

University of the Philippines Baguio College of Science

Department of Mathematics and Computer Science

COURSE SYLLABUS

Math 239
Numerical Partial Differential
Equations

Governor Pack Road, 2600 Baguio City Tel: +63 74 442 7231 Fax: +63 74 444 3128

A. COURSE DETAILS

Course Number: Math 239

Course Name: Numerical Partial Differential Equations

Course Description: Finite element spaces, polynomial interpolation in Sobolev spaces,

error estimates, discontinuous Galerkin methods, mixed methods

and the implementation of finite element methods.

Credit Units: 3 u

Prerequisite: Math 237 and Math 216 or COI

Requirements: Class Participation 10%

Problem Sets and Machine Exercises 40%
Midterm Examination 25%
Final Examination 25%

Total 100%

Passing Grade: 60%

B. PROGRAM LEARNING OUTCOMES (PLO)

Upon completion of the MS Mathematics program, the students are able to:

- **PLO 1** Discuss advanced concepts from various fields of mathematics including, but not limited to Algebra, Analysis, and Statistics, to exhibit mastery in the different areas of mathematics.
- PLO 2 Provide accurate and rigorous solutions and proofs, both verbal and written, for mathematical problems, to demonstrate deep understanding of the theory and its applications.
- PLO 3 Generate new results to contribute to mathematical knowledge.
- PLO 4 Prepare for doctoral studies, advanced research, and careers in education, industry, and government, towards the students' professional development and personal growth.

C. COURSE LEARNING OUTCOMES (CLO)

At the end of this course, the students must be able to:

- **CLO 1** Discuss the basic mathematical theory of finite element methods for the numerical approximations of solutions for partial differential equations.
- CLO 2 Analyze consistency, stability, and the convergence of a numerical method, including error estimates and error analysis.
- CLO 3 Apply the generalized Galerkin and discontinuous Galerkin methods to elliptic, parabolic, and hyperbolic problems.
- CLO 4 Design algorithms based on theoretical discussions and implement them using available computing software such as C++, Python, and/or Matlab.

D. MAPPING OF CLO with the PLO

	PLO 1	PLO 2	PLO 3	PLO 4
CLO 1	F	F	I	I
CLO 2	F	F	M	F
CLO 3	F	F	M	F
CLO 4	F	F	F	F

LEGEND: I-Introduced; M-Moderately achieved; F-Fully achieved

Governor Pack Road, 2600 Baguio City Tel: +63 74 442 7231 Fax: +63 74 444 3128

Introduced [30%, 60%): The course has introduced fundamental concepts necessary for the program objectives. **Moderately Achieved [60%; 85%):** The course has developed partial knowledge, somehow prerequisite, for the program objectives.

Fully Achieved [85%, 100%]: The course has developed complete knowledge associated with the program objectives.

E. CLASS RULES

- 1. Students are expected to have a copy of any of the reference materials. Lectures and exercises are based on these materials.
- 2. The University rule on class attendance (Article 346 of the University Code) shall be strictly enforced in the class.
- 3. If a student misses a short quiz, his/her grade on that quiz is zero. If a student misses a long examination for a valid reason (this requires documentation), his/her grade in the final exam will also account for his/her grade for the missed exam. This applies to no more than one long exam missed. A student who fails to take any examination for invalid reasons will get a grade of 0% for that exam.
- 4. Cheating, in any form, will not be tolerated.

F. GRADING SCHEME

The work of students shall be graded at the end of each semester/midyear term in accordance with the following system:

٠,	y Stelli.		
	Grade	Interval	Classification:
	1.00	[96, 100]	Excellent
	1.25	[91, 96)	
	1.50	[87, 91)	Very Good
	1.75	[82, 87)	
	2.00	[78, 82)	Good
	2.25	[73, 78)	
	2.50	[69, 73)	Satisfactory
	2.75	[64, 69)	-
	3.00	[60, 64)	Pass
	4.00	[55, 60)	Conditional
	5.00	[0, 55)	Fail
	INC		Incomplete
	DRP		Dropped

Remark: Clearing of Grades of "Incomplete" or "4"

"4" means conditional failure. It may be made up for by successful repetition of the course, or by passing a removal examination. Students are given a grade of "3" if they pass the re-examination, "5" if they fail. Only one re-examination which must be taken within the prescribed time is allowed. If a student does not remove the grade "4" within the prescribed time, he/she may earn credit for the course only by repeating it and passing it.

The grade of "INC" is given if a student whose class-standing throughout the semester is "Passing," fails to take the final examination or fails to complete other requirements for the course due to illness or other valid reasons. In case the class standing is not passing and the student fails to take the final examination for any reason, a grade of "5" is given. Removal of the "INC" must be done within the prescribed time by passing an examination or meeting all the requirements for the course, after which the student shall be given a final grade based on his/her overall performance.

Taken from: <u>UPB Academic Catalogue 2019</u>

Governor Pack Road, 2600 Baguio City Tel: +63 74 442 7231 Fax: +63 74 444 3128

G. COURSE OUTLINE

6. CO 6 .	KSE OUI			
Timeline	CLOs	Topics	Learning Activities	Assessment Tools
		INTRODUCTION AND PRELIM	IINARIES	
Week 1	CLO 1 CLO 2 CLO 4	1. Overview of Finite Element Method Variational Formulation of Elliptic Partial Differential Equations (PDEs), Ritz-Galerkin Approximation, Approximation by Piecewise Polynomials	Lectures; Group Discussions; Reading Assignments; Individual Inquiry; Consultations;	Problem Sets; Machine Exercises
Week 2		Sobolev Spaces, Weak Solutions to Elliptic PDEs, Regularity Theory	Collaborative Work; Computer Demonstrations	
		CONFORMING FINITE ELEMENT	METHODS	
Week 3	CLO 1	2. Finite Element Spaces Galerkin Approach for Elliptic PDEs, Construction of Finite Element Spaces	Lectures;	Problem Sets;
Week 4		Examples of Finite Element Spaces, Triangulation, Interpolation	Group Discussions; Reading Assignments;	Machine Exercises; Oral Presentations and Reporting;
Week 5	CLO 2	3. Error Estimates and Implementation Bramble-Hilbert Lemma, Local Interpolation Estimates	Individual Inquiry; Consultations; Pause for Reflection; Collaborative Work;	
Week 6	CLO 2 CLO 4	Inverse Estimates, A Priori Error Estimates, A Posteriori Error Estimates	Class Reporting; Computer Demonstrations	Written Examination
Week 7		Implementation: Triangulation, Assembly, Linear Solvers	Computer Bemonstrations	
		NONCONFORMING FINITE ELEME	NT METHODS	
Week 8		4. Mixed Methods Generalized Galerkin Method, Abstract Saddle Point Problems	Lectures; Group Discussions;	Problem Sets;
Week 9	CLO 3 CLO 4	Galerkin Approximation of Saddle Point Problems, Mixed Methods for the Poisson Equation	Reading Assignments; Individual Inquiry; Consultations;	Machine Exercises; Oral Presentations
Week 10	CLO 4	5. Discontinuous Galerkin Methods Weak formulation of Advection-Reaction Equations, Galerkin Approach	Pause for Reflection; Collaborative Work; Class Reporting;	and Reporting; Written Examination
Week 11		Error Estimates, Discontinuous Galerkin Methods for Elliptic PDEs	Computer Demonstrations	Examination
		FINITE ELEMENT METHODS FOR TIME-DE	PENDENT PROBLEMS	
Week 12		6. Finite Element Methods for Parabolic and Hyperbolic Problems Function spaces, Weak Solutions of Parabolic PDEs	Lectures; Group Discussions; Reading Assignments;	Problem Sets; Machine
Week 13	CLO 3	Galerkin Approach for Parabolic Problems: Time Advancing Schemes, Galerkin Methods	Individual Inquiry; Consultations;	Exercises; Oral
Week 14	CLO 4	Discontinuous Galerkin Methods for Parabolic Problems, A Priori Estimates	Pause for Reflection; Collaborative Work;	Presentations and Reporting;
Week 15		Weak Solutions of Hyperbolic PDEs	Class Reporting;	Written Examination
Week 16		Galerkin Approach for Hyperbolic Problems: Time Advancing Schemes, Galerkin Methods	Computer Demonstrations	2/4/11/14/10/1

H. REFERENCES

- 1. D. Braess, Finite Elements, 3rd ed., Cambridge University Press, Cambridge, 2007.
- 2. D. Boffi, F. Brezzi and M. Fortin, *Mixed and Finite Element Methods and Applications*, Springer Series in Computational Mathematics Vol. 44, Springer, New York, 2013.
- 3. S. C. Brenner and L. R. Scott, *The Mathematical Theory of Finite Element Methods*, 3rd ed., Texts in Applied Mathematics Vol. 15, Springer, New York, 2008.
- 4. C. Clason, *Introduction to Finite Element Methods*, Lecture Notes, 2021. URL: https://arxiv.org/pdf/1709.08618.pdf

Governor Pack Road, 2600 Baguio City Tel: +63 74 442 7231 Fax: +63 74 444 3128

- 5. A. Ern and J.-L. Guermond, *Finite Elements*, Vol I-III, Texts in Applied Mathematics Vol. 72, Springer, New York, 2021.
- 6. H. C. Elman, D. J. Silvester and A. J. Wathen, *Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics*, Oxford University Press, Oxford, 2005.
- 7. S. Larsson and V. Thomée, *Partial Differential Equations with Numerical Methods*, Texts in Applied Mathematics Vol. 45, Springer-Verlag, Berlin, 2003.
- 8. A. Quarteroni and A. Valli, *Numerical Approximation of Partial Differential Equations*, Springer Series in Computational Mathematics Vol. 23, Springer, Heidelberg, 2008.
- 9. O. Steinbach, Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements, Springer Science+Business Media, LLC, New York, 2008.
- 10. V. Thomée, *Galerkin Finite Element Methods for Parabolic Problems*, 2nd ed., Springer Series in Computational Mathematics Vol. 25, Springer, Berlin, 2006.

I. RUBRICS FOR ASSESSMENT

PROBLEM SETS/QUIZZES/ASSIGNMENTS/EXAMINATIONS						
CRITERIA	Poor 1	Fair 2	Satisfactory 3	Very Good 4	Excellent 5	
Problem Interpretation 30%	Minimal or little indication of ideas relevant to the problem	Correct but insufficient interpretation of the problem	Correct but with significantly inaccurate or unnecessary concepts used in the solution	Correct but with slightly inaccurate or unnecessary concepts used in the solution	Correct and accurate interpretation of the problem	
Proof/Solution Correctness 70%	Incorrect or incoherent solution	Logically sound but incomplete solution	Correct solution but with significantly unnecessary steps or insufficient concepts	Correct solution but with slightly unnecessary steps or insufficient concepts	Well-written, logically correct, and clear solution	

ORAL PRESE	NTATIONS				
CRITERIA	Poor 1	Fair 2	Satisfactory 3	Very Good 4	Excellent 5
Content Knowledge 50%	Little understanding of the topic	Understands the topic but unable to answer the audience's questions	Familiarity of the topic, answers few or some of the audience's questions	Familiarity of the topic, answers the audience's questions elaborately	Mastery of the topic, discusses minimum key points with the most impact, answers the audience's questions elaborately
Delivery 20%	No script, incomprehensible and inaudible voice	Unfamiliarity of script, clear but monotone voice with several mispronunciations of terms	Familiarity of script, clear voice with few mispronunciations of terms	Familiarity of script, clear voice with correct pronunciation of terms	Mastery of script, clear voice with correct pronunciation of terms
Visuals 15%	Too much text with no visual aids, unreadable presentation with irrelevant information, several typographical errors	Readable presentation but with little visual aids, several typographical errors	Readable presentation, and uses some visual aids vital to the presentation, few typographical errors	Comprehensive presentation, makes use of appealing visual aids vital to the presentation, no typographical error	Comprehensive presentation, makes use of appealing, effective and varying visual aids vital to the presentation, no

Department of Mathematics and Computer Science COLLEGE OF SCIENCE UNIVERSITY OF THE PHILIPPINES BAGUIO Governor Pack Road, 2600 Baguio City Tel: +63 74 442 7231 Fax: +63 74 444 3128

					typographical
					error
Organization	Untimely and	Structured but	Structured with	Well-structured,	Well-structured,
15%	unstructured	with confusing	logical flow of	timely	timely
	presentation	flow of	information, or	presentation	presentation
	delivery with no	information, or	untimely	delivery with	delivery with
	logical flow of	untimely	presentation	logical flow of	logical and
	information	presentation	delivery	information	interesting flow of
		delivery			information

Examples of visual aids: Figures, Tables, Graphs, Charts, Videos, etc.

CRITERIA	Poor 1	Fair 2	Satisfactory 3	Very Good 4	Excellent 5
Specifications 50%	Does not compile and run	Compiles and runs but does not meet any of the specifications or meets few of the specifications	Compiles and runs, meets some of the specifications	Compiles and runs, meets most of the specifications	Compiles and runs, meets all o the specifications
Efficiency 20%	Extensive use of brute force algorithms, makes use of excessive resources than expected	Makes use of brute force algorithms, makes us of more resources than expected	Makes use of efficient but with some brute force algorithms, makes use of more resources than expected	Makes use of efficient but with few brute force algorithms, makes use of enough resources	Makes use of efficient algorithm and optimizes resource allocatio
Readability 10%	Unorganized, not readable, does not follow best coding practices	Unorganized and only readable by the creator, follows few best coding practices	Organized, but only readable by those who know the problem, follows some best coding practices	Organized and readable, follows most best coding practices	Well-organized and very easy to understan
Reusability 10%	Contains multiple instances of redundant code	Contains some instances of redundant code	Makes use of some functions or methods, but contains few redundant code	Extensive use of functions and methods	Makes full use o functions and methods
Documentation 10%	Simple or no comments included in the code, does not help the reader understand the code	Simple and redundant comments that provide little information on the code	Contains comments and some simple header documentation that are useful in understanding the code	Contains clear comments and header documentation that are very useful in understanding the code	Contains clear comments and header documentation that are well-written, explains what th code accomplishe and how it work

Governor Pack Road, 2600 Baguio City Tel: +63 74 442 7231 Fax: +63 74 444 3128

THE UNIVERSITY OF THE PHILIPPINES

UP was founded in 1908 with its first campus in Manila. It was followed soon after by the establishment of constituent universities and campuses all over the country. Over the course of a century, UP has established eight constituent universities distributed across 17 campuses.

Vision

The University of the Philippines (UP) envisions itself to be a leading regional and global university in an environment that sustains 21st-century learning, knowledge, creation, and public service for society and humanity.

Mandates

As the national university, UP is mandated to perform its unique and distinctive leadership in higher education and development, in terms of:

- Setting academic standards and initiating innovation in teaching, research, and faculty development in an environment of academic freedom;
- Serving as a graduate university providing advanced and specialized studies, especially to the faculty members of state and private colleges and universities;
- Serving as a research university in various fields of expertise and contributing to the dissemination and application of new knowledge;
- Leading as a public service university by providing different forms of community, public, and volunteer service to the government, the private sector, and civil society;
- Protecting and promoting the professional and economic right and welfare of its academic and non-academic personnel;
- Providing learning opportunities in various forms to promote such special concerns as responsible citizenship, sustainable development, sports and health development, and cultural development;
- Serving as a hub for regional and global academic networks; and
- Applying the highest standards of academic and institutional governance within a meritocracy based on collegiality, representation, accountability, transparency, and active participation of all constituents.

For more information on the University's Vision and Mission, refer to the UP Strategic Plan 2017-2023.

University of the Philippines' Philosophy of Education and Graduate Attributes

A UP education seeks to produce graduates imbued with an abiding sense of responsibility to their people and nation, the skills and mindsets to improve human life, and a commitment to the freedom and welfare of all.

Aside from mastery of knowledge in their specific disciplines, UP graduates must possess breadth of mind, strength of character, and generosity of spirit, fostered by a firm grounding in both the arts and sciences, and such specialist courses as their programs may require.

They must be prepared to inclusively engage with society and the world at large, mindful of their people's needs and capabilities, and keen to the challenges and opportunities of national development in this century of rapid global change.

UP aims to achieve this through its General Education program, one that develops mind, body and spirit, which familiarize all its students with their culture and history and fosters a sense of shared citizenship, while equipping them with critical thinking, discernment and technical skills they will need to excel in their chosen professions.

Governor Pack Road, 2600 Baguio City Tel: +63 74 442 7231 Fax: +63 74 444 3128

THE UNIVERSITY OF THE PHILIPPINES BAGUIO

Established through the initiative of UP alumni in Baguio and Benguet, the University of the Philippines Baguio was inaugurated as a degree-granting unit of the University on 22 April 1961. A land grant worked out by alumni, the City Council, and by then UP President Vicente Cinco situated the College on its present location, a pine clad-hill offering a scenic view of Baguio. The College went on to make its presence felt as it served as the site of the National Arts Festivals in the coming years. Moves were made to strengthen its research capabilities, culminating in the institution of the Cordillera Studies Center in 1983. Directions towards autonomy began with strategic planning in 1996. The following years saw the College working assiduously in the reformulation and strengthening of its academic programs, primarily. Administration of the College likewise oversaw the development in infrastructure and improvement of services and facilities. Such growth led to the elevation of UP College Baguio to full autonomous status, granted by the Board of Regents in December 2002. UP Baguio is now the seventh constituent university of the UP System.

Vision

As a constituent university of the University of the Philippines System, UP Baguio will sustain its lead position in the delivery of tertiary education in the north. It will continue to nurture and develop innovative programs in the arts and sciences. It will also continue to develop the niche it has created over the past decades in Cordillera Studies.

Mission

Our mission, therefore, as a unit of the U.P. System and as the leading institution of higher learning in Northern Luzon, is to spearhead the offering of the highest standard of education and to contribute to the overall upgrading of the quality of instruction in the region. We seek to create an impact by informing our programs with a regional perspective, at the same time that these are informed by a national and global outlook.

For more information on UP Baguio's Vision and Mission, refer to the official UP Baguio webpage.

THE COLLEGE OF SCIENCE

After the reorganization of UP Baguio during its institution as the seventh constituent university of the UP system in 2002, the College of Science (CS), being one of the three colleges emerging from the reorganization, evolved from the merger of the Division of Natural Sciences and Mathematics and the Sports, Physical Education and Recreation Division. The College offers four undergraduate degree programs: BS Biology, BS Computer Science, BS Mathematics, and BS Physics program. All these programs are regularly reviewed and upgraded to prepare students for careers in education, research, or postgraduate studies.

The CS Dean, together with the Faculty Assembly and in cooperation with the College Executive Board (CEB), leads the Department of Biology, the Department of Physical Sciences, the Department of Mathematics and Computer Science, and the Human Kinetics Program towards academic excellence and public service.

Vision

The College of Science aims to continue offering high standard and relevant quality education through good practices in program implementation that follow innovative pedagogical strategies that utilize appropriate technology in supporting this endeavor. It will further its objectives by initiating interdisciplinary programs anchored on disciplinary specializations in its efforts to enhance the efficiency of research conduct and management. It will continue to encourage and reward scientific productivity by conducting research responsive to the needs of the region, nation, and the global community.

Governor Pack Road, 2600 Baguio City Tel: +63 74 442 7231 Fax: +63 74 444 3128

The College envisions itself moving towards a more inclusive and equitable environment that enables faculty members to lead on with exemplary qualifications – mindful of scholarly research and dedicated to public service.

Furthermore, it will support UP Baguio's wellness program for both academic and support staff to guarantee efficiency in service to the university and the society.

Lastly, the College, together with the University, will take initiative to continue, strengthen and widen the reach of its involvement in public service by sharing individual and collective expertise with other academic institutions, local government units, NGOs, peoples' organizations, and indigenous communities in the region and other areas.

Mission

In line with the college's vision, it is our mission, therefore, to produce scientific leaders and civic-minded citizens with high regard for integrity, compassion, and genuine service who lead in a research study that follows ethical standards and excellence in instruction, research, and public service.

It is our mission to improve on basic facilities and design where researchers can work more collaboratively and efficiently. We pursue to guarantee the safety of researchers, to minimize adverse impact to the environment, to respect research protocols involving indigenous communities, and to ensure professional conduct as we encourage good instruction, research, and public service in upholding the University's banner of *Honor and Excellence*.

Goals

In accordance with the mission and vision of the University, the college aims to accomplish the following goals:

- To continue formulating new degree programs while regularly upgrading existing ones;
- To encourage interdisciplinary research across programs;
- To institutionalize the Science Research Center in continuing research responsive to the need of the region, and in the enhancement of interdisciplinary collaboration within the departments of the College and even with other faculty members in other colleges of the University of the Philippines Baguio;
- To have a closer linkage with the Cordillera Studies Center as the university's research center and as an aid in putting up the biodiversity and innovation research center;
- To foster an environment suitable for the growth of the academic and support staff; and,
- To provide public service based on each academic and support staff's specialization.

For more information on CS' Vision, Mission, and Goals, refer to the official CS website.

THE DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

The Department of Mathematics and Computer Science (DMCS) grew from a discipline to a department in 2002 when UP Baguio became the seventh constituent university of the UP System. The Department offers two undergraduate programs (BS Mathematics and BS Computer Science) and two graduate programs (MS Mathematics and PhD Mathematics). The Department pioneered the PhD Mathematics Program in Northern Luzon.

Vision

The DMCS adheres to the highest standards of excellence in all aspects of teaching, research, and extension service. It will build and maintain nationally and internationally recognized experts in the core and emerging areas of study in mathematics, statistics, and computer science. It will set the standards for promoting quality instruction, interdisciplinary research, teacher training, and other extension programs within the University, the Northern Luzon region, and the country.

Governor Pack Road, 2600 Baguio City Tel: +63 74 442 7231 Fax: +63 74 444 3128

Further, it aspires to become a Center of Excellence in mathematics both in the country and in the ASEAN region.

Mission and Goals

The DMCS is committed to pursuing excellence in teaching, research, and extension service within the University, the Northern Luzon region, and the country.

The Department identified these five major goals to help realize its mission:

- 1. Strengthen its graduate and undergraduate programs;
- 2. Aggressively promote and maintain high standards of quality education;
- 3. Lead in research capability building and research-generating activities in the mathematical and computing sciences and in mathematics education in the region;
- 4. Upgrade the quality of mathematics and computing education in the primary, secondary, and tertiary levels in Northern Luzon; and
- 5. Make quality mathematics and computer science education accessible to the people in the region.

The MS Mathematics Program

The Master of Science in Mathematics (MS Math) Program of UP Baguio, instituted in 2001, provides students with a firm grounding in theoretical Mathematics to prepare them for doctoral studies, research, careers in industry and government, and for teaching junior and senior level undergraduate Mathematics courses.

The MS Math curriculum is designed to allow the student an in-depth study of standard graduate courses in Analysis and Algebra, and electives that would lead the student to a specialization area of Mathematics in preparation for his/her research work. The curriculum also helps the student in applying mathematical tools to problems in other disciplines, such as Engineering, Physics, Life Sciences, Computing Sciences, Statistics, Finance and even the Social Sciences.

For more information on DMCS' Vision, Mission and Goals, and the MS Mathematics Program, refer to the official DMCS website.

Updated as of April 2023