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Abstract.
We use two methods to obtain a formula relating the total number of inversions
of all permutations and the corresponding order of symmetric, alternating, and
dihedral groups. First, we define an equivalence relation on the symmetric
group Sn and consider each element in each equivalence class as a permutation
of a proper subset of {1, 2, . . . , n}. Second, we look at certain properties
of a backward permutation, a permutation obtained by reversing the row
images of a given permutation. Lastly, we employ the first method to obtain a
recursive formula corresponding to the number of permutations with k inversions.
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1. Introduction

Let n be a positive integer and A be the finite set {1, 2, . . . , n}. The group of all
permutations of A is the symmetric group on n elements and it is denoted by Sn.
A permutation σ ∈ Sn can be represented by

σ =

(
1 2 · · · n

σ(1) σ(2) · · · σ(n)

)
.

Note that Sn has n! elements and the identity element is given by ι(i) = i for all
i ∈ A.

An inversion induced by a permutation σ is an ordered pair (σ(i), σ(j)) such
that i < j and σ(i) > σ(j). For purposes of computations later, we represent an
inversion (σ(i), σ(j)) just by the ordered pair (i, j). The number of inversions of
a permutation is a way to measure the extent to which the permutation is “out
of order”. Inversions are important in sorting algorithms and have applications in
computational molecular biology (see [1] for example).

If we let I(σ) be the set of all inversions of a permutation σ ∈ Sn, then

I(σ) = {(i, j) : σ(i) > σ(j), 1 ≤ i < j ≤ n}. (1.1)

It now follows from Eq. (1.1) that if N(σ) is the number of all inversions induced by
σ ∈ Sn, then N(σ) = |I(σ)|. Observe that the only permutation with no inversion
is the identity permutation and so, N(σ) = 0 if and only if σ = ι. Further, the
number of inversions of a permutation and its inverse are equal.

In general, to determine the total number of inversions of a permutation σ ∈ Sn,
we count the number of j’s such σ(1) > σ(j) for 1 < j ≤ n, then the number
of j’s such that σ(2) > σ(j) for 2 < j ≤ n, up to the number of j’s such that
σ(n− 1) > σ(j) for n− 1 < j ≤ n, and thus, a formula for N(σ) is given by

N(σ) =
n−1∑
i=1

|{j : σ(i) > σ(j), i < j ≤ n}| . (1.2)
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Let β ∈ Sn be the permutation defined by

β =

(
1 2 · · · n
n n− 1 · · · 1

)
. (1.3)

Note that for 1 ≤ i ≤ n we have β(i) = n − i + 1. Thus, i < j implies that
β(i) > β(j). It now follows that (i, j) ∈ I(β) for 1 ≤ i < j ≤ n and the permutation
β defined by Eq. (1.3) gives the maximum number of inversions in any permutation.
Hence,

max
σ∈Sn

N(σ) = N(β) =
n−1∑
i=1

(n− i) =
(
n

2

)
.

For each positive integer n, if we let Sn be the total number of inversions of all
permutations σ ∈ Sn then

Sn =
∑
σ∈Sn

N(σ). (1.4)

Using formulas (1.2) and (1.4) to determine Sn would take at most
(
n
2

)
n! steps

and thus inefficient for large values of n. This paper introduces two methods to
determine Sn and eventually use these methods to generate explicit formulas for
the total number of inversions of all permutations to two specific subgroups of Sn,
namely the alternating group An and the dihedral group Dn.

2. Partitioning the symmetric group

Let {aj}nj=1 be an increasing sequence of n distinct positive integers, that is, for
j < k, we have aj < ak, and S({aj}nj=1) be the group of all permutations of
{aj}nj=1. Notice that S({aj}nj=1) ' Sn and in particular S({aj}nj=1) = Sn if {aj}nj=1 =
{1, 2, . . . , n}. As a consequence,

Sn =
∑

σ∈S({aj}nj=1)

N(σ).

Two permutations σ1 and σ2 in Sn are related, written as σ1 ∼ σ2, if and only
if σ1(1) = σ2(1). It can be verified that ∼ is an equivalence relation on Sn. The
equivalence relation ∼ induces equivalence classes Oj = {σ ∈ Sn : σ(1) = j},
j = 1, . . . , n, of Sn. It follows that Oi ∩ Oj = ∅ for i 6= j and Sn =

⋃n
j=1Oj and

thus, the total number of inversions of all permutations in Sn is the same as the
sum of the number of inversions of all permutations in each equivalence classes Oj.
In symbols, we have

Sn =
n∑
j=1

∑
σ∈Oj

N(σ). (2.1)

Let σ ∈ Oj and {ak}n−1k=1 be an arrangement in increasing order of elements of A−{j}.
The permutation τ defined by

τ =

(
a1 a2 · · · an−1
σ(2) σ(3) · · · σ(n)

)
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is an element of S(A− {j}). If we define the permutation στ,j by

στ,j =

(
1 2 · · · n
j τ(a1) · · · τ(an−1)

)
,

then σ = στ,j and
N(στ,j) = (j − 1) +N(τ). (2.2)

Equations (2.1) and (2.2) give us a recursive formula for Sn and we state it as a
lemma.

Lemma 2.1. We have S1 = 0 and

Sn =
n!(n− 1)

2
+ nSn−1, n ≥ 2.

Proof. Since S1 = {ι}, then S1 = N(ι) = 0. Now suppose n ≥ 2. Note that for
each j = 1, . . . , n∑

σ∈Oj

N(σ) =
∑

τ∈S(A−{j})

N(στ,j)

=
∑

τ∈S(A−{j})

[(j − 1) +N(τ)]

= (j − 1)|S(A− {j})|+
∑

τ∈S(A−{j})

N(τ)

= (j − 1)(n− 1)! + Sn−1.

From Eq. (2.1), we get

Sn =
n∑
j=1

[(j − 1)(n− 1)! + Sn−1]

= (n− 1)!
n∑
j=1

(j − 1) + nSn−1

=
n!(n− 1)

2
+ nSn−1.

�

Theorem 2.2. For n ≥ 1, we have

Sn =
|Sn|
2

(
n

2

)
=
n!

2

(
n

2

)
.

Proof. The case where n = 1 is trivial. Assuming that the formula holds for some
fixed integer k, we go on to show that it must hold for k+ 1 too. Using Lemma 2.1
and the induction hypothesis,

Sk+1 =
(k + 1)!k

2
+ (k + 1)Sk
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=
(k + 1)!k

2
+ (k + 1)

k!

2

(
k

2

)
=

(k + 1)!

2

(
k +

k(k − 1)

2

)
=

(k + 1)!

2

(
k + 1

2

)
,

which is the formula in the case n = k + 1. This establishes the theorem. �

A permutation σ is said to be even if N(σ) is even, otherwise it is said to be odd.
Let An be the set of all even permutations in Sn. Note that An is a subgroup of
index 2 of Sn called the alternating group of degree n. Similarly, we let A({aj}nj=1)

be the corresponding alternating group of all even permutations of {aj}nj=1. If we
denote An to be the number of inversions of all permutations in An then

An =
∑
σ∈An

N(σ) =
∑

σ∈A({aj}nj=1)

N(σ) (2.3)

For small values of n, An can easily be determined using Eq. (2.3). Indeed, A1 =
A2 = 0 and A3 = 4. A drawback of counting, however, occurs when n is large.

Because An is a subset of Sn, if σ ∈ An, then σ ∈ Oj for some j. Thus, the
method used to determine Sn can as well be extended to determine An. It should
be noted, however, that if an even permutation σ is an element of Oj, it is not true
that all other permutations in Oj are also even. Thus, some minor modifications in
counting are necessary.

Theorem 2.3. For all n ≥ 4 we have

An =
|An|
2

(
n

2

)
=
n!

4

(
n

2

)
.

Proof. Recall that every permutation σ ∈ Sn can be uniquely represented by
στ,j for some τ ∈ S(A − {j}), where 1 ≤ j ≤ n. It follows from Eq. (2.2) that
στ,j is even if and only if j and N(τ) have different parity. For simplicity, we let
A(j) = A(A− {j}) and (A(j))c be the complement of A(A− {j}) with respect to
S(A − {j}), in other words, it is the set of permutations of A − {j} with an odd
number of inversions.

First, consider the case where n ≥ 4 is even, and so

An =

n/2∑
j=1

∑
τ∈A(2j−1)

[(2j − 2) +N(τ)] +

n/2∑
j=1

∑
τ∈(A(2j))c

[(2j − 1) +N(τ)]

=

n/2∑
j=1

[
(2j − 2)|An−1|+

∑
σ∈An−1

N(σ) + (2j − 1)|Ac
n−1|+

∑
σ∈Ac

n−1

N(σ)

]

=

n/2∑
j=1

[
(4j − 3)(n− 1)!

2
+ An−1 + (Sn−1 − An−1)

]

Department of Mathematics and Computer Science, College of Science, University of the Philippines Baguio



Inversions of Permutations 5 / 11

=
(n− 1)!

2

n/2∑
j=1

[
(4j − 3) +

(
n− 1

2

)]
=

n!

4

(
n

2

)
.

Now suppose n ≥ 5 is odd so that n− 1 is even. From the previous result, we have

An−1 =
(n− 1)!

4

(
n− 1

2

)
.

Similarly, we compute as follows

An =

(n−1)/2∑
j=1

∑
τ∈A(2j−1)

[(2j − 2) +N(τ)] +
∑

τ∈A(n)

[(n− 1) +N(τ)]

+

(n−1)/2∑
j=1

∑
τ∈(A(2j))c

[(2j − 1) +N(τ)]

=

(n−1)/2∑
j=1

[
(4j − 3)(n− 1)!

2
+ Sn−1

]
+

(n− 1)(n− 1)!

2
+ An−1

=
(n− 1)!

2

(n−1)/2∑
j=1

[
(4j − 3) +

(
n− 1

2

)]
+

(n− 1)!

2

[
(n− 1) +

(n− 1)(n− 2)

4

]
=

n!

4

(
n

2

)
.

�

The following corollary, which relates Sn and An, follows immediately from the
previous theorems.

Corollary 2.4. If n ≥ 1, then An = bSn/2c.

3. Backward permutations

A backward inversion of a permutation σ ∈ Sn is a pair (σ(i), σ(j)) such that
1 ≤ i < j ≤ n and σ(i) < σ(j). Again, for computation purposes, we represent
a backward inversion (σ(i), σ(j)) just by the ordered pair (i, j). If we let M(σ)
denotes the total number of backward inversions of a permutation σ, then

M(σ) = |{(i, j) : σ(i) < σ(j) , 1 ≤ i < j ≤ n}|
= |{(i, j) : 1 ≤ i < j ≤ n}| − |{(i, j) : σ(i) > σ(j) , 1 ≤ i < j ≤ n }|

=

(
n

2

)
−N(σ).

Department of Mathematics and Computer Science, College of Science, University of the Philippines Baguio



D. J. Indong and G. Peralta 6 / 11

Therefore, for any permutation σ ∈ Sn, the sum of the total number of inversions
and backward inversions is

(
n
2

)
, that is,

N(σ) +M(σ) =

(
n

2

)
. (3.1)

An immediate consequence of Eq. (3.1) is stated as a theorem which characterizes
a permutation in terms of backward inversions.

Theorem 3.1. Let σ ∈ Sn.

(i) If n ≡ 0, 1 (mod 4), then σ ∈ An if and only if M(σ) is even.
(ii) If n ≡ 2, 3 (mod 4), then σ ∈ An if and only if M(σ) is odd.

Proof. If n ≡ 0, 1 (mod 4) then
(
n
2

)
is even, and it follows from Eq. (3.1) that

M(σ) is even if and only if N(σ) is even. If n ≡ 2, 3 (mod 4) then
(
n
2

)
is odd, and

so M(σ) is odd if and only if N(σ) is even. �

Given a permutation σ ∈ Sn, the backward permutation of σ, denoted by σ, is
defined as

σ =

(
1 2 · · · n− 1 n

σ(n) σ(n− 1) · · · σ(2) σ(1)

)
. (3.2)

It is clear from the definition that any backward permutation σ is also in Sn.
Let B be the bijective mapping B : Sn → Sn that sends every permutation onto

its backward permutation, that is, B(σ) = σ. Thus, Sn = {σ : σ ∈ Sn} and
B(σ) = σ = σ. It now follows that N(σ) =M(σ) and from Eq. (3.1), we have

N(σ) +N(σ) =

(
n

2

)
. (3.3)

The power of backward permutations and backward inversions can be best illustrated
by offering an alternative proof of Theorem 2.2. Because Sn = {σ : σ ∈ Sn}, we
have

2Sn = 2
∑
σ∈Sn

N(σ) =
∑
σ∈Sn

N(σ) +
∑
σ∈Sn

N(σ)

=
∑
σ∈Sn

[N(σ) +N(σ)]

=
∑
σ∈Sn

(
n

2

)
= n!

(
n

2

)
,

and the result follows.
Using Theorem 3.1, one can check that if n ≡ 0, 1 (mod 4) then B[An] = An and

if n ≡ 2, 3 (mod 4) then B[An] = Ac
n. Thus, the concept of backward permutations

seems inappropriate for computing An for any values of n. It will, however, be most
useful in the next section.
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4. Backward permutations in dihedral groups
Consider the regular n-gon, with n ≥ 3. Label successive vertices of the n-gon by
1, 2, . . . , n. The Dihedral group Dn of isometries of the plane which map a regular
n-gon onto itself can be considered as a subgroup of Sn. To see this, first let us
represent the elements of Dn as permutations. A (360/n)o clockwise rotation (about
the center of the n-gon) is represented by the permutation

ρ =

(
1 2 · · · n− 1 n
2 3 · · · n 1

)
.

Thus, for each 1 ≤ k < n, a (360k/n)o clockwise rotation can be represented as the
permutation ρk given by

ρk =

(
1 2 · · · n− k n− k + 1 · · · n

k + 1 k + 2 · · · n 1 · · · k

)
, (4.1)

and ρn = ι. Note that 〈ρ〉 is the subgroup of Dn consisting of all rotations. Further,
for each k = 1, . . . , n, one can see from Eq. (4.1) that N(ρk) = k(n− k) and so∑

σ∈〈ρ〉

N(σ) =
n∑
k=1

N(ρk) =
n∑
k=1

k(n− k) = n+ 1

3

(
n

2

)
.

If n is odd, for each 1 ≤ k ≤ n, let µk be the mirror reflection whose axis bisects
the angle corresponding to the vertex k of the n-gon.
Case 1. If 2k − 1 ≤ n then

µk =

(
1 2 · · · k · · · 2k − 2 2k − 1 2k · · · n

2k − 1 2k − 2 · · · k · · · 2 1 n · · · 2k

)
.

It follows that

µk =

(
1 2 · · · n− 2k + 1 n− 2k + 2 n− 2k + 3 · · · n
2k 2k + 1 · · · n 1 2 · · · 2k − 1

)
,

and so µk = ρ2k−1.
Case 2. If 2k − 1 > n then

µk =

(
1 · · · 2k − n− 1 2k − n · · · k k + 1 · · · n

2k − n− 1 · · · 1 n · · · k k − 1 · · · 2k − n

)
and

µk =

(
1 2 · · · 2n− 2k + 1 2n− 2k + 2 · · · n

2k − n 2k − n+ 1 · · · n 1 · · · 2k − n− 1

)
.

and thus, µk = ρ2k−n−1.
Suppose now that n is even. For 1 ≤ k ≤ n, we have µk = µk+n/2 and thus we

only need to consider those reflections µk for 1 ≤ k ≤ n/2. Similarly, it can be
shown that µk = ρ2k−1 for all 1 ≤ k ≤ n/2.

Aside from the mirror reflection µk defined above, there are mirror reflections
whose axis bisects two parallel sides of the n-gon, when n is even. For each k =
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1, 2, . . . , n/2, denote µk,k+1 be the mirror reflection whose axis bisects the two sides
of the n-gon, one having vertices k and k + 1. Then

µk,k+1 =

(
1 · · · 2k 2k + 1 · · · n
2k · · · 1 n · · · 2k + 1

)
.

Taking the backward permutation yields

µk,k+1 =

(
1 · · · n− 2k n− 2k + 1 · · · n

2k + 1 · · · n 1 · · · 2k

)
.

and thus µk,k+1 = ρ2k.
Hence, the backward permutation of any mirror reflection is a rotation. If M be

the set of all mirror reflections in Dn, it follows that B[M ] is the set of all rotations
in Dn. We state these results as a theorem.

Theorem 4.1. If n ≥ 3 and M is the set of all mirror reflections in Dn, then
{M,B[M ]} partitions Dn.

Similarly, we define

Dn =
∑
σ∈Dn

N(σ)

and the following theorem gives an explicit formula for Dn.

Theorem 4.2. For all n ≥ 3 we have

Dn =
|Dn|
2

(
n

2

)
= n

(
n

2

)
.

Proof. Using the previous theorem, we get

Dn =
∑
σ∈Dn

N(σ) =
∑
σ∈M

N(σ) +
∑

σ∈B[M ]

N(σ)

=
∑
σ∈M

N(σ) +
∑
σ∈M

N(σ)

=
∑
σ∈M

[N(σ) +N(σ)]

= |M |
(
n

2

)
= n

(
n

2

)
.

�

Corollary 4.3. If tn denotes the nth triangular number, then for all n ≥ 3 we have

Dn =
∑

tn−1<i<tn

i.
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Using Theorems 2.2, 2.3 and 4.2, we can generate the following table :
n 1 2 3 4 5 6 7 8 9
Sn 0 1 9 72 600 5400 52920 564480 6531840
An 0 0 4 36 300 2700 26460 282240 3265920
Dn 9 24 50 90 147 224 324

5. Number of permutations with k inversions

Let In(k) denotes the number of permutations in Sn having k inversions. It was
shown that the sequence {In(k) : 0 ≤ k ≤

(
n
2

)
} has the generating function

(n2)∑
k=0

In(k)x
k =

n∏
j=1

1− xj

1− x
,

and using this polynomial, one can find the value of In(k) for k = 0, 1, . . . ,
(
n
2

)
,

(see [3]). Also, asymptotic formulas of the sequence {In+k(n) : n ∈ N} for a fixed
integer k ≥ 0 were discussed in [2] and [3]. In this paper, we employ the partitioning
method to provide a recursive formula in finding these inversion numbers.

Lemma 5.1. For each 0 ≤ k ≤
(
n
2

)
, there exists σ ∈ Sn such that N(σ) = k.

Proof. If n = 1, 2, the statement clearly holds. Assume that the lemma is true
for n − 1. Let 0 ≤ k ≤

(
n
2

)
. For all 1 ≤ j ≤ n and 0 ≤ l ≤

(
n−1
2

)
there exists

τ ∈ S(A−{j}) such that N(στ,j) = (j− 1)+N(τ) and N(τ) = l. Observe that the
possible values of (j − 1) +N(τ) are 0, 1, . . . ,

(
n
2

)
. Therefore, one can find a j and a

τ such that στ,j ∈ Sn and N(στ,j) = (j − 1) +N(τ) = k. �

We note that Sn and An can be represented by the inversion numbers. Indeed,
we have

Sn =

(n2)∑
k=0

kIn(k) and An =

b 1
2(

n
2)c∑

k=0

2kIn(2k).

Theorem 5.2. For 0 ≤ k ≤
(
n
2

)
where n ≥ 2, we have the following recurrence

relation
I1(0) = I2(0) = I2(1) = 1 (5.1)

and

In(k) =

min{k,(n−1
2 )}∑

i=max{0,k−n+1}

In−1(i), n ≥ 3. (5.2)

Proof. Eq. (5.1) is clear. Now suppose n ≥ 3. Recall that N(στ,j) = (j−1)+N(τ).
Let N(στ,j) = k and N(τ) = i then 0 ≤ i ≤

(
n−1
2

)
and 0 ≤ j − 1 ≤ n− 1. We find

those i such that given j, N(στ,j) = k and In(k) can be formed by adding In−1(i) for
all values of i that we found. We have j−1+ i = k or equivalently i = k−j+1 ≤ k.
Because i ≤

(
n−1
2

)
, then i ≤ min

{
k,
(
n−1
2

)}
. Now i = k − j + 1 ≥ k − n + 1. But
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i must be nonnegative and thus i ≥ max {0, k − n+ 1}. Hence, we have Eq. (5.2).
�

With the aid of the previous theorem, we can generate the following table:
In(k)

n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1
2 1 1
3 1 2 2 1
4 1 3 5 6 5 3 1
5 1 4 9 15 20 22 20 15 9 4 1
6 1 5 14 29 49 71 90 101 101 90 71 49 29 14 5 1

Let n > 1. Using Theorem 5.2, if the value of In−1(k) for 0 ≤ k ≤
(
n−1
2

)
is known,

then the values of In(k) for 0 ≤ k ≤
(
n
2

)
can be determined by the following formula

In(k) =


1, if k = 0;

In(k − 1) + In−1(k), if 1 ≤ k ≤ n− 1;

In(k − 1) + In−1(k)− In−1(k − n), if n ≤ k ≤
(
n−1
2

)
;

In(k − 1)− In−1(k − n), if
(
n−1
2

)
< k ≤

(
n
2

)
.

(5.3)

Theorem 5.3. For all 0 ≤ k ≤
(
n
2

)
we have In

((
n
2

)
− k
)
= In(k).

Proof. Let K1 = {σ ∈ Sn : N(σ) = k} and K2 =
{
σ ∈ Sn : N(σ) =

(
n
2

)
− k
}
, and

by Lemma 5.1, K1 and K2 are both nonempty. The mapping B1 : K1 → K2 defined
by B1(σ) = σ is clearly bijective. Therefore |K1| = |K2| and so In

((
n
2

)
− k
)
= In(k).

�

Corollary 5.4. If n ≡ 2, 3 (mod 4) and C = 1
2

[(
n
2

)
− 1
]
then

C∑
k=0

In(k) =
n!

2
.

As an application of Eq. (5.3), we will consider the sequence {In+k(k) : n ≥ 0},
where k ≥ 1 is fixed. One can verify, using the second case in Eq. (5.3), that
In+1(1) = n, In+2(2) = n(n + 3)/2 and In+3(3) = (n + 3)(n2 + 6n + 2)/6, for all
n ≥ 0. Suppose In+k(k) =

∑k
i=0 akin

i, where akk 6= 0 so that deg In+k(k) = k. Thus

In+k+1(k + 1) = Ik+1(k + 1) +
n∑
j=1

Ij+1+k(k)

= Ck+1 +
n∑
j=1

k∑
i=0

aki(j + 1)i

= Ck+1 +
n∑
j=1

k∑
i=0

i∑
h=0

(
i

h

)
akij

h

= Ck+1 +
k∑
i=0

i∑
h=0

(
i

h

)
akiPh+1(n),
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for all n ≥ 0, where Ck+1 = Ik+1(k + 1) and Ph+1(n) =
∑n

j=1 j
h. It can be shown

that Ph+1(n) is a polynomial of degree h+1. From these, it follows that In+k+1(k+1)
is a polynomial of degree k + 1. Thus we have shown that, In+k(k) is a polynomial
of degree k for all k ≥ 1. This result implies that In(k) = O(nk) for all k ≥ 1.
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