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Abstract.
This paper studies the local-in-time existence of classical solutions to a hyperbolic
system with differential boundary conditions modelling a flow in an elastic tube.
The well-known Lax transformations used for obtaining a priori estimates for
conservation laws are difficult to apply here due to the inhomogeneity of the
partial differential equations. Rather, our method relies on a suitable splitting of
the original system into the PDE part and the ODE part, the characteristics for
the PDE part, appropriate modulus of continuity estimates and a compactness
argument.
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1. The Model
A consequence of the results of this study is the existence and uniqueness of classical
solutions to the following hyperbolic PDE-ODE system in [11], see also [1] and [9],

At(t, x) + u(t, x)Ax(t, x) + A(t, x)ux(t, x) = 0,

ut(t, x) + u(t, x)ux(t, x) +
sE

2ρr0

√
A0A(t, x)

Ax(t, x) +
8πµ0

ρA0

u(t, x) = 0,

ATh
′
0(t) = −A(t, 0)u(t, 0),

ATh
′(t) = A(t, `)u(t, `),

A(t, 0) = A0

(
1 +

r0

sE
(ρgh0(t) + pf (t))

)2

,

A(t, `) = A0

(
1 +

r0

sE
(ρgh(t))

)2

,

A(0, x) = A0(x), u(0, x) = u0(x), h0(0) = h0
0, h(0) = h0,

(1.1)

for t ≥ 0 and 0 ≤ x ≤ `; the unknown functions are A, u, h0 and h. By classical
solutions we mean that they are at least continuously differentiable functions. This
system describes the flow of an incompressible fluid in an elastic tube whose ends are
attached to cylindrical tanks with horizontal cross section AT . The state variables A
and u represent the cross-sectional area of the tube, which is assumed to be circular,
and the velocity of the fluid inside the tube, while h0 and h are the level heights
of the fluid in the left and right tanks, respectively. The constants ρ and µ0 are
the density and viscosity of the fluid, s, E, r0 and A0 are the thickness, Young’s
modulus, inner rest radius and rest cross-sectional area of the tube material, and g
is the gravitational constant. The function pf represents an external pressure that
is applied above the left tank.

Systems of type (1.1) occur in models of cardiovascular blood flow [6, 12, 13, 14]
and investigations of valveless pumping [9, 1]. They are derived from conservation of
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mass, balance of momentum and an equation of state that relates the cross section
of the tube and the pressure in the fluid. (1.1) is a two component system of balance
laws that is coupled to ODEs via boundary conditions. The well-posedness of (1.1)
in terms of weak solutions in Sobolev spaces has been studied in [10, 11].

Using an appropriate change of the unknown variables, (1.1) can be transformed
into diagonal form. To do so, let us first note that the eigenvalues of the system
(1.1) are given by λ = u− κA1/4 and µ = u + κA1/4, where κ = (sE/2ρr0

√
A0)1/2.

With the characteristic variables w(t, x) = −u(t, x) + 4κA1/4(t, x) and z(t, x) =
u(t, x) + 4κA1/4(t, x), the PDEs in (1.1) can be diagonalized as

wt + λ(w, z)wx =
c0

2
(z − w)

zt + µ(w, z)zx =
c0

2
(w − z),

where c0 = 8πµ0/A0.
The state variables can be written in terms of the characteristic variables as

u = (z − w)/2 and A = ((w + z)/8κ)4. To transform the boundary conditions in
terms of the characteristic variables (in the form of mixed boundary data), we note
that (

w(t, 0) + z(t, 0)

8κ

)4

= A0

[
1 +

r0

sE
(ρgh0(t) + pf (t))

]2

.

Assuming that w(t, 0) + z(t, 0) remains positive for all t ∈ [0, T ], for some T > 0
(this will follow from (H4) with a proper choice of O and the continuity of solutions),
we can solve for z(t, 0) and obtain

z(t, 0) = 8κA
1/4
0

[
1 +

r0

sE
(ρgh0(t) + pf (t))

]1/2

− w(t, 0).

We explain the reason why we solve z(t, 0) in terms of w(t, 0). As we can see
from the diagonal form of (1.1), the characteristic curves corresponding to w are
left-propagating, and hence the boundary values of w at x = 0 can be determined
from the forcing function and the initial data w0 up to a certain positive time. In
this way, the values of z on the boundary x = 0 can be determined from the above
equation for z(t, 0). A similar procedure yields the following correct form for the
boundary condition at the right tank

w(t, `) = 8κA
1/4
0

[
1 +

r0

sE
ρgh(t)

]1/2

− z(t, `).

The state components h0 and h in terms of the characteristic variables are as follows

213κATh
′
0(t) = −(w(t, 0) + z(t, 0))4(z(t, 0)− w(t, 0))

213κATh
′(t) = (w(t, `) + z(t, `))4(z(t, `)− w(t, `)).
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The system (1.1) is a special case of the abstract system (compare with [6])

wt + λ(w, z)wx = f(t, x, w, z), 0 < t < T, 0 < x < `,

zt + µ(w, z)zx = g(t, x, w, z), 0 < t < T, 0 < x < `,

z(t, 0) = G0(t, h0(t), w(t, 0)), 0 < t < T,

w(t, `) = G(t, h(t), z(t, `)), 0 < t < T,

h′0(t) = H0(w(t, 0), z(t, 0)), 0 < t < T,

h′(t) = H(w(t, `), z(t, `)), 0 < t < T,

w(0, x) = w0(x), z(0, x) = z0(x), 0 < x < `,

h0(0) = h0
0, h(0) = h0.

(1.2)

The initial conditions in (1.1) and (1.2) are related by w0 = −u0 + 4κ(A0)1/4 and
z0 = u0 + 4κ(A0)1/4. We would like to point out that the methods presented here
can be extended to differential boundary conditions

h′0(t) = H0(t, h0(t), w(t, 0), z(t, 0)), h′(t) = H(t, h(t), w(t, 0), z(t, 0)),

where H0, H ∈ C1(R4).
In what follows, we will analyze the coupled system (1.2), where T > 0 is a generic

time horizon. To guarantee the existence and uniqueness of a classical solution of
this coupled system, the following hypotheses are sufficient.
(H1) There exists an open set O ⊂ R2 such that λ, µ ∈ C1(O) and λ(w, z) <

µ(w, z) for all (w, z) ∈ O.
(H2) H,H0 ∈ C1(R2) and f, g ∈ C1([0, T ]× [0, `]×O)
(H3) There exist constants M2 > 0 and T > 0 such that G0 ∈ C1([0, T ] × [h0

0 −
M2, h

0
0 +M2]× R) and G ∈ C1([0, T ]× [h0 −M2, h

0 +M2]× R).
(H4) The initial data satisfy w0, z0 ∈ C1[0, `], (w0(x), z0(x)) ∈ O for all x ∈ [0, `],

and h0
0, h

0 > 0.
(H5) It holds that λ(w0(x), z0(x)) < 0 < µ(w0(x), z0(x)) for x = 0, `.
(H6) The initial data at the left and right endpoints satisfy the following compat-

ibility conditions

z0(0) = G0(0, h0
0, w

0(0))

w0(`) = G(0, h0, z0(`))

−µ(w0(0), z0(0))(z0)′(0) = ∇G0(0, h0
0, w

0(0)) ·
(
1, H0(w0(0), z0(0)),

− λ(w0(0), z0(0))(w0)′(0) + f(0, 0, w0(0), z0(0))
)

− g(0, 0, w0(0), z0(0))

−λ(w0(`), z0(`))(w0)′(`) = ∇G(0, h0, z0(`)) ·
(
1, H(w0(`), z0(`)),

− µ(w0(`), z0(`))(z0)′(`) + g(0, `, w0(`), z0(`))
)

− f(0, `, w0(`), z0(`)).

Let us explain what these assumptions mean. The first hypothesis (H1) simply
states that the quasilinear PDEs must be strictly hyperbolic. The smoothness re-
quirement for the boundary data are given by (H2) and (H3), while (H4) imposes
the smoothness requirement for the initial data and a range condition. We can
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view (H5) and (H6) as additional constraints on the initial data w0 and z0. These
compatibility conditions imply the continuity of the state components and their
derivatives. The assumption (H5) guarantees that the left and right boundaries are
non-characteristic.

Our assumption (H1) is weaker than (H1)(i) in Fernandez et al. [6]. Notice that
(H1)(ii) in [6] is used in [7] for global existence and uniqueness. However, we are
only interested in local existence. (H2) and (H3) is stronger than (H6) and (H3),
respectively, in [6]. (H4) is similar to (H2) in [6] but we have no assumptions on the
derivatives of the initial data. Our hypothesis (H5) is similar to (H4) in [6], where
the half line x ∈ R+ is considered with boundary and compatibility conditions at
x = 0. Indeed, if the time horizon is small enough so that the two characteristic
curves (x0, x` in Figure 1) emanating from the two boundaries do not intersect, the
bounded domain can be replaced by two half lines as in [6, Section 2.3]. However,
some of the methods in [6] can not be used for our system that includes friction
which leads to inhomogeneous right hand sides of the PDEs.

Theorem 1.1. If the hypotheses (H1)–(H6) hold, then there exists a positive time
T̆ ∈ (0, T ] such that the coupled system (1.2) has a unique classical solution (w, z, h0,

h) ∈ C1([0, T̆ ]× [0, `])2 × C2[0, T̆ ]2.

Now we will apply the abstract result of Theorem 1.1 to obtain the local existence
and uniqueness of a classical solution to system (1.1). It suffices to verify that all
of (H1)–(H6) are satisfied. (H1) The open set can be chosen to be O = {(w, z) ∈
R2 : w + z > 0} in R2. (H2) Note that H and H0 are polynomial functions. (H3)
Let M2 = min(h0

0, h
0) and so [h0

0 −M2, h
0
0 + M2], [h0 −M2, h

0 + M2] ⊂ [0, h0
0 + h0].

The condition follows once we assume that pf ∈ C1[0, T ] and pf (t) ≥ − sE
r0
− 1

2
ρgh0

0

for all t ∈ [0, T ]. For (H4), the conditions are u0, A0 ∈ C1[0, `], A0(x) > 0 for
all x ∈ [0, `] and h0

0, h
0 > 0. For the boundary conditions, (H5) translates into

|u0(x)| ≤ κ(A0(x))1/4 for x = 0, `. The condition (H6) should be translated in terms
of u0 and A0.

Corollary 1.2. Assume that h0
0, h

0 > 0 and u0, A0 ∈ C1[0, `] satisfy A0(x) > 0,
|u0(x)| ≤ κ(A0(x))1/4 for x = 0, `, and the compatibilty conditions. If the forcing
pf ∈ C1[0, T ] satisfies pf (t) ≥ − sE

r0
− 1

2
ρgh0

0 for all t ≥ 0, then the system (1.1)
has a unique classical solution (u,A, h0, h) ∈ C1([0, T̆ ]× [0, `])2×C2[0, T̆ ]2 for some
T̆ > 0.

The method presented in this paper is a combination of the splitting method in [6]
and iteration methods as in [4, 5, 8]. We divide the system into two parts, namely,
the PDE part and the ODE part. This splitting method has been also used in
[3] to prove the existence and uniqueness of solutions to the coupling of quasilinear
hyperbolic and parabolic PDEs that describes the flow of a fluid in a porous medium
that is connected by a pipe. The process is to define two mappings associated with
these two problems in such a way that a fixed point of the composition corresponds
to a solution of the system, and hence continuity properties of these mappings
are required. Hence, existence and uniqueness will be established using a fixed-
point argument, specifically the contraction principle. Similar problems have been
considered in the series of papers [12, 13, 14]. The authors analyzed multiscale
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blood flow models, a coupled system of ODEs and hyperbolic PDEs, and prove the
well-posedness of such systems. We note that our method is direct and does not use
the approximation argument as in [7] and [8].

Now let us set the basic notations and assumptions. For each nonnegative integer
n, positive integer m and positive T , we denote by Cn([0, T ],Rm) the space of
functions on [0, T ] whose derivatives up to the order n are continuous and it is
equipped with the usual norm. For r > 0, denote the closed ball in Cn([0, T ],Rm)
centered at the origin with radius r by Bn,m[T, r].

First, we split the coupled system into two parts, an ODE part and a PDE part.
Let M1 be a positive constant which will be specified later. For fixed h0

0 and h0,
define S1 : B0,4[T,M1] → C1([0, T ],R2) by S1(ϕ0, θ0, ϕ, θ) = (h0, h) where h0 and
h satisfy the ODEs{

h′0(t) = H0(ϕ0(t), θ0(t)), h0(0) = h0
0,

h′(t) = H(ϕ(t), θ(t)), h(0) = h0.
(1.3)

This is the ODE part. The regularity of H0, H implies that S1 is well-defined.
The PDE part is posed in the following way. Given M3 > M2 + |(h0

0, h
0)| and for

fixed w0 and z0, define S2 : B1,2[T,M3]→ C([0, T ],R4) by

S2(h0, h) = (w(·, 0), z(·, 0), w(·, `), z(·, `))

where (w, z) is the classical solution on the rectangle [0, T ]× [0, `] to the PDE

wt + λ(w, z)wx = f(t, x, w, z)

zt + µ(w, z)zx = g(t, x, w, z)

z(t, 0) = G0(t, h0(t), w(t, 0))

w(t, `) = G(t, h(t), z(t, `))

w(0, x) = w0(x), z(0, x) = z0(x).

(1.4)

The well-definedness of S2 is not clear for the moment. Although the (local)
existence and uniqueness of a classical solution of the initial-boundary value problem
(1.4) for a given (h0, h) has been already established [7], it is not obvious that the
time of existence is independent on the choice of the boundary data (h0, h). This
problem has been solved in [6] by providing a positive existence time that does
not depend on the particular choice of the boundary data but only on the bounds
of their derivatives. To obtain such results, the authors used the well-known Lax
transformations to obtain bounds for the derivatives of the solution of the quasilinear
system. This method works for conservation laws but not on balance laws, which is
the case in the present paper.

To obtain such desired time of existence, we shall proceed in the classical way.
First we consider a linear system of PDEs associated with the quasilinear system
(1.4) and provide estimates on the solutions of such linear systems. These estimates
together with an iteration scheme will then prove the existence and uniqueness
of continuously differentiable functions w and z satisfying (1.4) on a rectangular
domain [0, T ]× [0, `] with T being independent of (h0, h), at least in B1,2[T,M3].

If we can show that ran S1 ⊂ dom S2, then it follows that the map
S : B0,4[T,M1] → C([0, T ],R4), for appropriate T and M1, given by the
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composition S = S2 ◦ S1 is well-defined. Furthermore, every fixed point of
S corresponds to a solution to the coupled system (1.2). Indeed, assume that
(ϕ0, θ0, ϕ, θ) is a fixed point of S. Using (h0, h) = S1(ϕ0, θ0, ϕ, θ) in (1.4), gives
us a classical solution (w, z) of (1.4). Now (ϕ0, θ0, ϕ, θ) being a fixed point gives
us the property (ϕ0, θ0, ϕ, θ) = (w(·, 0), z(·, 0), w(·, `), z(·, `)) and plugging these in
(1.3), we can see that (w, z) is a classical solution of the coupled system (1.2).

2. The ODE Part
The aim of the present section is to prove the claim that the range of the mapping
S1 is contained in the domain of the mapping S2. In the following, M1 > 0 is given.

Theorem 2.1. There exists a solution (h0, h) ∈ C1[0, T ]2 of (1.3) such that for
some T̂ = T̂ (M1,M2) ∈ (0, T ] we have (h0, h) ∈ B1,2[T̂ ,M3], where M3 depends only
on T , M1, M2, (h0

0, h
0) and not on the particular choice of the data (ϕ0, θ0, ϕ, θ) ∈

B0,4[T,M1]. In other words, ran S1 ⊂ dom S2.

Proof. The solution of (1.3) is

h0(t) = h0
0 +

∫ t

0

H0(ϕ0(t), θ0(t)) dt, h(t) = h0 +

∫ t

0

H(ϕ(t), θ(t)) dt.

Since H0, H ∈ C1([−M1,M1]2), there exists a constant C = C(M1) > 0 such that
we have |H0(a1, b1)| + |H(a2, b2)| ≤ C for every a1, a2, b1, b2 ∈ [−M1,M1]. Thus
|H0(ϕ0(t), θ0(t))| + |H(ϕ(t), θ(t))| ≤ C for every (ϕ0, θ0, ϕ, θ) ∈ B0,4[T,M1] and t ∈
[0, T ]. Choose T̂ > 0 such that T̂C ≤ M2. In this case, ‖(h0, h)− (h0

0, h
0)‖C[0,T̂ ]2 ≤

T̂C ≤M2. Also, ‖(h′0, h′)‖C[0,T̂ ]2 ≤ ‖H0(ϕ0, θ0)‖C[0,T̂ ] + ‖H(ϕ, θ)‖C[0,T̂ ] ≤ C. Taking
M3 = M2 + |(h0

0, h
0)|+ C shows that (h0, h) ∈ B1,2[T̂ ,M3]. �

The following theorem states the continuity of the mapping S1.

Theorem 2.2. Let (h1
0, h

1) and (h2
0, h

2) be solutions of (1.3) with respective data
v1 = (ϕ1

0, θ
1
0, ϕ

1, θ1) and v2 = (ϕ2
0, θ

2
0, ϕ

2, θ2). Then for any T ∈ (0, T̂ ] it holds that

‖(h1
0, h

1)− (h2
0, h

2)‖C[0,T ]2 ≤ LT‖v1 − v2‖C[0,T ]4 ,

where L = max(‖H0‖C1([−M1,M1]2), ‖H‖C1([−M1,M1]2)).

Proof. This follows immediately from the fact that

‖h1
0 − h2

0‖C[0,T ] ≤ ‖H0‖C1([−M1,M1]2)T‖(ϕ1
0, θ

1
0)− (ϕ2

0, θ
2
0)‖C[0,T ]2

and a similar estimate for ‖h1 − h2‖C[0,T ]. �

3. The PDE Part 1 : Linear System
In this section, we prove the existence and uniqueness result for the linear system
corresponding to (1.4). More precisely, we consider the linear system with nonlinear

Department of Mathematics and Computer Science, College of Science, University of the Philippines Baguio



Classical Solutions of a Model of Flow in an Elastic Tube 7 / 22

boundary data 

wt + λ(t, x)wx = f(t, x)

zt + µ(t, x)zx = g(t, x)

z(t, 0) = G0(t, h0(t), w(t, 0))

w(t, `) = G(t, h(t), z(t, `))

w(0, x) = w0(x), z(0, x) = z0(x)

(3.1)

where (h0, h) is a fixed element of B1,2[T,M3]. Let ΩT = [0, T ] × [0, `]. In this
section, we assume that
(L1) λ, µ, f, g ∈ C1(ΩT )
(L2) w0, z0 ∈ C1[0, `]
(L3) G0 ∈ C1([0, T ]× [h0

0−M2, h
0
0 +M2]×R) and G ∈ C1([0, T ]× [h0−M2, h

0 +
M2]× R)

(L4) λ(t, x) < µ(t, x) for all (t, x) ∈ ΩT

(L5) λ(t, x) < 0 < µ(t, x) for all (t, x) ∈ [0, T ]× {0, `}
(L6) The boundary and initial data satisfy C1-compatibility conditions

z0(0) = G0(0, h0
0, w

0(0))

w0(`) = G(0, h0, z0(`))

−µ(0, 0)(z0)′(0) = ∇G0(0, h0
0, w

0(0)) · (1, H0(w0(0), z0(0)),−λ(0, 0)(w0)′(0)

+ f(0, 0))− g(0, 0)

−λ(0, `)(w0)′(`) = ∇G(0, h0, z0(`)) · (1, H(w0(0), z0(0)),−µ(0, `)(z0)′(`)

+ g(0, `))− f(0, `).

Here, the functions stated in (L1)-(L3) are given. Also, (L1) and (L5) imply that
there exists a constant d > 0 such that λ(t, x) ≤ −d < 0 < d ≤ µ(t, x) for every
(t, x) ∈ [0, T ]× {0, `}. Without loss of generality we may take d ∈ (0, 1).

Remark 3.1. In (L3) we assumed that the second argument of G0 and G lies in
the intervals centered at the initial level heights h0

0 and h0, with radius M2 as in
(H3). However, in (L3) a larger radius is admissible. Moreover, a more general
case where the right hand sides of the first two equations of (3.1) include multiples
of z and w could be treated. However, for our purpose the above setting is sufficient.
Because we will utilize the linear theory to prove the local existence of solution for
the quasilinear case, it is also sufficient to prove local existence in the linear case.

3.1. Characteristic curves. For each (t, x) ∈ ΩT we have the λ-
characteristic curve xλ = xλ(τ ; t, x) at (t, x), where

x′λ(τ ; t, x) = λ(τ, xλ(τ ; t, x)), xλ(t; t, x) = x. (3.2)

Since λ ∈ C1(ΩT ), it follows from the Picard-Lindelöf Theorem that such curve
exists and it is unique. Furthermore, two distinct λ-characteristic curves will never
intersect. Similarly, we have the µ-characteristic curve passing through (t, x), xµ =
xµ(τ ; t, x), where

x′µ(τ ; t, x) = µ(τ, xµ(τ ; t, x)), xµ(t; t, x) = x.
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Figure 1. The regions determined by the left most and right most
characteristic curves.

Let x0 = xµ(τ ; 0, 0) and x` = xλ(τ ; 0, `) be the µ-characteristic curve and λ-
characteristic curve passing through (0, 0) and (0, `), respectively. Temporarily, we
denote by T ′ > 0 the time of intersection of the characteristic curves x0(τ) and x`(τ)

and set T = min{T̂ , T ′} and define

ΩL
T = {(t, x) ∈ ΩT : 0 ≤ x ≤ x0(t)},

ΩC
T = {(t, x) ∈ ΩT : x0(t) ≤ x ≤ x`(t)},

ΩR
T = {(t, x) ∈ ΩT : x`(t) ≤ x ≤ `}.

There are two possible scenarios. The characteristic curve xλ intersects the x-
axis at a unique point (0, x̃) and so x̃ = xλ(0; t, x). This is the case if and only
if (t, x) ∈ ΩL

T ∪ ΩC
T . Define α : ΩL

T ∪ ΩC
T → [0, `] by α(t, x) = xλ(0; t, x). On the

other hand, the characteristic curve xλ will intersect the line x = ` at a unique point
(t̃, `) and so ` = xλ(t̃; t, x). This is true if and only if (t, x) ∈ ΩR

T and we define
σ : ΩR

T → [0, T ] such that xλ(σ(t, x); t, x) = `.
With the same procedure as above, we notice that the curve xµ either intersects

the x-axis at the unique point (0, β(t, x)), where β : ΩC
T ∪ ΩR

T → [0, `] is given by
β(t, x) = xµ(0; t, x) or it will intersect the line x = 0 at the unique point (ζ(t, x), 0)
where ζ : ΩL

T → [0, T ] satisfies xµ(ζ(t, x); t, x) = 0.
Define the following sets

Θ1
T,λ = [0, T ]× (ΩL

T ∪ ΩC
T ),

Θ2
T,λ = {(τ, t, x) : (t, x) ∈ ΩR

T and σ(t, x) ≤ τ ≤ T},
Θ1
T,µ = [0, T ]× (ΩC

T ∪ ΩR
T ),

Θ2
T,µ = {(τ, t, x) : (t, x) ∈ ΩL

T and ζ(t, x) ≤ τ ≤ T}.

In the following, we prove some properties of the characteristic curves and estimates
of their derivatives.

Theorem 3.2. It holds that xλ ∈ C1(Θi
T,λ) and xµ ∈ C1(Θi

T,µ) for i = 1, 2. Fur-
thermore, we have

‖xλ‖C1(ΘiT,λ) ≤ ‖λ‖C(ΩT ) + (1 + ‖λ‖C(ΩT )) exp(T‖λ‖C1(ΩT ))

‖xµ‖C1(ΘiT,µ) ≤ ‖µ‖C(ΩT ) + (1 + ‖µ‖C(ΩT )) exp(T‖µ‖C1(ΩT ))

for i = 1, 2. In particular, α ∈ C1(ΩL
T ∪ ΩC

T ) and β ∈ C1(ΩC
T ∪ ΩR

T ).
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Proof. Suppose that (τ ; t, x) ∈ Θi
T,λ. Let

ηh(τ) = h−1[xλ(τ ; t, x+ h)− xλ(τ ; t, x)]

for sufficiently small h such that (t, x + h) ∈ ΩL
T ∪ ΩC

T if i = 1 or (t, x + h) ∈ ΩR
T if

i = 2. Taking the derivative

η′h(τ) = h−1[λ(τ, xλ(τ ; t, x+ h))− λ(τ, xλ(τ ; t, x))].

Since λ ∈ C1(ΩT ), the mean value theorem implies the existence of a number ξh(τ)
between xλ(τ ; t, x) and xλ(τ ; t, x+ h) such that

η′h(τ) = h−1λx(τ, ξh(τ))[xλ(τ ; t, x+ h)− xλ(τ ; t, x)].

Therefore we have the ODE{
η′h(τ) = λx(τ, ξh(τ))ηh(τ), 0 ≤ τ ≤ t,

ηh(t) = h−1[xλ(t; t, x+ h)− x] =: η0
h.

The solution of this ODE is given by

ηh(τ) = η0
h exp

(∫ τ

t

λx(ϑ, ξh(ϑ)) dϑ

)
.

As h→ 0 we have, using xλ(t; t, x) = x, that η0
h → 1 and ξh(ϑ)→ xλ(ϑ; t, x). Hence,

taking the limit h→ 0 we get

(xλ)x(τ ; t, x) = exp

(∫ τ

t

λx(ϑ, xλ(ϑ; t, x)) dϑ

)
. (3.3)

From the definition of the characteristic curve, we have

xλ(τ ; t+ h, x) = x+

∫ τ

t+h

λ(ϑ, xλ(ϑ; t+ h, x)) dϑ.

Using the Lipschitz property of xλ and λ, for every ε > 0, it follows that∣∣∣∣1h
∫ t

t+h

λ(ϑ, xλ(ϑ; t, x))− λ(ϑ, xλ(ϑ; t+ h, x)) dϑ

∣∣∣∣ < ε (3.4)

for sufficiently small values of h. Furthermore, we have∣∣∣∣xλ(t; t+ h, x)− x
h

+ λ(t, x)

∣∣∣∣ ≤ ∣∣∣∣λ(t, x)− 1

h

∫ t

t+h

λ(ϑ, xλ(ϑ; t, x)) dϑ

∣∣∣∣
+

∣∣∣∣1h
∫ t

t+h

λ(ϑ, xλ(ϑ; t, x))− λ(ϑ, xλ(ϑ; t+ h, x)) dϑ

∣∣∣∣ .
From the continuity of λ and xλ, the first term of the right hand side of the above
inequality can be made arbitrarily small as long as |h| is also small. Combining this
with (3.4), we have (xλ)t(t; t, x) = −λ(t, x). A similar procedure as above proves

(xλ)t(τ ; t, x) = −λ(t, x) exp

(∫ τ

t

λx(ϑ, xλ(ϑ; t, x)) dϑ

)
.

Hence xλ ∈ C1(Θi
T,λ). Similarly, xµ ∈ C1(Θi

T,µ). The estimates for the derivative
follows immediately. �
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In the above proof, one can see that the λ-characteristic curves satisfy

(xλ)t(τ ; t, x) + λ(t, x)(xλ)x(τ ; t, x) = 0. (3.5)

An analogous identity holds for the µ-characteristic curves.

Theorem 3.3. It holds that σ ∈ C1(ΩR
T ) and ζ ∈ C1(ΩL

T ) and

‖σx‖C(ΩRT ) ≤ (1/d) exp(T‖λ‖C1(ΩT ))

‖ζx‖C(ΩLT ) ≤ (1/d) exp(T‖µ‖C1(ΩT )).

Proof. The regularity of σ and ζ follows from the implicit function theorem. Dif-
ferentiating xµ(ζ(t, x); t, x) = 0 with respect to x gives us

(xµ)x(ζ(t, x); t, x) + x′µ(ζ(t, x); t, x)ζx(t, x) = 0.

Since x′µ(ζ(t, x); t, x) = µ(ζ(t, x), 0), we have

ζx(t, x) = − 1

µ(ζ(t, x), 0)
(xµ)x(ζ(t, x); t, x) (3.6)

and the first estimate follows from (3.3). The other one can be shown similarly. �

Our method is to divide (3.1) into four problems, namely, the decoupled initial-
value problems

wt + λwx = f, w(0, x) = w0(x), on ΩL
T ∪ ΩC

T , (3.7)
zt + µzx = g, z(0, x) = z0(x), on ΩC

T ∪ ΩR
T , (3.8)

and the boundary-value problems

zt + µzx = g, z(t, 0) = G0(t, h0(t), w(t, 0)), on ΩL
T , (3.9)

wt + λwx = f, w(t, `) = G(t, h(t), z(t, `)), on ΩR
T . (3.10)

The existence of w on the region ΩL
T ∪ΩC

T will then be used to solve (3.9), while the
data for z on the region ΩC

T ∪ ΩR
T will be used to prove the existence of w on ΩR

T .
We will deal with constants that depend on some functions, and so we shall make

the following notations. For every positive R > 0, let

Q0[R] = [0, T ]× [h0
0 −M2, h

0
0 +M2]× [−R,R]

Q[R] = [0, T ]× [h0 −M2, h
0 +M2]× [−R,R],

which are the sets to which G0 and G are to be restricted. Suppose for the
moment that the solution of (3.1) satisfies the bounds ‖w(·, 0)‖C[0,T ] ≤ M1 and
‖z(·, `)‖C[0,T ] ≤M1. Let Λ1 denote the set of C1-norms of w0 and z0 on [0, `], G0 on
Q0[M1], G on Q[M1], the supremum norms of f, g, λ and µ on ΩT , and the constants
M2 and M3. Let Λ2 be the set of the supremum norms of the derivatives of f, g, λ
and µ on ΩT . Set Λ = Λ1 ∪ Λ2. In the following, C1 will denote constants, which
may have a different value at different instances, that depend on a subset of Λ1, and
analogously for C2 with Λ2.
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3.2. Existence of Solutions for the IVPs (3.7) and (3.8). First, let
us consider the IVP (3.7). If w is a C1-solution of (3.7) and (t, x) ∈ ΩL

T ∪ ΩC
T then

integrating the first equation in (3.1) along the λ-characteristic at (t, x), we have

w(t, x) = w0(α(t, x)) +

∫ t

0

f(τ, xλ(τ ; t, x)) dτ. (3.11)

We show that (3.11) is indeed the C1-solution of (3.7). Differentiating (3.11) with
respect to x and t gives us, using the Leibniz rule,

wt(t, x) = (w0)′(α(t, x))αt(t, x) + f(t, x)

+

∫ t

0

fx(τ, xλ(τ ; t, x))(xλ)t(τ ; t, x) dτ, (3.12)

wx(t, x) = (w0)′(α(t, x))αx(t, x) +

∫ t

0

fx(τ, xλ(τ ; t, x))(xλ)x(τ ; t, x)) dτ. (3.13)

Since α ∈ C1(ΩL
T ∪ ΩC

T ), f ∈ C1(ΩT ) and xλ ∈ C1(Θ1
T,λ) it follows from (3.12) and

(3.13) that w ∈ C1(ΩL
T ∪ ΩC

T ). Furthermore, these equations together with (3.5)
imply that w satisfies (3.7). Its uniqueness can be shown in a standard manner.

Theorem 3.4. The initial-value problem (3.7) has a unique solution in C1(ΩL
T ∪

ΩC
T ). Moreover, ‖w − w0‖C(ΩLT∪ΩCT ) ≤ C(Λ)T and

‖wx‖C(ΩLT∪ΩCT ) + ‖wt‖C(ΩLT∪ΩCT ) ≤ (C1 + TC(Λ))eTC(Λ).

Proof. From the definition of α, we have |α(t, x)− x| = |xλ(0; t, x)− xλ(t; t, x)| ≤
‖λ‖C(ΩT )t and so |w0(α(t, x)) − w0(x)| ≤ ‖w0‖C1[0,`]‖λ‖C(ΩT )t, and the estimate
‖w − w0‖C(ΩLT∪ΩCT ) ≤ C(Λ)T follows from this inequality and (3.11).

The estimate for the derivative with respect to x follows from (3.13). Indeed,
using the said equation and Theorem 3.2 we have

|wx(t, x)| ≤ ‖w0‖C1[0,`][‖λ‖C(ΩT ) + (1 + ‖λ‖C(ΩT )) exp(T‖λ‖C1(ΩT ))]

+ (‖f‖C1(ΩT )[‖λ‖C(ΩT ) + (1 + ‖λ‖C(ΩT )) exp(T‖λ‖C1(ΩT ))])T

whenever (t, x) ∈ ΩL
T ∪ ΩC

T . It can be easily seen that the above estimate is of the
form given in the theorem. We can also use (3.12) to prove the estimate for the
derivative with respect to t. Alternatively, we can use the PDE and then apply the
bound for the derivative with respect to x. �

In an analogous manner, we have the following result for the IVP (3.8).

Theorem 3.5. The initial-value problem (3.8) has a unique solution in C1(ΩC
T ∪

ΩR
T ). Moreover, ‖z − z0‖C(ΩCT ∪ΩRT ) ≤ C(Λ)T and

‖zx‖C(ΩCT ∪ΩRT ) + ‖zt‖C(ΩCT ∪ΩRT ) ≤ (C1 + TC(Λ))eTC(Λ).

3.3. Existence of Solutions for the BVPs (3.9) and (3.10). Integrat-
ing along the µ-characteristic, we obtain the integral equation

z(t, x) = G0(ζ(t, x), h0(ζ(t, x)), w(ζ(t, x), 0)) +

∫ t

ζ(t,x)

g(τ, xµ(τ ; t, x)) dτ,
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where w at x = 0 is from Theorem 3.4.
Using the same procedure as before, we can show that this is the unique solution

of the BVP (3.9) whose derivatives are given by

zt(t, x) = P (t, x)ζt(t, x) + g(t, x)− g(ζ(t, x), 0)ζt(t, x)

+

∫ t

ζ(t,x)

gx(τ, xµ(τ ; t, x))(xµ)t(τ ; t, x) dτ (3.14)

zx(t, x) = P (t, x)ζx(t, x)− g(ζ(t, x), 0)ζx(t, x)

+

∫ t

ζ(t,x)

gx(τ, xµ(τ ; t, x))(xµ)x(τ ; t, x)) dτ (3.15)

where

P (t, x) = ∇G0(ζ(t, x), h0(ζ(t, x)), w(ζ(t, x), 0)) · (1, h′0(ζ(t, x)), wt(ζ(t, x), 0)) .
(3.16)

Theorem 3.6. Let M1 > 0 be such that ‖w(·, 0)‖C[0,T ] ≤ M1. Then (3.9) has a
unique solution z ∈ C1(ΩL

T ) such that ‖z − z0(0)‖C(ΩLT ) ≤ C(Λ)T and

‖zx‖C(ΩLT ) + ‖zt‖C(ΩLT ) ≤ (1/d)(C1 + (T + T 2)C(Λ))eTC(Λ).

Proof. The compatibility conditions in (L6) and the fact that ζ(t, x) ∈ [0, T ] imply

|z(t, x)− z0(0)| ≤ |G0(ζ(t, x), h0(ζ(t, x)), w(ζ(t, x), 0))−G0(0, h(0), w0(0))|
+ T‖g‖C(ΩT )

≤ ‖∇G0‖C(Q0[M1])(1 +M3 + ‖wt(·, 0)‖C([0,T ]))T + T‖g‖C(ΩT )

for all (t, x) ∈ ΩL
T . Using the estimate for wt in Theorem 3.4 in the above inequality,

we obtain the desired bound. From the equation (3.15) and Theorem 3.3,

‖zx‖C(ΩLT ) ≤
1

d
‖∇G0‖C(Q0[M1])(1 +M3 + ‖wt(·, 0)‖C[0,T ]) exp(T‖µ‖C1(ΩT ))

+ (‖g‖C1(ΩT )[‖µ‖C(ΩT ) + (1 + ‖µ‖C(ΩT )) exp(T‖µ‖C1(ΩT ))])T

+
1

d
exp(T‖µ‖C1(ΩT ))‖g‖C(ΩT )

which has the form given by the theorem. Again, the bound for the time derivative
of z can be obtained from the PDE. This completes the proof of the theorem. �

Similar to the previous theorem, we have the following.

Theorem 3.7. Let M1 > 0 be such that ‖z(·, `)‖C[0,T ] ≤ M1. Then (3.10) has a
unique solution w ∈ C1(ΩR

T ) satisfying ‖w − w0(`)‖C(ΩRT ) ≤ C(Λ)T and

‖wx‖C(ΩRT ) + ‖wt‖C(ΩRT ) ≤ (1/d)(C1 + (T + T 2)C(Λ))eTC(Λ).

It can be easily verified using the compatibility conditions in (L6) that the func-
tions z and w are continuously differentiable on the whole rectangle ΩT . Combining
Theorem 3.4 through Theorem 3.7, we obtain the following.
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Theorem 3.8. Assume that (L1)–(L6) hold. Then for each (h0, h) ∈ B1,2[T,M3]
the system (3.1) has a unique solution (w, z) ∈ C1([0, T ]× [0, `])2. Furthermore,

‖(wx, zx, wt, zt)‖C(ΩT )4 ≤ (1/d)(C(Λ1) + (T + T 2)C(Λ))eTC(Λ). (3.17)

4. Modulus of Continuity Estimates

Because the space where we look for a local solution is not a closed subset of C(ΩT )2,
the Banach Fixed Point Theorem cannot be applied. However, we can still find a
continuously differentiable solution with the help of the notion of equicontinuity.
We define equicontinuity in this paper through the modulus of continuity, precisely
speaking as follows.

Let f : Ω ⊂ Rn → R. We define themodulus of continuity of f to be the extended-
real valued function ω(f, ·) : [0,∞)→ [0,∞] by ω(f, δ) = sup{|f(x)−f(x′)| : x, x′ ∈
Ω, |x− x′| ≤ δ}. If F = (fi)i∈I , where I is some nonempty index set, is a family of
functions fi : Ωi → R we define ω(F , δ) = supi∈I ω(fi, δ). A family F of functions
defined on the same set is called equicontinuous if for every ε > 0 there exists δ > 0
such that ω(F , δ) < ε.

Let Ω ⊂ R2, a : Ω → R, b : Ω → R, and f : {(τ, t, x) : (t, x) ∈ Ω, a(t, x) ≤ τ ≤
b(t, x)} → R. If F : Ω→ R is defined by

F (t, x) =

∫ b(t,x)

a(t,x)

f(τ, t, x) dτ

and f is bounded, then

|F (t, x)− F (t′, x′)| ≤ ‖f‖∞(|a(t, x)− a(t′, x′)|+ |b(t, x)− b(t′, x′)|)

+

∫ b(t,x)

a(t′,x′)

|f(τ, t, x)− f(τ, t′, x′)| dτ.

In the sequel, we shall use this inequality frequently.
Let F1 be the set which consists of (w0)′, (z0)′, h′0, h

′,∇G0 and ∇G, and F2 be
the set containing the functions λx, µx, fx and gx.

Theorem 4.1. LetM > 0 and (w, z) be the solution of the system (3.1) and suppose
that ‖w‖C1(ΩT ) ≤M and ‖z‖C1(ΩT ) ≤M . Then

ω(wx, δ) + ω(zx, δ) ≤ (1/d2)C(Λ)(δ + ω(F1, δ) + Tω(F2, δ)).

Proof.
The proof is established in several steps.
Step 1. If (τ, t, x), (τ, t′, x′) ∈ Θi

T,λ, i = 1, 2, satisfy |(t, x)− (t′, x′)| ≤ δ then

|(xλ)x(τ ; t, x)− (xλ)x(τ ; t′, x′)| ≤ C(Λ) (δ + Tω(λx, δ)) .

An analogous statement involving xµ is also true. From Theorem 3.2 we have

|xλ(τ ; t, x)− xλ(τ ; t′, x′)| ≤ (1 + ‖λ‖C1(ΩT ))e
T‖λ‖C1(ΩT )δ ≤ C(Λ)δ. (4.1)

Let M ′ = max(‖λ‖C1(ΩT ), ‖µ‖C1(ΩT )). From the formula (3.3) of (xλ)x we obtain

|(xλ)x(τ ; t, x)− (xλ)x(τ ; t′, x′)| ≤ eTM
′‖λ‖C1(ΩT )δ
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+ eTM
′
∫ τ

t′
|λx(ϑ, xλ(ϑ; t, x))− λx(ϑ, xλ(ϑ; t′, x′))| dϑ. (4.2)

However, from (4.1) we have

|λx(ϑ, xλ(ϑ; t, x))− λx(ϑ, xλ(ϑ; t′, x′))| ≤ ω(λx, C(Λ)δ) ≤ C(Λ)ω(λx, δ) .

Using this in (4.2) and noting that |τ − t′| ≤ T we obtain the required estimate.
Step 2. We have

ω(wx|ΩLT∪ΩCT
, δ) + ω(wt|ΩLT∪ΩCT

, δ) ≤ C(Λ)(δ + ω(F1, δ) + Tω(F2, δ)).

Also, ω(zx|ΩCT ∪ΩRT
, δ) + ω(zt|ΩCT ∪ΩRT

, δ) has an upper bound of the same form. Define
F : ΩL

T ∪ ΩC
T → R by

F (t, x) =

∫ t

0

fx(τ, xλ(τ ; t, x))(xλ)t(τ ; t, x) dτ.

This is the integral given in (3.12). Then

|F (t, x)− F (t′, x′)| ≤ ‖f‖C1(ΩT )‖xλ‖C1(Θ1
T,λ)δ

+

∫ t

0

|fx(τ, xλ(τ ; t, x))(xλ)x(τ ; t, x)− fx(τ, xλ(τ ; t′, x′))(xλ)x(τ ; t′, x′)| dτ

≤ C(Λ) (δ + Tω(fx, δ) + Tω(λx, δ))

whenever |(t, x)− (t′, x′)| ≤ δ. Furthermore,

ω
(
((w0)′ ◦ α)αx, δ

)
≤ ‖w0‖C1[0,`] ω(αx, δ) + ω((w0)′ ◦ α, δ)‖αx‖C(ΩLT∪ΩCT )

≤ C(Λ)
(
δ + ω((w0)′, δ) + Tω(λx, δ)

)
.

Adding these estimates and using (3.13) proves the first half. The second half follows
from the PDE and the first half since

ω(wt|ΩLT∪ΩCT
, δ) ≤ ‖λ‖C(ΩT )ω(wx|ΩLT∪ΩCT

, δ) + ω(λ, δ)‖wx‖C(ΩT ) + ω(f, δ)

≤ ‖λ‖C(ΩT )ω(wx|ΩLT∪ΩCT
, δ) + (‖λ‖C1(ΩT )‖wx‖C(ΩT ) + ‖f‖C1(ΩT ))δ.

Step 3. We have ω((ζx, σx), δ) ≤ (1/d2)C(Λ) (δ + Tω((µx, λx), δ)). Similar argu-
ments as in the proof of Step 1 give us

|(xµ)x(ζ(t, x); t, x)− (xµ)x(ζ(t′, x′); t′, x′)| ≤ C(Λ) (δ + Tω(µx, δ)) .

This inequality together with (3.6) implies

ω(ζx, δ) ≤
‖xµ‖C1(Θ2

T,µ)

d2
ω(µ(ζ, 0), δ) +

1

d
C(Λ) (δ + Tω(µx, δ))

≤ 1

d2
C(Λ) (δ + Tω(µx, δ)) .

The second inequality is similar.
Step 4. It holds that ω(P, δ) ≤ (1/d2)C(Λ)(δ + ω(F1, δ) + Tω(F2, δ)), where P is

given by (3.16). If |(t, x)− (t′, x′)| ≤ δ then

|h0(ζ(t, x))− h0(ζ(t′, x′))| ≤ M3ω(ζ, δ)

|w(ζ(t, x), 0)− w(ζ(t, x), 0)| ≤ Mω(ζ, δ).
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These properties imply that

ω(G0t(ζ, h ◦ ζ, w(ζ, 0)), δ) ≤ ω(G0t, (1 +M3 +M)ω(ζ, δ)) ≤ C(Λ)ω(G0t, δ).

A similar procedure for the other terms appearing in (3.16) shows that

ω(P, δ) ≤ 1

d2
C(Λ)

[
ω(G0t, δ) +M3ω(G0h0 , δ) + ‖G0h0‖C(Q0[M ])ω(h′0, δ)

+ Mω(G0w, δ) + ‖G0w‖C(Q0[M ])ω(wt|ΩLT∪ΩCT
, δ)
]

and upon using the result of Step 2, we obtain the desired estimate.
Step 5. It holds that ω(zx|ΩLT , δ) ≤ (1/d2)C(Λ)(δ + ω(F1, δ) + Tω(F2, δ)) and

ω(wx|ΩRT , δ) has also the same type of bound. Utilize Step 3, Step 4 and a similar
argument as in proving Step 2.

The proof of Theorem 4.1 follows directly from Step 2 and Step 5. �

5. The PDE Part 2: Quasilinear System

If S ⊂ R2 and ε > 0, we let Sε = {(x, y) : dist((x, y), S) ≤ ε}. Consider the
curve Σ := {(w0(x), z0(x)) : x ∈ [0, `]} in O. Define δ : [0, `] → R by δ(x) =
dist((w0(x), z0(x)), ∂O). If the boundary of O is empty, then we can replace O
by an open set with a nonempty boundary that contains Σ and is contained in O.
Then δ is continuous and has a positive minimum. Let ε1 = 1

2
minx∈[0,`] δ(x) > 0.

By construction, Σε1 is compactly contained in O. Furthermore, the continuity of
λ and µ implies the existence of ε2 > 0 and a positive constant d > 0 such that for
(w, z) ∈ R2, if dist((w, z), (w0(0), z0(0))) ≤ ε2 then λ(w, z) ≤ −d < 0 < d ≤ µ(w, z),
and if dist((w, z), (w0(`), z0(`))) ≤ ε2 then λ(w, z) ≤ −d < 0 < d ≤ µ(w, z).

Let ε = min(ε1, ε2) > 0 and let RT denote the set of all functions (v, y) ∈ C(ΩT )2

such that
(1) ran (v, y) ⊂ Σε

(2) dist((v(t, x), y(t, x)), (w0(x), z0(x))) ≤ ε for (t, x) ∈ [0, T ]× {0, `}
(3) (v(0, x), y(0, x)) = (w0(x), z0(x)) for x ∈ [0, `].

In the iteration scheme it is important that the resulting linear system must be
strictly hyperbolic and that the boundaries are non-characteristic. The first and
second criteria in RT preserve these properties, respectively.

Let N > 0 be sufficiently large, which will be made precise later, and

DT = {(v, y) ∈ C1(ΩT )2 : ‖(vt, yt)‖C(ΩT )2 ≤ N, ‖(vx, yx)‖C(ΩT )2 ≤ N}.

Notice that if v(t, x) = w0(x) and y(t, x) = z0(x) for all (t, x) ∈ ΩT then (v, y) ∈
RT ∩ DT if ‖((w0)′, (z0)′)‖C[0,`]2 ≤ N , that is, RT ∩ DT is nonempty.

In this section we prove the well-posedness of the system

wt + λ(w, z)wx = f(t, x, w, z)

zt + µ(w, z)zx = g(t, x, w, z)

z(t, 0) = G0(t, h0(t), w(t, 0))

w(t, `) = G(t, h(t), z(t, `))

w(0, x) = w0(x), z(0, x) = z0(x)

(5.1)
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where (h0, h) is a fixed element of B1,2[T,M3].

Theorem 5.1. There exists a time T ∗ > 0 such that x0(τ) 6= x`(τ) for 0 ≤ τ ≤ T ∗,
for all (v, y) ∈ RT ∗, where

x′0(τ) = µ(v(τ, x0(τ)), y(τ, x0(τ))), x0(0) = 0,

x′`(τ) = λ(v(τ, x`(τ)), y(τ, x`(τ))), x`(0) = `.

Proof. Suppose in contrary that there exists a sequence (Tn)n of positive num-
bers converging to 0 and a sequence (vn, yn)n ∈ RT satisfying x0(Tn; vn, yn) =
x`(Tn; vn, yn), and denote this common value by xn, for all n ∈ N. Since (xn)n
is a bounded sequence, there is convergent subsequence, which we still denote by
(xn)n. Then there are two possible cases, either xn ≥ c > 0 for all positive integers
n (this is the case where xn does not converge to 0) or for each ε > 0 there exists a
positive integer n such that xn < ε (this is the case where the limit is 0).

First let us consider the former case. Since x0(0) = 0 and x0(Tn) = xn, by the
mean-value theorem, there exists τn ∈ (0, Tn) such that x′0(τn) = xn/Tn. Hence, it
follows that we have µ(vn(τn, ξn), yn(τn, ξn)) ≥ c/Tn for all n, where we put ξn =
x0(τn). For each S > 0, there exists R = R(S) such that µ(ṽR, ỹR) ≥ S and
(ṽN , ỹN) ∈ Σε, a contradiction to the fact that µ is bounded on Σε.

For the latter case, without loss of generality, we may take that ε < `/2.
Because x`(0) = ` and x`(Tn) = xn, there exists (τn, ξn) ∈ ΩT such that
x′`(τn) = λ(vn(τn, ξn), yn(τn, ξn)) = (xn − `)/Tn < (ε − `)/Tn < −`/(2Tn). For
each m < 0 there exists a positive integer n′ = n′(m) such that the inequality
λ(ṽn′ , ỹn′) ≤ m holds for some (ṽn′ , ỹn′) ∈ Σε, which contradicts the boundedness of
λ on Σε. �

Now, we are ready to state and prove the local existence and uniqueness of solu-
tions to the quasilinear system (1.4) whose life span is independent on the particular
data (h0, h) in B1,2[T,M3]. As mentioned in the earlier sections, this would imply
that the mappingS2 is well-defined. Before we state the result, we note the following
elementary estimate.

Lemma 5.2. Let a ≥ 0, b > 0 and (sn)n≥0 be a sequence of nonnegative real
numbers such that sn ≤ a+ bsn−1 for all n ≥ 1. Then sn ≤ a

∑n−1
k=0 b

k + bns0, n ≥ 1.

Theorem 5.3. Let (h0, h) ∈ B1,2[T,M3] and assume that (H1)–(H6) holds. Then
there exists a time T̃ = T̃ (M2,M3) ∈ (0, T ] independent of (h0, h) such that the
quasilinear system (5.1) has a unique solution (w, z) in C1(ΩT̃ )2. Moreover we have
(w(t, x), z(t, x)) ∈ Σε for every (t, x) ∈ ΩT̃ and it holds that ‖(wx, zx)‖C(ΩT1

)2 ≤ N

and ‖(wt, zt)‖C(ΩT̃ )2 ≤ N .

Proof. We divide the proof into several steps.
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Step 1. Definition of the iteration map. Let (v, y) ∈ RT ∗∩DT ∗ be given and consider
the linear system 

wt + λ̂(t, x)wx = f̂(t, x),

zt + µ̂(t, x)zx = ĝ(t, x),

z(t, 0) = G0(t, h0(t), w(t, 0)),

w(t, `) = G(t, h(t), z(t, `)),

w(0, x) = w0(x), z(0, x) = z0(x),

(5.2)

where λ̂(t, x) = λ(v(t, x), y(t, x)), µ̂(t, x) = µ(v(t, x), y(t, x)), f̂(t, x) = f(t, x, v(t, x),
y(t, x)), ĝ(t, x) = g(t, x, v(t, x), y(t, x)). One can easily see that the above system
satisfies (L1)–(L6). Therefore, by Theorem 3.8, there exists a unique solution
(w, z) ∈ C1(ΩT ∗)

2 of (5.2). This defines a mapping F : RT ∗ ∩ DT ∗ → C1(ΩT ∗)
2

given by F(v, y) = (w, z).

Step 2. Invariance property. We will show that there exists T > 0 such that
F(Rτ∩Dτ ) ⊂ Rτ∩Dτ for all τ ∈ (0, T ]. The functions λ̂, µ̂, f̂ , ĝ and their derivatives
with respect to x have uniform bounds independent of (v, y) ∈ RT ∗ ∩ DT ∗ . More
precisely, we have the estimates

‖f̂‖C(ΩT∗ ) ≤ ‖f‖C(ΩT×Σε), ‖λ̂‖C(ΩT∗ ) ≤ ‖λ‖C(Σε),

‖f̂x‖C(ΩT∗ ) ≤ (1 + 2N)‖∇f‖C(ΩT×Σε), ‖λ̂x‖C(ΩT∗ ) ≤ 2N‖∇λ‖C(Σε),

and similar estimates for µ̂ and ĝ. Let Λ̂1 be the set Λ1 in the statement of Theorem
3.8 where the constants ‖f̂‖C(ΩT∗ ), ‖ĝ‖C(ΩT∗ ), ‖λ̂‖C(ΩT∗ ), and ‖µ̂‖C(ΩT∗ ) are replaced
by the constants ‖f‖C(ΩT×Σε), ‖g‖C(ΩT×Σε), ‖λ‖C(Σε), and ‖µ‖C(Σε), respectively. Now
we take N > 1

d
C(Λ̂1).

Using this observation in Theorems 3.4 to 3.7, we can see that there exists T (1) ∈
(0, T ∗] such that we have ‖w − w0‖C(ΩLT∪ΩCT ) ≤ ε/2, ‖z − z0‖C(ΩLτ ∪ΩCτ ) ≤ ε/2, ‖z −
z0(0)‖C(ΩLτ ) ≤ ε/2 and ‖w − w0(`)‖C(ΩRτ ) ≤ ε/2 for all τ ∈ (0, T (1)]. These estimates
prove that ran(w, z) ∈ Σε, and the last two also prove that |(w(t, x), z(t, x)) −
(w0(x), z0(x))| ≤ ε for (t, x) ∈ [0, T (1)]×{0, `}. The last criterion in RT ∗ is obvious.
From the choice of N and the estimate (3.17) in Theorem 3.8, we can deduce that
there exists T (2) ∈ (0, T ∗] such that (w, z) ∈ Dτ for all τ ∈ (0, T (2)]. Taking
T (3) = min(T (1), T (2)) shows that (w, z) ∈ Rτ ∩ Dτ and so Rτ ∩ Dτ is invariant
under F for all τ ∈ (0, T (3)].

Step 3. Contraction property. Let (v1, y1), (v2, y2) ∈ RT (3) ∩ DT (3) and F(vi, yi) =
(wi, zi) for i = 1, 2. Define w̃ = w1 − w2 and z̃ = z1 − z2. It follows that

wt + λ(v1, y1)wx = f(t, x, v1, y1)− f(t, x, v2, y2) + (λ(v1, y1)− λ(v2, y2))w2x

zt + µ(v1, y1)zx = g(t, x, v1, y1)− g(t, x, v2, y2) + (µ(v1, y1)− µ(v2, y2))z2x

z̃(t, 0) = G0(t, h0(t), w1(t, 0))−G0(t, h0(t), w2(t, 0))

w̃(t, `) = G(t, h0(t), w1(t, `))−G(t, h0(t), w2(t, `))

w̃(0, x) = 0, z̃(0, x) = 0.
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From Theorem 3.4 we have

‖w̃‖C(ΩL
T̃
∪ΩC

T̃
) ≤ T̃ (‖f‖C1(ΩT×Σε) +N‖λ‖C1(Σε))‖(v1, y1)− (v2, y2)‖C(ΩT̃ )2 .

for each T̃ ∈ (0, T (3)]. Here, the regions are determined by λ(v1, y1) and µ(v1, y1).
Similarly, we have the estimate

‖z̃‖C(ΩC
T̃
∪ΩR

T̃
) ≤ T̃ (‖g‖C1(ΩT×Σε) +N‖µ‖C1(Σε))‖(v1, y1)− (v2, y2)‖C(ΩT̃ )2 ,

from Theorem 3.5. A procedure similar to the proofs of Theorems 3.6 and 3.8 gives

‖w̃‖C(ΩR
T̃

) + ‖z̃‖C(ΩL
T̃

) ≤ CT̃‖(v1, y1)− (v2, y2)‖C(ΩT̃ )2 ,

where C is a positive constant independent of (v1, y1) and (v2, y2). Combining these,
one can see that ‖(w̃, z̃)‖C(ΩT̃ )2 ≤ CT̃‖(v1, y1) − (v2, y2)‖C(ΩT̃ )2 for some positive
constant C independent of (v1, y1) and (v2, y2). Hence, F is a contraction provided
that CT̃ < 1.

Step 4. Iteration scheme and compactness argument. One can easily see that RT̃ ∩
DT̃ is not closed. However, if we have a sequence ((vn, yn))n in RT̃ ∩ DT̃ where
(v0, y0) is fixed and we have recursively (vn, yn) = F(vn−1, yn−1) for all n ∈ N, that
is, 

vnt + λ(vn−1, yn−1)vnx = f(t, x, vn−1, yn−1)

ynt + µ(vn−1, yn−1)ynx = g(t, x, vn−1, yn−1)

yn(t, 0) = G0(t, h0(t), vn(t, 0)),

vn(t, `) = G(t, h(t), yn(t, `)),

vn(0, x) = w0(x), yn(0, x) = z0(x),

(5.3)

then according to the contractive property of F, the sequence ((vn, yn))n is a Cauchy
sequence in C(ΩT̃ )2, and hence converges to some element in C(ΩT̃ )2, say (w, z).
From the definition of RT̃ ∩DT̃ , the sequence (vnx, ynx)n is equibounded with respect
to the C-norm, indeed, ‖(vnx, ynx)‖C(ΩT̃ )2 ≤ N for all n.

If M = max(‖(w0, z0)‖C[0,`]2 +N + ε,M1) then ‖vn‖C1(ΩT ) ≤M and ‖yn‖C1(ΩT ) ≤
M for all n. Hence, we take this value ofM in the statement of Theorem 4.1. Let Λ̂2

be the set of supremum norms of f, g, λ, and µ, Λ̂ = Λ̂1∪Λ̂2, F̂2 = {∇f,∇g,∇λ,∇µ}
and F̂2,n be the set consisting of the derivatives with respect to x of the functions
λ(vn, yn), µ(vn, yn), f(·, ·, vn, yn), and g(·, ·, vn, yn).

With these in hand, Theorem 4.1 gives us the inequality

ω(vnx, δ) + ω(ynx, δ) ≤ C(Λ̂)(δ + ω(F1, δ) + T̃ ω(F̂2,n−1, δ))

One can check that ω(fx(·, ·, vn, yn), δ) ≤ C(Λ̂)(ω(∇f, δ) + ω(vnx, δ) + ω(ynx, δ)).
Using similar estimates for the other elements of F̂2,n, we obtain that

ω(F̂2,n, δ) ≤ C(Λ̂)(ω(F̂2, δ) + ω(vnx, δ) + ω(ynx, δ)).

Consequently,

ω(vnx, δ) + ω(ynx, δ) ≤ C(Λ̂)(δ + ω(F1 ∪ F̂2, δ) + T̃ ω((vn−1)x, δ) + T̃ ω((yn−1)x, δ)).
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Choose T̃ such that C(Λ̂)T̃ < 1. With this choice it follows from Lemma 5.2 that

ω(vnx, δ) + ω(ynx, δ) ≤
C(Λ̂)

1− C(Λ̂)T̃
[δ + ω(F1 ∪ F̂2, δ) + ω(v1x, δ) + ω(y1x, δ)].

and hence (vnx, ynx)n is equicontinuous.
It follows from the Arzela-Ascoli Theorem that there exists a convergent subse-

quence ((vn′)x, (yn′)x)n′ of (vnx, ynx)n. Let us denote the limit of this subsequence
by (W,Z) ∈ C(ΩT̃ )2. From the integral representation

wn′(x, t) = wn′(0, t) +

∫ x

0

(wn′)x(t, ξ) dξ

and from the uniform convergence we obtain, by passing through the limit, that
wx = W ∈ C(ΩT̃ ). Similarly, zx = Z ∈ C(ΩT̃ ).

From the PDE and the equiboundedness of the derivatives of vn and yn with
respect to x, it can be shown that the subsequence ((vn′)t, (yn′)t)n′ of (vnt, ynt)n
is equicontinuous and so it has a convergent subsequence ((vn′′)t, (yn′′)t))n′′ , whose
limit is (vt, yt). Replacing n by n′′ in (5.3) and letting n′′ →∞ proves existence.

Recall that by construction (vn(t, x), yn(t, x)) → (w(t, x), z(t, x)) as n → ∞
and (vn(t, x), yn(t, x)) ∈ Σε for all n. Since Σε is closed, it follows that
(w(t, x), z(t, x)) ∈ Σε. Also, notice that ‖((vn′′)x, (yn′′)x))‖C(ΩT̃ )2 ≤ N and
‖((vn′′)t, (yn′′)t))‖C(ΩT̃ )2 ≤ N for all n′′, and from these the C0-estimates for the
derivatives of (w, z) follow immediately by taking the limit n′′ → ∞. Uniqueness
can be shown in a standard way. �

Theorem 5.4. Let (w1, z1) and (w2, z2) be solutions of the quasilinear system (5.1)
corresponding to the boundary data (h01, h1) and (h02, h2) in B1,2[T,M3], respec-
tively. Then there exists a constant C independent of (h01, h1) and (h02, h2) such
that if T ∈ (0, T̃ ] then for x = 0, ` we have

‖(w1(·, x), z1(·, x))− (w2(·, x), z2(·, x))‖C[0,T ]2 ≤ C‖(h01, h1)− (h02, h2)‖C[0,T ]2 .

Proof. Let W = w1−w2, Z = z1− z2, λ1 = λ(w1, z1) and µ1 = µ(w1, z1). Then W
and Z satisfy the following system

Wt + λ1Wx = f(t, x, w1, z1)− f(t, x, w2, z2)− (λ(w1, z1)− λ(w2, z2))w2x

Zt + µ1Zx = g(t, x, w1, z1)− g(t, x, w2, z2)− (µ(w1, z1)− µ(w2, z2))z2x

Z(t, 0) = G0(t, h01(t), w1(t, 0))−G0(t, h02(t), w2(t, 0))

W (t, `) = G(t, h1(t), z1(t, `))−G(t, h2(t), z2(t, `))

W (0, x) = 0, Z(0, x) = 0.

For each t ∈ [0, T ], define

ẐL(t) = sup{|Z(t, x)| : x ∈ [0, x0(t)]},
ẐC(t) = sup{|Z(t, x)| : x ∈ [x0(t), x`(t)]},
Ŵ (t) = sup{|W (t, x)| : x ∈ [0, x`(t)]}.
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Let Ẑ(t) = max(ẐL(t), ẐC(t)). Using the fact that µ, λ, f, g are Lipschitz continuous,
|w2x| ≤ N and |z2x| ≤ N we obtain that for (t, x) ∈ ΩL

T ∪ ΩC
T ,

|W (t, x)| ≤ C

∫ t

0

|W (τ, xλ1(τ))|+ |Z(τ, xλ1(τ))| dτ.

Thus,

Ŵ (t) ≤ C

∫ t

0

Ŵ (τ) + Ẑ(τ) dτ.

If (t, x) ∈ ΩC
T then using the fact that ẐC(τ) ≤ Ẑ(τ) we have

ẐC(t) ≤ C

∫ t

0

Ŵ (τ) + Ẑ(τ) dτ.

Now, the µ1-characteristic at (t, x) intersects the left boundary at exactly one point
with time coordinate ζ(t, x). Then it follows that for (t, x) ∈ ΩL

T

|Z(t, x)| ≤ C‖h01 − h02‖C[0,T ] + C

∫ ζ(t,x)

0

Ŵ (τ) + Ẑ(τ) dτ

+ C

∫ t

ζ(t,x)

|W (τ, xµ1(τ))|+ |Z(τ, xµ1(τ))| dτ.

Hence,

ẐL(t) ≤ C‖h01 − h02‖C[0,T ] + C

∫ t

0

Ŵ (τ) + Ẑ(τ) dτ,

and it follows that, by taking the maximum,

Ẑ(t) ≤ C‖h01 − h02‖C[0,T ] + C

∫ t

0

Ŵ (τ) + Ẑ(τ) dτ.

Adding our results gives us

Ŵ (t) + Ẑ(t) ≤ C‖h01 − h02‖C[0,T ] + C

∫ t

0

Ŵ (τ) + Ẑ(τ) dτ

and using Gronwall’s inequality we get Ŵ (t) + Ẑ(t) ≤ CeCT‖h01− h02‖C[0,T ]. Upon
taking the supremum we have ‖(W,Z)‖C(ΩLT∪ΩCT ) ≤ CeCT‖h01 − h02‖C[0,T ], and if
we take x = 0 we obtain a part of the desired result. The other half can be also
established in a similar manner. �

We also note that ran (w, z) ⊂ Σε implies that ‖(w, z)‖C(ΩT̃ )2 ≤ ‖(w0, z0)‖C[0,`]2+ε.
From this remark, we now choose M1 = ‖(w0, z0)‖C[0,`]2 + ε. Now we can prove the
main result of this paper.
Proof.[Proof of Theorem 1.1] The map S : B0,4[T̃ ,M1] → B0,4[T̃ ,M1] is well-
defined from the previous section and Theorem 5.3. It remains to show that S is
contractive. For this purpose, let vi = (ϕi0, θ

i
0, ϕ

i, θi) ∈ B0,4[T̃ ,M1] for i = 1, 2.
Then Theorem 2.2 and Theorem 5.4 imply that

‖S(v1)−S(v2)‖C[0,T̃ ]4 ≤ C‖S1(v1)−S1(v2)‖C[0,T̃ ]2 ≤ CLT̃‖v1 − v2‖C[0,T̃ ]4
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and so S : B0,4[T̆ ,M1] → B0,4[T̆ ,M1] is a contraction where 0 < T̆ < min(T̃ , 1
CL

).

Therefore we obtain a classical solution (w, z, h0, h) ∈ C1([0, T̆ ]× [0, `])2×C1[0, T̆ ]2.
Moreover, from (H2) it follows that (h0, h) ∈ C2[0, T̆ ]2. The uniqueness can be
shown using similar arguments as those in Theorem 5.4. �
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