A = Ã.

Therefore, the solution of the system (7.1) given by semigroup theory coincides
with the weak solution given in Definition 6.1. An alternative way of proving that
the weak and semigroup solutions are the same is to prove that the operator Ã
generates a C0-semigroup. For initial data in D(Ã2) we have a classical solution
and so we can multiply the system with the appropriate test functions and use
integration by parts to show that the semigroup solution is the weak solution. By
the density of D(Ã2) in L2(0, 1) × Rm, this is also true for every initial data in
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L2(0, 1)×Rm. However, proving that Ã is a generator is a difficult task, specifically
it is hard to show that Ã − λI is dissipative for some λ ∈ R.

If (u, h) is the weak solution of (7.1) then u|x=0, u|x=1 ∈ L2(0, T ) and h ∈ H1(0, T )
for every T > 0 according to Theorem 6.4. These properties are called hidden
regularity. Note that these cannot be obtained directly from standard semigroup
methods because in general the solution given by semigroup theory only satisfies
(u, h) ∈ C([0,∞);L2(0, 1) × Rm). In the literature, hidden regularity properties
for weak solutions of partial differential equations were established using Fourier
analysis and multiplier methods, see [16, 18, 19].

As an application, we provide a class of admissible observation operators for the
semigroup (T (t))t≥0.

Example 7.5. If we define the operator C : D(A)→ Rs by

C
(
u0

h0

)
=

N∑
i=1

Jiu0(ξi), ξi ∈ [0, 1],

where D(A) is the domain of the generator A of the semigroup (T (t))t≥0 defined
above and Ji ∈ Rs×n for 1 ≤ i ≤ N , then C is an admissible observation operator
for (T (t))t≥0, see [31]. Indeed, the direct inequality∫ T

0

∣∣∣∣CT (t)

(
u0

h0

)∣∣∣∣2dt ≤MT

∥∥∥∥(u0

h0

)∥∥∥∥2

L2(0,1)n×Rm
∀ (u0, h0) ∈ D(A)

follows immediately from the energy estimate in Theorem 6.4 and the estimate
(6.13).

8. Examples

Example 8.1. (Linearized Flow in an Elastic Tube [21, 27]) Consider an elastic
tube of length ` filled with an incompressible fluid whose ends are attached to a
tank with cross section AT . Looking at the dynamics near the steady state, the
following linear model can be derived

∂tA(t, x) + Ae∂xu(t, x) = 0, t > 0, 0 < x < `,

∂tu(t, x) + α∂xA(t, x) + βu(t, x) = 0, t > 0, 0 < x < `,

A(t, 0) = γh0(t), t > 0,

A(t, `) = γh`(t), t > 0,

ATh
′
0(t) = −Aeu(t, 0), t > 0,

ATh
′
`(t) = Aeu(t, `), t > 0,

A(0, x) = A0(x), 0 < x < `,

u(0, x) = u0(x), 0 < x < `,

h0(0) = h0
0, h`(0) = h0

` .

(8.1)

Here (A, u, h0, h`) are the deviations of the cross-sectional area of the tube, the fluid
velocity and the level heights from the equilibrium (Ae, 0, h0e, h`e). Also, α, γ > 0
and β ≥ 0 are parameters based on either the physical properties of the fluid or the
material properties of the tube or both.
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It follows from Theorem 6.4 that (8.1) admits a unique weak solution A, u ∈
C([0, T ], L2(0, `)), h0, h` ∈ H1(0, T ) with boundary traces A(·, 0), A(·, `), u(·, 0),
u(·, `) ∈ L2(0, T ). The boundary conditions further imply that A(·, 0), A(·, `) ∈
H1(0, T ). Furthermore, the previous section shows that this solution coincides with
the one given by semigroup theory. In an earlier work [24], it is shown that the ve-
locity admits L2-traces at the boundary using tools from control theory and Fourier
analysis.

Example 8.2. (Wave Equations with Oscillator Boundary Conditions [2, 14]) Con-
sider the one-dimensional undamped wave equation with oscillator boundary condi-
tions 

∂ttψ(t, x)− ∂xxψ(t, x) = 0, t > 0, 0 < x < `,

∂xψ(t, 0) = −δ′0(t), t > 0,

∂xψ(t, `) = δ′`(t), t > 0,

m0δ
′′
0(t) + d0δ

′
0(t) + k0δ0(t) = −ρ∂tψ(t, 0), t > 0,

m`δ
′′
` (t) + d`δ

′
`(t) + k`δ`(t) = −ρ∂tψ(t, `), t > 0,

ψ(0, x) = ψ0(x), 0 < x < `,

∂tψ(0, x) = ψ1(x), 0 < x < `,

δi(0) = δ0
i , i = 0, `,

δ′i(0) = v0
i , i = 0, `.

(8.2)

The system (8.2) models the velocity potential ψ of the acoustics in a homogeneous
fluid with nominal density ρ contained in a wave guide of length ` and terminated
by oscillators. In this model it is assumed that the fluid does not penetrate the
surface of the oscillators.

As in Ito and Propst [14], we introduce the variables φ− = 1
2
(∂tψ + ∂xψ), φ+ =

1
2
(∂tψ− ∂xψ), v0 = δ′0 and v` = δ′`. The system (8.2) can be put in the form (7.1) as

∂tφ
−(t, x)− ∂xφ−(t, x) = 0, t > 0, 0 < x < `,

∂tφ
+(t, x) + ∂xφ

+(t, x) = 0, t > 0, 0 < x < `,

φ−(t, 0)− φ+(t, 0) = −v0(t), t > 0,

φ−(t, `)− φ+(t, `) = v`(t), t > 0,

δ′0(t) = v0(t), t > 0,

δ′`(t) = v`(t), t > 0,

v′0(t) = − d0

m0

v0(t)− k0

m0

δ0(t)− ρ

m0

(φ−(t, 0) + φ+(t, 0)), t > 0,

v′`(t) = − d`
m`

v`(t)−
k`
m`

δ`(t)−
ρ

m`

(φ−(t, `) + φ+(t, `)), t > 0,

φ−(0, x) = φ−0 (x), 0 < x < `,

φ+(0, x) = φ+
0 (x), 0 < x < `,

δi(0) = δ0
i , i = 0, `,

vi(0) = v0
i , i = 0, `,

(8.3)

where φ−0 = 1
2
(ψ1 + ψ′0) and φ+

0 = 1
2
(ψ1 − ψ′0). It can be checked that all the

requirements in Theorem 6.4 are satisfied by the system (8.3). Therefore for every
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(φ−0 , φ
+
0 , δ0, δ`, v0, v`) ∈ L2(0, `)2 × R4 the system (8.3) has a unique weak solution

(φ−, φ+, δ0, δ`, v0, v`) ∈ C([0,∞);L2(0, `)2 × R4) and it satisfies φ±(·, 0), φ±(·, `) ∈
L2(0, T ) and δ0, δ`, v0, v` ∈ H1(0, T ) for every T > 0. Consequently, δ0, δ` ∈ H2(0, T )
and φ−(·, 0) − φ+(·, 0), φ−(·, `) − φ+(·, `) ∈ H1(0, T ). The well-posedness of (8.3)
was established in [14] using semigroup methods. Here, we improved this result by
showing that the solutions admit traces in L2 and that the oscillator components
are more regular.

Example 8.3. (Wave Equations with Exponential Memory Kernel [26]) The next
example is the normalized damped wave equation with memory boundary conditions

∂ttφ(t, x)− ∂xxφ(t, x) + ∂tφ(t, x) = 0, t > 0, 0 < x < 1,∫ t

0

a0(t− s)∂tφ(s, 0) ds− ∂xφ(t, 0) = 0, t > 0,∫ t

0

a1(t− s)∂tφ(s, 1) ds+ ∂xφ(t, 1) = 0, t > 0,

φ(0, x) = φ0(x), 0 < x < 1,

∂tφ(0, x) = φ1(x), 0 < x < 1.

(8.4)

Suppose that the kernels a0 and a1 take the form a0(t) = κ0e
α0t and a1(t) = κ1e

α1t

for some nonzero real numbers κ0, κ1, α0, α1. Introducing the state vector

(u, v, h, g)(t) =

(
φt(t, ·), φx(t, ·),

∫ t

0

eα0(t−s)φt(s, 0) ds,

∫ t

0

eα1(t−s)φt(s, 1) ds

)
at time t, the system (8.4) can be written in the form of (7.1) as

∂tu(t, x)− ∂xv(t, x) + u(t, x) = 0, t > 0, 0 < x < 1,

∂tv(t, x)− ∂xu(t, x) = 0, t > 0, 0 < x < 1,

v(t, 0) = κ0h(t), t > 0,

v(t, 1) = −κ1g(t), t > 0,

h′(t) = α0h(t) + u(t, 0), t > 0,

g′(t) = α1g(t) + u(t, 1), t > 0,

u(0, x) = u0(x), 0 < x < 1,

v(0, x) = v0(x), 0 < x < 1,

h(0) = h0,

g(0) = g0,

(8.5)

where u0 = φ1, v0 = φ′0 and h0 = g0 = 0. The conditions of Theorem 6.4 are satisfied
by the system (8.5). Thus, for each initial data (u0, v0, h0, g0) ∈ L2(0, 1)2 × R2 the
system (8.5) admits a unique weak solution (u, v, h, g) ∈ C([0,∞);L2(0, 1)2 × R2),
and moreover, u(·, 0), v(·, 0), u(·, 1), v(·, 1) ∈ L2(0, T ) and h, g ∈ H1(0, T ) for every
T > 0. As a consequence, v(·, 0), v(·, 1) ∈ H1(0, T ).

9. Appendix

We give the proof of Theorem 7.2. The proof follows the ideas presented in [28]
for hyperbolic systems. Pick a sequence (vν)ν ⊂ Hk+1(0, 1) satisfying vν → u0 in
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Hk(0, 1). Define uν0 = vν − wν where wν ∈ Hk+1(0, 1) satisfies wν → 0 in Hk(0, 1)
and to be constructed below. The compatibility conditions for uν0 are given by

Bywν,i(y) = Byvν,i(y)−Qyhν,i, 0 ≤ i ≤ k, y = 0, 1, (9.1)

where

wν,0 = wν , vν,0 = vν , hν,0 = h0,

wν,i = −A∂xwν,i−1 −Rwν,i−1, 1 ≤ i ≤ k + 1

vν,i = −A∂xvν,i−1 −Rvν,i−1, 1 ≤ i ≤ k + 1

hν,i = Hhν,i−1 +G0(vν,i−1(0)− wν,i−1(0))

+ G1(vν,i−1(1)− wν,i−1(1)), 1 ≤ i ≤ k.

The compatibility conditions (9.1) can be rewritten as

Bywν(y) = Byvν(y)−Qyh0 (9.2)
ByA

i∂ixwν(y) = ByA
i∂ixvν(y) + `y,i(h0, vν − wν , . . . , ∂i−1

x vν − ∂i−1
x wν ,

vν(0)− wν(0), vν(1)− wν(1), . . . , ∂i−1
x vν(0)− ∂i−1

x wν(0),

∂i−1
x vν(1)− ∂i−1

x wν(1)) (9.3)

for y = 0, 1 and i = 1, . . . , k, where `y,i is linear in all its arguments.
Recall that there exits a matrix Yy such that ByYy = I where I is the identity

matrix Ip if y = 0 and In−p if y = 1. Consider the following equations

wν(y) = Yy(Byvν(y)−Qyh0) (9.4)
∂ixwν(y) = A−iYy(ByA

i∂ixvν(y) + `y,i(h0, vν − wν , . . . , ∂i−1
x vν − ∂i−1

x wν ,

vν(0)− wν(0), vν(1)− wν(1), . . . , ∂i−1
x vν(0)− ∂i−1

x wν(0),

∂i−1
x vν(1)− ∂i−1

x wν(1))) (9.5)

for y = 0, 1 and i = 1, . . . , k. By multiplying By and ByA
i to both sides of (9.4)

and (9.5), respectively, we obtain (9.2) and (9.3), respectively. For this reason we
construct wν that satisfies (9.4) and (9.5) in addition to the property wν → 0 in
Hk(0, 1).

For i = 0, . . . k and ν ∈ N, let σν,i(y) denote the right hand side of (9.4) and
(9.5). Since vν → u0 and wν → 0 both in Hk(0, 1), we have ∂ixvν(y) → ∂ixu0(y)
and ∂ixwν(y) → 0 for all 0 ≤ i ≤ k − 1 by the Sobolev embedding. Thus, by the
compatibility conditions for (u0, h) we have σν,i(y) → 0 for 0 ≤ i ≤ k − 1 and
y = 0, 1. Now given (σν,0(0), σν,0(1), . . . , σν,k−1(0), σν,k−1(1), 0, 0) ∈ R2n×(k+1) there
exists ṽν ∈ Hk+1(0, 1) such that ∂ixṽν(y) = σν,i(y) for 0 ≤ i ≤ k − 1, ∂kx ṽν(y) = 0
and

‖ṽν‖Hk+1(0,1) ≤ C

k−1∑
i=0

(|σν,i(0)|+ |σν,i(1)|)→ 0 (9.6)

for some C > 0 independent of ν. Define wν = ṽν + w̃ν where w̃ν ∈ Hk+1(0, 1)
satisfies ∂ixw̃ν(y) = 0 for 0 ≤ i ≤ k − 1, ∂kxw̃ν(y) = σν,k(y), and ‖w̃ν‖Hk(0,1) → 0.
Then wν satisfies the desired properties wν → 0 in Hk(0, 1) and ∂ixwν(y) = σν,i(y)
for 0 ≤ i ≤ k and y = 0, 1.

Thus the last step is to construct the function w̃ν . Set cν = σν,k(0). Because it
is enough to consider each component of cν separately, we may assume without loss
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of generality that cν is scalar. Let us consider the two cases |cν | ≤ 1 and |cν | > 1
separately. Suppose that |cν | ≤ 1. Let φ ∈ D(R) be such that φ(x) = 1 for |x| ≤ ε
for some ε > 0 small enough and supp φ ⊂ [−1, 1]. Define

ψν(x) =
xk

k!
φ(νx)cν .

Then by Leibniz’ formula we have for 1 ≤ j ≤ k

∂jxψν(x) =

j∑
i=0

(
j

i

)
xk−i

(k − i)!
νj−i∂j−ix φ(νx)cν . (9.7)

It can be seen from (9.7) that ∂jxψν(0) = 0 for 1 ≤ j ≤ k − 1 and ∂kxψν(0) = cν .
Moreover, using the change of variable y = νx we obtain

‖∂jxψν‖2
L2(R) ≤ C(k)

j∑
i=0

∫
R
|x|2(k−i)ν2(j−i)|∂j−ix φ(νx)|2|cν |2 dx

= C(k)

j∑
i=0

∫
R
|y|2(k−i)ν2(j−k)|∂j−ix φ(y)|2 dy

ν

≤ C(k)

ν

j∑
i=0

∫
R
|y|2(k−i)|∂j−ix φ(y)|2 dy ≤ C(k, φ)

ν

for 0 ≤ j ≤ k.
If |cν | > 1 then we take

ψν(x) =
xk

k!
φ(|cν |2νx)cν .

For 1 ≤ j ≤ k, applying Leibniz’ rule yields

∂jxψν(x) =

j∑
i=0

(
j

i

)
xk−i

(k − i)!
(|cν |2ν)j−i∂j−ix φ(|cν |2νx)cν . (9.8)

From (9.8) we obtain ∂jxψν(0) = 0 for 1 ≤ j ≤ k − 1, ∂kxψν(0) = cν and

‖∂jxψν‖2
L2(R) ≤ C(k)

j∑
i=0

∫
R
|x|2(k−i)(|cν |2ν)2(j−i)|∂j−ix φ(|cν |2νx)|2|cν |2 dx

= C(k)

j∑
i=0

∫
R
|y|2(k−i)(|cν |2ν)2(j−k)|∂j−ix φ(y)|2 dy

ν

≤ C(k)

ν

j∑
i=0

∫
R
|y|2(k−i)|∂j−ix φ(y)|2 dy ≤ C(k, φ)

ν

since j − k ≤ 0 and |cν |2ν > 1. Therefore in any case we have ‖ψν‖Hk(R) ≤
C(k, φ)ν−1/2.

For σν,k(1) we can also do the same construction by replacing φ by a smooth
function that is equal to 1 in an ε-neigborhood of x = 1. By taking the sum of
the functions ψν constructed for x = 0 and x = 1 and choosing ε small enough so
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that their supports do not intersect we obtain an appropriate w̃ν satisfying all the
required properties.
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