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Abstract.
In this paper, we consider a certain sequence of inversion numbers. We show that
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1. Introduction

Let σ be a permutation of the set {1, 2, . . . , n}. The pair (σ(i), σ(j)) is called an
inversion of σ if i < j and σ(i) > σ(j). Inversions are used in sorting algorithms
and have applications in computational molecular biology (see [2]). Denote N(σ) to
be the total number of inversions of the permutation σ. Then N(σ) is the smallest
number of factors such that the permutation σ can be written as a product of simple
transpositions [1].

For each nonnegative integer k, we let In(k) = |{σ ∈ Sn : N(σ) = k}|, where Sn is
the symmetric group of degree n. That is, In(k) is the total number of permutations
of the set {1, 2, . . . , n} having k inversions. Then In(k) = 0 for all k >

(
n
2

)
and

In(k) > 0 for all 0 ≤ k ≤
(
n
2

)
. The number In(k) is called an inversion number.

Finding the value of In(k) is a classic area of combinatorics. Margolius, Louchard
and Prodinger give asymptotic formulas of a certain sequence of inversion numbers,
the sequence {In+k(n) : n ≥ 0}, where k is a fixed positive integer [4, 6]. The
results of Louchard and Prodinger are based on the saddle point method. In a
recent paper [5], the authors consider another sequence of inversion numbers, the
sequence {In+k(k) : n ≥ 0}, where k ≥ 1 is fixed. Interestingly, these sequences are
polynomial sequences as we can see later.

The inversion numbers have the following recursive formula

I1(0) = I2(0) = I2(1) = 1

and

In(k) =

min{k,(n−1
2 )}∑

i=max{0,k−n+1}

In−1(i), n ≥ 3. (1.1)

This formula was obtained using a specific partition of the symmetric group. For
n > 1, this can be simplified into

In(k) =


1, if k = 0;

In(k − 1) + In−1(k), if 1 ≤ k ≤ n− 1;

In(k − 1) + In−1(k)− In−1(k − n), if n ≤ k ≤
(
n−1
2

)
;

In(k − 1)− In−1(k − n), if
(
n−1
2

)
< k ≤

(
n
2

)
.

(1.2)
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For more details about these recursive formulas, we refer the reader to [5].
In Section 2, we give a complete proof showing that the sequence {In+k(k) : n ≥ 0}

is a polynomial sequence and that the leading term of this polynomial sequence is
(k!)−1. Further, we compare the monotonicity of the two sequences {In+l(n) : n ≥
0} and {In+k(k) : n ≥ 0}, where k and l are fixed positive integers. Section 3
relates a specific type of an integral of a complex valued function to the inversion
numbers. Finally, we characterize the Hankel and inverse binomial transforms of
{In+k(k) : n ≥ 0} in Section 4.

2. Characterizations of a sequence of inversion num-
bers

In the following lemma, we consider the sum
∑n

j=1 j
h−1. As we can see later, this

sum is closely related to the sequence {In+k(k) : n ≥ 0}.

Lemma 2.1. For each positive integer h let Ph(n) =
∑n

j=1 j
h−1. Then Ph(n) is a

polynomial of the variable n of degree h and

lim
n→∞

Ph(n)

nh
=

1

h
.

Proof. We prove the lemma by strong induction. Is is easy to see that the conclusion
holds if h = 1. Now, assume that Pl(n) is a polynomial of degree l for all 1 ≤ l ≤ h.
Using the Binomial Theorem, we get

n∑
j=1

[jh+1 − (j − 1)h+1] =
n∑
j=1

[
jh+1 −

h+1∑
l=0

(−1)l
(
h+ 1

l

)
jh−l+1

]

=
h+1∑
l=1

(−1)l+1

(
h+ 1

l

)( n∑
j=1

jh−l+1

)

=
h+1∑
l=1

(−1)l+1

(
h+ 1

l

)
Ph−l+2(n)

= (h+ 1)Ph+1(n) +
h−1∑
l=0

(−1)l+1

(
h+ 1

l + 2

)
Ph−l(n).

But
n∑
j=1

[jh+1 − (j − 1)h+1] = nh+1,

and so

Ph+1(n) =
nh+1

h+ 1
+Q(n), (2.1)

where

Q(n) =
1

h+ 1

h−1∑
l=0

(−1)l
(
h+ 1

l + 2

)
Ph−l(n). (2.2)

Using Equation (2.2) and the induction hypothesis, we can see that Q(n) is a poly-
nomial of degree h. Thus, from Equation (2.1), Ph+1(n) is a polynomial of degree
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h+ 1. Further, since Q(n)/nh+1 → 0 as n→∞ we have Ph+1(n)/nh+1 → 1/(h+ 1)
as n→∞. �

Lemma 2.2. Let k be a fixed positive integer and n be a nonnegative integer. Then

In+k(k) = Ik(k) +
n∑
j=1

Ij+k(k − 1).

Proof. The above formula is clear if n = 0, so let us assume that n ≥ 1. Note that
1 ≤ k ≤ (n + k − i) − 1 for all i = 0, 1, . . . , n − 1. Using this and the recursive
formula (1.2) we have

In+k(k) = In+k(k − 1) + In+k−1(k)

= In+k(k − 1) + In+k−1(k − 1) + In+k−2(k)

= In+k(k − 1) + In+k−1(k − 1) + · · ·+ Ik+1(k − 1) + Ik(k)

=
n∑
j=1

Ij+k(k − 1) + Ik(k).

This completes the proof of the lemma. �

Theorem 2.3. If k ≥ 1, then the sequence {In+k(k) : n ≥ 0} is a polynomial
sequence of degree k and

lim
n→∞

In(k)

nk
=

1

k!
.

Moreover, the leading term of In+k(k) is 1/k!.

Proof. Since In+1(1) = n for all n ≥ 0, the theorem trivially holds if k = 1.
Assume that In+k(k) =

∑k
i=0 akin

i, where akk 6= 0 in order for In+k(k) to have
degree k. Following [5] and using Lemma 2.2 we have

In+k+1(k + 1) = Ik+1(k + 1) +
n∑
j=1

Ij+1+k(k)

= Ck+1 +
n∑
j=1

k∑
i=0

aki(j + 1)i

= Ck+1 +
n∑
j=1

k∑
i=0

aki

(
i∑

h=0

(
i

h

)
jh

)

= Ck+1 +
k∑
i=0

i∑
h=0

(
i

h

)
akiPh+1(n),

where Ck+1 = Ik+1(k + 1). Using Lemma 2.1 it follows that In+k+1(k + 1) is a
polynomial of degree k + 1. Moreover, observe that

In(k + 1) = Ck+1 +
k∑
i=0

i∑
h=0

(
i

h

)
akiPh+1(n− k − 1),
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for all n ≥ k + 1. Notice that limn→∞ In(1)/n = 1. Assume that

lim
n→∞

In(k)/nk = 1/k!,

and so akk = 1/k!. From Lemma 2.1 we obtain

lim
n→∞

Ph+1(n− k − 1)

nk+1
=

0, if 0 ≤ h ≤ k − 1;
1

k + 1
, if h = k.

Hence

lim
n→∞

In(k + 1)

nk+1
= lim

n→∞

akkPk+1(n− k − 1)

nk+1
=

akk
k + 1

=
1

(k + 1)!
.

The ‘moreover’ part follows immediately. This establishes the theorem. �

Using Lemma 2.2 and Faulhaber’s formulas we have

In+1(1) = n,

In+2(2) = n(n+ 3)/2,

In+3(3) = (n+ 3)(n2 + 6n+ 2)/6,

In+4(4) = (n+ 4)(n+ 5)(n2 + 9n+ 6)/24,

In+5(5) = (n+ 4)(n+ 11)(n3 + 15n2 + 66n+ 60)/120,

In+6(6) = (n+ 5)(n+ 6)(n4 + 34n3 + 401n2 + 1844n+ 2160)/720,

In+7(7) = (n7 + 63n6 + 1645n5 + 22995n4 + 184534n3 + 841302n2 + 1983540n

+ 1809360)/5040.

Suppose that In+k(k) =
∑k

i=0 akin
i. It can be shown that the constant term

of the polynomial Ph+1(n), where h ≥ 0, is zero. Thus, we can write Ph+1(n) =∑h+1
j=1 ph+1,jn

j. From the proof of Theorem 2.3 we have

In+k+1(k + 1) = Ik+1(k + 1) +
k∑
i=0

i∑
h=0

h+1∑
j=1

(
i

h

)
akiph+1,jn

j.

Therefore, if In+k+1(k + 1) =
∑k+1

i=0 ak+1,in
i, then the coefficients of In+k+1(k + 1) is

related to the coefficients of In+k(k) and Ph+1(n) and we have

ak+1,l =



Ik+1(k + 1), if l = 0;
k∑

i=l−1

i∑
h=l−1

(
i

h

)
akiph+1,l, if 1 ≤ l ≤ k;

1

(k + 1)!
, if l = k + 1.

As a consequence of the previous theorem we have the following corollary.

Corollary 2.4. For each real number x we have
∞∑
j=0

lim
n→∞

In(j)
(x
n

)j
= ex.
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From Euler’s pentagonal number theorem we have

Q(z) =
∞∏
j=1

(1− zj) =
∑
i∈Z

(−1)izi(3i−1)/2.

Set q0 = Q(1/2), q1 = Q′(1/2) and q2 = Q′′(1/2)/2.

Corollary 2.5. For each k, l ≥ 1,

In+l(n)

In+k(k)
=

22n+l−1k!√
πnk+1/2

(
q0 −

8q0l
2 + 2(q1 − q0)l + q2 − 2q1 + (1 + 8k!ak,k−1)q0

8n

+ O(n−2)

)
.

Proof. If k ≥ 2 then

In+k(k) =
nk

k!

(
1 +

ak,k−1k!

n
+

1

n2

k−2∑
i=0

akik!

nk−i−2

)

=
nk

k!

(
1 +

ak,k−1k!

n
+O(n−2)

)
.

If k = 1 then we have the same result. Combining this with the result of Louchard
and Prodinger, which is

In+l(n) =
22n+l−1
√
πn

(
q0 −

8q0l
2 + 2(q1 − q0)l + q2 − 2q1 + q0

8n
+O(n−2)

)
,

we obtain the desired asymptotic formula. �

Let k and l be two fixed positive integers. We can see that after a sufficiently large
number of terms, the sequence {In+l(n) : n ≥ 0} increases faster than the sequence
{In+k(k) : n ≥ 0}. Indeed, from Corollary 2.5

lim
n→∞

In+k(k)

In+l(n)
= 0.

3. Inversion numbers and integrals

We will use Equation (1.1) to prove algebraically that the generating function of the
sequence {In(k) : k = 0, 1, . . . ,

(
n
2

)
} is

Φn(x) =

(n
2)∑

k=0

In(k)xk =
n∏
k=1

k−1∑
i=0

xi. (3.1)

It can be easily verified that Equation (3.1) holds if n = 1, 2. Suppose n ≥ 3. Then

Φn−1(x)
n−1∑
j=0

xj =

(n−1
2 )∑
i=0

In−1(i)x
i

(n−1∑
j=0

xj

)
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=

(n
2)∑

k=0

(∑
i+j=k

In−1(i)

)
xk

=

(n
2)∑

k=0

 min{k,(n−1
2 )}∑

i=max{0,k−n+1}

In−1(i)

xk.

From this, we get Φn−1(x)
∑n−1

j=0 x
j = Φn(x). Using this and an induction argument

proves (3.1).
For each multi-index α = (α1, . . . , αn), where each αi is a nonnegative integer,

we define α! = α1! · · ·αn! and |α| = α1 + · · · + αn. The following lemma is the
generalized Leibniz’s rule for differentiation.

Lemma 3.1. If f1, . . . , fn are analytic complex valued functions in an open set
U ⊂ C, then

dm

dzm

n∏
j=1

fj(z) =
∑
|α|=m

m!

α!

n∏
j=1

f
(αj)
j (z)

for all m ∈ N and for all z ∈ U .

Proof. We prove the lemma by induction on m. Notice that the lemma is clear if
m = 1. Suppose that the lemma holds for m = k. Now we show that the lemma is
true for m = k + 1. Using the induction hypothesis we get

dk+1

dzk+1

n∏
j=1

fj(z) =
d

dz

∑
|α|=k

k!

α!

n∏
j=1

f
(αj)
j (z)

=
∑
|α|=k

∑
|β|=1

k!

α!

n∏
j=1

f
(αj+βj)
j (z).

If βj = 1 then
(k + 1)!

(α + β)!
=

k + 1

αj + βj
· k!

α!
.

Now, let γ = α + β. Then |γ| = |α|+ |β| = k + 1 and

dk+1

dzk+1

n∏
j=1

fj(z) =
∑
|γ|=k+1

n∑
j=1

γj
k + 1

· (k + 1)!

γ!

n∏
j=1

f
(γj)
j (z)

=
∑
|γ|=k+1

(k + 1)!

γ!

n∏
j=1

f
(γj)
j (z).

This completes the proof of the lemma. �

Theorem 3.2. Let f : D ⊂ C → C and suppose that f is analytic in an open set
U ⊂ D. If m ∈ N and C is a closed simple contour lying inside U and z0 is any
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point interior to C, then for all positive integer k we have∫
C

1

(z − z0)k+1

(
m∏
l=1

l−1∑
i=0

[f(z)]i

)
dz =

2πi

k!

∑
1≤j≤(m

2 )

Im(j)Mj(z0), (3.2)

where

Mj(z0) =
∑

|(α1,...,αj)|=k

k!

α1! · · ·αj!
f (α1)(z0) · · · f (αj)(z0).

Proof. Letting x = f(z) in Equation (3.1), dividing by (z − z0)
k+1 and then

integrating we get∫
C

1

(z − z0)k+1

(
m∏
l=1

l−1∑
i=0

[f(z)]i

)
dz =

∑
0≤j≤(m

2 )

Im(j)

∫
C

[f(z)]j

(z − z0)k+1
dz. (3.3)

By Cauchy’s integral formula,∫
C

[f(z)]j

(z − z0)k+1
dz =

0, if j = 0;
2πi

k!
· d

k([f(z0)]
j)

dzk
, if j ≥ 1.

Using the generalized Leibniz’s rule for differentiation we get

dk([f(z0)]
j)

dzk
=

∑
|(α1,...,αj)|=k

k!

α1! · · ·αj!
f (α1)(z0) · · · f (αj)(z0), (3.4)

for all j ≥ 1. Hence, Equation (3.2) follows from Equations (3.3) and (3.4). �

If we let z0 = 0, f(z) = z and m = n+ k, we have the following corollary.

Corollary 3.3. Let k be a fixed positive integer. Then for each nonnegative integer
n we have∫

C

(1 + z)(1 + z + z2) · · · (1 + z + · · ·+ zn+k−1)

zk+1
dz = 2πiIn+k(k),

where C is any simple closed contour containing the origin.

Example 3.4. Using the previous corollary we have∫
C

(1 + z)(1 + z + z2) · · · (1 + z + · · ·+ zn)

z2
dz = 2nπi,∫

C

(1 + z)(1 + z + z2) · · · (1 + z + · · ·+ zn+1)

z3
dz = (n2 + 3n)πi,∫

C

(1 + z)(1 + z + z2) · · · (1 + z + · · ·+ zn+2)

z4
dz =

(n3 + 9n2 + 20n+ 6)πi

3
,

for all n ≥ 0, where C is any closed contour containing the origin.
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4. Hankel and inverse binomial transforms

Let A = {an}∞n=0 be a sequence. The inverse binomial transform of the sequence A
is the sequence denoted by B−1(A) = {bn}∞n=1 where bn is defined by the formula

bn =
n∑
k=0

(−1)n−k
(
n

k

)
ak

for all n ≥ 0. Let H = [hij]i,j∈N, where hij = ai+j−2. Thus

H =


a0 a1 a2 · · ·
a1 a2 a3 · · ·
a2 a3 a4 · · ·
...

...
... . . .

 .
The Hankel matrix Hn of order n of the sequence A is defined to be the (n + 1)×
(n + 1) upper left submatrix of H, that is, Hn = [hij]1≤i,j≤n+1. Let hn denote the
determinant of the Hankel matrix Hn of order n. The sequence H(A) = {hn}∞n=0 is
called the Hankel transform of the sequence A.

Some properties of the Hankel transform are discussed in [3] and [7]. Further,
Spivey and Steil [7] proved that the Hankel transform is invariant under falling k-
binomial transform and since the inverse binomial transform is just a special type of
a falling k-binomial transform, where k = −1, it follows that the Hankel transform
is also invariant under inverse binomial transform. (For more details, we refer the
reader to the work of Spivey and Steil [7].) Hence we have the following theorem.

Theorem 4.1. If A = {an}∞n=0 is a sequence, then H(B−1(A)) = H(A).

Given a sequence A = {ak}∞k=0, the support of A is defined by supp(A) = {k :
ak 6= 0}. The set of all real sequences having a finite support is denoted by c00.
Note that c00 is a vector space over R under the usual componentwise addition and
scalar multiplication.

The next two theorems characterize the inverse binomial transform and the Hankel
transform of the sequence {In+k(k) : n ≥ 0}.
Theorem 4.2. For each k ≥ 1, let Ak = {In+k(k) : n ≥ 0} and In+k(k) =∑k

i=0 akin
i. Then B−1(Ak) = {bm}∞m=0 ∈ c00 and bm = m!

∑k
i=m akiS(i,m), for

all 1 ≤ m ≤ k, where S(i,m) is a Stirling number of the second kind, and bm = 0
for all m > k.

Proof. Let m ≥ 1. Using the definition, we have

bm = ak0

m∑
n=0

(−1)m−n
(
m

n

)
+

k∑
i=1

aki

(
m∑
n=0

(−1)m−n
(
m

n

)
ni

)
.

Note that we have
m∑
n=0

(−1)m−n
(
m

n

)
= 0

and

S(i,m) =
1

m!

m∑
n=0

(−1)m−n
(
m

n

)
ni,
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for all 1 ≤ m ≤ i. Define ∆x by ∆x = x d
dx
. Then for 1 ≤ i < m

∆i
x(x− 1)m =

m∑
n=0

(−1)m−n
(
m

n

)
nixn.

Since ∆x(x−1)m = mx(x−1)m−1 then (x−1)m−1 divides ∆x(1−x)m. Suppose that
1 ≤ i < m−1 and (x−1)m−i divides ∆i

x(x−1)m. Thus ∆i
x(x−1)m = (x−1)m−igi(x)

for some polynomial gi(x). Applying ∆x once more, we get

∆i+1
x (x−1)m = x

d[(x− 1)m−igi(x)]

dx
= x(m− i)(x−1)m−i−1gi(x)+x(x−1)m−ig′i(x).

Hence (x − 1)m−(i+1) divides ∆i+1
x (x − 1)m. This shows that for all m > i ≥ 1, we

can find a polynomial gi(x) satisfying ∆i
x(x− 1)m = (x− 1)m−igi(x). If we let x = 1

we get
m∑
n=0

(−1)m−n
(
m

n

)
ni = ∆i

x(x− 1)m
∣∣
x=1

= 0

for all m > i. From these, we have

bm = m!
k∑

i=m

akiS(i,m)

for all 1 ≤ m ≤ k and bm = 0 for all m > k. Therefore {bm}∞m=0 ∈ c00. �

Now, bk = k!akkS(k, k) = 1. Therefore, the last nonzero term of B−1(Ak) is 1.
Let A0 = {In(0) : n ≥ 1}. Then A0 = {1, 1, . . .} and B−1(A0) = {1, 0, 0, . . .}. From
these it follows that {B−1(Ak)}∞k=0 forms a basis for c00.

Example 4.3. Using the above theorem, we have

B−1(A1) = {0, 1, 0, 0, 0, 0, 0, . . .},
B−1(A2) = {0, 2, 1, 0, 0, 0, 0, . . .},
B−1(A3) = {1, 5, 4, 1, 0, 0, 0, . . .},
B−1(A4) = {5, 15, 14, 6, 1, 0, . . .}.

Theorem 4.4. For each positive integer k, H(Ak) ∈ c00. Furthermore, {H(Ak)}∞k=0

forms a basis for c00.

Proof. First, note that H(A0) = H(B−1(A0)) = B−1(A0). Suppose k ≥ 1. Let
B−1(Ak) = {bm}∞m=0 and H(B−1(A)) = {hn}∞n=0. From the previous theorem, we
have bm = 0 for all m > k. Hence the (m+ 1)st row of the mth order Hankel matrix
Hm has only zero entries for all m > k. Consequently, the determinant of of Hm is
zero for all m > k. Therefore hm = 0 for all m > k. Since H(A) = H(B−1(A)), it
follows that the Hankel transform of Ak lies in c00. Consider the Hankel matrix of
B−1(Ak) of order k. Then we have hij = 0 for all i + j > k + 2 and hij = 1 for all
i + j = k + 2. It follows that hk = −1 if k ≡ 1, 2 (mod 4) and hk = 1 if k ≡ 0, 3
(mod 4). Therefore the last nonzero term of the Hankel transform of Ak is either
−1 or 1. Consequently, {H(Ak)}∞k=0 is a basis for c00. �
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Example 4.5. From Example 4.3, we get the following
H(A1) = {0,−1, 0, 0, 0, 0, 0, 0, 0, 0, . . .},
H(A2) = {0,−4,−1, 0, 0, 0, 0, 0, 0, . . .},
H(A3) = {1,−21,−25, 1, 0, 0, 0, 0, . . .},
H(A4) = {5,−155,−559, 155, 1, 0, . . .}.

In general, one can similarly prove the following theorem.

Theorem 4.6. For each k ∈ N let pk(n) be a polynomial in the variable n such
that deg pk(n) = k. Let Ak = {pk(n) : n ∈ N}. Then B−1(Ak), H(Ak) ∈ c00.
Furthermore {B−1(Ak)}∞k=0 or {H(Ak)}∞k=0 forms a basis for c00.
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