

University of the Philippines Baguio College of Science Department of Mathematics and Computer Science

COURSE SYLLABUS

Math 236 Numerical Analysis

A. COURSE DETAILS

Course Number: Course Name:	Math 236 Numerical Analysis	
Course Description:	Construction, analysis and implementation solution of nonlinear equations; linear s equations; interpolation and functional ap differentiation, numerical integration, n	systems and differential pproximation; numerical
	eigenvalues and eigenvectors.	iumericui opumizution,
Credit Units:	3 u	
Prerequisite:	COI (Consent of Instructor)	
Requirements:	Class Participation	10%
-	Problem Sets and Machine Exercises	40%
	Midterm Examination	25%
	Final Examination	25%
	Total	100%
Passing Grade:	60%	

B. PROGRAM LEARNING OUTCOMES (PLO)

Upon completion of the MS Mathematics program, the students are able to:

- **PLO 1** Discuss advanced concepts from various fields of mathematics including, but not limited to Algebra, Analysis, and Statistics, to exhibit mastery in the different areas of mathematics.
- **PLO 2** Provide accurate and rigorous solutions and proofs, both verbal and written, for mathematical problems, to demonstrate deep understanding of the theory and its applications.
- **PLO 3** Generate new results to contribute to mathematical knowledge.
- **PLO 4** Prepare for doctoral studies, advanced research, and careers in education, industry, and government, towards the students' professional development and personal growth.

C. COURSE LEARNING OUTCOMES (CLO)

At the end of this course, the students must be able to:

- **CLO 1** Discuss the fundamentals of computer arithmetic and the sources of computational errors.
- **CLO 2** Design algorithms based on theoretical discussions and implement them using available computing software such as C, C++, Python, and/or Matlab.
- **CLO 3** Examine methods for approximating solutions to scalar equations, systems of linear and nonlinear equations, and their applications in the field of optimization.
- CLO 4 Discuss and apply various methods for approximating functions and their derivatives and integrals.
- **CLO 5** Apply appropriate numerical methods for ordinary differential equations from other fields, such as models arising in biology, physics, engineering, and the social sciences.

D. MAPPING OF CLO with the PLO

	PLO 1	PLO 2	PLO 3	PLO 4
CLO 1	F	F	Ι	М
CLO 2	F	F	Ι	F
CLO 3	F	F	Ι	F
CLO 4	F	F	Ι	F
CLO 5	F	F	Ι	F

LEGEND: I-Introduced; M-Moderately achieved; F-Fully achieved

Introduced [30%, 60%): The course has introduced fundamental concepts necessary for the program objectives. **Moderately Achieved [60%; 85%):** The course has developed partial knowledge, somehow prerequisite, for the program objectives.

Fully Achieved [85%, 100%]: The course has developed complete knowledge associated with the program objectives.

E. CLASS RULES

- 1. Students are expected to have a copy of any of the reference materials. Lectures and exercises are based on these materials.
- 2. The University rule on class attendance (Article 346 of the University Code) shall be strictly enforced in the class.
- 3. If a student misses a short quiz, his/her grade on that quiz is zero. If a student misses a long examination for a valid reason (this requires documentation), his/her grade in the final exam will also account for his/her grade for the missed exam. This applies to no more than one long exam missed. A student who fails to take any examination for invalid reasons will get a grade of 0% for that exam.
- 4. Cheating, in any form, will not be tolerated.

F. GRADING SCHEME

The work of students shall be graded at the end of each semester/midyear term in accordance with the following system:

Grade	Interval	Classification:
1.00	[96, 100]	Excellent
1.25	[91, 96)	
1.50	[87, 91)	Very Good
1.75	[82, 87)	
2.00	[78, 82)	Good
2.25	[73, 78)	
2.50	[69, 73)	Satisfactory
2.75	[64, 69)	
3.00	[60, 64)	Pass
4.00	[55, 60)	Conditional
5.00	[0, 55)	Fail
INC		Incomplete
DRP		Dropped

Remark: Clearing of Grades of "Incomplete" or "4"

"4" means conditional failure. It may be made up for by successful repetition of the course, or by passing a removal examination. Students are given a grade of "3" if they pass the re-examination, "5" if they fail. Only one

re-examination which must be taken within the prescribed time is allowed. If a student does not remove the grade "4" within the prescribed time, he/she may earn credit for the course only by repeating it and passing it.

The grade of "INC" is given if a student whose class-standing throughout the semester is "Passing," fails to take the final examination or fails to complete other requirements for the course due to illness or other valid reasons. In case the class standing is not passing and the student fails to take the final examination for any reason, a grade of "5" is given. Removal of the "INC" must be done within the prescribed time by passing an examination or meeting all the requirements for the course, after which the student shall be given a final grade based on his/her overall performance. Taken from: <u>UPB Academic Catalogue 2019</u>

G. COURSE OUTLINE

Timeline	CLOs	Topics	Learning Activities	Assessment Tools
		ERRORS AND APPROXIMA	TIONS	
Week 1		1. Introduction and Fundamental Concepts Solutions to Polynomial Equations, Fixed-Point and Floating-Point Representations, Accuracy and Machine Operations on Floating-Point Numbers	Lectures; Group Discussions; Reading Assignments; Individual Inquiry;	Problem Sets; Machine Exercises; Oral Presentations and Reporting; Written
Week 2	CLO 1 CLO 2	2. Error and Stability Analysis of Numerical Algorithms Cancellation, Round-Off Error Bounds, Round-Off Errors in Summation	Consultations; Pause for Reflection; Collaborative Work;	
Week 3		Round-Off Errors in Inner Products, Outer Products, Complex Arithmetic, and Matrix Algebra	Class Reporting; Computer Demonstrations	Examination
		SCALAR ROOT FINDING PRO	DBLEMS	
Week 4	_	3. Scalar Root-Finding Algorithms Bisection Method, Methods Based on First-Order Approximations, Picard Fixed-Point Method, Convergence of Root-Finding Algorithms Rounding Errors for Fixed-Point and Newton	Lectures; Group Discussions;	Problem Sets; Machine
Week 5	CLO 2 Modifi CLO 3 Stoppi	Methods, Müller Method and its Generalizations, Modified Dekker-Brent Criteria, Analysis of Stopping Criteria	Reading Assignments; Individual Inquiry; Consultations; Pause for Reflection;	Exercises; Oral Presentations and Reporting;
Week 6		4. Acceleration, Multiple Solutions, and Zeros of Polynomials Aitken Acceleration Method, Modified and Adaptive Newton Method, Zeros of Polynomial Functions: Newton-Horner and Müller-Horner Methods	Collaborative Work; Class Reporting; Computer Demonstrations	Written Examination
		LINEAR AND NONLINEAR SY	YSTEMS	
Week 7		5. Direct Methods for Linear Systems Triangular Systems, LU Factorization, Partial and Complete Pivoting Strategies		
Week 8	CLO 2 CLO 3	QR Factorization, Cholesky Factorization, 6. Iterative and Gradient Methods for Linear Systems Iterative Methods for Linear Systems: Jacobi, Gauss-Seidel and Over-Relaxation Methods	Lectures; Group Discussions; Reading Assignments; Individual Inquiry; Consultations; Pause for Reflection;	Problem Sets; Machine Exercises; Oral Presentations and Reporting; Written Examination
Week 9		Gradient Algorithms: Steepest Descent, Conjugate Gradient, and Other Gradient Methods	Collaborative Work; Class Reporting; Computer Demonstrations	
Week 10		7. Iterative Methods for Nonlinear Systems Newton, Broyden, Fixed-Point and Nonlinear Gauss-Seidel Methods	-	
	INTER	POLATION, NUMERICAL DIFFERENTIATION, A	ND NUMERICAL INTEGRATI	ON
Week 11		8. Polynomial Approximation and Interpolation Basic Polynomial Approximation, Lagrange Interpolation, Hermite Interpolation		

Week 12	CLO 2	Piecewise Lagrange Interpolation, Polynomial Interpolation on Rectangles, Polynomial Least Squares, Minimax Approximation	Lectures; Group Discussions;	Problem Sets; Machine
Week 13	CLO 3	9. Numerical Differentiation and Integration Numerical Differentiation, Interpolatory Quadrature, Newton-Cotes Quadrature, Computation of Quadrature Nodes and Weights	Reading Assignments; Individual Inquiry; Consultations; Pause for Reflection;	Exercises; Oral Presentations and Reporting;
Week 14		Gaussian Quadrature and Generalizations, Composite Quadrature, Hermite Quadrature, Numerical Methods for Iterated Integrals	Collaborative Work; Class Reporting; Computer Demonstrations	Written Examination
Week 15	CLO 2	10. Numerical Methods for Ordinary Differential Equations Single-Step Methods, Runge-Kutta Methods		
Week 16	CLO 4	Linear Multi-Step Methods: Adams-Bashforth, Adams-Moulton, and Backward Difference Formulas, Predictor-Corrector Methods		

H. REFERENCES

- 1. R. Brent, *Algorithms for Minimization Without Derivatives*, Prentice-Hall, Englewood Cliffs, New York, 1973.
- 2. D. Goldberg, What Every Computer Scientist Should Know About Floating-Point Arithmetic, ACM Computing Surveys, Vol 23, No 1, pp. 6–48, 1991.
- 3. P. Henrici, Discrete Variable Methods in Ordinary Differential Equations, Wiley, New York, 1987.
- 4. N. Higham, *Accuracy and Stability of Numerical Algorithms*, SIAM Publications, Philadelphia, PA, 1996.
- 5. F. Hildebrand, Introduction to Numerical Analysis, McGraw-Hill, New York, 1987.
- 6. E. Isaacson and H. B. Keller, *Analysis of Numerical Methods*, John Wiley & Sons, Canada, 1966.
- 7. J. D. Lambert, *Computation Method in Ordinary Differential Equations*, Wiley, Chickester, 1991.
- 8. C. Moler, Numerical Computing with Matlab. SIAM, 2004.
- 9. A. Quarteroni, R. Sacco and F. Saleri, *Numerical Mathematics*, 2nd ed., Texts in Applied Mathematics, Volume 37, Springer Berlin Heidelberg, 2007.
- 10. A. Ralston and P. Rabinowitz, *A First Course in Numerical Analysis*, 2nd ed., Dover Publications, New York, 1978.
- 11. J. Shen, T. Tang and L.-L. Wang, *Spectral Methods: Algorithms, Analysis and Applications*, Springer-Verlag, Berlin Heidelberg, 2011.

I. RUBRICS FOR ASSESSMENT

PROBLEM SETS/EXAMINATIONS						
CRITERIA	Poor 1	Fair 2	Satisfactory 3	Very Good 4	Excellent 5	
Problem Interpretation 30%	Minimal or little indication of ideas relevant to the problem	Correct but insufficient interpretation of the problem	Correct but with significantly inaccurate or unnecessary concepts used in the solution	Correct but with slightly inaccurate or unnecessary concepts used in the solution	Correct and accurate interpretation of the problem	
Proof/Solution Correctness 70%	Incorrect or incoherent solution	Logically sound but incomplete solution	Correct solution but with significantly unnecessary steps or insufficient concepts	Correct solution but with slightly unnecessary steps or insufficient concepts	Well-written, logically correct, and clear solution	

ORAL PRESE	ORAL PRESENTATIONS						
CRITERIA	Poor	Fair	Satisfactory	Very Good	Excellent		
Content	Little	2 Understands the	3 Familiarity of the	4 Familiarity of the	5 Mastery of the		
Knowledge	understanding of	topic but unable to	topic, answers few	topic, answers the	topic, discusses		
50%	the topic	answer the	or some of the	audience's	minimum key		
	1	audience's	audience's	questions	points with the		
		questions	questions	elaborately	most impact,		
					answers the		
					audience's		
					questions		
Dallar	NT	The fame the estimate f	The set 11 set (see a f	T = == 11 = = 11 = = 1	elaborately		
Delivery 20%	No script, incomprehensible	Unfamiliarity of script, clear but	Familiarity of script, clear voice	Familiarity of	Mastery of script, clear voice with		
20 /0	and inaudible	monotone voice	with few	script, clear voice with correct	correct		
	voice	with several	mispronunciations	pronunciation of	pronunciation of		
	voice	mispronunciations	of terms	terms	terms		
		of terms					
Visuals	Too much text	Readable	Readable	Comprehensive	Comprehensive		
15%	with no visual	presentation but	presentation, and	presentation,	presentation,		
	aids, unreadable	with little visual	uses some visual	makes use of	makes use of		
	presentation with	aids, several	aids vital to the	appealing visual	appealing,		
	irrelevant	typographical	presentation, few	aids vital to the	effective and		
	information, several	errors	typographical errors	presentation, no typographical	varying visual aids vital to the		
	typographical		enois	error	presentation, no		
	errors			citor	typographical		
					error		
Organization	Untimely and	Structured but	Structured with	Well-structured,	Well-structured,		
15%	unstructured	with confusing	logical flow of	timely	timely		
	presentation	flow of	information, or	presentation	presentation		
	delivery with no	information, or	untimely	delivery with	delivery with		
	logical flow of	untimely	presentation	logical flow of	logical and		
	information	presentation	delivery	information	interesting flow of		
		delivery			information		

Examples of visual aids: Figures, Tables, Graphs, Charts, Videos, etc.

MACHINE PI	MACHINE PROBLEMS/PROJECTS						
CRITERIA	Poor 1	Fair 2	Satisfactory 3	Very Good 4	Excellent 5		
Specifications 50%	Does not compile and run	Compiles and runs but does not meet any of the specifications or meets few of the specifications	Compiles and runs, meets some of the specifications	Compiles and runs, meets most of the specifications	Compiles and runs, meets all of the specifications		
Efficiency 20%	Extensive use of brute force algorithms, makes use of excessive resources than expected	Makes use of brute force algorithms, makes us of more resources than expected	Makes use of efficient but with some brute force algorithms, makes use of more resources than expected	Makes use of efficient but with few brute force algorithms, makes use of enough resources	Makes use of efficient algorithms and optimizes resource allocation		
Readability 10%	Unorganized, not readable, does not follow best coding practices	Unorganized and only readable by the creator, follows few best coding practices	Organized, but only readable by those who know the problem, follows some best coding practices	Organized and readable, follows most best coding practices	Well-organized and very easy to understand		

Reusability	Contains multiple	Contains some	Makes use of some	Extensive use of	Makes full use of
10%	instances of	instances of	functions or	functions and	functions and
	redundant code	redundant code	methods, but	methods	methods
			contains few		
			redundant code		
Documentation	Simple or no	Simple and	Contains	Contains clear	Contains clear
10%	comments	redundant	comments and	comments and	comments and
	included in the	comments that	some simple	header	header
	code, does not help	provide little	header	documentation	documentation
	the reader	information on the	documentation	that are very useful	that are
	understand the	code	that are useful in	in understanding	well-written,
	code		understanding the	the code	explains what the
			code		code accomplishes
					and how it works

THE UNIVERSITY OF THE PHILIPPINES

UP was founded in 1908 with its first campus in Manila. It was followed soon after by the establishment of constituent universities and campuses all over the country. Over the course of a century, UP has established eight constituent universities distributed across 17 campuses.

Vision

The University of the Philippines (UP) envisions itself to be a leading regional and global university in an environment that sustains 21st-century learning, knowledge, creation, and public service for society and humanity.

Mandates

As the national university, UP is mandated to perform its unique and distinctive leadership in higher education and development, in terms of:

- Setting academic standards and initiating innovation in teaching, research, and faculty development in an environment of academic freedom;
- Serving as a graduate university providing advanced and specialized studies, especially to the faculty members of state and private colleges and universities;
- Serving as a research university in various fields of expertise and contributing to the dissemination and application of new knowledge;
- Leading as a public service university by providing different forms of community, public, and volunteer service to the government, the private sector, and civil society;
- Protecting and promoting the professional and economic right and welfare of its academic and non-academic personnel;
- Providing learning opportunities in various forms to promote such special concerns as responsible citizenship, sustainable development, sports and health development, and cultural development;
- Serving as a hub for regional and global academic networks; and
- Applying the highest standards of academic and institutional governance within a meritocracy based on collegiality, representation, accountability, transparency, and active participation of all constituents.

For more information on the University's Vision and Mission, refer to the UP Strategic Plan 2017-2023.

University of the Philippines' Philosophy of Education and Graduate Attributes

A UP education seeks to produce graduates imbued with an abiding sense of responsibility to their people and nation, the skills and mindsets to improve human life, and a commitment to the freedom and welfare of all.

Aside from mastery of knowledge in their specific disciplines, UP graduates must possess breadth of mind, strength of character, and generosity of spirit, fostered by a firm grounding in both the arts and sciences, and such specialist courses as their programs may require.

They must be prepared to inclusively engage with society and the world at large, mindful of their people's needs and capabilities, and keen to the challenges and opportunities of national development in this century of rapid global change.

UP aims to achieve this through its General Education program, one that develops mind, body and spirit, which familiarize all its students with their culture and history and fosters a sense of shared citizenship, while equipping them with critical thinking, discernment and technical skills they will need to excel in their chosen professions.

THE UNIVERSITY OF THE PHILIPPINES BAGUIO

Established through the initiative of UP alumni in Baguio and Benguet, the University of the Philippines Baguio was inaugurated as a degree-granting unit of the University on 22 April 1961. A land grant worked out by alumni, the City Council, and by then UP President Vicente Cinco situated the College on its present location, a pine clad-hill offering a scenic view of Baguio. The College went on to make its presence felt as it served as the site of the National Arts Festivals in the coming years. Moves were made to strengthen its research capabilities, culminating in the institution of the Cordillera Studies Center in 1983. Directions towards autonomy began with strategic planning in 1996. The following years saw the College working assiduously in the reformulation and strengthening of its academic programs, primarily. Administration of the College likewise oversaw the development in infrastructure and improvement of services and facilities. Such growth led to the elevation of UP College Baguio to full autonomous status, granted by the Board of Regents in December 2002. UP Baguio is now the seventh constituent university of the UP System.

Vision

As a constituent university of the University of the Philippines System, UP Baguio will sustain its lead position in the delivery of tertiary education in the north. It will continue to nurture and develop innovative programs in the arts and sciences. It will also continue to develop the niche it has created over the past decades in Cordillera Studies.

Mission

Our mission, therefore, as a unit of the U.P. System and as the leading institution of higher learning in Northern Luzon, is to spearhead the offering of the highest standard of education and to contribute to the overall upgrading of the quality of instruction in the region. We seek to create an impact by informing our programs with a regional perspective, at the same time that these are informed by a national and global outlook.

For more information on UP Baguio's Vision and Mission, refer to the official UP Baguio webpage.

THE COLLEGE OF SCIENCE

After the reorganization of UP Baguio during its institution as the seventh constituent university of the UP system in 2002, the College of Science (CS), being one of the three colleges emerging from the reorganization, evolved from the merger of the Division of Natural Sciences and Mathematics and the Sports, Physical Education and Recreation Division. The College offers four undergraduate degree programs: BS Biology, BS Computer Science, BS Mathematics, and BS Physics program. All these programs are regularly reviewed and upgraded to prepare students for careers in education, research, or postgraduate studies.

The CS Dean, together with the Faculty Assembly and in cooperation with the College Executive Board (CEB), leads the Department of Biology, the Department of Physical Sciences, the Department of Mathematics and Computer Science, and the Human Kinetics Program towards academic excellence and public service.

Vision

The College of Science aims to continue offering high standard and relevant quality education through good practices in program implementation that follow innovative pedagogical strategies that utilize appropriate technology in supporting this endeavor. It will further its objectives by initiating interdisciplinary programs anchored on disciplinary specializations in its efforts to enhance the efficiency of research conduct and management. It will continue to encourage and reward scientific productivity by conducting research responsive to the needs of the region, nation, and the global community.

The College envisions itself moving towards a more inclusive and equitable environment that enables faculty members to lead on with exemplary qualifications – mindful of scholarly research and dedicated to public service.

Furthermore, it will support UP Baguio's wellness program for both academic and support staff to guarantee efficiency in service to the university and the society.

Lastly, the College, together with the University, will take initiative to continue, strengthen and widen the reach of its involvement in public service by sharing individual and collective expertise with other academic institutions, local government units, NGOs, peoples' organizations, and indigenous communities in the region and other areas.

Mission

In line with the college's vision, it is our mission, therefore, to produce scientific leaders and civic-minded citizens with high regard for integrity, compassion, and genuine service who lead in a research study that follows ethical standards and excellence in instruction, research, and public service.

It is our mission to improve on basic facilities and design where researchers can work more collaboratively and efficiently. We pursue to guarantee the safety of researchers, to minimize adverse impact to the environment, to respect research protocols involving indigenous communities, and to ensure professional conduct as we encourage good instruction, research, and public service in upholding the University's banner of *Honor and Excellence*.

Goals

In accordance with the mission and vision of the University, the college aims to accomplish the following goals:

- To continue formulating new degree programs while regularly upgrading existing ones;
- To encourage interdisciplinary research across programs;
- To institutionalize the Science Research Center in continuing research responsive to the need of the region, and in the enhancement of interdisciplinary collaboration within the departments of the College and even with other faculty members in other colleges of the University of the Philippines Baguio;
- To have a closer linkage with the Cordillera Studies Center as the university's research center and as an aid in putting up the biodiversity and innovation research center;
- To foster an environment suitable for the growth of the academic and support staff; and,
- To provide public service based on each academic and support staff's specialization.

For more information on CS' Vision, Mission, and Goals, refer to the official CS website.

THE DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

The Department of Mathematics and Computer Science (DMCS) grew from a discipline to a department in 2002 when UP Baguio became the seventh constituent university of the UP System. The Department offers two undergraduate programs (BS Mathematics and BS Computer Science) and two graduate programs (MS Mathematics and PhD Mathematics). The Department pioneered the PhD Mathematics Program in Northern Luzon.

Vision

The DMCS adheres to the highest standards of excellence in all aspects of teaching, research, and extension service. It will build and maintain nationally and internationally recognized experts in the core and emerging areas of study in mathematics, statistics, and computer science. It will set the standards for promoting quality instruction, interdisciplinary research, teacher training, and other extension programs within the University, the Northern Luzon region, and the country.

Further, it aspires to become a Center of Excellence in mathematics both in the country and in the ASEAN region.

Mission and Goals

The DMCS is committed to pursuing excellence in teaching, research, and extension service within the University, the Northern Luzon region, and the country.

The Department identified these five major goals to help realize its mission:

- 1. Strengthen its graduate and undergraduate programs;
- 2. Aggressively promote and maintain high standards of quality education;
- 3. Lead in research capability building and research-generating activities in the mathematical and computing sciences and in mathematics education in the region;
- 4. Upgrade the quality of mathematics and computing education in the primary, secondary, and tertiary levels in Northern Luzon; and
- 5. Make quality mathematics and computer science education accessible to the people in the region.

The MS Mathematics Program

The Master of Science in Mathematics (MS Math) Program of UP Baguio, instituted in 2001, provides students with a firm grounding in theoretical Mathematics to prepare them for doctoral studies, research, careers in industry and government, and for teaching junior and senior level undergraduate Mathematics courses.

The MS Math curriculum is designed to allow the student an in-depth study of standard graduate courses in Analysis and Algebra, and electives that would lead the student to a specialization area of Mathematics in preparation for his/her research work. The curriculum also helps the student in applying mathematical tools to problems in other disciplines, such as Engineering, Physics, Life Sciences, Computing Sciences, Statistics, Finance and even the Social Sciences.

For more information on DMCS' Vision, Mission and Goals, and the MS Mathematics Program, refer to the official DMCS website.

Updated as of April 2023