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Abstract.
We consider first order hyperbolic systems on an interval with dynamic boundary
conditions. The well-posedness for linear systems is established by using a
variational method. The linear theory is used to analyze the local-in-time
well-posedness for nonlinear systems. The results are applied to a model
describing the flow of an incompressible fluid inside an elastic tube whose ends
are attached to tanks. Global existence and stability for data that are smooth
enough and close to the steady state are obtained by using energy and entropy
methods.
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1. Introduction
The paper summarizes recent new results on first order hyperbolic systems on a
bounded interval with dynamic boundary conditions that have the following form

ut(t, x) + A(u(t, x))ux(t, x) = f(u(t, x)), t > 0, 0 < x < 1,

B0u(t, 0) = b0(t, h(t)), t > 0,

B1u(t, 0) = b1(t, h(t)), t > 0,

h′(t) = H(t, h(t), u(t, 0), u(t, 1)), t > 0,

u(0, x) = u0(x), 0 < x < 1,

h(0) = h0.

(1.1)

This system occurs when the dynamics at the boundary interact with the waves in
the interior. Examples are models for the blood flow in the cardiovascular system, as
in [7, 19] and the references therein. If H does not depend on h then (1.1) includes
system of balance laws with nonlocal boundary conditions. The dimensions of the
constant boundary matrices B0 and B1 are p×n and (n− p)×n, respectively, with
0 ≤ p ≤ n an integer to be specified below. For the functions A : U → Rn×n,
f : U → Rn, b0 : R × H → Rp, b1 : R × H → Rn−p and H : R × H × R2n → Rd,
where U ⊂ Rn and H ⊂ Rd are open and convex, we assume that they are infinitely
differentiable. We are interested in the well-posedness of the system (1.1) in a
Sobolev space Hm for an integerm ≥ 3 under suitable assumptions, using functional
analytic Hilbert space methods. This differs from the methods and results in [10]
or [7] which are concerned with spaces of continuous functions.

With regards to the PDE part, we assume the following standard hypotheses for
hyperbolic systems, see [2, 13].

Friedrichs Symmetrizability. There exists a symmetric positive-definite matrix-
valued function S ∈ C∞(U ;Rn×n), called the Friedrichs symmetrizer, that is
bounded as well as its derivatives, S(w)A(w) is symmetric for all w ∈ U , and there
exists α > 0 such that S(w) ≥ αIn for all w ∈ U .

Diagonalizability. For each w ∈ U , A(w) is diagonalizable with p positive eigen-
values and n − p negative eigenvalues. In particular, A(w) is invertible and has n
independent eigenvectors.

Uniform Kreiss-Lopatinskĭı Condition. There exists C > 0 such that for all w ∈ U ,
there holds ‖V ‖ ≤ C‖B0V ‖ for all V ∈ Eu(A(w)) and ‖W‖ ≤ C‖B1W‖ for all
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W ∈ Es(A(w)). Here, Eu(A) and Es(A) denote the unstable and stable subspaces
of a matrix A, respectively.

We note that due to the diagonalizability, the system is non-characteristic. For
initial-boundary value problems associated with hyperbolic equations, care should
be taken in imposing the boundary conditions in order for the problem not to be
underdetermined or overdetermined. For diagonal systems, the number of boundary
conditions should be equal to the number of incoming characteristics and the states
corresponding to these should be imposed. For systems that are not diagonal, the
Uniform Kreiss-Lopatinskĭı Condition stated above provides the appropriate form
of the boundary conditions. In the case of half-space, the UKL condition implies
the decay at infinity x→ +∞ for solutions of linear hyperbolic systems of the form
eλtU(x) where λ has a positive real part, refer to [4].

The well-posedness of (1.1) is established by linearizing the system and using an
iterative scheme. There are several ways to perform the linearization. A successful
approach is to freeze the states u and h appearing in A, f and H, while retaining
the coupling on the boundary conditions. In line with this, we will discuss a linear
version of (1.2), namely,

ut(t, x) + A(v(t, x))ux(t, x) +R(t, x)u(t, x) = f(t, x),

B0u(t, 0) = g0(t) +Q0(t)h(t),

B1u(t, 1) = g1(t) +Q1(t)h(t),

h′(t) = H(t)h(t) +G0(t)u(t, 0) +G1(t)u(t, 1) + S(t),

u(0, x) = u0(x),

h(0) = h0,

(1.2)

for 0 < t < T and 0 < x < 1 and appropriate matrices A, R, Qi, Gi and H. The
coefficient v is assumed to be at least Lipschitz. The goal is to prove the existence
and uniqueness of weak solutions of (1.2) in L2((0, T )×(0, 1)). Writing the system in
variational form, so as to apply Friedrichs method, a problem occurs in eliminating
the traces u|x=0 and u|x=1 in the differential equation for h due to possible limited
regularity of G0 and G1. In fact, we only consider the case where they are bounded.
This will be done by considering test functions in a certain graph space.

In Section 2, we will define weak solutions of the linear system (1.2) and sketch
the proof of well-posedness and trace regularity. The nonlinear system (1.1) will be
the focus of Section 3. We apply the results to a model describing the flow of a fluid
in an elastic tube and outline the proof of global existence and stability.

2. Linear Hyperbolic PDE-ODE Systems

For the linear system (1.2) we assume that v ∈ W 1,∞(QT )
n, R ∈ L∞(QT )

n×n,
Q0 ∈ L∞(0, T )p×d, Q1 ∈ L∞(0, T )(n−p)×d, H ∈ L∞(0, T )d×d, S ∈ L2(0, T )d and
G0, G1 ∈ L∞(0, T )d×n where QT = (0, T )× (0, 1) is the time-space domain.

The two main ingredients in writing the linear system into a variational form is the
choice of test functions and an appropriate decomposition of the flux matrix in terms
of the boundary matrices. For the latter, we note that there exist N0 ∈ R(n−p)×n,

Department of Mathematics and Computer Science, College of Science, University of the Philippines Baguio



Hyperbolic Systems with Dynamic Boundary Conditions 3 / 9

N1 ∈ Rp×n, C0,M1 ∈ C∞(U ;R(n−p)×n) and C1,M0 ∈ C∞(U ;Rp×n) such that

A(w) =My(w)
TBy + Cy(w)

TNy, for all (w, y) ∈ U × {0, 1}.

This is due to the hypothesis that B0 and B1 have full ranks, see [4]. In fact,
N0 is chosen so that

(
B0

N0

)
is invertible with inverse (Y0 D0) where Y0 ∈ Rn×p and

D0 ∈ Rn×(n−p) and one can take M0 = (AY0)
T and C0 = (AD0)

T .
Let L = ∂t + A(v)∂x + R and E(QT ) = {u ∈ L2(QT )

n : Lu ∈ L2(QT )
n}. Define

Ã = νx + A−Tνt where ν = (νt, νx) is the unit outward normal to ∂QT . The linear
map u 7→ Ãu|∂QT

from H1(QT )
n into L2(∂QT )

n can be extended uniquely into a
bounded linear operator from the graph space E(QT ) into H−

1
2 (∂QT ), see [1, 9].

Consider the subspace E(QT ) of E(QT ) defined as the closure of H1(QT )
n with

respect to the norm

‖u‖2E(QT ) = ‖u‖2L2(QT )n + ‖Lu‖2L2(QT )n + ‖u|∂QT
‖2L2(∂QT )n .

It follows immediately from the definition that u|∂QT
∈ L2(QT )

n for every u ∈ E(QT ).
The spaces E∗(QT ) and E∗(QT ) are defined analogously where L is replaced by the
formal adjoint L∗ = −∂t − AT∂x +RT of L.

Given f ∈ L2(QT )
n, g0 ∈ L2(0, T )p, g1 ∈ L2(0, T )n−p, S ∈ L2(0, T )d, u0 ∈

L2(0, 1)n and h0 ∈ Rd, a pair of functions (u, h) ∈ L2(QT )
n × L2(0, T )d is called a

weak solution of the system (1.2) if the variational equation∫ T

0

∫ 1

0

u(t, x) · L∗ϕ(t, x) dx dt−
∫ 1

0

u0(x) · ϕ(0, x) dx+ h0 · η(0)

+

∫ T

0

h(t) · (η′(t) + H̃(t)η(t) +Q1(t)
TM1(t)ϕ(t, 1)−Q0(t)

TM0(t)ϕ(t, 0)) dt

=

∫ T

0

∫ 1

0

f(t, x) · ϕ(t, x) dx dt−
∫ T

0

g1(t) · (M1(t)ϕ(t, 1) + (G1(t)Y1)
Tη(t)) dt

+

∫ T

0

g0(t) · (M0(t)ϕ(t, 0)− (G0(t)Y0)
Tη(t)) dt−

∫ T

0

S(t) · η(t) dt (2.1)

where H̃ = (H + G1Y1Q1 + G0Y0Q0)
T , holds for all ϕ ∈ E∗(QT ) and for all

η ∈ H1(0, T )d such that ϕ(T, ·) = 0, η(T ) = 0, C1ϕ|x=1 = −(G1D1)
Tη and

C0ϕ|x=0 = (G0D0)
Tη. This variational form is obtained by multiplying the dif-

ferential equations by the appropriate test functions and then integrating by parts.
Since G0 and G1 are in L∞, the functions (G1D1)

Tη and (G0D0)
Tη may be only

in L2 even for η ∈ H1(0, T )d. In order for the compatibility conditions C1ϕ|x=1 =
−(G1D1)

Tη and C0ϕ|x=0 = (G0D0)
Tη to be meaningful, we take the space E∗(QT ) to

be the space for the first component instead of the space H1(QT )
n used in hyperbolic

systems.
The existence of a weak solution is obtained from the following result in [15]

generalizing the one given in [8]. Its proof is based on the Hahn-Banach and Riesz
representation theorems.

Theorem 2.1. Let X and Z be Hilbert spaces, Y be a subspace of X and Λ : Y →
X, Ψ : Y → Z, Φ : Y → Z be linear operators. Suppose that W = ker(Φ) and Λ(W )
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are nontrivial. If there exist γ > 0 and C > 0 such that

γ‖w‖2X + ‖Ψw‖2Z ≤ C(γ−1‖Λw‖2X + ‖Φw‖2Z), for all w ∈ Y,

then the variational equation

(u, Λw)X = (F,w)X + (G,Ψ)Z , for all w ∈ W, (2.2)

for a given (F,G) ∈ X×Z has a solution u ∈ X. In addition, the solution is unique
if and only if Λ(W ) is dense in X.

Introducing the weighted-in-time spaces X = e−γtL2(QT )
n × e−γtL2(0, T )d, Y =

E∗(QT )×H1(0, T )d and Z = e−γtL2(0, T )n−p × e−γtL2(0, T )p × L2(0, 1)n × Rd, it is
not hard to see that (2.1) can be written in the form (2.2). Therefore the first step
in establishing well-posedness is to derive a priori estimates. For the ODE part, we
have the following Poincaré-type inequality in [15]. Given H ∈ L∞(0, T )d×d there
are constants C > 0 and γ0 ≥ 1, both depending only on the L∞-norm of H, such
that

|η(0)|2 + γ‖eγtη‖2L2(0,T )d ≤ C

(
1

γ
‖η′ +Hη‖2L2(0,T )d + e2γT |η(T )|2

)
(2.3)

holds for every η ∈ H1(0, T )d and γ ≥ γ0.
On the other hand, for the PDE part, due to the assumptions stated in the

introduction, there exist C > 0 and γ0 ≥ 1, both depending only on the W 1,∞-norm
of v, the range of v and the L∞-norm of R, such that

‖w|t=0‖2L2(0,1)n + γ‖eγtw‖2L2(QT )n + ‖eγtw|x=0‖2L2(0,T )n + ‖eγtw|x=1‖2L2(0,T )n

≤ C

(
e2γT‖w|t=T‖2L2(0,1)n +

1

γ
‖eγtL∗w‖2L2(QT )n (2.4)

+ ‖eγtC0(v)w|x=0‖2L2(0,T )n−p + ‖eγtC1(v)w|x=1‖2L2(0,T )p

)
holds for all w ∈ E∗(QT ) and γ ≥ γ0. When w ∈ H1(QT )

n, the proof of this a priori
estimate can be found in [2, 5, 11]. The fact that it also holds in the space E∗(QT )
is new and is established by a density argument.

Combining the a priori estimates (2.3) and (2.4) with an absorption argument,
Theorem 2.1 implies the following result. The interior-point trace regularity can be
shown by using standard multiplier techniques. For the proof, we refer to [15].

Theorem 2.2. The system (1.2) has a unique weak solution (u, h) ∈ L2(QT )
n ×

L2(0, T )d. Furthermore, (u, h) ∈ [C([0, T ], L2(0, 1)n) ∩ E(QT )] × H1(0, T )d and
u|x=ξ ∈ L2(0, T )n for every ξ ∈ [0, 1]. The weak solution satisfies the estimate

e−2γT‖u‖2C([0,T ],L2(0,1)n) + γ‖e−γtu‖2L2(QT )n + ‖e−γtu|x=0‖2L2(0,T )n

+ ‖e−γtu|x=1‖2L2(0,T )n + γ‖e−γth‖2L2(0,T )d ≤ C

(
‖u0‖2L2(0,1)n + |h0|2

+
1

γ
‖e−γtf‖2L2(QT )n + ‖e−γtg0‖2L2(0,T )p + ‖e−γtg1‖2L2(0,T )n−p +

1

γ
‖e−γtS‖2L2(0,T )d

)
for all γ ≥ γ0 for some C > 0 and γ0 ≥ 1.
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For the constant coefficient case, it can be shown that the weak solution introduced
above is equivalent to the one given by semigroup theory. However, proving that
the associated differential operator generates a strongly continuous semigroup is a
difficult task (see [15]).

3. Nonlinear Systems and Application

For the nonlinear system (1.1), the main result is the local-in-time well-posedness
and a blow-up criterion in finite time. The proof is technically long and for this
reason we only outline the main ideas and refer to [13] for the details. In the
following, we use the notation CHm(QT ) =

⋂m
j=0C

j([0, T ], Hm−j(0, 1)n).

Theorem 3.1. Let m ≥ 3 be an integer and (u0, h0) ∈ Hm(0, 1)n × H satisfy
appropriate compatibility conditions. Suppose that the range of u0 lies in K1 ⊂ U ,
h0 ∈ G1 ⊂ H, where K1 and G1 are compact and convex, and ‖u0‖Hm(0,1)n ≤ M .
Then there exists T > 0 depending only on (K1,G1,M) such that (1.1) has a unique
solution (u, h) ∈ CHm(QT )×Hm+1(0, T )d with traces u|x=0, u|x=1 ∈ Hm(0, T )n.

If the maximal time of existence T ∗ is finite then the range of (u(t), h(t)) leaves
every compact subset of U ×H as t ↑ T ∗ or

lim
t↑T ∗
‖∂xu(t)‖L∞(0,1)n =∞.

Proof.[Sketch of Proof.] The first step is to determine an invariant set for the
iteration. Given R, T,K > 0 denote by V m

T,K,R the set of all elements (v, g) ∈
CHm(QT )×Hm(0, T )d with the following properties: ∂jt v|t=0 = ∂jtu|t=0 and ∂jt g(0) =
∂jth(0) for 1 ≤ j < m where the right hand sides can be written in terms of u0 and
h0 by formal differentiation of the PDE and ODE, the range of (v, g) lies in K1×G1,

‖v‖W 1,∞(QT )n + ‖g‖W 1,∞(0,T )d ≤ K,

and
‖v‖Hm(QT )n + ‖v|x=0‖Hm(0,T )n + ‖v|x=1‖Hm(0,T )n + ‖g‖Hm(0,T )d ≤ R.

Consider the map T : V m
T,K,R → V m

T,K,R defined as follows: Given (v, g) ∈ V m
T,K,R,

let T (v, g) =: (u, g) be the solution of the system

ut + A(v)ux = f(v), in (0, T )× (0, 1),

B0u|x=0 = b0(t, h(t)), in (0, T ),

B1u|x=1 = b1(t, h(t)), in (0, T ),

h′(t) = H(t, g(t), v(t, 0), v(t, 1)), in (0, T ),

u|t=0 = u0, in (0, 1),

h|t=0 = h0.

The theory for linear hyperbolic systems with variable coefficients in [2] can be
applied for the existence of a solution for this system. With additional a priori
estimates in terms of the Sobolev norms, it can be shown that there are constants
T,K,R > 0 such that T (v, g) ∈ V m

K,T,R whenever (v, g) ∈ V m
T,K,R, that is, V m

T,K,R is
invariant under T .

This introduces a sequence of elements (un, hn) ∈ V m
T,K,R with (un, hn) =

T (un−1, hn−1) for n ≥ 1 where (u0, h0) ∈ V m
T,K,R is a fixed element. By reducing
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T > 0 if necessary, it can be shown that the map T is contractive with respect to
the norm of L2(QT )

n×L2(0, T )d and therefore the above sequence converges in this
space. The boundedness of the sequence in Hm(QT )

n×Hm(0, T )d and interpolation
theory show that the limit of the sequence described above is the solution of the
nonlinear system. The additional regularity in time and the regularity of the
traces follow from the regularity theory for linear hyperbolic systems with variable
coefficients.

The proof of the blow-up criterion is standard. Indeed, one shows that if the
conditions are not satisfied then it is possible to extend the solution on a larger
time interval. We refer the details to the reference mentioned above. �

Now we consider the following system modeling the velocity u of a fluid contained
in a horizontal elastic tube of length `, vertical cross section A, that at each end is
attached to tanks with horizontal cross section AT :

At + uAx + Aux = 0, t > 0, 0 < x < `,

ut + κ2A−
1
2Ax + uux = −βu, t > 0, 0 < x < `,

ATh
′
0(t) = −A(t, 0)u(t, 0), t > 0,

ATh
′
`(t) = A(t, `)u(t, `), t > 0,

A(t, 0) = (a0 + bh0(t))
2, t > 0,

A(t, `) = (a` + bh`(t))
2, t > 0,

A(0, x) = A0(x), u(0, x) = u0(x), 0 < x < `,

h0(0) = h00, h` = h0` .

(3.1)

Here, h0 and h` are the level heights of the fluid in the left and right tanks, respec-
tively, while the constants κ, a0, a`, b > 0 are related to the material properties of
the tube and the physical properties of the fluid. The constant β ≥ 0 is the damp-
ing coefficient which is related to the viscosity of the fluid. For more details in this
model and the precise formulas for the parameters we refer to [14]. The system (3.1)
is similar to the one considered in [3, 12, 17] in the context of valveless pumping, but
none of these references addresses well-posedness or stability issues. [19] defines and
requires dissipativity of the boundary conditions which is not satisfied by physically
realistic models as in (3.1). Also, in [19] the use of the Lemmas 2.1 and 2.2 in the
proof of Theorem 2.1 is not entirely correct.

With regards to the local-in-time existence and blow-up criterion, the result of
Theorem 3.1 is applicable to (3.1). The next question is the existence of global
solutions. The answer is affirmative provided that β > 0 and the initial data are
smooth and close to the constant steady state (Ae, 0, h0e, h`e). This steady state
is unique as long as the total volume of the fluid in the tube and in the tanks is
constant. The proof of the global existence is based on the energy estimates obtained
from appropriate entropy-entropy flux pairs for the hyperbolic system. Define the
energy functional Nk by

N2
k (t) = sup

s∈[0,t]
(‖u(s)‖2Hk + ‖A

1
4 (s)− A

1
4
e ‖2Hk + |h0(s)− h0e|2 + |h`(s)− h`e|2)
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+

∫ t

0

‖u(s)‖2Hk + k‖(A
1
4 )x(s)‖2Hk−1 ds

for k = 0, 1, 2.

Theorem 3.2. Suppose that β > 0. There exists δ0 > 0 such that if N2(0) ≤
δ0 then (3.1) has a unique global solution such that A, u ∈ C([0,∞), H2(0, `)) ∩
C1([0,∞), H1(0, `)), h0, h` ∈ C2[0,∞) and N2(t) ≤ CN2(0) for all t ≥ 0. Moreover,
we have the asymptotic stability in H1 ×H1 × R2

lim
t→∞

(‖A(t)− Ae‖H1(0,`) + ‖u(t)‖H1(0,`) + |h0(t)− h0e|+ |h`(t)− h`e|) = 0

and the exponential stability in L2 × L2 × R2

‖A(t)− Ae‖L2(0,`) + ‖u(t)‖L2(0,`) + |h0(t)− h0e|+ |h`(t)− h`e| ≤ C(1 + tk)e−σt

for some constants C ≥ 1, σ > 0, k ∈ {0, 1} and for all t ≥ 0.

Proof. We only give the main ideas and refer to [16] for the complete proofs. For
the global existence, the main goal is to prove the existence of a constant δ > 0 such
that N2(T ) ≤ δ implies N2(T ) ≤ C(δ)N2(0) for some C(δ) > 0 independent of T .
Lower order estimates can be obtained by utilizing the following newfound relative
entropy and its corresponding relative entropy flux

η0(A, u) =
1

2
Au2 +

4

3
κ2(A

3
2 − A

3
2
e )− 2κ2A

1
2
e (A− Ae),

q0(A, u) =
1

2
Au3 + 2κ2(A

1
2 − A

1
2
e )uA.

On the other hand, higher order estimates can be obtained by introducing suitable
entropy-entropy flux pairs for the diagonalized system similar to [19], but appropri-
ately reassimilated. Once this a priori estimate is proved, a standard continuation
argument shows that the local solution can be extended into a global one.

The asymptotic stability in H1×H1×R2 is a consequence of the uniform bound-
edness of the energy functional N2 with respect to time. The exponential stability
with respect to X := L2×L2×R2 is obtained by linearizing the system around the
steady state. This gives us a linear evolution equation

Ż(t) = AZ(t), A


B
v
g0
g`

 =


−Aevx

−αBx − βv
− Ae

AT
v(0)

Ae

AT
v(`)

 ,

with A a linear operator on X with domain D(A) = {(B, v, g0, g`) ∈ H1(0, `)2×R2 :
B(0) = γg0, B(`) = γg`} and the constants are given explicitly by

α =
κ2√
Ae
, γ = 2b(a0 + bh0e) = 2b(a` + bh`e).

The state for this equation is Z = (A, u, h0, h`)− (Ae, 0, h0e, h`e), the deviation from
the equilibrium.

The linear operator A generates a strongly continuous group (etA)t≥0 on X and
by the methods of nonharmonic Fourier analysis we have

‖etAZ0‖X ≤ C(1 + tk)e−σt‖Z0‖X
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for every Z0 ∈ ker(A)⊥, where σ = − sup{Re λ : λ ∈ σ(A)}, σ(A) is the spectrum
of A and k is either 0 or 1 depending on the value of β, see [14] for the precise
formulas.

Notice that this stability is only possible once the kernel of A is factored out. The
elements of ker(A) are also steady states of the nonlinear system (3.1), however, they
correspond to a different volume of the fluid. There is no reason for Z(t) to be in
the domain of A. In fact, the compatibility conditions on the boundary stated in
the domain of A are, in general, not satisfied. For this reason, we consider the new
state variable Y = Z − (φ, 0, 0, 0) where

φ(t, x) =
`− x
`

b2(h0(t)− h0e)2 +
x

`
b2(h`(t)− h`e)2.

One can see that Y (t) ∈ D(A) for all t ≥ 0 and the non-homogeneous system

Ẏ (t) = AY (t) + F (Y (t))

holds for some source term F .
The final step is to decompose Y = Y1 + Y2 in such a way that Y1(t) ∈ ker(A)⊥

and Y2(t) ∈ ker(A) for every t ≥ 0. For Y1 we apply the exponential stability of the
semigroup generated by A and for Y2 we prove that its norm in X is small provided
that N2(0) is small. The exponential stability of the nonlinear system can now be
obtained from these together with interpolation estimates and the Gronwall-type
Lemma in [6]. �
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