DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE College of Science, UP Baguio

Course Number:	MATH 140
Course Title:	Topological Structures
Credit Units:	3 units (3 hours lecture)
Prerequisite:	Junior Standing

Objectives: At the end of the course, the student will be able to:

CO1: Familiarize with basic set theory concepts;

- CO2: Explain the importance of topology as a field of mathematics;
- CO3: Define and give examples of topological spaces, basis of a topology and subspaces;
- CO4: Use the definitions of the subspace, order, product, and quotient topologies to prove their properties and be familiar with standard examples
- CO5: Explain notions of closure, interior, limit points, and solve problems involving these;
- CO6: Prove theorems and solve problems involving topological spaces, continuous functions, and topological equivalence;
- CO7: Enumerate, give examples, and solve problems involving metric spaces and metrizability.
- CO8: Explain notion of connectedness and be familiar with basic properties and some standard applications.
- CO9: Recognize when a topological space is compact and be familiar with basic properties of compact spaces;
- CO10: Demonstrate understanding of countability and separation axioms and illustrate their uses; and
- CO11: Familiarize with Urysohn Metrization Theorem and Tietze Extension Theorem.

Course Requirements:

3 Long Exams Problem Sets/Quizzes Final Exam

COURSE OUTLINE

1. SET THEORY AND LOGIC

Week 1	CO1	Fundamental Concepts	Assignments
	CO1	Functions & Relations	Quizzes
Week 2	CO1	Finite Sets	
	CO1	Countable and Uncountable Sets	
Week 3	CO1	Infinite Sets and the Axiom of	
		Choice	
	CO1	Partially Ordered and Well-Ordered	
		Sets	

2. TOPOLOGICAL SPACES AND CONTINUOUS FUNCTIONS

Week 4	CO1	Topological Spaces	Problem Set
	CO2		Assignments
	CO3		Quizzes
Week 5	CO3	Basis for a Topology	
		1 st LONG EXAMINATION	

Week 6	CO4	The Order Topology	Problem Set
	CO4	The Product Topology on XxY	Assignments
Week 7	CO4	The Subspace Topology	Quizzes
Week 8	CO5	Closed Sets and Limit Points	
Week 9-10	CO6	Continuous Functions	
	CO7	The Metric Topology	
		2 nd LONG EXAMINATION	

3. CONNECTEDNESS AND COMPACTNESS

Week 11	CO8	Connected Spaces	Assignments
		Connected Sets in the Real Line	Quizzes
Week 12	CO9	Compact Spaces	
		Compact Sets in the Real Line	

4. COUNTABILITY AND SEPARATION AXIOMS

Week 14	C10	The Countability Axioms	Problem Set
		The Separation Axioms	Assignments
Week 15	C10	Normal Spaces and the Urysohn	Quizzes
		Lemma	
Week 16	C11	Urysohn Metrization Theorem	
		Tietze Extension Theorem	
		3 rd LONG EXAMINATION	

Textbook: Munkres, J. (2000). *Topology: A First Course, 2nd ed.* New Jersey: Prentice-Hall

References:

- Arnold, B. H. (2011). Intuitive Concepts in Elementary Topology. New York: Dover Publications
- Krantz, S. (2010). Essentials of Topology with Applications. Boca Raton: CRC Press
- Lipschutz, S. (2012). General Topology. New York: McGraw-Hill
- Nash, C. (2011). Topology and Geometry for Physicists. New York: Dover Publications, Inc.
- Simmons, G. F. (2003). Introduction to Topology and Modern Analysis. Malabar: Krieger Publishing.
- Singh, T. (2013). Elements of Topology. Boca Raton: CRC Press

Wayne Patty, C. (2009). Foundations of Topology, 2nd ed. MA: Jones & Bartlett Publishers