

Department of Mathematics and Computer Science College of Science

University of the Philippines Baguio

SYLLABUS

A. COURSE DETAILS

Course Number: Course Name: Course Description:	Math 100 Introduction to Calculus This course introduces the student to the calculus. It covers functions and their graph and continuity, theory of differentiation, der and trigonometric functions, theory of integra of the definite integral.	ne fundamentals of ns, concepts of limit ivatives of algebraic als, and applications
Credit Units: Prerequisite:	4 units (Lecture)	
Requirements:	Four Long Examinations	60%
•	Quizzes, Problem Sets, Reporting	15%
	Final Examination	20%
	Attendance	5%
Passing Grade:	60%	

B. COURSE OUTCOMES

At the end of the course, the student should be able to:

- CO1: Evaluate a function.
- CO2: Perform addition, subtraction, multiplication, division, and composition of functions.
- CO3: Solve problems involving functions.
- CO4: Illustrate the limit of a function using a table of values and graph of the function.
- CO5: Evaluate the limit of a function using limit theorems.
- CO6: Define continuity at a point and on an interval.
- CO7: Illustrate continuity of a function at a given number and interval.
- CO8: Determine whether a function is continuous at a number or interval.
- CO9: Illustrate the different types of discontinuity.
- CO10: Illustrate the tangent line to the graph of a function at a given point.
- CO11: State the definition of the derivative of a function and its relation to the slope of the tangent line to the function.
- CO12: Apply the differentiation rules to get the derivative of a function.
- CO13: Relate derivative as a rate of change.
- CO14: Solve problems on marginal analysis.
- CO15: Solve problems involving the chain rule of differentiation.
- CO16: Use the implicit differentiation to solve the derivatives of implicit functions.
- CO17: Solve related rates problems.
- CO18: Apply the derivative tests to find extrema of a function and the graph of functions.
- CO19: State the Rolle's theorem and Mean Value theorem.
- CO20: Solve optimization problems using the first and second derivative tests.
- CO21: Find the partial derivatives of functions with more than one variable.
- CO22: Solve optimization problems in two or more variables using Lagrange multipliers.

- CO23: Illustrate the antiderivative of a function.
- CO24: Compute antiderivatives of various functions.
- CO25: Solve separable differential equations using antidifferentiation.
- CO26: Solve situational problems involving exponential growth and decay, bounded growth, and logistic growth.
- CO27: Define the definite integral of a continuous function on the specified interval.
- CO28: Illustrate the fundamental theorems of calculus.
- CO29: Compute the definite integral of a function using the second fundamental theorem of calculus.
- CO30: Solve problems involving areas of regions.

C. COURSE OUTLINE

Timeline	Course Outcome	Topics	Assessment Tools
Week 1		1.1 Functions and their Graphs	Quiz 1
		1.2 Operations on Functions and Types of	Problem Set 1
		Functions	Long Exam 1
Week 2		1.3 Functions as Mathematical Models	
Week 3		1.4 Limit of a Function and Limit Theorems	
Week 4		1.5 One-sided Limits and Infinite Limits	
		1.6 Continuity at a Point and on an Interval	
		1.1 1.7 Continuity of the Trigonometric Functions	
Week 5		2.1 The Tangent Line and the Derivative	Quiz 2
		2.2 Non-existence of the Derivative	Problem Set 2
		2.3 Theorems on Differentiation of Algebraic and	Long Exam 2
		Trigonometric Functions	
		2.4 Higher-order Derivatives	
Week 6		2.5 The Derivative as a Rate of Change and	
		Marginal Analysis	
Week 7		2.6 Differentiation of Exponential and Logarithmic	
VVeek 8		2.7 Chain Rule and Implicit Differentiation	
		2.8 Related Rates	
VVeek 9		3.1 Maximum and Minimum Function Values	QUIZ 3
		3.2 Applications involving an Absolute Extremum	Problem Set 3
		On a Closed Interval	Long Exam 3
Wook 10		Theorem	
Week 10		2.4 Increasing and Decreasing Eulerions and the	
		S.4 Increasing and Decreasing Functions and the	
		3.5 Concevity Points of Infloction and the	
Wook 11		Second Derivative Test	
Week 12		3.6 Optimization Problems	
WCCR 12		3.7 Functions of Two Variables and Partial	
		Derivatives	
Week 13		4.1 Anti-differentiation	Quiz 4
		4.2 Some Techniques of Anti-differentiation	Problem Set 4
Week 14		4.3 Differential Equations: Growth and Decay	Long Exam 4
		4.4 Area and the Definite Integral	
Week 15		4.5 The Fundamental Theorems of Calculus	
Week 16		4.6 Area of a Plane Region	

D. REFERENCES

- 1. Barnett, R.A., Ziegler M.R., Byleen K.E., and Stocker C.J., *Calculus for Business, Economics, Life Sciences, and Social Sciences*, 8th Edition, NJ: Pearson Prentice Hall, 2005.
- 2. Hoffman, L., Bradley, G.L., Sobecki, D., and Price M., *Calculus for Business, Economics and the Social and Life Sciences*, 11th Edition, McGraw-Hill Education, 2012.
- 3. Crowdis, D.G., *Concepts of Calculus with Applications to Business*, Prentice Hall, 1975.
- 4. Tan, S., *Calculus for the Managerial, Life, and Social Sciences*, 7th edition, Brooks Cole, 2007
- 5. Leithold, L., The Calculus 7, Harper Collins, 1996.

E. CLASS RULES

- 1. The University rule on class attendance (Article 346 of the University Code) shall be strictly enforced.
- 2. If a student misses a short quiz, his/her grade in that quiz is zero. If a student misses a long examination for a valid reason (this requires documentation), his/her final grade in the final exam will also account as his/her grade for the missed exam. This applies to no more than one long exam missed. A student who fails to take any examination for invalid reasons will get a grade of 0% for that exam.
- 3. Cheating, in any form, will not be tolerated.

F. RUB	RIC FOR ASS	ESSMENT				
Α.	Problem Set					
	CRITERIA	Unacceptable	Poor	Basic	Acceptable	Exemplary
		0	1	2	3	4
	Interpretation	Incorrect	There is at	Correct but	Correct but	Correct
	of the	interpretation of	least some	incomplete	with minor	statement
	Problem	problem. A	sign of	interpretation	incorrect or	with the
	30%	major	relevant ideas	of the	unnecessary	hypothesis
		misinterpretation	regarding the	problem.	concepts for	(given) and
		of what is given	problem.	May	its solutions.	conclusion
		or what is to be		overlook		(to show)
		shown.		significant		clearly
				details in the		stated.
				statement of		
				the problem.		
				Might be		
				stated for		
				indirect proof		
				but a direct		
				proof is		
				given or		
				vice-versa.	•	•
	Correctness	Mainly incorrect	Unconnected,	Statements	A correct	A correct
	of Proof	consequences	mostly true	linked into a	approach to	and
	70%	improperiy	statements	reasonable	proving the	complete
		deduced from	property	(though	theorem is	proor is
		the given. Little	deduced from	pernaps	attempted.	given. Some
		or no sense of	the given.	misguided)	Some	irrelevant
		now to prove the	Listing facts	attempt to	statements	information
		result.	without a	prove the	may be	may be

	sense of how	theorem.	unjustified or	included,
	to link them to	The proof	improperly	particularly
	get a correct	may be left	justified, but	on timed
	proof. May	incomplete	errors are	work where
	just jump to	or may	minor and	the student
	the	depend upon	could be	is unable to
	conclusion	a major	fixed without	polish up the
	without	Unjustified	substantially	presentation.
	justification.	leap.	changing	
			the proof.	

B. Reporting

Criteria	Needs Improvement 1	Satisfactory 2	Good 3	Exemplary 4
Organization 10%	Audience cannot understand presentation because there is no sequence of information.	Audience has difficulty following presentation because student jumps around.	Student presents information in logical sequence which audience can follow.	Student presen information in logical, interesting sequence whic audience can follow.
Content Knowledge 50%	Students shows no understanding of mathematical concepts within the presentation	Students are visibly uncomfortable with the mathematical concepts of the presentation	Students are at ease with the mathematical concepts of the presentation but lack a deep conceptual understanding	Students demonstrate a complete and comprehensive understanding the mathematic concepts in the presentation
Visuals 10%	Students use no visuals	Students occasionally use visuals that rarely support the presentation and audience understanding	Students use visuals that are related to the presentation but did not completely support audience understanding	The visuals use supported audience understanding
Mechanics 10%	Students presentation contained four or more spelling, grammatical or mathematical errors	Presentation had three spelling, grammatical or mathematical errors	Presentation had no more than two spelling, grammatical or mathematical errors	Presentation ha no spelling, grammatical or mathematical errors
Delivery 20%	Student mumbles, incorrectly pronounces terms, and speaks too quietly for students in the back of class to hear.	Student incorrectly pronounces terms. Audience members have difficulty hearing presentation.	Student's voice is clear. Student pronounces most words correctly.	Student used a clear voice and correct, precise pronunciation o terms.

Prepared:

PROF. REYMART SALCEDO LAGUNERO

AUN-QA Program Development Associate

Approved:

PROF. JERICO B. BACANI, Dr.rer.nat. Chairperson